]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - crypto/skcipher.c
crypto: tcrypt - fix ghash-generic speed test
[mirror_ubuntu-bionic-kernel.git] / crypto / skcipher.c
1 /*
2 * Symmetric key cipher operations.
3 *
4 * Generic encrypt/decrypt wrapper for ciphers, handles operations across
5 * multiple page boundaries by using temporary blocks. In user context,
6 * the kernel is given a chance to schedule us once per page.
7 *
8 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the Free
12 * Software Foundation; either version 2 of the License, or (at your option)
13 * any later version.
14 *
15 */
16
17 #include <crypto/internal/aead.h>
18 #include <crypto/internal/skcipher.h>
19 #include <crypto/scatterwalk.h>
20 #include <linux/bug.h>
21 #include <linux/cryptouser.h>
22 #include <linux/compiler.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/rtnetlink.h>
26 #include <linux/seq_file.h>
27 #include <net/netlink.h>
28
29 #include "internal.h"
30
31 enum {
32 SKCIPHER_WALK_PHYS = 1 << 0,
33 SKCIPHER_WALK_SLOW = 1 << 1,
34 SKCIPHER_WALK_COPY = 1 << 2,
35 SKCIPHER_WALK_DIFF = 1 << 3,
36 SKCIPHER_WALK_SLEEP = 1 << 4,
37 };
38
39 struct skcipher_walk_buffer {
40 struct list_head entry;
41 struct scatter_walk dst;
42 unsigned int len;
43 u8 *data;
44 u8 buffer[];
45 };
46
47 static int skcipher_walk_next(struct skcipher_walk *walk);
48
49 static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr)
50 {
51 if (PageHighMem(scatterwalk_page(walk)))
52 kunmap_atomic(vaddr);
53 }
54
55 static inline void *skcipher_map(struct scatter_walk *walk)
56 {
57 struct page *page = scatterwalk_page(walk);
58
59 return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) +
60 offset_in_page(walk->offset);
61 }
62
63 static inline void skcipher_map_src(struct skcipher_walk *walk)
64 {
65 walk->src.virt.addr = skcipher_map(&walk->in);
66 }
67
68 static inline void skcipher_map_dst(struct skcipher_walk *walk)
69 {
70 walk->dst.virt.addr = skcipher_map(&walk->out);
71 }
72
73 static inline void skcipher_unmap_src(struct skcipher_walk *walk)
74 {
75 skcipher_unmap(&walk->in, walk->src.virt.addr);
76 }
77
78 static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
79 {
80 skcipher_unmap(&walk->out, walk->dst.virt.addr);
81 }
82
83 static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
84 {
85 return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
86 }
87
88 /* Get a spot of the specified length that does not straddle a page.
89 * The caller needs to ensure that there is enough space for this operation.
90 */
91 static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
92 {
93 u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
94
95 return max(start, end_page);
96 }
97
98 static void skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
99 {
100 u8 *addr;
101
102 addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
103 addr = skcipher_get_spot(addr, bsize);
104 scatterwalk_copychunks(addr, &walk->out, bsize,
105 (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
106 }
107
108 int skcipher_walk_done(struct skcipher_walk *walk, int err)
109 {
110 unsigned int n; /* bytes processed */
111 bool more;
112
113 if (unlikely(err < 0))
114 goto finish;
115
116 n = walk->nbytes - err;
117 walk->total -= n;
118 more = (walk->total != 0);
119
120 if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
121 SKCIPHER_WALK_SLOW |
122 SKCIPHER_WALK_COPY |
123 SKCIPHER_WALK_DIFF)))) {
124 unmap_src:
125 skcipher_unmap_src(walk);
126 } else if (walk->flags & SKCIPHER_WALK_DIFF) {
127 skcipher_unmap_dst(walk);
128 goto unmap_src;
129 } else if (walk->flags & SKCIPHER_WALK_COPY) {
