]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/drm_vblank.c
treewide: setup_timer() -> timer_setup()
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / drm_vblank.c
1 /*
2 * drm_irq.c IRQ and vblank support
3 *
4 * \author Rickard E. (Rik) Faith <faith@valinux.com>
5 * \author Gareth Hughes <gareth@valinux.com>
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27 #include <drm/drm_vblank.h>
28 #include <drm/drmP.h>
29 #include <linux/export.h>
30
31 #include "drm_trace.h"
32 #include "drm_internal.h"
33
34 /**
35 * DOC: vblank handling
36 *
37 * Vertical blanking plays a major role in graphics rendering. To achieve
38 * tear-free display, users must synchronize page flips and/or rendering to
39 * vertical blanking. The DRM API offers ioctls to perform page flips
40 * synchronized to vertical blanking and wait for vertical blanking.
41 *
42 * The DRM core handles most of the vertical blanking management logic, which
43 * involves filtering out spurious interrupts, keeping race-free blanking
44 * counters, coping with counter wrap-around and resets and keeping use counts.
45 * It relies on the driver to generate vertical blanking interrupts and
46 * optionally provide a hardware vertical blanking counter.
47 *
48 * Drivers must initialize the vertical blanking handling core with a call to
49 * drm_vblank_init(). Minimally, a driver needs to implement
50 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
51 * drm_crtc_handle_vblank() in it's vblank interrupt handler for working vblank
52 * support.
53 *
54 * Vertical blanking interrupts can be enabled by the DRM core or by drivers
55 * themselves (for instance to handle page flipping operations). The DRM core
56 * maintains a vertical blanking use count to ensure that the interrupts are not
57 * disabled while a user still needs them. To increment the use count, drivers
58 * call drm_crtc_vblank_get() and release the vblank reference again with
59 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
60 * guaranteed to be enabled.
61 *
62 * On many hardware disabling the vblank interrupt cannot be done in a race-free
63 * manner, see &drm_driver.vblank_disable_immediate and
64 * &drm_driver.max_vblank_count. In that case the vblank core only disables the
65 * vblanks after a timer has expired, which can be configured through the
66 * ``vblankoffdelay`` module parameter.
67 */
68
69 /* Retry timestamp calculation up to 3 times to satisfy
70 * drm_timestamp_precision before giving up.
71 */
72 #define DRM_TIMESTAMP_MAXRETRIES 3
73
74 /* Threshold in nanoseconds for detection of redundant
75 * vblank irq in drm_handle_vblank(). 1 msec should be ok.
76 */
77 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
78
79 static bool
80 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
81 ktime_t *tvblank, bool in_vblank_irq);
82
83 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */
84
85 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */
86
87 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
88 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
89 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
90 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
91
92 static void store_vblank(struct drm_device *dev, unsigned int pipe,
93 u32 vblank_count_inc,
94 ktime_t t_vblank, u32 last)
95 {
96 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
97
98 assert_spin_locked(&dev->vblank_time_lock);
99
100 vblank->last = last;
101
102 write_seqlock(&vblank->seqlock);
103 vblank->time = t_vblank;
104 vblank->count += vblank_count_inc;
105 write_sequnlock(&vblank->seqlock);
106 }
107
108 /*
109 * "No hw counter" fallback implementation of .get_vblank_counter() hook,
110 * if there is no useable hardware frame counter available.
111 */
112 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
113 {
114 WARN_ON_ONCE(dev->max_vblank_count != 0);
115 return 0;
116 }
117
118 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
119 {
120 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
121 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
122
123 if (crtc->funcs->get_vblank_counter)
124 return crtc->funcs->get_vblank_counter(crtc);
125 }
126
127 if (dev->driver->get_vblank_counter)
128 return dev->driver->get_vblank_counter(dev, pipe);
129
130 return drm_vblank_no_hw_counter(dev, pipe);
131 }
132
133 /*
134 * Reset the stored timestamp for the current vblank count to correspond
135 * to the last vblank occurred.
136 *
137 * Only to be called from drm_crtc_vblank_on().
138 *
139 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
140 * device vblank fields.
141 */
142 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
143 {
144 u32 cur_vblank;
145 bool rc;
146 ktime_t t_vblank;
147 int count = DRM_TIMESTAMP_MAXRETRIES;
148
149 spin_lock(&dev->vblank_time_lock);
150
151 /*
152 * sample the current counter to avoid random jumps
153 * when drm_vblank_enable() applies the diff
154 */
155 do {
156 cur_vblank = __get_vblank_counter(dev, pipe);
157 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
158 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
159
160 /*
161 * Only reinitialize corresponding vblank timestamp if high-precision query
162 * available and didn't fail. Otherwise reinitialize delayed at next vblank
163 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
164 */
165 if (!rc)
166 t_vblank = 0;
167
168 /*
169 * +1 to make sure user will never see the same
170 * vblank counter value before and after a modeset
171 */
172 store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
173
174 spin_unlock(&dev->vblank_time_lock);
175 }
176
177 /*
178 * Call back into the driver to update the appropriate vblank counter
179 * (specified by @pipe). Deal with wraparound, if it occurred, and
180 * update the last read value so we can deal with wraparound on the next
181 * call if necessary.
182 *
183 * Only necessary when going from off->on, to account for frames we
184 * didn't get an interrupt for.
185 *
186 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
187 * device vblank fields.
188 */
189 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
190 bool in_vblank_irq)
191 {
192 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
193 u32 cur_vblank, diff;
194 bool rc;
195 ktime_t t_vblank;
196 int count = DRM_TIMESTAMP_MAXRETRIES;
197 int framedur_ns = vblank->framedur_ns;
198
199 /*
200 * Interrupts were disabled prior to this call, so deal with counter
201 * wrap if needed.
202 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events
203 * here if the register is small or we had vblank interrupts off for
204 * a long time.
205 *
206 * We repeat the hardware vblank counter & timestamp query until
207 * we get consistent results. This to prevent races between gpu
208 * updating its hardware counter while we are retrieving the
209 * corresponding vblank timestamp.
210 */
211 do {
212 cur_vblank = __get_vblank_counter(dev, pipe);
213 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
214 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
215
216 if (dev->max_vblank_count != 0) {
217 /* trust the hw counter when it's around */
218 diff = (cur_vblank - vblank->last) & dev->max_vblank_count;
219 } else if (rc && framedur_ns) {
220 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
221
222 /*
223 * Figure out how many vblanks we've missed based
224 * on the difference in the timestamps and the
225 * frame/field duration.
226 */
227 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
228
229 if (diff == 0 && in_vblank_irq)
230 DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored."
231 " diff_ns = %lld, framedur_ns = %d)\n",
232 pipe, (long long) diff_ns, framedur_ns);
233 } else {
234 /* some kind of default for drivers w/o accurate vbl timestamping */
235 diff = in_vblank_irq ? 1 : 0;
236 }
237
238 /*
239 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
240 * interval? If so then vblank irqs keep running and it will likely
241 * happen that the hardware vblank counter is not trustworthy as it
242 * might reset at some point in that interval and vblank timestamps
243 * are not trustworthy either in that interval. Iow. this can result
244 * in a bogus diff >> 1 which must be avoided as it would cause
245 * random large forward jumps of the software vblank counter.
