]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/char/ipmi/ipmi_msghandler.c
Merge tag 'for-linus-4.15-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / drivers / char / ipmi / ipmi_msghandler.c
1 /*
2 * ipmi_msghandler.c
3 *
4 * Incoming and outgoing message routing for an IPMI interface.
5 *
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
8 * source@mvista.com
9 *
10 * Copyright 2002 MontaVista Software Inc.
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
16 *
17 *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
49 #include <linux/moduleparam.h>
50 #include <linux/workqueue.h>
51 #include <linux/uuid.h>
52
53 #define PFX "IPMI message handler: "
54
55 #define IPMI_DRIVER_VERSION "39.2"
56
57 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
58 static int ipmi_init_msghandler(void);
59 static void smi_recv_tasklet(unsigned long);
60 static void handle_new_recv_msgs(ipmi_smi_t intf);
61 static void need_waiter(ipmi_smi_t intf);
62 static int handle_one_recv_msg(ipmi_smi_t intf,
63 struct ipmi_smi_msg *msg);
64
65 static int initialized;
66
67 enum ipmi_panic_event_op {
68 IPMI_SEND_PANIC_EVENT_NONE,
69 IPMI_SEND_PANIC_EVENT,
70 IPMI_SEND_PANIC_EVENT_STRING
71 };
72 #ifdef CONFIG_IPMI_PANIC_STRING
73 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
74 #elif defined(CONFIG_IPMI_PANIC_EVENT)
75 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
76 #else
77 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
78 #endif
79 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
80
81 static int panic_op_write_handler(const char *val,
82 const struct kernel_param *kp)
83 {
84 char valcp[16];
85 char *s;
86
87 strncpy(valcp, val, 16);
88 valcp[15] = '\0';
89
90 s = strstrip(valcp);
91
92 if (strcmp(s, "none") == 0)
93 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_NONE;
94 else if (strcmp(s, "event") == 0)
95 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT;
96 else if (strcmp(s, "string") == 0)
97 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_STRING;
98 else
99 return -EINVAL;
100
101 return 0;
102 }
103
104 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
105 {
106 switch (ipmi_send_panic_event) {
107 case IPMI_SEND_PANIC_EVENT_NONE:
108 strcpy(buffer, "none");
109 break;
110
111 case IPMI_SEND_PANIC_EVENT:
112 strcpy(buffer, "event");
113 break;
114
115 case IPMI_SEND_PANIC_EVENT_STRING:
116 strcpy(buffer, "string");
117 break;
118
119 default:
120 strcpy(buffer, "???");
121 break;
122 }
123
124 return strlen(buffer);
125 }
126
127 static const struct kernel_param_ops panic_op_ops = {
128 .set = panic_op_write_handler,
129 .get = panic_op_read_handler
130 };
131 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
132 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic. Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
133
134
135 #ifdef CONFIG_IPMI_PROC_INTERFACE
136 static struct proc_dir_entry *proc_ipmi_root;
137 #endif /* CONFIG_IPMI_PROC_INTERFACE */
138
139 /* Remain in auto-maintenance mode for this amount of time (in ms). */
140 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
141
142 #define MAX_EVENTS_IN_QUEUE 25
143
144 /*
145 * Don't let a message sit in a queue forever, always time it with at lest
146 * the max message timer. This is in milliseconds.
147 */
148 #define MAX_MSG_TIMEOUT 60000
149
150 /* Call every ~1000 ms. */
151 #define IPMI_TIMEOUT_TIME 1000
152
153 /* How many jiffies does it take to get to the timeout time. */
154 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
155
156 /*
157 * Request events from the queue every second (this is the number of
158 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
159 * future, IPMI will add a way to know immediately if an event is in
160 * the queue and this silliness can go away.
161 */
162 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
163
164 /* How long should we cache dynamic device IDs? */
165 #define IPMI_DYN_DEV_ID_EXPIRY (10 * HZ)
166
167 /*
168 * The main "user" data structure.
169 */
170 struct ipmi_user {
171 struct list_head link;
172
173 /* Set to false when the user is destroyed. */
174 bool valid;
175
176 struct kref refcount;
177
178 /* The upper layer that handles receive messages. */
179 const struct ipmi_user_hndl *handler;
180 void *handler_data;
181
182 /* The interface this user is bound to. */
183 ipmi_smi_t intf;
184
185 /* Does this interface receive IPMI events? */
186 bool gets_events;
187 };
188
189 struct cmd_rcvr {
190 struct list_head link;
191
192 ipmi_user_t user;
193 unsigned char netfn;
194 unsigned char cmd;
195 unsigned int chans;
196
197 /*
198 * This is used to form a linked lised during mass deletion.
199 * Since this is in an RCU list, we cannot use the link above
200 * or change any data until the RCU period completes. So we
201 * use this next variable during mass deletion so we can have
202 * a list and don't have to wait and restart the search on
203 * every individual deletion of a command.
204 */
205 struct cmd_rcvr *next;
206 };
207
208 struct seq_table {
209 unsigned int inuse : 1;
210 unsigned int broadcast : 1;
211
212 unsigned long timeout;
213 unsigned long orig_timeout;
214 unsigned int retries_left;
215
216 /*
217 * To verify on an incoming send message response that this is
218 * the message that the response is for, we keep a sequence id
219 * and increment it every time we send a message.
220 */
221 long seqid;
222
223 /*
224 * This is held so we can properly respond to the message on a
225 * timeout, and it is used to hold the temporary data for
226 * retransmission, too.
227 */
228 struct ipmi_recv_msg *recv_msg;
229 };
230
231 /*
232 * Store the information in a msgid (long) to allow us to find a
233 * sequence table entry from the msgid.
234 */
235 #define STORE_SEQ_IN_MSGID(seq, seqid) \
236 ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
237
238 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
239 do { \
240 seq = (((msgid) >> 26) & 0x3f); \
241 seqid = ((msgid) & 0x3ffffff); \
242 } while (0)
243
244 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
245
246 #define IPMI_MAX_CHANNELS 16
247 struct ipmi_channel {
248 unsigned char medium;
249 unsigned char protocol;
250 };
251
252 struct ipmi_channel_set {
253 struct ipmi_channel c[IPMI_MAX_CHANNELS];
254 };
255
256 struct ipmi_my_addrinfo {
257 /*
258 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
259 * but may be changed by the user.
260 */
261 unsigned char address;
262
263 /*
264 * My LUN. This should generally stay the SMS LUN, but just in
265 * case...
266 */
267 unsigned char lun;
268 };
269
270 #ifdef CONFIG_IPMI_PROC_INTERFACE
271 struct ipmi_proc_entry {
272 char *name;
273 struct ipmi_proc_entry *next;
274 };
275 #endif
276
277 /*
278 * Note that the product id, manufacturer id, guid, and device id are
279 * immutable in this structure, so dyn_mutex is not required for
280 * accessing those. If those change on a BMC, a new BMC is allocated.
281 */
282 struct bmc_device {
283 struct platform_device pdev;
284 struct list_head intfs; /* Interfaces on this BMC. */
285 struct ipmi_device_id id;
286 struct ipmi_device_id fetch_id;
287 int dyn_id_set;
288 unsigned long dyn_id_expiry;
289 struct mutex dyn_mutex; /* Protects id, intfs, & dyn* */
290 guid_t guid;
291 guid_t fetch_guid;
292 int dyn_guid_set;
293 struct kref usecount;
294 struct work_struct remove_work;
295 };
296 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
297
298 static int bmc_get_device_id(ipmi_smi_t intf, struct bmc_device *bmc,
299 struct ipmi_device_id *id,
300 bool *guid_set, guid_t *guid);
301
302 /*
303 * Various statistics for IPMI, these index stats[] in the ipmi_smi
304 * structure.
305 */
306 enum ipmi_stat_indexes {
307 /* Commands we got from the user that were invalid. */
308 IPMI_STAT_sent_invalid_commands = 0,
309
310 /* Commands we sent to the MC. */
311 IPMI_STAT_sent_local_commands,
312
313 /* Responses from the MC that were delivered to a user. */
314 IPMI_STAT_handled_local_responses,
315
316 /* Responses from the MC that were not delivered to a user. */
317 IPMI_STAT_unhandled_local_responses,
318
319 /* Commands we sent out to the IPMB bus. */
320 IPMI_STAT_sent_ipmb_commands,
321
322 /* Commands sent on the IPMB that had errors on the SEND CMD */
323 IPMI_STAT_sent_ipmb_command_errs,
324
325 /* Each retransmit increments this count. */
326 IPMI_STAT_retransmitted_ipmb_commands,
327
328 /*
329 * When a message times out (runs out of retransmits) this is
330 * incremented.
331 */
332 IPMI_STAT_timed_out_ipmb_commands,
333
334 /*
335 * This is like above, but for broadcasts. Broadcasts are
336 * *not* included in the above count (they are expected to
337 * time out).
338 */
339 IPMI_STAT_timed_out_ipmb_broadcasts,
340
341 /* Responses I have sent to the IPMB bus. */
342 IPMI_STAT_sent_ipmb_responses,
343
344 /* The response was delivered to the user. */
345 IPMI_STAT_handled_ipmb_responses,
346
347 /* The response had invalid data in it. */
348 IPMI_STAT_invalid_ipmb_responses,
349
350 /* The response didn't have anyone waiting for it. */
351 IPMI_STAT_unhandled_ipmb_responses,
352
353 /* Commands we sent out to the IPMB bus. */
354 IPMI_STAT_sent_lan_commands,
355
356 /* Commands sent on the IPMB that had errors on the SEND CMD */
357 IPMI_STAT_sent_lan_command_errs,
358
359 /* Each retransmit increments this count. */
360 IPMI_STAT_retransmitted_lan_commands,
361
362 /*
363 * When a message times out (runs out of retransmits) this is
364 * incremented.
365 */
366 IPMI_STAT_timed_out_lan_commands,
367
368 /* Responses I have sent to the IPMB bus. */
369 IPMI_STAT_sent_lan_responses,
370
371 /* The response was delivered to the user. */
372 IPMI_STAT_handled_lan_responses,
373
374 /* The response had invalid data in it. */
375 IPMI_STAT_invalid_lan_responses,
376
377 /* The response didn't have anyone waiting for it. */
378 IPMI_STAT_unhandled_lan_responses,
379
380 /* The command was delivered to the user. */
381 IPMI_STAT_handled_commands,
382
383 /* The command had invalid data in it. */
384 IPMI_STAT_invalid_commands,
385
386 /* The command didn't have anyone waiting for it. */
387 IPMI_STAT_unhandled_commands,
388
389 /* Invalid data in an event. */
390 IPMI_STAT_invalid_events,
391
392 /* Events that were received with the proper format. */
393 IPMI_STAT_events,
394
395 /* Retransmissions on IPMB that failed. */
396 IPMI_STAT_dropped_rexmit_ipmb_commands,
397
398 /* Retransmissions on LAN that failed. */
399 IPMI_STAT_dropped_rexmit_lan_commands,
400
401 /* This *must* remain last, add new values above this. */
402 IPMI_NUM_STATS
403 };
404
405
406 #define IPMI_IPMB_NUM_SEQ 64
407 struct ipmi_smi {
408 /* What interface number are we? */
409 int intf_num;
410
411 struct kref refcount;
412
413 /* Set when the interface is being unregistered. */
414 bool in_shutdown;
415
416 /* Used for a list of interfaces. */
417 struct list_head link;
418
419 /*
420 * The list of upper layers that are using me. seq_lock
421 * protects this.
422 */
423 struct list_head users;
424
425 /* Used for wake ups at startup. */
426 wait_queue_head_t waitq;
427
428 /*
429 * Prevents the interface from being unregistered when the
430 * interface is used by being looked up through the BMC
431 * structure.
432 */
433 struct mutex bmc_reg_mutex;
434
435 struct bmc_device tmp_bmc;
436 struct bmc_device *bmc;
437 bool bmc_registered;
438 struct list_head bmc_link;
439 char *my_dev_name;
440 bool in_bmc_register; /* Handle recursive situations. Yuck. */
441 struct work_struct bmc_reg_work;
442
443 /*
444 * This is the lower-layer's sender routine. Note that you
445 * must either be holding the ipmi_interfaces_mutex or be in
446 * an umpreemptible region to use this. You must fetch the
447 * value into a local variable and make sure it is not NULL.
448 */
449 const struct ipmi_smi_handlers *handlers;
450 void *send_info;
451
452 #ifdef CONFIG_IPMI_PROC_INTERFACE
453 /* A list of proc entries for this interface. */
454 struct mutex proc_entry_lock;
455 struct ipmi_proc_entry *proc_entries;
456
457 struct proc_dir_entry *proc_dir;
458 char proc_dir_name[10];
459 #endif
460
461 /* Driver-model device for the system interface. */
462 struct device *si_dev;
463
464 /*
465 * A table of sequence numbers for this interface. We use the
466 * sequence numbers for IPMB messages that go out of the
467 * interface to match them up with their responses. A routine
468 * is called periodically to time the items in this list.
469 */
470 spinlock_t seq_lock;
471 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
472 int curr_seq;
473
474 /*
475 * Messages queued for delivery. If delivery fails (out of memory
476 * for instance), They will stay in here to be processed later in a
477 * periodic timer interrupt. The tasklet is for handling received
478 * messages directly from the handler.
479 */
480 spinlock_t waiting_rcv_msgs_lock;
481 struct list_head waiting_rcv_msgs;
482 atomic_t watchdog_pretimeouts_to_deliver;
483 struct tasklet_struct recv_tasklet;
484
485 spinlock_t xmit_msgs_lock;
486 struct list_head xmit_msgs;
487 struct ipmi_smi_msg *curr_msg;
488 struct list_head hp_xmit_msgs;
489
490 /*
491 * The list of command receivers that are registered for commands
492 * on this interface.
493 */
494 struct mutex cmd_rcvrs_mutex;
495 struct list_head cmd_rcvrs;
496
497 /*
498 * Events that were queues because no one was there to receive
499 * them.
500 */
501 spinlock_t events_lock; /* For dealing with event stuff. */
502 struct list_head waiting_events;
503 unsigned int waiting_events_count; /* How many events in queue? */
504 char delivering_events;
505 char event_msg_printed;
506 atomic_t event_waiters;
507 unsigned int ticks_to_req_ev;
508 int last_needs_timer;
509
510 /*
511 * The event receiver for my BMC, only really used at panic
512 * shutdown as a place to store this.
513 */
514 unsigned char event_receiver;
515 unsigned char event_receiver_lun;
516 unsigned char local_sel_device;
517 unsigned char local_event_generator;
518
519 /* For handling of maintenance mode. */
520 int maintenance_mode;
521 bool maintenance_mode_enable;
522 int auto_maintenance_timeout;
523 spinlock_t maintenance_mode_lock; /* Used in a timer... */
524
525 /*
526 * A cheap hack, if this is non-null and a message to an
527 * interface comes in with a NULL user, call this routine with
528 * it. Note that the message will still be freed by the
529 * caller. This only works on the system interface.
530 *
531 * Protected by bmc_reg_mutex.
532 */
533 void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
534
535 /*
536 * When we are scanning the channels for an SMI, this will
537 * tell which channel we are scanning.
538 */
539 int curr_channel;
540
541 /* Channel information */
542 struct ipmi_channel_set *channel_list;
543 unsigned int curr_working_cset; /* First index into the following. */
544 struct ipmi_channel_set wchannels[2];
545 struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
546 bool channels_ready;
547
548 atomic_t stats[IPMI_NUM_STATS];
549
550 /*
551 * run_to_completion duplicate of smb_info, smi_info
552 * and ipmi_serial_info structures. Used to decrease numbers of
553 * parameters passed by "low" level IPMI code.
554 */
555 int run_to_completion;
556 };
557 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
558
559 static void __get_guid(ipmi_smi_t intf);
560 static void __ipmi_bmc_unregister(ipmi_smi_t intf);
561 static int __ipmi_bmc_register(ipmi_smi_t intf,
562 struct ipmi_device_id *id,
563 bool guid_set, guid_t *guid, int intf_num);
564 static int __scan_channels(ipmi_smi_t intf, struct ipmi_device_id *id);
565
566
567 /**
568 * The driver model view of the IPMI messaging driver.
569 */
570 static struct platform_driver ipmidriver = {
571 .driver = {
572 .name = "ipmi",
573 .bus = &platform_bus_type
574 }
575 };
576 /*
577 * This mutex keeps us from adding the same BMC twice.
578 */
579 static DEFINE_MUTEX(ipmidriver_mutex);
580
581 static LIST_HEAD(ipmi_interfaces);
582 static DEFINE_MUTEX(ipmi_interfaces_mutex);
583
584 /*
585 * List of watchers that want to know when smi's are added and deleted.
586 */
587 static LIST_HEAD(smi_watchers);
588 static DEFINE_MUTEX(smi_watchers_mutex);
589
590 #define ipmi_inc_stat(intf, stat) \
591 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
592 #define ipmi_get_stat(intf, stat) \
593 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
594
595 static const char * const addr_src_to_str[] = {
596 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
597 "device-tree", "platform"
598 };
599
600 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
601 {
602 if (src >= SI_LAST)
603 src = 0; /* Invalid */
604 return addr_src_to_str[src];
605 }
606 EXPORT_SYMBOL(ipmi_addr_src_to_str);
607
608 static int is_lan_addr(struct ipmi_addr *addr)
609 {
610 return addr->addr_type == IPMI_LAN_ADDR_TYPE;
611 }
612
613 static int is_ipmb_addr(struct ipmi_addr *addr)
614 {
615 return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
616 }
617
618 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
619 {
620 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
621 }
622
623 static void free_recv_msg_list(struct list_head *q)
624 {
625 struct ipmi_recv_msg *msg, *msg2;
626
627 list_for_each_entry_safe(msg, msg2, q, link) {
628 list_del(&msg->link);
629 ipmi_free_recv_msg(msg);
630 }
631 }
632
633 static void free_smi_msg_list(struct list_head *q)
634 {
635 struct ipmi_smi_msg *msg, *msg2;
636
637 list_for_each_entry_safe(msg, msg2, q, link) {
638 list_del(&msg->link);
639 ipmi_free_smi_msg(msg);
640 }
641 }
642
643 static void clean_up_interface_data(ipmi_smi_t intf)
644 {
645 int i;
646 struct cmd_rcvr *rcvr, *rcvr2;
647 struct list_head list;
648
649 tasklet_kill(&intf->recv_tasklet);
650
651 free_smi_msg_list(&intf->waiting_rcv_msgs);
652 free_recv_msg_list(&intf->waiting_events);
653
654 /*
655 * Wholesale remove all the entries from the list in the
656 * interface and wait for RCU to know that none are in use.
657 */
658 mutex_lock(&intf->cmd_rcvrs_mutex);
659 INIT_LIST_HEAD(&list);
660 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
661 mutex_unlock(&intf->cmd_rcvrs_mutex);
662
663 list_for_each_entry_safe(rcvr, rcvr2, &list, link)
664 kfree(rcvr);
665
666 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
667 if ((intf->seq_table[i].inuse)
668 && (intf->seq_table[i].recv_msg))
669 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
670 }
671 }
672
673 static void intf_free(struct kref *ref)
674 {
675 ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
676
677 clean_up_interface_data(intf);
678 kfree(intf);
679 }
680
681 struct watcher_entry {
682 int intf_num;
683 ipmi_smi_t intf;
684 struct list_head link;
685 };
686
687 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
688 {
689 ipmi_smi_t intf;
690 LIST_HEAD(to_deliver);
691 struct watcher_entry *e, *e2;
692
693 mutex_lock(&smi_watchers_mutex);
694
695 mutex_lock(&ipmi_interfaces_mutex);
696
697 /* Build a list of things to deliver. */
698 list_for_each_entry(intf, &ipmi_interfaces, link) {
699 if (intf->intf_num == -1)
700 continue;
701 e = kmalloc(sizeof(*e), GFP_KERNEL);
702 if (!e)
703 goto out_err;
704 kref_get(&intf->refcount);
705 e->intf = intf;
706 e->intf_num = intf->intf_num;
707 list_add_tail(&e->link, &to_deliver);
708 }
709
710 /* We will succeed, so add it to the list. */
711 list_add(&watcher->link, &smi_watchers);
712
713 mutex_unlock(&ipmi_interfaces_mutex);
714
715 list_for_each_entry_safe(e, e2, &to_deliver, link) {
716 list_del(&e->link);
717 watcher->new_smi(e->intf_num, e->intf->si_dev);
718 kref_put(&e->intf->refcount, intf_free);
719 kfree(e);
720 }
721
722 mutex_unlock(&smi_watchers_mutex);
723
724 return 0;
725
726 out_err:
727 mutex_unlock(&ipmi_interfaces_mutex);
728 mutex_unlock(&smi_watchers_mutex);
729 list_for_each_entry_safe(e, e2, &to_deliver, link) {
730 list_del(&e->link);
731 kref_put(&e->intf->refcount, intf_free);
732 kfree(e);
733 }
734 return -ENOMEM;
735 }
736 EXPORT_SYMBOL(ipmi_smi_watcher_register);
737
738 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
739 {
740 mutex_lock(&smi_watchers_mutex);
741 list_del(&(watcher->link));
742 mutex_unlock(&smi_watchers_mutex);
743 return 0;
744 }
745 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
746
747 /*
748 * Must be called with smi_watchers_mutex held.
