]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/acpi/cppc_acpi.c
ACPI / CPPC: Fix invalid PCC channel status errors
[mirror_ubuntu-bionic-kernel.git] / drivers / acpi / cppc_acpi.c
1 /*
2 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
3 *
4 * (C) Copyright 2014, 2015 Linaro Ltd.
5 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 *
12 * CPPC describes a few methods for controlling CPU performance using
13 * information from a per CPU table called CPC. This table is described in
14 * the ACPI v5.0+ specification. The table consists of a list of
15 * registers which may be memory mapped or hardware registers and also may
16 * include some static integer values.
17 *
18 * CPU performance is on an abstract continuous scale as against a discretized
19 * P-state scale which is tied to CPU frequency only. In brief, the basic
20 * operation involves:
21 *
22 * - OS makes a CPU performance request. (Can provide min and max bounds)
23 *
24 * - Platform (such as BMC) is free to optimize request within requested bounds
25 * depending on power/thermal budgets etc.
26 *
27 * - Platform conveys its decision back to OS
28 *
29 * The communication between OS and platform occurs through another medium
30 * called (PCC) Platform Communication Channel. This is a generic mailbox like
31 * mechanism which includes doorbell semantics to indicate register updates.
32 * See drivers/mailbox/pcc.c for details on PCC.
33 *
34 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35 * above specifications.
36 */
37
38 #define pr_fmt(fmt) "ACPI CPPC: " fmt
39
40 #include <linux/cpufreq.h>
41 #include <linux/delay.h>
42 #include <linux/iopoll.h>
43 #include <linux/ktime.h>
44 #include <linux/rwsem.h>
45 #include <linux/wait.h>
46
47 #include <acpi/cppc_acpi.h>
48
49 struct cppc_pcc_data {
50 struct mbox_chan *pcc_channel;
51 void __iomem *pcc_comm_addr;
52 bool pcc_channel_acquired;
53 unsigned int deadline_us;
54 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
55
56 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
57 bool platform_owns_pcc; /* Ownership of PCC subspace */
58 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
59
60 /*
61 * Lock to provide controlled access to the PCC channel.
62 *
63 * For performance critical usecases(currently cppc_set_perf)
64 * We need to take read_lock and check if channel belongs to OSPM
65 * before reading or writing to PCC subspace
66 * We need to take write_lock before transferring the channel
67 * ownership to the platform via a Doorbell
68 * This allows us to batch a number of CPPC requests if they happen
69 * to originate in about the same time
70 *
71 * For non-performance critical usecases(init)
72 * Take write_lock for all purposes which gives exclusive access
73 */
74 struct rw_semaphore pcc_lock;
75
76 /* Wait queue for CPUs whose requests were batched */
77 wait_queue_head_t pcc_write_wait_q;
78 ktime_t last_cmd_cmpl_time;
79 ktime_t last_mpar_reset;
80 int mpar_count;
81 int refcount;
82 };
83
84 /* Array to represent the PCC channel per subspace id */
85 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
86 /* The cpu_pcc_subspace_idx containsper CPU subspace id */
87 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
88
89 /*
90 * The cpc_desc structure contains the ACPI register details
91 * as described in the per CPU _CPC tables. The details
92 * include the type of register (e.g. PCC, System IO, FFH etc.)
93 * and destination addresses which lets us READ/WRITE CPU performance
94 * information using the appropriate I/O methods.
95 */
96 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
97
98 /* pcc mapped address + header size + offset within PCC subspace */
99 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
100 0x8 + (offs))
101
102 /* Check if a CPC register is in PCC */
103 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
104 (cpc)->cpc_entry.reg.space_id == \
105 ACPI_ADR_SPACE_PLATFORM_COMM)
106
107 /* Evalutes to True if reg is a NULL register descriptor */
108 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
109 (reg)->address == 0 && \
110 (reg)->bit_width == 0 && \
111 (reg)->bit_offset == 0 && \
112 (reg)->access_width == 0)
113
114 /* Evalutes to True if an optional cpc field is supported */
115 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
116 !!(cpc)->cpc_entry.int_value : \
117 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
118 /*
119 * Arbitrary Retries in case the remote processor is slow to respond
120 * to PCC commands. Keeping it high enough to cover emulators where
121 * the processors run painfully slow.