246 */
247 if (diff > 1 && (vblank->inmodeset & 0x2)) {
248 DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u"
249 " due to pre-modeset.\n", pipe, diff);
250 diff = 1;
251 }
252
253 DRM_DEBUG_VBL("updating vblank count on crtc %u:"
254 " current=%llu, diff=%u, hw=%u hw_last=%u\n",
255 pipe, vblank->count, diff, cur_vblank, vblank->last);
256
257 if (diff == 0) {
258 WARN_ON_ONCE(cur_vblank != vblank->last);
259 return;
260 }
261
262 /*
263 * Only reinitialize corresponding vblank timestamp if high-precision query
264 * available and didn't fail, or we were called from the vblank interrupt.
265 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
266 * for now, to mark the vblanktimestamp as invalid.
267 */
268 if (!rc && !in_vblank_irq)
269 t_vblank = 0;
270
271 store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
272 }
273
274 static u32 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
275 {
276 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
277
278 if (WARN_ON(pipe >= dev->num_crtcs))
279 return 0;
280
281 return vblank->count;
282 }
283
284 /**
285 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
286 * @crtc: which counter to retrieve
287 *
288 * This function is similar to drm_crtc_vblank_count() but this function
289 * interpolates to handle a race with vblank interrupts using the high precision
290 * timestamping support.
291 *
292 * This is mostly useful for hardware that can obtain the scanout position, but
293 * doesn't have a hardware frame counter.
294 */
295 u32 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
296 {
297 struct drm_device *dev = crtc->dev;
298 unsigned int pipe = drm_crtc_index(crtc);
299 u32 vblank;
300 unsigned long flags;
301
302 WARN_ONCE(drm_debug & DRM_UT_VBL && !dev->driver->get_vblank_timestamp,
303 "This function requires support for accurate vblank timestamps.");
304
305 spin_lock_irqsave(&dev->vblank_time_lock, flags);
306
307 drm_update_vblank_count(dev, pipe, false);
308 vblank = drm_vblank_count(dev, pipe);
309
310 spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
311
312 return vblank;
313 }
314 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
315
316 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
317 {
318 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
319 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
320
321 if (crtc->funcs->disable_vblank) {
322 crtc->funcs->disable_vblank(crtc);
323 return;
324 }
325 }
326
327 dev->driver->disable_vblank(dev, pipe);
328 }
329
330 /*
331 * Disable vblank irq's on crtc, make sure that last vblank count
332 * of hardware and corresponding consistent software vblank counter
333 * are preserved, even if there are any spurious vblank irq's after
334 * disable.
335 */
336 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
337 {
338 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
339 unsigned long irqflags;
340
341 assert_spin_locked(&dev->vbl_lock);
342
343 /* Prevent vblank irq processing while disabling vblank irqs,
344 * so no updates of timestamps or count can happen after we've
345 * disabled. Needed to prevent races in case of delayed irq's.
346 */
347 spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
348
349 /*
350 * Only disable vblank interrupts if they're enabled. This avoids
351 * calling the ->disable_vblank() operation in atomic context with the
352 * hardware potentially runtime suspended.
353 */
354 if (vblank->enabled) {
355 __disable_vblank(dev, pipe);
356 vblank->enabled = false;
357 }
358
359 /*
360 * Always update the count and timestamp to maintain the
361 * appearance that the counter has been ticking all along until
362 * this time. This makes the count account for the entire time
363 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
364 */
365 drm_update_vblank_count(dev, pipe, false);
366
367 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
368 }
369
370 static void vblank_disable_fn(struct timer_list *t)
371 {
372 struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
373 struct drm_device *dev = vblank->dev;
374 unsigned int pipe = vblank->pipe;
375 unsigned long irqflags;
376
377 spin_lock_irqsave(&dev->vbl_lock, irqflags);
378 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
379 DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
380 drm_vblank_disable_and_save(dev, pipe);
381 }
382 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
383 }
384
385 void drm_vblank_cleanup(struct drm_device *dev)
386 {
387 unsigned int pipe;
388
389 /* Bail if the driver didn't call drm_vblank_init() */
390 if (dev->num_crtcs == 0)
391 return;
392
393 for (pipe = 0; pipe < dev->num_crtcs; pipe++) {
394 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
395
396 WARN_ON(READ_ONCE(vblank->enabled) &&
397 drm_core_check_feature(dev, DRIVER_MODESET));
398
399 del_timer_sync(&vblank->disable_timer);
400 }
401
402 kfree(dev->vblank);
403
404 dev->num_crtcs = 0;
405 }
406
407 /**
408 * drm_vblank_init - initialize vblank support
409 * @dev: DRM device
410 * @num_crtcs: number of CRTCs supported by @dev
411 *
412 * This function initializes vblank support for @num_crtcs display pipelines.
413 * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for
414 * drivers with a &drm_driver.release callback.
415 *
416 * Returns:
417 * Zero on success or a negative error code on failure.
418 */
419 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
420 {
421 int ret = -ENOMEM;
422 unsigned int i;
423
424 spin_lock_init(&dev->vbl_lock);
425 spin_lock_init(&dev->vblank_time_lock);
426
427 dev->num_crtcs = num_crtcs;
428
429 dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
430 if (!dev->vblank)
431 goto err;
432
433 for (i = 0; i < num_crtcs; i++) {
434 struct drm_vblank_crtc *vblank = &dev->vblank[i];
435
436 vblank->dev = dev;
437 vblank->pipe = i;
438 init_waitqueue_head(&vblank->queue);
439 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
440 seqlock_init(&vblank->seqlock);
441 }
442
443 DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n");
444
445 /* Driver specific high-precision vblank timestamping supported? */
446 if (dev->driver->get_vblank_timestamp)
447 DRM_INFO("Driver supports precise vblank timestamp query.\n");
448 else
449 DRM_INFO("No driver support for vblank timestamp query.\n");
450
451 /* Must have precise timestamping for reliable vblank instant disable */
452 if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) {
453 dev->vblank_disable_immediate = false;
454 DRM_INFO("Setting vblank_disable_immediate to false because "
455 "get_vblank_timestamp == NULL\n");
456 }
457
458 return 0;
459
460 err:
461 dev->num_crtcs = 0;
462 return ret;
463 }
464 EXPORT_SYMBOL(drm_vblank_init);
465
466 /**
467 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
468 * @crtc: which CRTC's vblank waitqueue to retrieve
469 *
470 * This function returns a pointer to the vblank waitqueue for the CRTC.
471 * Drivers can use this to implement vblank waits using wait_event() and related
472 * functions.
473 */
474 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
475 {
476 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
477 }
478 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
479
480
481 /**
482 * drm_calc_timestamping_constants - calculate vblank timestamp constants
483 * @crtc: drm_crtc whose timestamp constants should be updated.
