]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.c
10ff0e2ffb8d008d3ff656f98f01d1cf25404c6b
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_atomic_helper.h>
47 #include <drm/i915_drm.h>
48
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "i915_vgpu.h"
52 #include "intel_drv.h"
53 #include "intel_uc.h"
54
55 static struct drm_driver driver;
56
57 static unsigned int i915_load_fail_count;
58
59 bool __i915_inject_load_failure(const char *func, int line)
60 {
61 if (i915_load_fail_count >= i915_modparams.inject_load_failure)
62 return false;
63
64 if (++i915_load_fail_count == i915_modparams.inject_load_failure) {
65 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
66 i915_modparams.inject_load_failure, func, line);
67 return true;
68 }
69
70 return false;
71 }
72
73 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
74 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
75 "providing the dmesg log by booting with drm.debug=0xf"
76
77 void
78 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
79 const char *fmt, ...)
80 {
81 static bool shown_bug_once;
82 struct device *kdev = dev_priv->drm.dev;
83 bool is_error = level[1] <= KERN_ERR[1];
84 bool is_debug = level[1] == KERN_DEBUG[1];
85 struct va_format vaf;
86 va_list args;
87
88 if (is_debug && !(drm_debug & DRM_UT_DRIVER))
89 return;
90
91 va_start(args, fmt);
92
93 vaf.fmt = fmt;
94 vaf.va = &args;
95
96 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
97 __builtin_return_address(0), &vaf);
98
99 if (is_error && !shown_bug_once) {
100 dev_notice(kdev, "%s", FDO_BUG_MSG);
101 shown_bug_once = true;
102 }
103
104 va_end(args);
105 }
106
107 static bool i915_error_injected(struct drm_i915_private *dev_priv)
108 {
109 return i915_modparams.inject_load_failure &&
110 i915_load_fail_count == i915_modparams.inject_load_failure;
111 }
112
113 #define i915_load_error(dev_priv, fmt, ...) \
114 __i915_printk(dev_priv, \
115 i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
116 fmt, ##__VA_ARGS__)
117
118
119 static enum intel_pch intel_virt_detect_pch(struct drm_i915_private *dev_priv)
120 {
121 enum intel_pch ret = PCH_NOP;
122
123 /*
124 * In a virtualized passthrough environment we can be in a
125 * setup where the ISA bridge is not able to be passed through.
126 * In this case, a south bridge can be emulated and we have to
127 * make an educated guess as to which PCH is really there.
128 */
129
130 if (IS_GEN5(dev_priv)) {
131 ret = PCH_IBX;
132 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
133 } else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
134 ret = PCH_CPT;
135 DRM_DEBUG_KMS("Assuming CougarPoint PCH\n");
136 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
137 ret = PCH_LPT;
138 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
139 dev_priv->pch_id = INTEL_PCH_LPT_LP_DEVICE_ID_TYPE;
140 else
141 dev_priv->pch_id = INTEL_PCH_LPT_DEVICE_ID_TYPE;
142 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
143 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
144 ret = PCH_SPT;
145 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
146 } else if (IS_COFFEELAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) {
147 ret = PCH_CNP;
148 DRM_DEBUG_KMS("Assuming CannonPoint PCH\n");
149 }
150
151 return ret;
152 }
153
154 static void intel_detect_pch(struct drm_i915_private *dev_priv)
155 {
156 struct pci_dev *pch = NULL;
157
158 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
159 * (which really amounts to a PCH but no South Display).
160 */
161 if (INTEL_INFO(dev_priv)->num_pipes == 0) {
162 dev_priv->pch_type = PCH_NOP;
163 return;
164 }
165
166 /*
167 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
168 * make graphics device passthrough work easy for VMM, that only
169 * need to expose ISA bridge to let driver know the real hardware
170 * underneath. This is a requirement from virtualization team.
171 *
172 * In some virtualized environments (e.g. XEN), there is irrelevant
173 * ISA bridge in the system. To work reliably, we should scan trhough
174 * all the ISA bridge devices and check for the first match, instead
175 * of only checking the first one.
176 */
177 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
178 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
179 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
180
181 dev_priv->pch_id = id;
182
183 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
184 dev_priv->pch_type = PCH_IBX;
185 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
186 WARN_ON(!IS_GEN5(dev_priv));
187 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
188 dev_priv->pch_type = PCH_CPT;
189 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
190 WARN_ON(!IS_GEN6(dev_priv) &&
191 !IS_IVYBRIDGE(dev_priv));
192 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
193 /* PantherPoint is CPT compatible */
194 dev_priv->pch_type = PCH_CPT;
195 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
196 WARN_ON(!IS_GEN6(dev_priv) &&
197 !IS_IVYBRIDGE(dev_priv));
198 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
199 dev_priv->pch_type = PCH_LPT;
200 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
201 WARN_ON(!IS_HASWELL(dev_priv) &&
202 !IS_BROADWELL(dev_priv));
203 WARN_ON(IS_HSW_ULT(dev_priv) ||
204 IS_BDW_ULT(dev_priv));
205 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
206 dev_priv->pch_type = PCH_LPT;
207 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
208 WARN_ON(!IS_HASWELL(dev_priv) &&
209 !IS_BROADWELL(dev_priv));
210 WARN_ON(!IS_HSW_ULT(dev_priv) &&
211 !IS_BDW_ULT(dev_priv));
212 } else if (id == INTEL_PCH_WPT_DEVICE_ID_TYPE) {
213 /* WildcatPoint is LPT compatible */
214 dev_priv->pch_type = PCH_LPT;
215 DRM_DEBUG_KMS("Found WildcatPoint PCH\n");
216 WARN_ON(!IS_HASWELL(dev_priv) &&
217 !IS_BROADWELL(dev_priv));
218 WARN_ON(IS_HSW_ULT(dev_priv) ||
219 IS_BDW_ULT(dev_priv));
220 } else if (id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) {
221 /* WildcatPoint is LPT compatible */
222 dev_priv->pch_type = PCH_LPT;
223 DRM_DEBUG_KMS("Found WildcatPoint LP PCH\n");
224 WARN_ON(!IS_HASWELL(dev_priv) &&
225 !IS_BROADWELL(dev_priv));
226 WARN_ON(!IS_HSW_ULT(dev_priv) &&
227 !IS_BDW_ULT(dev_priv));
228 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
229 dev_priv->pch_type = PCH_SPT;
230 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
231 WARN_ON(!IS_SKYLAKE(dev_priv) &&
232 !IS_KABYLAKE(dev_priv));
233 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
234 dev_priv->pch_type = PCH_SPT;
235 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
236 WARN_ON(!IS_SKYLAKE(dev_priv) &&
237 !IS_KABYLAKE(dev_priv));
238 } else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
239 dev_priv->pch_type = PCH_KBP;
240 DRM_DEBUG_KMS("Found Kaby Lake PCH (KBP)\n");
241 WARN_ON(!IS_SKYLAKE(dev_priv) &&
242 !IS_KABYLAKE(dev_priv) &&
243 !IS_COFFEELAKE(dev_priv));
244 } else if (id == INTEL_PCH_CNP_DEVICE_ID_TYPE) {
245 dev_priv->pch_type = PCH_CNP;
246 DRM_DEBUG_KMS("Found Cannon Lake PCH (CNP)\n");
247 WARN_ON(!IS_CANNONLAKE(dev_priv) &&
248 !IS_COFFEELAKE(dev_priv));
249 } else if (id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE) {
250 dev_priv->pch_type = PCH_CNP;
251 DRM_DEBUG_KMS("Found Cannon Lake LP PCH (CNP-LP)\n");
252 WARN_ON(!IS_CANNONLAKE(dev_priv) &&
253 !IS_COFFEELAKE(dev_priv));
254 } else if (id == INTEL_PCH_P2X_DEVICE_ID_TYPE ||
255 id == INTEL_PCH_P3X_DEVICE_ID_TYPE ||
256 (id == INTEL_PCH_QEMU_DEVICE_ID_TYPE &&
257 pch->subsystem_vendor ==
258 PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
259 pch->subsystem_device ==
260 PCI_SUBDEVICE_ID_QEMU)) {
261 dev_priv->pch_type =
262 intel_virt_detect_pch(dev_priv);
263 } else
264 continue;
265
266 break;
267 }
268 }
269 if (!pch)
270 DRM_DEBUG_KMS("No PCH found.\n");
271
272 pci_dev_put(pch);
273 }
274
275 static int i915_getparam(struct drm_device *dev, void *data,
276 struct drm_file *file_priv)
277 {
278 struct drm_i915_private *dev_priv = to_i915(dev);
279 struct pci_dev *pdev = dev_priv->drm.pdev;
280 drm_i915_getparam_t *param = data;
281 int value;
282
283 switch (param->param) {
284 case I915_PARAM_IRQ_ACTIVE:
285 case I915_PARAM_ALLOW_BATCHBUFFER:
286 case I915_PARAM_LAST_DISPATCH:
287 case I915_PARAM_HAS_EXEC_CONSTANTS:
288 /* Reject all old ums/dri params. */
289 return -ENODEV;
290 case I915_PARAM_CHIPSET_ID:
291 value = pdev->device;
292 break;
293 case I915_PARAM_REVISION:
294 value = pdev->revision;
295 break;
296 case I915_PARAM_NUM_FENCES_AVAIL:
297 value = dev_priv->num_fence_regs;
298 break;
299 case I915_PARAM_HAS_OVERLAY:
300 value = dev_priv->overlay ? 1 : 0;
301 break;
302 case I915_PARAM_HAS_BSD:
303 value = !!dev_priv->engine[VCS];
304 break;
305 case I915_PARAM_HAS_BLT:
306 value = !!dev_priv->engine[BCS];
307 break;
308 case I915_PARAM_HAS_VEBOX:
309 value = !!dev_priv->engine[VECS];
310 break;
311 case I915_PARAM_HAS_BSD2:
312 value = !!dev_priv->engine[VCS2];
313 break;
314 case I915_PARAM_HAS_LLC:
315 value = HAS_LLC(dev_priv);
316 break;
317 case I915_PARAM_HAS_WT:
318 value = HAS_WT(dev_priv);
319 break;
320 case I915_PARAM_HAS_ALIASING_PPGTT:
321 value = USES_PPGTT(dev_priv);
322 break;
323 case I915_PARAM_HAS_SEMAPHORES:
324 value = i915_modparams.semaphores;
325 break;
326 case I915_PARAM_HAS_SECURE_BATCHES:
327 value = capable(CAP_SYS_ADMIN);
328 break;
329 case I915_PARAM_CMD_PARSER_VERSION:
330 value = i915_cmd_parser_get_version(dev_priv);
331 break;
332 case I915_PARAM_SUBSLICE_TOTAL:
333 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
334 if (!value)
335 return -ENODEV;
336 break;
337 case I915_PARAM_EU_TOTAL:
338 value = INTEL_INFO(dev_priv)->sseu.eu_total;
339 if (!value)
340 return -ENODEV;
341 break;
342 case I915_PARAM_HAS_GPU_RESET:
343 value = i915_modparams.enable_hangcheck &&
344 intel_has_gpu_reset(dev_priv);
345 if (value && intel_has_reset_engine(dev_priv))
346 value = 2;
347 break;
348 case I915_PARAM_HAS_RESOURCE_STREAMER:
349 value = HAS_RESOURCE_STREAMER(dev_priv);
350 break;
351 case I915_PARAM_HAS_POOLED_EU:
352 value = HAS_POOLED_EU(dev_priv);
353 break;
354 case I915_PARAM_MIN_EU_IN_POOL:
355 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
356 break;
357 case I915_PARAM_HUC_STATUS:
358 intel_runtime_pm_get(dev_priv);
359 value = I915_READ(HUC_STATUS2) & HUC_FW_VERIFIED;
360 intel_runtime_pm_put(dev_priv);
361 break;
362 case I915_PARAM_MMAP_GTT_VERSION:
363 /* Though we've started our numbering from 1, and so class all
364 * earlier versions as 0, in effect their value is undefined as
365 * the ioctl will report EINVAL for the unknown param!
