]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
drm/i915: Fix hibernation with ACPI S0 target state
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73
74 #include "i915_vma.h"
75
76 #include "intel_gvt.h"
77
78 /* General customization:
79 */
80
81 #define DRIVER_NAME "i915"
82 #define DRIVER_DESC "Intel Graphics"
83 #define DRIVER_DATE "20171023"
84 #define DRIVER_TIMESTAMP 1508748913
85
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88 * which may not necessarily be a user visible problem. This will either
89 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90 * enable distros and users to tailor their preferred amount of i915 abrt
91 * spam.
92 */
93 #define I915_STATE_WARN(condition, format...) ({ \
94 int __ret_warn_on = !!(condition); \
95 if (unlikely(__ret_warn_on)) \
96 if (!WARN(i915_modparams.verbose_state_checks, format)) \
97 DRM_ERROR(format); \
98 unlikely(__ret_warn_on); \
99 })
100
101 #define I915_STATE_WARN_ON(x) \
102 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106 __i915_inject_load_failure(__func__, __LINE__)
107
108 typedef struct {
109 uint32_t val;
110 } uint_fixed_16_16_t;
111
112 #define FP_16_16_MAX ({ \
113 uint_fixed_16_16_t fp; \
114 fp.val = UINT_MAX; \
115 fp; \
116 })
117
118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120 if (val.val == 0)
121 return true;
122 return false;
123 }
124
125 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
126 {
127 uint_fixed_16_16_t fp;
128
129 WARN_ON(val > U16_MAX);
130
131 fp.val = val << 16;
132 return fp;
133 }
134
135 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137 return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139
140 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
141 {
142 return fp.val >> 16;
143 }
144
145 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
146 uint_fixed_16_16_t min2)
147 {
148 uint_fixed_16_16_t min;
149
150 min.val = min(min1.val, min2.val);
151 return min;
152 }
153
154 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
155 uint_fixed_16_16_t max2)
156 {
157 uint_fixed_16_16_t max;
158
159 max.val = max(max1.val, max2.val);
160 return max;
161 }
162
163 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
164 {
165 uint_fixed_16_16_t fp;
166 WARN_ON(val > U32_MAX);
167 fp.val = (uint32_t) val;
168 return fp;
169 }
170
171 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
172 uint_fixed_16_16_t d)
173 {
174 return DIV_ROUND_UP(val.val, d.val);
175 }
176
177 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
178 uint_fixed_16_16_t mul)
179 {
180 uint64_t intermediate_val;
181
182 intermediate_val = (uint64_t) val * mul.val;
183 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
184 WARN_ON(intermediate_val > U32_MAX);
185 return (uint32_t) intermediate_val;
186 }
187
188 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
189 uint_fixed_16_16_t mul)
190 {
191 uint64_t intermediate_val;
192
193 intermediate_val = (uint64_t) val.val * mul.val;
194 intermediate_val = intermediate_val >> 16;
195 return clamp_u64_to_fixed16(intermediate_val);
196 }
197
198 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
199 {
200 uint64_t interm_val;
201
202 interm_val = (uint64_t)val << 16;
203 interm_val = DIV_ROUND_UP_ULL(interm_val, d);