484 * @mode: display mode containing the scanout timings
485 *
486 * Calculate and store various constants which are later needed by vblank and
487 * swap-completion timestamping, e.g, by
488 * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true
489 * scanout timing, so they take things like panel scaling or other adjustments
490 * into account.
491 */
492 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
493 const struct drm_display_mode *mode)
494 {
495 struct drm_device *dev = crtc->dev;
496 unsigned int pipe = drm_crtc_index(crtc);
497 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
498 int linedur_ns = 0, framedur_ns = 0;
499 int dotclock = mode->crtc_clock;
500
501 if (!dev->num_crtcs)
502 return;
503
504 if (WARN_ON(pipe >= dev->num_crtcs))
505 return;
506
507 /* Valid dotclock? */
508 if (dotclock > 0) {
509 int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
510
511 /*
512 * Convert scanline length in pixels and video
513 * dot clock to line duration and frame duration
514 * in nanoseconds:
515 */
516 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
517 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
518
519 /*
520 * Fields of interlaced scanout modes are only half a frame duration.
521 */
522 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
523 framedur_ns /= 2;
524 } else
525 DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n",
526 crtc->base.id);
527
528 vblank->linedur_ns = linedur_ns;
529 vblank->framedur_ns = framedur_ns;
530 vblank->hwmode = *mode;
531
532 DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
533 crtc->base.id, mode->crtc_htotal,
534 mode->crtc_vtotal, mode->crtc_vdisplay);
535 DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n",
536 crtc->base.id, dotclock, framedur_ns, linedur_ns);
537 }
538 EXPORT_SYMBOL(drm_calc_timestamping_constants);
539
540 /**
541 * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper
542 * @dev: DRM device
543 * @pipe: index of CRTC whose vblank timestamp to retrieve
544 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
545 * On return contains true maximum error of timestamp
546 * @vblank_time: Pointer to time which should receive the timestamp
547 * @in_vblank_irq:
548 * True when called from drm_crtc_handle_vblank(). Some drivers
549 * need to apply some workarounds for gpu-specific vblank irq quirks
550 * if flag is set.
551 *
552 * Implements calculation of exact vblank timestamps from given drm_display_mode
553 * timings and current video scanout position of a CRTC. This can be directly
554 * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver
555 * if &drm_driver.get_scanout_position is implemented.
556 *
557 * The current implementation only handles standard video modes. For double scan
558 * and interlaced modes the driver is supposed to adjust the hardware mode
559 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
560 * match the scanout position reported.
561 *
562 * Note that atomic drivers must call drm_calc_timestamping_constants() before
563 * enabling a CRTC. The atomic helpers already take care of that in
564 * drm_atomic_helper_update_legacy_modeset_state().
565 *
566 * Returns:
567 *
568 * Returns true on success, and false on failure, i.e. when no accurate
569 * timestamp could be acquired.
570 */
571 bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev,
572 unsigned int pipe,
573 int *max_error,
574 ktime_t *vblank_time,
575 bool in_vblank_irq)
576 {
577 struct timespec64 ts_etime, ts_vblank_time;
578 ktime_t stime, etime;
579 bool vbl_status;
580 struct drm_crtc *crtc;
581 const struct drm_display_mode *mode;
582 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
583 int vpos, hpos, i;
584 int delta_ns, duration_ns;
585
586 if (!drm_core_check_feature(dev, DRIVER_MODESET))
587 return false;
588
589 crtc = drm_crtc_from_index(dev, pipe);
590
591 if (pipe >= dev->num_crtcs || !crtc) {
592 DRM_ERROR("Invalid crtc %u\n", pipe);
593 return false;
594 }
595
596 /* Scanout position query not supported? Should not happen. */
597 if (!dev->driver->get_scanout_position) {
598 DRM_ERROR("Called from driver w/o get_scanout_position()!?\n");
599 return false;
600 }
601
602 if (drm_drv_uses_atomic_modeset(dev))
603 mode = &vblank->hwmode;
604 else
605 mode = &crtc->hwmode;
606
607 /* If mode timing undefined, just return as no-op:
608 * Happens during initial modesetting of a crtc.
609 */
610 if (mode->crtc_clock == 0) {
611 DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe);
612 WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev));
613
614 return false;
615 }
616
617 /* Get current scanout position with system timestamp.
618 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
619 * if single query takes longer than max_error nanoseconds.
620 *
621 * This guarantees a tight bound on maximum error if
622 * code gets preempted or delayed for some reason.
623 */
624 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
625 /*
626 * Get vertical and horizontal scanout position vpos, hpos,
627 * and bounding timestamps stime, etime, pre/post query.
628 */
629 vbl_status = dev->driver->get_scanout_position(dev, pipe,
630 in_vblank_irq,
631 &vpos, &hpos,
632 &stime, &etime,
633 mode);
634
635 /* Return as no-op if scanout query unsupported or failed. */
636 if (!vbl_status) {
637 DRM_DEBUG("crtc %u : scanoutpos query failed.\n",
638 pipe);
639 return false;
640 }
641
642 /* Compute uncertainty in timestamp of scanout position query. */
643 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
644
645 /* Accept result with < max_error nsecs timing uncertainty. */
646 if (duration_ns <= *max_error)
647 break;
648 }
649
650 /* Noisy system timing? */
651 if (i == DRM_TIMESTAMP_MAXRETRIES) {
652 DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
653 pipe, duration_ns/1000, *max_error/1000, i);
654 }
655
656 /* Return upper bound of timestamp precision error. */
657 *max_error = duration_ns;
658
659 /* Convert scanout position into elapsed time at raw_time query
660 * since start of scanout at first display scanline. delta_ns
661 * can be negative if start of scanout hasn't happened yet.
662 */
663 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
664 mode->crtc_clock);
665
666 /* save this only for debugging purposes */
667 ts_etime = ktime_to_timespec64(etime);
668 ts_vblank_time = ktime_to_timespec64(*vblank_time);
669 /* Subtract time delta from raw timestamp to get final
670 * vblank_time timestamp for end of vblank.
671 */
672 etime = ktime_sub_ns(etime, delta_ns);
673 *vblank_time = etime;
674
675 DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
676 pipe, hpos, vpos,
677 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
678 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
679 duration_ns / 1000, i);
680
681 return true;
682 }
683 EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos);
684
685 /**
686 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
687 * vblank interval
688 * @dev: DRM device
689 * @pipe: index of CRTC whose vblank timestamp to retrieve
690 * @tvblank: Pointer to target time which should receive the timestamp
691 * @in_vblank_irq:
692 * True when called from drm_crtc_handle_vblank(). Some drivers
693 * need to apply some workarounds for gpu-specific vblank irq quirks
694 * if flag is set.
695 *
696 * Fetches the system timestamp corresponding to the time of the most recent
697 * vblank interval on specified CRTC. May call into kms-driver to
698 * compute the timestamp with a high-precision GPU specific method.
699 *
700 * Returns zero if timestamp originates from uncorrected do_gettimeofday()
701 * call, i.e., it isn't very precisely locked to the true vblank.