130 skcipher_map_dst(walk);
131 memcpy(walk->dst.virt.addr, walk->page, n);
132 skcipher_unmap_dst(walk);
133 } else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
134 if (WARN_ON(err)) {
135 /* unexpected case; didn't process all bytes */
136 err = -EINVAL;
137 goto finish;
138 }
139 skcipher_done_slow(walk, n);
140 goto already_advanced;
141 }
142
143 scatterwalk_advance(&walk->in, n);
144 scatterwalk_advance(&walk->out, n);
145 already_advanced:
146 scatterwalk_done(&walk->in, 0, more);
147 scatterwalk_done(&walk->out, 1, more);
148
149 if (more) {
150 crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
151 CRYPTO_TFM_REQ_MAY_SLEEP : 0);
152 return skcipher_walk_next(walk);
153 }
154 err = 0;
155 finish:
156 walk->nbytes = 0;
157
158 /* Short-circuit for the common/fast path. */
159 if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
160 goto out;
161
162 if (walk->flags & SKCIPHER_WALK_PHYS)
163 goto out;
164
165 if (walk->iv != walk->oiv)
166 memcpy(walk->oiv, walk->iv, walk->ivsize);
167 if (walk->buffer != walk->page)
168 kfree(walk->buffer);
169 if (walk->page)
170 free_page((unsigned long)walk->page);
171
172 out:
173 return err;
174 }
175 EXPORT_SYMBOL_GPL(skcipher_walk_done);
176
177 void skcipher_walk_complete(struct skcipher_walk *walk, int err)
178 {
179 struct skcipher_walk_buffer *p, *tmp;
180
181 list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
182 u8 *data;
183
184 if (err)
185 goto done;
186
187 data = p->data;
188 if (!data) {
189 data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
190 data = skcipher_get_spot(data, walk->stride);
191 }
192
193 scatterwalk_copychunks(data, &p->dst, p->len, 1);
194
195 if (offset_in_page(p->data) + p->len + walk->stride >
196 PAGE_SIZE)
197 free_page((unsigned long)p->data);
198
199 done:
200 list_del(&p->entry);
201 kfree(p);
202 }
203
204 if (!err && walk->iv != walk->oiv)
205 memcpy(walk->oiv, walk->iv, walk->ivsize);
206 if (walk->buffer != walk->page)
207 kfree(walk->buffer);
208 if (walk->page)
209 free_page((unsigned long)walk->page);
210 }
211 EXPORT_SYMBOL_GPL(skcipher_walk_complete);
212
213 static void skcipher_queue_write(struct skcipher_walk *walk,
214 struct skcipher_walk_buffer *p)
215 {
216 p->dst = walk->out;
217 list_add_tail(&p->entry, &walk->buffers);
218 }
219
220 static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
221 {
222 bool phys = walk->flags & SKCIPHER_WALK_PHYS;
223 unsigned alignmask = walk->alignmask;
224 struct skcipher_walk_buffer *p;
225 unsigned a;
226 unsigned n;
227 u8 *buffer;
228 void *v;
229
230 if (!phys) {
231 if (!walk->buffer)
232 walk->buffer = walk->page;
233 buffer = walk->buffer;
234 if (buffer)
235 goto ok;
236 }
237
238 /* Start with the minimum alignment of kmalloc. */
239 a = crypto_tfm_ctx_alignment() - 1;
240 n = bsize;
241
242 if (phys) {
243 /* Calculate the minimum alignment of p->buffer. */
244 a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
245 n += sizeof(*p);
246 }
247
248 /* Minimum size to align p->buffer by alignmask. */
249 n += alignmask & ~a;
250
251 /* Minimum size to ensure p->buffer does not straddle a page. */
252 n += (bsize - 1) & ~(alignmask | a);
253
254 v = kzalloc(n, skcipher_walk_gfp(walk));
255 if (!v)
256 return skcipher_walk_done(walk, -ENOMEM);
257
258 if (phys) {
259 p = v;
260 p->len = bsize;
261 skcipher_queue_write(walk, p);
262 buffer = p->buffer;
263 } else {
264 walk->buffer = v;
265 buffer = v;
266 }
267
268 ok:
269 walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
270 walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
271 walk->src.virt.addr = walk->dst.virt.addr;
