]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.c
drm/i915: Record the default hw state after reset upon load
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_atomic_helper.h>
47 #include <drm/i915_drm.h>
48
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "i915_vgpu.h"
52 #include "intel_drv.h"
53 #include "intel_uc.h"
54
55 static struct drm_driver driver;
56
57 static unsigned int i915_load_fail_count;
58
59 bool __i915_inject_load_failure(const char *func, int line)
60 {
61 if (i915_load_fail_count >= i915_modparams.inject_load_failure)
62 return false;
63
64 if (++i915_load_fail_count == i915_modparams.inject_load_failure) {
65 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
66 i915_modparams.inject_load_failure, func, line);
67 return true;
68 }
69
70 return false;
71 }
72
73 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
74 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
75 "providing the dmesg log by booting with drm.debug=0xf"
76
77 void
78 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
79 const char *fmt, ...)
80 {
81 static bool shown_bug_once;
82 struct device *kdev = dev_priv->drm.dev;
83 bool is_error = level[1] <= KERN_ERR[1];
84 bool is_debug = level[1] == KERN_DEBUG[1];
85 struct va_format vaf;
86 va_list args;
87
88 if (is_debug && !(drm_debug & DRM_UT_DRIVER))
89 return;
90
91 va_start(args, fmt);
92
93 vaf.fmt = fmt;
94 vaf.va = &args;
95
96 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
97 __builtin_return_address(0), &vaf);
98
99 if (is_error && !shown_bug_once) {
100 dev_notice(kdev, "%s", FDO_BUG_MSG);
101 shown_bug_once = true;
102 }
103
104 va_end(args);
105 }
106
107 static bool i915_error_injected(struct drm_i915_private *dev_priv)
108 {
109 return i915_modparams.inject_load_failure &&
110 i915_load_fail_count == i915_modparams.inject_load_failure;
111 }
112
113 #define i915_load_error(dev_priv, fmt, ...) \
114 __i915_printk(dev_priv, \
115 i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
116 fmt, ##__VA_ARGS__)
117
118
119 static enum intel_pch intel_virt_detect_pch(struct drm_i915_private *dev_priv)
120 {
121 enum intel_pch ret = PCH_NOP;
122
123 /*
124 * In a virtualized passthrough environment we can be in a
125 * setup where the ISA bridge is not able to be passed through.
126 * In this case, a south bridge can be emulated and we have to
127 * make an educated guess as to which PCH is really there.
128 */
129
130 if (IS_GEN5(dev_priv)) {
131 ret = PCH_IBX;
132 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
133 } else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
134 ret = PCH_CPT;
135 DRM_DEBUG_KMS("Assuming CougarPoint PCH\n");
136 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
137 ret = PCH_LPT;
138 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
139 dev_priv->pch_id = INTEL_PCH_LPT_LP_DEVICE_ID_TYPE;
140 else
141 dev_priv->pch_id = INTEL_PCH_LPT_DEVICE_ID_TYPE;
142 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
143 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
144 ret = PCH_SPT;
145 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
146 } else if (IS_COFFEELAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) {
147 ret = PCH_CNP;
148 DRM_DEBUG_KMS("Assuming CannonPoint PCH\n");
149 }
150
151 return ret;
152 }
153
154 static void intel_detect_pch(struct drm_i915_private *dev_priv)
155 {
156 struct pci_dev *pch = NULL;
157
158 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
159 * (which really amounts to a PCH but no South Display).
160 */
161 if (INTEL_INFO(dev_priv)->num_pipes == 0) {
162 dev_priv->pch_type = PCH_NOP;
163 return;
164 }
165
166 /*
167 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
168 * make graphics device passthrough work easy for VMM, that only
169 * need to expose ISA bridge to let driver know the real hardware
170 * underneath. This is a requirement from virtualization team.
171 *
172 * In some virtualized environments (e.g. XEN), there is irrelevant
173 * ISA bridge in the system. To work reliably, we should scan trhough
174 * all the ISA bridge devices and check for the first match, instead
175 * of only checking the first one.
176 */
177 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
178 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
179 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
180
181 dev_priv->pch_id = id;
182
183 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
184 dev_priv->pch_type = PCH_IBX;
185 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
186 WARN_ON(!IS_GEN5(dev_priv));
187 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
188 dev_priv->pch_type = PCH_CPT;
189 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
190 WARN_ON(!IS_GEN6(dev_priv) &&
191 !IS_IVYBRIDGE(dev_priv));
192 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
193 /* PantherPoint is CPT compatible */
194 dev_priv->pch_type = PCH_CPT;
195 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
196 WARN_ON(!IS_GEN6(dev_priv) &&
197 !IS_IVYBRIDGE(dev_priv));
198 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
199 dev_priv->pch_type = PCH_LPT;
200 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
201 WARN_ON(!IS_HASWELL(dev_priv) &&
202 !IS_BROADWELL(dev_priv));
203 WARN_ON(IS_HSW_ULT(dev_priv) ||
204 IS_BDW_ULT(dev_priv));
205 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
206 dev_priv->pch_type = PCH_LPT;
207 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
208 WARN_ON(!IS_HASWELL(dev_priv) &&
209 !IS_BROADWELL(dev_priv));
210 WARN_ON(!IS_HSW_ULT(dev_priv) &&
211 !IS_BDW_ULT(dev_priv));
212 } else if (id == INTEL_PCH_WPT_DEVICE_ID_TYPE) {
213 /* WildcatPoint is LPT compatible */
214 dev_priv->pch_type = PCH_LPT;
215 DRM_DEBUG_KMS("Found WildcatPoint PCH\n");
216 WARN_ON(!IS_HASWELL(dev_priv) &&
217 !IS_BROADWELL(dev_priv));
218 WARN_ON(IS_HSW_ULT(dev_priv) ||
219 IS_BDW_ULT(dev_priv));
220 } else if (id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) {
221 /* WildcatPoint is LPT compatible */
222 dev_priv->pch_type = PCH_LPT;
223 DRM_DEBUG_KMS("Found WildcatPoint LP PCH\n");
224 WARN_ON(!IS_HASWELL(dev_priv) &&
225 !IS_BROADWELL(dev_priv));
226 WARN_ON(!IS_HSW_ULT(dev_priv) &&
227 !IS_BDW_ULT(dev_priv));
228 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
229 dev_priv->pch_type = PCH_SPT;
230 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
231 WARN_ON(!IS_SKYLAKE(dev_priv) &&
232 !IS_KABYLAKE(dev_priv));
233 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
234 dev_priv->pch_type = PCH_SPT;
235 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
236 WARN_ON(!IS_SKYLAKE(dev_priv) &&
237 !IS_KABYLAKE(dev_priv));
238 } else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
239 dev_priv->pch_type = PCH_KBP;
240 DRM_DEBUG_KMS("Found Kaby Lake PCH (KBP)\n");
241 WARN_ON(!IS_SKYLAKE(dev_priv) &&
242 !IS_KABYLAKE(dev_priv) &&
243 !IS_COFFEELAKE(dev_priv));
244 } else if (id == INTEL_PCH_CNP_DEVICE_ID_TYPE) {
245 dev_priv->pch_type = PCH_CNP;
246 DRM_DEBUG_KMS("Found Cannon Lake PCH (CNP)\n");
247 WARN_ON(!IS_CANNONLAKE(dev_priv) &&
248 !IS_COFFEELAKE(dev_priv));
249 } else if (id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE) {
250 dev_priv->pch_type = PCH_CNP;
251 DRM_DEBUG_KMS("Found Cannon Lake LP PCH (CNP-LP)\n");
252 WARN_ON(!IS_CANNONLAKE(dev_priv) &&
253 !IS_COFFEELAKE(dev_priv));
254 } else if (id == INTEL_PCH_P2X_DEVICE_ID_TYPE ||
255 id == INTEL_PCH_P3X_DEVICE_ID_TYPE ||
256 (id == INTEL_PCH_QEMU_DEVICE_ID_TYPE &&
257 pch->subsystem_vendor ==
258 PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
259 pch->subsystem_device ==
260 PCI_SUBDEVICE_ID_QEMU)) {
261 dev_priv->pch_type =
262 intel_virt_detect_pch(dev_priv);
263 } else
264 continue;
265
266 break;
267 }
268 }
269 if (!pch)
270 DRM_DEBUG_KMS("No PCH found.\n");
271
272 pci_dev_put(pch);
273 }
274
275 static int i915_getparam(struct drm_device *dev, void *data,
276 struct drm_file *file_priv)
277 {
278 struct drm_i915_private *dev_priv = to_i915(dev);
279 struct pci_dev *pdev = dev_priv->drm.pdev;
280 drm_i915_getparam_t *param = data;
281 int value;
282
283 switch (param->param) {
284 case I915_PARAM_IRQ_ACTIVE:
285 case I915_PARAM_ALLOW_BATCHBUFFER:
286 case I915_PARAM_LAST_DISPATCH:
287 case I915_PARAM_HAS_EXEC_CONSTANTS:
288 /* Reject all old ums/dri params. */
289 return -ENODEV;
290 case I915_PARAM_CHIPSET_ID:
291 value = pdev->device;
292 break;
293 case I915_PARAM_REVISION:
294 value = pdev->revision;
295 break;
296 case I915_PARAM_NUM_FENCES_AVAIL:
297 value = dev_priv->num_fence_regs;
298 break;
299 case I915_PARAM_HAS_OVERLAY:
300 value = dev_priv->overlay ? 1 : 0;
301 break;
302 case I915_PARAM_HAS_BSD:
303 value = !!dev_priv->engine[VCS];
304 break;
305 case I915_PARAM_HAS_BLT:
306 value = !!dev_priv->engine[BCS];
307 break;
308 case I915_PARAM_HAS_VEBOX:
309 value = !!dev_priv->engine[VECS];
310 break;
311 case I915_PARAM_HAS_BSD2:
312 value = !!dev_priv->engine[VCS2];
313 break;
314 case I915_PARAM_HAS_LLC:
315 value = HAS_LLC(dev_priv);
316 break;
317 case I915_PARAM_HAS_WT:
318 value = HAS_WT(dev_priv);
319 break;
320 case I915_PARAM_HAS_ALIASING_PPGTT:
321 value = USES_PPGTT(dev_priv);
322 break;
323 case I915_PARAM_HAS_SEMAPHORES:
324 value = i915_modparams.semaphores;
325 break;
326 case I915_PARAM_HAS_SECURE_BATCHES:
327 value = HAS_SECURE_BATCHES(dev_priv) && capable(CAP_SYS_ADMIN);
328 break;
329 case I915_PARAM_CMD_PARSER_VERSION:
330 value = i915_cmd_parser_get_version(dev_priv);
331 break;
332 case I915_PARAM_SUBSLICE_TOTAL:
333 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
334 if (!value)
335 return -ENODEV;
336 break;
337 case I915_PARAM_EU_TOTAL:
338 value = INTEL_INFO(dev_priv)->sseu.eu_total;
339 if (!value)
340 return -ENODEV;
341 break;
342 case I915_PARAM_HAS_GPU_RESET:
343 value = i915_modparams.enable_hangcheck &&
344 intel_has_gpu_reset(dev_priv);
345 if (value && intel_has_reset_engine(dev_priv))
346 value = 2;
347 break;
348 case I915_PARAM_HAS_RESOURCE_STREAMER:
349 value = HAS_RESOURCE_STREAMER(dev_priv);
350 break;
351 case I915_PARAM_HAS_POOLED_EU:
352 value = HAS_POOLED_EU(dev_priv);
353 break;
354 case I915_PARAM_MIN_EU_IN_POOL:
355 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
356 break;
357 case I915_PARAM_HUC_STATUS:
358 intel_runtime_pm_get(dev_priv);
359 value = I915_READ(HUC_STATUS2) & HUC_FW_VERIFIED;
360 intel_runtime_pm_put(dev_priv);
361 break;
362 case I915_PARAM_MMAP_GTT_VERSION:
363 /* Though we've started our numbering from 1, and so class all
364 * earlier versions as 0, in effect their value is undefined as
365 * the ioctl will report EINVAL for the unknown param!
