]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/base/power/main.c
ACPI / PM: Ignore spurious SCI wakeups from suspend-to-idle
[mirror_ubuntu-bionic-kernel.git] / drivers / base / power / main.c
1 /*
2 * drivers/base/power/main.c - Where the driver meets power management.
3 *
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
6 *
7 * This file is released under the GPLv2
8 *
9 *
10 * The driver model core calls device_pm_add() when a device is registered.
11 * This will initialize the embedded device_pm_info object in the device
12 * and add it to the list of power-controlled devices. sysfs entries for
13 * controlling device power management will also be added.
14 *
15 * A separate list is used for keeping track of power info, because the power
16 * domain dependencies may differ from the ancestral dependencies that the
17 * subsystem list maintains.
18 */
19
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/sched/debug.h>
31 #include <linux/async.h>
32 #include <linux/suspend.h>
33 #include <trace/events/power.h>
34 #include <linux/cpufreq.h>
35 #include <linux/cpuidle.h>
36 #include <linux/timer.h>
37
38 #include "../base.h"
39 #include "power.h"
40
41 typedef int (*pm_callback_t)(struct device *);
42
43 /*
44 * The entries in the dpm_list list are in a depth first order, simply
45 * because children are guaranteed to be discovered after parents, and
46 * are inserted at the back of the list on discovery.
47 *
48 * Since device_pm_add() may be called with a device lock held,
49 * we must never try to acquire a device lock while holding
50 * dpm_list_mutex.
51 */
52
53 LIST_HEAD(dpm_list);
54 static LIST_HEAD(dpm_prepared_list);
55 static LIST_HEAD(dpm_suspended_list);
56 static LIST_HEAD(dpm_late_early_list);
57 static LIST_HEAD(dpm_noirq_list);
58
59 struct suspend_stats suspend_stats;
60 static DEFINE_MUTEX(dpm_list_mtx);
61 static pm_message_t pm_transition;
62
63 static int async_error;
64
65 static char *pm_verb(int event)
66 {
67 switch (event) {
68 case PM_EVENT_SUSPEND:
69 return "suspend";
70 case PM_EVENT_RESUME:
71 return "resume";
72 case PM_EVENT_FREEZE:
73 return "freeze";
74 case PM_EVENT_QUIESCE:
75 return "quiesce";
76 case PM_EVENT_HIBERNATE:
77 return "hibernate";
78 case PM_EVENT_THAW:
79 return "thaw";
80 case PM_EVENT_RESTORE:
81 return "restore";
82 case PM_EVENT_RECOVER:
83 return "recover";
84 default:
85 return "(unknown PM event)";
86 }
87 }
88
89 /**
90 * device_pm_sleep_init - Initialize system suspend-related device fields.
91 * @dev: Device object being initialized.
92 */
93 void device_pm_sleep_init(struct device *dev)
94 {
95 dev->power.is_prepared = false;
96 dev->power.is_suspended = false;
97 dev->power.is_noirq_suspended = false;
98 dev->power.is_late_suspended = false;
99 init_completion(&dev->power.completion);
100 complete_all(&dev->power.completion);
101 dev->power.wakeup = NULL;
102 INIT_LIST_HEAD(&dev->power.entry);
103 }
104
105 /**
106 * device_pm_lock - Lock the list of active devices used by the PM core.
107 */
108 void device_pm_lock(void)
109 {
110 mutex_lock(&dpm_list_mtx);
111 }
112
113 /**
114 * device_pm_unlock - Unlock the list of active devices used by the PM core.
115 */
116 void device_pm_unlock(void)
117 {
118 mutex_unlock(&dpm_list_mtx);
119 }
120
121 /**
122 * device_pm_add - Add a device to the PM core's list of active devices.
123 * @dev: Device to add to the list.
124 */
125 void device_pm_add(struct device *dev)
126 {
127 pr_debug("PM: Adding info for %s:%s\n",
128 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
129 device_pm_check_callbacks(dev);
130 mutex_lock(&dpm_list_mtx);
131 if (dev->parent && dev->parent->power.is_prepared)
132 dev_warn(dev, "parent %s should not be sleeping\n",
133 dev_name(dev->parent));
134 list_add_tail(&dev->power.entry, &dpm_list);
135 dev->power.in_dpm_list = true;
136 mutex_unlock(&dpm_list_mtx);
137 }
138
139 /**
140 * device_pm_remove - Remove a device from the PM core's list of active devices.
141 * @dev: Device to be removed from the list.
142 */
143 void device_pm_remove(struct device *dev)
144 {
145 pr_debug("PM: Removing info for %s:%s\n",
146 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
147 complete_all(&dev->power.completion);
148 mutex_lock(&dpm_list_mtx);
149 list_del_init(&dev->power.entry);
150 dev->power.in_dpm_list = false;
151 mutex_unlock(&dpm_list_mtx);
152 device_wakeup_disable(dev);
153 pm_runtime_remove(dev);
154 device_pm_check_callbacks(dev);
155 }
156
157 /**
158 * device_pm_move_before - Move device in the PM core's list of active devices.
159 * @deva: Device to move in dpm_list.
160 * @devb: Device @deva should come before.
161 */
162 void device_pm_move_before(struct device *deva, struct device *devb)
163 {
164 pr_debug("PM: Moving %s:%s before %s:%s\n",
165 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
166 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
167 /* Delete deva from dpm_list and reinsert before devb. */
168 list_move_tail(&deva->power.entry, &devb->power.entry);
169 }
170
171 /**
172 * device_pm_move_after - Move device in the PM core's list of active devices.
173 * @deva: Device to move in dpm_list.
174 * @devb: Device @deva should come after.
175 */
176 void device_pm_move_after(struct device *deva, struct device *devb)
177 {
178 pr_debug("PM: Moving %s:%s after %s:%s\n",
179 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
180 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
181 /* Delete deva from dpm_list and reinsert after devb. */
182 list_move(&deva->power.entry, &devb->power.entry);
183 }
184
185 /**
186 * device_pm_move_last - Move device to end of the PM core's list of devices.
187 * @dev: Device to move in dpm_list.
188 */
189 void device_pm_move_last(struct device *dev)
190 {
191 pr_debug("PM: Moving %s:%s to end of list\n",
192 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
193 list_move_tail(&dev->power.entry, &dpm_list);
194 }
195
196 static ktime_t initcall_debug_start(struct device *dev)
197 {
198 ktime_t calltime = 0;
199
200 if (pm_print_times_enabled) {
201 pr_info("calling %s+ @ %i, parent: %s\n",
202 dev_name(dev), task_pid_nr(current),
203 dev->parent ? dev_name(dev->parent) : "none");
204 calltime = ktime_get();
205 }
206
207 return calltime;
208 }
209
210 static void initcall_debug_report(struct device *dev, ktime_t calltime,
211 int error, pm_message_t state, char *info)
212 {
213 ktime_t rettime;
214 s64 nsecs;
215
216 rettime = ktime_get();
217 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
218
219 if (pm_print_times_enabled) {
220 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
221 error, (unsigned long long)nsecs >> 10);
222 }
223 }
224
225 /**
226 * dpm_wait - Wait for a PM operation to complete.