272
273 scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
274
275 walk->nbytes = bsize;
276 walk->flags |= SKCIPHER_WALK_SLOW;
277
278 return 0;
279 }
280
281 static int skcipher_next_copy(struct skcipher_walk *walk)
282 {
283 struct skcipher_walk_buffer *p;
284 u8 *tmp = walk->page;
285
286 skcipher_map_src(walk);
287 memcpy(tmp, walk->src.virt.addr, walk->nbytes);
288 skcipher_unmap_src(walk);
289
290 walk->src.virt.addr = tmp;
291 walk->dst.virt.addr = tmp;
292
293 if (!(walk->flags & SKCIPHER_WALK_PHYS))
294 return 0;
295
296 p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
297 if (!p)
298 return -ENOMEM;
299
300 p->data = walk->page;
301 p->len = walk->nbytes;
302 skcipher_queue_write(walk, p);
303
304 if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
305 PAGE_SIZE)
306 walk->page = NULL;
307 else
308 walk->page += walk->nbytes;
309
310 return 0;
311 }
312
313 static int skcipher_next_fast(struct skcipher_walk *walk)
314 {
315 unsigned long diff;
316
317 walk->src.phys.page = scatterwalk_page(&walk->in);
318 walk->src.phys.offset = offset_in_page(walk->in.offset);
319 walk->dst.phys.page = scatterwalk_page(&walk->out);
320 walk->dst.phys.offset = offset_in_page(walk->out.offset);
321
322 if (walk->flags & SKCIPHER_WALK_PHYS)
323 return 0;
324
325 diff = walk->src.phys.offset - walk->dst.phys.offset;
326 diff |= walk->src.virt.page - walk->dst.virt.page;
327
328 skcipher_map_src(walk);
329 walk->dst.virt.addr = walk->src.virt.addr;
330
331 if (diff) {
332 walk->flags |= SKCIPHER_WALK_DIFF;
333 skcipher_map_dst(walk);
334 }
335
336 return 0;
337 }
338
339 static int skcipher_walk_next(struct skcipher_walk *walk)
340 {
341 unsigned int bsize;
342 unsigned int n;
343 int err;
344
345 walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
346 SKCIPHER_WALK_DIFF);
347
348 n = walk->total;
349 bsize = min(walk->stride, max(n, walk->blocksize));
350 n = scatterwalk_clamp(&walk->in, n);
351 n = scatterwalk_clamp(&walk->out, n);
352
353 if (unlikely(n < bsize)) {
354 if (unlikely(walk->total < walk->blocksize))
355 return skcipher_walk_done(walk, -EINVAL);
356
357 slow_path:
358 err = skcipher_next_slow(walk, bsize);
359 goto set_phys_lowmem;
360 }
361
362 if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
363 if (!walk->page) {
364 gfp_t gfp = skcipher_walk_gfp(walk);
365
366 walk->page = (void *)__get_free_page(gfp);
367 if (!walk->page)
368 goto slow_path;
369 }
370
371 walk->nbytes = min_t(unsigned, n,
372 PAGE_SIZE - offset_in_page(walk->page));
373 walk->flags |= SKCIPHER_WALK_COPY;
374 err = skcipher_next_copy(walk);
375 goto set_phys_lowmem;
376 }
377
378 walk->nbytes = n;
379
380 return skcipher_next_fast(walk);
381
382 set_phys_lowmem:
383 if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
384 walk->src.phys.page = virt_to_page(walk->src.virt.addr);
385 walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
386 walk->src.phys.offset &= PAGE_SIZE - 1;
387 walk->dst.phys.offset &= PAGE_SIZE - 1;
388 }
389 return err;
390 }
391 EXPORT_SYMBOL_GPL(skcipher_walk_next);
392
393 static int skcipher_copy_iv(struct skcipher_walk *walk)
394 {
395 unsigned a = crypto_tfm_ctx_alignment() - 1;
396 unsigned alignmask = walk->alignmask;
397 unsigned ivsize = walk->ivsize;
398 unsigned bs = walk->stride;
399 unsigned aligned_bs;
400 unsigned size;
401 u8 *iv;
402
403 aligned_bs = ALIGN(bs, alignmask + 1);
404
405 /* Minimum size to align buffer by alignmask. */
406 size = alignmask & ~a;
407
408 if (walk->flags & SKCIPHER_WALK_PHYS)
409 size += ivsize;
410 else {
411 size += aligned_bs + ivsize;
412