749 */
750 static void
751 call_smi_watchers(int i, struct device *dev)
752 {
753 struct ipmi_smi_watcher *w;
754
755 list_for_each_entry(w, &smi_watchers, link) {
756 if (try_module_get(w->owner)) {
757 w->new_smi(i, dev);
758 module_put(w->owner);
759 }
760 }
761 }
762
763 static int
764 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
765 {
766 if (addr1->addr_type != addr2->addr_type)
767 return 0;
768
769 if (addr1->channel != addr2->channel)
770 return 0;
771
772 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
773 struct ipmi_system_interface_addr *smi_addr1
774 = (struct ipmi_system_interface_addr *) addr1;
775 struct ipmi_system_interface_addr *smi_addr2
776 = (struct ipmi_system_interface_addr *) addr2;
777 return (smi_addr1->lun == smi_addr2->lun);
778 }
779
780 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
781 struct ipmi_ipmb_addr *ipmb_addr1
782 = (struct ipmi_ipmb_addr *) addr1;
783 struct ipmi_ipmb_addr *ipmb_addr2
784 = (struct ipmi_ipmb_addr *) addr2;
785
786 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
787 && (ipmb_addr1->lun == ipmb_addr2->lun));
788 }
789
790 if (is_lan_addr(addr1)) {
791 struct ipmi_lan_addr *lan_addr1
792 = (struct ipmi_lan_addr *) addr1;
793 struct ipmi_lan_addr *lan_addr2
794 = (struct ipmi_lan_addr *) addr2;
795
796 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
797 && (lan_addr1->local_SWID == lan_addr2->local_SWID)
798 && (lan_addr1->session_handle
799 == lan_addr2->session_handle)
800 && (lan_addr1->lun == lan_addr2->lun));
801 }
802
803 return 1;
804 }
805
806 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
807 {
808 if (len < sizeof(struct ipmi_system_interface_addr))
809 return -EINVAL;
810
811 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
812 if (addr->channel != IPMI_BMC_CHANNEL)
813 return -EINVAL;
814 return 0;
815 }
816
817 if ((addr->channel == IPMI_BMC_CHANNEL)
818 || (addr->channel >= IPMI_MAX_CHANNELS)
819 || (addr->channel < 0))
820 return -EINVAL;
821
822 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
823 if (len < sizeof(struct ipmi_ipmb_addr))
824 return -EINVAL;
825 return 0;
826 }
827
828 if (is_lan_addr(addr)) {
829 if (len < sizeof(struct ipmi_lan_addr))
830 return -EINVAL;
831 return 0;
832 }
833
834 return -EINVAL;
835 }
836 EXPORT_SYMBOL(ipmi_validate_addr);
837
838 unsigned int ipmi_addr_length(int addr_type)
839 {
840 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
841 return sizeof(struct ipmi_system_interface_addr);
842
843 if ((addr_type == IPMI_IPMB_ADDR_TYPE)
844 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
845 return sizeof(struct ipmi_ipmb_addr);
846
847 if (addr_type == IPMI_LAN_ADDR_TYPE)
848 return sizeof(struct ipmi_lan_addr);
849
850 return 0;
851 }
852 EXPORT_SYMBOL(ipmi_addr_length);
853
854 static void deliver_response(struct ipmi_recv_msg *msg)
855 {
856 if (!msg->user) {
857 ipmi_smi_t intf = msg->user_msg_data;
858
859 /* Special handling for NULL users. */
860 if (intf->null_user_handler) {
861 intf->null_user_handler(intf, msg);
862 ipmi_inc_stat(intf, handled_local_responses);
863 } else {
864 /* No handler, so give up. */
865 ipmi_inc_stat(intf, unhandled_local_responses);
866 }
867 ipmi_free_recv_msg(msg);
868 } else if (!oops_in_progress) {
869 /*
870 * If we are running in the panic context, calling the
871 * receive handler doesn't much meaning and has a deadlock
872 * risk. At this moment, simply skip it in that case.
873 */
874
875 ipmi_user_t user = msg->user;
876 user->handler->ipmi_recv_hndl(msg, user->handler_data);
877 }
878 }
879
880 static void
881 deliver_err_response(struct ipmi_recv_msg *msg, int err)
882 {
883 msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
884 msg->msg_data[0] = err;
885 msg->msg.netfn |= 1; /* Convert to a response. */
886 msg->msg.data_len = 1;
887 msg->msg.data = msg->msg_data;
888 deliver_response(msg);
889 }
890
891 /*
892 * Find the next sequence number not being used and add the given
893 * message with the given timeout to the sequence table. This must be
894 * called with the interface's seq_lock held.
895 */
896 static int intf_next_seq(ipmi_smi_t intf,
897 struct ipmi_recv_msg *recv_msg,
898 unsigned long timeout,
899 int retries,
900 int broadcast,
901 unsigned char *seq,
902 long *seqid)
903 {
904 int rv = 0;
905 unsigned int i;
906
907 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
908 i = (i+1)%IPMI_IPMB_NUM_SEQ) {
909 if (!intf->seq_table[i].inuse)
910 break;
911 }
912
913 if (!intf->seq_table[i].inuse) {
914 intf->seq_table[i].recv_msg = recv_msg;
915
916 /*
917 * Start with the maximum timeout, when the send response
918 * comes in we will start the real timer.
919 */
920 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
921 intf->seq_table[i].orig_timeout = timeout;
922 intf->seq_table[i].retries_left = retries;
923 intf->seq_table[i].broadcast = broadcast;
924 intf->seq_table[i].inuse = 1;
925 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
926 *seq = i;
927 *seqid = intf->seq_table[i].seqid;
928 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
929 need_waiter(intf);
930 } else {
931 rv = -EAGAIN;
932 }
933
934 return rv;
935 }
936
937 /*
938 * Return the receive message for the given sequence number and
939 * release the sequence number so it can be reused. Some other data
940 * is passed in to be sure the message matches up correctly (to help
941 * guard against message coming in after their timeout and the
942 * sequence number being reused).
943 */
944 static int intf_find_seq(ipmi_smi_t intf,
945 unsigned char seq,
946 short channel,
947 unsigned char cmd,
948 unsigned char netfn,
949 struct ipmi_addr *addr,
950 struct ipmi_recv_msg **recv_msg)
951 {
952 int rv = -ENODEV;
953 unsigned long flags;
954
955 if (seq >= IPMI_IPMB_NUM_SEQ)
956 return -EINVAL;
957
958 spin_lock_irqsave(&(intf->seq_lock), flags);
959 if (intf->seq_table[seq].inuse) {
960 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
961
962 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
963 && (msg->msg.netfn == netfn)
964 && (ipmi_addr_equal(addr, &(msg->addr)))) {
965 *recv_msg = msg;
966 intf->seq_table[seq].inuse = 0;
967 rv = 0;
968 }
969 }
970 spin_unlock_irqrestore(&(intf->seq_lock), flags);
971
972 return rv;
973 }
974
975
976 /* Start the timer for a specific sequence table entry. */
977 static int intf_start_seq_timer(ipmi_smi_t intf,
978 long msgid)
979 {
980 int rv = -ENODEV;
981 unsigned long flags;
982 unsigned char seq;
983 unsigned long seqid;
984
985
986 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
987
988 spin_lock_irqsave(&(intf->seq_lock), flags);
989 /*
990 * We do this verification because the user can be deleted
991 * while a message is outstanding.
992 */
993 if ((intf->seq_table[seq].inuse)
994 && (intf->seq_table[seq].seqid == seqid)) {
995 struct seq_table *ent = &(intf->seq_table[seq]);
996 ent->timeout = ent->orig_timeout;
997 rv = 0;
998 }
999 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1000
1001 return rv;
1002 }
1003
1004 /* Got an error for the send message for a specific sequence number. */
1005 static int intf_err_seq(ipmi_smi_t intf,
1006 long msgid,
1007 unsigned int err)
1008 {
1009 int rv = -ENODEV;
1010 unsigned long flags;
1011 unsigned char seq;
1012 unsigned long seqid;
1013 struct ipmi_recv_msg *msg = NULL;
1014
1015
1016 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1017
1018 spin_lock_irqsave(&(intf->seq_lock), flags);
1019 /*
1020 * We do this verification because the user can be deleted
1021 * while a message is outstanding.
1022 */
1023 if ((intf->seq_table[seq].inuse)
1024 && (intf->seq_table[seq].seqid == seqid)) {
1025 struct seq_table *ent = &(intf->seq_table[seq]);
1026
1027 ent->inuse = 0;
1028 msg = ent->recv_msg;
1029 rv = 0;
1030 }
1031 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1032
1033 if (msg)
1034 deliver_err_response(msg, err);
1035
1036 return rv;
1037 }
1038
1039
1040 int ipmi_create_user(unsigned int if_num,
1041 const struct ipmi_user_hndl *handler,
1042 void *handler_data,
1043 ipmi_user_t *user)
1044 {
1045 unsigned long flags;
1046 ipmi_user_t new_user;
1047 int rv = 0;
1048 ipmi_smi_t intf;
1049
1050 /*
1051 * There is no module usecount here, because it's not
1052 * required. Since this can only be used by and called from
1053 * other modules, they will implicitly use this module, and
1054 * thus this can't be removed unless the other modules are
1055 * removed.
1056 */
1057
1058 if (handler == NULL)
1059 return -EINVAL;
1060
1061 /*
1062 * Make sure the driver is actually initialized, this handles
1063 * problems with initialization order.
1064 */
1065 if (!initialized) {
1066 rv = ipmi_init_msghandler();
1067 if (rv)
1068 return rv;
1069
1070 /*
1071 * The init code doesn't return an error if it was turned
1072 * off, but it won't initialize. Check that.
1073 */
1074 if (!initialized)
1075 return -ENODEV;
1076 }
1077
1078 new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
1079 if (!new_user)
1080 return -ENOMEM;
1081
1082 mutex_lock(&ipmi_interfaces_mutex);
1083 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1084 if (intf->intf_num == if_num)
1085 goto found;
1086 }
1087 /* Not found, return an error */
1088 rv = -EINVAL;
1089 goto out_kfree;
1090
1091 found:
1092 /* Note that each existing user holds a refcount to the interface. */
1093 kref_get(&intf->refcount);
1094
1095 kref_init(&new_user->refcount);
1096 new_user->handler = handler;
1097 new_user->handler_data = handler_data;
1098 new_user->intf = intf;
1099 new_user->gets_events = false;
1100
1101 if (!try_module_get(intf->handlers->owner)) {
1102 rv = -ENODEV;
1103 goto out_kref;
1104 }
1105
1106 if (intf->handlers->inc_usecount) {
1107 rv = intf->handlers->inc_usecount(intf->send_info);
1108 if (rv) {
1109 module_put(intf->handlers->owner);
1110 goto out_kref;
1111 }
1112 }
1113
1114 /*
1115 * Hold the lock so intf->handlers is guaranteed to be good
1116 * until now
1117 */
1118 mutex_unlock(&ipmi_interfaces_mutex);
1119
1120 new_user->valid = true;
1121 spin_lock_irqsave(&intf->seq_lock, flags);
1122 list_add_rcu(&new_user->link, &intf->users);
1123 spin_unlock_irqrestore(&intf->seq_lock, flags);
1124 if (handler->ipmi_watchdog_pretimeout) {
1125 /* User wants pretimeouts, so make sure to watch for them. */
1126 if (atomic_inc_return(&intf->event_waiters) == 1)
1127 need_waiter(intf);
1128 }
1129 *user = new_user;
1130 return 0;
1131
1132 out_kref:
1133 kref_put(&intf->refcount, intf_free);
1134 out_kfree:
1135 mutex_unlock(&ipmi_interfaces_mutex);
1136 kfree(new_user);
1137 return rv;
1138 }
1139 EXPORT_SYMBOL(ipmi_create_user);
1140
1141 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1142 {
1143 int rv = 0;
1144 ipmi_smi_t intf;
1145 const struct ipmi_smi_handlers *handlers;
1146
1147 mutex_lock(&ipmi_interfaces_mutex);
1148 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1149 if (intf->intf_num == if_num)
1150 goto found;
1151 }
1152 /* Not found, return an error */
1153 rv = -EINVAL;
1154 mutex_unlock(&ipmi_interfaces_mutex);
1155 return rv;
1156
1157 found:
1158 handlers = intf->handlers;
1159 rv = -ENOSYS;
1160 if (handlers->get_smi_info)
1161 rv = handlers->get_smi_info(intf->send_info, data);
1162 mutex_unlock(&ipmi_interfaces_mutex);
1163
1164 return rv;
1165 }
1166 EXPORT_SYMBOL(ipmi_get_smi_info);
1167
1168 static void free_user(struct kref *ref)
1169 {
1170 ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1171 kfree(user);
1172 }
1173
1174 int ipmi_destroy_user(ipmi_user_t user)
1175 {
1176 ipmi_smi_t intf = user->intf;
1177 int i;
1178 unsigned long flags;
1179 struct cmd_rcvr *rcvr;
1180 struct cmd_rcvr *rcvrs = NULL;
1181
1182 user->valid = false;
1183
1184 if (user->handler->ipmi_watchdog_pretimeout)
1185 atomic_dec(&intf->event_waiters);
1186
1187 if (user->gets_events)
1188 atomic_dec(&intf->event_waiters);
1189
1190 /* Remove the user from the interface's sequence table. */
1191 spin_lock_irqsave(&intf->seq_lock, flags);
1192 list_del_rcu(&user->link);
1193
1194 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1195 if (intf->seq_table[i].inuse
1196 && (intf->seq_table[i].recv_msg->user == user)) {
1197 intf->seq_table[i].inuse = 0;
1198 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1199 }
1200 }
1201 spin_unlock_irqrestore(&intf->seq_lock, flags);
1202
1203 /*
1204 * Remove the user from the command receiver's table. First
1205 * we build a list of everything (not using the standard link,
1206 * since other things may be using it till we do
1207 * synchronize_rcu()) then free everything in that list.
1208 */
1209 mutex_lock(&intf->cmd_rcvrs_mutex);
1210 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1211 if (rcvr->user == user) {
1212 list_del_rcu(&rcvr->link);
1213 rcvr->next = rcvrs;
1214 rcvrs = rcvr;
1215 }
1216 }
1217 mutex_unlock(&intf->cmd_rcvrs_mutex);
1218 synchronize_rcu();
1219 while (rcvrs) {
1220 rcvr = rcvrs;
1221 rcvrs = rcvr->next;
1222 kfree(rcvr);
1223 }
1224
1225 mutex_lock(&ipmi_interfaces_mutex);
1226 if (intf->handlers) {
1227 module_put(intf->handlers->owner);
1228 if (intf->handlers->dec_usecount)
1229 intf->handlers->dec_usecount(intf->send_info);
1230 }
1231 mutex_unlock(&ipmi_interfaces_mutex);
1232
1233 kref_put(&intf->refcount, intf_free);
1234
1235 kref_put(&user->refcount, free_user);
1236
1237 return 0;
1238 }
1239 EXPORT_SYMBOL(ipmi_destroy_user);
1240
1241 int ipmi_get_version(ipmi_user_t user,
1242 unsigned char *major,
1243 unsigned char *minor)
1244 {
1245 struct ipmi_device_id id;
1246 int rv;
1247
1248 rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1249 if (rv)
1250 return rv;
1251
1252 *major = ipmi_version_major(&id);
1253 *minor = ipmi_version_minor(&id);
1254
1255 return 0;
1256 }
1257 EXPORT_SYMBOL(ipmi_get_version);
1258
1259 int ipmi_set_my_address(ipmi_user_t user,
1260 unsigned int channel,
1261 unsigned char address)
1262 {
1263 if (channel >= IPMI_MAX_CHANNELS)
1264 return -EINVAL;
1265 user->intf->addrinfo[channel].address = address;
1266 return 0;
1267 }
1268 EXPORT_SYMBOL(ipmi_set_my_address);
1269
1270 int ipmi_get_my_address(ipmi_user_t user,
1271 unsigned int channel,
1272 unsigned char *address)
1273 {
1274 if (channel >= IPMI_MAX_CHANNELS)
1275 return -EINVAL;
1276 *address = user->intf->addrinfo[channel].address;
1277 return 0;
1278 }
1279 EXPORT_SYMBOL(ipmi_get_my_address);
1280
1281 int ipmi_set_my_LUN(ipmi_user_t user,
1282 unsigned int channel,
1283 unsigned char LUN)
1284 {
1285 if (channel >= IPMI_MAX_CHANNELS)
1286 return -EINVAL;
1287 user->intf->addrinfo[channel].lun = LUN & 0x3;
1288 return 0;
1289 }
1290 EXPORT_SYMBOL(ipmi_set_my_LUN);
1291
1292 int ipmi_get_my_LUN(ipmi_user_t user,
1293 unsigned int channel,
1294 unsigned char *address)
1295 {
1296 if (channel >= IPMI_MAX_CHANNELS)
1297 return -EINVAL;
1298 *address = user->intf->addrinfo[channel].lun;
1299 return 0;
1300 }
1301 EXPORT_SYMBOL(ipmi_get_my_LUN);
1302
1303 int ipmi_get_maintenance_mode(ipmi_user_t user)
1304 {
1305 int mode;
1306 unsigned long flags;
1307
1308 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1309 mode = user->intf->maintenance_mode;
1310 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1311
1312 return mode;
1313 }
1314 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1315
1316 static void maintenance_mode_update(ipmi_smi_t intf)
1317 {
1318 if (intf->handlers->set_maintenance_mode)
1319 intf->handlers->set_maintenance_mode(
1320 intf->send_info, intf->maintenance_mode_enable);
1321 }
1322
1323 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1324 {
1325 int rv = 0;
1326 unsigned long flags;
1327 ipmi_smi_t intf = user->intf;
1328
1329 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1330 if (intf->maintenance_mode != mode) {
1331 switch (mode) {
1332 case IPMI_MAINTENANCE_MODE_AUTO:
1333 intf->maintenance_mode_enable
1334 = (intf->auto_maintenance_timeout > 0);
1335 break;
1336
1337 case IPMI_MAINTENANCE_MODE_OFF:
1338 intf->maintenance_mode_enable = false;
1339 break;
1340
1341 case IPMI_MAINTENANCE_MODE_ON:
1342 intf->maintenance_mode_enable = true;
1343 break;
1344
1345 default:
1346 rv = -EINVAL;
1347 goto out_unlock;
1348 }
1349 intf->maintenance_mode = mode;
1350
1351 maintenance_mode_update(intf);
1352 }
1353 out_unlock:
1354 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1355
1356 return rv;
1357 }
1358 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1359
1360 int ipmi_set_gets_events(ipmi_user_t user, bool val)
1361 {
1362 unsigned long flags;
1363 ipmi_smi_t intf = user->intf;
1364 struct ipmi_recv_msg *msg, *msg2;
1365 struct list_head msgs;
1366
1367 INIT_LIST_HEAD(&msgs);
1368
1369 spin_lock_irqsave(&intf->events_lock, flags);
1370 if (user->gets_events == val)
1371 goto out;
1372
1373 user->gets_events = val;
1374
1375 if (val) {
1376 if (atomic_inc_return(&intf->event_waiters) == 1)
1377 need_waiter(intf);
1378 } else {
1379 atomic_dec(&intf->event_waiters);
1380 }
1381
1382 if (intf->delivering_events)
1383 /*
1384 * Another thread is delivering events for this, so
1385 * let it handle any new events.