366 */
367 value = i915_gem_mmap_gtt_version();
368 break;
369 case I915_PARAM_HAS_SCHEDULER:
370 value = 0;
371 if (dev_priv->engine[RCS] && dev_priv->engine[RCS]->schedule) {
372 value |= I915_SCHEDULER_CAP_ENABLED;
373 value |= I915_SCHEDULER_CAP_PRIORITY;
374
375 if (INTEL_INFO(dev_priv)->has_logical_ring_preemption &&
376 i915_modparams.enable_execlists &&
377 !i915_modparams.enable_guc_submission)
378 value |= I915_SCHEDULER_CAP_PREEMPTION;
379 }
380 break;
381
382 case I915_PARAM_MMAP_VERSION:
383 /* Remember to bump this if the version changes! */
384 case I915_PARAM_HAS_GEM:
385 case I915_PARAM_HAS_PAGEFLIPPING:
386 case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
387 case I915_PARAM_HAS_RELAXED_FENCING:
388 case I915_PARAM_HAS_COHERENT_RINGS:
389 case I915_PARAM_HAS_RELAXED_DELTA:
390 case I915_PARAM_HAS_GEN7_SOL_RESET:
391 case I915_PARAM_HAS_WAIT_TIMEOUT:
392 case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
393 case I915_PARAM_HAS_PINNED_BATCHES:
394 case I915_PARAM_HAS_EXEC_NO_RELOC:
395 case I915_PARAM_HAS_EXEC_HANDLE_LUT:
396 case I915_PARAM_HAS_COHERENT_PHYS_GTT:
397 case I915_PARAM_HAS_EXEC_SOFTPIN:
398 case I915_PARAM_HAS_EXEC_ASYNC:
399 case I915_PARAM_HAS_EXEC_FENCE:
400 case I915_PARAM_HAS_EXEC_CAPTURE:
401 case I915_PARAM_HAS_EXEC_BATCH_FIRST:
402 case I915_PARAM_HAS_EXEC_FENCE_ARRAY:
403 /* For the time being all of these are always true;
404 * if some supported hardware does not have one of these
405 * features this value needs to be provided from
406 * INTEL_INFO(), a feature macro, or similar.
407 */
408 value = 1;
409 break;
410 case I915_PARAM_HAS_CONTEXT_ISOLATION:
411 value = intel_engines_has_context_isolation(dev_priv);
412 break;
413 case I915_PARAM_SLICE_MASK:
414 value = INTEL_INFO(dev_priv)->sseu.slice_mask;
415 if (!value)
416 return -ENODEV;
417 break;
418 case I915_PARAM_SUBSLICE_MASK:
419 value = INTEL_INFO(dev_priv)->sseu.subslice_mask;
420 if (!value)
421 return -ENODEV;
422 break;
423 default:
424 DRM_DEBUG("Unknown parameter %d\n", param->param);
425 return -EINVAL;
426 }
427
428 if (put_user(value, param->value))
429 return -EFAULT;
430
431 return 0;
432 }
433
434 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
435 {
436 dev_priv->bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
437 if (!dev_priv->bridge_dev) {
438 DRM_ERROR("bridge device not found\n");
439 return -1;
440 }
441 return 0;
442 }
443
444 /* Allocate space for the MCH regs if needed, return nonzero on error */
445 static int
446 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
447 {
448 int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
449 u32 temp_lo, temp_hi = 0;
450 u64 mchbar_addr;
451 int ret;
452
453 if (INTEL_GEN(dev_priv) >= 4)
454 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
455 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
456 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
457
458 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
459 #ifdef CONFIG_PNP
460 if (mchbar_addr &&
461 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
462 return 0;
463 #endif
464
465 /* Get some space for it */
466 dev_priv->mch_res.name = "i915 MCHBAR";
467 dev_priv->mch_res.flags = IORESOURCE_MEM;
468 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
469 &dev_priv->mch_res,
470 MCHBAR_SIZE, MCHBAR_SIZE,
471 PCIBIOS_MIN_MEM,
472 0, pcibios_align_resource,
473 dev_priv->bridge_dev);
474 if (ret) {
475 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
476 dev_priv->mch_res.start = 0;
477 return ret;
478 }
479
480 if (INTEL_GEN(dev_priv) >= 4)
481 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
482 upper_32_bits(dev_priv->mch_res.start));
483
484 pci_write_config_dword(dev_priv->bridge_dev, reg,
485 lower_32_bits(dev_priv->mch_res.start));
486 return 0;
487 }
488
489 /* Setup MCHBAR if possible, return true if we should disable it again */
490 static void
491 intel_setup_mchbar(struct drm_i915_private *dev_priv)
492 {
493 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
494 u32 temp;
495 bool enabled;
496
497 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
498 return;
499
500 dev_priv->mchbar_need_disable = false;
501
502 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
503 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
504 enabled = !!(temp & DEVEN_MCHBAR_EN);
505 } else {
506 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
507 enabled = temp & 1;
508 }
509
510 /* If it's already enabled, don't have to do anything */
511 if (enabled)
512 return;
513
514 if (intel_alloc_mchbar_resource(dev_priv))
515 return;
516
517 dev_priv->mchbar_need_disable = true;
518
519 /* Space is allocated or reserved, so enable it. */
520 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
521 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
522 temp | DEVEN_MCHBAR_EN);
523 } else {
524 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
525 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
526 }
527 }
528
529 static void
530 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
531 {
532 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
533
534 if (dev_priv->mchbar_need_disable) {
535 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
536 u32 deven_val;
537
538 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
539 &deven_val);
540 deven_val &= ~DEVEN_MCHBAR_EN;
541 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
542 deven_val);
543 } else {
544 u32 mchbar_val;
545
546 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
547 &mchbar_val);
548 mchbar_val &= ~1;
549 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
550 mchbar_val);
551 }
552 }
553
554 if (dev_priv->mch_res.start)
555 release_resource(&dev_priv->mch_res);
556 }
557
558 /* true = enable decode, false = disable decoder */
559 static unsigned int i915_vga_set_decode(void *cookie, bool state)
560 {
561 struct drm_i915_private *dev_priv = cookie;
562
563 intel_modeset_vga_set_state(dev_priv, state);
564 if (state)
565 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
566 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
567 else
568 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
569 }
570
571 static int i915_resume_switcheroo(struct drm_device *dev);
572 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
573
574 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
575 {
576 struct drm_device *dev = pci_get_drvdata(pdev);
577 pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
578
579 if (state == VGA_SWITCHEROO_ON) {
580 pr_info("switched on\n");
581 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
582 /* i915 resume handler doesn't set to D0 */
583 pci_set_power_state(pdev, PCI_D0);
584 i915_resume_switcheroo(dev);
585 dev->switch_power_state = DRM_SWITCH_POWER_ON;
586 } else {
587 pr_info("switched off\n");
588 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
589 i915_suspend_switcheroo(dev, pmm);
590 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
591 }
592 }
593
594 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
595 {
596 struct drm_device *dev = pci_get_drvdata(pdev);
597
598 /*
599 * FIXME: open_count is protected by drm_global_mutex but that would lead to
600 * locking inversion with the driver load path. And the access here is
601 * completely racy anyway. So don't bother with locking for now.
602 */
603 return dev->open_count == 0;
604 }
605
606 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
607 .set_gpu_state = i915_switcheroo_set_state,
608 .reprobe = NULL,
609 .can_switch = i915_switcheroo_can_switch,
610 };
611
612 static void i915_gem_fini(struct drm_i915_private *dev_priv)
613 {
614 /* Flush any outstanding unpin_work. */
615 i915_gem_drain_workqueue(dev_priv);
616
617 mutex_lock(&dev_priv->drm.struct_mutex);
618 intel_uc_fini_hw(dev_priv);
619 i915_gem_cleanup_engines(dev_priv);
620 i915_gem_contexts_fini(dev_priv);
621 mutex_unlock(&dev_priv->drm.struct_mutex);
622
623 i915_gem_cleanup_userptr(dev_priv);
624
625 i915_gem_drain_freed_objects(dev_priv);
626
627 WARN_ON(!list_empty(&dev_priv->contexts.list));
628 }
629
630 static int i915_load_modeset_init(struct drm_device *dev)
631 {
632 struct drm_i915_private *dev_priv = to_i915(dev);
633 struct pci_dev *pdev = dev_priv->drm.pdev;
634 int ret;
635
636 if (i915_inject_load_failure())
637 return -ENODEV;
638
639 intel_bios_init(dev_priv);
640
641 /* If we have > 1 VGA cards, then we need to arbitrate access
642 * to the common VGA resources.
643 *
644 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
645 * then we do not take part in VGA arbitration and the
646 * vga_client_register() fails with -ENODEV.