366 */
367 value = i915_gem_mmap_gtt_version();
368 break;
369 case I915_PARAM_HAS_SCHEDULER:
370 value = 0;
371 if (dev_priv->engine[RCS] && dev_priv->engine[RCS]->schedule) {
372 value |= I915_SCHEDULER_CAP_ENABLED;
373 value |= I915_SCHEDULER_CAP_PRIORITY;
374
375 if (INTEL_INFO(dev_priv)->has_logical_ring_preemption &&
376 i915_modparams.enable_execlists &&
377 !i915_modparams.enable_guc_submission)
378 value |= I915_SCHEDULER_CAP_PREEMPTION;
379 }
380 break;
381
382 case I915_PARAM_MMAP_VERSION:
383 /* Remember to bump this if the version changes! */
384 case I915_PARAM_HAS_GEM:
385 case I915_PARAM_HAS_PAGEFLIPPING:
386 case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
387 case I915_PARAM_HAS_RELAXED_FENCING:
388 case I915_PARAM_HAS_COHERENT_RINGS:
389 case I915_PARAM_HAS_RELAXED_DELTA:
390 case I915_PARAM_HAS_GEN7_SOL_RESET:
391 case I915_PARAM_HAS_WAIT_TIMEOUT:
392 case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
393 case I915_PARAM_HAS_PINNED_BATCHES:
394 case I915_PARAM_HAS_EXEC_NO_RELOC:
395 case I915_PARAM_HAS_EXEC_HANDLE_LUT:
396 case I915_PARAM_HAS_COHERENT_PHYS_GTT:
397 case I915_PARAM_HAS_EXEC_SOFTPIN:
398 case I915_PARAM_HAS_EXEC_ASYNC:
399 case I915_PARAM_HAS_EXEC_FENCE:
400 case I915_PARAM_HAS_EXEC_CAPTURE:
401 case I915_PARAM_HAS_EXEC_BATCH_FIRST:
402 case I915_PARAM_HAS_EXEC_FENCE_ARRAY:
403 /* For the time being all of these are always true;
404 * if some supported hardware does not have one of these
405 * features this value needs to be provided from
406 * INTEL_INFO(), a feature macro, or similar.
407 */
408 value = 1;
409 break;
410 case I915_PARAM_SLICE_MASK:
411 value = INTEL_INFO(dev_priv)->sseu.slice_mask;
412 if (!value)
413 return -ENODEV;
414 break;
415 case I915_PARAM_SUBSLICE_MASK:
416 value = INTEL_INFO(dev_priv)->sseu.subslice_mask;
417 if (!value)
418 return -ENODEV;
419 break;
420 default:
421 DRM_DEBUG("Unknown parameter %d\n", param->param);
422 return -EINVAL;
423 }
424
425 if (put_user(value, param->value))
426 return -EFAULT;
427
428 return 0;
429 }
430
431 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
432 {
433 dev_priv->bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
434 if (!dev_priv->bridge_dev) {
435 DRM_ERROR("bridge device not found\n");
436 return -1;
437 }
438 return 0;
439 }
440
441 /* Allocate space for the MCH regs if needed, return nonzero on error */
442 static int
443 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
444 {
445 int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
446 u32 temp_lo, temp_hi = 0;
447 u64 mchbar_addr;
448 int ret;
449
450 if (INTEL_GEN(dev_priv) >= 4)
451 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
452 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
453 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
454
455 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
456 #ifdef CONFIG_PNP
457 if (mchbar_addr &&
458 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
459 return 0;
460 #endif
461
462 /* Get some space for it */
463 dev_priv->mch_res.name = "i915 MCHBAR";
464 dev_priv->mch_res.flags = IORESOURCE_MEM;
465 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
466 &dev_priv->mch_res,
467 MCHBAR_SIZE, MCHBAR_SIZE,
468 PCIBIOS_MIN_MEM,
469 0, pcibios_align_resource,
470 dev_priv->bridge_dev);
471 if (ret) {
472 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
473 dev_priv->mch_res.start = 0;
474 return ret;
475 }
476
477 if (INTEL_GEN(dev_priv) >= 4)
478 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
479 upper_32_bits(dev_priv->mch_res.start));
480
481 pci_write_config_dword(dev_priv->bridge_dev, reg,
482 lower_32_bits(dev_priv->mch_res.start));
483 return 0;
484 }
485
486 /* Setup MCHBAR if possible, return true if we should disable it again */
487 static void
488 intel_setup_mchbar(struct drm_i915_private *dev_priv)
489 {
490 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
491 u32 temp;
492 bool enabled;
493
494 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
495 return;
496
497 dev_priv->mchbar_need_disable = false;
498
499 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
500 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
501 enabled = !!(temp & DEVEN_MCHBAR_EN);
502 } else {
503 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
504 enabled = temp & 1;
505 }
506
507 /* If it's already enabled, don't have to do anything */
508 if (enabled)
509 return;
510
511 if (intel_alloc_mchbar_resource(dev_priv))
512 return;
513
514 dev_priv->mchbar_need_disable = true;
515
516 /* Space is allocated or reserved, so enable it. */
517 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
518 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
519 temp | DEVEN_MCHBAR_EN);
520 } else {
521 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
522 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
523 }
524 }
525
526 static void
527 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
528 {
529 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
530
531 if (dev_priv->mchbar_need_disable) {
532 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
533 u32 deven_val;
534
535 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
536 &deven_val);
537 deven_val &= ~DEVEN_MCHBAR_EN;
538 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
539 deven_val);
540 } else {
541 u32 mchbar_val;
542
543 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
544 &mchbar_val);
545 mchbar_val &= ~1;
546 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
547 mchbar_val);
548 }
549 }
550
551 if (dev_priv->mch_res.start)
552 release_resource(&dev_priv->mch_res);
553 }
554
555 /* true = enable decode, false = disable decoder */
556 static unsigned int i915_vga_set_decode(void *cookie, bool state)
557 {
558 struct drm_i915_private *dev_priv = cookie;
559
560 intel_modeset_vga_set_state(dev_priv, state);
561 if (state)
562 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
563 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
564 else
565 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
566 }
567
568 static int i915_resume_switcheroo(struct drm_device *dev);
569 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
570
571 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
572 {
573 struct drm_device *dev = pci_get_drvdata(pdev);
574 pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
575
576 if (state == VGA_SWITCHEROO_ON) {
577 pr_info("switched on\n");
578 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
579 /* i915 resume handler doesn't set to D0 */
580 pci_set_power_state(pdev, PCI_D0);
581 i915_resume_switcheroo(dev);
582 dev->switch_power_state = DRM_SWITCH_POWER_ON;
583 } else {
584 pr_info("switched off\n");
585 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
586 i915_suspend_switcheroo(dev, pmm);
587 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
588 }
589 }
590
591 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
592 {
593 struct drm_device *dev = pci_get_drvdata(pdev);
594
595 /*
596 * FIXME: open_count is protected by drm_global_mutex but that would lead to
597 * locking inversion with the driver load path. And the access here is
598 * completely racy anyway. So don't bother with locking for now.
599 */
600 return dev->open_count == 0;
601 }
602
603 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
604 .set_gpu_state = i915_switcheroo_set_state,
605 .reprobe = NULL,
606 .can_switch = i915_switcheroo_can_switch,
607 };
608
609 static void i915_gem_fini(struct drm_i915_private *dev_priv)
610 {
611 /* Flush any outstanding unpin_work. */
612 i915_gem_drain_workqueue(dev_priv);
613
614 mutex_lock(&dev_priv->drm.struct_mutex);
615 intel_uc_fini_hw(dev_priv);
616 i915_gem_cleanup_engines(dev_priv);
617 i915_gem_contexts_fini(dev_priv);
618 mutex_unlock(&dev_priv->drm.struct_mutex);
619
620 i915_gem_cleanup_userptr(dev_priv);
621
622 i915_gem_drain_freed_objects(dev_priv);
623
624 WARN_ON(!list_empty(&dev_priv->contexts.list));
625 }
626
627 static int i915_load_modeset_init(struct drm_device *dev)
628 {
629 struct drm_i915_private *dev_priv = to_i915(dev);
630 struct pci_dev *pdev = dev_priv->drm.pdev;
631 int ret;
632
633 if (i915_inject_load_failure())
634 return -ENODEV;
635
636 intel_bios_init(dev_priv);
637
638 /* If we have > 1 VGA cards, then we need to arbitrate access
639 * to the common VGA resources.
640 *
641 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
642 * then we do not take part in VGA arbitration and the
643 * vga_client_register() fails with -ENODEV.