702 *
703 * Returns:
704 * True if timestamp is considered to be very precise, false otherwise.
705 */
706 static bool
707 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
708 ktime_t *tvblank, bool in_vblank_irq)
709 {
710 bool ret = false;
711
712 /* Define requested maximum error on timestamps (nanoseconds). */
713 int max_error = (int) drm_timestamp_precision * 1000;
714
715 /* Query driver if possible and precision timestamping enabled. */
716 if (dev->driver->get_vblank_timestamp && (max_error > 0))
717 ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error,
718 tvblank, in_vblank_irq);
719
720 /* GPU high precision timestamp query unsupported or failed.
721 * Return current monotonic/gettimeofday timestamp as best estimate.
722 */
723 if (!ret)
724 *tvblank = ktime_get();
725
726 return ret;
727 }
728
729 /**
730 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
731 * @crtc: which counter to retrieve
732 *
733 * Fetches the "cooked" vblank count value that represents the number of
734 * vblank events since the system was booted, including lost events due to
735 * modesetting activity. Note that this timer isn't correct against a racing
736 * vblank interrupt (since it only reports the software vblank counter), see
737 * drm_crtc_accurate_vblank_count() for such use-cases.
738 *
739 * Returns:
740 * The software vblank counter.
741 */
742 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
743 {
744 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
745 }
746 EXPORT_SYMBOL(drm_crtc_vblank_count);
747
748 /**
749 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
750 * system timestamp corresponding to that vblank counter value.
751 * @dev: DRM device
752 * @pipe: index of CRTC whose counter to retrieve
753 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
754 *
755 * Fetches the "cooked" vblank count value that represents the number of
756 * vblank events since the system was booted, including lost events due to
757 * modesetting activity. Returns corresponding system timestamp of the time
758 * of the vblank interval that corresponds to the current vblank counter value.
759 *
760 * This is the legacy version of drm_crtc_vblank_count_and_time().
761 */
762 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
763 ktime_t *vblanktime)
764 {
765 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
766 u64 vblank_count;
767 unsigned int seq;
768
769 if (WARN_ON(pipe >= dev->num_crtcs)) {
770 *vblanktime = 0;
771 return 0;
772 }
773
774 do {
775 seq = read_seqbegin(&vblank->seqlock);
776 vblank_count = vblank->count;
777 *vblanktime = vblank->time;
778 } while (read_seqretry(&vblank->seqlock, seq));
779
780 return vblank_count;
781 }
782
783 /**
784 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
785 * and the system timestamp corresponding to that vblank counter value
786 * @crtc: which counter to retrieve
787 * @vblanktime: Pointer to time to receive the vblank timestamp.
788 *
789 * Fetches the "cooked" vblank count value that represents the number of
790 * vblank events since the system was booted, including lost events due to
791 * modesetting activity. Returns corresponding system timestamp of the time
792 * of the vblank interval that corresponds to the current vblank counter value.
793 */
794 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
795 ktime_t *vblanktime)
796 {
797 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
798 vblanktime);
799 }
800 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
801
802 static void send_vblank_event(struct drm_device *dev,
803 struct drm_pending_vblank_event *e,
804 u64 seq, ktime_t now)
805 {
806 struct timespec64 tv;
807
808 switch (e->event.base.type) {
809 case DRM_EVENT_VBLANK:
810 case DRM_EVENT_FLIP_COMPLETE:
811 tv = ktime_to_timespec64(now);
812 e->event.vbl.sequence = seq;
813 /*
814 * e->event is a user space structure, with hardcoded unsigned
815 * 32-bit seconds/microseconds. This is safe as we always use
816 * monotonic timestamps since linux-4.15
817 */
818 e->event.vbl.tv_sec = tv.tv_sec;
819 e->event.vbl.tv_usec = tv.tv_nsec / 1000;
820 break;
821 case DRM_EVENT_CRTC_SEQUENCE:
822 if (seq)
823 e->event.seq.sequence = seq;
824 e->event.seq.time_ns = ktime_to_ns(now);
825 break;
826 }
827 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
828 drm_send_event_locked(dev, &e->base);
829 }
830
831 /**
832 * drm_crtc_arm_vblank_event - arm vblank event after pageflip
833 * @crtc: the source CRTC of the vblank event
834 * @e: the event to send
835 *
836 * A lot of drivers need to generate vblank events for the very next vblank
837 * interrupt. For example when the page flip interrupt happens when the page
838 * flip gets armed, but not when it actually executes within the next vblank
839 * period. This helper function implements exactly the required vblank arming
840 * behaviour.
841 *
842 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
843 * atomic commit must ensure that the next vblank happens at exactly the same
844 * time as the atomic commit is committed to the hardware. This function itself
845 * does **not** protect against the next vblank interrupt racing with either this
846 * function call or the atomic commit operation. A possible sequence could be:
847 *
848 * 1. Driver commits new hardware state into vblank-synchronized registers.
849 * 2. A vblank happens, committing the hardware state. Also the corresponding
850 * vblank interrupt is fired off and fully processed by the interrupt
851 * handler.
852 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
853 * 4. The event is only send out for the next vblank, which is wrong.
854 *
855 * An equivalent race can happen when the driver calls
856 * drm_crtc_arm_vblank_event() before writing out the new hardware state.
857 *
858 * The only way to make this work safely is to prevent the vblank from firing
859 * (and the hardware from committing anything else) until the entire atomic
860 * commit sequence has run to completion. If the hardware does not have such a
861 * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
862 * Instead drivers need to manually send out the event from their interrupt
863 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
864 * possible race with the hardware committing the atomic update.
865 *
866 * Caller must hold a vblank reference for the event @e, which will be dropped
867 * when the next vblank arrives.
868 */
869 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
870 struct drm_pending_vblank_event *e)
871 {
872 struct drm_device *dev = crtc->dev;
873 unsigned int pipe = drm_crtc_index(crtc);
874
875 assert_spin_locked(&dev->event_lock);
876
877 e->pipe = pipe;
878 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
879 list_add_tail(&e->base.link, &dev->vblank_event_list);
880 }
881 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
882
883 /**
884 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
885 * @crtc: the source CRTC of the vblank event
886 * @e: the event to send
887 *
888 * Updates sequence # and timestamp on event for the most recently processed
889 * vblank, and sends it to userspace. Caller must hold event lock.
890 *
891 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
892 * situation, especially to send out events for atomic commit operations.
893 */
894 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
895 struct drm_pending_vblank_event *e)
896 {
897 struct drm_device *dev = crtc->dev;
898 u64 seq;
899 unsigned int pipe = drm_crtc_index(crtc);
900 ktime_t now;
901
902 if (dev->num_crtcs > 0) {
903 seq = drm_vblank_count_and_time(dev, pipe, &now);
904 } else {
905 seq = 0;
906
907 now = ktime_get();
908 }
909 e->pipe = pipe;
910 send_vblank_event(dev, e, seq, now);
911 }
912 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
913
914 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
915 {
916 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
917 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
918
919 if (crtc->funcs->enable_vblank)
920 return crtc->funcs->enable_vblank(crtc);
921 }
922
923 return dev->driver->enable_vblank(dev, pipe);
924 }
925
926 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
927 {
928 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
929 int ret = 0;
930
931 assert_spin_locked(&dev->vbl_lock);
932
933 spin_lock(&dev->vblank_time_lock);
934
935 if (!vblank->enabled) {
936 /*
937 * Enable vblank irqs under vblank_time_lock protection.