647 */
648 ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
649 if (ret && ret != -ENODEV)
650 goto out;
651
652 intel_register_dsm_handler();
653
654 ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
655 if (ret)
656 goto cleanup_vga_client;
657
658 /* must happen before intel_power_domains_init_hw() on VLV/CHV */
659 intel_update_rawclk(dev_priv);
660
661 intel_power_domains_init_hw(dev_priv, false);
662
663 intel_csr_ucode_init(dev_priv);
664
665 ret = intel_irq_install(dev_priv);
666 if (ret)
667 goto cleanup_csr;
668
669 intel_setup_gmbus(dev_priv);
670
671 /* Important: The output setup functions called by modeset_init need
672 * working irqs for e.g. gmbus and dp aux transfers. */
673 ret = intel_modeset_init(dev);
674 if (ret)
675 goto cleanup_irq;
676
677 intel_uc_init_fw(dev_priv);
678
679 ret = i915_gem_init(dev_priv);
680 if (ret)
681 goto cleanup_uc;
682
683 intel_setup_overlay(dev_priv);
684
685 if (INTEL_INFO(dev_priv)->num_pipes == 0)
686 return 0;
687
688 ret = intel_fbdev_init(dev);
689 if (ret)
690 goto cleanup_gem;
691
692 /* Only enable hotplug handling once the fbdev is fully set up. */
693 intel_hpd_init(dev_priv);
694
695 drm_kms_helper_poll_init(dev);
696
697 return 0;
698
699 cleanup_gem:
700 if (i915_gem_suspend(dev_priv))
701 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
702 i915_gem_fini(dev_priv);
703 cleanup_uc:
704 intel_uc_fini_fw(dev_priv);
705 cleanup_irq:
706 drm_irq_uninstall(dev);
707 intel_teardown_gmbus(dev_priv);
708 cleanup_csr:
709 intel_csr_ucode_fini(dev_priv);
710 intel_power_domains_fini(dev_priv);
711 vga_switcheroo_unregister_client(pdev);
712 cleanup_vga_client:
713 vga_client_register(pdev, NULL, NULL, NULL);
714 out:
715 return ret;
716 }
717
718 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
719 {
720 struct apertures_struct *ap;
721 struct pci_dev *pdev = dev_priv->drm.pdev;
722 struct i915_ggtt *ggtt = &dev_priv->ggtt;
723 bool primary;
724 int ret;
725
726 ap = alloc_apertures(1);
727 if (!ap)
728 return -ENOMEM;
729
730 ap->ranges[0].base = ggtt->gmadr.start;
731 ap->ranges[0].size = ggtt->mappable_end;
732
733 primary =
734 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
735
736 ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
737
738 kfree(ap);
739
740 return ret;
741 }
742
743 #if !defined(CONFIG_VGA_CONSOLE)
744 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
745 {
746 return 0;
747 }
748 #elif !defined(CONFIG_DUMMY_CONSOLE)
749 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
750 {
751 return -ENODEV;
752 }
753 #else
754 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
755 {
756 int ret = 0;
757
758 DRM_INFO("Replacing VGA console driver\n");
759
760 console_lock();
761 if (con_is_bound(&vga_con))
762 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
763 if (ret == 0) {
764 ret = do_unregister_con_driver(&vga_con);
765
766 /* Ignore "already unregistered". */
767 if (ret == -ENODEV)
768 ret = 0;
769 }
770 console_unlock();
771
772 return ret;
773 }
774 #endif
775
776 static void intel_init_dpio(struct drm_i915_private *dev_priv)
777 {
778 /*
779 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
780 * CHV x1 PHY (DP/HDMI D)
781 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
782 */
783 if (IS_CHERRYVIEW(dev_priv)) {
784 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
785 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
786 } else if (IS_VALLEYVIEW(dev_priv)) {
787 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
788 }
789 }
790
791 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
792 {
793 /*
794 * The i915 workqueue is primarily used for batched retirement of
795 * requests (and thus managing bo) once the task has been completed
796 * by the GPU. i915_gem_retire_requests() is called directly when we
797 * need high-priority retirement, such as waiting for an explicit
798 * bo.
799 *
800 * It is also used for periodic low-priority events, such as
801 * idle-timers and recording error state.
802 *
803 * All tasks on the workqueue are expected to acquire the dev mutex
804 * so there is no point in running more than one instance of the
805 * workqueue at any time. Use an ordered one.
806 */
807 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
808 if (dev_priv->wq == NULL)
809 goto out_err;
810
811 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
812 if (dev_priv->hotplug.dp_wq == NULL)
813 goto out_free_wq;
814
815 return 0;
816
817 out_free_wq:
818 destroy_workqueue(dev_priv->wq);
819 out_err:
820 DRM_ERROR("Failed to allocate workqueues.\n");
821
822 return -ENOMEM;
823 }
824
825 static void i915_engines_cleanup(struct drm_i915_private *i915)
826 {
827 struct intel_engine_cs *engine;
828 enum intel_engine_id id;
829
830 for_each_engine(engine, i915, id)
831 kfree(engine);
832 }
833
834 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
835 {
836 destroy_workqueue(dev_priv->hotplug.dp_wq);
837 destroy_workqueue(dev_priv->wq);
838 }
839
840 /*
841 * We don't keep the workarounds for pre-production hardware, so we expect our
842 * driver to fail on these machines in one way or another. A little warning on
843 * dmesg may help both the user and the bug triagers.
844 */
845 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
846 {
847 bool pre = false;
848
849 pre |= IS_HSW_EARLY_SDV(dev_priv);
850 pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
851 pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
852
853 if (pre) {
854 DRM_ERROR("This is a pre-production stepping. "
855 "It may not be fully functional.\n");
856 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
857 }
858 }
859
860 /**
861 * i915_driver_init_early - setup state not requiring device access
862 * @dev_priv: device private
863 *
864 * Initialize everything that is a "SW-only" state, that is state not
865 * requiring accessing the device or exposing the driver via kernel internal
866 * or userspace interfaces. Example steps belonging here: lock initialization,
867 * system memory allocation, setting up device specific attributes and
868 * function hooks not requiring accessing the device.
869 */
870 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
871 const struct pci_device_id *ent)
872 {
873 const struct intel_device_info *match_info =
874 (struct intel_device_info *)ent->driver_data;
875 struct intel_device_info *device_info;
876 int ret = 0;
877
878 if (i915_inject_load_failure())
879 return -ENODEV;
880
881 /* Setup the write-once "constant" device info */
882 device_info = mkwrite_device_info(dev_priv);
883 memcpy(device_info, match_info, sizeof(*device_info));
884 device_info->device_id = dev_priv->drm.pdev->device;
885
886 BUILD_BUG_ON(INTEL_MAX_PLATFORMS >
887 sizeof(device_info->platform_mask) * BITS_PER_BYTE);
888 device_info->platform_mask = BIT(device_info->platform);
889
890 BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
891 device_info->gen_mask = BIT(device_info->gen - 1);
892
893 spin_lock_init(&dev_priv->irq_lock);
894 spin_lock_init(&dev_priv->gpu_error.lock);
895 mutex_init(&dev_priv->backlight_lock);
896 spin_lock_init(&dev_priv->uncore.lock);
897
898 spin_lock_init(&dev_priv->mm.object_stat_lock);
899 mutex_init(&dev_priv->sb_lock);
900 mutex_init(&dev_priv->av_mutex);
901 mutex_init(&dev_priv->wm.wm_mutex);
902 mutex_init(&dev_priv->pps_mutex);
903
904 intel_uc_init_early(dev_priv);
905 i915_memcpy_init_early(dev_priv);
906
907 ret = i915_workqueues_init(dev_priv);
908 if (ret < 0)
909 goto err_engines;
910
911 /* This must be called before any calls to HAS_PCH_* */
912 intel_detect_pch(dev_priv);
913
914 intel_pm_setup(dev_priv);
915 intel_init_dpio(dev_priv);
916 intel_power_domains_init(dev_priv);
917 intel_irq_init(dev_priv);
918 intel_hangcheck_init(dev_priv);
919 intel_init_display_hooks(dev_priv);
920 intel_init_clock_gating_hooks(dev_priv);
921 intel_init_audio_hooks(dev_priv);
922 ret = i915_gem_load_init(dev_priv);
923 if (ret < 0)
924 goto err_irq;
925
926 intel_display_crc_init(dev_priv);
927
928 intel_device_info_dump(dev_priv);
929
930 intel_detect_preproduction_hw(dev_priv);
931
932 i915_perf_init(dev_priv);
933
934 return 0;
935
936 err_irq:
937 intel_irq_fini(dev_priv);
938 i915_workqueues_cleanup(dev_priv);
939 err_engines:
940 i915_engines_cleanup(dev_priv);
941 return ret;
942 }
943
944 /**
945 * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
946 * @dev_priv: device private
947 */
948 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
949 {
950 i915_perf_fini(dev_priv);
951 i915_gem_load_cleanup(dev_priv);
952 intel_irq_fini(dev_priv);
953 i915_workqueues_cleanup(dev_priv);
954 i915_engines_cleanup(dev_priv);
955 }
956
957 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
958 {
959 struct pci_dev *pdev = dev_priv->drm.pdev;
960 int mmio_bar;
961 int mmio_size;
962
963 mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
964 /*
965 * Before gen4, the registers and the GTT are behind different BARs.
966 * However, from gen4 onwards, the registers and the GTT are shared
967 * in the same BAR, so we want to restrict this ioremap from
968 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
969 * the register BAR remains the same size for all the earlier
970 * generations up to Ironlake.
971 */
972 if (INTEL_GEN(dev_priv) < 5)
973 mmio_size = 512 * 1024;
974 else
975 mmio_size = 2 * 1024 * 1024;
976 dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
977 if (dev_priv->regs == NULL) {
978 DRM_ERROR("failed to map registers\n");
979
980 return -EIO;
981 }
982
983 /* Try to make sure MCHBAR is enabled before poking at it */
984 intel_setup_mchbar(dev_priv);
985
986 return 0;
987 }
988
989 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
990 {
991 struct pci_dev *pdev = dev_priv->drm.pdev;
992
993 intel_teardown_mchbar(dev_priv);
994 pci_iounmap(pdev, dev_priv->regs);
995 }
996
997 /**
998 * i915_driver_init_mmio - setup device MMIO
999 * @dev_priv: device private
1000 *
1001 * Setup minimal device state necessary for MMIO accesses later in the
1002 * initialization sequence. The setup here should avoid any other device-wide
1003 * side effects or exposing the driver via kernel internal or user space
1004 * interfaces.
1005 */
1006 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
1007 {
1008 int ret;
1009
1010 if (i915_inject_load_failure())
1011 return -ENODEV;
1012
1013 if (i915_get_bridge_dev(dev_priv))
1014 return -EIO;
1015
1016 ret = i915_mmio_setup(dev_priv);
1017 if (ret < 0)
1018 goto err_bridge;
1019
1020 intel_uncore_init(dev_priv);
1021
1022 intel_uc_init_mmio(dev_priv);
1023
1024 ret = intel_engines_init_mmio(dev_priv);
1025 if (ret)
1026 goto err_uncore;
1027
1028 i915_gem_init_mmio(dev_priv);
1029
1030 return 0;
1031
1032 err_uncore:
1033 intel_uncore_fini(dev_priv);
1034 err_bridge:
1035 pci_dev_put(dev_priv->bridge_dev);
1036
1037 return ret;
1038 }
1039
1040 /**
1041 * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
1042 * @dev_priv: device private
1043 */
1044 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
1045 {
1046 intel_uncore_fini(dev_priv);
1047 i915_mmio_cleanup(dev_priv);
1048 pci_dev_put(dev_priv->bridge_dev);
1049 }
1050
1051 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
1052 {
1053 i915_modparams.enable_execlists =
1054 intel_sanitize_enable_execlists(dev_priv,
1055 i915_modparams.enable_execlists);
1056
1057 /*
1058 * i915.enable_ppgtt is read-only, so do an early pass to validate the
1059 * user's requested state against the hardware/driver capabilities. We
1060 * do this now so that we can print out any log messages once rather
1061 * than every time we check intel_enable_ppgtt().