1386 */
1387 goto out;
1388
1389 /* Deliver any queued events. */
1390 while (user->gets_events && !list_empty(&intf->waiting_events)) {
1391 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1392 list_move_tail(&msg->link, &msgs);
1393 intf->waiting_events_count = 0;
1394 if (intf->event_msg_printed) {
1395 dev_warn(intf->si_dev,
1396 PFX "Event queue no longer full\n");
1397 intf->event_msg_printed = 0;
1398 }
1399
1400 intf->delivering_events = 1;
1401 spin_unlock_irqrestore(&intf->events_lock, flags);
1402
1403 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1404 msg->user = user;
1405 kref_get(&user->refcount);
1406 deliver_response(msg);
1407 }
1408
1409 spin_lock_irqsave(&intf->events_lock, flags);
1410 intf->delivering_events = 0;
1411 }
1412
1413 out:
1414 spin_unlock_irqrestore(&intf->events_lock, flags);
1415
1416 return 0;
1417 }
1418 EXPORT_SYMBOL(ipmi_set_gets_events);
1419
1420 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t intf,
1421 unsigned char netfn,
1422 unsigned char cmd,
1423 unsigned char chan)
1424 {
1425 struct cmd_rcvr *rcvr;
1426
1427 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1428 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1429 && (rcvr->chans & (1 << chan)))
1430 return rcvr;
1431 }
1432 return NULL;
1433 }
1434
1435 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf,
1436 unsigned char netfn,
1437 unsigned char cmd,
1438 unsigned int chans)
1439 {
1440 struct cmd_rcvr *rcvr;
1441
1442 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1443 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1444 && (rcvr->chans & chans))
1445 return 0;
1446 }
1447 return 1;
1448 }
1449
1450 int ipmi_register_for_cmd(ipmi_user_t user,
1451 unsigned char netfn,
1452 unsigned char cmd,
1453 unsigned int chans)
1454 {
1455 ipmi_smi_t intf = user->intf;
1456 struct cmd_rcvr *rcvr;
1457 int rv = 0;
1458
1459
1460 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1461 if (!rcvr)
1462 return -ENOMEM;
1463 rcvr->cmd = cmd;
1464 rcvr->netfn = netfn;
1465 rcvr->chans = chans;
1466 rcvr->user = user;
1467
1468 mutex_lock(&intf->cmd_rcvrs_mutex);
1469 /* Make sure the command/netfn is not already registered. */
1470 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1471 rv = -EBUSY;
1472 goto out_unlock;
1473 }
1474
1475 if (atomic_inc_return(&intf->event_waiters) == 1)
1476 need_waiter(intf);
1477
1478 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1479
1480 out_unlock:
1481 mutex_unlock(&intf->cmd_rcvrs_mutex);
1482 if (rv)
1483 kfree(rcvr);
1484
1485 return rv;
1486 }
1487 EXPORT_SYMBOL(ipmi_register_for_cmd);
1488
1489 int ipmi_unregister_for_cmd(ipmi_user_t user,
1490 unsigned char netfn,
1491 unsigned char cmd,
1492 unsigned int chans)
1493 {
1494 ipmi_smi_t intf = user->intf;
1495 struct cmd_rcvr *rcvr;
1496 struct cmd_rcvr *rcvrs = NULL;
1497 int i, rv = -ENOENT;
1498
1499 mutex_lock(&intf->cmd_rcvrs_mutex);
1500 for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1501 if (((1 << i) & chans) == 0)
1502 continue;
1503 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1504 if (rcvr == NULL)
1505 continue;
1506 if (rcvr->user == user) {
1507 rv = 0;
1508 rcvr->chans &= ~chans;
1509 if (rcvr->chans == 0) {
1510 list_del_rcu(&rcvr->link);
1511 rcvr->next = rcvrs;
1512 rcvrs = rcvr;
1513 }
1514 }
1515 }
1516 mutex_unlock(&intf->cmd_rcvrs_mutex);
1517 synchronize_rcu();
1518 while (rcvrs) {
1519 atomic_dec(&intf->event_waiters);
1520 rcvr = rcvrs;
1521 rcvrs = rcvr->next;
1522 kfree(rcvr);
1523 }
1524 return rv;
1525 }
1526 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1527
1528 static unsigned char
1529 ipmb_checksum(unsigned char *data, int size)
1530 {
1531 unsigned char csum = 0;
1532
1533 for (; size > 0; size--, data++)
1534 csum += *data;
1535
1536 return -csum;
1537 }
1538
1539 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
1540 struct kernel_ipmi_msg *msg,
1541 struct ipmi_ipmb_addr *ipmb_addr,
1542 long msgid,
1543 unsigned char ipmb_seq,
1544 int broadcast,
1545 unsigned char source_address,
1546 unsigned char source_lun)
1547 {
1548 int i = broadcast;
1549
1550 /* Format the IPMB header data. */
1551 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1552 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1553 smi_msg->data[2] = ipmb_addr->channel;
1554 if (broadcast)
1555 smi_msg->data[3] = 0;
1556 smi_msg->data[i+3] = ipmb_addr->slave_addr;
1557 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1558 smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1559 smi_msg->data[i+6] = source_address;
1560 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1561 smi_msg->data[i+8] = msg->cmd;
1562
1563 /* Now tack on the data to the message. */
1564 if (msg->data_len > 0)
1565 memcpy(&(smi_msg->data[i+9]), msg->data,
1566 msg->data_len);
1567 smi_msg->data_size = msg->data_len + 9;
1568
1569 /* Now calculate the checksum and tack it on. */
1570 smi_msg->data[i+smi_msg->data_size]
1571 = ipmb_checksum(&(smi_msg->data[i+6]),
1572 smi_msg->data_size-6);
1573
1574 /*
1575 * Add on the checksum size and the offset from the
1576 * broadcast.
1577 */
1578 smi_msg->data_size += 1 + i;
1579
1580 smi_msg->msgid = msgid;
1581 }
1582
1583 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
1584 struct kernel_ipmi_msg *msg,
1585 struct ipmi_lan_addr *lan_addr,
1586 long msgid,
1587 unsigned char ipmb_seq,
1588 unsigned char source_lun)
1589 {
1590 /* Format the IPMB header data. */
1591 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1592 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1593 smi_msg->data[2] = lan_addr->channel;
1594 smi_msg->data[3] = lan_addr->session_handle;
1595 smi_msg->data[4] = lan_addr->remote_SWID;
1596 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1597 smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1598 smi_msg->data[7] = lan_addr->local_SWID;
1599 smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1600 smi_msg->data[9] = msg->cmd;
1601
1602 /* Now tack on the data to the message. */
1603 if (msg->data_len > 0)
1604 memcpy(&(smi_msg->data[10]), msg->data,
1605 msg->data_len);
1606 smi_msg->data_size = msg->data_len + 10;
1607
1608 /* Now calculate the checksum and tack it on. */
1609 smi_msg->data[smi_msg->data_size]
1610 = ipmb_checksum(&(smi_msg->data[7]),
1611 smi_msg->data_size-7);
1612
1613 /*
1614 * Add on the checksum size and the offset from the
1615 * broadcast.
1616 */
1617 smi_msg->data_size += 1;
1618
1619 smi_msg->msgid = msgid;
1620 }
1621
1622 static struct ipmi_smi_msg *smi_add_send_msg(ipmi_smi_t intf,
1623 struct ipmi_smi_msg *smi_msg,
1624 int priority)
1625 {
1626 if (intf->curr_msg) {
1627 if (priority > 0)
1628 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1629 else
1630 list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1631 smi_msg = NULL;
1632 } else {
1633 intf->curr_msg = smi_msg;
1634 }
1635
1636 return smi_msg;
1637 }
1638
1639
1640 static void smi_send(ipmi_smi_t intf, const struct ipmi_smi_handlers *handlers,
1641 struct ipmi_smi_msg *smi_msg, int priority)
1642 {
1643 int run_to_completion = intf->run_to_completion;
1644
1645 if (run_to_completion) {
1646 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1647 } else {
1648 unsigned long flags;
1649
1650 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1651 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1652 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1653 }
1654
1655 if (smi_msg)
1656 handlers->sender(intf->send_info, smi_msg);
1657 }
1658
1659 /*
1660 * Separate from ipmi_request so that the user does not have to be
1661 * supplied in certain circumstances (mainly at panic time). If
1662 * messages are supplied, they will be freed, even if an error
1663 * occurs.
1664 */
1665 static int i_ipmi_request(ipmi_user_t user,
1666 ipmi_smi_t intf,
1667 struct ipmi_addr *addr,
1668 long msgid,
1669 struct kernel_ipmi_msg *msg,
1670 void *user_msg_data,
1671 void *supplied_smi,
1672 struct ipmi_recv_msg *supplied_recv,
1673 int priority,
1674 unsigned char source_address,
1675 unsigned char source_lun,
1676 int retries,
1677 unsigned int retry_time_ms)
1678 {
1679 int rv = 0;
1680 struct ipmi_smi_msg *smi_msg;
1681 struct ipmi_recv_msg *recv_msg;
1682 unsigned long flags;
1683
1684
1685 if (supplied_recv)
1686 recv_msg = supplied_recv;
1687 else {
1688 recv_msg = ipmi_alloc_recv_msg();
1689 if (recv_msg == NULL)
1690 return -ENOMEM;
1691 }
1692 recv_msg->user_msg_data = user_msg_data;
1693
1694 if (supplied_smi)
1695 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1696 else {
1697 smi_msg = ipmi_alloc_smi_msg();
1698 if (smi_msg == NULL) {
1699 ipmi_free_recv_msg(recv_msg);
1700 return -ENOMEM;
1701 }
1702 }
1703
1704 rcu_read_lock();
1705 if (intf->in_shutdown) {
1706 rv = -ENODEV;
1707 goto out_err;
1708 }
1709
1710 recv_msg->user = user;
1711 if (user)
1712 kref_get(&user->refcount);
1713 recv_msg->msgid = msgid;
1714 /*
1715 * Store the message to send in the receive message so timeout
1716 * responses can get the proper response data.
1717 */
1718 recv_msg->msg = *msg;
1719
1720 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1721 struct ipmi_system_interface_addr *smi_addr;
1722
1723 if (msg->netfn & 1) {
1724 /* Responses are not allowed to the SMI. */
1725 rv = -EINVAL;
1726 goto out_err;
1727 }
1728
1729 smi_addr = (struct ipmi_system_interface_addr *) addr;
1730 if (smi_addr->lun > 3) {
1731 ipmi_inc_stat(intf, sent_invalid_commands);
1732 rv = -EINVAL;
1733 goto out_err;
1734 }
1735
1736 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1737
1738 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1739 && ((msg->cmd == IPMI_SEND_MSG_CMD)
1740 || (msg->cmd == IPMI_GET_MSG_CMD)
1741 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1742 /*
1743 * We don't let the user do these, since we manage
1744 * the sequence numbers.
1745 */
1746 ipmi_inc_stat(intf, sent_invalid_commands);
1747 rv = -EINVAL;
1748 goto out_err;
1749 }
1750
1751 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1752 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1753 || (msg->cmd == IPMI_WARM_RESET_CMD)))
1754 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1755 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1756 intf->auto_maintenance_timeout
1757 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1758 if (!intf->maintenance_mode
1759 && !intf->maintenance_mode_enable) {
1760 intf->maintenance_mode_enable = true;
1761 maintenance_mode_update(intf);
1762 }
1763 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1764 flags);
1765 }
1766
1767 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1768 ipmi_inc_stat(intf, sent_invalid_commands);
1769 rv = -EMSGSIZE;
1770 goto out_err;
1771 }
1772
1773 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1774 smi_msg->data[1] = msg->cmd;
1775 smi_msg->msgid = msgid;
1776 smi_msg->user_data = recv_msg;
1777 if (msg->data_len > 0)
1778 memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1779 smi_msg->data_size = msg->data_len + 2;
1780 ipmi_inc_stat(intf, sent_local_commands);
1781 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1782 struct ipmi_ipmb_addr *ipmb_addr;
1783 unsigned char ipmb_seq;
1784 long seqid;
1785 int broadcast = 0;
1786 struct ipmi_channel *chans;
1787
1788 if (addr->channel >= IPMI_MAX_CHANNELS) {
1789 ipmi_inc_stat(intf, sent_invalid_commands);
1790 rv = -EINVAL;
1791 goto out_err;
1792 }
1793
1794 chans = READ_ONCE(intf->channel_list)->c;
1795
1796 if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1797 ipmi_inc_stat(intf, sent_invalid_commands);
1798 rv = -EINVAL;
1799 goto out_err;
1800 }
1801
1802 if (retries < 0) {
1803 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1804 retries = 0; /* Don't retry broadcasts. */
1805 else
1806 retries = 4;
1807 }
1808 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1809 /*
1810 * Broadcasts add a zero at the beginning of the
1811 * message, but otherwise is the same as an IPMB
1812 * address.
1813 */
1814 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1815 broadcast = 1;
1816 }
1817
1818
1819 /* Default to 1 second retries. */
1820 if (retry_time_ms == 0)
1821 retry_time_ms = 1000;
1822
1823 /*
1824 * 9 for the header and 1 for the checksum, plus
1825 * possibly one for the broadcast.
1826 */
1827 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1828 ipmi_inc_stat(intf, sent_invalid_commands);
1829 rv = -EMSGSIZE;
1830 goto out_err;
1831 }
1832
1833 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1834 if (ipmb_addr->lun > 3) {
1835 ipmi_inc_stat(intf, sent_invalid_commands);
1836 rv = -EINVAL;
1837 goto out_err;
1838 }
1839
1840 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1841
1842 if (recv_msg->msg.netfn & 0x1) {
1843 /*
1844 * It's a response, so use the user's sequence
1845 * from msgid.
1846 */
1847 ipmi_inc_stat(intf, sent_ipmb_responses);
1848 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1849 msgid, broadcast,
1850 source_address, source_lun);
1851
1852 /*
1853 * Save the receive message so we can use it
1854 * to deliver the response.
1855 */
1856 smi_msg->user_data = recv_msg;
1857 } else {
1858 /* It's a command, so get a sequence for it. */
1859
1860 spin_lock_irqsave(&(intf->seq_lock), flags);
1861
1862 /*
1863 * Create a sequence number with a 1 second
1864 * timeout and 4 retries.
1865 */
1866 rv = intf_next_seq(intf,
1867 recv_msg,
1868 retry_time_ms,
1869 retries,
1870 broadcast,
1871 &ipmb_seq,
1872 &seqid);
1873 if (rv) {
1874 /*
1875 * We have used up all the sequence numbers,
1876 * probably, so abort.
1877 */
1878 spin_unlock_irqrestore(&(intf->seq_lock),
1879 flags);
1880 goto out_err;
1881 }
1882
1883 ipmi_inc_stat(intf, sent_ipmb_commands);
1884
1885 /*
1886 * Store the sequence number in the message,
1887 * so that when the send message response
1888 * comes back we can start the timer.
1889 */
1890 format_ipmb_msg(smi_msg, msg, ipmb_addr,
1891 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1892 ipmb_seq, broadcast,
1893 source_address, source_lun);
1894
1895 /*
1896 * Copy the message into the recv message data, so we
1897 * can retransmit it later if necessary.
1898 */
1899 memcpy(recv_msg->msg_data, smi_msg->data,
1900 smi_msg->data_size);
1901 recv_msg->msg.data = recv_msg->msg_data;
1902 recv_msg->msg.data_len = smi_msg->data_size;
1903
1904 /*
1905 * We don't unlock until here, because we need
1906 * to copy the completed message into the
1907 * recv_msg before we release the lock.
1908 * Otherwise, race conditions may bite us. I
1909 * know that's pretty paranoid, but I prefer
1910 * to be correct.
1911 */
1912 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1913 }
1914 } else if (is_lan_addr(addr)) {
1915 struct ipmi_lan_addr *lan_addr;
1916 unsigned char ipmb_seq;
1917 long seqid;
1918 struct ipmi_channel *chans;
1919
1920 if (addr->channel >= IPMI_MAX_CHANNELS) {
1921 ipmi_inc_stat(intf, sent_invalid_commands);
1922 rv = -EINVAL;
1923 goto out_err;
1924 }
1925
1926 chans = READ_ONCE(intf->channel_list)->c;
1927
1928 if ((chans[addr->channel].medium
1929 != IPMI_CHANNEL_MEDIUM_8023LAN)
1930 && (chans[addr->channel].medium
1931 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1932 ipmi_inc_stat(intf, sent_invalid_commands);
1933 rv = -EINVAL;
1934 goto out_err;
1935 }
1936
1937 retries = 4;
1938
1939 /* Default to 1 second retries. */
1940 if (retry_time_ms == 0)
1941 retry_time_ms = 1000;
1942
1943 /* 11 for the header and 1 for the checksum. */
1944 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1945 ipmi_inc_stat(intf, sent_invalid_commands);
1946 rv = -EMSGSIZE;
1947 goto out_err;
1948 }
1949
1950 lan_addr = (struct ipmi_lan_addr *) addr;
1951 if (lan_addr->lun > 3) {
1952 ipmi_inc_stat(intf, sent_invalid_commands);
1953 rv = -EINVAL;
1954 goto out_err;
1955 }
1956
1957 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1958
1959 if (recv_msg->msg.netfn & 0x1) {
1960 /*
1961 * It's a response, so use the user's sequence
1962 * from msgid.
1963 */
1964 ipmi_inc_stat(intf, sent_lan_responses);
1965 format_lan_msg(smi_msg, msg, lan_addr, msgid,
1966 msgid, source_lun);
1967
1968 /*
1969 * Save the receive message so we can use it
1970 * to deliver the response.
1971 */
1972 smi_msg->user_data = recv_msg;
1973 } else {
1974 /* It's a command, so get a sequence for it. */
1975
1976 spin_lock_irqsave(&(intf->seq_lock), flags);
1977
1978 /*
1979 * Create a sequence number with a 1 second
1980 * timeout and 4 retries.
1981 */
1982 rv = intf_next_seq(intf,
1983 recv_msg,
1984 retry_time_ms,
1985 retries,
1986 0,
1987 &ipmb_seq,
1988 &seqid);
1989 if (rv) {
1990 /*
1991 * We have used up all the sequence numbers,
1992 * probably, so abort.
1993 */
1994 spin_unlock_irqrestore(&(intf->seq_lock),
1995 flags);
1996 goto out_err;
1997 }
1998
1999 ipmi_inc_stat(intf, sent_lan_commands);
2000
2001 /*
2002 * Store the sequence number in the message,
2003 * so that when the send message response
2004 * comes back we can start the timer.
2005 */
2006 format_lan_msg(smi_msg, msg, lan_addr,
2007 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2008 ipmb_seq, source_lun);
2009
2010 /*
2011 * Copy the message into the recv message data, so we
2012 * can retransmit it later if necessary.
2013 */
2014 memcpy(recv_msg->msg_data, smi_msg->data,
2015 smi_msg->data_size);
2016 recv_msg->msg.data = recv_msg->msg_data;
2017 recv_msg->msg.data_len = smi_msg->data_size;
2018
2019 /*
2020 * We don't unlock until here, because we need
2021 * to copy the completed message into the
2022 * recv_msg before we release the lock.
2023 * Otherwise, race conditions may bite us. I
2024 * know that's pretty paranoid, but I prefer
2025 * to be correct.