644 */
645 ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
646 if (ret && ret != -ENODEV)
647 goto out;
648
649 intel_register_dsm_handler();
650
651 ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
652 if (ret)
653 goto cleanup_vga_client;
654
655 /* must happen before intel_power_domains_init_hw() on VLV/CHV */
656 intel_update_rawclk(dev_priv);
657
658 intel_power_domains_init_hw(dev_priv, false);
659
660 intel_csr_ucode_init(dev_priv);
661
662 ret = intel_irq_install(dev_priv);
663 if (ret)
664 goto cleanup_csr;
665
666 intel_setup_gmbus(dev_priv);
667
668 /* Important: The output setup functions called by modeset_init need
669 * working irqs for e.g. gmbus and dp aux transfers. */
670 ret = intel_modeset_init(dev);
671 if (ret)
672 goto cleanup_irq;
673
674 intel_uc_init_fw(dev_priv);
675
676 ret = i915_gem_init(dev_priv);
677 if (ret)
678 goto cleanup_uc;
679
680 intel_modeset_gem_init(dev);
681
682 if (INTEL_INFO(dev_priv)->num_pipes == 0)
683 return 0;
684
685 ret = intel_fbdev_init(dev);
686 if (ret)
687 goto cleanup_gem;
688
689 /* Only enable hotplug handling once the fbdev is fully set up. */
690 intel_hpd_init(dev_priv);
691
692 drm_kms_helper_poll_init(dev);
693
694 return 0;
695
696 cleanup_gem:
697 if (i915_gem_suspend(dev_priv))
698 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
699 i915_gem_fini(dev_priv);
700 cleanup_uc:
701 intel_uc_fini_fw(dev_priv);
702 cleanup_irq:
703 drm_irq_uninstall(dev);
704 intel_teardown_gmbus(dev_priv);
705 cleanup_csr:
706 intel_csr_ucode_fini(dev_priv);
707 intel_power_domains_fini(dev_priv);
708 vga_switcheroo_unregister_client(pdev);
709 cleanup_vga_client:
710 vga_client_register(pdev, NULL, NULL, NULL);
711 out:
712 return ret;
713 }
714
715 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
716 {
717 struct apertures_struct *ap;
718 struct pci_dev *pdev = dev_priv->drm.pdev;
719 struct i915_ggtt *ggtt = &dev_priv->ggtt;
720 bool primary;
721 int ret;
722
723 ap = alloc_apertures(1);
724 if (!ap)
725 return -ENOMEM;
726
727 ap->ranges[0].base = ggtt->mappable_base;
728 ap->ranges[0].size = ggtt->mappable_end;
729
730 primary =
731 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
732
733 ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
734
735 kfree(ap);
736
737 return ret;
738 }
739
740 #if !defined(CONFIG_VGA_CONSOLE)
741 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
742 {
743 return 0;
744 }
745 #elif !defined(CONFIG_DUMMY_CONSOLE)
746 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
747 {
748 return -ENODEV;
749 }
750 #else
751 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
752 {
753 int ret = 0;
754
755 DRM_INFO("Replacing VGA console driver\n");
756
757 console_lock();
758 if (con_is_bound(&vga_con))
759 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
760 if (ret == 0) {
761 ret = do_unregister_con_driver(&vga_con);
762
763 /* Ignore "already unregistered". */
764 if (ret == -ENODEV)
765 ret = 0;
766 }
767 console_unlock();
768
769 return ret;
770 }
771 #endif
772
773 static void intel_init_dpio(struct drm_i915_private *dev_priv)
774 {
775 /*
776 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
777 * CHV x1 PHY (DP/HDMI D)
778 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
779 */
780 if (IS_CHERRYVIEW(dev_priv)) {
781 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
782 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
783 } else if (IS_VALLEYVIEW(dev_priv)) {
784 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
785 }
786 }
787
788 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
789 {
790 /*
791 * The i915 workqueue is primarily used for batched retirement of
792 * requests (and thus managing bo) once the task has been completed
793 * by the GPU. i915_gem_retire_requests() is called directly when we
794 * need high-priority retirement, such as waiting for an explicit
795 * bo.
796 *
797 * It is also used for periodic low-priority events, such as
798 * idle-timers and recording error state.
799 *
800 * All tasks on the workqueue are expected to acquire the dev mutex
801 * so there is no point in running more than one instance of the
802 * workqueue at any time. Use an ordered one.
803 */
804 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
805 if (dev_priv->wq == NULL)
806 goto out_err;
807
808 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
809 if (dev_priv->hotplug.dp_wq == NULL)
810 goto out_free_wq;
811
812 return 0;
813
814 out_free_wq:
815 destroy_workqueue(dev_priv->wq);
816 out_err:
817 DRM_ERROR("Failed to allocate workqueues.\n");
818
819 return -ENOMEM;
820 }
821
822 static void i915_engines_cleanup(struct drm_i915_private *i915)
823 {
824 struct intel_engine_cs *engine;
825 enum intel_engine_id id;
826
827 for_each_engine(engine, i915, id)
828 kfree(engine);
829 }
830
831 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
832 {
833 destroy_workqueue(dev_priv->hotplug.dp_wq);
834 destroy_workqueue(dev_priv->wq);
835 }
836
837 /*
838 * We don't keep the workarounds for pre-production hardware, so we expect our
839 * driver to fail on these machines in one way or another. A little warning on
840 * dmesg may help both the user and the bug triagers.
841 */
842 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
843 {
844 bool pre = false;
845
846 pre |= IS_HSW_EARLY_SDV(dev_priv);
847 pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
848 pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
849
850 if (pre) {
851 DRM_ERROR("This is a pre-production stepping. "
852 "It may not be fully functional.\n");
853 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
854 }
855 }
856
857 /**
858 * i915_driver_init_early - setup state not requiring device access
859 * @dev_priv: device private
860 *
861 * Initialize everything that is a "SW-only" state, that is state not
862 * requiring accessing the device or exposing the driver via kernel internal
863 * or userspace interfaces. Example steps belonging here: lock initialization,
864 * system memory allocation, setting up device specific attributes and
865 * function hooks not requiring accessing the device.
866 */
867 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
868 const struct pci_device_id *ent)
869 {
870 const struct intel_device_info *match_info =
871 (struct intel_device_info *)ent->driver_data;
872 struct intel_device_info *device_info;
873 int ret = 0;
874
875 if (i915_inject_load_failure())
876 return -ENODEV;
877
878 /* Setup the write-once "constant" device info */
879 device_info = mkwrite_device_info(dev_priv);
880 memcpy(device_info, match_info, sizeof(*device_info));
881 device_info->device_id = dev_priv->drm.pdev->device;
882
883 BUILD_BUG_ON(INTEL_MAX_PLATFORMS >
884 sizeof(device_info->platform_mask) * BITS_PER_BYTE);
885 device_info->platform_mask = BIT(device_info->platform);
886
887 BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
888 device_info->gen_mask = BIT(device_info->gen - 1);
889
890 spin_lock_init(&dev_priv->irq_lock);
891 spin_lock_init(&dev_priv->gpu_error.lock);
892 mutex_init(&dev_priv->backlight_lock);
893 spin_lock_init(&dev_priv->uncore.lock);
894
895 spin_lock_init(&dev_priv->mm.object_stat_lock);
896 mutex_init(&dev_priv->sb_lock);
897 mutex_init(&dev_priv->modeset_restore_lock);
898 mutex_init(&dev_priv->av_mutex);
899 mutex_init(&dev_priv->wm.wm_mutex);
900 mutex_init(&dev_priv->pps_mutex);
901
902 intel_uc_init_early(dev_priv);
903 i915_memcpy_init_early(dev_priv);
904
905 ret = i915_workqueues_init(dev_priv);
906 if (ret < 0)
907 goto err_engines;
908
909 /* This must be called before any calls to HAS_PCH_* */
910 intel_detect_pch(dev_priv);
911
912 intel_pm_setup(dev_priv);
913 intel_init_dpio(dev_priv);
914 intel_power_domains_init(dev_priv);
915 intel_irq_init(dev_priv);
916 intel_hangcheck_init(dev_priv);
917 intel_init_display_hooks(dev_priv);
918 intel_init_clock_gating_hooks(dev_priv);
919 intel_init_audio_hooks(dev_priv);
920 ret = i915_gem_load_init(dev_priv);
921 if (ret < 0)
922 goto err_irq;
923
924 intel_display_crc_init(dev_priv);
925
926 intel_device_info_dump(dev_priv);
927
928 intel_detect_preproduction_hw(dev_priv);
929
930 i915_perf_init(dev_priv);
931
932 return 0;
933
934 err_irq:
935 intel_irq_fini(dev_priv);
936 i915_workqueues_cleanup(dev_priv);
937 err_engines:
938 i915_engines_cleanup(dev_priv);
939 return ret;
940 }
941
942 /**
943 * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
944 * @dev_priv: device private
945 */
946 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
947 {
948 i915_perf_fini(dev_priv);
949 i915_gem_load_cleanup(dev_priv);
950 intel_irq_fini(dev_priv);
951 i915_workqueues_cleanup(dev_priv);
952 i915_engines_cleanup(dev_priv);
953 }
954
955 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
956 {
957 struct pci_dev *pdev = dev_priv->drm.pdev;
958 int mmio_bar;
959 int mmio_size;
960
961 mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
962 /*
963 * Before gen4, the registers and the GTT are behind different BARs.
964 * However, from gen4 onwards, the registers and the GTT are shared
965 * in the same BAR, so we want to restrict this ioremap from
966 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
967 * the register BAR remains the same size for all the earlier
968 * generations up to Ironlake.
969 */
970 if (INTEL_GEN(dev_priv) < 5)
971 mmio_size = 512 * 1024;
972 else
973 mmio_size = 2 * 1024 * 1024;
974 dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
975 if (dev_priv->regs == NULL) {
976 DRM_ERROR("failed to map registers\n");
977
978 return -EIO;
979 }
980
981 /* Try to make sure MCHBAR is enabled before poking at it */
982 intel_setup_mchbar(dev_priv);
983
984 return 0;
985 }
986
987 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
988 {
989 struct pci_dev *pdev = dev_priv->drm.pdev;
990
991 intel_teardown_mchbar(dev_priv);
992 pci_iounmap(pdev, dev_priv->regs);
993 }
994
995 /**
996 * i915_driver_init_mmio - setup device MMIO
997 * @dev_priv: device private
998 *
999 * Setup minimal device state necessary for MMIO accesses later in the
1000 * initialization sequence. The setup here should avoid any other device-wide
1001 * side effects or exposing the driver via kernel internal or user space
1002 * interfaces.
1003 */
1004 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
1005 {
1006 int ret;
1007
1008 if (i915_inject_load_failure())
1009 return -ENODEV;
1010
1011 if (i915_get_bridge_dev(dev_priv))
1012 return -EIO;
1013
1014 ret = i915_mmio_setup(dev_priv);
1015 if (ret < 0)
1016 goto err_bridge;
1017
1018 intel_uncore_init(dev_priv);
1019
1020 intel_uc_init_mmio(dev_priv);
1021
1022 ret = intel_engines_init_mmio(dev_priv);
1023 if (ret)
1024 goto err_uncore;
1025
1026 i915_gem_init_mmio(dev_priv);
1027
1028 return 0;
1029
1030 err_uncore:
1031 intel_uncore_fini(dev_priv);
1032 err_bridge:
1033 pci_dev_put(dev_priv->bridge_dev);
1034
1035 return ret;
1036 }
1037
1038 /**
1039 * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
1040 * @dev_priv: device private
1041 */
1042 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
1043 {
1044 intel_uncore_fini(dev_priv);
1045 i915_mmio_cleanup(dev_priv);
1046 pci_dev_put(dev_priv->bridge_dev);
1047 }
1048
1049 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
1050 {
1051 i915_modparams.enable_execlists =
1052 intel_sanitize_enable_execlists(dev_priv,
1053 i915_modparams.enable_execlists);
1054
1055 /*
1056 * i915.enable_ppgtt is read-only, so do an early pass to validate the
1057 * user's requested state against the hardware/driver capabilities. We
1058 * do this now so that we can print out any log messages once rather
1059 * than every time we check intel_enable_ppgtt().