227 * @dev: Device to wait for.
228 * @async: If unset, wait only if the device's power.async_suspend flag is set.
229 */
230 static void dpm_wait(struct device *dev, bool async)
231 {
232 if (!dev)
233 return;
234
235 if (async || (pm_async_enabled && dev->power.async_suspend))
236 wait_for_completion(&dev->power.completion);
237 }
238
239 static int dpm_wait_fn(struct device *dev, void *async_ptr)
240 {
241 dpm_wait(dev, *((bool *)async_ptr));
242 return 0;
243 }
244
245 static void dpm_wait_for_children(struct device *dev, bool async)
246 {
247 device_for_each_child(dev, &async, dpm_wait_fn);
248 }
249
250 static void dpm_wait_for_suppliers(struct device *dev, bool async)
251 {
252 struct device_link *link;
253 int idx;
254
255 idx = device_links_read_lock();
256
257 /*
258 * If the supplier goes away right after we've checked the link to it,
259 * we'll wait for its completion to change the state, but that's fine,
260 * because the only things that will block as a result are the SRCU
261 * callbacks freeing the link objects for the links in the list we're
262 * walking.
263 */
264 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
265 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
266 dpm_wait(link->supplier, async);
267
268 device_links_read_unlock(idx);
269 }
270
271 static void dpm_wait_for_superior(struct device *dev, bool async)
272 {
273 dpm_wait(dev->parent, async);
274 dpm_wait_for_suppliers(dev, async);
275 }
276
277 static void dpm_wait_for_consumers(struct device *dev, bool async)
278 {
279 struct device_link *link;
280 int idx;
281
282 idx = device_links_read_lock();
283
284 /*
285 * The status of a device link can only be changed from "dormant" by a
286 * probe, but that cannot happen during system suspend/resume. In
287 * theory it can change to "dormant" at that time, but then it is
288 * reasonable to wait for the target device anyway (eg. if it goes
289 * away, it's better to wait for it to go away completely and then
290 * continue instead of trying to continue in parallel with its
291 * unregistration).
292 */
293 list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
294 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
295 dpm_wait(link->consumer, async);
296
297 device_links_read_unlock(idx);
298 }
299
300 static void dpm_wait_for_subordinate(struct device *dev, bool async)
301 {
302 dpm_wait_for_children(dev, async);
303 dpm_wait_for_consumers(dev, async);
304 }
305
306 /**
307 * pm_op - Return the PM operation appropriate for given PM event.
308 * @ops: PM operations to choose from.
309 * @state: PM transition of the system being carried out.
310 */
311 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
312 {
313 switch (state.event) {
314 #ifdef CONFIG_SUSPEND
315 case PM_EVENT_SUSPEND:
316 return ops->suspend;
317 case PM_EVENT_RESUME:
318 return ops->resume;
319 #endif /* CONFIG_SUSPEND */
320 #ifdef CONFIG_HIBERNATE_CALLBACKS
321 case PM_EVENT_FREEZE:
322 case PM_EVENT_QUIESCE:
323 return ops->freeze;
324 case PM_EVENT_HIBERNATE:
325 return ops->poweroff;
326 case PM_EVENT_THAW:
327 case PM_EVENT_RECOVER:
328 return ops->thaw;
329 break;
330 case PM_EVENT_RESTORE:
331 return ops->restore;
332 #endif /* CONFIG_HIBERNATE_CALLBACKS */
333 }
334
335 return NULL;
336 }
337
338 /**
339 * pm_late_early_op - Return the PM operation appropriate for given PM event.
340 * @ops: PM operations to choose from.
341 * @state: PM transition of the system being carried out.
342 *
343 * Runtime PM is disabled for @dev while this function is being executed.
344 */
345 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
346 pm_message_t state)
347 {
348 switch (state.event) {
349 #ifdef CONFIG_SUSPEND
350 case PM_EVENT_SUSPEND:
351 return ops->suspend_late;
352 case PM_EVENT_RESUME:
353 return ops->resume_early;
354 #endif /* CONFIG_SUSPEND */
355 #ifdef CONFIG_HIBERNATE_CALLBACKS
356 case PM_EVENT_FREEZE:
357 case PM_EVENT_QUIESCE:
358 return ops->freeze_late;
359 case PM_EVENT_HIBERNATE:
360 return ops->poweroff_late;
361 case PM_EVENT_THAW:
362 case PM_EVENT_RECOVER:
363 return ops->thaw_early;
364 case PM_EVENT_RESTORE:
365 return ops->restore_early;
366 #endif /* CONFIG_HIBERNATE_CALLBACKS */
367 }
368
369 return NULL;
370 }
371
372 /**
373 * pm_noirq_op - Return the PM operation appropriate for given PM event.
374 * @ops: PM operations to choose from.
375 * @state: PM transition of the system being carried out.
376 *
377 * The driver of @dev will not receive interrupts while this function is being
378 * executed.
379 */
380 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
381 {
382 switch (state.event) {
383 #ifdef CONFIG_SUSPEND
384 case PM_EVENT_SUSPEND:
385 return ops->suspend_noirq;
386 case PM_EVENT_RESUME:
387 return ops->resume_noirq;
388 #endif /* CONFIG_SUSPEND */
389 #ifdef CONFIG_HIBERNATE_CALLBACKS
390 case PM_EVENT_FREEZE:
391 case PM_EVENT_QUIESCE:
392 return ops->freeze_noirq;
393 case PM_EVENT_HIBERNATE:
394 return ops->poweroff_noirq;
395 case PM_EVENT_THAW:
396 case PM_EVENT_RECOVER:
397 return ops->thaw_noirq;
398 case PM_EVENT_RESTORE:
399 return ops->restore_noirq;
400 #endif /* CONFIG_HIBERNATE_CALLBACKS */
401 }
402
403 return NULL;
404 }
405
406 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
407 {
408 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
409 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
410 ", may wakeup" : "");
411 }
412
413 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
414 int error)
415 {
416 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
417 dev_name(dev), pm_verb(state.event), info, error);
418 }
419
420 #ifdef CONFIG_PM_DEBUG
421 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
422 {
423 ktime_t calltime;
424 u64 usecs64;
425 int usecs;
426
427 calltime = ktime_get();
428 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
429 do_div(usecs64, NSEC_PER_USEC);
430 usecs = usecs64;
431 if (usecs == 0)
432 usecs = 1;
433 pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
434 info ?: "", info ? " " : "", pm_verb(state.event),
435 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
436 }
437 #else
438 static inline void dpm_show_time(ktime_t starttime, pm_message_t state, char *info) {}
439 #endif /* CONFIG_PM_DEBUG */
440
441 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
442 pm_message_t state, char *info)
443 {
444 ktime_t calltime;
445 int error;
446
447 if (!cb)
448 return 0;
449
450 calltime = initcall_debug_start(dev);
451
452 pm_dev_dbg(dev, state, info);
453 trace_device_pm_callback_start(dev, info, state.event);
454 error = cb(dev);
455 trace_device_pm_callback_end(dev, error);
456 suspend_report_result(cb, error);
457
458 initcall_debug_report(dev, calltime, error, state, info);
459
460 return error;
461 }
462
463 #ifdef CONFIG_DPM_WATCHDOG
464 struct dpm_watchdog {
465 struct device *dev;
466 struct task_struct *tsk;
467 struct timer_list timer;
468 };
469
470 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
471 struct dpm_watchdog wd
472
473 /**
474 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
475 * @data: Watchdog object address.