1062 */
1063 i915_modparams.enable_ppgtt =
1064 intel_sanitize_enable_ppgtt(dev_priv,
1065 i915_modparams.enable_ppgtt);
1066 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915_modparams.enable_ppgtt);
1067
1068 i915_modparams.semaphores =
1069 intel_sanitize_semaphores(dev_priv, i915_modparams.semaphores);
1070 DRM_DEBUG_DRIVER("use GPU semaphores? %s\n",
1071 yesno(i915_modparams.semaphores));
1072
1073 intel_uc_sanitize_options(dev_priv);
1074
1075 intel_gvt_sanitize_options(dev_priv);
1076 }
1077
1078 /**
1079 * i915_driver_init_hw - setup state requiring device access
1080 * @dev_priv: device private
1081 *
1082 * Setup state that requires accessing the device, but doesn't require
1083 * exposing the driver via kernel internal or userspace interfaces.
1084 */
1085 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
1086 {
1087 struct pci_dev *pdev = dev_priv->drm.pdev;
1088 int ret;
1089
1090 if (i915_inject_load_failure())
1091 return -ENODEV;
1092
1093 intel_device_info_runtime_init(dev_priv);
1094
1095 intel_sanitize_options(dev_priv);
1096
1097 ret = i915_ggtt_probe_hw(dev_priv);
1098 if (ret)
1099 return ret;
1100
1101 /* WARNING: Apparently we must kick fbdev drivers before vgacon,
1102 * otherwise the vga fbdev driver falls over. */
1103 ret = i915_kick_out_firmware_fb(dev_priv);
1104 if (ret) {
1105 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1106 goto out_ggtt;
1107 }
1108
1109 ret = i915_kick_out_vgacon(dev_priv);
1110 if (ret) {
1111 DRM_ERROR("failed to remove conflicting VGA console\n");
1112 goto out_ggtt;
1113 }
1114
1115 ret = i915_ggtt_init_hw(dev_priv);
1116 if (ret)
1117 return ret;
1118
1119 ret = i915_ggtt_enable_hw(dev_priv);
1120 if (ret) {
1121 DRM_ERROR("failed to enable GGTT\n");
1122 goto out_ggtt;
1123 }
1124
1125 pci_set_master(pdev);
1126
1127 /*
1128 * We don't have a max segment size, so set it to the max so sg's
1129 * debugging layer doesn't complain
1130 */
1131 dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1132
1133 /* overlay on gen2 is broken and can't address above 1G */
1134 if (IS_GEN2(dev_priv)) {
1135 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1136 if (ret) {
1137 DRM_ERROR("failed to set DMA mask\n");
1138
1139 goto out_ggtt;
1140 }
1141 }
1142
1143 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1144 * using 32bit addressing, overwriting memory if HWS is located
1145 * above 4GB.
1146 *
1147 * The documentation also mentions an issue with undefined
1148 * behaviour if any general state is accessed within a page above 4GB,
1149 * which also needs to be handled carefully.
1150 */
1151 if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1152 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1153
1154 if (ret) {
1155 DRM_ERROR("failed to set DMA mask\n");
1156
1157 goto out_ggtt;
1158 }
1159 }
1160
1161 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1162 PM_QOS_DEFAULT_VALUE);
1163
1164 intel_uncore_sanitize(dev_priv);
1165
1166 intel_opregion_setup(dev_priv);
1167
1168 i915_gem_load_init_fences(dev_priv);
1169
1170 /* On the 945G/GM, the chipset reports the MSI capability on the
1171 * integrated graphics even though the support isn't actually there
1172 * according to the published specs. It doesn't appear to function
1173 * correctly in testing on 945G.
1174 * This may be a side effect of MSI having been made available for PEG
1175 * and the registers being closely associated.
1176 *
1177 * According to chipset errata, on the 965GM, MSI interrupts may
1178 * be lost or delayed, and was defeatured. MSI interrupts seem to
1179 * get lost on g4x as well, and interrupt delivery seems to stay
1180 * properly dead afterwards. So we'll just disable them for all
1181 * pre-gen5 chipsets.
1182 */
1183 if (INTEL_GEN(dev_priv) >= 5) {
1184 if (pci_enable_msi(pdev) < 0)
1185 DRM_DEBUG_DRIVER("can't enable MSI");
1186 }
1187
1188 ret = intel_gvt_init(dev_priv);
1189 if (ret)
1190 goto out_ggtt;
1191
1192 return 0;
1193
1194 out_ggtt:
1195 i915_ggtt_cleanup_hw(dev_priv);
1196
1197 return ret;
1198 }
1199
1200 /**
1201 * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1202 * @dev_priv: device private
1203 */
1204 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1205 {
1206 struct pci_dev *pdev = dev_priv->drm.pdev;
1207
1208 if (pdev->msi_enabled)
1209 pci_disable_msi(pdev);
1210
1211 pm_qos_remove_request(&dev_priv->pm_qos);
1212 i915_ggtt_cleanup_hw(dev_priv);
1213 }
1214
1215 /**
1216 * i915_driver_register - register the driver with the rest of the system
1217 * @dev_priv: device private
1218 *
1219 * Perform any steps necessary to make the driver available via kernel
1220 * internal or userspace interfaces.
1221 */
1222 static void i915_driver_register(struct drm_i915_private *dev_priv)
1223 {
1224 struct drm_device *dev = &dev_priv->drm;
1225
1226 i915_gem_shrinker_init(dev_priv);
1227
1228 /*
1229 * Notify a valid surface after modesetting,
1230 * when running inside a VM.
1231 */
1232 if (intel_vgpu_active(dev_priv))
1233 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1234
1235 /* Reveal our presence to userspace */
1236 if (drm_dev_register(dev, 0) == 0) {
1237 i915_debugfs_register(dev_priv);
1238 i915_guc_log_register(dev_priv);
1239 i915_setup_sysfs(dev_priv);
1240
1241 /* Depends on sysfs having been initialized */
1242 i915_perf_register(dev_priv);
1243 } else
1244 DRM_ERROR("Failed to register driver for userspace access!\n");
1245
1246 if (INTEL_INFO(dev_priv)->num_pipes) {
1247 /* Must be done after probing outputs */
1248 intel_opregion_register(dev_priv);
1249 acpi_video_register();
1250 }
1251
1252 if (IS_GEN5(dev_priv))
1253 intel_gpu_ips_init(dev_priv);
1254
1255 intel_audio_init(dev_priv);
1256
1257 /*
1258 * Some ports require correctly set-up hpd registers for detection to
1259 * work properly (leading to ghost connected connector status), e.g. VGA
1260 * on gm45. Hence we can only set up the initial fbdev config after hpd
1261 * irqs are fully enabled. We do it last so that the async config
1262 * cannot run before the connectors are registered.
1263 */
1264 intel_fbdev_initial_config_async(dev);
1265 }
1266
1267 /**
1268 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1269 * @dev_priv: device private
1270 */
1271 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1272 {
1273 intel_fbdev_unregister(dev_priv);
1274 intel_audio_deinit(dev_priv);
1275
1276 intel_gpu_ips_teardown();
1277 acpi_video_unregister();
1278 intel_opregion_unregister(dev_priv);
1279
1280 i915_perf_unregister(dev_priv);
1281
1282 i915_teardown_sysfs(dev_priv);
1283 i915_guc_log_unregister(dev_priv);
1284 drm_dev_unregister(&dev_priv->drm);
1285
1286 i915_gem_shrinker_cleanup(dev_priv);
1287 }
1288
1289 /**
1290 * i915_driver_load - setup chip and create an initial config
1291 * @pdev: PCI device
1292 * @ent: matching PCI ID entry
1293 *
1294 * The driver load routine has to do several things:
1295 * - drive output discovery via intel_modeset_init()
1296 * - initialize the memory manager
1297 * - allocate initial config memory
1298 * - setup the DRM framebuffer with the allocated memory
1299 */
1300 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1301 {
1302 const struct intel_device_info *match_info =
1303 (struct intel_device_info *)ent->driver_data;
1304 struct drm_i915_private *dev_priv;
1305 int ret;
1306
1307 /* Enable nuclear pageflip on ILK+ */
1308 if (!i915_modparams.nuclear_pageflip && match_info->gen < 5)
1309 driver.driver_features &= ~DRIVER_ATOMIC;
1310
1311 ret = -ENOMEM;
1312 dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1313 if (dev_priv)
1314 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1315 if (ret) {
1316 DRM_DEV_ERROR(&pdev->dev, "allocation failed\n");
1317 goto out_free;
1318 }
1319
1320 dev_priv->drm.pdev = pdev;
1321 dev_priv->drm.dev_private = dev_priv;
1322
1323 ret = pci_enable_device(pdev);
1324 if (ret)
1325 goto out_fini;
1326
1327 pci_set_drvdata(pdev, &dev_priv->drm);
1328 /*
1329 * Disable the system suspend direct complete optimization, which can
1330 * leave the device suspended skipping the driver's suspend handlers
1331 * if the device was already runtime suspended. This is needed due to
1332 * the difference in our runtime and system suspend sequence and
1333 * becaue the HDA driver may require us to enable the audio power
1334 * domain during system suspend.
1335 */
1336 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
1337
1338 ret = i915_driver_init_early(dev_priv, ent);
1339 if (ret < 0)
1340 goto out_pci_disable;
1341
1342 intel_runtime_pm_get(dev_priv);
1343
1344 ret = i915_driver_init_mmio(dev_priv);
1345 if (ret < 0)
1346 goto out_runtime_pm_put;
1347
1348 ret = i915_driver_init_hw(dev_priv);
1349 if (ret < 0)
1350 goto out_cleanup_mmio;
1351
1352 /*
1353 * TODO: move the vblank init and parts of modeset init steps into one
1354 * of the i915_driver_init_/i915_driver_register functions according
1355 * to the role/effect of the given init step.