2026 */
2027 spin_unlock_irqrestore(&(intf->seq_lock), flags);
2028 }
2029 } else {
2030 /* Unknown address type. */
2031 ipmi_inc_stat(intf, sent_invalid_commands);
2032 rv = -EINVAL;
2033 goto out_err;
2034 }
2035
2036 #ifdef DEBUG_MSGING
2037 {
2038 int m;
2039 for (m = 0; m < smi_msg->data_size; m++)
2040 printk(" %2.2x", smi_msg->data[m]);
2041 printk("\n");
2042 }
2043 #endif
2044
2045 smi_send(intf, intf->handlers, smi_msg, priority);
2046 rcu_read_unlock();
2047
2048 return 0;
2049
2050 out_err:
2051 rcu_read_unlock();
2052 ipmi_free_smi_msg(smi_msg);
2053 ipmi_free_recv_msg(recv_msg);
2054 return rv;
2055 }
2056
2057 static int check_addr(ipmi_smi_t intf,
2058 struct ipmi_addr *addr,
2059 unsigned char *saddr,
2060 unsigned char *lun)
2061 {
2062 if (addr->channel >= IPMI_MAX_CHANNELS)
2063 return -EINVAL;
2064 *lun = intf->addrinfo[addr->channel].lun;
2065 *saddr = intf->addrinfo[addr->channel].address;
2066 return 0;
2067 }
2068
2069 int ipmi_request_settime(ipmi_user_t user,
2070 struct ipmi_addr *addr,
2071 long msgid,
2072 struct kernel_ipmi_msg *msg,
2073 void *user_msg_data,
2074 int priority,
2075 int retries,
2076 unsigned int retry_time_ms)
2077 {
2078 unsigned char saddr = 0, lun = 0;
2079 int rv;
2080
2081 if (!user)
2082 return -EINVAL;
2083 rv = check_addr(user->intf, addr, &saddr, &lun);
2084 if (rv)
2085 return rv;
2086 return i_ipmi_request(user,
2087 user->intf,
2088 addr,
2089 msgid,
2090 msg,
2091 user_msg_data,
2092 NULL, NULL,
2093 priority,
2094 saddr,
2095 lun,
2096 retries,
2097 retry_time_ms);
2098 }
2099 EXPORT_SYMBOL(ipmi_request_settime);
2100
2101 int ipmi_request_supply_msgs(ipmi_user_t user,
2102 struct ipmi_addr *addr,
2103 long msgid,
2104 struct kernel_ipmi_msg *msg,
2105 void *user_msg_data,
2106 void *supplied_smi,
2107 struct ipmi_recv_msg *supplied_recv,
2108 int priority)
2109 {
2110 unsigned char saddr = 0, lun = 0;
2111 int rv;
2112
2113 if (!user)
2114 return -EINVAL;
2115 rv = check_addr(user->intf, addr, &saddr, &lun);
2116 if (rv)
2117 return rv;
2118 return i_ipmi_request(user,
2119 user->intf,
2120 addr,
2121 msgid,
2122 msg,
2123 user_msg_data,
2124 supplied_smi,
2125 supplied_recv,
2126 priority,
2127 saddr,
2128 lun,
2129 -1, 0);
2130 }
2131 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2132
2133 static void bmc_device_id_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2134 {
2135 int rv;
2136
2137 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2138 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2139 || (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2140 dev_warn(intf->si_dev,
2141 PFX "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2142 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2143 return;
2144 }
2145
2146 rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2147 msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2148 if (rv) {
2149 dev_warn(intf->si_dev,
2150 PFX "device id demangle failed: %d\n", rv);
2151 intf->bmc->dyn_id_set = 0;
2152 } else {
2153 /*
2154 * Make sure the id data is available before setting
2155 * dyn_id_set.
2156 */
2157 smp_wmb();
2158 intf->bmc->dyn_id_set = 1;
2159 }
2160
2161 wake_up(&intf->waitq);
2162 }
2163
2164 static int
2165 send_get_device_id_cmd(ipmi_smi_t intf)
2166 {
2167 struct ipmi_system_interface_addr si;
2168 struct kernel_ipmi_msg msg;
2169
2170 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2171 si.channel = IPMI_BMC_CHANNEL;
2172 si.lun = 0;
2173
2174 msg.netfn = IPMI_NETFN_APP_REQUEST;
2175 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2176 msg.data = NULL;
2177 msg.data_len = 0;
2178
2179 return i_ipmi_request(NULL,
2180 intf,
2181 (struct ipmi_addr *) &si,
2182 0,
2183 &msg,
2184 intf,
2185 NULL,
2186 NULL,
2187 0,
2188 intf->addrinfo[0].address,
2189 intf->addrinfo[0].lun,
2190 -1, 0);
2191 }
2192
2193 static int __get_device_id(ipmi_smi_t intf, struct bmc_device *bmc)
2194 {
2195 int rv;
2196
2197 bmc->dyn_id_set = 2;
2198
2199 intf->null_user_handler = bmc_device_id_handler;
2200
2201 rv = send_get_device_id_cmd(intf);
2202 if (rv)
2203 return rv;
2204
2205 wait_event(intf->waitq, bmc->dyn_id_set != 2);
2206
2207 if (!bmc->dyn_id_set)
2208 rv = -EIO; /* Something went wrong in the fetch. */
2209
2210 /* dyn_id_set makes the id data available. */
2211 smp_rmb();
2212
2213 intf->null_user_handler = NULL;
2214
2215 return rv;
2216 }
2217
2218 /*
2219 * Fetch the device id for the bmc/interface. You must pass in either
2220 * bmc or intf, this code will get the other one. If the data has
2221 * been recently fetched, this will just use the cached data. Otherwise
2222 * it will run a new fetch.
2223 *
2224 * Except for the first time this is called (in ipmi_register_smi()),
2225 * this will always return good data;
2226 */
2227 static int __bmc_get_device_id(ipmi_smi_t intf, struct bmc_device *bmc,
2228 struct ipmi_device_id *id,
2229 bool *guid_set, guid_t *guid, int intf_num)
2230 {
2231 int rv = 0;
2232 int prev_dyn_id_set, prev_guid_set;
2233 bool intf_set = intf != NULL;
2234
2235 if (!intf) {
2236 mutex_lock(&bmc->dyn_mutex);
2237 retry_bmc_lock:
2238 if (list_empty(&bmc->intfs)) {
2239 mutex_unlock(&bmc->dyn_mutex);
2240 return -ENOENT;
2241 }
2242 intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2243 bmc_link);
2244 kref_get(&intf->refcount);
2245 mutex_unlock(&bmc->dyn_mutex);
2246 mutex_lock(&intf->bmc_reg_mutex);
2247 mutex_lock(&bmc->dyn_mutex);
2248 if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2249 bmc_link)) {
2250 mutex_unlock(&intf->bmc_reg_mutex);
2251 kref_put(&intf->refcount, intf_free);
2252 goto retry_bmc_lock;
2253 }
2254 } else {
2255 mutex_lock(&intf->bmc_reg_mutex);
2256 bmc = intf->bmc;
2257 mutex_lock(&bmc->dyn_mutex);
2258 kref_get(&intf->refcount);
2259 }
2260
2261 /* If we have a valid and current ID, just return that. */
2262 if (intf->in_bmc_register ||
2263 (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2264 goto out_noprocessing;
2265
2266 prev_guid_set = bmc->dyn_guid_set;
2267 __get_guid(intf);
2268
2269 prev_dyn_id_set = bmc->dyn_id_set;
2270 rv = __get_device_id(intf, bmc);
2271 if (rv)
2272 goto out;
2273
2274 /*
2275 * The guid, device id, manufacturer id, and product id should
2276 * not change on a BMC. If it does we have to do some dancing.
2277 */
2278 if (!intf->bmc_registered
2279 || (!prev_guid_set && bmc->dyn_guid_set)
2280 || (!prev_dyn_id_set && bmc->dyn_id_set)
2281 || (prev_guid_set && bmc->dyn_guid_set
2282 && !guid_equal(&bmc->guid, &bmc->fetch_guid))
2283 || bmc->id.device_id != bmc->fetch_id.device_id
2284 || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2285 || bmc->id.product_id != bmc->fetch_id.product_id) {
2286 struct ipmi_device_id id = bmc->fetch_id;
2287 int guid_set = bmc->dyn_guid_set;
2288 guid_t guid;
2289
2290 guid = bmc->fetch_guid;
2291 mutex_unlock(&bmc->dyn_mutex);
2292
2293 __ipmi_bmc_unregister(intf);
2294 /* Fill in the temporary BMC for good measure. */
2295 intf->bmc->id = id;
2296 intf->bmc->dyn_guid_set = guid_set;
2297 intf->bmc->guid = guid;
2298 if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2299 need_waiter(intf); /* Retry later on an error. */
2300 else
2301 __scan_channels(intf, &id);
2302
2303
2304 if (!intf_set) {
2305 /*
2306 * We weren't given the interface on the
2307 * command line, so restart the operation on
2308 * the next interface for the BMC.
2309 */
2310 mutex_unlock(&intf->bmc_reg_mutex);
2311 mutex_lock(&bmc->dyn_mutex);
2312 goto retry_bmc_lock;
2313 }
2314
2315 /* We have a new BMC, set it up. */
2316 bmc = intf->bmc;
2317 mutex_lock(&bmc->dyn_mutex);
2318 goto out_noprocessing;
2319 } else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2320 /* Version info changes, scan the channels again. */
2321 __scan_channels(intf, &bmc->fetch_id);
2322
2323 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2324
2325 out:
2326 if (rv && prev_dyn_id_set) {
2327 rv = 0; /* Ignore failures if we have previous data. */
2328 bmc->dyn_id_set = prev_dyn_id_set;
2329 }
2330 if (!rv) {
2331 bmc->id = bmc->fetch_id;
2332 if (bmc->dyn_guid_set)
2333 bmc->guid = bmc->fetch_guid;
2334 else if (prev_guid_set)
2335 /*
2336 * The guid used to be valid and it failed to fetch,
2337 * just use the cached value.
2338 */
2339 bmc->dyn_guid_set = prev_guid_set;
2340 }
2341 out_noprocessing:
2342 if (!rv) {
2343 if (id)
2344 *id = bmc->id;
2345
2346 if (guid_set)
2347 *guid_set = bmc->dyn_guid_set;
2348
2349 if (guid && bmc->dyn_guid_set)
2350 *guid = bmc->guid;
2351 }
2352
2353 mutex_unlock(&bmc->dyn_mutex);
2354 mutex_unlock(&intf->bmc_reg_mutex);
2355
2356 kref_put(&intf->refcount, intf_free);
2357 return rv;
2358 }
2359
2360 static int bmc_get_device_id(ipmi_smi_t intf, struct bmc_device *bmc,
2361 struct ipmi_device_id *id,
2362 bool *guid_set, guid_t *guid)
2363 {
2364 return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2365 }
2366
2367 #ifdef CONFIG_IPMI_PROC_INTERFACE
2368 static int smi_ipmb_proc_show(struct seq_file *m, void *v)
2369 {
2370 ipmi_smi_t intf = m->private;
2371 int i;
2372
2373 seq_printf(m, "%x", intf->addrinfo[0].address);
2374 for (i = 1; i < IPMI_MAX_CHANNELS; i++)
2375 seq_printf(m, " %x", intf->addrinfo[i].address);
2376 seq_putc(m, '\n');
2377
2378 return 0;
2379 }
2380
2381 static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
2382 {
2383 return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
2384 }
2385
2386 static const struct file_operations smi_ipmb_proc_ops = {
2387 .open = smi_ipmb_proc_open,
2388 .read = seq_read,
2389 .llseek = seq_lseek,
2390 .release = single_release,
2391 };
2392
2393 static int smi_version_proc_show(struct seq_file *m, void *v)
2394 {
2395 ipmi_smi_t intf = m->private;
2396 struct ipmi_device_id id;
2397 int rv;
2398
2399 rv = bmc_get_device_id(intf, NULL, &id, NULL, NULL);
2400 if (rv)
2401 return rv;
2402
2403 seq_printf(m, "%u.%u\n",
2404 ipmi_version_major(&id),
2405 ipmi_version_minor(&id));
2406
2407 return 0;
2408 }
2409
2410 static int smi_version_proc_open(struct inode *inode, struct file *file)
2411 {
2412 return single_open(file, smi_version_proc_show, PDE_DATA(inode));
2413 }
2414
2415 static const struct file_operations smi_version_proc_ops = {
2416 .open = smi_version_proc_open,
2417 .read = seq_read,
2418 .llseek = seq_lseek,
2419 .release = single_release,
2420 };
2421
2422 static int smi_stats_proc_show(struct seq_file *m, void *v)
2423 {
2424 ipmi_smi_t intf = m->private;
2425
2426 seq_printf(m, "sent_invalid_commands: %u\n",
2427 ipmi_get_stat(intf, sent_invalid_commands));
2428 seq_printf(m, "sent_local_commands: %u\n",
2429 ipmi_get_stat(intf, sent_local_commands));
2430 seq_printf(m, "handled_local_responses: %u\n",
2431 ipmi_get_stat(intf, handled_local_responses));
2432 seq_printf(m, "unhandled_local_responses: %u\n",
2433 ipmi_get_stat(intf, unhandled_local_responses));
2434 seq_printf(m, "sent_ipmb_commands: %u\n",
2435 ipmi_get_stat(intf, sent_ipmb_commands));
2436 seq_printf(m, "sent_ipmb_command_errs: %u\n",
2437 ipmi_get_stat(intf, sent_ipmb_command_errs));
2438 seq_printf(m, "retransmitted_ipmb_commands: %u\n",
2439 ipmi_get_stat(intf, retransmitted_ipmb_commands));
2440 seq_printf(m, "timed_out_ipmb_commands: %u\n",
2441 ipmi_get_stat(intf, timed_out_ipmb_commands));
2442 seq_printf(m, "timed_out_ipmb_broadcasts: %u\n",
2443 ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
2444 seq_printf(m, "sent_ipmb_responses: %u\n",
2445 ipmi_get_stat(intf, sent_ipmb_responses));
2446 seq_printf(m, "handled_ipmb_responses: %u\n",
2447 ipmi_get_stat(intf, handled_ipmb_responses));
2448 seq_printf(m, "invalid_ipmb_responses: %u\n",
2449 ipmi_get_stat(intf, invalid_ipmb_responses));
2450 seq_printf(m, "unhandled_ipmb_responses: %u\n",
2451 ipmi_get_stat(intf, unhandled_ipmb_responses));
2452 seq_printf(m, "sent_lan_commands: %u\n",
2453 ipmi_get_stat(intf, sent_lan_commands));
2454 seq_printf(m, "sent_lan_command_errs: %u\n",
2455 ipmi_get_stat(intf, sent_lan_command_errs));
2456 seq_printf(m, "retransmitted_lan_commands: %u\n",
2457 ipmi_get_stat(intf, retransmitted_lan_commands));
2458 seq_printf(m, "timed_out_lan_commands: %u\n",
2459 ipmi_get_stat(intf, timed_out_lan_commands));
2460 seq_printf(m, "sent_lan_responses: %u\n",
2461 ipmi_get_stat(intf, sent_lan_responses));
2462 seq_printf(m, "handled_lan_responses: %u\n",
2463 ipmi_get_stat(intf, handled_lan_responses));
2464 seq_printf(m, "invalid_lan_responses: %u\n",
2465 ipmi_get_stat(intf, invalid_lan_responses));
2466 seq_printf(m, "unhandled_lan_responses: %u\n",
2467 ipmi_get_stat(intf, unhandled_lan_responses));
2468 seq_printf(m, "handled_commands: %u\n",
2469 ipmi_get_stat(intf, handled_commands));
2470 seq_printf(m, "invalid_commands: %u\n",
2471 ipmi_get_stat(intf, invalid_commands));
2472 seq_printf(m, "unhandled_commands: %u\n",
2473 ipmi_get_stat(intf, unhandled_commands));
2474 seq_printf(m, "invalid_events: %u\n",
2475 ipmi_get_stat(intf, invalid_events));
2476 seq_printf(m, "events: %u\n",
2477 ipmi_get_stat(intf, events));
2478 seq_printf(m, "failed rexmit LAN msgs: %u\n",
2479 ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2480 seq_printf(m, "failed rexmit IPMB msgs: %u\n",
2481 ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2482 return 0;
2483 }
2484
2485 static int smi_stats_proc_open(struct inode *inode, struct file *file)
2486 {
2487 return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2488 }
2489
2490 static const struct file_operations smi_stats_proc_ops = {
2491 .open = smi_stats_proc_open,
2492 .read = seq_read,
2493 .llseek = seq_lseek,
2494 .release = single_release,
2495 };
2496
2497 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2498 const struct file_operations *proc_ops,
2499 void *data)
2500 {
2501 int rv = 0;
2502 struct proc_dir_entry *file;
2503 struct ipmi_proc_entry *entry;
2504
2505 /* Create a list element. */
2506 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2507 if (!entry)
2508 return -ENOMEM;
2509 entry->name = kstrdup(name, GFP_KERNEL);
2510 if (!entry->name) {
2511 kfree(entry);
2512 return -ENOMEM;
2513 }
2514
2515 file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2516 if (!file) {
2517 kfree(entry->name);
2518 kfree(entry);
2519 rv = -ENOMEM;
2520 } else {
2521 mutex_lock(&smi->proc_entry_lock);
2522 /* Stick it on the list. */
2523 entry->next = smi->proc_entries;
2524 smi->proc_entries = entry;
2525 mutex_unlock(&smi->proc_entry_lock);
2526 }
2527
2528 return rv;
2529 }
2530 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2531
2532 static int add_proc_entries(ipmi_smi_t smi, int num)
2533 {
2534 int rv = 0;
2535
2536 sprintf(smi->proc_dir_name, "%d", num);
2537 smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2538 if (!smi->proc_dir)
2539 rv = -ENOMEM;
2540
2541 if (rv == 0)
2542 rv = ipmi_smi_add_proc_entry(smi, "stats",
2543 &smi_stats_proc_ops,
2544 smi);
2545
2546 if (rv == 0)
2547 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2548 &smi_ipmb_proc_ops,
2549 smi);
2550
2551 if (rv == 0)
2552 rv = ipmi_smi_add_proc_entry(smi, "version",
2553 &smi_version_proc_ops,
2554 smi);
2555
2556 return rv;
2557 }
2558
2559 static void remove_proc_entries(ipmi_smi_t smi)
2560 {
2561 struct ipmi_proc_entry *entry;
2562
2563 mutex_lock(&smi->proc_entry_lock);
2564 while (smi->proc_entries) {
2565 entry = smi->proc_entries;
2566 smi->proc_entries = entry->next;
2567
2568 remove_proc_entry(entry->name, smi->proc_dir);
2569 kfree(entry->name);
2570 kfree(entry);
2571 }
2572 mutex_unlock(&smi->proc_entry_lock);
2573 remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2574 }
2575 #endif /* CONFIG_IPMI_PROC_INTERFACE */
2576
2577 static ssize_t device_id_show(struct device *dev,
2578 struct device_attribute *attr,
2579 char *buf)
2580 {
2581 struct bmc_device *bmc = to_bmc_device(dev);
2582 struct ipmi_device_id id;
2583 int rv;
2584
2585 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2586 if (rv)
2587 return rv;
2588
2589 return snprintf(buf, 10, "%u\n", id.device_id);
2590 }
2591 static DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL);
2592
2593 static ssize_t provides_device_sdrs_show(struct device *dev,
2594 struct device_attribute *attr,
2595 char *buf)
2596 {
2597 struct bmc_device *bmc = to_bmc_device(dev);
2598 struct ipmi_device_id id;
2599 int rv;
2600
2601 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2602 if (rv)
2603 return rv;
2604
2605 return snprintf(buf, 10, "%u\n", (id.device_revision & 0x80) >> 7);
2606 }
2607 static DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show,
2608 NULL);
2609
2610 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2611 char *buf)
2612 {
2613 struct bmc_device *bmc = to_bmc_device(dev);
2614 struct ipmi_device_id id;
2615 int rv;
2616
2617 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2618 if (rv)
2619 return rv;
2620
2621 return snprintf(buf, 20, "%u\n", id.device_revision & 0x0F);
2622 }
2623 static DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL);
2624
2625 static ssize_t firmware_revision_show(struct device *dev,
2626 struct device_attribute *attr,
2627 char *buf)
2628 {
2629 struct bmc_device *bmc = to_bmc_device(dev);
2630 struct ipmi_device_id id;
2631 int rv;
2632
2633 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2634 if (rv)
2635 return rv;
2636
2637 return snprintf(buf, 20, "%u.%x\n", id.firmware_revision_1,
2638 id.firmware_revision_2);
2639 }
2640 static DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL);
2641
2642 static ssize_t ipmi_version_show(struct device *dev,
2643 struct device_attribute *attr,
2644 char *buf)
2645 {
2646 struct bmc_device *bmc = to_bmc_device(dev);
2647 struct ipmi_device_id id;
2648 int rv;
2649
2650 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2651 if (rv)
2652 return rv;
2653
2654 return snprintf(buf, 20, "%u.%u\n",
2655 ipmi_version_major(&id),
2656 ipmi_version_minor(&id));
2657 }
2658 static DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL);
2659
2660 static ssize_t add_dev_support_show(struct device *dev,
2661 struct device_attribute *attr,
2662 char *buf)
2663 {
2664 struct bmc_device *bmc = to_bmc_device(dev);
2665 struct ipmi_device_id id;
2666 int rv;
2667
2668 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2669 if (rv)
2670 return rv;
2671
2672 return snprintf(buf, 10, "0x%02x\n", id.additional_device_support);
2673 }
2674 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2675 NULL);
2676
2677 static ssize_t manufacturer_id_show(struct device *dev,
2678 struct device_attribute *attr,
2679 char *buf)
2680 {
2681 struct bmc_device *bmc = to_bmc_device(dev);
2682 struct ipmi_device_id id;
2683 int rv;
2684
2685 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2686 if (rv)
2687 return rv;
2688
2689 return snprintf(buf, 20, "0x%6.6x\n", id.manufacturer_id);
2690 }
2691 static DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL);
2692
2693 static ssize_t product_id_show(struct device *dev,
2694 struct device_attribute *attr,
2695 char *buf)
2696 {
2697 struct bmc_device *bmc = to_bmc_device(dev);
2698 struct ipmi_device_id id;
2699 int rv;
2700
2701 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2702 if (rv)
2703 return rv;
2704
2705 return snprintf(buf, 10, "0x%4.4x\n", id.product_id);
2706 }
2707 static DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL);
2708
2709 static ssize_t aux_firmware_rev_show(struct device *dev,
2710 struct device_attribute *attr,
2711 char *buf)
2712 {
2713 struct bmc_device *bmc = to_bmc_device(dev);
2714 struct ipmi_device_id id;
2715 int rv;
2716
2717 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2718 if (rv)
2719 return rv;
2720
2721 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2722 id.aux_firmware_revision[3],
2723 id.aux_firmware_revision[2],
2724 id.aux_firmware_revision[1],
2725 id.aux_firmware_revision[0]);
2726 }
2727 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2728
2729 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2730 char *buf)
2731 {
2732 struct bmc_device *bmc = to_bmc_device(dev);
2733 bool guid_set;
2734 guid_t guid;
2735 int rv;
2736
2737 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2738 if (rv)
2739 return rv;
2740 if (!guid_set)
2741 return -ENOENT;
2742
2743 return snprintf(buf, 38, "%pUl\n", guid.b);
2744 }
2745 static DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL);
2746
2747 static struct attribute *bmc_dev_attrs[] = {
2748 &dev_attr_device_id.attr,
2749 &dev_attr_provides_device_sdrs.attr,
2750 &dev_attr_revision.attr,
2751 &dev_attr_firmware_revision.attr,
2752 &dev_attr_ipmi_version.attr,
2753 &dev_attr_additional_device_support.attr,
2754 &dev_attr_manufacturer_id.attr,
2755 &dev_attr_product_id.attr,
2756 &dev_attr_aux_firmware_revision.attr,
2757 &dev_attr_guid.attr,
2758 NULL
2759 };
2760
2761 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2762 struct attribute *attr, int idx)
2763 {
2764 struct device *dev = kobj_to_dev(kobj);
2765 struct bmc_device *bmc = to_bmc_device(dev);
2766 umode_t mode = attr->mode;
2767 int rv;
2768
2769 if (attr == &dev_attr_aux_firmware_revision.attr) {
2770 struct ipmi_device_id id;
2771
2772 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2773 return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2774 }
2775 if (attr == &dev_attr_guid.attr) {
2776 bool guid_set;
2777
2778 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2779 return (!rv && guid_set) ? mode : 0;
2780 }
2781 return mode;
2782 }
2783
2784 static const struct attribute_group bmc_dev_attr_group = {
2785 .attrs = bmc_dev_attrs,
2786 .is_visible = bmc_dev_attr_is_visible,
2787 };
2788
2789 static const struct attribute_group *bmc_dev_attr_groups[] = {
2790 &bmc_dev_attr_group,
2791 NULL
2792 };
2793
2794 static const struct device_type bmc_device_type = {
2795 .groups = bmc_dev_attr_groups,
2796 };
2797
2798 static int __find_bmc_guid(struct device *dev, void *data)
2799 {
2800 guid_t *guid = data;
2801 struct bmc_device *bmc;
2802 int rv;
2803
2804 if (dev->type != &bmc_device_type)
2805 return 0;
2806
2807 bmc = to_bmc_device(dev);
2808 rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2809 if (rv)
2810 rv = kref_get_unless_zero(&bmc->usecount);
2811 return rv;
2812 }
2813
2814 /*
2815 * Returns with the bmc's usecount incremented, if it is non-NULL.