476 *
477 * Called when a driver has timed out suspending or resuming.
478 * There's not much we can do here to recover so panic() to
479 * capture a crash-dump in pstore.
480 */
481 static void dpm_watchdog_handler(unsigned long data)
482 {
483 struct dpm_watchdog *wd = (void *)data;
484
485 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
486 show_stack(wd->tsk, NULL);
487 panic("%s %s: unrecoverable failure\n",
488 dev_driver_string(wd->dev), dev_name(wd->dev));
489 }
490
491 /**
492 * dpm_watchdog_set - Enable pm watchdog for given device.
493 * @wd: Watchdog. Must be allocated on the stack.
494 * @dev: Device to handle.
495 */
496 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
497 {
498 struct timer_list *timer = &wd->timer;
499
500 wd->dev = dev;
501 wd->tsk = current;
502
503 init_timer_on_stack(timer);
504 /* use same timeout value for both suspend and resume */
505 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
506 timer->function = dpm_watchdog_handler;
507 timer->data = (unsigned long)wd;
508 add_timer(timer);
509 }
510
511 /**
512 * dpm_watchdog_clear - Disable suspend/resume watchdog.
513 * @wd: Watchdog to disable.
514 */
515 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
516 {
517 struct timer_list *timer = &wd->timer;
518
519 del_timer_sync(timer);
520 destroy_timer_on_stack(timer);
521 }
522 #else
523 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
524 #define dpm_watchdog_set(x, y)
525 #define dpm_watchdog_clear(x)
526 #endif
527
528 /*------------------------- Resume routines -------------------------*/
529
530 /**
531 * device_resume_noirq - Execute an "early resume" callback for given device.
532 * @dev: Device to handle.
533 * @state: PM transition of the system being carried out.
534 * @async: If true, the device is being resumed asynchronously.
535 *
536 * The driver of @dev will not receive interrupts while this function is being
537 * executed.
538 */
539 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
540 {
541 pm_callback_t callback = NULL;
542 char *info = NULL;
543 int error = 0;
544
545 TRACE_DEVICE(dev);
546 TRACE_RESUME(0);
547
548 if (dev->power.syscore || dev->power.direct_complete)
549 goto Out;
550
551 if (!dev->power.is_noirq_suspended)
552 goto Out;
553
554 dpm_wait_for_superior(dev, async);
555
556 if (dev->pm_domain) {
557 info = "noirq power domain ";
558 callback = pm_noirq_op(&dev->pm_domain->ops, state);
559 } else if (dev->type && dev->type->pm) {
560 info = "noirq type ";
561 callback = pm_noirq_op(dev->type->pm, state);
562 } else if (dev->class && dev->class->pm) {
563 info = "noirq class ";
564 callback = pm_noirq_op(dev->class->pm, state);
565 } else if (dev->bus && dev->bus->pm) {
566 info = "noirq bus ";
567 callback = pm_noirq_op(dev->bus->pm, state);
568 }
569
570 if (!callback && dev->driver && dev->driver->pm) {
571 info = "noirq driver ";
572 callback = pm_noirq_op(dev->driver->pm, state);
573 }
574
575 error = dpm_run_callback(callback, dev, state, info);
576 dev->power.is_noirq_suspended = false;
577
578 Out:
579 complete_all(&dev->power.completion);
580 TRACE_RESUME(error);
581 return error;
582 }
583
584 static bool is_async(struct device *dev)
585 {
586 return dev->power.async_suspend && pm_async_enabled
587 && !pm_trace_is_enabled();
588 }
589
590 static void async_resume_noirq(void *data, async_cookie_t cookie)
591 {
592 struct device *dev = (struct device *)data;
593 int error;
594
595 error = device_resume_noirq(dev, pm_transition, true);
596 if (error)
597 pm_dev_err(dev, pm_transition, " async", error);
598
599 put_device(dev);
600 }
601
602 /**
603 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
604 * @state: PM transition of the system being carried out.
605 *
606 * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
607 * enable device drivers to receive interrupts.
608 */
609 void dpm_resume_noirq(pm_message_t state)
610 {
611 struct device *dev;
612 ktime_t starttime = ktime_get();
613
614 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
615 mutex_lock(&dpm_list_mtx);
616 pm_transition = state;
617
618 /*
619 * Advanced the async threads upfront,
620 * in case the starting of async threads is
621 * delayed by non-async resuming devices.
622 */
623 list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
624 reinit_completion(&dev->power.completion);
625 if (is_async(dev)) {
626 get_device(dev);
627 async_schedule(async_resume_noirq, dev);
628 }
629 }
630
631 while (!list_empty(&dpm_noirq_list)) {
632 dev = to_device(dpm_noirq_list.next);
633 get_device(dev);
634 list_move_tail(&dev->power.entry, &dpm_late_early_list);
635 mutex_unlock(&dpm_list_mtx);
636
637 if (!is_async(dev)) {
638 int error;
639
640 error = device_resume_noirq(dev, state, false);
641 if (error) {
642 suspend_stats.failed_resume_noirq++;
643 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
644 dpm_save_failed_dev(dev_name(dev));
645 pm_dev_err(dev, state, " noirq", error);
646 }
647 }
648
649 mutex_lock(&dpm_list_mtx);
650 put_device(dev);
651 }
652 mutex_unlock(&dpm_list_mtx);
653 async_synchronize_full();
654 dpm_show_time(starttime, state, "noirq");
655 resume_device_irqs();
656 device_wakeup_disarm_wake_irqs();
657 cpuidle_resume();
658 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
659 }
660
661 /**
662 * device_resume_early - Execute an "early resume" callback for given device.
663 * @dev: Device to handle.
664 * @state: PM transition of the system being carried out.
665 * @async: If true, the device is being resumed asynchronously.
666 *
667 * Runtime PM is disabled for @dev while this function is being executed.