122 */
123 #define NUM_RETRIES 500
124
125 struct cppc_attr {
126 struct attribute attr;
127 ssize_t (*show)(struct kobject *kobj,
128 struct attribute *attr, char *buf);
129 ssize_t (*store)(struct kobject *kobj,
130 struct attribute *attr, const char *c, ssize_t count);
131 };
132
133 #define define_one_cppc_ro(_name) \
134 static struct cppc_attr _name = \
135 __ATTR(_name, 0444, show_##_name, NULL)
136
137 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
138
139 #define show_cppc_data(access_fn, struct_name, member_name) \
140 static ssize_t show_##member_name(struct kobject *kobj, \
141 struct attribute *attr, char *buf) \
142 { \
143 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
144 struct struct_name st_name = {0}; \
145 int ret; \
146 \
147 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
148 if (ret) \
149 return ret; \
150 \
151 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
152 (u64)st_name.member_name); \
153 } \
154 define_one_cppc_ro(member_name)
155
156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
158 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
159 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
160 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
161 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
162
163 static ssize_t show_feedback_ctrs(struct kobject *kobj,
164 struct attribute *attr, char *buf)
165 {
166 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
167 struct cppc_perf_fb_ctrs fb_ctrs = {0};
168 int ret;
169
170 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
171 if (ret)
172 return ret;
173
174 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
175 fb_ctrs.reference, fb_ctrs.delivered);
176 }
177 define_one_cppc_ro(feedback_ctrs);
178
179 static struct attribute *cppc_attrs[] = {
180 &feedback_ctrs.attr,
181 &reference_perf.attr,
182 &wraparound_time.attr,
183 &highest_perf.attr,
184 &lowest_perf.attr,
185 &lowest_nonlinear_perf.attr,
186 &nominal_perf.attr,
187 NULL
188 };
189
190 static struct kobj_type cppc_ktype = {
191 .sysfs_ops = &kobj_sysfs_ops,
192 .default_attrs = cppc_attrs,
193 };
194
195 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
196 {
197 int ret, status;
198 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
199 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
200 pcc_ss_data->pcc_comm_addr;
201
202 if (!pcc_ss_data->platform_owns_pcc)
203 return 0;
204
205 /*
206 * Poll PCC status register every 3us(delay_us) for maximum of
207 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
208 */
209 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
210 status & PCC_CMD_COMPLETE_MASK, 3,
211 pcc_ss_data->deadline_us);
212
213 if (likely(!ret)) {
214 pcc_ss_data->platform_owns_pcc = false;
215 if (chk_err_bit && (status & PCC_ERROR_MASK))
216 ret = -EIO;
217 }
218
219 if (unlikely(ret))
220 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
221 pcc_ss_id, ret);
222
223 return ret;
224 }
225
226 /*
227 * This function transfers the ownership of the PCC to the platform
228 * So it must be called while holding write_lock(pcc_lock)
229 */
230 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
231 {
232 int ret = -EIO, i;
233 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
234 struct acpi_pcct_shared_memory *generic_comm_base =
235 (struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
236 unsigned int time_delta;
237
238 /*
239 * For CMD_WRITE we know for a fact the caller should have checked
240 * the channel before writing to PCC space
241 */
242 if (cmd == CMD_READ) {
243 /*
244 * If there are pending cpc_writes, then we stole the channel
245 * before write completion, so first send a WRITE command to
246 * platform
247 */
248 if (pcc_ss_data->pending_pcc_write_cmd)
249 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
250
251 ret = check_pcc_chan(pcc_ss_id, false);
252 if (ret)
253 goto end;
254 } else /* CMD_WRITE */
255 pcc_ss_data->pending_pcc_write_cmd = FALSE;
256
257 /*
258 * Handle the Minimum Request Turnaround Time(MRTT)
259 * "The minimum amount of time that OSPM must wait after the completion
260 * of a command before issuing the next command, in microseconds"
261 */
262 if (pcc_ss_data->pcc_mrtt) {
263 time_delta = ktime_us_delta(ktime_get(),
264 pcc_ss_data->last_cmd_cmpl_time);
265 if (pcc_ss_data->pcc_mrtt > time_delta)
266 udelay(pcc_ss_data->pcc_mrtt - time_delta);
267 }
268
269 /*
270 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
271 * "The maximum number of periodic requests that the subspace channel can
272 * support, reported in commands per minute. 0 indicates no limitation."