2816 */
2817 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2818 guid_t *guid)
2819 {
2820 struct device *dev;
2821 struct bmc_device *bmc = NULL;
2822
2823 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2824 if (dev) {
2825 bmc = to_bmc_device(dev);
2826 put_device(dev);
2827 }
2828 return bmc;
2829 }
2830
2831 struct prod_dev_id {
2832 unsigned int product_id;
2833 unsigned char device_id;
2834 };
2835
2836 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2837 {
2838 struct prod_dev_id *cid = data;
2839 struct bmc_device *bmc;
2840 int rv;
2841
2842 if (dev->type != &bmc_device_type)
2843 return 0;
2844
2845 bmc = to_bmc_device(dev);
2846 rv = (bmc->id.product_id == cid->product_id
2847 && bmc->id.device_id == cid->device_id);
2848 if (rv)
2849 rv = kref_get_unless_zero(&bmc->usecount);
2850 return rv;
2851 }
2852
2853 /*
2854 * Returns with the bmc's usecount incremented, if it is non-NULL.
2855 */
2856 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2857 struct device_driver *drv,
2858 unsigned int product_id, unsigned char device_id)
2859 {
2860 struct prod_dev_id id = {
2861 .product_id = product_id,
2862 .device_id = device_id,
2863 };
2864 struct device *dev;
2865 struct bmc_device *bmc = NULL;
2866
2867 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2868 if (dev) {
2869 bmc = to_bmc_device(dev);
2870 put_device(dev);
2871 }
2872 return bmc;
2873 }
2874
2875 static DEFINE_IDA(ipmi_bmc_ida);
2876
2877 static void
2878 release_bmc_device(struct device *dev)
2879 {
2880 kfree(to_bmc_device(dev));
2881 }
2882
2883 static void cleanup_bmc_work(struct work_struct *work)
2884 {
2885 struct bmc_device *bmc = container_of(work, struct bmc_device,
2886 remove_work);
2887 int id = bmc->pdev.id; /* Unregister overwrites id */
2888
2889 platform_device_unregister(&bmc->pdev);
2890 ida_simple_remove(&ipmi_bmc_ida, id);
2891 }
2892
2893 static void
2894 cleanup_bmc_device(struct kref *ref)
2895 {
2896 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2897
2898 /*
2899 * Remove the platform device in a work queue to avoid issues
2900 * with removing the device attributes while reading a device
2901 * attribute.
2902 */
2903 schedule_work(&bmc->remove_work);
2904 }
2905
2906 /*
2907 * Must be called with intf->bmc_reg_mutex held.
2908 */
2909 static void __ipmi_bmc_unregister(ipmi_smi_t intf)
2910 {
2911 struct bmc_device *bmc = intf->bmc;
2912
2913 if (!intf->bmc_registered)
2914 return;
2915
2916 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2917 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2918 kfree(intf->my_dev_name);
2919 intf->my_dev_name = NULL;
2920
2921 mutex_lock(&bmc->dyn_mutex);
2922 list_del(&intf->bmc_link);
2923 mutex_unlock(&bmc->dyn_mutex);
2924 intf->bmc = &intf->tmp_bmc;
2925 kref_put(&bmc->usecount, cleanup_bmc_device);
2926 intf->bmc_registered = false;
2927 }
2928
2929 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2930 {
2931 mutex_lock(&intf->bmc_reg_mutex);
2932 __ipmi_bmc_unregister(intf);
2933 mutex_unlock(&intf->bmc_reg_mutex);
2934 }
2935
2936 /*
2937 * Must be called with intf->bmc_reg_mutex held.
2938 */
2939 static int __ipmi_bmc_register(ipmi_smi_t intf,
2940 struct ipmi_device_id *id,
2941 bool guid_set, guid_t *guid, int intf_num)
2942 {
2943 int rv;
2944 struct bmc_device *bmc;
2945 struct bmc_device *old_bmc;
2946
2947 /*
2948 * platform_device_register() can cause bmc_reg_mutex to
2949 * be claimed because of the is_visible functions of
2950 * the attributes. Eliminate possible recursion and
2951 * release the lock.
2952 */
2953 intf->in_bmc_register = true;
2954 mutex_unlock(&intf->bmc_reg_mutex);
2955
2956 /*
2957 * Try to find if there is an bmc_device struct
2958 * representing the interfaced BMC already
2959 */
2960 mutex_lock(&ipmidriver_mutex);
2961 if (guid_set)
2962 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
2963 else
2964 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2965 id->product_id,
2966 id->device_id);
2967
2968 /*
2969 * If there is already an bmc_device, free the new one,
2970 * otherwise register the new BMC device
2971 */
2972 if (old_bmc) {
2973 bmc = old_bmc;
2974 /*
2975 * Note: old_bmc already has usecount incremented by
2976 * the BMC find functions.
2977 */
2978 intf->bmc = old_bmc;
2979 mutex_lock(&bmc->dyn_mutex);
2980 list_add_tail(&intf->bmc_link, &bmc->intfs);
2981 mutex_unlock(&bmc->dyn_mutex);
2982
2983 dev_info(intf->si_dev,
2984 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2985 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2986 bmc->id.manufacturer_id,
2987 bmc->id.product_id,
2988 bmc->id.device_id);
2989 } else {
2990 bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
2991 if (!bmc) {
2992 rv = -ENOMEM;
2993 goto out;
2994 }
2995 INIT_LIST_HEAD(&bmc->intfs);
2996 mutex_init(&bmc->dyn_mutex);
2997 INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
2998
2999 bmc->id = *id;
3000 bmc->dyn_id_set = 1;
3001 bmc->dyn_guid_set = guid_set;
3002 bmc->guid = *guid;
3003 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3004
3005 bmc->pdev.name = "ipmi_bmc";
3006
3007 rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3008 if (rv < 0)
3009 goto out;
3010 bmc->pdev.dev.driver = &ipmidriver.driver;
3011 bmc->pdev.id = rv;
3012 bmc->pdev.dev.release = release_bmc_device;
3013 bmc->pdev.dev.type = &bmc_device_type;
3014 kref_init(&bmc->usecount);
3015
3016 intf->bmc = bmc;
3017 mutex_lock(&bmc->dyn_mutex);
3018 list_add_tail(&intf->bmc_link, &bmc->intfs);
3019 mutex_unlock(&bmc->dyn_mutex);
3020
3021 rv = platform_device_register(&bmc->pdev);
3022 if (rv) {
3023 dev_err(intf->si_dev,
3024 PFX " Unable to register bmc device: %d\n",
3025 rv);
3026 goto out_list_del;
3027 }
3028
3029 dev_info(intf->si_dev,
3030 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3031 bmc->id.manufacturer_id,
3032 bmc->id.product_id,
3033 bmc->id.device_id);
3034 }
3035
3036 /*
3037 * create symlink from system interface device to bmc device
3038 * and back.
3039 */
3040 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3041 if (rv) {
3042 dev_err(intf->si_dev,
3043 PFX "Unable to create bmc symlink: %d\n", rv);
3044 goto out_put_bmc;
3045 }
3046
3047 if (intf_num == -1)
3048 intf_num = intf->intf_num;
3049 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3050 if (!intf->my_dev_name) {
3051 rv = -ENOMEM;
3052 dev_err(intf->si_dev,
3053 PFX "Unable to allocate link from BMC: %d\n", rv);
3054 goto out_unlink1;
3055 }
3056
3057 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3058 intf->my_dev_name);
3059 if (rv) {
3060 kfree(intf->my_dev_name);
3061 intf->my_dev_name = NULL;
3062 dev_err(intf->si_dev,
3063 PFX "Unable to create symlink to bmc: %d\n", rv);
3064 goto out_free_my_dev_name;
3065 }
3066
3067 intf->bmc_registered = true;
3068
3069 out:
3070 mutex_unlock(&ipmidriver_mutex);
3071 mutex_lock(&intf->bmc_reg_mutex);
3072 intf->in_bmc_register = false;
3073 return rv;
3074
3075
3076 out_free_my_dev_name:
3077 kfree(intf->my_dev_name);
3078 intf->my_dev_name = NULL;
3079
3080 out_unlink1:
3081 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3082
3083 out_put_bmc:
3084 mutex_lock(&bmc->dyn_mutex);
3085 list_del(&intf->bmc_link);
3086 mutex_unlock(&bmc->dyn_mutex);
3087 intf->bmc = &intf->tmp_bmc;
3088 kref_put(&bmc->usecount, cleanup_bmc_device);
3089 goto out;
3090
3091 out_list_del:
3092 mutex_lock(&bmc->dyn_mutex);
3093 list_del(&intf->bmc_link);
3094 mutex_unlock(&bmc->dyn_mutex);
3095 intf->bmc = &intf->tmp_bmc;
3096 put_device(&bmc->pdev.dev);
3097 goto out;
3098 }
3099
3100 static int
3101 send_guid_cmd(ipmi_smi_t intf, int chan)
3102 {
3103 struct kernel_ipmi_msg msg;
3104 struct ipmi_system_interface_addr si;
3105
3106 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3107 si.channel = IPMI_BMC_CHANNEL;
3108 si.lun = 0;
3109
3110 msg.netfn = IPMI_NETFN_APP_REQUEST;
3111 msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3112 msg.data = NULL;
3113 msg.data_len = 0;
3114 return i_ipmi_request(NULL,
3115 intf,
3116 (struct ipmi_addr *) &si,
3117 0,
3118 &msg,
3119 intf,
3120 NULL,
3121 NULL,
3122 0,
3123 intf->addrinfo[0].address,
3124 intf->addrinfo[0].lun,
3125 -1, 0);
3126 }
3127
3128 static void guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
3129 {
3130 struct bmc_device *bmc = intf->bmc;
3131
3132 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3133 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3134 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3135 /* Not for me */
3136 return;
3137
3138 if (msg->msg.data[0] != 0) {
3139 /* Error from getting the GUID, the BMC doesn't have one. */
3140 bmc->dyn_guid_set = 0;
3141 goto out;
3142 }
3143
3144 if (msg->msg.data_len < 17) {
3145 bmc->dyn_guid_set = 0;
3146 dev_warn(intf->si_dev,
3147 PFX "The GUID response from the BMC was too short, it was %d but should have been 17. Assuming GUID is not available.\n",
3148 msg->msg.data_len);
3149 goto out;
3150 }
3151
3152 memcpy(bmc->fetch_guid.b, msg->msg.data + 1, 16);
3153 /*
3154 * Make sure the guid data is available before setting
3155 * dyn_guid_set.
3156 */
3157 smp_wmb();
3158 bmc->dyn_guid_set = 1;
3159 out:
3160 wake_up(&intf->waitq);
3161 }
3162
3163 static void __get_guid(ipmi_smi_t intf)
3164 {
3165 int rv;
3166 struct bmc_device *bmc = intf->bmc;
3167
3168 bmc->dyn_guid_set = 2;
3169 intf->null_user_handler = guid_handler;
3170 rv = send_guid_cmd(intf, 0);
3171 if (rv)
3172 /* Send failed, no GUID available. */
3173 bmc->dyn_guid_set = 0;
3174
3175 wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3176
3177 /* dyn_guid_set makes the guid data available. */
3178 smp_rmb();
3179
3180 intf->null_user_handler = NULL;
3181 }
3182
3183 static int
3184 send_channel_info_cmd(ipmi_smi_t intf, int chan)
3185 {
3186 struct kernel_ipmi_msg msg;
3187 unsigned char data[1];
3188 struct ipmi_system_interface_addr si;
3189
3190 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3191 si.channel = IPMI_BMC_CHANNEL;
3192 si.lun = 0;
3193
3194 msg.netfn = IPMI_NETFN_APP_REQUEST;
3195 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3196 msg.data = data;
3197 msg.data_len = 1;
3198 data[0] = chan;
3199 return i_ipmi_request(NULL,
3200 intf,
3201 (struct ipmi_addr *) &si,
3202 0,
3203 &msg,
3204 intf,
3205 NULL,
3206 NULL,
3207 0,
3208 intf->addrinfo[0].address,
3209 intf->addrinfo[0].lun,
3210 -1, 0);
3211 }
3212
3213 static void
3214 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
3215 {
3216 int rv = 0;
3217 int ch;
3218 unsigned int set = intf->curr_working_cset;
3219 struct ipmi_channel *chans;
3220
3221 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3222 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3223 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3224 /* It's the one we want */
3225 if (msg->msg.data[0] != 0) {
3226 /* Got an error from the channel, just go on. */
3227
3228 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3229 /*
3230 * If the MC does not support this
3231 * command, that is legal. We just
3232 * assume it has one IPMB at channel
3233 * zero.
3234 */
3235 intf->wchannels[set].c[0].medium
3236 = IPMI_CHANNEL_MEDIUM_IPMB;
3237 intf->wchannels[set].c[0].protocol
3238 = IPMI_CHANNEL_PROTOCOL_IPMB;
3239
3240 intf->channel_list = intf->wchannels + set;
3241 intf->channels_ready = true;
3242 wake_up(&intf->waitq);
3243 goto out;
3244 }
3245 goto next_channel;
3246 }
3247 if (msg->msg.data_len < 4) {
3248 /* Message not big enough, just go on. */
3249 goto next_channel;
3250 }
3251 ch = intf->curr_channel;
3252 chans = intf->wchannels[set].c;
3253 chans[ch].medium = msg->msg.data[2] & 0x7f;
3254 chans[ch].protocol = msg->msg.data[3] & 0x1f;
3255
3256 next_channel:
3257 intf->curr_channel++;
3258 if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3259 intf->channel_list = intf->wchannels + set;
3260 intf->channels_ready = true;
3261 wake_up(&intf->waitq);
3262 } else {
3263 intf->channel_list = intf->wchannels + set;
3264 intf->channels_ready = true;
3265 rv = send_channel_info_cmd(intf, intf->curr_channel);
3266 }
3267
3268 if (rv) {
3269 /* Got an error somehow, just give up. */
3270 dev_warn(intf->si_dev,
3271 PFX "Error sending channel information for channel %d: %d\n",
3272 intf->curr_channel, rv);
3273
3274 intf->channel_list = intf->wchannels + set;
3275 intf->channels_ready = true;
3276 wake_up(&intf->waitq);
3277 }
3278 }
3279 out:
3280 return;
3281 }
3282
3283 /*
3284 * Must be holding intf->bmc_reg_mutex to call this.
3285 */
3286 static int __scan_channels(ipmi_smi_t intf, struct ipmi_device_id *id)
3287 {
3288 int rv;
3289
3290 if (ipmi_version_major(id) > 1
3291 || (ipmi_version_major(id) == 1
3292 && ipmi_version_minor(id) >= 5)) {
3293 unsigned int set;
3294
3295 /*
3296 * Start scanning the channels to see what is
3297 * available.