1060 */
1061 i915_modparams.enable_ppgtt =
1062 intel_sanitize_enable_ppgtt(dev_priv,
1063 i915_modparams.enable_ppgtt);
1064 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915_modparams.enable_ppgtt);
1065
1066 i915_modparams.semaphores =
1067 intel_sanitize_semaphores(dev_priv, i915_modparams.semaphores);
1068 DRM_DEBUG_DRIVER("use GPU semaphores? %s\n",
1069 yesno(i915_modparams.semaphores));
1070
1071 intel_uc_sanitize_options(dev_priv);
1072
1073 intel_gvt_sanitize_options(dev_priv);
1074 }
1075
1076 /**
1077 * i915_driver_init_hw - setup state requiring device access
1078 * @dev_priv: device private
1079 *
1080 * Setup state that requires accessing the device, but doesn't require
1081 * exposing the driver via kernel internal or userspace interfaces.
1082 */
1083 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
1084 {
1085 struct pci_dev *pdev = dev_priv->drm.pdev;
1086 int ret;
1087
1088 if (i915_inject_load_failure())
1089 return -ENODEV;
1090
1091 intel_device_info_runtime_init(dev_priv);
1092
1093 intel_sanitize_options(dev_priv);
1094
1095 ret = i915_ggtt_probe_hw(dev_priv);
1096 if (ret)
1097 return ret;
1098
1099 /* WARNING: Apparently we must kick fbdev drivers before vgacon,
1100 * otherwise the vga fbdev driver falls over. */
1101 ret = i915_kick_out_firmware_fb(dev_priv);
1102 if (ret) {
1103 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1104 goto out_ggtt;
1105 }
1106
1107 ret = i915_kick_out_vgacon(dev_priv);
1108 if (ret) {
1109 DRM_ERROR("failed to remove conflicting VGA console\n");
1110 goto out_ggtt;
1111 }
1112
1113 ret = i915_ggtt_init_hw(dev_priv);
1114 if (ret)
1115 return ret;
1116
1117 ret = i915_ggtt_enable_hw(dev_priv);
1118 if (ret) {
1119 DRM_ERROR("failed to enable GGTT\n");
1120 goto out_ggtt;
1121 }
1122
1123 pci_set_master(pdev);
1124
1125 /* overlay on gen2 is broken and can't address above 1G */
1126 if (IS_GEN2(dev_priv)) {
1127 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1128 if (ret) {
1129 DRM_ERROR("failed to set DMA mask\n");
1130
1131 goto out_ggtt;
1132 }
1133 }
1134
1135 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1136 * using 32bit addressing, overwriting memory if HWS is located
1137 * above 4GB.
1138 *
1139 * The documentation also mentions an issue with undefined
1140 * behaviour if any general state is accessed within a page above 4GB,
1141 * which also needs to be handled carefully.
1142 */
1143 if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1144 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1145
1146 if (ret) {
1147 DRM_ERROR("failed to set DMA mask\n");
1148
1149 goto out_ggtt;
1150 }
1151 }
1152
1153 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1154 PM_QOS_DEFAULT_VALUE);
1155
1156 intel_uncore_sanitize(dev_priv);
1157
1158 intel_opregion_setup(dev_priv);
1159
1160 i915_gem_load_init_fences(dev_priv);
1161
1162 /* On the 945G/GM, the chipset reports the MSI capability on the
1163 * integrated graphics even though the support isn't actually there
1164 * according to the published specs. It doesn't appear to function
1165 * correctly in testing on 945G.
1166 * This may be a side effect of MSI having been made available for PEG
1167 * and the registers being closely associated.
1168 *
1169 * According to chipset errata, on the 965GM, MSI interrupts may
1170 * be lost or delayed, and was defeatured. MSI interrupts seem to
1171 * get lost on g4x as well, and interrupt delivery seems to stay
1172 * properly dead afterwards. So we'll just disable them for all
1173 * pre-gen5 chipsets.
1174 */
1175 if (INTEL_GEN(dev_priv) >= 5) {
1176 if (pci_enable_msi(pdev) < 0)
1177 DRM_DEBUG_DRIVER("can't enable MSI");
1178 }
1179
1180 ret = intel_gvt_init(dev_priv);
1181 if (ret)
1182 goto out_ggtt;
1183
1184 return 0;
1185
1186 out_ggtt:
1187 i915_ggtt_cleanup_hw(dev_priv);
1188
1189 return ret;
1190 }
1191
1192 /**
1193 * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1194 * @dev_priv: device private
1195 */
1196 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1197 {
1198 struct pci_dev *pdev = dev_priv->drm.pdev;
1199
1200 if (pdev->msi_enabled)
1201 pci_disable_msi(pdev);
1202
1203 pm_qos_remove_request(&dev_priv->pm_qos);
1204 i915_ggtt_cleanup_hw(dev_priv);
1205 }
1206
1207 /**
1208 * i915_driver_register - register the driver with the rest of the system
1209 * @dev_priv: device private
1210 *
1211 * Perform any steps necessary to make the driver available via kernel
1212 * internal or userspace interfaces.
1213 */
1214 static void i915_driver_register(struct drm_i915_private *dev_priv)
1215 {
1216 struct drm_device *dev = &dev_priv->drm;
1217
1218 i915_gem_shrinker_init(dev_priv);
1219
1220 /*
1221 * Notify a valid surface after modesetting,
1222 * when running inside a VM.
1223 */
1224 if (intel_vgpu_active(dev_priv))
1225 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1226
1227 /* Reveal our presence to userspace */
1228 if (drm_dev_register(dev, 0) == 0) {
1229 i915_debugfs_register(dev_priv);
1230 i915_guc_log_register(dev_priv);
1231 i915_setup_sysfs(dev_priv);
1232
1233 /* Depends on sysfs having been initialized */
1234 i915_perf_register(dev_priv);
1235 } else
1236 DRM_ERROR("Failed to register driver for userspace access!\n");
1237
1238 if (INTEL_INFO(dev_priv)->num_pipes) {
1239 /* Must be done after probing outputs */
1240 intel_opregion_register(dev_priv);
1241 acpi_video_register();
1242 }
1243
1244 if (IS_GEN5(dev_priv))
1245 intel_gpu_ips_init(dev_priv);
1246
1247 intel_audio_init(dev_priv);
1248
1249 /*
1250 * Some ports require correctly set-up hpd registers for detection to
1251 * work properly (leading to ghost connected connector status), e.g. VGA
1252 * on gm45. Hence we can only set up the initial fbdev config after hpd
1253 * irqs are fully enabled. We do it last so that the async config
1254 * cannot run before the connectors are registered.
1255 */
1256 intel_fbdev_initial_config_async(dev);
1257 }
1258
1259 /**
1260 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1261 * @dev_priv: device private
1262 */
1263 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1264 {
1265 intel_fbdev_unregister(dev_priv);
1266 intel_audio_deinit(dev_priv);
1267
1268 intel_gpu_ips_teardown();
1269 acpi_video_unregister();
1270 intel_opregion_unregister(dev_priv);
1271
1272 i915_perf_unregister(dev_priv);
1273
1274 i915_teardown_sysfs(dev_priv);
1275 i915_guc_log_unregister(dev_priv);
1276 drm_dev_unregister(&dev_priv->drm);
1277
1278 i915_gem_shrinker_cleanup(dev_priv);
1279 }
1280
1281 /**
1282 * i915_driver_load - setup chip and create an initial config
1283 * @pdev: PCI device
1284 * @ent: matching PCI ID entry
1285 *
1286 * The driver load routine has to do several things:
1287 * - drive output discovery via intel_modeset_init()
1288 * - initialize the memory manager
1289 * - allocate initial config memory
1290 * - setup the DRM framebuffer with the allocated memory
1291 */
1292 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1293 {
1294 const struct intel_device_info *match_info =
1295 (struct intel_device_info *)ent->driver_data;
1296 struct drm_i915_private *dev_priv;
1297 int ret;
1298
1299 /* Enable nuclear pageflip on ILK+ */
1300 if (!i915_modparams.nuclear_pageflip && match_info->gen < 5)
1301 driver.driver_features &= ~DRIVER_ATOMIC;
1302
1303 ret = -ENOMEM;
1304 dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1305 if (dev_priv)
1306 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1307 if (ret) {
1308 DRM_DEV_ERROR(&pdev->dev, "allocation failed\n");
1309 goto out_free;
1310 }
1311
1312 dev_priv->drm.pdev = pdev;
1313 dev_priv->drm.dev_private = dev_priv;
1314
1315 ret = pci_enable_device(pdev);
1316 if (ret)
1317 goto out_fini;
1318
1319 pci_set_drvdata(pdev, &dev_priv->drm);
1320 /*
1321 * Disable the system suspend direct complete optimization, which can
1322 * leave the device suspended skipping the driver's suspend handlers
1323 * if the device was already runtime suspended. This is needed due to
1324 * the difference in our runtime and system suspend sequence and
1325 * becaue the HDA driver may require us to enable the audio power
1326 * domain during system suspend.
1327 */
1328 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
1329
1330 ret = i915_driver_init_early(dev_priv, ent);
1331 if (ret < 0)
1332 goto out_pci_disable;
1333
1334 intel_runtime_pm_get(dev_priv);
1335
1336 ret = i915_driver_init_mmio(dev_priv);
1337 if (ret < 0)
1338 goto out_runtime_pm_put;
1339
1340 ret = i915_driver_init_hw(dev_priv);
1341 if (ret < 0)
1342 goto out_cleanup_mmio;
1343
1344 /*
1345 * TODO: move the vblank init and parts of modeset init steps into one
1346 * of the i915_driver_init_/i915_driver_register functions according
1347 * to the role/effect of the given init step.