413 /* Minimum size to ensure buffer does not straddle a page. */
414 size += (bs - 1) & ~(alignmask | a);
415 }
416
417 walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
418 if (!walk->buffer)
419 return -ENOMEM;
420
421 iv = PTR_ALIGN(walk->buffer, alignmask + 1);
422 iv = skcipher_get_spot(iv, bs) + aligned_bs;
423
424 walk->iv = memcpy(iv, walk->iv, walk->ivsize);
425 return 0;
426 }
427
428 static int skcipher_walk_first(struct skcipher_walk *walk)
429 {
430 if (WARN_ON_ONCE(in_irq()))
431 return -EDEADLK;
432
433 walk->buffer = NULL;
434 if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
435 int err = skcipher_copy_iv(walk);
436 if (err)
437 return err;
438 }
439
440 walk->page = NULL;
441 walk->nbytes = walk->total;
442
443 return skcipher_walk_next(walk);
444 }
445
446 static int skcipher_walk_skcipher(struct skcipher_walk *walk,
447 struct skcipher_request *req)
448 {
449 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
450
451 walk->total = req->cryptlen;
452 walk->nbytes = 0;
453 walk->iv = req->iv;
454 walk->oiv = req->iv;
455
456 if (unlikely(!walk->total))
457 return 0;
458
459 scatterwalk_start(&walk->in, req->src);
460 scatterwalk_start(&walk->out, req->dst);
461
462 walk->flags &= ~SKCIPHER_WALK_SLEEP;
463 walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
464 SKCIPHER_WALK_SLEEP : 0;
465
466 walk->blocksize = crypto_skcipher_blocksize(tfm);
467 walk->stride = crypto_skcipher_walksize(tfm);
468 walk->ivsize = crypto_skcipher_ivsize(tfm);
469 walk->alignmask = crypto_skcipher_alignmask(tfm);
470
471 return skcipher_walk_first(walk);
472 }
473
474 int skcipher_walk_virt(struct skcipher_walk *walk,
475 struct skcipher_request *req, bool atomic)
476 {
477 int err;
478
479 walk->flags &= ~SKCIPHER_WALK_PHYS;
480
481 err = skcipher_walk_skcipher(walk, req);
482
483 walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
484
485 return err;
486 }
487 EXPORT_SYMBOL_GPL(skcipher_walk_virt);
488
489 void skcipher_walk_atomise(struct skcipher_walk *walk)
490 {
491 walk->flags &= ~SKCIPHER_WALK_SLEEP;
492 }
493 EXPORT_SYMBOL_GPL(skcipher_walk_atomise);
494
495 int skcipher_walk_async(struct skcipher_walk *walk,
496 struct skcipher_request *req)
497 {
498 walk->flags |= SKCIPHER_WALK_PHYS;
499
500 INIT_LIST_HEAD(&walk->buffers);
501
502 return skcipher_walk_skcipher(walk, req);
503 }
504 EXPORT_SYMBOL_GPL(skcipher_walk_async);
505
506 static int skcipher_walk_aead_common(struct skcipher_walk *walk,
507 struct aead_request *req, bool atomic)
508 {
509 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
510 int err;
511
512 walk->nbytes = 0;
513 walk->iv = req->iv;
514 walk->oiv = req->iv;
515
516 if (unlikely(!walk->total))
517 return 0;
518
519 walk->flags &= ~SKCIPHER_WALK_PHYS;
520
521 scatterwalk_start(&walk->in, req->src);
522 scatterwalk_start(&walk->out, req->dst);
523
524 scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
525 scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
526
527 scatterwalk_done(&walk->in, 0, walk->total);
528 scatterwalk_done(&walk->out, 0, walk->total);
529
530 if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
531 walk->flags |= SKCIPHER_WALK_SLEEP;
532 else
533 walk->flags &= ~SKCIPHER_WALK_SLEEP;
534
535 walk->blocksize = crypto_aead_blocksize(tfm);
536 walk->stride = crypto_aead_chunksize(tfm);
537 walk->ivsize = crypto_aead_ivsize(tfm);
538 walk->alignmask = crypto_aead_alignmask(tfm);
539
540 err = skcipher_walk_first(walk);
541
542 if (atomic)
543 walk->flags &= ~SKCIPHER_WALK_SLEEP;
544
545 return err;
546 }
547
548 int skcipher_walk_aead(struct skcipher_walk *walk, struct aead_request *req,
549 bool atomic)