3298 */
3299 set = !intf->curr_working_cset;
3300 intf->curr_working_cset = set;
3301 memset(&intf->wchannels[set], 0,
3302 sizeof(struct ipmi_channel_set));
3303
3304 intf->null_user_handler = channel_handler;
3305 intf->curr_channel = 0;
3306 rv = send_channel_info_cmd(intf, 0);
3307 if (rv) {
3308 dev_warn(intf->si_dev,
3309 "Error sending channel information for channel 0, %d\n",
3310 rv);
3311 return -EIO;
3312 }
3313
3314 /* Wait for the channel info to be read. */
3315 wait_event(intf->waitq, intf->channels_ready);
3316 intf->null_user_handler = NULL;
3317 } else {
3318 unsigned int set = intf->curr_working_cset;
3319
3320 /* Assume a single IPMB channel at zero. */
3321 intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3322 intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3323 intf->channel_list = intf->wchannels + set;
3324 intf->channels_ready = true;
3325 }
3326
3327 return 0;
3328 }
3329
3330 static void ipmi_poll(ipmi_smi_t intf)
3331 {
3332 if (intf->handlers->poll)
3333 intf->handlers->poll(intf->send_info);
3334 /* In case something came in */
3335 handle_new_recv_msgs(intf);
3336 }
3337
3338 void ipmi_poll_interface(ipmi_user_t user)
3339 {
3340 ipmi_poll(user->intf);
3341 }
3342 EXPORT_SYMBOL(ipmi_poll_interface);
3343
3344 static void redo_bmc_reg(struct work_struct *work)
3345 {
3346 ipmi_smi_t intf = container_of(work, struct ipmi_smi, bmc_reg_work);
3347
3348 if (!intf->in_shutdown)
3349 bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3350
3351 kref_put(&intf->refcount, intf_free);
3352 }
3353
3354 int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
3355 void *send_info,
3356 struct device *si_dev,
3357 unsigned char slave_addr)
3358 {
3359 int i, j;
3360 int rv;
3361 ipmi_smi_t intf;
3362 ipmi_smi_t tintf;
3363 struct list_head *link;
3364 struct ipmi_device_id id;
3365
3366 /*
3367 * Make sure the driver is actually initialized, this handles
3368 * problems with initialization order.
3369 */
3370 if (!initialized) {
3371 rv = ipmi_init_msghandler();
3372 if (rv)
3373 return rv;
3374 /*
3375 * The init code doesn't return an error if it was turned
3376 * off, but it won't initialize. Check that.
3377 */
3378 if (!initialized)
3379 return -ENODEV;
3380 }
3381
3382 intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3383 if (!intf)
3384 return -ENOMEM;
3385
3386 intf->bmc = &intf->tmp_bmc;
3387 INIT_LIST_HEAD(&intf->bmc->intfs);
3388 mutex_init(&intf->bmc->dyn_mutex);
3389 INIT_LIST_HEAD(&intf->bmc_link);
3390 mutex_init(&intf->bmc_reg_mutex);
3391 intf->intf_num = -1; /* Mark it invalid for now. */
3392 kref_init(&intf->refcount);
3393 INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3394 intf->si_dev = si_dev;
3395 for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3396 intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3397 intf->addrinfo[j].lun = 2;
3398 }
3399 if (slave_addr != 0)
3400 intf->addrinfo[0].address = slave_addr;
3401 INIT_LIST_HEAD(&intf->users);
3402 intf->handlers = handlers;
3403 intf->send_info = send_info;
3404 spin_lock_init(&intf->seq_lock);
3405 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3406 intf->seq_table[j].inuse = 0;
3407 intf->seq_table[j].seqid = 0;
3408 }
3409 intf->curr_seq = 0;
3410 #ifdef CONFIG_IPMI_PROC_INTERFACE
3411 mutex_init(&intf->proc_entry_lock);
3412 #endif
3413 spin_lock_init(&intf->waiting_rcv_msgs_lock);
3414 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3415 tasklet_init(&intf->recv_tasklet,
3416 smi_recv_tasklet,
3417 (unsigned long) intf);
3418 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3419 spin_lock_init(&intf->xmit_msgs_lock);
3420 INIT_LIST_HEAD(&intf->xmit_msgs);
3421 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3422 spin_lock_init(&intf->events_lock);
3423 atomic_set(&intf->event_waiters, 0);
3424 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3425 INIT_LIST_HEAD(&intf->waiting_events);
3426 intf->waiting_events_count = 0;
3427 mutex_init(&intf->cmd_rcvrs_mutex);
3428 spin_lock_init(&intf->maintenance_mode_lock);
3429 INIT_LIST_HEAD(&intf->cmd_rcvrs);
3430 init_waitqueue_head(&intf->waitq);
3431 for (i = 0; i < IPMI_NUM_STATS; i++)
3432 atomic_set(&intf->stats[i], 0);
3433
3434 #ifdef CONFIG_IPMI_PROC_INTERFACE
3435 intf->proc_dir = NULL;
3436 #endif
3437
3438 mutex_lock(&smi_watchers_mutex);
3439 mutex_lock(&ipmi_interfaces_mutex);
3440 /* Look for a hole in the numbers. */
3441 i = 0;
3442 link = &ipmi_interfaces;
3443 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
3444 if (tintf->intf_num != i) {
3445 link = &tintf->link;
3446 break;
3447 }
3448 i++;
3449 }
3450 /* Add the new interface in numeric order. */
3451 if (i == 0)
3452 list_add_rcu(&intf->link, &ipmi_interfaces);
3453 else
3454 list_add_tail_rcu(&intf->link, link);
3455
3456 rv = handlers->start_processing(send_info, intf);
3457 if (rv)
3458 goto out;
3459
3460 rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3461 if (rv) {
3462 dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3463 goto out;
3464 }
3465
3466 mutex_lock(&intf->bmc_reg_mutex);
3467 rv = __scan_channels(intf, &id);
3468 mutex_unlock(&intf->bmc_reg_mutex);
3469 if (rv)
3470 goto out;
3471
3472 #ifdef CONFIG_IPMI_PROC_INTERFACE
3473 rv = add_proc_entries(intf, i);
3474 #endif
3475
3476 out:
3477 if (rv) {
3478 ipmi_bmc_unregister(intf);
3479 #ifdef CONFIG_IPMI_PROC_INTERFACE
3480 if (intf->proc_dir)
3481 remove_proc_entries(intf);
3482 #endif
3483 intf->handlers = NULL;
3484 list_del_rcu(&intf->link);
3485 mutex_unlock(&ipmi_interfaces_mutex);
3486 mutex_unlock(&smi_watchers_mutex);
3487 synchronize_rcu();
3488 kref_put(&intf->refcount, intf_free);
3489 } else {
3490 /*
3491 * Keep memory order straight for RCU readers. Make
3492 * sure everything else is committed to memory before
3493 * setting intf_num to mark the interface valid.
3494 */
3495 smp_wmb();
3496 intf->intf_num = i;
3497 mutex_unlock(&ipmi_interfaces_mutex);
3498 /* After this point the interface is legal to use. */
3499 call_smi_watchers(i, intf->si_dev);
3500 mutex_unlock(&smi_watchers_mutex);
3501 }
3502
3503 return rv;
3504 }
3505 EXPORT_SYMBOL(ipmi_register_smi);
3506
3507 static void deliver_smi_err_response(ipmi_smi_t intf,
3508 struct ipmi_smi_msg *msg,
3509 unsigned char err)
3510 {
3511 msg->rsp[0] = msg->data[0] | 4;
3512 msg->rsp[1] = msg->data[1];
3513 msg->rsp[2] = err;
3514 msg->rsp_size = 3;
3515 /* It's an error, so it will never requeue, no need to check return. */
3516 handle_one_recv_msg(intf, msg);
3517 }
3518
3519 static void cleanup_smi_msgs(ipmi_smi_t intf)
3520 {
3521 int i;
3522 struct seq_table *ent;
3523 struct ipmi_smi_msg *msg;
3524 struct list_head *entry;
3525 struct list_head tmplist;
3526
3527 /* Clear out our transmit queues and hold the messages. */
3528 INIT_LIST_HEAD(&tmplist);
3529 list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3530 list_splice_tail(&intf->xmit_msgs, &tmplist);
3531
3532 /* Current message first, to preserve order */
3533 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3534 /* Wait for the message to clear out. */
3535 schedule_timeout(1);
3536 }
3537
3538 /* No need for locks, the interface is down. */
3539
3540 /*
3541 * Return errors for all pending messages in queue and in the
3542 * tables waiting for remote responses.
3543 */
3544 while (!list_empty(&tmplist)) {
3545 entry = tmplist.next;
3546 list_del(entry);
3547 msg = list_entry(entry, struct ipmi_smi_msg, link);
3548 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3549 }
3550
3551 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3552 ent = &(intf->seq_table[i]);
3553 if (!ent->inuse)
3554 continue;
3555 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3556 }
3557 }
3558
3559 int ipmi_unregister_smi(ipmi_smi_t intf)
3560 {
3561 struct ipmi_smi_watcher *w;
3562 int intf_num = intf->intf_num;
3563 ipmi_user_t user;
3564
3565 mutex_lock(&smi_watchers_mutex);
3566 mutex_lock(&ipmi_interfaces_mutex);
3567 intf->intf_num = -1;
3568 intf->in_shutdown = true;
3569 list_del_rcu(&intf->link);
3570 mutex_unlock(&ipmi_interfaces_mutex);
3571 synchronize_rcu();
3572
3573 cleanup_smi_msgs(intf);
3574
3575 /* Clean up the effects of users on the lower-level software. */
3576 mutex_lock(&ipmi_interfaces_mutex);
3577 rcu_read_lock();
3578 list_for_each_entry_rcu(user, &intf->users, link) {
3579 module_put(intf->handlers->owner);
3580 if (intf->handlers->dec_usecount)
3581 intf->handlers->dec_usecount(intf->send_info);
3582 }
3583 rcu_read_unlock();
3584 intf->handlers = NULL;
3585 mutex_unlock(&ipmi_interfaces_mutex);
3586
3587 #ifdef CONFIG_IPMI_PROC_INTERFACE
3588 remove_proc_entries(intf);
3589 #endif
3590 ipmi_bmc_unregister(intf);
3591
3592 /*
3593 * Call all the watcher interfaces to tell them that
3594 * an interface is gone.
3595 */
3596 list_for_each_entry(w, &smi_watchers, link)
3597 w->smi_gone(intf_num);
3598 mutex_unlock(&smi_watchers_mutex);
3599
3600 kref_put(&intf->refcount, intf_free);
3601 return 0;
3602 }
3603 EXPORT_SYMBOL(ipmi_unregister_smi);
3604
3605 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf,
3606 struct ipmi_smi_msg *msg)
3607 {
3608 struct ipmi_ipmb_addr ipmb_addr;
3609 struct ipmi_recv_msg *recv_msg;
3610
3611 /*
3612 * This is 11, not 10, because the response must contain a
3613 * completion code.
3614 */
3615 if (msg->rsp_size < 11) {
3616 /* Message not big enough, just ignore it. */
3617 ipmi_inc_stat(intf, invalid_ipmb_responses);
3618 return 0;
3619 }
3620
3621 if (msg->rsp[2] != 0) {
3622 /* An error getting the response, just ignore it. */
3623 return 0;
3624 }
3625
3626 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3627 ipmb_addr.slave_addr = msg->rsp[6];
3628 ipmb_addr.channel = msg->rsp[3] & 0x0f;
3629 ipmb_addr.lun = msg->rsp[7] & 3;
3630
3631 /*
3632 * It's a response from a remote entity. Look up the sequence
3633 * number and handle the response.
3634 */
3635 if (intf_find_seq(intf,
3636 msg->rsp[7] >> 2,
3637 msg->rsp[3] & 0x0f,
3638 msg->rsp[8],
3639 (msg->rsp[4] >> 2) & (~1),
3640 (struct ipmi_addr *) &(ipmb_addr),
3641 &recv_msg)) {
3642 /*
3643 * We were unable to find the sequence number,
3644 * so just nuke the message.
3645 */
3646 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3647 return 0;
3648 }
3649
3650 memcpy(recv_msg->msg_data,
3651 &(msg->rsp[9]),
3652 msg->rsp_size - 9);
3653 /*
3654 * The other fields matched, so no need to set them, except
3655 * for netfn, which needs to be the response that was
3656 * returned, not the request value.
3657 */
3658 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3659 recv_msg->msg.data = recv_msg->msg_data;
3660 recv_msg->msg.data_len = msg->rsp_size - 10;
3661 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3662 ipmi_inc_stat(intf, handled_ipmb_responses);
3663 deliver_response(recv_msg);
3664
3665 return 0;
3666 }
3667
3668 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf,
3669 struct ipmi_smi_msg *msg)
3670 {
3671 struct cmd_rcvr *rcvr;
3672 int rv = 0;
3673 unsigned char netfn;
3674 unsigned char cmd;
3675 unsigned char chan;
3676 ipmi_user_t user = NULL;
3677 struct ipmi_ipmb_addr *ipmb_addr;
3678 struct ipmi_recv_msg *recv_msg;
3679
3680 if (msg->rsp_size < 10) {
3681 /* Message not big enough, just ignore it. */
3682 ipmi_inc_stat(intf, invalid_commands);
3683 return 0;
3684 }
3685
3686 if (msg->rsp[2] != 0) {
3687 /* An error getting the response, just ignore it. */
3688 return 0;
3689 }
3690
3691 netfn = msg->rsp[4] >> 2;
3692 cmd = msg->rsp[8];
3693 chan = msg->rsp[3] & 0xf;
3694
3695 rcu_read_lock();
3696 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3697 if (rcvr) {
3698 user = rcvr->user;
3699 kref_get(&user->refcount);
3700 } else
3701 user = NULL;
3702 rcu_read_unlock();
3703
3704 if (user == NULL) {
3705 /* We didn't find a user, deliver an error response. */
3706 ipmi_inc_stat(intf, unhandled_commands);
3707
3708 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3709 msg->data[1] = IPMI_SEND_MSG_CMD;
3710 msg->data[2] = msg->rsp[3];
3711 msg->data[3] = msg->rsp[6];
3712 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3713 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3714 msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3715 /* rqseq/lun */
3716 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3717 msg->data[8] = msg->rsp[8]; /* cmd */
3718 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3719 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3720 msg->data_size = 11;
3721
3722 #ifdef DEBUG_MSGING
3723 {
3724 int m;
3725 printk("Invalid command:");
3726 for (m = 0; m < msg->data_size; m++)
3727 printk(" %2.2x", msg->data[m]);
3728 printk("\n");
3729 }
3730 #endif
3731 rcu_read_lock();
3732 if (!intf->in_shutdown) {
3733 smi_send(intf, intf->handlers, msg, 0);
3734 /*
3735 * We used the message, so return the value
3736 * that causes it to not be freed or
3737 * queued.
3738 */
3739 rv = -1;
3740 }
3741 rcu_read_unlock();
3742 } else {
3743 /* Deliver the message to the user. */
3744 ipmi_inc_stat(intf, handled_commands);
3745
3746 recv_msg = ipmi_alloc_recv_msg();
3747 if (!recv_msg) {
3748 /*
3749 * We couldn't allocate memory for the
3750 * message, so requeue it for handling
3751 * later.
3752 */
3753 rv = 1;
3754 kref_put(&user->refcount, free_user);
3755 } else {
3756 /* Extract the source address from the data. */
3757 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3758 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3759 ipmb_addr->slave_addr = msg->rsp[6];
3760 ipmb_addr->lun = msg->rsp[7] & 3;
3761 ipmb_addr->channel = msg->rsp[3] & 0xf;
3762
3763 /*
3764 * Extract the rest of the message information
3765 * from the IPMB header.
3766 */
3767 recv_msg->user = user;
3768 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3769 recv_msg->msgid = msg->rsp[7] >> 2;
3770 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3771 recv_msg->msg.cmd = msg->rsp[8];
3772 recv_msg->msg.data = recv_msg->msg_data;
3773
3774 /*
3775 * We chop off 10, not 9 bytes because the checksum
3776 * at the end also needs to be removed.
3777 */
3778 recv_msg->msg.data_len = msg->rsp_size - 10;
3779 memcpy(recv_msg->msg_data,
3780 &(msg->rsp[9]),
3781 msg->rsp_size - 10);
3782 deliver_response(recv_msg);
3783 }
3784 }
3785
3786 return rv;
3787 }
3788
3789 static int handle_lan_get_msg_rsp(ipmi_smi_t intf,
3790 struct ipmi_smi_msg *msg)
3791 {
3792 struct ipmi_lan_addr lan_addr;
3793 struct ipmi_recv_msg *recv_msg;
3794
3795
3796 /*
3797 * This is 13, not 12, because the response must contain a
3798 * completion code.
3799 */
3800 if (msg->rsp_size < 13) {
3801 /* Message not big enough, just ignore it. */
3802 ipmi_inc_stat(intf, invalid_lan_responses);
3803 return 0;
3804 }
3805
3806 if (msg->rsp[2] != 0) {
3807 /* An error getting the response, just ignore it. */
3808 return 0;
3809 }
3810
3811 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3812 lan_addr.session_handle = msg->rsp[4];
3813 lan_addr.remote_SWID = msg->rsp[8];
3814 lan_addr.local_SWID = msg->rsp[5];
3815 lan_addr.channel = msg->rsp[3] & 0x0f;
3816 lan_addr.privilege = msg->rsp[3] >> 4;
3817 lan_addr.lun = msg->rsp[9] & 3;
3818
3819 /*
3820 * It's a response from a remote entity. Look up the sequence
3821 * number and handle the response.
3822 */
3823 if (intf_find_seq(intf,
3824 msg->rsp[9] >> 2,
3825 msg->rsp[3] & 0x0f,
3826 msg->rsp[10],
3827 (msg->rsp[6] >> 2) & (~1),
3828 (struct ipmi_addr *) &(lan_addr),
3829 &recv_msg)) {
3830 /*
3831 * We were unable to find the sequence number,
3832 * so just nuke the message.
3833 */
3834 ipmi_inc_stat(intf, unhandled_lan_responses);
3835 return 0;
3836 }
3837
3838 memcpy(recv_msg->msg_data,
3839 &(msg->rsp[11]),
3840 msg->rsp_size - 11);
3841 /*
3842 * The other fields matched, so no need to set them, except
3843 * for netfn, which needs to be the response that was
3844 * returned, not the request value.
3845 */
3846 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3847 recv_msg->msg.data = recv_msg->msg_data;
3848 recv_msg->msg.data_len = msg->rsp_size - 12;
3849 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3850 ipmi_inc_stat(intf, handled_lan_responses);
3851 deliver_response(recv_msg);
3852
3853 return 0;
3854 }
3855
3856 static int handle_lan_get_msg_cmd(ipmi_smi_t intf,
3857 struct ipmi_smi_msg *msg)
3858 {
3859 struct cmd_rcvr *rcvr;
3860 int rv = 0;
3861 unsigned char netfn;
3862 unsigned char cmd;
3863 unsigned char chan;
3864 ipmi_user_t user = NULL;
3865 struct ipmi_lan_addr *lan_addr;
3866 struct ipmi_recv_msg *recv_msg;
3867
3868 if (msg->rsp_size < 12) {
3869 /* Message not big enough, just ignore it. */
3870 ipmi_inc_stat(intf, invalid_commands);
3871 return 0;
3872 }
3873
3874 if (msg->rsp[2] != 0) {
3875 /* An error getting the response, just ignore it. */
3876 return 0;
3877 }
3878
3879 netfn = msg->rsp[6] >> 2;
3880 cmd = msg->rsp[10];
3881 chan = msg->rsp[3] & 0xf;
3882
3883 rcu_read_lock();
3884 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3885 if (rcvr) {
3886 user = rcvr->user;
3887 kref_get(&user->refcount);
3888 } else
3889 user = NULL;
3890 rcu_read_unlock();
3891
3892 if (user == NULL) {
3893 /* We didn't find a user, just give up. */
3894 ipmi_inc_stat(intf, unhandled_commands);
3895
3896 /*
3897 * Don't do anything with these messages, just allow
3898 * them to be freed.
3899 */
3900 rv = 0;
3901 } else {
3902 /* Deliver the message to the user. */
3903 ipmi_inc_stat(intf, handled_commands);
3904
3905 recv_msg = ipmi_alloc_recv_msg();
3906 if (!recv_msg) {
3907 /*
3908 * We couldn't allocate memory for the
3909 * message, so requeue it for handling later.
3910 */
3911 rv = 1;
3912 kref_put(&user->refcount, free_user);
3913 } else {
3914 /* Extract the source address from the data. */
3915 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3916 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3917 lan_addr->session_handle = msg->rsp[4];
3918 lan_addr->remote_SWID = msg->rsp[8];
3919 lan_addr->local_SWID = msg->rsp[5];
3920 lan_addr->lun = msg->rsp[9] & 3;
3921 lan_addr->channel = msg->rsp[3] & 0xf;
3922 lan_addr->privilege = msg->rsp[3] >> 4;
3923
3924 /*
3925 * Extract the rest of the message information
3926 * from the IPMB header.