1356 */
1357 if (INTEL_INFO(dev_priv)->num_pipes) {
1358 ret = drm_vblank_init(&dev_priv->drm,
1359 INTEL_INFO(dev_priv)->num_pipes);
1360 if (ret)
1361 goto out_cleanup_hw;
1362 }
1363
1364 ret = i915_load_modeset_init(&dev_priv->drm);
1365 if (ret < 0)
1366 goto out_cleanup_hw;
1367
1368 i915_driver_register(dev_priv);
1369
1370 intel_runtime_pm_enable(dev_priv);
1371
1372 intel_init_ipc(dev_priv);
1373
1374 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1375 DRM_INFO("DRM_I915_DEBUG enabled\n");
1376 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1377 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1378
1379 intel_runtime_pm_put(dev_priv);
1380
1381 return 0;
1382
1383 out_cleanup_hw:
1384 i915_driver_cleanup_hw(dev_priv);
1385 out_cleanup_mmio:
1386 i915_driver_cleanup_mmio(dev_priv);
1387 out_runtime_pm_put:
1388 intel_runtime_pm_put(dev_priv);
1389 i915_driver_cleanup_early(dev_priv);
1390 out_pci_disable:
1391 pci_disable_device(pdev);
1392 out_fini:
1393 i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1394 drm_dev_fini(&dev_priv->drm);
1395 out_free:
1396 kfree(dev_priv);
1397 return ret;
1398 }
1399
1400 void i915_driver_unload(struct drm_device *dev)
1401 {
1402 struct drm_i915_private *dev_priv = to_i915(dev);
1403 struct pci_dev *pdev = dev_priv->drm.pdev;
1404
1405 i915_driver_unregister(dev_priv);
1406
1407 if (i915_gem_suspend(dev_priv))
1408 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1409
1410 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1411
1412 drm_atomic_helper_shutdown(dev);
1413
1414 intel_gvt_cleanup(dev_priv);
1415
1416 intel_modeset_cleanup(dev);
1417
1418 /*
1419 * free the memory space allocated for the child device
1420 * config parsed from VBT
1421 */
1422 if (dev_priv->vbt.child_dev && dev_priv->vbt.child_dev_num) {
1423 kfree(dev_priv->vbt.child_dev);
1424 dev_priv->vbt.child_dev = NULL;
1425 dev_priv->vbt.child_dev_num = 0;
1426 }
1427 kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1428 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1429 kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1430 dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1431
1432 vga_switcheroo_unregister_client(pdev);
1433 vga_client_register(pdev, NULL, NULL, NULL);
1434
1435 intel_csr_ucode_fini(dev_priv);
1436
1437 /* Free error state after interrupts are fully disabled. */
1438 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1439 i915_reset_error_state(dev_priv);
1440
1441 i915_gem_fini(dev_priv);
1442 intel_uc_fini_fw(dev_priv);
1443 intel_fbc_cleanup_cfb(dev_priv);
1444
1445 intel_power_domains_fini(dev_priv);
1446
1447 i915_driver_cleanup_hw(dev_priv);
1448 i915_driver_cleanup_mmio(dev_priv);
1449
1450 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1451 }
1452
1453 static void i915_driver_release(struct drm_device *dev)
1454 {
1455 struct drm_i915_private *dev_priv = to_i915(dev);
1456
1457 i915_driver_cleanup_early(dev_priv);
1458 drm_dev_fini(&dev_priv->drm);
1459
1460 kfree(dev_priv);
1461 }
1462
1463 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1464 {
1465 struct drm_i915_private *i915 = to_i915(dev);
1466 int ret;
1467
1468 ret = i915_gem_open(i915, file);
1469 if (ret)
1470 return ret;
1471
1472 return 0;
1473 }
1474
1475 /**
1476 * i915_driver_lastclose - clean up after all DRM clients have exited
1477 * @dev: DRM device
1478 *
1479 * Take care of cleaning up after all DRM clients have exited. In the
1480 * mode setting case, we want to restore the kernel's initial mode (just
1481 * in case the last client left us in a bad state).
1482 *
1483 * Additionally, in the non-mode setting case, we'll tear down the GTT
1484 * and DMA structures, since the kernel won't be using them, and clea
1485 * up any GEM state.
1486 */
1487 static void i915_driver_lastclose(struct drm_device *dev)
1488 {
1489 intel_fbdev_restore_mode(dev);
1490 vga_switcheroo_process_delayed_switch();
1491 }
1492
1493 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1494 {
1495 struct drm_i915_file_private *file_priv = file->driver_priv;
1496
1497 mutex_lock(&dev->struct_mutex);
1498 i915_gem_context_close(file);
1499 i915_gem_release(dev, file);
1500 mutex_unlock(&dev->struct_mutex);
1501
1502 kfree(file_priv);
1503 }
1504
1505 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1506 {
1507 struct drm_device *dev = &dev_priv->drm;
1508 struct intel_encoder *encoder;
1509
1510 drm_modeset_lock_all(dev);
1511 for_each_intel_encoder(dev, encoder)
1512 if (encoder->suspend)
1513 encoder->suspend(encoder);
1514 drm_modeset_unlock_all(dev);
1515 }
1516
1517 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1518 bool rpm_resume);
1519 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1520
1521 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1522 {
1523 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1524 if (acpi_target_system_state() < ACPI_STATE_S3)
1525 return true;
1526 #endif
1527 return false;
1528 }
1529
1530 static int i915_drm_suspend(struct drm_device *dev)
1531 {
1532 struct drm_i915_private *dev_priv = to_i915(dev);
1533 struct pci_dev *pdev = dev_priv->drm.pdev;
1534 pci_power_t opregion_target_state;
1535 int error;
1536
1537 disable_rpm_wakeref_asserts(dev_priv);
1538
1539 /* We do a lot of poking in a lot of registers, make sure they work
1540 * properly. */
1541 intel_display_set_init_power(dev_priv, true);
1542
1543 drm_kms_helper_poll_disable(dev);
1544
1545 pci_save_state(pdev);
1546
1547 error = i915_gem_suspend(dev_priv);
1548 if (error) {
1549 dev_err(&pdev->dev,
1550 "GEM idle failed, resume might fail\n");
1551 goto out;
1552 }
1553
1554 intel_display_suspend(dev);
1555
1556 intel_dp_mst_suspend(dev);
1557
1558 intel_runtime_pm_disable_interrupts(dev_priv);
1559 intel_hpd_cancel_work(dev_priv);
1560
1561 intel_suspend_encoders(dev_priv);
1562
1563 intel_suspend_hw(dev_priv);
1564
1565 i915_gem_suspend_gtt_mappings(dev_priv);
1566
1567 i915_save_state(dev_priv);
1568
1569 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1570 intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1571
1572 intel_uncore_suspend(dev_priv);
1573 intel_opregion_unregister(dev_priv);
1574
1575 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1576
1577 dev_priv->suspend_count++;
1578
1579 intel_csr_ucode_suspend(dev_priv);
1580
1581 out:
1582 enable_rpm_wakeref_asserts(dev_priv);
1583
1584 return error;
1585 }
1586
1587 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1588 {
1589 struct drm_i915_private *dev_priv = to_i915(dev);
1590 struct pci_dev *pdev = dev_priv->drm.pdev;
1591 int ret;
1592
1593 disable_rpm_wakeref_asserts(dev_priv);
1594
1595 intel_display_set_init_power(dev_priv, false);
1596
1597 i915_rc6_ctx_wa_suspend(dev_priv);
1598
1599 /*
1600 * In case of firmware assisted context save/restore don't manually
1601 * deinit the power domains. This also means the CSR/DMC firmware will
1602 * stay active, it will power down any HW resources as required and
1603 * also enable deeper system power states that would be blocked if the
1604 * firmware was inactive.
1605 */
1606 if (IS_GEN9_LP(dev_priv) || hibernation || !suspend_to_idle(dev_priv) ||
1607 dev_priv->csr.dmc_payload == NULL) {
1608 intel_power_domains_suspend(dev_priv);
1609 dev_priv->power_domains_suspended = true;
1610 }
1611
1612 ret = 0;
1613 if (IS_GEN9_LP(dev_priv))
1614 bxt_enable_dc9(dev_priv);
1615 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1616 hsw_enable_pc8(dev_priv);
1617 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1618 ret = vlv_suspend_complete(dev_priv);
1619
1620 if (ret) {
1621 DRM_ERROR("Suspend complete failed: %d\n", ret);
1622 if (dev_priv->power_domains_suspended) {
1623 intel_power_domains_init_hw(dev_priv, true);
1624 dev_priv->power_domains_suspended = false;
1625 }
1626
1627 goto out;
1628 }
1629
1630 pci_disable_device(pdev);
1631 /*
1632 * During hibernation on some platforms the BIOS may try to access
1633 * the device even though it's already in D3 and hang the machine. So
1634 * leave the device in D0 on those platforms and hope the BIOS will
1635 * power down the device properly. The issue was seen on multiple old
1636 * GENs with different BIOS vendors, so having an explicit blacklist
1637 * is inpractical; apply the workaround on everything pre GEN6. The
1638 * platforms where the issue was seen:
1639 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1640 * Fujitsu FSC S7110
1641 * Acer Aspire 1830T
1642 */
1643 if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1644 pci_set_power_state(pdev, PCI_D3hot);
1645
1646 out:
1647 enable_rpm_wakeref_asserts(dev_priv);
1648
1649 return ret;
1650 }
1651
1652 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1653 {
1654 int error;
1655
1656 if (!dev) {
1657 DRM_ERROR("dev: %p\n", dev);
1658 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1659 return -ENODEV;
1660 }
1661
1662 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1663 state.event != PM_EVENT_FREEZE))
1664 return -EINVAL;
1665
1666 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1667 return 0;
1668
1669 error = i915_drm_suspend(dev);
1670 if (error)
1671 return error;
1672
1673 return i915_drm_suspend_late(dev, false);
1674 }
1675
1676 static int i915_drm_resume(struct drm_device *dev)
1677 {
1678 struct drm_i915_private *dev_priv = to_i915(dev);
1679 int ret;
1680
1681 disable_rpm_wakeref_asserts(dev_priv);
1682 intel_sanitize_gt_powersave(dev_priv);
1683
1684 ret = i915_ggtt_enable_hw(dev_priv);
1685 if (ret)
1686 DRM_ERROR("failed to re-enable GGTT\n");
1687
1688 intel_csr_ucode_resume(dev_priv);
1689
1690 i915_gem_resume(dev_priv);
1691
1692 i915_restore_state(dev_priv);
1693 intel_pps_unlock_regs_wa(dev_priv);
1694 intel_opregion_setup(dev_priv);
1695
1696 intel_init_pch_refclk(dev_priv);
1697
1698 /*
1699 * Interrupts have to be enabled before any batches are run. If not the
1700 * GPU will hang. i915_gem_init_hw() will initiate batches to
1701 * update/restore the context.
1702 *
1703 * drm_mode_config_reset() needs AUX interrupts.
1704 *
1705 * Modeset enabling in intel_modeset_init_hw() also needs working
1706 * interrupts.