273 *
274 * This parameter should be ideally zero or large enough so that it can
275 * handle maximum number of requests that all the cores in the system can
276 * collectively generate. If it is not, we will follow the spec and just
277 * not send the request to the platform after hitting the MPAR limit in
278 * any 60s window
279 */
280 if (pcc_ss_data->pcc_mpar) {
281 if (pcc_ss_data->mpar_count == 0) {
282 time_delta = ktime_ms_delta(ktime_get(),
283 pcc_ss_data->last_mpar_reset);
284 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
285 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
286 pcc_ss_id);
287 ret = -EIO;
288 goto end;
289 }
290 pcc_ss_data->last_mpar_reset = ktime_get();
291 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
292 }
293 pcc_ss_data->mpar_count--;
294 }
295
296 /* Write to the shared comm region. */
297 writew_relaxed(cmd, &generic_comm_base->command);
298
299 /* Flip CMD COMPLETE bit */
300 writew_relaxed(0, &generic_comm_base->status);
301
302 pcc_ss_data->platform_owns_pcc = true;
303
304 /* Ring doorbell */
305 ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
306 if (ret < 0) {
307 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
308 pcc_ss_id, cmd, ret);
309 goto end;
310 }
311
312 /* wait for completion and check for PCC errro bit */
313 ret = check_pcc_chan(pcc_ss_id, true);
314
315 if (pcc_ss_data->pcc_mrtt)
316 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
317
318 if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
319 mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
320 else
321 mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
322
323 end:
324 if (cmd == CMD_WRITE) {
325 if (unlikely(ret)) {
326 for_each_possible_cpu(i) {
327 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
328 if (!desc)
329 continue;
330
331 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
332 desc->write_cmd_status = ret;
333 }
334 }
335 pcc_ss_data->pcc_write_cnt++;
336 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
337 }
338
339 return ret;
340 }
341
342 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
343 {
344 if (ret < 0)
345 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
346 *(u16 *)msg, ret);
347 else
348 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
349 *(u16 *)msg, ret);
350 }
351
352 struct mbox_client cppc_mbox_cl = {
353 .tx_done = cppc_chan_tx_done,
354 .knows_txdone = true,
355 };
356
357 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
358 {
359 int result = -EFAULT;
360 acpi_status status = AE_OK;
361 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
362 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
363 struct acpi_buffer state = {0, NULL};
364 union acpi_object *psd = NULL;
365 struct acpi_psd_package *pdomain;
366
367 status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
368 ACPI_TYPE_PACKAGE);
369 if (ACPI_FAILURE(status))
370 return -ENODEV;
371
372 psd = buffer.pointer;
373 if (!psd || psd->package.count != 1) {
374 pr_debug("Invalid _PSD data\n");
375 goto end;
376 }
377
378 pdomain = &(cpc_ptr->domain_info);
379
380 state.length = sizeof(struct acpi_psd_package);
381 state.pointer = pdomain;
382
383 status = acpi_extract_package(&(psd->package.elements[0]),
384 &format, &state);
385 if (ACPI_FAILURE(status)) {
386 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
387 goto end;
388 }
389
390 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
391 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
392 goto end;
393 }
394
395 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
396 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
397 goto end;
398 }
399
400 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
401 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
402 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
403 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
404 goto end;
405 }
406
407 result = 0;
408 end:
409 kfree(buffer.pointer);
410 return result;
411 }
412
413 /**
414 * acpi_get_psd_map - Map the CPUs in a common freq domain.
415 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
416 *
417 * Return: 0 for success or negative value for err.
418 */
419 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
420 {
421 int count_target;
422 int retval = 0;
423 unsigned int i, j;
424 cpumask_var_t covered_cpus;
425 struct cppc_cpudata *pr, *match_pr;
426 struct acpi_psd_package *pdomain;
427 struct acpi_psd_package *match_pdomain;
428 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
429
430 if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
431 return -ENOMEM;
432
433 /*
434 * Now that we have _PSD data from all CPUs, lets setup P-state
435 * domain info.
436 */
437 for_each_possible_cpu(i) {
438 pr = all_cpu_data[i];
439 if (!pr)
440 continue;
441
442 if (cpumask_test_cpu(i, covered_cpus))
443 continue;
444
445 cpc_ptr = per_cpu(cpc_desc_ptr, i);
446 if (!cpc_ptr) {
447 retval = -EFAULT;
448 goto err_ret;
449 }
450
451 pdomain = &(cpc_ptr->domain_info);
452 cpumask_set_cpu(i, pr->shared_cpu_map);
453 cpumask_set_cpu(i, covered_cpus);
454 if (pdomain->num_processors <= 1)
455 continue;
456
457 /* Validate the Domain info */
458 count_target = pdomain->num_processors;
459 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
460 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
461 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
462 pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
463 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
464 pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
465
466 for_each_possible_cpu(j) {
467 if (i == j)
468 continue;
469
470 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