3927 */
3928 recv_msg->user = user;
3929 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3930 recv_msg->msgid = msg->rsp[9] >> 2;
3931 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3932 recv_msg->msg.cmd = msg->rsp[10];
3933 recv_msg->msg.data = recv_msg->msg_data;
3934
3935 /*
3936 * We chop off 12, not 11 bytes because the checksum
3937 * at the end also needs to be removed.
3938 */
3939 recv_msg->msg.data_len = msg->rsp_size - 12;
3940 memcpy(recv_msg->msg_data,
3941 &(msg->rsp[11]),
3942 msg->rsp_size - 12);
3943 deliver_response(recv_msg);
3944 }
3945 }
3946
3947 return rv;
3948 }
3949
3950 /*
3951 * This routine will handle "Get Message" command responses with
3952 * channels that use an OEM Medium. The message format belongs to
3953 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3954 * Chapter 22, sections 22.6 and 22.24 for more details.
3955 */
3956 static int handle_oem_get_msg_cmd(ipmi_smi_t intf,
3957 struct ipmi_smi_msg *msg)
3958 {
3959 struct cmd_rcvr *rcvr;
3960 int rv = 0;
3961 unsigned char netfn;
3962 unsigned char cmd;
3963 unsigned char chan;
3964 ipmi_user_t user = NULL;
3965 struct ipmi_system_interface_addr *smi_addr;
3966 struct ipmi_recv_msg *recv_msg;
3967
3968 /*
3969 * We expect the OEM SW to perform error checking
3970 * so we just do some basic sanity checks
3971 */
3972 if (msg->rsp_size < 4) {
3973 /* Message not big enough, just ignore it. */
3974 ipmi_inc_stat(intf, invalid_commands);
3975 return 0;
3976 }
3977
3978 if (msg->rsp[2] != 0) {
3979 /* An error getting the response, just ignore it. */
3980 return 0;
3981 }
3982
3983 /*
3984 * This is an OEM Message so the OEM needs to know how
3985 * handle the message. We do no interpretation.
3986 */
3987 netfn = msg->rsp[0] >> 2;
3988 cmd = msg->rsp[1];
3989 chan = msg->rsp[3] & 0xf;
3990
3991 rcu_read_lock();
3992 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3993 if (rcvr) {
3994 user = rcvr->user;
3995 kref_get(&user->refcount);
3996 } else
3997 user = NULL;
3998 rcu_read_unlock();
3999
4000 if (user == NULL) {
4001 /* We didn't find a user, just give up. */
4002 ipmi_inc_stat(intf, unhandled_commands);
4003
4004 /*
4005 * Don't do anything with these messages, just allow
4006 * them to be freed.
4007 */
4008
4009 rv = 0;
4010 } else {
4011 /* Deliver the message to the user. */
4012 ipmi_inc_stat(intf, handled_commands);
4013
4014 recv_msg = ipmi_alloc_recv_msg();
4015 if (!recv_msg) {
4016 /*
4017 * We couldn't allocate memory for the
4018 * message, so requeue it for handling
4019 * later.
4020 */
4021 rv = 1;
4022 kref_put(&user->refcount, free_user);
4023 } else {
4024 /*
4025 * OEM Messages are expected to be delivered via
4026 * the system interface to SMS software. We might
4027 * need to visit this again depending on OEM
4028 * requirements
4029 */
4030 smi_addr = ((struct ipmi_system_interface_addr *)
4031 &(recv_msg->addr));
4032 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4033 smi_addr->channel = IPMI_BMC_CHANNEL;
4034 smi_addr->lun = msg->rsp[0] & 3;
4035
4036 recv_msg->user = user;
4037 recv_msg->user_msg_data = NULL;
4038 recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4039 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4040 recv_msg->msg.cmd = msg->rsp[1];
4041 recv_msg->msg.data = recv_msg->msg_data;
4042
4043 /*
4044 * The message starts at byte 4 which follows the
4045 * the Channel Byte in the "GET MESSAGE" command
4046 */
4047 recv_msg->msg.data_len = msg->rsp_size - 4;
4048 memcpy(recv_msg->msg_data,
4049 &(msg->rsp[4]),
4050 msg->rsp_size - 4);
4051 deliver_response(recv_msg);
4052 }
4053 }
4054
4055 return rv;
4056 }
4057
4058 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4059 struct ipmi_smi_msg *msg)
4060 {
4061 struct ipmi_system_interface_addr *smi_addr;
4062
4063 recv_msg->msgid = 0;
4064 smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
4065 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4066 smi_addr->channel = IPMI_BMC_CHANNEL;
4067 smi_addr->lun = msg->rsp[0] & 3;
4068 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4069 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4070 recv_msg->msg.cmd = msg->rsp[1];
4071 memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
4072 recv_msg->msg.data = recv_msg->msg_data;
4073 recv_msg->msg.data_len = msg->rsp_size - 3;
4074 }
4075
4076 static int handle_read_event_rsp(ipmi_smi_t intf,
4077 struct ipmi_smi_msg *msg)
4078 {
4079 struct ipmi_recv_msg *recv_msg, *recv_msg2;
4080 struct list_head msgs;
4081 ipmi_user_t user;
4082 int rv = 0;
4083 int deliver_count = 0;
4084 unsigned long flags;
4085
4086 if (msg->rsp_size < 19) {
4087 /* Message is too small to be an IPMB event. */
4088 ipmi_inc_stat(intf, invalid_events);
4089 return 0;
4090 }
4091
4092 if (msg->rsp[2] != 0) {
4093 /* An error getting the event, just ignore it. */
4094 return 0;
4095 }
4096
4097 INIT_LIST_HEAD(&msgs);
4098
4099 spin_lock_irqsave(&intf->events_lock, flags);
4100
4101 ipmi_inc_stat(intf, events);
4102
4103 /*
4104 * Allocate and fill in one message for every user that is
4105 * getting events.
4106 */
4107 rcu_read_lock();
4108 list_for_each_entry_rcu(user, &intf->users, link) {
4109 if (!user->gets_events)
4110 continue;
4111
4112 recv_msg = ipmi_alloc_recv_msg();
4113 if (!recv_msg) {
4114 rcu_read_unlock();
4115 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4116 link) {
4117 list_del(&recv_msg->link);
4118 ipmi_free_recv_msg(recv_msg);
4119 }
4120 /*
4121 * We couldn't allocate memory for the
4122 * message, so requeue it for handling
4123 * later.
4124 */
4125 rv = 1;
4126 goto out;
4127 }
4128
4129 deliver_count++;
4130
4131 copy_event_into_recv_msg(recv_msg, msg);
4132 recv_msg->user = user;
4133 kref_get(&user->refcount);
4134 list_add_tail(&(recv_msg->link), &msgs);
4135 }
4136 rcu_read_unlock();
4137
4138 if (deliver_count) {
4139 /* Now deliver all the messages. */
4140 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4141 list_del(&recv_msg->link);
4142 deliver_response(recv_msg);
4143 }
4144 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4145 /*
4146 * No one to receive the message, put it in queue if there's
4147 * not already too many things in the queue.
4148 */
4149 recv_msg = ipmi_alloc_recv_msg();
4150 if (!recv_msg) {
4151 /*
4152 * We couldn't allocate memory for the
4153 * message, so requeue it for handling
4154 * later.
4155 */
4156 rv = 1;
4157 goto out;
4158 }
4159
4160 copy_event_into_recv_msg(recv_msg, msg);
4161 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
4162 intf->waiting_events_count++;
4163 } else if (!intf->event_msg_printed) {
4164 /*
4165 * There's too many things in the queue, discard this
4166 * message.
4167 */
4168 dev_warn(intf->si_dev,
4169 PFX "Event queue full, discarding incoming events\n");
4170 intf->event_msg_printed = 1;
4171 }
4172
4173 out:
4174 spin_unlock_irqrestore(&(intf->events_lock), flags);
4175
4176 return rv;
4177 }
4178
4179 static int handle_bmc_rsp(ipmi_smi_t intf,
4180 struct ipmi_smi_msg *msg)
4181 {
4182 struct ipmi_recv_msg *recv_msg;
4183 struct ipmi_user *user;
4184
4185 recv_msg = (struct ipmi_recv_msg *) msg->user_data;
4186 if (recv_msg == NULL) {
4187 dev_warn(intf->si_dev,
4188 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vender for assistance\n");
4189 return 0;
4190 }
4191
4192 user = recv_msg->user;
4193 /* Make sure the user still exists. */
4194 if (user && !user->valid) {
4195 /* The user for the message went away, so give up. */
4196 ipmi_inc_stat(intf, unhandled_local_responses);
4197 ipmi_free_recv_msg(recv_msg);
4198 } else {
4199 struct ipmi_system_interface_addr *smi_addr;
4200
4201 ipmi_inc_stat(intf, handled_local_responses);
4202 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4203 recv_msg->msgid = msg->msgid;
4204 smi_addr = ((struct ipmi_system_interface_addr *)
4205 &(recv_msg->addr));
4206 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4207 smi_addr->channel = IPMI_BMC_CHANNEL;
4208 smi_addr->lun = msg->rsp[0] & 3;
4209 recv_msg->msg.netfn = msg->rsp[0] >> 2;
4210 recv_msg->msg.cmd = msg->rsp[1];
4211 memcpy(recv_msg->msg_data,
4212 &(msg->rsp[2]),
4213 msg->rsp_size - 2);
4214 recv_msg->msg.data = recv_msg->msg_data;
4215 recv_msg->msg.data_len = msg->rsp_size - 2;
4216 deliver_response(recv_msg);
4217 }
4218
4219 return 0;
4220 }
4221
4222 /*
4223 * Handle a received message. Return 1 if the message should be requeued,
4224 * 0 if the message should be freed, or -1 if the message should not
4225 * be freed or requeued.
4226 */
4227 static int handle_one_recv_msg(ipmi_smi_t intf,
4228 struct ipmi_smi_msg *msg)
4229 {
4230 int requeue;
4231 int chan;
4232
4233 #ifdef DEBUG_MSGING
4234 int m;
4235 printk("Recv:");
4236 for (m = 0; m < msg->rsp_size; m++)
4237 printk(" %2.2x", msg->rsp[m]);
4238 printk("\n");
4239 #endif
4240 if (msg->rsp_size < 2) {
4241 /* Message is too small to be correct. */
4242 dev_warn(intf->si_dev,
4243 PFX "BMC returned to small a message for netfn %x cmd %x, got %d bytes\n",
4244 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4245
4246 /* Generate an error response for the message. */
4247 msg->rsp[0] = msg->data[0] | (1 << 2);
4248 msg->rsp[1] = msg->data[1];
4249 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4250 msg->rsp_size = 3;
4251 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4252 || (msg->rsp[1] != msg->data[1])) {
4253 /*
4254 * The NetFN and Command in the response is not even
4255 * marginally correct.
4256 */
4257 dev_warn(intf->si_dev,
4258 PFX "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4259 (msg->data[0] >> 2) | 1, msg->data[1],
4260 msg->rsp[0] >> 2, msg->rsp[1]);
4261
4262 /* Generate an error response for the message. */
4263 msg->rsp[0] = msg->data[0] | (1 << 2);
4264 msg->rsp[1] = msg->data[1];
4265 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4266 msg->rsp_size = 3;
4267 }
4268
4269 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4270 && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4271 && (msg->user_data != NULL)) {
4272 /*
4273 * It's a response to a response we sent. For this we
4274 * deliver a send message response to the user.
4275 */
4276 struct ipmi_recv_msg *recv_msg = msg->user_data;
4277
4278 requeue = 0;
4279 if (msg->rsp_size < 2)
4280 /* Message is too small to be correct. */
4281 goto out;
4282
4283 chan = msg->data[2] & 0x0f;
4284 if (chan >= IPMI_MAX_CHANNELS)
4285 /* Invalid channel number */
4286 goto out;
4287
4288 if (!recv_msg)
4289 goto out;
4290
4291 /* Make sure the user still exists. */
4292 if (!recv_msg->user || !recv_msg->user->valid)
4293 goto out;
4294
4295 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4296 recv_msg->msg.data = recv_msg->msg_data;
4297 recv_msg->msg.data_len = 1;
4298 recv_msg->msg_data[0] = msg->rsp[2];
4299 deliver_response(recv_msg);
4300 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4301 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4302 struct ipmi_channel *chans;
4303
4304 /* It's from the receive queue. */
4305 chan = msg->rsp[3] & 0xf;
4306 if (chan >= IPMI_MAX_CHANNELS) {
4307 /* Invalid channel number */
4308 requeue = 0;
4309 goto out;
4310 }
4311
4312 /*
4313 * We need to make sure the channels have been initialized.
4314 * The channel_handler routine will set the "curr_channel"
4315 * equal to or greater than IPMI_MAX_CHANNELS when all the
4316 * channels for this interface have been initialized.
4317 */
4318 if (!intf->channels_ready) {
4319 requeue = 0; /* Throw the message away */
4320 goto out;
4321 }
4322
4323 chans = READ_ONCE(intf->channel_list)->c;
4324
4325 switch (chans[chan].medium) {
4326 case IPMI_CHANNEL_MEDIUM_IPMB:
4327 if (msg->rsp[4] & 0x04) {
4328 /*
4329 * It's a response, so find the
4330 * requesting message and send it up.
4331 */
4332 requeue = handle_ipmb_get_msg_rsp(intf, msg);
4333 } else {
4334 /*
4335 * It's a command to the SMS from some other
4336 * entity. Handle that.
4337 */
4338 requeue = handle_ipmb_get_msg_cmd(intf, msg);
4339 }
4340 break;
4341
4342 case IPMI_CHANNEL_MEDIUM_8023LAN:
4343 case IPMI_CHANNEL_MEDIUM_ASYNC:
4344 if (msg->rsp[6] & 0x04) {
4345 /*
4346 * It's a response, so find the
4347 * requesting message and send it up.
4348 */
4349 requeue = handle_lan_get_msg_rsp(intf, msg);
4350 } else {
4351 /*
4352 * It's a command to the SMS from some other
4353 * entity. Handle that.
4354 */
4355 requeue = handle_lan_get_msg_cmd(intf, msg);
4356 }
4357 break;
4358
4359 default:
4360 /* Check for OEM Channels. Clients had better
4361 register for these commands. */
4362 if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4363 && (chans[chan].medium
4364 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4365 requeue = handle_oem_get_msg_cmd(intf, msg);
4366 } else {
4367 /*
4368 * We don't handle the channel type, so just
4369 * free the message.
4370 */
4371 requeue = 0;
4372 }
4373 }
4374
4375 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4376 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4377 /* It's an asynchronous event. */
4378 requeue = handle_read_event_rsp(intf, msg);
4379 } else {
4380 /* It's a response from the local BMC. */
4381 requeue = handle_bmc_rsp(intf, msg);
4382 }
4383
4384 out:
4385 return requeue;
4386 }
4387
4388 /*
4389 * If there are messages in the queue or pretimeouts, handle them.
4390 */
4391 static void handle_new_recv_msgs(ipmi_smi_t intf)
4392 {
4393 struct ipmi_smi_msg *smi_msg;
4394 unsigned long flags = 0;
4395 int rv;
4396 int run_to_completion = intf->run_to_completion;
4397
4398 /* See if any waiting messages need to be processed. */
4399 if (!run_to_completion)
4400 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4401 while (!list_empty(&intf->waiting_rcv_msgs)) {
4402 smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4403 struct ipmi_smi_msg, link);
4404 list_del(&smi_msg->link);
4405 if (!run_to_completion)
4406 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4407 flags);
4408 rv = handle_one_recv_msg(intf, smi_msg);
4409 if (!run_to_completion)
4410 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4411 if (rv > 0) {
4412 /*
4413 * To preserve message order, quit if we
4414 * can't handle a message. Add the message
4415 * back at the head, this is safe because this
4416 * tasklet is the only thing that pulls the
4417 * messages.
4418 */
4419 list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4420 break;
4421 } else {
4422 if (rv == 0)
4423 /* Message handled */
4424 ipmi_free_smi_msg(smi_msg);
4425 /* If rv < 0, fatal error, del but don't free. */
4426 }
4427 }
4428 if (!run_to_completion)
4429 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4430
4431 /*
4432 * If the pretimout count is non-zero, decrement one from it and
4433 * deliver pretimeouts to all the users.
4434 */
4435 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4436 ipmi_user_t user;
4437
4438 rcu_read_lock();
4439 list_for_each_entry_rcu(user, &intf->users, link) {
4440 if (user->handler->ipmi_watchdog_pretimeout)
4441 user->handler->ipmi_watchdog_pretimeout(
4442 user->handler_data);
4443 }
4444 rcu_read_unlock();
4445 }
4446 }
4447
4448 static void smi_recv_tasklet(unsigned long val)
4449 {
4450 unsigned long flags = 0; /* keep us warning-free. */
4451 ipmi_smi_t intf = (ipmi_smi_t) val;
4452 int run_to_completion = intf->run_to_completion;
4453 struct ipmi_smi_msg *newmsg = NULL;
4454
4455 /*
4456 * Start the next message if available.
4457 *
4458 * Do this here, not in the actual receiver, because we may deadlock
4459 * because the lower layer is allowed to hold locks while calling
4460 * message delivery.
4461 */
4462
4463 rcu_read_lock();
4464
4465 if (!run_to_completion)
4466 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4467 if (intf->curr_msg == NULL && !intf->in_shutdown) {
4468 struct list_head *entry = NULL;
4469
4470 /* Pick the high priority queue first. */
4471 if (!list_empty(&intf->hp_xmit_msgs))
4472 entry = intf->hp_xmit_msgs.next;
4473 else if (!list_empty(&intf->xmit_msgs))
4474 entry = intf->xmit_msgs.next;
4475
4476 if (entry) {
4477 list_del(entry);
4478 newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4479 intf->curr_msg = newmsg;
4480 }
4481 }
4482 if (!run_to_completion)
4483 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4484 if (newmsg)
4485 intf->handlers->sender(intf->send_info, newmsg);
4486
4487 rcu_read_unlock();
4488
4489 handle_new_recv_msgs(intf);
4490 }
4491
4492 /* Handle a new message from the lower layer. */
4493 void ipmi_smi_msg_received(ipmi_smi_t intf,
4494 struct ipmi_smi_msg *msg)
4495 {
4496 unsigned long flags = 0; /* keep us warning-free. */
4497 int run_to_completion = intf->run_to_completion;
4498
4499 if ((msg->data_size >= 2)
4500 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4501 && (msg->data[1] == IPMI_SEND_MSG_CMD)
4502 && (msg->user_data == NULL)) {
4503
4504 if (intf->in_shutdown)
4505 goto free_msg;
4506
4507 /*
4508 * This is the local response to a command send, start
4509 * the timer for these. The user_data will not be
4510 * NULL if this is a response send, and we will let
4511 * response sends just go through.
4512 */
4513
4514 /*
4515 * Check for errors, if we get certain errors (ones
4516 * that mean basically we can try again later), we
4517 * ignore them and start the timer. Otherwise we
4518 * report the error immediately.
4519 */
4520 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4521 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4522 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4523 && (msg->rsp[2] != IPMI_BUS_ERR)
4524 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4525 int ch = msg->rsp[3] & 0xf;
4526 struct ipmi_channel *chans;
4527
4528 /* Got an error sending the message, handle it. */
4529
4530 chans = READ_ONCE(intf->channel_list)->c;
4531 if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4532 || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4533 ipmi_inc_stat(intf, sent_lan_command_errs);
4534 else
4535 ipmi_inc_stat(intf, sent_ipmb_command_errs);
4536 intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4537 } else
4538 /* The message was sent, start the timer. */
4539 intf_start_seq_timer(intf, msg->msgid);
4540
4541 free_msg:
4542 ipmi_free_smi_msg(msg);
4543 } else {
4544 /*
4545 * To preserve message order, we keep a queue and deliver from
4546 * a tasklet.