1348 */
1349 if (INTEL_INFO(dev_priv)->num_pipes) {
1350 ret = drm_vblank_init(&dev_priv->drm,
1351 INTEL_INFO(dev_priv)->num_pipes);
1352 if (ret)
1353 goto out_cleanup_hw;
1354 }
1355
1356 ret = i915_load_modeset_init(&dev_priv->drm);
1357 if (ret < 0)
1358 goto out_cleanup_hw;
1359
1360 i915_driver_register(dev_priv);
1361
1362 intel_runtime_pm_enable(dev_priv);
1363
1364 intel_init_ipc(dev_priv);
1365
1366 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1367 DRM_INFO("DRM_I915_DEBUG enabled\n");
1368 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1369 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1370
1371 intel_runtime_pm_put(dev_priv);
1372
1373 return 0;
1374
1375 out_cleanup_hw:
1376 i915_driver_cleanup_hw(dev_priv);
1377 out_cleanup_mmio:
1378 i915_driver_cleanup_mmio(dev_priv);
1379 out_runtime_pm_put:
1380 intel_runtime_pm_put(dev_priv);
1381 i915_driver_cleanup_early(dev_priv);
1382 out_pci_disable:
1383 pci_disable_device(pdev);
1384 out_fini:
1385 i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1386 drm_dev_fini(&dev_priv->drm);
1387 out_free:
1388 kfree(dev_priv);
1389 return ret;
1390 }
1391
1392 void i915_driver_unload(struct drm_device *dev)
1393 {
1394 struct drm_i915_private *dev_priv = to_i915(dev);
1395 struct pci_dev *pdev = dev_priv->drm.pdev;
1396
1397 i915_driver_unregister(dev_priv);
1398
1399 if (i915_gem_suspend(dev_priv))
1400 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1401
1402 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1403
1404 drm_atomic_helper_shutdown(dev);
1405
1406 intel_gvt_cleanup(dev_priv);
1407
1408 intel_modeset_cleanup(dev);
1409
1410 /*
1411 * free the memory space allocated for the child device
1412 * config parsed from VBT
1413 */
1414 if (dev_priv->vbt.child_dev && dev_priv->vbt.child_dev_num) {
1415 kfree(dev_priv->vbt.child_dev);
1416 dev_priv->vbt.child_dev = NULL;
1417 dev_priv->vbt.child_dev_num = 0;
1418 }
1419 kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1420 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1421 kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1422 dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1423
1424 vga_switcheroo_unregister_client(pdev);
1425 vga_client_register(pdev, NULL, NULL, NULL);
1426
1427 intel_csr_ucode_fini(dev_priv);
1428
1429 /* Free error state after interrupts are fully disabled. */
1430 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1431 i915_reset_error_state(dev_priv);
1432
1433 i915_gem_fini(dev_priv);
1434 intel_uc_fini_fw(dev_priv);
1435 intel_fbc_cleanup_cfb(dev_priv);
1436
1437 intel_power_domains_fini(dev_priv);
1438
1439 i915_driver_cleanup_hw(dev_priv);
1440 i915_driver_cleanup_mmio(dev_priv);
1441
1442 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1443 }
1444
1445 static void i915_driver_release(struct drm_device *dev)
1446 {
1447 struct drm_i915_private *dev_priv = to_i915(dev);
1448
1449 i915_driver_cleanup_early(dev_priv);
1450 drm_dev_fini(&dev_priv->drm);
1451
1452 kfree(dev_priv);
1453 }
1454
1455 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1456 {
1457 struct drm_i915_private *i915 = to_i915(dev);
1458 int ret;
1459
1460 ret = i915_gem_open(i915, file);
1461 if (ret)
1462 return ret;
1463
1464 return 0;
1465 }
1466
1467 /**
1468 * i915_driver_lastclose - clean up after all DRM clients have exited
1469 * @dev: DRM device
1470 *
1471 * Take care of cleaning up after all DRM clients have exited. In the
1472 * mode setting case, we want to restore the kernel's initial mode (just
1473 * in case the last client left us in a bad state).
1474 *
1475 * Additionally, in the non-mode setting case, we'll tear down the GTT
1476 * and DMA structures, since the kernel won't be using them, and clea
1477 * up any GEM state.
1478 */
1479 static void i915_driver_lastclose(struct drm_device *dev)
1480 {
1481 intel_fbdev_restore_mode(dev);
1482 vga_switcheroo_process_delayed_switch();
1483 }
1484
1485 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1486 {
1487 struct drm_i915_file_private *file_priv = file->driver_priv;
1488
1489 mutex_lock(&dev->struct_mutex);
1490 i915_gem_context_close(file);
1491 i915_gem_release(dev, file);
1492 mutex_unlock(&dev->struct_mutex);
1493
1494 kfree(file_priv);
1495 }
1496
1497 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1498 {
1499 struct drm_device *dev = &dev_priv->drm;
1500 struct intel_encoder *encoder;
1501
1502 drm_modeset_lock_all(dev);
1503 for_each_intel_encoder(dev, encoder)
1504 if (encoder->suspend)
1505 encoder->suspend(encoder);
1506 drm_modeset_unlock_all(dev);
1507 }
1508
1509 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1510 bool rpm_resume);
1511 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1512
1513 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1514 {
1515 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1516 if (acpi_target_system_state() < ACPI_STATE_S3)
1517 return true;
1518 #endif
1519 return false;
1520 }
1521
1522 static int i915_drm_suspend(struct drm_device *dev)
1523 {
1524 struct drm_i915_private *dev_priv = to_i915(dev);
1525 struct pci_dev *pdev = dev_priv->drm.pdev;
1526 pci_power_t opregion_target_state;
1527 int error;
1528
1529 /* ignore lid events during suspend */
1530 mutex_lock(&dev_priv->modeset_restore_lock);
1531 dev_priv->modeset_restore = MODESET_SUSPENDED;
1532 mutex_unlock(&dev_priv->modeset_restore_lock);
1533
1534 disable_rpm_wakeref_asserts(dev_priv);
1535
1536 /* We do a lot of poking in a lot of registers, make sure they work
1537 * properly. */
1538 intel_display_set_init_power(dev_priv, true);
1539
1540 drm_kms_helper_poll_disable(dev);
1541
1542 pci_save_state(pdev);
1543
1544 error = i915_gem_suspend(dev_priv);
1545 if (error) {
1546 dev_err(&pdev->dev,
1547 "GEM idle failed, resume might fail\n");
1548 goto out;
1549 }
1550
1551 intel_display_suspend(dev);
1552
1553 intel_dp_mst_suspend(dev);
1554
1555 intel_runtime_pm_disable_interrupts(dev_priv);
1556 intel_hpd_cancel_work(dev_priv);
1557
1558 intel_suspend_encoders(dev_priv);
1559
1560 intel_suspend_hw(dev_priv);
1561
1562 i915_gem_suspend_gtt_mappings(dev_priv);
1563
1564 i915_save_state(dev_priv);
1565
1566 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1567 intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1568
1569 intel_uncore_suspend(dev_priv);
1570 intel_opregion_unregister(dev_priv);
1571
1572 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1573
1574 dev_priv->suspend_count++;
1575
1576 intel_csr_ucode_suspend(dev_priv);
1577
1578 out:
1579 enable_rpm_wakeref_asserts(dev_priv);
1580
1581 return error;
1582 }
1583
1584 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1585 {
1586 struct drm_i915_private *dev_priv = to_i915(dev);
1587 struct pci_dev *pdev = dev_priv->drm.pdev;
1588 int ret;
1589
1590 disable_rpm_wakeref_asserts(dev_priv);
1591
1592 intel_display_set_init_power(dev_priv, false);
1593
1594 /*
1595 * In case of firmware assisted context save/restore don't manually
1596 * deinit the power domains. This also means the CSR/DMC firmware will
1597 * stay active, it will power down any HW resources as required and
1598 * also enable deeper system power states that would be blocked if the
1599 * firmware was inactive.
1600 */
1601 if (IS_GEN9_LP(dev_priv) || hibernation || !suspend_to_idle(dev_priv) ||
1602 dev_priv->csr.dmc_payload == NULL) {
1603 intel_power_domains_suspend(dev_priv);
1604 dev_priv->power_domains_suspended = true;
1605 }
1606
1607 ret = 0;
1608 if (IS_GEN9_LP(dev_priv))
1609 bxt_enable_dc9(dev_priv);
1610 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1611 hsw_enable_pc8(dev_priv);
1612 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1613 ret = vlv_suspend_complete(dev_priv);
1614
1615 if (ret) {
1616 DRM_ERROR("Suspend complete failed: %d\n", ret);
1617 if (dev_priv->power_domains_suspended) {
1618 intel_power_domains_init_hw(dev_priv, true);
1619 dev_priv->power_domains_suspended = false;
1620 }
1621
1622 goto out;
1623 }
1624
1625 pci_disable_device(pdev);
1626 /*
1627 * During hibernation on some platforms the BIOS may try to access
1628 * the device even though it's already in D3 and hang the machine. So
1629 * leave the device in D0 on those platforms and hope the BIOS will
1630 * power down the device properly. The issue was seen on multiple old
1631 * GENs with different BIOS vendors, so having an explicit blacklist
1632 * is inpractical; apply the workaround on everything pre GEN6. The
1633 * platforms where the issue was seen:
1634 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1635 * Fujitsu FSC S7110
1636 * Acer Aspire 1830T
1637 */
1638 if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1639 pci_set_power_state(pdev, PCI_D3hot);
1640
1641 out:
1642 enable_rpm_wakeref_asserts(dev_priv);
1643
1644 return ret;
1645 }
1646
1647 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1648 {
1649 int error;
1650
1651 if (!dev) {
1652 DRM_ERROR("dev: %p\n", dev);
1653 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1654 return -ENODEV;
1655 }
1656
1657 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1658 state.event != PM_EVENT_FREEZE))
1659 return -EINVAL;
1660
1661 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1662 return 0;
1663
1664 error = i915_drm_suspend(dev);
1665 if (error)
1666 return error;
1667
1668 return i915_drm_suspend_late(dev, false);
1669 }
1670
1671 static int i915_drm_resume(struct drm_device *dev)
1672 {
1673 struct drm_i915_private *dev_priv = to_i915(dev);
1674 int ret;
1675
1676 disable_rpm_wakeref_asserts(dev_priv);
1677 intel_sanitize_gt_powersave(dev_priv);
1678
1679 ret = i915_ggtt_enable_hw(dev_priv);
1680 if (ret)
1681 DRM_ERROR("failed to re-enable GGTT\n");
1682
1683 intel_csr_ucode_resume(dev_priv);
1684
1685 i915_gem_resume(dev_priv);
1686
1687 i915_restore_state(dev_priv);
1688 intel_pps_unlock_regs_wa(dev_priv);
1689 intel_opregion_setup(dev_priv);
1690
1691 intel_init_pch_refclk(dev_priv);
1692
1693 /*
1694 * Interrupts have to be enabled before any batches are run. If not the
1695 * GPU will hang. i915_gem_init_hw() will initiate batches to
1696 * update/restore the context.
1697 *
1698 * drm_mode_config_reset() needs AUX interrupts.
1699 *
1700 * Modeset enabling in intel_modeset_init_hw() also needs working
1701 * interrupts.