1707 */
1708 intel_runtime_pm_enable_interrupts(dev_priv);
1709
1710 drm_mode_config_reset(dev);
1711
1712 mutex_lock(&dev->struct_mutex);
1713 if (i915_gem_init_hw(dev_priv)) {
1714 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
1715 i915_gem_set_wedged(dev_priv);
1716 }
1717 mutex_unlock(&dev->struct_mutex);
1718
1719 intel_guc_resume(dev_priv);
1720
1721 intel_modeset_init_hw(dev);
1722 intel_init_clock_gating(dev_priv);
1723
1724 spin_lock_irq(&dev_priv->irq_lock);
1725 if (dev_priv->display.hpd_irq_setup)
1726 dev_priv->display.hpd_irq_setup(dev_priv);
1727 spin_unlock_irq(&dev_priv->irq_lock);
1728
1729 intel_dp_mst_resume(dev);
1730
1731 intel_display_resume(dev);
1732
1733 drm_kms_helper_poll_enable(dev);
1734
1735 /*
1736 * ... but also need to make sure that hotplug processing
1737 * doesn't cause havoc. Like in the driver load code we don't
1738 * bother with the tiny race here where we might loose hotplug
1739 * notifications.
1740 * */
1741 intel_hpd_init(dev_priv);
1742
1743 intel_opregion_register(dev_priv);
1744
1745 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1746
1747 intel_opregion_notify_adapter(dev_priv, PCI_D0);
1748
1749 intel_autoenable_gt_powersave(dev_priv);
1750
1751 enable_rpm_wakeref_asserts(dev_priv);
1752
1753 return 0;
1754 }
1755
1756 static int i915_drm_resume_early(struct drm_device *dev)
1757 {
1758 struct drm_i915_private *dev_priv = to_i915(dev);
1759 struct pci_dev *pdev = dev_priv->drm.pdev;
1760 int ret;
1761
1762 /*
1763 * We have a resume ordering issue with the snd-hda driver also
1764 * requiring our device to be power up. Due to the lack of a
1765 * parent/child relationship we currently solve this with an early
1766 * resume hook.
1767 *
1768 * FIXME: This should be solved with a special hdmi sink device or
1769 * similar so that power domains can be employed.
1770 */
1771
1772 /*
1773 * Note that we need to set the power state explicitly, since we
1774 * powered off the device during freeze and the PCI core won't power
1775 * it back up for us during thaw. Powering off the device during
1776 * freeze is not a hard requirement though, and during the
1777 * suspend/resume phases the PCI core makes sure we get here with the
1778 * device powered on. So in case we change our freeze logic and keep
1779 * the device powered we can also remove the following set power state
1780 * call.
1781 */
1782 ret = pci_set_power_state(pdev, PCI_D0);
1783 if (ret) {
1784 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1785 goto out;
1786 }
1787
1788 /*
1789 * Note that pci_enable_device() first enables any parent bridge
1790 * device and only then sets the power state for this device. The
1791 * bridge enabling is a nop though, since bridge devices are resumed
1792 * first. The order of enabling power and enabling the device is
1793 * imposed by the PCI core as described above, so here we preserve the
1794 * same order for the freeze/thaw phases.
1795 *
1796 * TODO: eventually we should remove pci_disable_device() /
1797 * pci_enable_enable_device() from suspend/resume. Due to how they
1798 * depend on the device enable refcount we can't anyway depend on them
1799 * disabling/enabling the device.
1800 */
1801 if (pci_enable_device(pdev)) {
1802 ret = -EIO;
1803 goto out;
1804 }
1805
1806 pci_set_master(pdev);
1807
1808 disable_rpm_wakeref_asserts(dev_priv);
1809
1810 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1811 ret = vlv_resume_prepare(dev_priv, false);
1812 if (ret)
1813 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1814 ret);
1815
1816 intel_uncore_resume_early(dev_priv);
1817
1818 if (IS_GEN9_LP(dev_priv)) {
1819 gen9_sanitize_dc_state(dev_priv);
1820 bxt_disable_dc9(dev_priv);
1821 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1822 hsw_disable_pc8(dev_priv);
1823 }
1824
1825 intel_uncore_sanitize(dev_priv);
1826
1827 if (dev_priv->power_domains_suspended)
1828 intel_power_domains_init_hw(dev_priv, true);
1829 else
1830 intel_display_set_init_power(dev_priv, true);
1831
1832 i915_gem_sanitize(dev_priv);
1833
1834 i915_rc6_ctx_wa_resume(dev_priv);
1835
1836 enable_rpm_wakeref_asserts(dev_priv);
1837
1838 out:
1839 dev_priv->power_domains_suspended = false;
1840
1841 return ret;
1842 }
1843
1844 static int i915_resume_switcheroo(struct drm_device *dev)
1845 {
1846 int ret;
1847
1848 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1849 return 0;
1850
1851 ret = i915_drm_resume_early(dev);
1852 if (ret)
1853 return ret;
1854
1855 return i915_drm_resume(dev);
1856 }
1857
1858 /**
1859 * i915_reset - reset chip after a hang
1860 * @i915: #drm_i915_private to reset
1861 * @flags: Instructions
1862 *
1863 * Reset the chip. Useful if a hang is detected. Marks the device as wedged
1864 * on failure.
1865 *
1866 * Caller must hold the struct_mutex.
1867 *
1868 * Procedure is fairly simple:
1869 * - reset the chip using the reset reg
1870 * - re-init context state
1871 * - re-init hardware status page
1872 * - re-init ring buffer
1873 * - re-init interrupt state
1874 * - re-init display
1875 */
1876 void i915_reset(struct drm_i915_private *i915, unsigned int flags)
1877 {
1878 struct i915_gpu_error *error = &i915->gpu_error;
1879 int ret;
1880
1881 lockdep_assert_held(&i915->drm.struct_mutex);
1882 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &error->flags));
1883
1884 if (!test_bit(I915_RESET_HANDOFF, &error->flags))
1885 return;
1886
1887 /* Clear any previous failed attempts at recovery. Time to try again. */
1888 if (!i915_gem_unset_wedged(i915))
1889 goto wakeup;
1890
1891 if (!(flags & I915_RESET_QUIET))
1892 dev_notice(i915->drm.dev, "Resetting chip after gpu hang\n");
1893 error->reset_count++;
1894
1895 disable_irq(i915->drm.irq);
1896 ret = i915_gem_reset_prepare(i915);
1897 if (ret) {
1898 DRM_ERROR("GPU recovery failed\n");
1899 intel_gpu_reset(i915, ALL_ENGINES);
1900 goto error;
1901 }
1902
1903 ret = intel_gpu_reset(i915, ALL_ENGINES);
1904 if (ret) {
1905 if (ret != -ENODEV)
1906 DRM_ERROR("Failed to reset chip: %i\n", ret);
1907 else
1908 DRM_DEBUG_DRIVER("GPU reset disabled\n");
1909 goto error;
1910 }
1911
1912 i915_gem_reset(i915);
1913 intel_overlay_reset(i915);
1914
1915 /* Ok, now get things going again... */
1916
1917 /*
1918 * Everything depends on having the GTT running, so we need to start
1919 * there.
1920 */
1921 ret = i915_ggtt_enable_hw(i915);
1922 if (ret) {
1923 DRM_ERROR("Failed to re-enable GGTT following reset %d\n", ret);
1924 goto error;
1925 }
1926
1927 /*
1928 * Next we need to restore the context, but we don't use those
1929 * yet either...
1930 *
1931 * Ring buffer needs to be re-initialized in the KMS case, or if X
1932 * was running at the time of the reset (i.e. we weren't VT
1933 * switched away).
1934 */
1935 ret = i915_gem_init_hw(i915);
1936 if (ret) {
1937 DRM_ERROR("Failed hw init on reset %d\n", ret);
1938 goto error;
1939 }
1940
1941 i915_queue_hangcheck(i915);
1942
1943 finish:
1944 i915_gem_reset_finish(i915);
1945 enable_irq(i915->drm.irq);
1946
1947 wakeup:
1948 clear_bit(I915_RESET_HANDOFF, &error->flags);
1949 wake_up_bit(&error->flags, I915_RESET_HANDOFF);
1950 return;
1951
1952 error:
1953 i915_gem_set_wedged(i915);
1954 i915_gem_retire_requests(i915);
1955 goto finish;
1956 }
1957
1958 /**
1959 * i915_reset_engine - reset GPU engine to recover from a hang
1960 * @engine: engine to reset
1961 * @flags: options
1962 *
1963 * Reset a specific GPU engine. Useful if a hang is detected.
1964 * Returns zero on successful reset or otherwise an error code.
1965 *
1966 * Procedure is:
1967 * - identifies the request that caused the hang and it is dropped
1968 * - reset engine (which will force the engine to idle)
1969 * - re-init/configure engine
1970 */
1971 int i915_reset_engine(struct intel_engine_cs *engine, unsigned int flags)
1972 {
1973 struct i915_gpu_error *error = &engine->i915->gpu_error;
1974 struct drm_i915_gem_request *active_request;
1975 int ret;
1976
1977 GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &error->flags));
1978
1979 if (!(flags & I915_RESET_QUIET)) {
1980 dev_notice(engine->i915->drm.dev,
1981 "Resetting %s after gpu hang\n", engine->name);
1982 }
1983 error->reset_engine_count[engine->id]++;
1984
1985 active_request = i915_gem_reset_prepare_engine(engine);
1986 if (IS_ERR(active_request)) {
1987 DRM_DEBUG_DRIVER("Previous reset failed, promote to full reset\n");
1988 ret = PTR_ERR(active_request);
1989 goto out;
1990 }
1991
1992 ret = intel_gpu_reset(engine->i915, intel_engine_flag(engine));
1993 if (ret) {
1994 /* If we fail here, we expect to fallback to a global reset */
1995 DRM_DEBUG_DRIVER("Failed to reset %s, ret=%d\n",
1996 engine->name, ret);
1997 goto out;
1998 }
1999
2000 /*
2001 * The request that caused the hang is stuck on elsp, we know the
2002 * active request and can drop it, adjust head to skip the offending
2003 * request to resume executing remaining requests in the queue.
2004 */
2005 i915_gem_reset_engine(engine, active_request);
2006
2007 /*
2008 * The engine and its registers (and workarounds in case of render)
2009 * have been reset to their default values. Follow the init_ring
2010 * process to program RING_MODE, HWSP and re-enable submission.