4547 */
4548 if (!run_to_completion)
4549 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4550 list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4551 if (!run_to_completion)
4552 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4553 flags);
4554 }
4555
4556 if (!run_to_completion)
4557 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4558 /*
4559 * We can get an asynchronous event or receive message in addition
4560 * to commands we send.
4561 */
4562 if (msg == intf->curr_msg)
4563 intf->curr_msg = NULL;
4564 if (!run_to_completion)
4565 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4566
4567 if (run_to_completion)
4568 smi_recv_tasklet((unsigned long) intf);
4569 else
4570 tasklet_schedule(&intf->recv_tasklet);
4571 }
4572 EXPORT_SYMBOL(ipmi_smi_msg_received);
4573
4574 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
4575 {
4576 if (intf->in_shutdown)
4577 return;
4578
4579 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4580 tasklet_schedule(&intf->recv_tasklet);
4581 }
4582 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4583
4584 static struct ipmi_smi_msg *
4585 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
4586 unsigned char seq, long seqid)
4587 {
4588 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4589 if (!smi_msg)
4590 /*
4591 * If we can't allocate the message, then just return, we
4592 * get 4 retries, so this should be ok.
4593 */
4594 return NULL;
4595
4596 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4597 smi_msg->data_size = recv_msg->msg.data_len;
4598 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4599
4600 #ifdef DEBUG_MSGING
4601 {
4602 int m;
4603 printk("Resend: ");
4604 for (m = 0; m < smi_msg->data_size; m++)
4605 printk(" %2.2x", smi_msg->data[m]);
4606 printk("\n");
4607 }
4608 #endif
4609 return smi_msg;
4610 }
4611
4612 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
4613 struct list_head *timeouts,
4614 unsigned long timeout_period,
4615 int slot, unsigned long *flags,
4616 unsigned int *waiting_msgs)
4617 {
4618 struct ipmi_recv_msg *msg;
4619 const struct ipmi_smi_handlers *handlers;
4620
4621 if (intf->in_shutdown)
4622 return;
4623
4624 if (!ent->inuse)
4625 return;
4626
4627 if (timeout_period < ent->timeout) {
4628 ent->timeout -= timeout_period;
4629 (*waiting_msgs)++;
4630 return;
4631 }
4632
4633 if (ent->retries_left == 0) {
4634 /* The message has used all its retries. */
4635 ent->inuse = 0;
4636 msg = ent->recv_msg;
4637 list_add_tail(&msg->link, timeouts);
4638 if (ent->broadcast)
4639 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4640 else if (is_lan_addr(&ent->recv_msg->addr))
4641 ipmi_inc_stat(intf, timed_out_lan_commands);
4642 else
4643 ipmi_inc_stat(intf, timed_out_ipmb_commands);
4644 } else {
4645 struct ipmi_smi_msg *smi_msg;
4646 /* More retries, send again. */
4647
4648 (*waiting_msgs)++;
4649
4650 /*
4651 * Start with the max timer, set to normal timer after
4652 * the message is sent.
4653 */
4654 ent->timeout = MAX_MSG_TIMEOUT;
4655 ent->retries_left--;
4656 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4657 ent->seqid);
4658 if (!smi_msg) {
4659 if (is_lan_addr(&ent->recv_msg->addr))
4660 ipmi_inc_stat(intf,
4661 dropped_rexmit_lan_commands);
4662 else
4663 ipmi_inc_stat(intf,
4664 dropped_rexmit_ipmb_commands);
4665 return;
4666 }
4667
4668 spin_unlock_irqrestore(&intf->seq_lock, *flags);
4669
4670 /*
4671 * Send the new message. We send with a zero
4672 * priority. It timed out, I doubt time is that
4673 * critical now, and high priority messages are really
4674 * only for messages to the local MC, which don't get
4675 * resent.
4676 */
4677 handlers = intf->handlers;
4678 if (handlers) {
4679 if (is_lan_addr(&ent->recv_msg->addr))
4680 ipmi_inc_stat(intf,
4681 retransmitted_lan_commands);
4682 else
4683 ipmi_inc_stat(intf,
4684 retransmitted_ipmb_commands);
4685
4686 smi_send(intf, handlers, smi_msg, 0);
4687 } else
4688 ipmi_free_smi_msg(smi_msg);
4689
4690 spin_lock_irqsave(&intf->seq_lock, *flags);
4691 }
4692 }
4693
4694 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf,
4695 unsigned long timeout_period)
4696 {
4697 struct list_head timeouts;
4698 struct ipmi_recv_msg *msg, *msg2;
4699 unsigned long flags;
4700 int i;
4701 unsigned int waiting_msgs = 0;
4702
4703 if (!intf->bmc_registered) {
4704 kref_get(&intf->refcount);
4705 if (!schedule_work(&intf->bmc_reg_work)) {
4706 kref_put(&intf->refcount, intf_free);
4707 waiting_msgs++;
4708 }
4709 }
4710
4711 /*
4712 * Go through the seq table and find any messages that
4713 * have timed out, putting them in the timeouts
4714 * list.
4715 */
4716 INIT_LIST_HEAD(&timeouts);
4717 spin_lock_irqsave(&intf->seq_lock, flags);
4718 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4719 check_msg_timeout(intf, &(intf->seq_table[i]),
4720 &timeouts, timeout_period, i,
4721 &flags, &waiting_msgs);
4722 spin_unlock_irqrestore(&intf->seq_lock, flags);
4723
4724 list_for_each_entry_safe(msg, msg2, &timeouts, link)
4725 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4726
4727 /*
4728 * Maintenance mode handling. Check the timeout
4729 * optimistically before we claim the lock. It may
4730 * mean a timeout gets missed occasionally, but that
4731 * only means the timeout gets extended by one period
4732 * in that case. No big deal, and it avoids the lock
4733 * most of the time.
4734 */
4735 if (intf->auto_maintenance_timeout > 0) {
4736 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4737 if (intf->auto_maintenance_timeout > 0) {
4738 intf->auto_maintenance_timeout
4739 -= timeout_period;
4740 if (!intf->maintenance_mode
4741 && (intf->auto_maintenance_timeout <= 0)) {
4742 intf->maintenance_mode_enable = false;
4743 maintenance_mode_update(intf);
4744 }
4745 }
4746 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4747 flags);
4748 }
4749
4750 tasklet_schedule(&intf->recv_tasklet);
4751
4752 return waiting_msgs;
4753 }
4754
4755 static void ipmi_request_event(ipmi_smi_t intf)
4756 {
4757 /* No event requests when in maintenance mode. */
4758 if (intf->maintenance_mode_enable)
4759 return;
4760
4761 if (!intf->in_shutdown)
4762 intf->handlers->request_events(intf->send_info);
4763 }
4764
4765 static struct timer_list ipmi_timer;
4766
4767 static atomic_t stop_operation;
4768
4769 static void ipmi_timeout(struct timer_list *unused)
4770 {
4771 ipmi_smi_t intf;
4772 int nt = 0;
4773
4774 if (atomic_read(&stop_operation))
4775 return;
4776
4777 rcu_read_lock();
4778 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4779 int lnt = 0;
4780
4781 if (atomic_read(&intf->event_waiters)) {
4782 intf->ticks_to_req_ev--;
4783 if (intf->ticks_to_req_ev == 0) {
4784 ipmi_request_event(intf);
4785 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4786 }
4787 lnt++;
4788 }
4789
4790 lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4791
4792 lnt = !!lnt;
4793 if (lnt != intf->last_needs_timer &&
4794 intf->handlers->set_need_watch)
4795 intf->handlers->set_need_watch(intf->send_info, lnt);
4796 intf->last_needs_timer = lnt;
4797
4798 nt += lnt;
4799 }
4800 rcu_read_unlock();
4801
4802 if (nt)
4803 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4804 }
4805
4806 static void need_waiter(ipmi_smi_t intf)
4807 {
4808 /* Racy, but worst case we start the timer twice. */
4809 if (!timer_pending(&ipmi_timer))
4810 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4811 }
4812
4813 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4814 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4815
4816 static void free_smi_msg(struct ipmi_smi_msg *msg)
4817 {
4818 atomic_dec(&smi_msg_inuse_count);
4819 kfree(msg);
4820 }
4821
4822 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4823 {
4824 struct ipmi_smi_msg *rv;
4825 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4826 if (rv) {
4827 rv->done = free_smi_msg;
4828 rv->user_data = NULL;
4829 atomic_inc(&smi_msg_inuse_count);
4830 }
4831 return rv;
4832 }
4833 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4834
4835 static void free_recv_msg(struct ipmi_recv_msg *msg)
4836 {
4837 atomic_dec(&recv_msg_inuse_count);
4838 kfree(msg);
4839 }
4840
4841 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4842 {
4843 struct ipmi_recv_msg *rv;
4844
4845 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4846 if (rv) {
4847 rv->user = NULL;
4848 rv->done = free_recv_msg;
4849 atomic_inc(&recv_msg_inuse_count);
4850 }
4851 return rv;
4852 }
4853
4854 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4855 {
4856 if (msg->user)
4857 kref_put(&msg->user->refcount, free_user);
4858 msg->done(msg);
4859 }
4860 EXPORT_SYMBOL(ipmi_free_recv_msg);
4861
4862 static atomic_t panic_done_count = ATOMIC_INIT(0);
4863
4864 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4865 {
4866 atomic_dec(&panic_done_count);
4867 }
4868
4869 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4870 {
4871 atomic_dec(&panic_done_count);
4872 }
4873
4874 /*
4875 * Inside a panic, send a message and wait for a response.
4876 */
4877 static void ipmi_panic_request_and_wait(ipmi_smi_t intf,
4878 struct ipmi_addr *addr,
4879 struct kernel_ipmi_msg *msg)
4880 {
4881 struct ipmi_smi_msg smi_msg;
4882 struct ipmi_recv_msg recv_msg;
4883 int rv;
4884
4885 smi_msg.done = dummy_smi_done_handler;
4886 recv_msg.done = dummy_recv_done_handler;
4887 atomic_add(2, &panic_done_count);
4888 rv = i_ipmi_request(NULL,
4889 intf,
4890 addr,
4891 0,
4892 msg,
4893 intf,
4894 &smi_msg,
4895 &recv_msg,
4896 0,
4897 intf->addrinfo[0].address,
4898 intf->addrinfo[0].lun,
4899 0, 1); /* Don't retry, and don't wait. */
4900 if (rv)
4901 atomic_sub(2, &panic_done_count);
4902 else if (intf->handlers->flush_messages)
4903 intf->handlers->flush_messages(intf->send_info);
4904
4905 while (atomic_read(&panic_done_count) != 0)
4906 ipmi_poll(intf);
4907 }
4908
4909 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4910 {
4911 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4912 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4913 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4914 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4915 /* A get event receiver command, save it. */
4916 intf->event_receiver = msg->msg.data[1];
4917 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4918 }
4919 }
4920
4921 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4922 {
4923 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4924 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4925 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4926 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4927 /*
4928 * A get device id command, save if we are an event
4929 * receiver or generator.
4930 */
4931 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4932 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4933 }
4934 }
4935
4936 static void send_panic_events(char *str)
4937 {
4938 struct kernel_ipmi_msg msg;
4939 ipmi_smi_t intf;
4940 unsigned char data[16];
4941 struct ipmi_system_interface_addr *si;
4942 struct ipmi_addr addr;
4943
4944 if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
4945 return;
4946
4947 si = (struct ipmi_system_interface_addr *) &addr;
4948 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4949 si->channel = IPMI_BMC_CHANNEL;
4950 si->lun = 0;
4951
4952 /* Fill in an event telling that we have failed. */
4953 msg.netfn = 0x04; /* Sensor or Event. */
4954 msg.cmd = 2; /* Platform event command. */
4955 msg.data = data;
4956 msg.data_len = 8;
4957 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4958 data[1] = 0x03; /* This is for IPMI 1.0. */
4959 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4960 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4961 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4962
4963 /*
4964 * Put a few breadcrumbs in. Hopefully later we can add more things
4965 * to make the panic events more useful.
4966 */
4967 if (str) {
4968 data[3] = str[0];
4969 data[6] = str[1];
4970 data[7] = str[2];
4971 }
4972
4973 /* For every registered interface, send the event. */
4974 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4975 if (!intf->handlers || !intf->handlers->poll)
4976 /* Interface is not ready or can't run at panic time. */
4977 continue;
4978
4979 /* Send the event announcing the panic. */
4980 ipmi_panic_request_and_wait(intf, &addr, &msg);
4981 }
4982
4983 /*
4984 * On every interface, dump a bunch of OEM event holding the
4985 * string.
4986 */
4987 if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
4988 return;
4989
4990 /* For every registered interface, send the event. */
4991 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4992 char *p = str;
4993 struct ipmi_ipmb_addr *ipmb;
4994 int j;
4995
4996 if (intf->intf_num == -1)
4997 /* Interface was not ready yet. */
4998 continue;
4999
5000 /*
5001 * intf_num is used as an marker to tell if the
5002 * interface is valid. Thus we need a read barrier to
5003 * make sure data fetched before checking intf_num
5004 * won't be used.
5005 */
5006 smp_rmb();
5007
5008 /*
5009 * First job here is to figure out where to send the
5010 * OEM events. There's no way in IPMI to send OEM
5011 * events using an event send command, so we have to
5012 * find the SEL to put them in and stick them in
5013 * there.
5014 */
5015
5016 /* Get capabilities from the get device id. */
5017 intf->local_sel_device = 0;
5018 intf->local_event_generator = 0;
5019 intf->event_receiver = 0;
5020
5021 /* Request the device info from the local MC. */
5022 msg.netfn = IPMI_NETFN_APP_REQUEST;
5023 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
5024 msg.data = NULL;
5025 msg.data_len = 0;
5026 intf->null_user_handler = device_id_fetcher;
5027 ipmi_panic_request_and_wait(intf, &addr, &msg);
5028
5029 if (intf->local_event_generator) {
5030 /* Request the event receiver from the local MC. */
5031 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5032 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5033 msg.data = NULL;
5034 msg.data_len = 0;
5035 intf->null_user_handler = event_receiver_fetcher;
5036 ipmi_panic_request_and_wait(intf, &addr, &msg);
5037 }
5038 intf->null_user_handler = NULL;
5039
5040 /*
5041 * Validate the event receiver. The low bit must not
5042 * be 1 (it must be a valid IPMB address), it cannot
5043 * be zero, and it must not be my address.
5044 */
5045 if (((intf->event_receiver & 1) == 0)
5046 && (intf->event_receiver != 0)
5047 && (intf->event_receiver != intf->addrinfo[0].address)) {
5048 /*
5049 * The event receiver is valid, send an IPMB
5050 * message.
5051 */
5052 ipmb = (struct ipmi_ipmb_addr *) &addr;
5053 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5054 ipmb->channel = 0; /* FIXME - is this right? */
5055 ipmb->lun = intf->event_receiver_lun;
5056 ipmb->slave_addr = intf->event_receiver;
5057 } else if (intf->local_sel_device) {
5058 /*
5059 * The event receiver was not valid (or was
5060 * me), but I am an SEL device, just dump it
5061 * in my SEL.
5062 */
5063 si = (struct ipmi_system_interface_addr *) &addr;
5064 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5065 si->channel = IPMI_BMC_CHANNEL;
5066 si->lun = 0;
5067 } else
5068 continue; /* No where to send the event. */
5069
5070 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5071 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5072 msg.data = data;
5073 msg.data_len = 16;
5074
5075 j = 0;
5076 while (*p) {
5077 int size = strlen(p);
5078
5079 if (size > 11)
5080 size = 11;
5081 data[0] = 0;
5082 data[1] = 0;
5083 data[2] = 0xf0; /* OEM event without timestamp. */
5084 data[3] = intf->addrinfo[0].address;
5085 data[4] = j++; /* sequence # */
5086 /*
5087 * Always give 11 bytes, so strncpy will fill
5088 * it with zeroes for me.
5089 */
5090 strncpy(data+5, p, 11);
5091 p += size;
5092
5093 ipmi_panic_request_and_wait(intf, &addr, &msg);
5094 }
5095 }
5096 }
5097
5098 static int has_panicked;
5099
5100 static int panic_event(struct notifier_block *this,
5101 unsigned long event,
5102 void *ptr)
5103 {
5104 ipmi_smi_t intf;
5105
5106 if (has_panicked)
5107 return NOTIFY_DONE;
5108 has_panicked = 1;
5109
5110 /* For every registered interface, set it to run to completion. */
5111 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5112 if (!intf->handlers)
5113 /* Interface is not ready. */
5114 continue;
5115
5116 /*
5117 * If we were interrupted while locking xmit_msgs_lock or
5118 * waiting_rcv_msgs_lock, the corresponding list may be
5119 * corrupted. In this case, drop items on the list for
5120 * the safety.
5121 */
5122 if (!spin_trylock(&intf->xmit_msgs_lock)) {
5123 INIT_LIST_HEAD(&intf->xmit_msgs);
5124 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5125 } else
5126 spin_unlock(&intf->xmit_msgs_lock);
5127
5128 if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5129 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5130 else
5131 spin_unlock(&intf->waiting_rcv_msgs_lock);
5132
5133 intf->run_to_completion = 1;
5134 if (intf->handlers->set_run_to_completion)
5135 intf->handlers->set_run_to_completion(intf->send_info,
5136 1);
5137 }
5138
5139 send_panic_events(ptr);
5140
5141 return NOTIFY_DONE;
5142 }
5143
5144 static struct notifier_block panic_block = {
5145 .notifier_call = panic_event,
5146 .next = NULL,
5147 .priority = 200 /* priority: INT_MAX >= x >= 0 */
5148 };
5149
5150 static int ipmi_init_msghandler(void)
5151 {
5152 int rv;
5153
5154 if (initialized)
5155 return 0;
5156
5157 rv = driver_register(&ipmidriver.driver);
5158 if (rv) {
5159 pr_err(PFX "Could not register IPMI driver\n");
5160 return rv;
5161 }
5162
5163 pr_info("ipmi message handler version " IPMI_DRIVER_VERSION "\n");
5164
5165 #ifdef CONFIG_IPMI_PROC_INTERFACE
5166 proc_ipmi_root = proc_mkdir("ipmi", NULL);
5167 if (!proc_ipmi_root) {
5168 pr_err(PFX "Unable to create IPMI proc dir");
5169 driver_unregister(&ipmidriver.driver);
5170 return -ENOMEM;
5171 }
5172
5173 #endif /* CONFIG_IPMI_PROC_INTERFACE */
5174
5175 timer_setup(&ipmi_timer, ipmi_timeout, 0);
5176 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5177
5178 atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5179
5180 initialized = 1;
5181
5182 return 0;
5183 }
5184
5185 static int __init ipmi_init_msghandler_mod(void)
5186 {
5187 ipmi_init_msghandler();
5188 return 0;
5189 }
5190
5191 static void __exit cleanup_ipmi(void)
5192 {
5193 int count;
5194
5195 if (!initialized)
5196 return;
5197
5198 atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
5199
5200 /*
5201 * This can't be called if any interfaces exist, so no worry
5202 * about shutting down the interfaces.
5203 */
5204
5205 /*
5206 * Tell the timer to stop, then wait for it to stop. This
5207 * avoids problems with race conditions removing the timer
5208 * here.
5209 */
5210 atomic_inc(&stop_operation);
5211 del_timer_sync(&ipmi_timer);
5212
5213 #ifdef CONFIG_IPMI_PROC_INTERFACE
5214 proc_remove(proc_ipmi_root);
5215 #endif /* CONFIG_IPMI_PROC_INTERFACE */
5216
5217 driver_unregister(&ipmidriver.driver);
5218
5219 initialized = 0;
5220
5221 /* Check for buffer leaks. */
5222 count = atomic_read(&smi_msg_inuse_count);
5223 if (count != 0)
5224 pr_warn(PFX "SMI message count %d at exit\n", count);
5225 count = atomic_read(&recv_msg_inuse_count);
5226 if (count != 0)
5227 pr_warn(PFX "recv message count %d at exit\n", count);
5228 }
5229 module_exit(cleanup_ipmi);
5230
5231 module_init(ipmi_init_msghandler_mod);
5232 MODULE_LICENSE("GPL");
5233 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5234 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
5235 " interface.");
5236 MODULE_VERSION(IPMI_DRIVER_VERSION);
5237 MODULE_SOFTDEP("post: ipmi_devintf");