938 * All vblank count & timestamp updates are held off
939 * until we are done reinitializing master counter and
940 * timestamps. Filtercode in drm_handle_vblank() will
941 * prevent double-accounting of same vblank interval.
942 */
943 ret = __enable_vblank(dev, pipe);
944 DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret);
945 if (ret) {
946 atomic_dec(&vblank->refcount);
947 } else {
948 drm_update_vblank_count(dev, pipe, 0);
949 /* drm_update_vblank_count() includes a wmb so we just
950 * need to ensure that the compiler emits the write
951 * to mark the vblank as enabled after the call
952 * to drm_update_vblank_count().
953 */
954 WRITE_ONCE(vblank->enabled, true);
955 }
956 }
957
958 spin_unlock(&dev->vblank_time_lock);
959
960 return ret;
961 }
962
963 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
964 {
965 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
966 unsigned long irqflags;
967 int ret = 0;
968
969 if (!dev->num_crtcs)
970 return -EINVAL;
971
972 if (WARN_ON(pipe >= dev->num_crtcs))
973 return -EINVAL;
974
975 spin_lock_irqsave(&dev->vbl_lock, irqflags);
976 /* Going from 0->1 means we have to enable interrupts again */
977 if (atomic_add_return(1, &vblank->refcount) == 1) {
978 ret = drm_vblank_enable(dev, pipe);
979 } else {
980 if (!vblank->enabled) {
981 atomic_dec(&vblank->refcount);
982 ret = -EINVAL;
983 }
984 }
985 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
986
987 return ret;
988 }
989
990 /**
991 * drm_crtc_vblank_get - get a reference count on vblank events
992 * @crtc: which CRTC to own
993 *
994 * Acquire a reference count on vblank events to avoid having them disabled
995 * while in use.
996 *
997 * Returns:
998 * Zero on success or a negative error code on failure.
999 */
1000 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1001 {
1002 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1003 }
1004 EXPORT_SYMBOL(drm_crtc_vblank_get);
1005
1006 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1007 {
1008 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1009
1010 if (WARN_ON(pipe >= dev->num_crtcs))
1011 return;
1012
1013 if (WARN_ON(atomic_read(&vblank->refcount) == 0))
1014 return;
1015
1016 /* Last user schedules interrupt disable */
1017 if (atomic_dec_and_test(&vblank->refcount)) {
1018 if (drm_vblank_offdelay == 0)
1019 return;
1020 else if (drm_vblank_offdelay < 0)
1021 vblank_disable_fn(&vblank->disable_timer);
1022 else if (!dev->vblank_disable_immediate)
1023 mod_timer(&vblank->disable_timer,
1024 jiffies + ((drm_vblank_offdelay * HZ)/1000));
1025 }
1026 }
1027
1028 /**
1029 * drm_crtc_vblank_put - give up ownership of vblank events
1030 * @crtc: which counter to give up
1031 *
1032 * Release ownership of a given vblank counter, turning off interrupts
1033 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1034 */
1035 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1036 {
1037 drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1038 }
1039 EXPORT_SYMBOL(drm_crtc_vblank_put);
1040
1041 /**
1042 * drm_wait_one_vblank - wait for one vblank
1043 * @dev: DRM device
1044 * @pipe: CRTC index
1045 *
1046 * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1047 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1048 * due to lack of driver support or because the crtc is off.
1049 *
1050 * This is the legacy version of drm_crtc_wait_one_vblank().
1051 */
1052 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1053 {
1054 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1055 int ret;
1056 u32 last;
1057
1058 if (WARN_ON(pipe >= dev->num_crtcs))
1059 return;
1060
1061 ret = drm_vblank_get(dev, pipe);
1062 if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret))
1063 return;
1064
1065 last = drm_vblank_count(dev, pipe);
1066
1067 ret = wait_event_timeout(vblank->queue,
1068 last != drm_vblank_count(dev, pipe),
1069 msecs_to_jiffies(100));
1070
1071 WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1072
1073 drm_vblank_put(dev, pipe);
1074 }
1075 EXPORT_SYMBOL(drm_wait_one_vblank);
1076
1077 /**
1078 * drm_crtc_wait_one_vblank - wait for one vblank
1079 * @crtc: DRM crtc
1080 *
1081 * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1082 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1083 * due to lack of driver support or because the crtc is off.
1084 */
1085 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1086 {
1087 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1088 }
1089 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1090
1091 /**
1092 * drm_crtc_vblank_off - disable vblank events on a CRTC
1093 * @crtc: CRTC in question
1094 *
1095 * Drivers can use this function to shut down the vblank interrupt handling when
1096 * disabling a crtc. This function ensures that the latest vblank frame count is
1097 * stored so that drm_vblank_on can restore it again.
1098 *
1099 * Drivers must use this function when the hardware vblank counter can get
1100 * reset, e.g. when suspending or disabling the @crtc in general.
1101 */
1102 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1103 {
1104 struct drm_device *dev = crtc->dev;
1105 unsigned int pipe = drm_crtc_index(crtc);
1106 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1107 struct drm_pending_vblank_event *e, *t;
1108
1109 ktime_t now;
1110 unsigned long irqflags;
1111 u64 seq;
1112
1113 if (WARN_ON(pipe >= dev->num_crtcs))
1114 return;
1115
1116 spin_lock_irqsave(&dev->event_lock, irqflags);
1117
1118 spin_lock(&dev->vbl_lock);
1119 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1120 pipe, vblank->enabled, vblank->inmodeset);
1121
1122 /* Avoid redundant vblank disables without previous
1123 * drm_crtc_vblank_on(). */
1124 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1125 drm_vblank_disable_and_save(dev, pipe);
1126
1127 wake_up(&vblank->queue);
1128
1129 /*
1130 * Prevent subsequent drm_vblank_get() from re-enabling
1131 * the vblank interrupt by bumping the refcount.
1132 */
1133 if (!vblank->inmodeset) {
1134 atomic_inc(&vblank->refcount);
1135 vblank->inmodeset = 1;
1136 }
1137 spin_unlock(&dev->vbl_lock);
1138
1139 /* Send any queued vblank events, lest the natives grow disquiet */
1140 seq = drm_vblank_count_and_time(dev, pipe, &now);
1141
1142 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1143 if (e->pipe != pipe)
1144 continue;
1145 DRM_DEBUG("Sending premature vblank event on disable: "
1146 "wanted %llu, current %llu\n",
1147 e->sequence, seq);
1148 list_del(&e->base.link);
1149 drm_vblank_put(dev, pipe);
1150 send_vblank_event(dev, e, seq, now);
1151 }
1152 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1153
1154 /* Will be reset by the modeset helpers when re-enabling the crtc by
1155 * calling drm_calc_timestamping_constants(). */
1156 vblank->hwmode.crtc_clock = 0;
1157 }
1158 EXPORT_SYMBOL(drm_crtc_vblank_off);
1159
1160 /**
1161 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1162 * @crtc: CRTC in question
1163 *
1164 * Drivers can use this function to reset the vblank state to off at load time.