471 if (!match_cpc_ptr) {
472 retval = -EFAULT;
473 goto err_ret;
474 }
475
476 match_pdomain = &(match_cpc_ptr->domain_info);
477 if (match_pdomain->domain != pdomain->domain)
478 continue;
479
480 /* Here i and j are in the same domain */
481 if (match_pdomain->num_processors != count_target) {
482 retval = -EFAULT;
483 goto err_ret;
484 }
485
486 if (pdomain->coord_type != match_pdomain->coord_type) {
487 retval = -EFAULT;
488 goto err_ret;
489 }
490
491 cpumask_set_cpu(j, covered_cpus);
492 cpumask_set_cpu(j, pr->shared_cpu_map);
493 }
494
495 for_each_possible_cpu(j) {
496 if (i == j)
497 continue;
498
499 match_pr = all_cpu_data[j];
500 if (!match_pr)
501 continue;
502
503 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
504 if (!match_cpc_ptr) {
505 retval = -EFAULT;
506 goto err_ret;
507 }
508
509 match_pdomain = &(match_cpc_ptr->domain_info);
510 if (match_pdomain->domain != pdomain->domain)
511 continue;
512
513 match_pr->shared_type = pr->shared_type;
514 cpumask_copy(match_pr->shared_cpu_map,
515 pr->shared_cpu_map);
516 }
517 }
518
519 err_ret:
520 for_each_possible_cpu(i) {
521 pr = all_cpu_data[i];
522 if (!pr)
523 continue;
524
525 /* Assume no coordination on any error parsing domain info */
526 if (retval) {
527 cpumask_clear(pr->shared_cpu_map);
528 cpumask_set_cpu(i, pr->shared_cpu_map);
529 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
530 }
531 }
532
533 free_cpumask_var(covered_cpus);
534 return retval;
535 }
536 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
537
538 static int register_pcc_channel(int pcc_ss_idx)
539 {
540 struct acpi_pcct_hw_reduced *cppc_ss;
541 u64 usecs_lat;
542
543 if (pcc_ss_idx >= 0) {
544 pcc_data[pcc_ss_idx]->pcc_channel =
545 pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
546
547 if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
548 pr_err("Failed to find PCC channel for subspace %d\n",
549 pcc_ss_idx);
550 return -ENODEV;
551 }
552
553 /*
554 * The PCC mailbox controller driver should
555 * have parsed the PCCT (global table of all
556 * PCC channels) and stored pointers to the
557 * subspace communication region in con_priv.
558 */
559 cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
560
561 if (!cppc_ss) {
562 pr_err("No PCC subspace found for %d CPPC\n",
563 pcc_ss_idx);
564 return -ENODEV;
565 }
566
567 /*
568 * cppc_ss->latency is just a Nominal value. In reality
569 * the remote processor could be much slower to reply.
570 * So add an arbitrary amount of wait on top of Nominal.
571 */
572 usecs_lat = NUM_RETRIES * cppc_ss->latency;
573 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
574 pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
575 pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
576 pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
577
578 pcc_data[pcc_ss_idx]->pcc_comm_addr =
579 acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
580 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
581 pr_err("Failed to ioremap PCC comm region mem for %d\n",
582 pcc_ss_idx);
583 return -ENOMEM;
584 }
585
586 /* Set flag so that we dont come here for each CPU. */
587 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
588 }
589
590 return 0;
591 }
592
593 /**
594 * cpc_ffh_supported() - check if FFH reading supported
595 *
596 * Check if the architecture has support for functional fixed hardware
597 * read/write capability.
598 *
599 * Return: true for supported, false for not supported
600 */
601 bool __weak cpc_ffh_supported(void)
602 {
603 return false;
604 }
605
606
607 /**
608 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
609 *
610 * Check and allocate the cppc_pcc_data memory.
611 * In some processor configurations it is possible that same subspace
612 * is shared between multiple CPU's. This is seen especially in CPU's
613 * with hardware multi-threading support.
614 *
615 * Return: 0 for success, errno for failure
616 */
617 int pcc_data_alloc(int pcc_ss_id)
618 {
619 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
620 return -EINVAL;
621
622 if (pcc_data[pcc_ss_id]) {
623 pcc_data[pcc_ss_id]->refcount++;
624 } else {
625 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
626 GFP_KERNEL);
627 if (!pcc_data[pcc_ss_id])
628 return -ENOMEM;
629 pcc_data[pcc_ss_id]->refcount++;
630 }
631
632 return 0;
633 }
634 /*
635 * An example CPC table looks like the following.
636 *
637 * Name(_CPC, Package()
638 * {
639 * 17,
640 * NumEntries
641 * 1,
642 * // Revision
643 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
644 * // Highest Performance
645 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
646 * // Nominal Performance
647 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
648 * // Lowest Nonlinear Performance
649 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
650 * // Lowest Performance
651 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
652 * // Guaranteed Performance Register
653 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
654 * // Desired Performance Register
655 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
656 * ..
657 * ..
658 * ..
659 *
660 * }
661 * Each Register() encodes how to access that specific register.
662 * e.g. a sample PCC entry has the following encoding:
663 *
664 * Register (
665 * PCC,
666 * AddressSpaceKeyword
667 * 8,
668 * //RegisterBitWidth
669 * 8,
670 * //RegisterBitOffset
671 * 0x30,
672 * //RegisterAddress
673 * 9
674 * //AccessSize (subspace ID)
675 * 0
676 * )
677 * }
678 */
679
680 /**
681 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
682 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
683 *
684 * Return: 0 for success or negative value for err.