668 */
669 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
670 {
671 pm_callback_t callback = NULL;
672 char *info = NULL;
673 int error = 0;
674
675 TRACE_DEVICE(dev);
676 TRACE_RESUME(0);
677
678 if (dev->power.syscore || dev->power.direct_complete)
679 goto Out;
680
681 if (!dev->power.is_late_suspended)
682 goto Out;
683
684 dpm_wait_for_superior(dev, async);
685
686 if (dev->pm_domain) {
687 info = "early power domain ";
688 callback = pm_late_early_op(&dev->pm_domain->ops, state);
689 } else if (dev->type && dev->type->pm) {
690 info = "early type ";
691 callback = pm_late_early_op(dev->type->pm, state);
692 } else if (dev->class && dev->class->pm) {
693 info = "early class ";
694 callback = pm_late_early_op(dev->class->pm, state);
695 } else if (dev->bus && dev->bus->pm) {
696 info = "early bus ";
697 callback = pm_late_early_op(dev->bus->pm, state);
698 }
699
700 if (!callback && dev->driver && dev->driver->pm) {
701 info = "early driver ";
702 callback = pm_late_early_op(dev->driver->pm, state);
703 }
704
705 error = dpm_run_callback(callback, dev, state, info);
706 dev->power.is_late_suspended = false;
707
708 Out:
709 TRACE_RESUME(error);
710
711 pm_runtime_enable(dev);
712 complete_all(&dev->power.completion);
713 return error;
714 }
715
716 static void async_resume_early(void *data, async_cookie_t cookie)
717 {
718 struct device *dev = (struct device *)data;
719 int error;
720
721 error = device_resume_early(dev, pm_transition, true);
722 if (error)
723 pm_dev_err(dev, pm_transition, " async", error);
724
725 put_device(dev);
726 }
727
728 /**
729 * dpm_resume_early - Execute "early resume" callbacks for all devices.
730 * @state: PM transition of the system being carried out.
731 */
732 void dpm_resume_early(pm_message_t state)
733 {
734 struct device *dev;
735 ktime_t starttime = ktime_get();
736
737 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
738 mutex_lock(&dpm_list_mtx);
739 pm_transition = state;
740
741 /*
742 * Advanced the async threads upfront,
743 * in case the starting of async threads is
744 * delayed by non-async resuming devices.
745 */
746 list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
747 reinit_completion(&dev->power.completion);
748 if (is_async(dev)) {
749 get_device(dev);
750 async_schedule(async_resume_early, dev);
751 }
752 }
753
754 while (!list_empty(&dpm_late_early_list)) {
755 dev = to_device(dpm_late_early_list.next);
756 get_device(dev);
757 list_move_tail(&dev->power.entry, &dpm_suspended_list);
758 mutex_unlock(&dpm_list_mtx);
759
760 if (!is_async(dev)) {
761 int error;
762
763 error = device_resume_early(dev, state, false);
764 if (error) {
765 suspend_stats.failed_resume_early++;
766 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
767 dpm_save_failed_dev(dev_name(dev));
768 pm_dev_err(dev, state, " early", error);
769 }
770 }
771 mutex_lock(&dpm_list_mtx);
772 put_device(dev);
773 }
774 mutex_unlock(&dpm_list_mtx);
775 async_synchronize_full();
776 dpm_show_time(starttime, state, "early");
777 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
778 }
779
780 /**
781 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
782 * @state: PM transition of the system being carried out.
783 */
784 void dpm_resume_start(pm_message_t state)
785 {
786 dpm_resume_noirq(state);
787 dpm_resume_early(state);
788 }
789 EXPORT_SYMBOL_GPL(dpm_resume_start);
790
791 /**
792 * device_resume - Execute "resume" callbacks for given device.
793 * @dev: Device to handle.
794 * @state: PM transition of the system being carried out.
795 * @async: If true, the device is being resumed asynchronously.
796 */
797 static int device_resume(struct device *dev, pm_message_t state, bool async)
798 {
799 pm_callback_t callback = NULL;
800 char *info = NULL;
801 int error = 0;
802 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
803
804 TRACE_DEVICE(dev);
805 TRACE_RESUME(0);
806
807 if (dev->power.syscore)
808 goto Complete;
809
810 if (dev->power.direct_complete) {
811 /* Match the pm_runtime_disable() in __device_suspend(). */
812 pm_runtime_enable(dev);
813 goto Complete;
814 }
815
816 dpm_wait_for_superior(dev, async);
817 dpm_watchdog_set(&wd, dev);
818 device_lock(dev);
819
820 /*
821 * This is a fib. But we'll allow new children to be added below
822 * a resumed device, even if the device hasn't been completed yet.
823 */
824 dev->power.is_prepared = false;
825
826 if (!dev->power.is_suspended)
827 goto Unlock;
828
829 if (dev->pm_domain) {
830 info = "power domain ";
831 callback = pm_op(&dev->pm_domain->ops, state);
832 goto Driver;
833 }
834
835 if (dev->type && dev->type->pm) {
836 info = "type ";
837 callback = pm_op(dev->type->pm, state);
838 goto Driver;
839 }
840
841 if (dev->class) {
842 if (dev->class->pm) {
843 info = "class ";
844 callback = pm_op(dev->class->pm, state);
845 goto Driver;
846 } else if (dev->class->resume) {
847 info = "legacy class ";
848 callback = dev->class->resume;
849 goto End;
850 }
851 }
852
853 if (dev->bus) {
854 if (dev->bus->pm) {
855 info = "bus ";
856 callback = pm_op(dev->bus->pm, state);
857 } else if (dev->bus->resume) {
858 info = "legacy bus ";
859 callback = dev->bus->resume;
860 goto End;
861 }
862 }
863
864 Driver:
865 if (!callback && dev->driver && dev->driver->pm) {
866 info = "driver ";
867 callback = pm_op(dev->driver->pm, state);
868 }
869
870 End:
871 error = dpm_run_callback(callback, dev, state, info);
872 dev->power.is_suspended = false;
873
874 Unlock:
875 device_unlock(dev);
876 dpm_watchdog_clear(&wd);
877
878 Complete:
879 complete_all(&dev->power.completion);
880
881 TRACE_RESUME(error);
882
883 return error;
884 }
885
886 static void async_resume(void *data, async_cookie_t cookie)
887 {
888 struct device *dev = (struct device *)data;
889 int error;
890
891 error = device_resume(dev, pm_transition, true);
892 if (error)
893 pm_dev_err(dev, pm_transition, " async", error);
894 put_device(dev);
895 }
896
897 /**
898 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
899 * @state: PM transition of the system being carried out.
900 *
901 * Execute the appropriate "resume" callback for all devices whose status
902 * indicates that they are suspended.