204 return clamp_u64_to_fixed16(interm_val);
205 }
206
207 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
208 uint_fixed_16_16_t d)
209 {
210 uint64_t interm_val;
211
212 interm_val = (uint64_t)val << 16;
213 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
214 WARN_ON(interm_val > U32_MAX);
215 return (uint32_t) interm_val;
216 }
217
218 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
219 uint_fixed_16_16_t mul)
220 {
221 uint64_t intermediate_val;
222
223 intermediate_val = (uint64_t) val * mul.val;
224 return clamp_u64_to_fixed16(intermediate_val);
225 }
226
227 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
228 uint_fixed_16_16_t add2)
229 {
230 uint64_t interm_sum;
231
232 interm_sum = (uint64_t) add1.val + add2.val;
233 return clamp_u64_to_fixed16(interm_sum);
234 }
235
236 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
237 uint32_t add2)
238 {
239 uint64_t interm_sum;
240 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
241
242 interm_sum = (uint64_t) add1.val + interm_add2.val;
243 return clamp_u64_to_fixed16(interm_sum);
244 }
245
246 static inline const char *yesno(bool v)
247 {
248 return v ? "yes" : "no";
249 }
250
251 static inline const char *onoff(bool v)
252 {
253 return v ? "on" : "off";
254 }
255
256 static inline const char *enableddisabled(bool v)
257 {
258 return v ? "enabled" : "disabled";
259 }
260
261 enum pipe {
262 INVALID_PIPE = -1,
263 PIPE_A = 0,
264 PIPE_B,
265 PIPE_C,
266 _PIPE_EDP,
267 I915_MAX_PIPES = _PIPE_EDP
268 };
269 #define pipe_name(p) ((p) + 'A')
270
271 enum transcoder {
272 TRANSCODER_A = 0,
273 TRANSCODER_B,
274 TRANSCODER_C,
275 TRANSCODER_EDP,
276 TRANSCODER_DSI_A,
277 TRANSCODER_DSI_C,
278 I915_MAX_TRANSCODERS
279 };
280
281 static inline const char *transcoder_name(enum transcoder transcoder)
282 {
283 switch (transcoder) {
284 case TRANSCODER_A:
285 return "A";
286 case TRANSCODER_B:
287 return "B";
288 case TRANSCODER_C:
289 return "C";
290 case TRANSCODER_EDP:
291 return "EDP";
292 case TRANSCODER_DSI_A:
293 return "DSI A";
294 case TRANSCODER_DSI_C:
295 return "DSI C";
296 default:
297 return "<invalid>";
298 }
299 }
300
301 static inline bool transcoder_is_dsi(enum transcoder transcoder)
302 {
303 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
304 }
305
306 /*
307 * Global legacy plane identifier. Valid only for primary/sprite
308 * planes on pre-g4x, and only for primary planes on g4x+.
309 */
310 enum plane {
311 PLANE_A,
312 PLANE_B,
313 PLANE_C,
314 };
315 #define plane_name(p) ((p) + 'A')
316
317 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
318
319 /*
320 * Per-pipe plane identifier.
321 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
322 * number of planes per CRTC. Not all platforms really have this many planes,
323 * which means some arrays of size I915_MAX_PLANES may have unused entries
324 * between the topmost sprite plane and the cursor plane.
325 *
326 * This is expected to be passed to various register macros
327 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
328 */
329 enum plane_id {
330 PLANE_PRIMARY,
331 PLANE_SPRITE0,
332 PLANE_SPRITE1,
333 PLANE_SPRITE2,
334 PLANE_CURSOR,
335 I915_MAX_PLANES,
336 };
337