685 */
686 int acpi_cppc_processor_probe(struct acpi_processor *pr)
687 {
688 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
689 union acpi_object *out_obj, *cpc_obj;
690 struct cpc_desc *cpc_ptr;
691 struct cpc_reg *gas_t;
692 struct device *cpu_dev;
693 acpi_handle handle = pr->handle;
694 unsigned int num_ent, i, cpc_rev;
695 int pcc_subspace_id = -1;
696 acpi_status status;
697 int ret = -EFAULT;
698
699 /* Parse the ACPI _CPC table for this cpu. */
700 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
701 ACPI_TYPE_PACKAGE);
702 if (ACPI_FAILURE(status)) {
703 ret = -ENODEV;
704 goto out_buf_free;
705 }
706
707 out_obj = (union acpi_object *) output.pointer;
708
709 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
710 if (!cpc_ptr) {
711 ret = -ENOMEM;
712 goto out_buf_free;
713 }
714
715 /* First entry is NumEntries. */
716 cpc_obj = &out_obj->package.elements[0];
717 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
718 num_ent = cpc_obj->integer.value;
719 } else {
720 pr_debug("Unexpected entry type(%d) for NumEntries\n",
721 cpc_obj->type);
722 goto out_free;
723 }
724
725 /* Only support CPPCv2. Bail otherwise. */
726 if (num_ent != CPPC_NUM_ENT) {
727 pr_debug("Firmware exports %d entries. Expected: %d\n",
728 num_ent, CPPC_NUM_ENT);
729 goto out_free;
730 }
731
732 cpc_ptr->num_entries = num_ent;
733
734 /* Second entry should be revision. */
735 cpc_obj = &out_obj->package.elements[1];
736 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
737 cpc_rev = cpc_obj->integer.value;
738 } else {
739 pr_debug("Unexpected entry type(%d) for Revision\n",
740 cpc_obj->type);
741 goto out_free;
742 }
743
744 if (cpc_rev != CPPC_REV) {
745 pr_debug("Firmware exports revision:%d. Expected:%d\n",
746 cpc_rev, CPPC_REV);
747 goto out_free;
748 }
749
750 /* Iterate through remaining entries in _CPC */
751 for (i = 2; i < num_ent; i++) {
752 cpc_obj = &out_obj->package.elements[i];
753
754 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
755 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
756 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
757 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
758 gas_t = (struct cpc_reg *)
759 cpc_obj->buffer.pointer;
760
761 /*
762 * The PCC Subspace index is encoded inside
763 * the CPC table entries. The same PCC index
764 * will be used for all the PCC entries,
765 * so extract it only once.
766 */
767 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
768 if (pcc_subspace_id < 0) {
769 pcc_subspace_id = gas_t->access_width;
770 if (pcc_data_alloc(pcc_subspace_id))
771 goto out_free;
772 } else if (pcc_subspace_id != gas_t->access_width) {
773 pr_debug("Mismatched PCC ids.\n");
774 goto out_free;
775 }
776 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
777 if (gas_t->address) {
778 void __iomem *addr;
779
780 addr = ioremap(gas_t->address, gas_t->bit_width/8);
781 if (!addr)
782 goto out_free;
783 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
784 }
785 } else {
786 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
787 /* Support only PCC ,SYS MEM and FFH type regs */
788 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
789 goto out_free;
790 }
791 }
792
793 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
794 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
795 } else {
796 pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
797 goto out_free;
798 }
799 }
800 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
801 /* Store CPU Logical ID */
802 cpc_ptr->cpu_id = pr->id;
803
804 /* Parse PSD data for this CPU */
805 ret = acpi_get_psd(cpc_ptr, handle);
806 if (ret)
807 goto out_free;
808
809 /* Register PCC channel once for all PCC subspace id. */
810 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
811 ret = register_pcc_channel(pcc_subspace_id);
812 if (ret)
813 goto out_free;
814
815 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
816 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
817 }
818
819 /* Everything looks okay */
820 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
821
822 /* Add per logical CPU nodes for reading its feedback counters. */
823 cpu_dev = get_cpu_device(pr->id);
824 if (!cpu_dev) {
825 ret = -EINVAL;
826 goto out_free;
827 }
828
829 /* Plug PSD data into this CPUs CPC descriptor. */
830 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
831
832 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
833 "acpi_cppc");
834 if (ret) {
835 per_cpu(cpc_desc_ptr, pr->id) = NULL;
836 goto out_free;
837 }
838
839 kfree(output.pointer);
840 return 0;
841
842 out_free:
843 /* Free all the mapped sys mem areas for this CPU */
844 for (i = 2; i < cpc_ptr->num_entries; i++) {
845 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
846
847 if (addr)
848 iounmap(addr);
849 }
850 kfree(cpc_ptr);
851
852 out_buf_free:
853 kfree(output.pointer);
854 return ret;
855 }
856 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
857
858 /**
859 * acpi_cppc_processor_exit - Cleanup CPC structs.