903 */
904 void dpm_resume(pm_message_t state)
905 {
906 struct device *dev;
907 ktime_t starttime = ktime_get();
908
909 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
910 might_sleep();
911
912 mutex_lock(&dpm_list_mtx);
913 pm_transition = state;
914 async_error = 0;
915
916 list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
917 reinit_completion(&dev->power.completion);
918 if (is_async(dev)) {
919 get_device(dev);
920 async_schedule(async_resume, dev);
921 }
922 }
923
924 while (!list_empty(&dpm_suspended_list)) {
925 dev = to_device(dpm_suspended_list.next);
926 get_device(dev);
927 if (!is_async(dev)) {
928 int error;
929
930 mutex_unlock(&dpm_list_mtx);
931
932 error = device_resume(dev, state, false);
933 if (error) {
934 suspend_stats.failed_resume++;
935 dpm_save_failed_step(SUSPEND_RESUME);
936 dpm_save_failed_dev(dev_name(dev));
937 pm_dev_err(dev, state, "", error);
938 }
939
940 mutex_lock(&dpm_list_mtx);
941 }
942 if (!list_empty(&dev->power.entry))
943 list_move_tail(&dev->power.entry, &dpm_prepared_list);
944 put_device(dev);
945 }
946 mutex_unlock(&dpm_list_mtx);
947 async_synchronize_full();
948 dpm_show_time(starttime, state, NULL);
949
950 cpufreq_resume();
951 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
952 }
953
954 /**
955 * device_complete - Complete a PM transition for given device.
956 * @dev: Device to handle.
957 * @state: PM transition of the system being carried out.
958 */
959 static void device_complete(struct device *dev, pm_message_t state)
960 {
961 void (*callback)(struct device *) = NULL;
962 char *info = NULL;
963
964 if (dev->power.syscore)
965 return;
966
967 device_lock(dev);
968
969 if (dev->pm_domain) {
970 info = "completing power domain ";
971 callback = dev->pm_domain->ops.complete;
972 } else if (dev->type && dev->type->pm) {
973 info = "completing type ";
974 callback = dev->type->pm->complete;
975 } else if (dev->class && dev->class->pm) {
976 info = "completing class ";
977 callback = dev->class->pm->complete;
978 } else if (dev->bus && dev->bus->pm) {
979 info = "completing bus ";
980 callback = dev->bus->pm->complete;
981 }
982
983 if (!callback && dev->driver && dev->driver->pm) {
984 info = "completing driver ";
985 callback = dev->driver->pm->complete;
986 }
987
988 if (callback) {
989 pm_dev_dbg(dev, state, info);
990 callback(dev);
991 }
992
993 device_unlock(dev);
994
995 pm_runtime_put(dev);
996 }
997
998 /**
999 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1000 * @state: PM transition of the system being carried out.
1001 *
1002 * Execute the ->complete() callbacks for all devices whose PM status is not
1003 * DPM_ON (this allows new devices to be registered).
1004 */
1005 void dpm_complete(pm_message_t state)
1006 {
1007 struct list_head list;
1008
1009 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1010 might_sleep();
1011
1012 INIT_LIST_HEAD(&list);
1013 mutex_lock(&dpm_list_mtx);
1014 while (!list_empty(&dpm_prepared_list)) {
1015 struct device *dev = to_device(dpm_prepared_list.prev);
1016
1017 get_device(dev);
1018 dev->power.is_prepared = false;
1019 list_move(&dev->power.entry, &list);
1020 mutex_unlock(&dpm_list_mtx);
1021
1022 trace_device_pm_callback_start(dev, "", state.event);
1023 device_complete(dev, state);
1024 trace_device_pm_callback_end(dev, 0);
1025
1026 mutex_lock(&dpm_list_mtx);
1027 put_device(dev);
1028 }
1029 list_splice(&list, &dpm_list);
1030 mutex_unlock(&dpm_list_mtx);
1031
1032 /* Allow device probing and trigger re-probing of deferred devices */
1033 device_unblock_probing();
1034 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1035 }
1036
1037 /**
1038 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1039 * @state: PM transition of the system being carried out.
1040 *
1041 * Execute "resume" callbacks for all devices and complete the PM transition of
1042 * the system.
1043 */
1044 void dpm_resume_end(pm_message_t state)
1045 {
1046 dpm_resume(state);
1047 dpm_complete(state);
1048 }
1049 EXPORT_SYMBOL_GPL(dpm_resume_end);
1050
1051
1052 /*------------------------- Suspend routines -------------------------*/
1053
1054 /**
1055 * resume_event - Return a "resume" message for given "suspend" sleep state.
1056 * @sleep_state: PM message representing a sleep state.
1057 *
1058 * Return a PM message representing the resume event corresponding to given
1059 * sleep state.
1060 */
1061 static pm_message_t resume_event(pm_message_t sleep_state)
1062 {
1063 switch (sleep_state.event) {
1064 case PM_EVENT_SUSPEND:
1065 return PMSG_RESUME;
1066 case PM_EVENT_FREEZE:
1067 case PM_EVENT_QUIESCE:
1068 return PMSG_RECOVER;
1069 case PM_EVENT_HIBERNATE:
1070 return PMSG_RESTORE;
1071 }
1072 return PMSG_ON;
1073 }
1074
1075 /**
1076 * device_suspend_noirq - Execute a "late suspend" callback for given device.
1077 * @dev: Device to handle.
1078 * @state: PM transition of the system being carried out.
1079 * @async: If true, the device is being suspended asynchronously.
1080 *
1081 * The driver of @dev will not receive interrupts while this function is being
1082 * executed.
1083 */
1084 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1085 {
1086 pm_callback_t callback = NULL;
1087 char *info = NULL;
1088 int error = 0;
1089
1090 TRACE_DEVICE(dev);
1091 TRACE_SUSPEND(0);
1092
1093 dpm_wait_for_subordinate(dev, async);
1094
1095 if (async_error)
1096 goto Complete;
1097
1098 if (dev->power.syscore || dev->power.direct_complete)
1099 goto Complete;
1100
1101 if (dev->pm_domain) {
1102 info = "noirq power domain ";
1103 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1104 } else if (dev->type && dev->type->pm) {
1105 info = "noirq type ";
1106 callback = pm_noirq_op(dev->type->pm, state);
1107 } else if (dev->class && dev->class->pm) {
1108 info = "noirq class ";
1109 callback = pm_noirq_op(dev->class->pm, state);
1110 } else if (dev->bus && dev->bus->pm) {
1111 info = "noirq bus ";
1112 callback = pm_noirq_op(dev->bus->pm, state);
1113 }
1114
1115 if (!callback && dev->driver && dev->driver->pm) {
1116 info = "noirq driver ";
1117 callback = pm_noirq_op(dev->driver->pm, state);
1118 }
1119
1120 error = dpm_run_callback(callback, dev, state, info);
1121 if (!error)
1122 dev->power.is_noirq_suspended = true;
1123 else
1124 async_error = error;
1125
1126 Complete:
1127 complete_all(&dev->power.completion);
1128 TRACE_SUSPEND(error);
1129 return error;
1130 }
1131
1132 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1133 {
1134 struct device *dev = (struct device *)data;
1135 int error;
1136
1137 error = __device_suspend_noirq(dev, pm_transition, true);
1138 if (error) {
1139 dpm_save_failed_dev(dev_name(dev));
1140 pm_dev_err(dev, pm_transition, " async", error);
1141 }
1142
1143 put_device(dev);
1144 }
1145
1146 static int device_suspend_noirq(struct device *dev)
1147 {
1148 reinit_completion(&dev->power.completion);
1149
1150 if (is_async(dev)) {
1151 get_device(dev);
1152 async_schedule(async_suspend_noirq, dev);
1153 return 0;
1154 }
1155 return __device_suspend_noirq(dev, pm_transition, false);
1156 }
1157
1158 /**
1159 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1160 * @state: PM transition of the system being carried out.