1165 * Drivers should use this together with the drm_crtc_vblank_off() and
1166 * drm_crtc_vblank_on() functions. The difference compared to
1167 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1168 * and hence doesn't need to call any driver hooks.
1169 *
1170 * This is useful for recovering driver state e.g. on driver load, or on resume.
1171 */
1172 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1173 {
1174 struct drm_device *dev = crtc->dev;
1175 unsigned long irqflags;
1176 unsigned int pipe = drm_crtc_index(crtc);
1177 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1178
1179 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1180 /*
1181 * Prevent subsequent drm_vblank_get() from enabling the vblank
1182 * interrupt by bumping the refcount.
1183 */
1184 if (!vblank->inmodeset) {
1185 atomic_inc(&vblank->refcount);
1186 vblank->inmodeset = 1;
1187 }
1188 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1189
1190 WARN_ON(!list_empty(&dev->vblank_event_list));
1191 }
1192 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1193
1194 /**
1195 * drm_crtc_vblank_on - enable vblank events on a CRTC
1196 * @crtc: CRTC in question
1197 *
1198 * This functions restores the vblank interrupt state captured with
1199 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1200 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1201 * unbalanced and so can also be unconditionally called in driver load code to
1202 * reflect the current hardware state of the crtc.
1203 */
1204 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1205 {
1206 struct drm_device *dev = crtc->dev;
1207 unsigned int pipe = drm_crtc_index(crtc);
1208 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1209 unsigned long irqflags;
1210
1211 if (WARN_ON(pipe >= dev->num_crtcs))
1212 return;
1213
1214 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1215 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1216 pipe, vblank->enabled, vblank->inmodeset);
1217
1218 /* Drop our private "prevent drm_vblank_get" refcount */
1219 if (vblank->inmodeset) {
1220 atomic_dec(&vblank->refcount);
1221 vblank->inmodeset = 0;
1222 }
1223
1224 drm_reset_vblank_timestamp(dev, pipe);
1225
1226 /*
1227 * re-enable interrupts if there are users left, or the
1228 * user wishes vblank interrupts to be enabled all the time.
1229 */
1230 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1231 WARN_ON(drm_vblank_enable(dev, pipe));
1232 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1233 }
1234 EXPORT_SYMBOL(drm_crtc_vblank_on);
1235
1236 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1237 unsigned int pipe)
1238 {
1239 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1240
1241 /* vblank is not initialized (IRQ not installed ?), or has been freed */
1242 if (!dev->num_crtcs)
1243 return;
1244
1245 if (WARN_ON(pipe >= dev->num_crtcs))
1246 return;
1247
1248 /*
1249 * To avoid all the problems that might happen if interrupts
1250 * were enabled/disabled around or between these calls, we just
1251 * have the kernel take a reference on the CRTC (just once though
1252 * to avoid corrupting the count if multiple, mismatch calls occur),
1253 * so that interrupts remain enabled in the interim.
1254 */
1255 if (!vblank->inmodeset) {
1256 vblank->inmodeset = 0x1;
1257 if (drm_vblank_get(dev, pipe) == 0)
1258 vblank->inmodeset |= 0x2;
1259 }
1260 }
1261
1262 static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1263 unsigned int pipe)
1264 {
1265 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1266 unsigned long irqflags;
1267
1268 /* vblank is not initialized (IRQ not installed ?), or has been freed */
1269 if (!dev->num_crtcs)
1270 return;
1271
1272 if (WARN_ON(pipe >= dev->num_crtcs))
1273 return;
1274
1275 if (vblank->inmodeset) {
1276 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1277 drm_reset_vblank_timestamp(dev, pipe);
1278 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1279
1280 if (vblank->inmodeset & 0x2)
1281 drm_vblank_put(dev, pipe);
1282
1283 vblank->inmodeset = 0;
1284 }
1285 }
1286
1287 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1288 struct drm_file *file_priv)
1289 {
1290 struct drm_modeset_ctl *modeset = data;
1291 unsigned int pipe;
1292
1293 /* If drm_vblank_init() hasn't been called yet, just no-op */
1294 if (!dev->num_crtcs)
1295 return 0;
1296
1297 /* KMS drivers handle this internally */
1298 if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1299 return 0;
1300
1301 pipe = modeset->crtc;
1302 if (pipe >= dev->num_crtcs)
1303 return -EINVAL;
1304
1305 switch (modeset->cmd) {
1306 case _DRM_PRE_MODESET:
1307 drm_legacy_vblank_pre_modeset(dev, pipe);
1308 break;
1309 case _DRM_POST_MODESET:
1310 drm_legacy_vblank_post_modeset(dev, pipe);
1311 break;
1312 default:
1313 return -EINVAL;
1314 }
1315
1316 return 0;
1317 }
1318
1319 static inline bool vblank_passed(u64 seq, u64 ref)
1320 {
1321 return (seq - ref) <= (1 << 23);
1322 }
1323
1324 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1325 u64 req_seq,
1326 union drm_wait_vblank *vblwait,
1327 struct drm_file *file_priv)
1328 {
1329 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1330 struct drm_pending_vblank_event *e;
1331 ktime_t now;
1332 unsigned long flags;
1333 u64 seq;
1334 int ret;
1335
1336 e = kzalloc(sizeof(*e), GFP_KERNEL);
1337 if (e == NULL) {
1338 ret = -ENOMEM;
1339 goto err_put;
1340 }
1341
1342 e->pipe = pipe;
1343 e->event.base.type = DRM_EVENT_VBLANK;
1344 e->event.base.length = sizeof(e->event.vbl);
1345 e->event.vbl.user_data = vblwait->request.signal;
1346 e->event.vbl.crtc_id = 0;
1347 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1348 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1349 if (crtc)
1350 e->event.vbl.crtc_id = crtc->base.id;
1351 }
1352
1353 spin_lock_irqsave(&dev->event_lock, flags);
1354
1355 /*
1356 * drm_crtc_vblank_off() might have been called after we called
1357 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1358 * vblank disable, so no need for further locking. The reference from
1359 * drm_vblank_get() protects against vblank disable from another source.