860 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
861 *
862 * Return: Void
863 */
864 void acpi_cppc_processor_exit(struct acpi_processor *pr)
865 {
866 struct cpc_desc *cpc_ptr;
867 unsigned int i;
868 void __iomem *addr;
869 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
870
871 if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
872 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
873 pcc_data[pcc_ss_id]->refcount--;
874 if (!pcc_data[pcc_ss_id]->refcount) {
875 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
876 pcc_data[pcc_ss_id]->pcc_channel_acquired = 0;
877 kfree(pcc_data[pcc_ss_id]);
878 }
879 }
880 }
881
882 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
883 if (!cpc_ptr)
884 return;
885
886 /* Free all the mapped sys mem areas for this CPU */
887 for (i = 2; i < cpc_ptr->num_entries; i++) {
888 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
889 if (addr)
890 iounmap(addr);
891 }
892
893 kobject_put(&cpc_ptr->kobj);
894 kfree(cpc_ptr);
895 }
896 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
897
898 /**
899 * cpc_read_ffh() - Read FFH register
900 * @cpunum: cpu number to read
901 * @reg: cppc register information
902 * @val: place holder for return value
903 *
904 * Read bit_width bits from a specified address and bit_offset
905 *
906 * Return: 0 for success and error code
907 */
908 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
909 {
910 return -ENOTSUPP;
911 }
912
913 /**
914 * cpc_write_ffh() - Write FFH register
915 * @cpunum: cpu number to write
916 * @reg: cppc register information
917 * @val: value to write
918 *
919 * Write value of bit_width bits to a specified address and bit_offset
920 *
921 * Return: 0 for success and error code
922 */
923 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
924 {
925 return -ENOTSUPP;
926 }
927
928 /*
929 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
930 * as fast as possible. We have already mapped the PCC subspace during init, so
931 * we can directly write to it.
932 */
933
934 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
935 {
936 int ret_val = 0;
937 void __iomem *vaddr = 0;
938 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
939 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
940
941 if (reg_res->type == ACPI_TYPE_INTEGER) {
942 *val = reg_res->cpc_entry.int_value;
943 return ret_val;
944 }
945
946 *val = 0;
947 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
948 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
949 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
950 vaddr = reg_res->sys_mem_vaddr;
951 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
952 return cpc_read_ffh(cpu, reg, val);
953 else
954 return acpi_os_read_memory((acpi_physical_address)reg->address,
955 val, reg->bit_width);
956
957 switch (reg->bit_width) {
958 case 8:
959 *val = readb_relaxed(vaddr);
960 break;
961 case 16:
962 *val = readw_relaxed(vaddr);
963 break;
964 case 32:
965 *val = readl_relaxed(vaddr);
966 break;
967 case 64:
968 *val = readq_relaxed(vaddr);
969 break;
970 default:
971 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
972 reg->bit_width, pcc_ss_id);
973 ret_val = -EFAULT;
974 }
975
976 return ret_val;
977 }
978
979 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
980 {
981 int ret_val = 0;
982 void __iomem *vaddr = 0;
983 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
984 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
985
986 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
987 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
988 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
989 vaddr = reg_res->sys_mem_vaddr;
990 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
991 return cpc_write_ffh(cpu, reg, val);
992 else
993 return acpi_os_write_memory((acpi_physical_address)reg->address,
994 val, reg->bit_width);
995
996 switch (reg->bit_width) {
997 case 8:
998 writeb_relaxed(val, vaddr);
999 break;
1000 case 16:
1001 writew_relaxed(val, vaddr);
1002 break;
1003 case 32:
1004 writel_relaxed(val, vaddr);
1005 break;
1006 case 64:
1007 writeq_relaxed(val, vaddr);
1008 break;
1009 default:
1010 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1011 reg->bit_width, pcc_ss_id);
1012 ret_val = -EFAULT;
1013 break;
1014 }
1015
1016 return ret_val;
1017 }
1018
1019 /**
1020 * cppc_get_perf_caps - Get a CPUs performance capabilities.
1021 * @cpunum: CPU from which to get capabilities info.
1022 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1023 *
1024 * Return: 0 for success with perf_caps populated else -ERRNO.