1161 *
1162 * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1163 * handlers for all non-sysdev devices.
1164 */
1165 int dpm_suspend_noirq(pm_message_t state)
1166 {
1167 ktime_t starttime = ktime_get();
1168 int error = 0;
1169
1170 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1171 cpuidle_pause();
1172 device_wakeup_arm_wake_irqs();
1173 suspend_device_irqs();
1174 mutex_lock(&dpm_list_mtx);
1175 pm_transition = state;
1176 async_error = 0;
1177
1178 while (!list_empty(&dpm_late_early_list)) {
1179 struct device *dev = to_device(dpm_late_early_list.prev);
1180
1181 get_device(dev);
1182 mutex_unlock(&dpm_list_mtx);
1183
1184 error = device_suspend_noirq(dev);
1185
1186 mutex_lock(&dpm_list_mtx);
1187 if (error) {
1188 pm_dev_err(dev, state, " noirq", error);
1189 dpm_save_failed_dev(dev_name(dev));
1190 put_device(dev);
1191 break;
1192 }
1193 if (!list_empty(&dev->power.entry))
1194 list_move(&dev->power.entry, &dpm_noirq_list);
1195 put_device(dev);
1196
1197 if (async_error)
1198 break;
1199 }
1200 mutex_unlock(&dpm_list_mtx);
1201 async_synchronize_full();
1202 if (!error)
1203 error = async_error;
1204
1205 if (error) {
1206 suspend_stats.failed_suspend_noirq++;
1207 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1208 dpm_resume_noirq(resume_event(state));
1209 } else {
1210 dpm_show_time(starttime, state, "noirq");
1211 }
1212 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1213 return error;
1214 }
1215
1216 /**
1217 * device_suspend_late - Execute a "late suspend" callback for given device.
1218 * @dev: Device to handle.
1219 * @state: PM transition of the system being carried out.
1220 * @async: If true, the device is being suspended asynchronously.
1221 *
1222 * Runtime PM is disabled for @dev while this function is being executed.
1223 */
1224 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1225 {
1226 pm_callback_t callback = NULL;
1227 char *info = NULL;
1228 int error = 0;
1229
1230 TRACE_DEVICE(dev);
1231 TRACE_SUSPEND(0);
1232
1233 __pm_runtime_disable(dev, false);
1234
1235 dpm_wait_for_subordinate(dev, async);
1236
1237 if (async_error)
1238 goto Complete;
1239
1240 if (pm_wakeup_pending()) {
1241 async_error = -EBUSY;
1242 goto Complete;
1243 }
1244
1245 if (dev->power.syscore || dev->power.direct_complete)
1246 goto Complete;
1247
1248 if (dev->pm_domain) {
1249 info = "late power domain ";
1250 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1251 } else if (dev->type && dev->type->pm) {
1252 info = "late type ";
1253 callback = pm_late_early_op(dev->type->pm, state);
1254 } else if (dev->class && dev->class->pm) {
1255 info = "late class ";
1256 callback = pm_late_early_op(dev->class->pm, state);
1257 } else if (dev->bus && dev->bus->pm) {
1258 info = "late bus ";
1259 callback = pm_late_early_op(dev->bus->pm, state);
1260 }
1261
1262 if (!callback && dev->driver && dev->driver->pm) {
1263 info = "late driver ";
1264 callback = pm_late_early_op(dev->driver->pm, state);
1265 }
1266
1267 error = dpm_run_callback(callback, dev, state, info);
1268 if (!error)
1269 dev->power.is_late_suspended = true;
1270 else
1271 async_error = error;
1272
1273 Complete:
1274 TRACE_SUSPEND(error);
1275 complete_all(&dev->power.completion);
1276 return error;
1277 }
1278
1279 static void async_suspend_late(void *data, async_cookie_t cookie)
1280 {
1281 struct device *dev = (struct device *)data;
1282 int error;
1283
1284 error = __device_suspend_late(dev, pm_transition, true);
1285 if (error) {
1286 dpm_save_failed_dev(dev_name(dev));
1287 pm_dev_err(dev, pm_transition, " async", error);
1288 }
1289 put_device(dev);
1290 }
1291
1292 static int device_suspend_late(struct device *dev)
1293 {
1294 reinit_completion(&dev->power.completion);
1295
1296 if (is_async(dev)) {
1297 get_device(dev);
1298 async_schedule(async_suspend_late, dev);
1299 return 0;
1300 }
1301
1302 return __device_suspend_late(dev, pm_transition, false);
1303 }
1304
1305 /**
1306 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1307 * @state: PM transition of the system being carried out.
1308 */
1309 int dpm_suspend_late(pm_message_t state)
1310 {
1311 ktime_t starttime = ktime_get();
1312 int error = 0;
1313
1314 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1315 mutex_lock(&dpm_list_mtx);
1316 pm_transition = state;
1317 async_error = 0;
1318
1319 while (!list_empty(&dpm_suspended_list)) {
1320 struct device *dev = to_device(dpm_suspended_list.prev);
1321
1322 get_device(dev);
1323 mutex_unlock(&dpm_list_mtx);
1324
1325 error = device_suspend_late(dev);
1326
1327 mutex_lock(&dpm_list_mtx);
1328 if (!list_empty(&dev->power.entry))
1329 list_move(&dev->power.entry, &dpm_late_early_list);
1330
1331 if (error) {
1332 pm_dev_err(dev, state, " late", error);
1333 dpm_save_failed_dev(dev_name(dev));
1334 put_device(dev);
1335 break;
1336 }
1337 put_device(dev);
1338
1339 if (async_error)
1340 break;
1341 }
1342 mutex_unlock(&dpm_list_mtx);
1343 async_synchronize_full();
1344 if (!error)
1345 error = async_error;
1346 if (error) {
1347 suspend_stats.failed_suspend_late++;
1348 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1349 dpm_resume_early(resume_event(state));
1350 } else {
1351 dpm_show_time(starttime, state, "late");
1352 }
1353 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1354 return error;
1355 }
1356
1357 /**
1358 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1359 * @state: PM transition of the system being carried out.
1360 */
1361 int dpm_suspend_end(pm_message_t state)
1362 {
1363 int error = dpm_suspend_late(state);
1364 if (error)
1365 return error;
1366
1367 error = dpm_suspend_noirq(state);
1368 if (error) {
1369 dpm_resume_early(resume_event(state));
1370 return error;
1371 }
1372
1373 return 0;
1374 }
1375 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1376
1377 /**
1378 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1379 * @dev: Device to suspend.
1380 * @state: PM transition of the system being carried out.
1381 * @cb: Suspend callback to execute.
1382 * @info: string description of caller.