1360 */
1361 if (!READ_ONCE(vblank->enabled)) {
1362 ret = -EINVAL;
1363 goto err_unlock;
1364 }
1365
1366 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1367 &e->event.base);
1368
1369 if (ret)
1370 goto err_unlock;
1371
1372 seq = drm_vblank_count_and_time(dev, pipe, &now);
1373
1374 DRM_DEBUG("event on vblank count %llu, current %llu, crtc %u\n",
1375 req_seq, seq, pipe);
1376
1377 trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1378
1379 e->sequence = req_seq;
1380 if (vblank_passed(seq, req_seq)) {
1381 drm_vblank_put(dev, pipe);
1382 send_vblank_event(dev, e, seq, now);
1383 vblwait->reply.sequence = seq;
1384 } else {
1385 /* drm_handle_vblank_events will call drm_vblank_put */
1386 list_add_tail(&e->base.link, &dev->vblank_event_list);
1387 vblwait->reply.sequence = req_seq;
1388 }
1389
1390 spin_unlock_irqrestore(&dev->event_lock, flags);
1391
1392 return 0;
1393
1394 err_unlock:
1395 spin_unlock_irqrestore(&dev->event_lock, flags);
1396 kfree(e);
1397 err_put:
1398 drm_vblank_put(dev, pipe);
1399 return ret;
1400 }
1401
1402 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1403 {
1404 if (vblwait->request.sequence)
1405 return false;
1406
1407 return _DRM_VBLANK_RELATIVE ==
1408 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1409 _DRM_VBLANK_EVENT |
1410 _DRM_VBLANK_NEXTONMISS));
1411 }
1412
1413 /*
1414 * Widen a 32-bit param to 64-bits.
1415 *
1416 * \param narrow 32-bit value (missing upper 32 bits)
1417 * \param near 64-bit value that should be 'close' to near
1418 *
1419 * This function returns a 64-bit value using the lower 32-bits from
1420 * 'narrow' and constructing the upper 32-bits so that the result is
1421 * as close as possible to 'near'.
1422 */
1423
1424 static u64 widen_32_to_64(u32 narrow, u64 near)
1425 {
1426 return near + (s32) (narrow - near);
1427 }
1428
1429 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1430 struct drm_wait_vblank_reply *reply)
1431 {
1432 ktime_t now;
1433 struct timespec64 ts;
1434
1435 /*
1436 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1437 * to store the seconds. This is safe as we always use monotonic
1438 * timestamps since linux-4.15.
1439 */
1440 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1441 ts = ktime_to_timespec64(now);
1442 reply->tval_sec = (u32)ts.tv_sec;
1443 reply->tval_usec = ts.tv_nsec / 1000;
1444 }
1445
1446 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1447 struct drm_file *file_priv)
1448 {
1449 struct drm_crtc *crtc;
1450 struct drm_vblank_crtc *vblank;
1451 union drm_wait_vblank *vblwait = data;
1452 int ret;
1453 u64 req_seq, seq;
1454 unsigned int pipe_index;
1455 unsigned int flags, pipe, high_pipe;
1456
1457 if (!dev->irq_enabled)
1458 return -EINVAL;
1459
1460 if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1461 return -EINVAL;
1462
1463 if (vblwait->request.type &
1464 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1465 _DRM_VBLANK_HIGH_CRTC_MASK)) {
1466 DRM_ERROR("Unsupported type value 0x%x, supported mask 0x%x\n",
1467 vblwait->request.type,
1468 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1469 _DRM_VBLANK_HIGH_CRTC_MASK));
1470 return -EINVAL;
1471 }
1472
1473 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1474 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1475 if (high_pipe)
1476 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1477 else
1478 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1479
1480 /* Convert lease-relative crtc index into global crtc index */
1481 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1482 pipe = 0;
1483 drm_for_each_crtc(crtc, dev) {
1484 if (drm_lease_held(file_priv, crtc->base.id)) {
1485 if (pipe_index == 0)
1486 break;
1487 pipe_index--;
1488 }
1489 pipe++;
1490 }
1491 } else {
1492 pipe = pipe_index;
1493 }
1494
1495 if (pipe >= dev->num_crtcs)
1496 return -EINVAL;
1497
1498 vblank = &dev->vblank[pipe];
1499
1500 /* If the counter is currently enabled and accurate, short-circuit
1501 * queries to return the cached timestamp of the last vblank.
1502 */
1503 if (dev->vblank_disable_immediate &&
1504 drm_wait_vblank_is_query(vblwait) &&
1505 READ_ONCE(vblank->enabled)) {
1506 drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1507 return 0;
1508 }
1509
1510 ret = drm_vblank_get(dev, pipe);
1511 if (ret) {
1512 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1513 return ret;
1514 }
1515 seq = drm_vblank_count(dev, pipe);
1516
1517 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1518 case _DRM_VBLANK_RELATIVE:
1519 req_seq = seq + vblwait->request.sequence;
1520 vblwait->request.sequence = req_seq;
1521 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1522 break;
1523 case _DRM_VBLANK_ABSOLUTE:
1524 req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1525 break;
1526 default:
1527 ret = -EINVAL;
1528 goto done;
1529 }
1530
1531 if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1532 vblank_passed(seq, req_seq)) {
1533 req_seq = seq + 1;
1534 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1535 vblwait->request.sequence = req_seq;
1536 }
1537
1538 if (flags & _DRM_VBLANK_EVENT) {
1539 /* must hold on to the vblank ref until the event fires
1540 * drm_vblank_put will be called asynchronously
1541 */
1542 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1543 }
1544
1545 if (req_seq != seq) {
1546 DRM_DEBUG("waiting on vblank count %llu, crtc %u\n",
1547 req_seq, pipe);
1548 DRM_WAIT_ON(ret, vblank->queue, 3 * HZ,
1549 vblank_passed(drm_vblank_count(dev, pipe),
1550 req_seq) ||
1551 !READ_ONCE(vblank->enabled));
1552 }
1553
1554 if (ret != -EINTR) {
1555 drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1556
1557 DRM_DEBUG("crtc %d returning %u to client\n",
1558 pipe, vblwait->reply.sequence);
1559 } else {
1560 DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe);
1561 }
1562
1563 done:
1564 drm_vblank_put(dev, pipe);
1565 return ret;
1566 }
1567
1568 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1569 {
1570 struct drm_pending_vblank_event *e, *t;
1571 ktime_t now;
1572 u64 seq;
1573
1574 assert_spin_locked(&dev->event_lock);
1575
1576 seq = drm_vblank_count_and_time(dev, pipe, &now);
1577
1578 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1579 if (e->pipe != pipe)
1580 continue;
1581 if (!vblank_passed(seq, e->sequence))
1582 continue;
1583
1584 DRM_DEBUG("vblank event on %llu, current %llu\n",
1585 e->sequence, seq);
1586
1587 list_del(&e->base.link);
1588 drm_vblank_put(dev, pipe);
1589 send_vblank_event(dev, e, seq, now);
1590 }
1591
1592 trace_drm_vblank_event(pipe, seq);
1593 }
1594
1595 /**
1596 * drm_handle_vblank - handle a vblank event
1597 * @dev: DRM device
1598 * @pipe: index of CRTC where this event occurred
1599 *
1600 * Drivers should call this routine in their vblank interrupt handlers to
1601 * update the vblank counter and send any signals that may be pending.
1602 *
1603 * This is the legacy version of drm_crtc_handle_vblank().