338 #define for_each_plane_id_on_crtc(__crtc, __p) \
339 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
340 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
341
342 enum port {
343 PORT_NONE = -1,
344 PORT_A = 0,
345 PORT_B,
346 PORT_C,
347 PORT_D,
348 PORT_E,
349 I915_MAX_PORTS
350 };
351 #define port_name(p) ((p) + 'A')
352
353 #define I915_NUM_PHYS_VLV 2
354
355 enum dpio_channel {
356 DPIO_CH0,
357 DPIO_CH1
358 };
359
360 enum dpio_phy {
361 DPIO_PHY0,
362 DPIO_PHY1,
363 DPIO_PHY2,
364 };
365
366 enum intel_display_power_domain {
367 POWER_DOMAIN_PIPE_A,
368 POWER_DOMAIN_PIPE_B,
369 POWER_DOMAIN_PIPE_C,
370 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
371 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
372 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
373 POWER_DOMAIN_TRANSCODER_A,
374 POWER_DOMAIN_TRANSCODER_B,
375 POWER_DOMAIN_TRANSCODER_C,
376 POWER_DOMAIN_TRANSCODER_EDP,
377 POWER_DOMAIN_TRANSCODER_DSI_A,
378 POWER_DOMAIN_TRANSCODER_DSI_C,
379 POWER_DOMAIN_PORT_DDI_A_LANES,
380 POWER_DOMAIN_PORT_DDI_B_LANES,
381 POWER_DOMAIN_PORT_DDI_C_LANES,
382 POWER_DOMAIN_PORT_DDI_D_LANES,
383 POWER_DOMAIN_PORT_DDI_E_LANES,
384 POWER_DOMAIN_PORT_DDI_A_IO,
385 POWER_DOMAIN_PORT_DDI_B_IO,
386 POWER_DOMAIN_PORT_DDI_C_IO,
387 POWER_DOMAIN_PORT_DDI_D_IO,
388 POWER_DOMAIN_PORT_DDI_E_IO,
389 POWER_DOMAIN_PORT_DSI,
390 POWER_DOMAIN_PORT_CRT,
391 POWER_DOMAIN_PORT_OTHER,
392 POWER_DOMAIN_VGA,
393 POWER_DOMAIN_AUDIO,
394 POWER_DOMAIN_PLLS,
395 POWER_DOMAIN_AUX_A,
396 POWER_DOMAIN_AUX_B,
397 POWER_DOMAIN_AUX_C,
398 POWER_DOMAIN_AUX_D,
399 POWER_DOMAIN_GMBUS,
400 POWER_DOMAIN_MODESET,
401 POWER_DOMAIN_INIT,
402
403 POWER_DOMAIN_NUM,
404 };
405
406 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
407 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
408 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
409 #define POWER_DOMAIN_TRANSCODER(tran) \
410 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
411 (tran) + POWER_DOMAIN_TRANSCODER_A)
412
413 enum hpd_pin {
414 HPD_NONE = 0,
415 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
416 HPD_CRT,
417 HPD_SDVO_B,
418 HPD_SDVO_C,
419 HPD_PORT_A,
420 HPD_PORT_B,
421 HPD_PORT_C,
422 HPD_PORT_D,
423 HPD_PORT_E,
424 HPD_NUM_PINS
425 };
426
427 #define for_each_hpd_pin(__pin) \
428 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
429
430 #define HPD_STORM_DEFAULT_THRESHOLD 5
431
432 struct i915_hotplug {
433 struct work_struct hotplug_work;
434
435 struct {
436 unsigned long last_jiffies;
437 int count;
438 enum {
439 HPD_ENABLED = 0,
440 HPD_DISABLED = 1,
441 HPD_MARK_DISABLED = 2
442 } state;
443 } stats[HPD_NUM_PINS];
444 u32 event_bits;
445 struct delayed_work reenable_work;
446
447 struct intel_digital_port *irq_port[I915_MAX_PORTS];
448 u32 long_port_mask;
449 u32 short_port_mask;
450 struct work_struct dig_port_work;
451
452 struct work_struct poll_init_work;
453 bool poll_enabled;
454
455 unsigned int hpd_storm_threshold;
456
457 /*
458 * if we get a HPD irq from DP and a HPD irq from non-DP
459 * the non-DP HPD could block the workqueue on a mode config
460 * mutex getting, that userspace may have taken. However
461 * userspace is waiting on the DP workqueue to run which is
462 * blocked behind the non-DP one.