1383 */
1384 static int legacy_suspend(struct device *dev, pm_message_t state,
1385 int (*cb)(struct device *dev, pm_message_t state),
1386 char *info)
1387 {
1388 int error;
1389 ktime_t calltime;
1390
1391 calltime = initcall_debug_start(dev);
1392
1393 trace_device_pm_callback_start(dev, info, state.event);
1394 error = cb(dev, state);
1395 trace_device_pm_callback_end(dev, error);
1396 suspend_report_result(cb, error);
1397
1398 initcall_debug_report(dev, calltime, error, state, info);
1399
1400 return error;
1401 }
1402
1403 static void dpm_clear_suppliers_direct_complete(struct device *dev)
1404 {
1405 struct device_link *link;
1406 int idx;
1407
1408 idx = device_links_read_lock();
1409
1410 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1411 spin_lock_irq(&link->supplier->power.lock);
1412 link->supplier->power.direct_complete = false;
1413 spin_unlock_irq(&link->supplier->power.lock);
1414 }
1415
1416 device_links_read_unlock(idx);
1417 }
1418
1419 /**
1420 * device_suspend - Execute "suspend" callbacks for given device.
1421 * @dev: Device to handle.
1422 * @state: PM transition of the system being carried out.
1423 * @async: If true, the device is being suspended asynchronously.
1424 */
1425 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1426 {
1427 pm_callback_t callback = NULL;
1428 char *info = NULL;
1429 int error = 0;
1430 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1431
1432 TRACE_DEVICE(dev);
1433 TRACE_SUSPEND(0);
1434
1435 dpm_wait_for_subordinate(dev, async);
1436
1437 if (async_error)
1438 goto Complete;
1439
1440 /*
1441 * If a device configured to wake up the system from sleep states
1442 * has been suspended at run time and there's a resume request pending
1443 * for it, this is equivalent to the device signaling wakeup, so the
1444 * system suspend operation should be aborted.
1445 */
1446 if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1447 pm_wakeup_event(dev, 0);
1448
1449 if (pm_wakeup_pending()) {
1450 async_error = -EBUSY;
1451 goto Complete;
1452 }
1453
1454 if (dev->power.syscore)
1455 goto Complete;
1456
1457 if (dev->power.direct_complete) {
1458 if (pm_runtime_status_suspended(dev)) {
1459 pm_runtime_disable(dev);
1460 if (pm_runtime_status_suspended(dev))
1461 goto Complete;
1462
1463 pm_runtime_enable(dev);
1464 }
1465 dev->power.direct_complete = false;
1466 }
1467
1468 dpm_watchdog_set(&wd, dev);
1469 device_lock(dev);
1470
1471 if (dev->pm_domain) {
1472 info = "power domain ";
1473 callback = pm_op(&dev->pm_domain->ops, state);
1474 goto Run;
1475 }
1476
1477 if (dev->type && dev->type->pm) {
1478 info = "type ";
1479 callback = pm_op(dev->type->pm, state);
1480 goto Run;
1481 }
1482
1483 if (dev->class) {
1484 if (dev->class->pm) {
1485 info = "class ";
1486 callback = pm_op(dev->class->pm, state);
1487 goto Run;
1488 } else if (dev->class->suspend) {
1489 pm_dev_dbg(dev, state, "legacy class ");
1490 error = legacy_suspend(dev, state, dev->class->suspend,
1491 "legacy class ");
1492 goto End;
1493 }
1494 }
1495
1496 if (dev->bus) {
1497 if (dev->bus->pm) {
1498 info = "bus ";
1499 callback = pm_op(dev->bus->pm, state);
1500 } else if (dev->bus->suspend) {
1501 pm_dev_dbg(dev, state, "legacy bus ");
1502 error = legacy_suspend(dev, state, dev->bus->suspend,
1503 "legacy bus ");
1504 goto End;
1505 }
1506 }
1507
1508 Run:
1509 if (!callback && dev->driver && dev->driver->pm) {
1510 info = "driver ";
1511 callback = pm_op(dev->driver->pm, state);
1512 }
1513
1514 error = dpm_run_callback(callback, dev, state, info);
1515
1516 End:
1517 if (!error) {
1518 struct device *parent = dev->parent;
1519
1520 dev->power.is_suspended = true;
1521 if (parent) {
1522 spin_lock_irq(&parent->power.lock);
1523
1524 dev->parent->power.direct_complete = false;
1525 if (dev->power.wakeup_path
1526 && !dev->parent->power.ignore_children)
1527 dev->parent->power.wakeup_path = true;
1528
1529 spin_unlock_irq(&parent->power.lock);
1530 }
1531 dpm_clear_suppliers_direct_complete(dev);
1532 }
1533
1534 device_unlock(dev);
1535 dpm_watchdog_clear(&wd);
1536
1537 Complete:
1538 if (error)
1539 async_error = error;
1540
1541 complete_all(&dev->power.completion);
1542 TRACE_SUSPEND(error);
1543 return error;
1544 }
1545
1546 static void async_suspend(void *data, async_cookie_t cookie)
1547 {
1548 struct device *dev = (struct device *)data;
1549 int error;
1550
1551 error = __device_suspend(dev, pm_transition, true);
1552 if (error) {
1553 dpm_save_failed_dev(dev_name(dev));
1554 pm_dev_err(dev, pm_transition, " async", error);
1555 }
1556
1557 put_device(dev);
1558 }
1559
1560 static int device_suspend(struct device *dev)
1561 {
1562 reinit_completion(&dev->power.completion);
1563
1564 if (is_async(dev)) {
1565 get_device(dev);
1566 async_schedule(async_suspend, dev);
1567 return 0;
1568 }
1569
1570 return __device_suspend(dev, pm_transition, false);
1571 }
1572
1573 /**
1574 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1575 * @state: PM transition of the system being carried out.
1576 */
1577 int dpm_suspend(pm_message_t state)
1578 {
1579 ktime_t starttime = ktime_get();
1580 int error = 0;
1581
1582 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1583 might_sleep();
1584
1585 cpufreq_suspend();
1586
1587 mutex_lock(&dpm_list_mtx);
1588 pm_transition = state;
1589 async_error = 0;
1590 while (!list_empty(&dpm_prepared_list)) {
1591 struct device *dev = to_device(dpm_prepared_list.prev);
1592
1593 get_device(dev);
1594 mutex_unlock(&dpm_list_mtx);
1595
1596 error = device_suspend(dev);
1597
1598 mutex_lock(&dpm_list_mtx);
1599 if (error) {
1600 pm_dev_err(dev, state, "", error);
1601 dpm_save_failed_dev(dev_name(dev));
1602 put_device(dev);
1603 break;
1604 }
1605 if (!list_empty(&dev->power.entry))
1606 list_move(&dev->power.entry, &dpm_suspended_list);
1607 put_device(dev);
1608 if (async_error)
1609 break;
1610 }
1611 mutex_unlock(&dpm_list_mtx);
1612 async_synchronize_full();
1613 if (!error)
1614 error = async_error;
1615 if (error) {
1616 suspend_stats.failed_suspend++;
1617 dpm_save_failed_step(SUSPEND_SUSPEND);
1618 } else
1619 dpm_show_time(starttime, state, NULL);
1620 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1621 return error;
1622 }
1623
1624 /**
1625 * device_prepare - Prepare a device for system power transition.