1702 */
1703 intel_runtime_pm_enable_interrupts(dev_priv);
1704
1705 drm_mode_config_reset(dev);
1706
1707 mutex_lock(&dev->struct_mutex);
1708 if (i915_gem_init_hw(dev_priv)) {
1709 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
1710 i915_gem_set_wedged(dev_priv);
1711 }
1712 mutex_unlock(&dev->struct_mutex);
1713
1714 intel_guc_resume(dev_priv);
1715
1716 intel_modeset_init_hw(dev);
1717 intel_init_clock_gating(dev_priv);
1718
1719 spin_lock_irq(&dev_priv->irq_lock);
1720 if (dev_priv->display.hpd_irq_setup)
1721 dev_priv->display.hpd_irq_setup(dev_priv);
1722 spin_unlock_irq(&dev_priv->irq_lock);
1723
1724 intel_dp_mst_resume(dev);
1725
1726 intel_display_resume(dev);
1727
1728 drm_kms_helper_poll_enable(dev);
1729
1730 /*
1731 * ... but also need to make sure that hotplug processing
1732 * doesn't cause havoc. Like in the driver load code we don't
1733 * bother with the tiny race here where we might loose hotplug
1734 * notifications.
1735 * */
1736 intel_hpd_init(dev_priv);
1737
1738 intel_opregion_register(dev_priv);
1739
1740 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1741
1742 mutex_lock(&dev_priv->modeset_restore_lock);
1743 dev_priv->modeset_restore = MODESET_DONE;
1744 mutex_unlock(&dev_priv->modeset_restore_lock);
1745
1746 intel_opregion_notify_adapter(dev_priv, PCI_D0);
1747
1748 intel_autoenable_gt_powersave(dev_priv);
1749
1750 enable_rpm_wakeref_asserts(dev_priv);
1751
1752 return 0;
1753 }
1754
1755 static int i915_drm_resume_early(struct drm_device *dev)
1756 {
1757 struct drm_i915_private *dev_priv = to_i915(dev);
1758 struct pci_dev *pdev = dev_priv->drm.pdev;
1759 int ret;
1760
1761 /*
1762 * We have a resume ordering issue with the snd-hda driver also
1763 * requiring our device to be power up. Due to the lack of a
1764 * parent/child relationship we currently solve this with an early
1765 * resume hook.
1766 *
1767 * FIXME: This should be solved with a special hdmi sink device or
1768 * similar so that power domains can be employed.
1769 */
1770
1771 /*
1772 * Note that we need to set the power state explicitly, since we
1773 * powered off the device during freeze and the PCI core won't power
1774 * it back up for us during thaw. Powering off the device during
1775 * freeze is not a hard requirement though, and during the
1776 * suspend/resume phases the PCI core makes sure we get here with the
1777 * device powered on. So in case we change our freeze logic and keep
1778 * the device powered we can also remove the following set power state
1779 * call.
1780 */
1781 ret = pci_set_power_state(pdev, PCI_D0);
1782 if (ret) {
1783 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1784 goto out;
1785 }
1786
1787 /*
1788 * Note that pci_enable_device() first enables any parent bridge
1789 * device and only then sets the power state for this device. The
1790 * bridge enabling is a nop though, since bridge devices are resumed
1791 * first. The order of enabling power and enabling the device is
1792 * imposed by the PCI core as described above, so here we preserve the
1793 * same order for the freeze/thaw phases.
1794 *
1795 * TODO: eventually we should remove pci_disable_device() /
1796 * pci_enable_enable_device() from suspend/resume. Due to how they
1797 * depend on the device enable refcount we can't anyway depend on them
1798 * disabling/enabling the device.
1799 */
1800 if (pci_enable_device(pdev)) {
1801 ret = -EIO;
1802 goto out;
1803 }
1804
1805 pci_set_master(pdev);
1806
1807 disable_rpm_wakeref_asserts(dev_priv);
1808
1809 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1810 ret = vlv_resume_prepare(dev_priv, false);
1811 if (ret)
1812 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1813 ret);
1814
1815 intel_uncore_resume_early(dev_priv);
1816
1817 if (IS_GEN9_LP(dev_priv)) {
1818 gen9_sanitize_dc_state(dev_priv);
1819 bxt_disable_dc9(dev_priv);
1820 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1821 hsw_disable_pc8(dev_priv);
1822 }
1823
1824 intel_uncore_sanitize(dev_priv);
1825
1826 if (dev_priv->power_domains_suspended)
1827 intel_power_domains_init_hw(dev_priv, true);
1828 else
1829 intel_display_set_init_power(dev_priv, true);
1830
1831 i915_gem_sanitize(dev_priv);
1832
1833 enable_rpm_wakeref_asserts(dev_priv);
1834
1835 out:
1836 dev_priv->power_domains_suspended = false;
1837
1838 return ret;
1839 }
1840
1841 static int i915_resume_switcheroo(struct drm_device *dev)
1842 {
1843 int ret;
1844
1845 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1846 return 0;
1847
1848 ret = i915_drm_resume_early(dev);
1849 if (ret)
1850 return ret;
1851
1852 return i915_drm_resume(dev);
1853 }
1854
1855 /**
1856 * i915_reset - reset chip after a hang
1857 * @i915: #drm_i915_private to reset
1858 * @flags: Instructions
1859 *
1860 * Reset the chip. Useful if a hang is detected. Marks the device as wedged
1861 * on failure.
1862 *
1863 * Caller must hold the struct_mutex.
1864 *
1865 * Procedure is fairly simple:
1866 * - reset the chip using the reset reg
1867 * - re-init context state
1868 * - re-init hardware status page
1869 * - re-init ring buffer
1870 * - re-init interrupt state
1871 * - re-init display
1872 */
1873 void i915_reset(struct drm_i915_private *i915, unsigned int flags)
1874 {
1875 struct i915_gpu_error *error = &i915->gpu_error;
1876 int ret;
1877
1878 lockdep_assert_held(&i915->drm.struct_mutex);
1879 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &error->flags));
1880
1881 if (!test_bit(I915_RESET_HANDOFF, &error->flags))
1882 return;
1883
1884 /* Clear any previous failed attempts at recovery. Time to try again. */
1885 if (!i915_gem_unset_wedged(i915))
1886 goto wakeup;
1887
1888 if (!(flags & I915_RESET_QUIET))
1889 dev_notice(i915->drm.dev, "Resetting chip after gpu hang\n");
1890 error->reset_count++;
1891
1892 disable_irq(i915->drm.irq);
1893 ret = i915_gem_reset_prepare(i915);
1894 if (ret) {
1895 DRM_ERROR("GPU recovery failed\n");
1896 intel_gpu_reset(i915, ALL_ENGINES);
1897 goto error;
1898 }
1899
1900 ret = intel_gpu_reset(i915, ALL_ENGINES);
1901 if (ret) {
1902 if (ret != -ENODEV)
1903 DRM_ERROR("Failed to reset chip: %i\n", ret);
1904 else
1905 DRM_DEBUG_DRIVER("GPU reset disabled\n");
1906 goto error;
1907 }
1908
1909 i915_gem_reset(i915);
1910 intel_overlay_reset(i915);
1911
1912 /* Ok, now get things going again... */
1913
1914 /*
1915 * Everything depends on having the GTT running, so we need to start
1916 * there.
1917 */
1918 ret = i915_ggtt_enable_hw(i915);
1919 if (ret) {
1920 DRM_ERROR("Failed to re-enable GGTT following reset %d\n", ret);
1921 goto error;
1922 }
1923
1924 /*
1925 * Next we need to restore the context, but we don't use those
1926 * yet either...
1927 *
1928 * Ring buffer needs to be re-initialized in the KMS case, or if X
1929 * was running at the time of the reset (i.e. we weren't VT
1930 * switched away).
1931 */
1932 ret = i915_gem_init_hw(i915);
1933 if (ret) {
1934 DRM_ERROR("Failed hw init on reset %d\n", ret);
1935 goto error;
1936 }
1937
1938 i915_queue_hangcheck(i915);
1939
1940 finish:
1941 i915_gem_reset_finish(i915);
1942 enable_irq(i915->drm.irq);
1943
1944 wakeup:
1945 clear_bit(I915_RESET_HANDOFF, &error->flags);
1946 wake_up_bit(&error->flags, I915_RESET_HANDOFF);
1947 return;
1948
1949 error:
1950 i915_gem_set_wedged(i915);
1951 i915_gem_retire_requests(i915);
1952 goto finish;
1953 }
1954
1955 /**
1956 * i915_reset_engine - reset GPU engine to recover from a hang
1957 * @engine: engine to reset
1958 * @flags: options
1959 *
1960 * Reset a specific GPU engine. Useful if a hang is detected.
1961 * Returns zero on successful reset or otherwise an error code.
1962 *
1963 * Procedure is:
1964 * - identifies the request that caused the hang and it is dropped
1965 * - reset engine (which will force the engine to idle)
1966 * - re-init/configure engine
1967 */
1968 int i915_reset_engine(struct intel_engine_cs *engine, unsigned int flags)
1969 {
1970 struct i915_gpu_error *error = &engine->i915->gpu_error;
1971 struct drm_i915_gem_request *active_request;
1972 int ret;
1973
1974 GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &error->flags));
1975
1976 if (!(flags & I915_RESET_QUIET)) {
1977 dev_notice(engine->i915->drm.dev,
1978 "Resetting %s after gpu hang\n", engine->name);
1979 }
1980 error->reset_engine_count[engine->id]++;
1981
1982 active_request = i915_gem_reset_prepare_engine(engine);
1983 if (IS_ERR(active_request)) {
1984 DRM_DEBUG_DRIVER("Previous reset failed, promote to full reset\n");
1985 ret = PTR_ERR(active_request);
1986 goto out;
1987 }
1988
1989 ret = intel_gpu_reset(engine->i915, intel_engine_flag(engine));
1990 if (ret) {
1991 /* If we fail here, we expect to fallback to a global reset */
1992 DRM_DEBUG_DRIVER("Failed to reset %s, ret=%d\n",
1993 engine->name, ret);
1994 goto out;
1995 }
1996
1997 /*
1998 * The request that caused the hang is stuck on elsp, we know the
1999 * active request and can drop it, adjust head to skip the offending
2000 * request to resume executing remaining requests in the queue.
2001 */
2002 i915_gem_reset_engine(engine, active_request);
2003
2004 /*
2005 * The engine and its registers (and workarounds in case of render)
2006 * have been reset to their default values. Follow the init_ring
2007 * process to program RING_MODE, HWSP and re-enable submission.