550 {
551 walk->total = req->cryptlen;
552
553 return skcipher_walk_aead_common(walk, req, atomic);
554 }
555 EXPORT_SYMBOL_GPL(skcipher_walk_aead);
556
557 int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
558 struct aead_request *req, bool atomic)
559 {
560 walk->total = req->cryptlen;
561
562 return skcipher_walk_aead_common(walk, req, atomic);
563 }
564 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
565
566 int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
567 struct aead_request *req, bool atomic)
568 {
569 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
570
571 walk->total = req->cryptlen - crypto_aead_authsize(tfm);
572
573 return skcipher_walk_aead_common(walk, req, atomic);
574 }
575 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
576
577 static unsigned int crypto_skcipher_extsize(struct crypto_alg *alg)
578 {
579 if (alg->cra_type == &crypto_blkcipher_type)
580 return sizeof(struct crypto_blkcipher *);
581
582 if (alg->cra_type == &crypto_ablkcipher_type ||
583 alg->cra_type == &crypto_givcipher_type)
584 return sizeof(struct crypto_ablkcipher *);
585
586 return crypto_alg_extsize(alg);
587 }
588
589 static int skcipher_setkey_blkcipher(struct crypto_skcipher *tfm,
590 const u8 *key, unsigned int keylen)
591 {
592 struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
593 struct crypto_blkcipher *blkcipher = *ctx;
594 int err;
595
596 crypto_blkcipher_clear_flags(blkcipher, ~0);
597 crypto_blkcipher_set_flags(blkcipher, crypto_skcipher_get_flags(tfm) &
598 CRYPTO_TFM_REQ_MASK);
599 err = crypto_blkcipher_setkey(blkcipher, key, keylen);
600 crypto_skcipher_set_flags(tfm, crypto_blkcipher_get_flags(blkcipher) &
601 CRYPTO_TFM_RES_MASK);
602
603 return err;
604 }
605
606 static int skcipher_crypt_blkcipher(struct skcipher_request *req,
607 int (*crypt)(struct blkcipher_desc *,
608 struct scatterlist *,
609 struct scatterlist *,
610 unsigned int))
611 {
612 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
613 struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
614 struct blkcipher_desc desc = {
615 .tfm = *ctx,
616 .info = req->iv,
617 .flags = req->base.flags,
618 };
619
620
621 return crypt(&desc, req->dst, req->src, req->cryptlen);
622 }
623
624 static int skcipher_encrypt_blkcipher(struct skcipher_request *req)
625 {
626 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
627 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
628 struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
629
630 return skcipher_crypt_blkcipher(req, alg->encrypt);
631 }
632
633 static int skcipher_decrypt_blkcipher(struct skcipher_request *req)
634 {
635 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
636 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
637 struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
638
639 return skcipher_crypt_blkcipher(req, alg->decrypt);
640 }
641
642 static void crypto_exit_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
643 {
644 struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
645
646 crypto_free_blkcipher(*ctx);
647 }
648
649 static int crypto_init_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
650 {
651 struct crypto_alg *calg = tfm->__crt_alg;
652 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
653 struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
654 struct crypto_blkcipher *blkcipher;
655 struct crypto_tfm *btfm;
656
657 if (!crypto_mod_get(calg))
658 return -EAGAIN;
659
660 btfm = __crypto_alloc_tfm(calg, CRYPTO_ALG_TYPE_BLKCIPHER,
661 CRYPTO_ALG_TYPE_MASK);
662 if (IS_ERR(btfm)) {
663 crypto_mod_put(calg);
664 return PTR_ERR(btfm);