1025 */
1026 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1027 {
1028 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1029 struct cpc_register_resource *highest_reg, *lowest_reg,
1030 *lowest_non_linear_reg, *nominal_reg;
1031 u64 high, low, nom, min_nonlinear;
1032 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1033 struct cppc_pcc_data *pcc_ss_data;
1034 int ret = 0, regs_in_pcc = 0;
1035
1036 if (!cpc_desc || pcc_ss_id < 0) {
1037 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1038 return -ENODEV;
1039 }
1040
1041 pcc_ss_data = pcc_data[pcc_ss_id];
1042 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1043 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1044 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1045 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1046
1047 /* Are any of the regs PCC ?*/
1048 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1049 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg)) {
1050 regs_in_pcc = 1;
1051 down_write(&pcc_ss_data->pcc_lock);
1052 /* Ring doorbell once to update PCC subspace */
1053 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1054 ret = -EIO;
1055 goto out_err;
1056 }
1057 }
1058
1059 cpc_read(cpunum, highest_reg, &high);
1060 perf_caps->highest_perf = high;
1061
1062 cpc_read(cpunum, lowest_reg, &low);
1063 perf_caps->lowest_perf = low;
1064
1065 cpc_read(cpunum, nominal_reg, &nom);
1066 perf_caps->nominal_perf = nom;
1067
1068 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1069 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1070
1071 if (!high || !low || !nom || !min_nonlinear)
1072 ret = -EFAULT;
1073
1074 out_err:
1075 if (regs_in_pcc)
1076 up_write(&pcc_ss_data->pcc_lock);
1077 return ret;
1078 }
1079 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1080
1081 /**
1082 * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1083 * @cpunum: CPU from which to read counters.
1084 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1085 *
1086 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1087 */
1088 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1089 {
1090 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1091 struct cpc_register_resource *delivered_reg, *reference_reg,
1092 *ref_perf_reg, *ctr_wrap_reg;
1093 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1094 struct cppc_pcc_data *pcc_ss_data;
1095 u64 delivered, reference, ref_perf, ctr_wrap_time;
1096 int ret = 0, regs_in_pcc = 0;
1097
1098 if (!cpc_desc || pcc_ss_id < 0) {
1099 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1100 return -ENODEV;
1101 }
1102
1103 pcc_ss_data = pcc_data[pcc_ss_id];
1104 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1105 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1106 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1107 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1108
1109 /*
1110 * If refernce perf register is not supported then we should
1111 * use the nominal perf value
1112 */
1113 if (!CPC_SUPPORTED(ref_perf_reg))
1114 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1115
1116 /* Are any of the regs PCC ?*/
1117 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1118 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1119 down_write(&pcc_ss_data->pcc_lock);
1120 regs_in_pcc = 1;
1121 /* Ring doorbell once to update PCC subspace */
1122 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1123 ret = -EIO;
1124 goto out_err;
1125 }
1126 }
1127
1128 cpc_read(cpunum, delivered_reg, &delivered);
1129 cpc_read(cpunum, reference_reg, &reference);
1130 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1131
1132 /*
1133 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1134 * performance counters are assumed to never wrap during the lifetime of
1135 * platform
1136 */
1137 ctr_wrap_time = (u64)(~((u64)0));
1138 if (CPC_SUPPORTED(ctr_wrap_reg))
1139 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1140
1141 if (!delivered || !reference || !ref_perf) {
1142 ret = -EFAULT;
1143 goto out_err;
1144 }
1145
1146 perf_fb_ctrs->delivered = delivered;
1147 perf_fb_ctrs->reference = reference;
1148 perf_fb_ctrs->reference_perf = ref_perf;
1149 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1150 out_err:
1151 if (regs_in_pcc)
1152 up_write(&pcc_ss_data->pcc_lock);
1153 return ret;
1154 }
1155 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1156
1157 /**
1158 * cppc_set_perf - Set a CPUs performance controls.
1159 * @cpu: CPU for which to set performance controls.
1160 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1161 *
1162 * Return: 0 for success, -ERRNO otherwise.
1163 */
1164 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1165 {
1166 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1167 struct cpc_register_resource *desired_reg;
1168 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1169 struct cppc_pcc_data *pcc_ss_data;
1170 int ret = 0;
1171
1172 if (!cpc_desc || pcc_ss_id < 0) {
1173 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1174 return -ENODEV;
1175 }
1176
1177 pcc_ss_data = pcc_data[pcc_ss_id];
1178 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1179
1180 /*
1181 * This is Phase-I where we want to write to CPC registers
1182 * -> We want all CPUs to be able to execute this phase in parallel
1183 *
1184 * Since read_lock can be acquired by multiple CPUs simultaneously we
1185 * achieve that goal here
1186 */
1187 if (CPC_IN_PCC(desired_reg)) {
1188 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1189 if (pcc_ss_data->platform_owns_pcc) {
1190 ret = check_pcc_chan(pcc_ss_id, false);
1191 if (ret) {
1192 up_read(&pcc_ss_data->pcc_lock);
1193 return ret;
1194 }
1195 }
1196 /*
1197 * Update the pending_write to make sure a PCC CMD_READ will not
1198 * arrive and steal the channel during the switch to write lock
1199 */
1200 pcc_ss_data->pending_pcc_write_cmd = true;
1201 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1202 cpc_desc->write_cmd_status = 0;
1203 }
1204
1205 /*
1206 * Skip writing MIN/MAX until Linux knows how to come up with
1207 * useful values.