1626 * @dev: Device to handle.
1627 * @state: PM transition of the system being carried out.
1628 *
1629 * Execute the ->prepare() callback(s) for given device. No new children of the
1630 * device may be registered after this function has returned.
1631 */
1632 static int device_prepare(struct device *dev, pm_message_t state)
1633 {
1634 int (*callback)(struct device *) = NULL;
1635 int ret = 0;
1636
1637 if (dev->power.syscore)
1638 return 0;
1639
1640 /*
1641 * If a device's parent goes into runtime suspend at the wrong time,
1642 * it won't be possible to resume the device. To prevent this we
1643 * block runtime suspend here, during the prepare phase, and allow
1644 * it again during the complete phase.
1645 */
1646 pm_runtime_get_noresume(dev);
1647
1648 device_lock(dev);
1649
1650 dev->power.wakeup_path = device_may_wakeup(dev);
1651
1652 if (dev->power.no_pm_callbacks) {
1653 ret = 1; /* Let device go direct_complete */
1654 goto unlock;
1655 }
1656
1657 if (dev->pm_domain)
1658 callback = dev->pm_domain->ops.prepare;
1659 else if (dev->type && dev->type->pm)
1660 callback = dev->type->pm->prepare;
1661 else if (dev->class && dev->class->pm)
1662 callback = dev->class->pm->prepare;
1663 else if (dev->bus && dev->bus->pm)
1664 callback = dev->bus->pm->prepare;
1665
1666 if (!callback && dev->driver && dev->driver->pm)
1667 callback = dev->driver->pm->prepare;
1668
1669 if (callback)
1670 ret = callback(dev);
1671
1672 unlock:
1673 device_unlock(dev);
1674
1675 if (ret < 0) {
1676 suspend_report_result(callback, ret);
1677 pm_runtime_put(dev);
1678 return ret;
1679 }
1680 /*
1681 * A positive return value from ->prepare() means "this device appears
1682 * to be runtime-suspended and its state is fine, so if it really is
1683 * runtime-suspended, you can leave it in that state provided that you
1684 * will do the same thing with all of its descendants". This only
1685 * applies to suspend transitions, however.
1686 */
1687 spin_lock_irq(&dev->power.lock);
1688 dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1689 spin_unlock_irq(&dev->power.lock);
1690 return 0;
1691 }
1692
1693 /**
1694 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1695 * @state: PM transition of the system being carried out.
1696 *
1697 * Execute the ->prepare() callback(s) for all devices.
1698 */
1699 int dpm_prepare(pm_message_t state)
1700 {
1701 int error = 0;
1702
1703 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1704 might_sleep();
1705
1706 /*
1707 * Give a chance for the known devices to complete their probes, before
1708 * disable probing of devices. This sync point is important at least
1709 * at boot time + hibernation restore.
1710 */
1711 wait_for_device_probe();
1712 /*
1713 * It is unsafe if probing of devices will happen during suspend or
1714 * hibernation and system behavior will be unpredictable in this case.
1715 * So, let's prohibit device's probing here and defer their probes
1716 * instead. The normal behavior will be restored in dpm_complete().
1717 */
1718 device_block_probing();
1719
1720 mutex_lock(&dpm_list_mtx);
1721 while (!list_empty(&dpm_list)) {
1722 struct device *dev = to_device(dpm_list.next);
1723
1724 get_device(dev);
1725 mutex_unlock(&dpm_list_mtx);
1726
1727 trace_device_pm_callback_start(dev, "", state.event);
1728 error = device_prepare(dev, state);
1729 trace_device_pm_callback_end(dev, error);
1730
1731 mutex_lock(&dpm_list_mtx);
1732 if (error) {
1733 if (error == -EAGAIN) {
1734 put_device(dev);
1735 error = 0;
1736 continue;
1737 }
1738 printk(KERN_INFO "PM: Device %s not prepared "
1739 "for power transition: code %d\n",
1740 dev_name(dev), error);
1741 put_device(dev);
1742 break;
1743 }
1744 dev->power.is_prepared = true;
1745 if (!list_empty(&dev->power.entry))
1746 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1747 put_device(dev);
1748 }
1749 mutex_unlock(&dpm_list_mtx);
1750 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1751 return error;
1752 }
1753
1754 /**
1755 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1756 * @state: PM transition of the system being carried out.
1757 *
1758 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1759 * callbacks for them.
1760 */
1761 int dpm_suspend_start(pm_message_t state)
1762 {
1763 int error;
1764
1765 error = dpm_prepare(state);
1766 if (error) {
1767 suspend_stats.failed_prepare++;
1768 dpm_save_failed_step(SUSPEND_PREPARE);
1769 } else
1770 error = dpm_suspend(state);
1771 return error;
1772 }
1773 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1774
1775 void __suspend_report_result(const char *function, void *fn, int ret)
1776 {
1777 if (ret)
1778 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1779 }
1780 EXPORT_SYMBOL_GPL(__suspend_report_result);
1781
1782 /**
1783 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1784 * @dev: Device to wait for.
1785 * @subordinate: Device that needs to wait for @dev.
1786 */
1787 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1788 {
1789 dpm_wait(dev, subordinate->power.async_suspend);
1790 return async_error;
1791 }
1792 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1793
1794 /**
1795 * dpm_for_each_dev - device iterator.
1796 * @data: data for the callback.
1797 * @fn: function to be called for each device.
1798 *
1799 * Iterate over devices in dpm_list, and call @fn for each device,
1800 * passing it @data.
1801 */
1802 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1803 {
1804 struct device *dev;
1805
1806 if (!fn)
1807 return;
1808
1809 device_pm_lock();
1810 list_for_each_entry(dev, &dpm_list, power.entry)
1811 fn(dev, data);
1812 device_pm_unlock();
1813 }
1814 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1815
1816 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1817 {
1818 if (!ops)
1819 return true;
1820
1821 return !ops->prepare &&
1822 !ops->suspend &&
1823 !ops->suspend_late &&
1824 !ops->suspend_noirq &&
1825 !ops->resume_noirq &&
1826 !ops->resume_early &&
1827 !ops->resume &&
1828 !ops->complete;
1829 }
1830
1831 void device_pm_check_callbacks(struct device *dev)
1832 {
1833 spin_lock_irq(&dev->power.lock);
1834 dev->power.no_pm_callbacks =
1835 (!dev->bus || pm_ops_is_empty(dev->bus->pm)) &&
1836 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
1837 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
1838 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
1839 (!dev->driver || pm_ops_is_empty(dev->driver->pm));
1840 spin_unlock_irq(&dev->power.lock);
1841 }