2008 */
2009 ret = engine->init_hw(engine);
2010 if (ret)
2011 goto out;
2012
2013 out:
2014 i915_gem_reset_finish_engine(engine);
2015 return ret;
2016 }
2017
2018 static int i915_pm_suspend(struct device *kdev)
2019 {
2020 struct pci_dev *pdev = to_pci_dev(kdev);
2021 struct drm_device *dev = pci_get_drvdata(pdev);
2022
2023 if (!dev) {
2024 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2025 return -ENODEV;
2026 }
2027
2028 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2029 return 0;
2030
2031 return i915_drm_suspend(dev);
2032 }
2033
2034 static int i915_pm_suspend_late(struct device *kdev)
2035 {
2036 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2037
2038 /*
2039 * We have a suspend ordering issue with the snd-hda driver also
2040 * requiring our device to be power up. Due to the lack of a
2041 * parent/child relationship we currently solve this with an late
2042 * suspend hook.
2043 *
2044 * FIXME: This should be solved with a special hdmi sink device or
2045 * similar so that power domains can be employed.
2046 */
2047 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2048 return 0;
2049
2050 return i915_drm_suspend_late(dev, false);
2051 }
2052
2053 static int i915_pm_poweroff_late(struct device *kdev)
2054 {
2055 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2056
2057 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2058 return 0;
2059
2060 return i915_drm_suspend_late(dev, true);
2061 }
2062
2063 static int i915_pm_resume_early(struct device *kdev)
2064 {
2065 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2066
2067 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2068 return 0;
2069
2070 return i915_drm_resume_early(dev);
2071 }
2072
2073 static int i915_pm_resume(struct device *kdev)
2074 {
2075 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2076
2077 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2078 return 0;
2079
2080 return i915_drm_resume(dev);
2081 }
2082
2083 /* freeze: before creating the hibernation_image */
2084 static int i915_pm_freeze(struct device *kdev)
2085 {
2086 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2087 int ret;
2088
2089 if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2090 ret = i915_drm_suspend(dev);
2091 if (ret)
2092 return ret;
2093 }
2094
2095 ret = i915_gem_freeze(kdev_to_i915(kdev));
2096 if (ret)
2097 return ret;
2098
2099 return 0;
2100 }
2101
2102 static int i915_pm_freeze_late(struct device *kdev)
2103 {
2104 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2105 int ret;
2106
2107 if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2108 ret = i915_drm_suspend_late(dev, true);
2109 if (ret)
2110 return ret;
2111 }
2112
2113 ret = i915_gem_freeze_late(kdev_to_i915(kdev));
2114 if (ret)
2115 return ret;
2116
2117 return 0;
2118 }
2119
2120 /* thaw: called after creating the hibernation image, but before turning off. */
2121 static int i915_pm_thaw_early(struct device *kdev)
2122 {
2123 return i915_pm_resume_early(kdev);
2124 }
2125
2126 static int i915_pm_thaw(struct device *kdev)
2127 {
2128 return i915_pm_resume(kdev);
2129 }
2130
2131 /* restore: called after loading the hibernation image. */
2132 static int i915_pm_restore_early(struct device *kdev)
2133 {
2134 return i915_pm_resume_early(kdev);
2135 }
2136
2137 static int i915_pm_restore(struct device *kdev)
2138 {
2139 return i915_pm_resume(kdev);
2140 }
2141
2142 /*
2143 * Save all Gunit registers that may be lost after a D3 and a subsequent
2144 * S0i[R123] transition. The list of registers needing a save/restore is
2145 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2146 * registers in the following way:
2147 * - Driver: saved/restored by the driver
2148 * - Punit : saved/restored by the Punit firmware
2149 * - No, w/o marking: no need to save/restore, since the register is R/O or
2150 * used internally by the HW in a way that doesn't depend
2151 * keeping the content across a suspend/resume.
2152 * - Debug : used for debugging
2153 *
2154 * We save/restore all registers marked with 'Driver', with the following
2155 * exceptions:
2156 * - Registers out of use, including also registers marked with 'Debug'.
2157 * These have no effect on the driver's operation, so we don't save/restore
2158 * them to reduce the overhead.
2159 * - Registers that are fully setup by an initialization function called from
2160 * the resume path. For example many clock gating and RPS/RC6 registers.
2161 * - Registers that provide the right functionality with their reset defaults.
2162 *
2163 * TODO: Except for registers that based on the above 3 criteria can be safely
2164 * ignored, we save/restore all others, practically treating the HW context as
2165 * a black-box for the driver. Further investigation is needed to reduce the
2166 * saved/restored registers even further, by following the same 3 criteria.
2167 */
2168 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2169 {
2170 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2171 int i;
2172
2173 /* GAM 0x4000-0x4770 */
2174 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
2175 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
2176 s->arb_mode = I915_READ(ARB_MODE);
2177 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
2178 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
2179
2180 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2181 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2182
2183 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2184 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2185
2186 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
2187 s->ecochk = I915_READ(GAM_ECOCHK);
2188 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
2189 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
2190
2191 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
2192
2193 /* MBC 0x9024-0x91D0, 0x8500 */
2194 s->g3dctl = I915_READ(VLV_G3DCTL);
2195 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
2196 s->mbctl = I915_READ(GEN6_MBCTL);
2197
2198 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2199 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2200 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2201 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2202 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2203 s->rstctl = I915_READ(GEN6_RSTCTL);
2204 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2205
2206 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2207 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2208 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2209 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2210 s->ecobus = I915_READ(ECOBUS);
2211 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2212 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2213 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2214 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2215 s->rcedata = I915_READ(VLV_RCEDATA);
2216 s->spare2gh = I915_READ(VLV_SPAREG2H);
2217
2218 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2219 s->gt_imr = I915_READ(GTIMR);
2220 s->gt_ier = I915_READ(GTIER);
2221 s->pm_imr = I915_READ(GEN6_PMIMR);
2222 s->pm_ier = I915_READ(GEN6_PMIER);
2223
2224 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2225 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2226
2227 /* GT SA CZ domain, 0x100000-0x138124 */
2228 s->tilectl = I915_READ(TILECTL);
2229 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2230 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2231 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2232 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2233
2234 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2235 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2236 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2237 s->pcbr = I915_READ(VLV_PCBR);
2238 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2239
2240 /*
2241 * Not saving any of:
2242 * DFT, 0x9800-0x9EC0
2243 * SARB, 0xB000-0xB1FC
2244 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2245 * PCI CFG
2246 */
2247 }
2248
2249 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2250 {
2251 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2252 u32 val;
2253 int i;
2254
2255 /* GAM 0x4000-0x4770 */
2256 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2257 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2258 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2259 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2260 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2261
2262 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2263 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2264
2265 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2266 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2267
2268 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2269 I915_WRITE(GAM_ECOCHK, s->ecochk);
2270 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2271 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2272
2273 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2274
2275 /* MBC 0x9024-0x91D0, 0x8500 */
2276 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2277 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2278 I915_WRITE(GEN6_MBCTL, s->mbctl);
2279
2280 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2281 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2282 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2283 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2284 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2285 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2286 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2287
2288 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2289 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2290 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2291 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2292 I915_WRITE(ECOBUS, s->ecobus);
2293 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2294 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2295 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2296 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2297 I915_WRITE(VLV_RCEDATA, s->rcedata);
2298 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2299
2300 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2301 I915_WRITE(GTIMR, s->gt_imr);
2302 I915_WRITE(GTIER, s->gt_ier);
2303 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2304 I915_WRITE(GEN6_PMIER, s->pm_ier);
2305
2306 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2307 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2308
2309 /* GT SA CZ domain, 0x100000-0x138124 */
2310 I915_WRITE(TILECTL, s->tilectl);
2311 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2312 /*
2313 * Preserve the GT allow wake and GFX force clock bit, they are not
2314 * be restored, as they are used to control the s0ix suspend/resume
2315 * sequence by the caller.
2316 */
2317 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2318 val &= VLV_GTLC_ALLOWWAKEREQ;
2319 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2320 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2321
2322 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2323 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2324 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2325 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2326
2327 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2328
2329 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2330 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2331 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2332 I915_WRITE(VLV_PCBR, s->pcbr);
2333 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2334 }
2335
2336 static int vlv_wait_for_pw_status(struct drm_i915_private *dev_priv,
2337 u32 mask, u32 val)
2338 {
2339 /* The HW does not like us polling for PW_STATUS frequently, so
2340 * use the sleeping loop rather than risk the busy spin within
2341 * intel_wait_for_register().
2342 *
2343 * Transitioning between RC6 states should be at most 2ms (see
2344 * valleyview_enable_rps) so use a 3ms timeout.
2345 */
2346 return wait_for((I915_READ_NOTRACE(VLV_GTLC_PW_STATUS) & mask) == val,
2347 3);
2348 }
2349
2350 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2351 {
2352 u32 val;
2353 int err;
2354
2355 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2356 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2357 if (force_on)
2358 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2359 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2360
2361 if (!force_on)
2362 return 0;
2363
2364 err = intel_wait_for_register(dev_priv,
2365 VLV_GTLC_SURVIVABILITY_REG,
2366 VLV_GFX_CLK_STATUS_BIT,
2367 VLV_GFX_CLK_STATUS_BIT,
2368 20);
2369 if (err)
2370 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2371 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2372
2373 return err;
2374 }
2375
2376 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2377 {
2378 u32 mask;
2379 u32 val;
2380 int err;
2381
2382 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2383 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2384 if (allow)
2385 val |= VLV_GTLC_ALLOWWAKEREQ;
2386 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2387 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2388
2389 mask = VLV_GTLC_ALLOWWAKEACK;
2390 val = allow ? mask : 0;
2391
2392 err = vlv_wait_for_pw_status(dev_priv, mask, val);
2393 if (err)
2394 DRM_ERROR("timeout disabling GT waking\n");
2395
2396 return err;
2397 }
2398
2399 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2400 bool wait_for_on)
2401 {
2402 u32 mask;
2403 u32 val;
2404
2405 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2406 val = wait_for_on ? mask : 0;
2407
2408 /*
2409 * RC6 transitioning can be delayed up to 2 msec (see
2410 * valleyview_enable_rps), use 3 msec for safety.
2411 */
2412 if (vlv_wait_for_pw_status(dev_priv, mask, val))
2413 DRM_ERROR("timeout waiting for GT wells to go %s\n",
2414 onoff(wait_for_on));
2415 }
2416
2417 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2418 {
2419 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2420 return;
2421
2422 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2423 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2424 }
2425
2426 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2427 {
2428 u32 mask;
2429 int err;
2430
2431 /*
2432 * Bspec defines the following GT well on flags as debug only, so
2433 * don't treat them as hard failures.