1208 */
1209 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1210
1211 if (CPC_IN_PCC(desired_reg))
1212 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1213 /*
1214 * This is Phase-II where we transfer the ownership of PCC to Platform
1215 *
1216 * Short Summary: Basically if we think of a group of cppc_set_perf
1217 * requests that happened in short overlapping interval. The last CPU to
1218 * come out of Phase-I will enter Phase-II and ring the doorbell.
1219 *
1220 * We have the following requirements for Phase-II:
1221 * 1. We want to execute Phase-II only when there are no CPUs
1222 * currently executing in Phase-I
1223 * 2. Once we start Phase-II we want to avoid all other CPUs from
1224 * entering Phase-I.
1225 * 3. We want only one CPU among all those who went through Phase-I
1226 * to run phase-II
1227 *
1228 * If write_trylock fails to get the lock and doesn't transfer the
1229 * PCC ownership to the platform, then one of the following will be TRUE
1230 * 1. There is at-least one CPU in Phase-I which will later execute
1231 * write_trylock, so the CPUs in Phase-I will be responsible for
1232 * executing the Phase-II.
1233 * 2. Some other CPU has beaten this CPU to successfully execute the
1234 * write_trylock and has already acquired the write_lock. We know for a
1235 * fact it(other CPU acquiring the write_lock) couldn't have happened
1236 * before this CPU's Phase-I as we held the read_lock.
1237 * 3. Some other CPU executing pcc CMD_READ has stolen the
1238 * down_write, in which case, send_pcc_cmd will check for pending
1239 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1240 * So this CPU can be certain that its request will be delivered
1241 * So in all cases, this CPU knows that its request will be delivered
1242 * by another CPU and can return
1243 *
1244 * After getting the down_write we still need to check for
1245 * pending_pcc_write_cmd to take care of the following scenario
1246 * The thread running this code could be scheduled out between
1247 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1248 * could have delivered the request to Platform by triggering the
1249 * doorbell and transferred the ownership of PCC to platform. So this
1250 * avoids triggering an unnecessary doorbell and more importantly before
1251 * triggering the doorbell it makes sure that the PCC channel ownership
1252 * is still with OSPM.
1253 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1254 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1255 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1256 * case during a CMD_READ and if there are pending writes it delivers
1257 * the write command before servicing the read command
1258 */
1259 if (CPC_IN_PCC(desired_reg)) {
1260 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1261 /* Update only if there are pending write commands */
1262 if (pcc_ss_data->pending_pcc_write_cmd)
1263 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1264 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1265 } else
1266 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1267 wait_event(pcc_ss_data->pcc_write_wait_q,
1268 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1269
1270 /* send_pcc_cmd updates the status in case of failure */
1271 ret = cpc_desc->write_cmd_status;
1272 }
1273 return ret;
1274 }
1275 EXPORT_SYMBOL_GPL(cppc_set_perf);
1276
1277 /**
1278 * cppc_get_transition_latency - returns frequency transition latency in ns
1279 *
1280 * ACPI CPPC does not explicitly specifiy how a platform can specify the
1281 * transition latency for perfromance change requests. The closest we have
1282 * is the timing information from the PCCT tables which provides the info
1283 * on the number and frequency of PCC commands the platform can handle.
1284 */
1285 unsigned int cppc_get_transition_latency(int cpu_num)
1286 {
1287 /*
1288 * Expected transition latency is based on the PCCT timing values
1289 * Below are definition from ACPI spec:
1290 * pcc_nominal- Expected latency to process a command, in microseconds
1291 * pcc_mpar - The maximum number of periodic requests that the subspace
1292 * channel can support, reported in commands per minute. 0
1293 * indicates no limitation.
1294 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1295 * completion of a command before issuing the next command,
1296 * in microseconds.
1297 */
1298 unsigned int latency_ns = 0;
1299 struct cpc_desc *cpc_desc;
1300 struct cpc_register_resource *desired_reg;
1301 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1302 struct cppc_pcc_data *pcc_ss_data;
1303
1304 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1305 if (!cpc_desc)
1306 return CPUFREQ_ETERNAL;
1307
1308 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1309 if (!CPC_IN_PCC(desired_reg))
1310 return CPUFREQ_ETERNAL;
1311
1312 if (pcc_ss_id < 0)
1313 return CPUFREQ_ETERNAL;
1314
1315 pcc_ss_data = pcc_data[pcc_ss_id];
1316 if (pcc_ss_data->pcc_mpar)
1317 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1318
1319 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1320 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1321
1322 return latency_ns;
1323 }
1324 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);