463 */
464 struct workqueue_struct *dp_wq;
465 };
466
467 #define I915_GEM_GPU_DOMAINS \
468 (I915_GEM_DOMAIN_RENDER | \
469 I915_GEM_DOMAIN_SAMPLER | \
470 I915_GEM_DOMAIN_COMMAND | \
471 I915_GEM_DOMAIN_INSTRUCTION | \
472 I915_GEM_DOMAIN_VERTEX)
473
474 #define for_each_pipe(__dev_priv, __p) \
475 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
476 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
477 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
478 for_each_if ((__mask) & (1 << (__p)))
479 #define for_each_universal_plane(__dev_priv, __pipe, __p) \
480 for ((__p) = 0; \
481 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
482 (__p)++)
483 #define for_each_sprite(__dev_priv, __p, __s) \
484 for ((__s) = 0; \
485 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
486 (__s)++)
487
488 #define for_each_port_masked(__port, __ports_mask) \
489 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
490 for_each_if ((__ports_mask) & (1 << (__port)))
491
492 #define for_each_crtc(dev, crtc) \
493 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
494
495 #define for_each_intel_plane(dev, intel_plane) \
496 list_for_each_entry(intel_plane, \
497 &(dev)->mode_config.plane_list, \
498 base.head)
499
500 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
501 list_for_each_entry(intel_plane, \
502 &(dev)->mode_config.plane_list, \
503 base.head) \
504 for_each_if ((plane_mask) & \
505 (1 << drm_plane_index(&intel_plane->base)))
506
507 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
508 list_for_each_entry(intel_plane, \
509 &(dev)->mode_config.plane_list, \
510 base.head) \
511 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
512
513 #define for_each_intel_crtc(dev, intel_crtc) \
514 list_for_each_entry(intel_crtc, \
515 &(dev)->mode_config.crtc_list, \
516 base.head)
517
518 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
519 list_for_each_entry(intel_crtc, \
520 &(dev)->mode_config.crtc_list, \
521 base.head) \
522 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
523
524 #define for_each_intel_encoder(dev, intel_encoder) \
525 list_for_each_entry(intel_encoder, \
526 &(dev)->mode_config.encoder_list, \
527 base.head)
528
529 #define for_each_intel_connector_iter(intel_connector, iter) \
530 while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
531
532 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
533 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
534 for_each_if ((intel_encoder)->base.crtc == (__crtc))
535
536 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
537 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
538 for_each_if ((intel_connector)->base.encoder == (__encoder))
539
540 #define for_each_power_domain(domain, mask) \
541 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
542 for_each_if (BIT_ULL(domain) & (mask))
543
544 #define for_each_power_well(__dev_priv, __power_well) \
545 for ((__power_well) = (__dev_priv)->power_domains.power_wells; \
546 (__power_well) - (__dev_priv)->power_domains.power_wells < \
547 (__dev_priv)->power_domains.power_well_count; \
548 (__power_well)++)
549
550 #define for_each_power_well_rev(__dev_priv, __power_well) \
551 for ((__power_well) = (__dev_priv)->power_domains.power_wells + \
552 (__dev_priv)->power_domains.power_well_count - 1; \
553 (__power_well) - (__dev_priv)->power_domains.power_wells >= 0; \
554 (__power_well)--)
555
556 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask) \
557 for_each_power_well(__dev_priv, __power_well) \
558 for_each_if ((__power_well)->domains & (__domain_mask))
559
560 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
561 for_each_power_well_rev(__dev_priv, __power_well) \
562 for_each_if ((__power_well)->domains & (__domain_mask))
563
564 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
565 for ((__i) = 0; \
566 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
567 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
568 (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
569 (__i)++) \
570 for_each_if (plane_state)
571
572 #define for_each_new_intel_crtc_in_state(__state, crtc, new_crtc_state, __i) \
573 for ((__i) = 0; \
574 (__i) < (__state)->base.dev->mode_config.num_crtc && \
575 ((crtc) = to_intel_crtc((__state)->base.crtcs[__i].ptr), \
576 (new_crtc_state) = to_intel_crtc_state((__state)->base.crtcs[__i].new_state), 1); \
577 (__i)++) \
578 for_each_if (crtc)
579
580
581 #define for_each_oldnew_intel_plane_in_state(__state, plane, old_plane_state, new_plane_state, __i) \
582 for ((__i) = 0; \
583 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
584 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
585 (old_plane_state) = to_intel_plane_state((__state)->base.planes[__i].old_state), \
586 (new_plane_state) = to_intel_plane_state((__state)->base.planes[__i].new_state), 1); \
587 (__i)++) \
588 for_each_if (plane)
589
590 struct drm_i915_private;
591 struct i915_mm_struct;
592 struct i915_mmu_object;
593
594 struct drm_i915_file_private {
595 struct drm_i915_private *dev_priv;
596 struct drm_file *file;
597
598 struct {
599 spinlock_t lock;
600 struct list_head request_list;
601 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
602 * chosen to prevent the CPU getting more than a frame ahead of the GPU
603 * (when using lax throttling for the frontbuffer). We also use it to
604 * offer free GPU waitboosts for severely congested workloads.