2434 */
2435 vlv_wait_for_gt_wells(dev_priv, false);
2436
2437 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2438 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2439
2440 vlv_check_no_gt_access(dev_priv);
2441
2442 err = vlv_force_gfx_clock(dev_priv, true);
2443 if (err)
2444 goto err1;
2445
2446 err = vlv_allow_gt_wake(dev_priv, false);
2447 if (err)
2448 goto err2;
2449
2450 if (!IS_CHERRYVIEW(dev_priv))
2451 vlv_save_gunit_s0ix_state(dev_priv);
2452
2453 err = vlv_force_gfx_clock(dev_priv, false);
2454 if (err)
2455 goto err2;
2456
2457 return 0;
2458
2459 err2:
2460 /* For safety always re-enable waking and disable gfx clock forcing */
2461 vlv_allow_gt_wake(dev_priv, true);
2462 err1:
2463 vlv_force_gfx_clock(dev_priv, false);
2464
2465 return err;
2466 }
2467
2468 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2469 bool rpm_resume)
2470 {
2471 int err;
2472 int ret;
2473
2474 /*
2475 * If any of the steps fail just try to continue, that's the best we
2476 * can do at this point. Return the first error code (which will also
2477 * leave RPM permanently disabled).
2478 */
2479 ret = vlv_force_gfx_clock(dev_priv, true);
2480
2481 if (!IS_CHERRYVIEW(dev_priv))
2482 vlv_restore_gunit_s0ix_state(dev_priv);
2483
2484 err = vlv_allow_gt_wake(dev_priv, true);
2485 if (!ret)
2486 ret = err;
2487
2488 err = vlv_force_gfx_clock(dev_priv, false);
2489 if (!ret)
2490 ret = err;
2491
2492 vlv_check_no_gt_access(dev_priv);
2493
2494 if (rpm_resume)
2495 intel_init_clock_gating(dev_priv);
2496
2497 return ret;
2498 }
2499
2500 static int intel_runtime_suspend(struct device *kdev)
2501 {
2502 struct pci_dev *pdev = to_pci_dev(kdev);
2503 struct drm_device *dev = pci_get_drvdata(pdev);
2504 struct drm_i915_private *dev_priv = to_i915(dev);
2505 int ret;
2506
2507 if (WARN_ON_ONCE(!(dev_priv->gt_pm.rc6.enabled && intel_rc6_enabled())))
2508 return -ENODEV;
2509
2510 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2511 return -ENODEV;
2512
2513 DRM_DEBUG_KMS("Suspending device\n");
2514
2515 disable_rpm_wakeref_asserts(dev_priv);
2516
2517 /*
2518 * We are safe here against re-faults, since the fault handler takes
2519 * an RPM reference.
2520 */
2521 i915_gem_runtime_suspend(dev_priv);
2522
2523 intel_guc_suspend(dev_priv);
2524
2525 intel_runtime_pm_disable_interrupts(dev_priv);
2526
2527 ret = 0;
2528 if (IS_GEN9_LP(dev_priv)) {
2529 bxt_display_core_uninit(dev_priv);
2530 bxt_enable_dc9(dev_priv);
2531 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2532 hsw_enable_pc8(dev_priv);
2533 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2534 ret = vlv_suspend_complete(dev_priv);
2535 }
2536
2537 if (ret) {
2538 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2539 intel_runtime_pm_enable_interrupts(dev_priv);
2540
2541 enable_rpm_wakeref_asserts(dev_priv);
2542
2543 return ret;
2544 }
2545
2546 intel_uncore_suspend(dev_priv);
2547
2548 enable_rpm_wakeref_asserts(dev_priv);
2549 WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2550
2551 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2552 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2553
2554 dev_priv->runtime_pm.suspended = true;
2555
2556 /*
2557 * FIXME: We really should find a document that references the arguments
2558 * used below!
2559 */
2560 if (IS_BROADWELL(dev_priv)) {
2561 /*
2562 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2563 * being detected, and the call we do at intel_runtime_resume()
2564 * won't be able to restore them. Since PCI_D3hot matches the
2565 * actual specification and appears to be working, use it.
2566 */
2567 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2568 } else {
2569 /*
2570 * current versions of firmware which depend on this opregion
2571 * notification have repurposed the D1 definition to mean
2572 * "runtime suspended" vs. what you would normally expect (D3)
2573 * to distinguish it from notifications that might be sent via
2574 * the suspend path.
2575 */
2576 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2577 }
2578
2579 assert_forcewakes_inactive(dev_priv);
2580
2581 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2582 intel_hpd_poll_init(dev_priv);
2583
2584 DRM_DEBUG_KMS("Device suspended\n");
2585 return 0;
2586 }
2587
2588 static int intel_runtime_resume(struct device *kdev)
2589 {
2590 struct pci_dev *pdev = to_pci_dev(kdev);
2591 struct drm_device *dev = pci_get_drvdata(pdev);
2592 struct drm_i915_private *dev_priv = to_i915(dev);
2593 int ret = 0;
2594
2595 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2596 return -ENODEV;
2597
2598 DRM_DEBUG_KMS("Resuming device\n");
2599
2600 WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2601 disable_rpm_wakeref_asserts(dev_priv);
2602
2603 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2604 dev_priv->runtime_pm.suspended = false;
2605 if (intel_uncore_unclaimed_mmio(dev_priv))
2606 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2607
2608 intel_guc_resume(dev_priv);
2609
2610 if (IS_GEN9_LP(dev_priv)) {
2611 bxt_disable_dc9(dev_priv);
2612 bxt_display_core_init(dev_priv, true);
2613 if (dev_priv->csr.dmc_payload &&
2614 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2615 gen9_enable_dc5(dev_priv);
2616 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2617 hsw_disable_pc8(dev_priv);
2618 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2619 ret = vlv_resume_prepare(dev_priv, true);
2620 }
2621
2622 intel_uncore_runtime_resume(dev_priv);
2623
2624 /*
2625 * No point of rolling back things in case of an error, as the best
2626 * we can do is to hope that things will still work (and disable RPM).
2627 */
2628 i915_gem_init_swizzling(dev_priv);
2629 i915_gem_restore_fences(dev_priv);
2630
2631 intel_runtime_pm_enable_interrupts(dev_priv);
2632
2633 /*
2634 * On VLV/CHV display interrupts are part of the display
2635 * power well, so hpd is reinitialized from there. For
2636 * everyone else do it here.
2637 */
2638 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2639 intel_hpd_init(dev_priv);
2640
2641 intel_enable_ipc(dev_priv);
2642
2643 enable_rpm_wakeref_asserts(dev_priv);
2644
2645 if (ret)
2646 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2647 else
2648 DRM_DEBUG_KMS("Device resumed\n");
2649
2650 return ret;
2651 }
2652
2653 const struct dev_pm_ops i915_pm_ops = {
2654 /*
2655 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2656 * PMSG_RESUME]
2657 */
2658 .suspend = i915_pm_suspend,
2659 .suspend_late = i915_pm_suspend_late,
2660 .resume_early = i915_pm_resume_early,
2661 .resume = i915_pm_resume,
2662
2663 /*
2664 * S4 event handlers
2665 * @freeze, @freeze_late : called (1) before creating the
2666 * hibernation image [PMSG_FREEZE] and
2667 * (2) after rebooting, before restoring
2668 * the image [PMSG_QUIESCE]
2669 * @thaw, @thaw_early : called (1) after creating the hibernation
2670 * image, before writing it [PMSG_THAW]
2671 * and (2) after failing to create or
2672 * restore the image [PMSG_RECOVER]
2673 * @poweroff, @poweroff_late: called after writing the hibernation
2674 * image, before rebooting [PMSG_HIBERNATE]
2675 * @restore, @restore_early : called after rebooting and restoring the
2676 * hibernation image [PMSG_RESTORE]
2677 */
2678 .freeze = i915_pm_freeze,
2679 .freeze_late = i915_pm_freeze_late,
2680 .thaw_early = i915_pm_thaw_early,
2681 .thaw = i915_pm_thaw,
2682 .poweroff = i915_pm_suspend,
2683 .poweroff_late = i915_pm_poweroff_late,
2684 .restore_early = i915_pm_restore_early,
2685 .restore = i915_pm_restore,
2686
2687 /* S0ix (via runtime suspend) event handlers */
2688 .runtime_suspend = intel_runtime_suspend,
2689 .runtime_resume = intel_runtime_resume,
2690 };
2691
2692 static const struct vm_operations_struct i915_gem_vm_ops = {
2693 .fault = i915_gem_fault,
2694 .open = drm_gem_vm_open,
2695 .close = drm_gem_vm_close,
2696 };
2697
2698 static const struct file_operations i915_driver_fops = {
2699 .owner = THIS_MODULE,
2700 .open = drm_open,
2701 .release = drm_release,
2702 .unlocked_ioctl = drm_ioctl,
2703 .mmap = drm_gem_mmap,
2704 .poll = drm_poll,
2705 .read = drm_read,
2706 .compat_ioctl = i915_compat_ioctl,
2707 .llseek = noop_llseek,
2708 };
2709
2710 static int
2711 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2712 struct drm_file *file)
2713 {
2714 return -ENODEV;
2715 }
2716
2717 static const struct drm_ioctl_desc i915_ioctls[] = {
2718 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2719 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2720 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2721 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2722 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2723 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2724 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH|DRM_RENDER_ALLOW),
2725 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2726 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2727 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2728 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2729 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2730 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2731 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2732 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2733 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2734 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2735 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2736 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH),
2737 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2, DRM_AUTH|DRM_RENDER_ALLOW),
2738 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2739 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2740 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2741 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2742 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2743 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2744 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2745 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2746 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2747 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2748 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2749 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2750 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2751 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2752 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2753 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2754 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2755 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2756 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, 0),
2757 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2758 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2759 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2760 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey, DRM_MASTER|DRM_CONTROL_ALLOW),
2761 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2762 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2763 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2764 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2765 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2766 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2767 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2768 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2769 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2770 DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2771 DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2772 DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2773 };
2774
2775 static struct drm_driver driver = {
2776 /* Don't use MTRRs here; the Xserver or userspace app should
2777 * deal with them for Intel hardware.
2778 */
2779 .driver_features =
2780 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2781 DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
2782 .release = i915_driver_release,
2783 .open = i915_driver_open,
2784 .lastclose = i915_driver_lastclose,
2785 .postclose = i915_driver_postclose,
2786
2787 .gem_close_object = i915_gem_close_object,
2788 .gem_free_object_unlocked = i915_gem_free_object,
2789 .gem_vm_ops = &i915_gem_vm_ops,
2790
2791 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2792 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2793 .gem_prime_export = i915_gem_prime_export,
2794 .gem_prime_import = i915_gem_prime_import,
2795
2796 .dumb_create = i915_gem_dumb_create,
2797 .dumb_map_offset = i915_gem_mmap_gtt,
2798 .ioctls = i915_ioctls,
2799 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2800 .fops = &i915_driver_fops,
2801 .name = DRIVER_NAME,
2802 .desc = DRIVER_DESC,
2803 .date = DRIVER_DATE,
2804 .major = DRIVER_MAJOR,
2805 .minor = DRIVER_MINOR,
2806 .patchlevel = DRIVER_PATCHLEVEL,
2807 };
2808
2809 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2810 #include "selftests/mock_drm.c"
2811 #endif