665 }
666
667 blkcipher = __crypto_blkcipher_cast(btfm);
668 *ctx = blkcipher;
669 tfm->exit = crypto_exit_skcipher_ops_blkcipher;
670
671 skcipher->setkey = skcipher_setkey_blkcipher;
672 skcipher->encrypt = skcipher_encrypt_blkcipher;
673 skcipher->decrypt = skcipher_decrypt_blkcipher;
674
675 skcipher->ivsize = crypto_blkcipher_ivsize(blkcipher);
676 skcipher->keysize = calg->cra_blkcipher.max_keysize;
677
678 return 0;
679 }
680
681 static int skcipher_setkey_ablkcipher(struct crypto_skcipher *tfm,
682 const u8 *key, unsigned int keylen)
683 {
684 struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
685 struct crypto_ablkcipher *ablkcipher = *ctx;
686 int err;
687
688 crypto_ablkcipher_clear_flags(ablkcipher, ~0);
689 crypto_ablkcipher_set_flags(ablkcipher,
690 crypto_skcipher_get_flags(tfm) &
691 CRYPTO_TFM_REQ_MASK);
692 err = crypto_ablkcipher_setkey(ablkcipher, key, keylen);
693 crypto_skcipher_set_flags(tfm,
694 crypto_ablkcipher_get_flags(ablkcipher) &
695 CRYPTO_TFM_RES_MASK);
696
697 return err;
698 }
699
700 static int skcipher_crypt_ablkcipher(struct skcipher_request *req,
701 int (*crypt)(struct ablkcipher_request *))
702 {
703 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
704 struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
705 struct ablkcipher_request *subreq = skcipher_request_ctx(req);
706
707 ablkcipher_request_set_tfm(subreq, *ctx);
708 ablkcipher_request_set_callback(subreq, skcipher_request_flags(req),
709 req->base.complete, req->base.data);
710 ablkcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
711 req->iv);
712
713 return crypt(subreq);
714 }
715
716 static int skcipher_encrypt_ablkcipher(struct skcipher_request *req)
717 {
718 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
719 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
720 struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
721
722 return skcipher_crypt_ablkcipher(req, alg->encrypt);
723 }
724
725 static int skcipher_decrypt_ablkcipher(struct skcipher_request *req)
726 {
727 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
728 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
729 struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
730
731 return skcipher_crypt_ablkcipher(req, alg->decrypt);
732 }
733
734 static void crypto_exit_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
735 {
736 struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
737
738 crypto_free_ablkcipher(*ctx);
739 }
740
741 static int crypto_init_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
742 {
743 struct crypto_alg *calg = tfm->__crt_alg;
744 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
745 struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
746 struct crypto_ablkcipher *ablkcipher;
747 struct crypto_tfm *abtfm;
748
749 if (!crypto_mod_get(calg))
750 return -EAGAIN;
751
752 abtfm = __crypto_alloc_tfm(calg, 0, 0);
753 if (IS_ERR(abtfm)) {
754 crypto_mod_put(calg);
755 return PTR_ERR(abtfm);
756 }
757
758 ablkcipher = __crypto_ablkcipher_cast(abtfm);
759 *ctx = ablkcipher;
760 tfm->exit = crypto_exit_skcipher_ops_ablkcipher;
761
762 skcipher->setkey = skcipher_setkey_ablkcipher;
763 skcipher->encrypt = skcipher_encrypt_ablkcipher;
764 skcipher->decrypt = skcipher_decrypt_ablkcipher;
765
766 skcipher->ivsize = crypto_ablkcipher_ivsize(ablkcipher);
767 skcipher->reqsize = crypto_ablkcipher_reqsize(ablkcipher) +
768 sizeof(struct ablkcipher_request);
769 skcipher->keysize = calg->cra_ablkcipher.max_keysize;
770
771 return 0;
772 }
773
774 static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
775 const u8 *key, unsigned int keylen)