1604 */
1605 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1606 {
1607 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1608 unsigned long irqflags;
1609 bool disable_irq;
1610
1611 if (WARN_ON_ONCE(!dev->num_crtcs))
1612 return false;
1613
1614 if (WARN_ON(pipe >= dev->num_crtcs))
1615 return false;
1616
1617 spin_lock_irqsave(&dev->event_lock, irqflags);
1618
1619 /* Need timestamp lock to prevent concurrent execution with
1620 * vblank enable/disable, as this would cause inconsistent
1621 * or corrupted timestamps and vblank counts.
1622 */
1623 spin_lock(&dev->vblank_time_lock);
1624
1625 /* Vblank irq handling disabled. Nothing to do. */
1626 if (!vblank->enabled) {
1627 spin_unlock(&dev->vblank_time_lock);
1628 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1629 return false;
1630 }
1631
1632 drm_update_vblank_count(dev, pipe, true);
1633
1634 spin_unlock(&dev->vblank_time_lock);
1635
1636 wake_up(&vblank->queue);
1637
1638 /* With instant-off, we defer disabling the interrupt until after
1639 * we finish processing the following vblank after all events have
1640 * been signaled. The disable has to be last (after
1641 * drm_handle_vblank_events) so that the timestamp is always accurate.
1642 */
1643 disable_irq = (dev->vblank_disable_immediate &&
1644 drm_vblank_offdelay > 0 &&
1645 !atomic_read(&vblank->refcount));
1646
1647 drm_handle_vblank_events(dev, pipe);
1648
1649 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1650
1651 if (disable_irq)
1652 vblank_disable_fn(&vblank->disable_timer);
1653
1654 return true;
1655 }
1656 EXPORT_SYMBOL(drm_handle_vblank);
1657
1658 /**
1659 * drm_crtc_handle_vblank - handle a vblank event
1660 * @crtc: where this event occurred
1661 *
1662 * Drivers should call this routine in their vblank interrupt handlers to
1663 * update the vblank counter and send any signals that may be pending.
1664 *
1665 * This is the native KMS version of drm_handle_vblank().
1666 *
1667 * Returns:
1668 * True if the event was successfully handled, false on failure.
1669 */
1670 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1671 {
1672 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1673 }
1674 EXPORT_SYMBOL(drm_crtc_handle_vblank);
1675
1676 /*
1677 * Get crtc VBLANK count.
1678 *
1679 * \param dev DRM device
1680 * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
1681 * \param file_priv drm file private for the user's open file descriptor
1682 */
1683
1684 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
1685 struct drm_file *file_priv)
1686 {
1687 struct drm_crtc *crtc;
1688 struct drm_vblank_crtc *vblank;
1689 int pipe;
1690 struct drm_crtc_get_sequence *get_seq = data;
1691 ktime_t now;
1692 bool vblank_enabled;
1693 int ret;
1694
1695 if (!drm_core_check_feature(dev, DRIVER_MODESET))
1696 return -EINVAL;
1697
1698 if (!dev->irq_enabled)
1699 return -EINVAL;
1700
1701 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
1702 if (!crtc)
1703 return -ENOENT;
1704
1705 pipe = drm_crtc_index(crtc);
1706
1707 vblank = &dev->vblank[pipe];
1708 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
1709
1710 if (!vblank_enabled) {
1711 ret = drm_crtc_vblank_get(crtc);
1712 if (ret) {
1713 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1714 return ret;
1715 }
1716 }
1717 drm_modeset_lock(&crtc->mutex, NULL);
1718 if (crtc->state)
1719 get_seq->active = crtc->state->enable;
1720 else
1721 get_seq->active = crtc->enabled;
1722 drm_modeset_unlock(&crtc->mutex);
1723 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1724 get_seq->sequence_ns = ktime_to_ns(now);
1725 if (!vblank_enabled)
1726 drm_crtc_vblank_put(crtc);
1727 return 0;
1728 }
1729
1730 /*
1731 * Queue a event for VBLANK sequence
1732 *
1733 * \param dev DRM device
1734 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
1735 * \param file_priv drm file private for the user's open file descriptor
1736 */
1737
1738 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
1739 struct drm_file *file_priv)
1740 {
1741 struct drm_crtc *crtc;
1742 struct drm_vblank_crtc *vblank;
1743 int pipe;
1744 struct drm_crtc_queue_sequence *queue_seq = data;
1745 ktime_t now;
1746 struct drm_pending_vblank_event *e;
1747 u32 flags;
1748 u64 seq;
1749 u64 req_seq;
1750 int ret;
1751 unsigned long spin_flags;
1752
1753 if (!drm_core_check_feature(dev, DRIVER_MODESET))
1754 return -EINVAL;
1755
1756 if (!dev->irq_enabled)
1757 return -EINVAL;
1758
1759 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
1760 if (!crtc)
1761 return -ENOENT;
1762
1763 flags = queue_seq->flags;
1764 /* Check valid flag bits */
1765 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
1766 DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
1767 return -EINVAL;
1768
1769 pipe = drm_crtc_index(crtc);
1770
1771 vblank = &dev->vblank[pipe];
1772
1773 e = kzalloc(sizeof(*e), GFP_KERNEL);
1774 if (e == NULL)
1775 return -ENOMEM;
1776
1777 ret = drm_crtc_vblank_get(crtc);
1778 if (ret) {
1779 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1780 goto err_free;
1781 }
1782
1783 seq = drm_vblank_count_and_time(dev, pipe, &now);
1784 req_seq = queue_seq->sequence;
1785
1786 if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
1787 req_seq += seq;
1788
1789 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq))
1790 req_seq = seq + 1;
1791
1792 e->pipe = pipe;
1793 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
1794 e->event.base.length = sizeof(e->event.seq);
1795 e->event.seq.user_data = queue_seq->user_data;
1796
1797 spin_lock_irqsave(&dev->event_lock, spin_flags);
1798
1799 /*
1800 * drm_crtc_vblank_off() might have been called after we called
1801 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1802 * vblank disable, so no need for further locking. The reference from
1803 * drm_crtc_vblank_get() protects against vblank disable from another source.
1804 */
1805 if (!READ_ONCE(vblank->enabled)) {
1806 ret = -EINVAL;
1807 goto err_unlock;
1808 }
1809
1810 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1811 &e->event.base);
1812
1813 if (ret)
1814 goto err_unlock;
1815
1816 e->sequence = req_seq;
1817
1818 if (vblank_passed(seq, req_seq)) {
1819 drm_crtc_vblank_put(crtc);
1820 send_vblank_event(dev, e, seq, now);
1821 queue_seq->sequence = seq;
1822 } else {
1823 /* drm_handle_vblank_events will call drm_vblank_put */
1824 list_add_tail(&e->base.link, &dev->vblank_event_list);
1825 queue_seq->sequence = req_seq;
1826 }
1827
1828 spin_unlock_irqrestore(&dev->event_lock, spin_flags);
1829 return 0;
1830
1831 err_unlock:
1832 spin_unlock_irqrestore(&dev->event_lock, spin_flags);
1833 drm_crtc_vblank_put(crtc);
1834 err_free:
1835 kfree(e);
1836 return ret;
1837 }