2011 */
2012 ret = engine->init_hw(engine);
2013 if (ret)
2014 goto out;
2015
2016 out:
2017 i915_gem_reset_finish_engine(engine);
2018 return ret;
2019 }
2020
2021 static int i915_pm_suspend(struct device *kdev)
2022 {
2023 struct pci_dev *pdev = to_pci_dev(kdev);
2024 struct drm_device *dev = pci_get_drvdata(pdev);
2025
2026 if (!dev) {
2027 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2028 return -ENODEV;
2029 }
2030
2031 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2032 return 0;
2033
2034 return i915_drm_suspend(dev);
2035 }
2036
2037 static int i915_pm_suspend_late(struct device *kdev)
2038 {
2039 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2040
2041 /*
2042 * We have a suspend ordering issue with the snd-hda driver also
2043 * requiring our device to be power up. Due to the lack of a
2044 * parent/child relationship we currently solve this with an late
2045 * suspend hook.
2046 *
2047 * FIXME: This should be solved with a special hdmi sink device or
2048 * similar so that power domains can be employed.
2049 */
2050 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2051 return 0;
2052
2053 return i915_drm_suspend_late(dev, false);
2054 }
2055
2056 static int i915_pm_poweroff_late(struct device *kdev)
2057 {
2058 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2059
2060 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2061 return 0;
2062
2063 return i915_drm_suspend_late(dev, true);
2064 }
2065
2066 static int i915_pm_resume_early(struct device *kdev)
2067 {
2068 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2069
2070 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2071 return 0;
2072
2073 return i915_drm_resume_early(dev);
2074 }
2075
2076 static int i915_pm_resume(struct device *kdev)
2077 {
2078 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2079
2080 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2081 return 0;
2082
2083 return i915_drm_resume(dev);
2084 }
2085
2086 /* freeze: before creating the hibernation_image */
2087 static int i915_pm_freeze(struct device *kdev)
2088 {
2089 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2090 int ret;
2091
2092 if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2093 ret = i915_drm_suspend(dev);
2094 if (ret)
2095 return ret;
2096 }
2097
2098 ret = i915_gem_freeze(kdev_to_i915(kdev));
2099 if (ret)
2100 return ret;
2101
2102 return 0;
2103 }
2104
2105 static int i915_pm_freeze_late(struct device *kdev)
2106 {
2107 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2108 int ret;
2109
2110 if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2111 ret = i915_drm_suspend_late(dev, true);
2112 if (ret)
2113 return ret;
2114 }
2115
2116 ret = i915_gem_freeze_late(kdev_to_i915(kdev));
2117 if (ret)
2118 return ret;
2119
2120 return 0;
2121 }
2122
2123 /* thaw: called after creating the hibernation image, but before turning off. */
2124 static int i915_pm_thaw_early(struct device *kdev)
2125 {
2126 return i915_pm_resume_early(kdev);
2127 }
2128
2129 static int i915_pm_thaw(struct device *kdev)
2130 {
2131 return i915_pm_resume(kdev);
2132 }
2133
2134 /* restore: called after loading the hibernation image. */
2135 static int i915_pm_restore_early(struct device *kdev)
2136 {
2137 return i915_pm_resume_early(kdev);
2138 }
2139
2140 static int i915_pm_restore(struct device *kdev)
2141 {
2142 return i915_pm_resume(kdev);
2143 }
2144
2145 /*
2146 * Save all Gunit registers that may be lost after a D3 and a subsequent
2147 * S0i[R123] transition. The list of registers needing a save/restore is
2148 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2149 * registers in the following way:
2150 * - Driver: saved/restored by the driver
2151 * - Punit : saved/restored by the Punit firmware
2152 * - No, w/o marking: no need to save/restore, since the register is R/O or
2153 * used internally by the HW in a way that doesn't depend
2154 * keeping the content across a suspend/resume.
2155 * - Debug : used for debugging
2156 *
2157 * We save/restore all registers marked with 'Driver', with the following
2158 * exceptions:
2159 * - Registers out of use, including also registers marked with 'Debug'.
2160 * These have no effect on the driver's operation, so we don't save/restore
2161 * them to reduce the overhead.
2162 * - Registers that are fully setup by an initialization function called from
2163 * the resume path. For example many clock gating and RPS/RC6 registers.
2164 * - Registers that provide the right functionality with their reset defaults.
2165 *
2166 * TODO: Except for registers that based on the above 3 criteria can be safely
2167 * ignored, we save/restore all others, practically treating the HW context as
2168 * a black-box for the driver. Further investigation is needed to reduce the
2169 * saved/restored registers even further, by following the same 3 criteria.
2170 */
2171 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2172 {
2173 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2174 int i;
2175
2176 /* GAM 0x4000-0x4770 */
2177 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
2178 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
2179 s->arb_mode = I915_READ(ARB_MODE);
2180 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
2181 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
2182
2183 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2184 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2185
2186 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2187 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2188
2189 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
2190 s->ecochk = I915_READ(GAM_ECOCHK);
2191 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
2192 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
2193
2194 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
2195
2196 /* MBC 0x9024-0x91D0, 0x8500 */
2197 s->g3dctl = I915_READ(VLV_G3DCTL);
2198 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
2199 s->mbctl = I915_READ(GEN6_MBCTL);
2200
2201 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2202 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2203 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2204 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2205 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2206 s->rstctl = I915_READ(GEN6_RSTCTL);
2207 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2208
2209 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2210 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2211 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2212 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2213 s->ecobus = I915_READ(ECOBUS);
2214 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2215 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2216 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2217 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2218 s->rcedata = I915_READ(VLV_RCEDATA);
2219 s->spare2gh = I915_READ(VLV_SPAREG2H);
2220
2221 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2222 s->gt_imr = I915_READ(GTIMR);
2223 s->gt_ier = I915_READ(GTIER);
2224 s->pm_imr = I915_READ(GEN6_PMIMR);
2225 s->pm_ier = I915_READ(GEN6_PMIER);
2226
2227 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2228 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2229
2230 /* GT SA CZ domain, 0x100000-0x138124 */
2231 s->tilectl = I915_READ(TILECTL);
2232 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2233 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2234 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2235 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2236
2237 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2238 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2239 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2240 s->pcbr = I915_READ(VLV_PCBR);
2241 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2242
2243 /*
2244 * Not saving any of:
2245 * DFT, 0x9800-0x9EC0
2246 * SARB, 0xB000-0xB1FC
2247 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2248 * PCI CFG
2249 */
2250 }
2251
2252 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2253 {
2254 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2255 u32 val;
2256 int i;
2257
2258 /* GAM 0x4000-0x4770 */
2259 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2260 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2261 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2262 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2263 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2264
2265 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2266 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2267
2268 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2269 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2270
2271 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2272 I915_WRITE(GAM_ECOCHK, s->ecochk);
2273 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2274 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2275
2276 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2277
2278 /* MBC 0x9024-0x91D0, 0x8500 */
2279 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2280 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2281 I915_WRITE(GEN6_MBCTL, s->mbctl);
2282
2283 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2284 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2285 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2286 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2287 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2288 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2289 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2290
2291 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2292 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2293 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2294 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2295 I915_WRITE(ECOBUS, s->ecobus);
2296 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2297 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2298 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2299 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2300 I915_WRITE(VLV_RCEDATA, s->rcedata);
2301 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2302
2303 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2304 I915_WRITE(GTIMR, s->gt_imr);
2305 I915_WRITE(GTIER, s->gt_ier);
2306 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2307 I915_WRITE(GEN6_PMIER, s->pm_ier);
2308
2309 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2310 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2311
2312 /* GT SA CZ domain, 0x100000-0x138124 */
2313 I915_WRITE(TILECTL, s->tilectl);
2314 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2315 /*
2316 * Preserve the GT allow wake and GFX force clock bit, they are not
2317 * be restored, as they are used to control the s0ix suspend/resume
2318 * sequence by the caller.
2319 */
2320 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2321 val &= VLV_GTLC_ALLOWWAKEREQ;
2322 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2323 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2324
2325 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2326 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2327 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2328 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2329
2330 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2331
2332 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2333 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2334 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2335 I915_WRITE(VLV_PCBR, s->pcbr);
2336 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2337 }
2338
2339 static int vlv_wait_for_pw_status(struct drm_i915_private *dev_priv,
2340 u32 mask, u32 val)
2341 {
2342 /* The HW does not like us polling for PW_STATUS frequently, so
2343 * use the sleeping loop rather than risk the busy spin within
2344 * intel_wait_for_register().
2345 *
2346 * Transitioning between RC6 states should be at most 2ms (see
2347 * valleyview_enable_rps) so use a 3ms timeout.
2348 */
2349 return wait_for((I915_READ_NOTRACE(VLV_GTLC_PW_STATUS) & mask) == val,
2350 3);
2351 }
2352
2353 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2354 {
2355 u32 val;
2356 int err;
2357
2358 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2359 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2360 if (force_on)
2361 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2362 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2363
2364 if (!force_on)
2365 return 0;
2366
2367 err = intel_wait_for_register(dev_priv,
2368 VLV_GTLC_SURVIVABILITY_REG,
2369 VLV_GFX_CLK_STATUS_BIT,
2370 VLV_GFX_CLK_STATUS_BIT,
2371 20);
2372 if (err)
2373 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2374 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2375
2376 return err;
2377 }
2378
2379 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2380 {
2381 u32 mask;
2382 u32 val;
2383 int err;
2384
2385 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2386 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2387 if (allow)
2388 val |= VLV_GTLC_ALLOWWAKEREQ;
2389 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2390 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2391
2392 mask = VLV_GTLC_ALLOWWAKEACK;
2393 val = allow ? mask : 0;
2394
2395 err = vlv_wait_for_pw_status(dev_priv, mask, val);
2396 if (err)
2397 DRM_ERROR("timeout disabling GT waking\n");
2398
2399 return err;
2400 }
2401
2402 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2403 bool wait_for_on)
2404 {
2405 u32 mask;
2406 u32 val;
2407
2408 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2409 val = wait_for_on ? mask : 0;
2410
2411 /*
2412 * RC6 transitioning can be delayed up to 2 msec (see
2413 * valleyview_enable_rps), use 3 msec for safety.
2414 */
2415 if (vlv_wait_for_pw_status(dev_priv, mask, val))
2416 DRM_ERROR("timeout waiting for GT wells to go %s\n",
2417 onoff(wait_for_on));
2418 }
2419
2420 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2421 {
2422 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2423 return;
2424
2425 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2426 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2427 }
2428
2429 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2430 {
2431 u32 mask;
2432 int err;
2433
2434 /*
2435 * Bspec defines the following GT well on flags as debug only, so
2436 * don't treat them as hard failures.