776 {
777 unsigned long alignmask = crypto_skcipher_alignmask(tfm);
778 struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
779 u8 *buffer, *alignbuffer;
780 unsigned long absize;
781 int ret;
782
783 absize = keylen + alignmask;
784 buffer = kmalloc(absize, GFP_ATOMIC);
785 if (!buffer)
786 return -ENOMEM;
787
788 alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
789 memcpy(alignbuffer, key, keylen);
790 ret = cipher->setkey(tfm, alignbuffer, keylen);
791 kzfree(buffer);
792 return ret;
793 }
794
795 static int skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
796 unsigned int keylen)
797 {
798 struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
799 unsigned long alignmask = crypto_skcipher_alignmask(tfm);
800
801 if (keylen < cipher->min_keysize || keylen > cipher->max_keysize) {
802 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
803 return -EINVAL;
804 }
805
806 if ((unsigned long)key & alignmask)
807 return skcipher_setkey_unaligned(tfm, key, keylen);
808
809 return cipher->setkey(tfm, key, keylen);
810 }
811
812 static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
813 {
814 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
815 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
816
817 alg->exit(skcipher);
818 }
819
820 static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
821 {
822 struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
823 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
824
825 if (tfm->__crt_alg->cra_type == &crypto_blkcipher_type)
826 return crypto_init_skcipher_ops_blkcipher(tfm);
827
828 if (tfm->__crt_alg->cra_type == &crypto_ablkcipher_type ||
829 tfm->__crt_alg->cra_type == &crypto_givcipher_type)
830 return crypto_init_skcipher_ops_ablkcipher(tfm);
831
832 skcipher->setkey = skcipher_setkey;
833 skcipher->encrypt = alg->encrypt;
834 skcipher->decrypt = alg->decrypt;
835 skcipher->ivsize = alg->ivsize;
836 skcipher->keysize = alg->max_keysize;
837
838 if (alg->exit)
839 skcipher->base.exit = crypto_skcipher_exit_tfm;
840
841 if (alg->init)
842 return alg->init(skcipher);
843
844 return 0;
845 }
846
847 static void crypto_skcipher_free_instance(struct crypto_instance *inst)
848 {
849 struct skcipher_instance *skcipher =
850 container_of(inst, struct skcipher_instance, s.base);
851
852 skcipher->free(skcipher);
853 }
854
855 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
856 __maybe_unused;
857 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
858 {
859 struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
860 base);
861
862 seq_printf(m, "type : skcipher\n");
863 seq_printf(m, "async : %s\n",
864 alg->cra_flags & CRYPTO_ALG_ASYNC ? "yes" : "no");
865 seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
866 seq_printf(m, "min keysize : %u\n", skcipher->min_keysize);
867 seq_printf(m, "max keysize : %u\n", skcipher->max_keysize);
868 seq_printf(m, "ivsize : %u\n", skcipher->ivsize);
869 seq_printf(m, "chunksize : %u\n", skcipher->chunksize);
870 seq_printf(m, "walksize : %u\n", skcipher->walksize);
871 }
872
873 #ifdef CONFIG_NET
874 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
875 {
876 struct crypto_report_blkcipher rblkcipher;
877 struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
878 base);
879
880 strncpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
881 strncpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
882
883 rblkcipher.blocksize = alg->cra_blocksize;
884 rblkcipher.min_keysize = skcipher->min_keysize;
885 rblkcipher.max_keysize = skcipher->max_keysize;
886 rblkcipher.ivsize = skcipher->ivsize;
887
888 if (nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
889 sizeof(struct crypto_report_blkcipher), &rblkcipher))
890 goto nla_put_failure;
891 return 0;
892
893 nla_put_failure:
894 return -EMSGSIZE;
895 }
896 #else
897 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
898 {
899 return -ENOSYS;
900 }
901 #endif
902
903 static const struct crypto_type crypto_skcipher_type2 = {
904 .extsize = crypto_skcipher_extsize,
905 .init_tfm = crypto_skcipher_init_tfm,
906 .free = crypto_skcipher_free_instance,
907 #ifdef CONFIG_PROC_FS
908 .show = crypto_skcipher_show,
909 #endif
910 .report = crypto_skcipher_report,
911 .maskclear = ~CRYPTO_ALG_TYPE_MASK,
912 .maskset = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
913 .type = CRYPTO_ALG_TYPE_SKCIPHER,
914 .tfmsize = offsetof(struct crypto_skcipher, base),
915 };
916
917 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
918 const char *name, u32 type, u32 mask)
919 {
920 spawn->base.frontend = &crypto_skcipher_type2;
921 return crypto_grab_spawn(&spawn->base, name, type, mask);
922 }
923 EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
924
925 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
926 u32 type, u32 mask)
927 {
928 return crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask);
929 }
930 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
931
932 int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask)
933 {
934 return crypto_type_has_alg(alg_name, &crypto_skcipher_type2,
935 type, mask);
936 }
937 EXPORT_SYMBOL_GPL(crypto_has_skcipher2);
938
939 static int skcipher_prepare_alg(struct skcipher_alg *alg)
940 {
941 struct crypto_alg *base = &alg->base;
942
943 if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
944 alg->walksize > PAGE_SIZE / 8)
945 return -EINVAL;
946
947 if (!alg->chunksize)
948 alg->chunksize = base->cra_blocksize;
949 if (!alg->walksize)
950 alg->walksize = alg->chunksize;
951
952 base->cra_type = &crypto_skcipher_type2;
953 base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
954 base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
955
956 return 0;
957 }
958
959 int crypto_register_skcipher(struct skcipher_alg *alg)
960 {
961 struct crypto_alg *base = &alg->base;
962 int err;
963
964 err = skcipher_prepare_alg(alg);
965 if (err)
966 return err;
967
968 return crypto_register_alg(base);
969 }
970 EXPORT_SYMBOL_GPL(crypto_register_skcipher);
971
972 void crypto_unregister_skcipher(struct skcipher_alg *alg)
973 {
974 crypto_unregister_alg(&alg->base);
975 }
976 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
977
978 int crypto_register_skciphers(struct skcipher_alg *algs, int count)
979 {
980 int i, ret;
981
982 for (i = 0; i < count; i++) {
983 ret = crypto_register_skcipher(&algs[i]);
984 if (ret)
985 goto err;
986 }
987
988 return 0;
989
990 err:
991 for (--i; i >= 0; --i)
992 crypto_unregister_skcipher(&algs[i]);
993
994 return ret;
995 }
996 EXPORT_SYMBOL_GPL(crypto_register_skciphers);
997
998 void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
999 {
1000 int i;
1001
1002 for (i = count - 1; i >= 0; --i)
1003 crypto_unregister_skcipher(&algs[i]);
1004 }
1005 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
1006
1007 int skcipher_register_instance(struct crypto_template *tmpl,
1008 struct skcipher_instance *inst)
1009 {
1010 int err;
1011
1012 err = skcipher_prepare_alg(&inst->alg);
1013 if (err)
1014 return err;
1015
1016 return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
1017 }
1018 EXPORT_SYMBOL_GPL(skcipher_register_instance);
1019
1020 MODULE_LICENSE("GPL");
1021 MODULE_DESCRIPTION("Symmetric key cipher type");