2437 */
2438 vlv_wait_for_gt_wells(dev_priv, false);
2439
2440 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2441 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2442
2443 vlv_check_no_gt_access(dev_priv);
2444
2445 err = vlv_force_gfx_clock(dev_priv, true);
2446 if (err)
2447 goto err1;
2448
2449 err = vlv_allow_gt_wake(dev_priv, false);
2450 if (err)
2451 goto err2;
2452
2453 if (!IS_CHERRYVIEW(dev_priv))
2454 vlv_save_gunit_s0ix_state(dev_priv);
2455
2456 err = vlv_force_gfx_clock(dev_priv, false);
2457 if (err)
2458 goto err2;
2459
2460 return 0;
2461
2462 err2:
2463 /* For safety always re-enable waking and disable gfx clock forcing */
2464 vlv_allow_gt_wake(dev_priv, true);
2465 err1:
2466 vlv_force_gfx_clock(dev_priv, false);
2467
2468 return err;
2469 }
2470
2471 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2472 bool rpm_resume)
2473 {
2474 int err;
2475 int ret;
2476
2477 /*
2478 * If any of the steps fail just try to continue, that's the best we
2479 * can do at this point. Return the first error code (which will also
2480 * leave RPM permanently disabled).
2481 */
2482 ret = vlv_force_gfx_clock(dev_priv, true);
2483
2484 if (!IS_CHERRYVIEW(dev_priv))
2485 vlv_restore_gunit_s0ix_state(dev_priv);
2486
2487 err = vlv_allow_gt_wake(dev_priv, true);
2488 if (!ret)
2489 ret = err;
2490
2491 err = vlv_force_gfx_clock(dev_priv, false);
2492 if (!ret)
2493 ret = err;
2494
2495 vlv_check_no_gt_access(dev_priv);
2496
2497 if (rpm_resume)
2498 intel_init_clock_gating(dev_priv);
2499
2500 return ret;
2501 }
2502
2503 static int intel_runtime_suspend(struct device *kdev)
2504 {
2505 struct pci_dev *pdev = to_pci_dev(kdev);
2506 struct drm_device *dev = pci_get_drvdata(pdev);
2507 struct drm_i915_private *dev_priv = to_i915(dev);
2508 int ret;
2509
2510 if (WARN_ON_ONCE(!(dev_priv->gt_pm.rc6.enabled && intel_rc6_enabled())))
2511 return -ENODEV;
2512
2513 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2514 return -ENODEV;
2515
2516 DRM_DEBUG_KMS("Suspending device\n");
2517
2518 disable_rpm_wakeref_asserts(dev_priv);
2519
2520 /*
2521 * We are safe here against re-faults, since the fault handler takes
2522 * an RPM reference.
2523 */
2524 i915_gem_runtime_suspend(dev_priv);
2525
2526 intel_guc_suspend(dev_priv);
2527
2528 intel_runtime_pm_disable_interrupts(dev_priv);
2529
2530 ret = 0;
2531 if (IS_GEN9_LP(dev_priv)) {
2532 bxt_display_core_uninit(dev_priv);
2533 bxt_enable_dc9(dev_priv);
2534 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2535 hsw_enable_pc8(dev_priv);
2536 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2537 ret = vlv_suspend_complete(dev_priv);
2538 }
2539
2540 if (ret) {
2541 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2542 intel_runtime_pm_enable_interrupts(dev_priv);
2543
2544 enable_rpm_wakeref_asserts(dev_priv);
2545
2546 return ret;
2547 }
2548
2549 intel_uncore_suspend(dev_priv);
2550
2551 enable_rpm_wakeref_asserts(dev_priv);
2552 WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2553
2554 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2555 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2556
2557 dev_priv->runtime_pm.suspended = true;
2558
2559 /*
2560 * FIXME: We really should find a document that references the arguments
2561 * used below!
2562 */
2563 if (IS_BROADWELL(dev_priv)) {
2564 /*
2565 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2566 * being detected, and the call we do at intel_runtime_resume()
2567 * won't be able to restore them. Since PCI_D3hot matches the
2568 * actual specification and appears to be working, use it.
2569 */
2570 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2571 } else {
2572 /*
2573 * current versions of firmware which depend on this opregion
2574 * notification have repurposed the D1 definition to mean
2575 * "runtime suspended" vs. what you would normally expect (D3)
2576 * to distinguish it from notifications that might be sent via
2577 * the suspend path.
2578 */
2579 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2580 }
2581
2582 assert_forcewakes_inactive(dev_priv);
2583
2584 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2585 intel_hpd_poll_init(dev_priv);
2586
2587 DRM_DEBUG_KMS("Device suspended\n");
2588 return 0;
2589 }
2590
2591 static int intel_runtime_resume(struct device *kdev)
2592 {
2593 struct pci_dev *pdev = to_pci_dev(kdev);
2594 struct drm_device *dev = pci_get_drvdata(pdev);
2595 struct drm_i915_private *dev_priv = to_i915(dev);
2596 int ret = 0;
2597
2598 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2599 return -ENODEV;
2600
2601 DRM_DEBUG_KMS("Resuming device\n");
2602
2603 WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2604 disable_rpm_wakeref_asserts(dev_priv);
2605
2606 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2607 dev_priv->runtime_pm.suspended = false;
2608 if (intel_uncore_unclaimed_mmio(dev_priv))
2609 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2610
2611 intel_guc_resume(dev_priv);
2612
2613 if (IS_GEN9_LP(dev_priv)) {
2614 bxt_disable_dc9(dev_priv);
2615 bxt_display_core_init(dev_priv, true);
2616 if (dev_priv->csr.dmc_payload &&
2617 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2618 gen9_enable_dc5(dev_priv);
2619 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2620 hsw_disable_pc8(dev_priv);
2621 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2622 ret = vlv_resume_prepare(dev_priv, true);
2623 }
2624
2625 intel_uncore_runtime_resume(dev_priv);
2626
2627 /*
2628 * No point of rolling back things in case of an error, as the best
2629 * we can do is to hope that things will still work (and disable RPM).
2630 */
2631 i915_gem_init_swizzling(dev_priv);
2632 i915_gem_restore_fences(dev_priv);
2633
2634 intel_runtime_pm_enable_interrupts(dev_priv);
2635
2636 /*
2637 * On VLV/CHV display interrupts are part of the display
2638 * power well, so hpd is reinitialized from there. For
2639 * everyone else do it here.
2640 */
2641 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2642 intel_hpd_init(dev_priv);
2643
2644 intel_enable_ipc(dev_priv);
2645
2646 enable_rpm_wakeref_asserts(dev_priv);
2647
2648 if (ret)
2649 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2650 else
2651 DRM_DEBUG_KMS("Device resumed\n");
2652
2653 return ret;
2654 }
2655
2656 const struct dev_pm_ops i915_pm_ops = {
2657 /*
2658 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2659 * PMSG_RESUME]
2660 */
2661 .suspend = i915_pm_suspend,
2662 .suspend_late = i915_pm_suspend_late,
2663 .resume_early = i915_pm_resume_early,
2664 .resume = i915_pm_resume,
2665
2666 /*
2667 * S4 event handlers
2668 * @freeze, @freeze_late : called (1) before creating the
2669 * hibernation image [PMSG_FREEZE] and
2670 * (2) after rebooting, before restoring
2671 * the image [PMSG_QUIESCE]
2672 * @thaw, @thaw_early : called (1) after creating the hibernation
2673 * image, before writing it [PMSG_THAW]
2674 * and (2) after failing to create or
2675 * restore the image [PMSG_RECOVER]
2676 * @poweroff, @poweroff_late: called after writing the hibernation
2677 * image, before rebooting [PMSG_HIBERNATE]
2678 * @restore, @restore_early : called after rebooting and restoring the
2679 * hibernation image [PMSG_RESTORE]
2680 */
2681 .freeze = i915_pm_freeze,
2682 .freeze_late = i915_pm_freeze_late,
2683 .thaw_early = i915_pm_thaw_early,
2684 .thaw = i915_pm_thaw,
2685 .poweroff = i915_pm_suspend,
2686 .poweroff_late = i915_pm_poweroff_late,
2687 .restore_early = i915_pm_restore_early,
2688 .restore = i915_pm_restore,
2689
2690 /* S0ix (via runtime suspend) event handlers */
2691 .runtime_suspend = intel_runtime_suspend,
2692 .runtime_resume = intel_runtime_resume,
2693 };
2694
2695 static const struct vm_operations_struct i915_gem_vm_ops = {
2696 .fault = i915_gem_fault,
2697 .open = drm_gem_vm_open,
2698 .close = drm_gem_vm_close,
2699 };
2700
2701 static const struct file_operations i915_driver_fops = {
2702 .owner = THIS_MODULE,
2703 .open = drm_open,
2704 .release = drm_release,
2705 .unlocked_ioctl = drm_ioctl,
2706 .mmap = drm_gem_mmap,
2707 .poll = drm_poll,
2708 .read = drm_read,
2709 .compat_ioctl = i915_compat_ioctl,
2710 .llseek = noop_llseek,
2711 };
2712
2713 static int
2714 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2715 struct drm_file *file)
2716 {
2717 return -ENODEV;
2718 }
2719
2720 static const struct drm_ioctl_desc i915_ioctls[] = {
2721 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2722 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2723 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2724 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2725 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2726 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2727 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH|DRM_RENDER_ALLOW),
2728 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2729 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2730 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2731 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2732 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2733 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2734 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2735 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2736 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2737 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2738 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2739 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH),
2740 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2, DRM_AUTH|DRM_RENDER_ALLOW),
2741 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2742 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2743 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2744 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2745 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2746 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2747 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2748 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2749 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2750 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2751 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2752 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2753 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2754 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2755 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2756 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2757 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2758 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2759 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, 0),
2760 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2761 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2762 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2763 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey, DRM_MASTER|DRM_CONTROL_ALLOW),
2764 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2765 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2766 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2767 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2768 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2769 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2770 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2771 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2772 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2773 DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2774 DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2775 DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2776 };
2777
2778 static struct drm_driver driver = {
2779 /* Don't use MTRRs here; the Xserver or userspace app should
2780 * deal with them for Intel hardware.
2781 */
2782 .driver_features =
2783 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2784 DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
2785 .release = i915_driver_release,
2786 .open = i915_driver_open,
2787 .lastclose = i915_driver_lastclose,
2788 .postclose = i915_driver_postclose,
2789
2790 .gem_close_object = i915_gem_close_object,
2791 .gem_free_object_unlocked = i915_gem_free_object,
2792 .gem_vm_ops = &i915_gem_vm_ops,
2793
2794 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2795 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2796 .gem_prime_export = i915_gem_prime_export,
2797 .gem_prime_import = i915_gem_prime_import,
2798
2799 .dumb_create = i915_gem_dumb_create,
2800 .dumb_map_offset = i915_gem_mmap_gtt,
2801 .ioctls = i915_ioctls,
2802 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2803 .fops = &i915_driver_fops,
2804 .name = DRIVER_NAME,
2805 .desc = DRIVER_DESC,
2806 .date = DRIVER_DATE,
2807 .major = DRIVER_MAJOR,
2808 .minor = DRIVER_MINOR,
2809 .patchlevel = DRIVER_PATCHLEVEL,
2810 };
2811
2812 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2813 #include "selftests/mock_drm.c"
2814 #endif