605 */
606 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
607 } mm;
608 struct idr context_idr;
609
610 struct intel_rps_client {
611 atomic_t boosts;
612 } rps_client;
613
614 unsigned int bsd_engine;
615
616 /* Client can have a maximum of 3 contexts banned before
617 * it is denied of creating new contexts. As one context
618 * ban needs 4 consecutive hangs, and more if there is
619 * progress in between, this is a last resort stop gap measure
620 * to limit the badly behaving clients access to gpu.
621 */
622 #define I915_MAX_CLIENT_CONTEXT_BANS 3
623 atomic_t context_bans;
624 };
625
626 /* Used by dp and fdi links */
627 struct intel_link_m_n {
628 uint32_t tu;
629 uint32_t gmch_m;
630 uint32_t gmch_n;
631 uint32_t link_m;
632 uint32_t link_n;
633 };
634
635 void intel_link_compute_m_n(int bpp, int nlanes,
636 int pixel_clock, int link_clock,
637 struct intel_link_m_n *m_n,
638 bool reduce_m_n);
639
640 /* Interface history:
641 *
642 * 1.1: Original.
643 * 1.2: Add Power Management
644 * 1.3: Add vblank support
645 * 1.4: Fix cmdbuffer path, add heap destroy
646 * 1.5: Add vblank pipe configuration
647 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
648 * - Support vertical blank on secondary display pipe
649 */
650 #define DRIVER_MAJOR 1
651 #define DRIVER_MINOR 6
652 #define DRIVER_PATCHLEVEL 0
653
654 struct opregion_header;
655 struct opregion_acpi;
656 struct opregion_swsci;
657 struct opregion_asle;
658
659 struct intel_opregion {
660 struct opregion_header *header;
661 struct opregion_acpi *acpi;
662 struct opregion_swsci *swsci;
663 u32 swsci_gbda_sub_functions;
664 u32 swsci_sbcb_sub_functions;
665 struct opregion_asle *asle;
666 void *rvda;
667 void *vbt_firmware;
668 const void *vbt;
669 u32 vbt_size;
670 u32 *lid_state;
671 struct work_struct asle_work;
672 };
673 #define OPREGION_SIZE (8*1024)
674
675 struct intel_overlay;
676 struct intel_overlay_error_state;
677
678 struct sdvo_device_mapping {
679 u8 initialized;
680 u8 dvo_port;
681 u8 slave_addr;
682 u8 dvo_wiring;
683 u8 i2c_pin;
684 u8 ddc_pin;
685 };
686
687 struct intel_connector;
688 struct intel_encoder;
689 struct intel_atomic_state;
690 struct intel_crtc_state;
691 struct intel_initial_plane_config;
692 struct intel_crtc;
693 struct intel_limit;
694 struct dpll;
695 struct intel_cdclk_state;
696
697 struct drm_i915_display_funcs {
698 void (*get_cdclk)(struct drm_i915_private *dev_priv,
699 struct intel_cdclk_state *cdclk_state);
700 void (*set_cdclk)(struct drm_i915_private *dev_priv,
701 const struct intel_cdclk_state *cdclk_state);
702 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
703 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
704 int (*compute_intermediate_wm)(struct drm_device *dev,
705 struct intel_crtc *intel_crtc,
706 struct intel_crtc_state *newstate);
707 void (*initial_watermarks)(struct intel_atomic_state *state,
708 struct intel_crtc_state *cstate);
709 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
710 struct intel_crtc_state *cstate);
711 void (*optimize_watermarks)(struct intel_atomic_state *state,
712 struct intel_crtc_state *cstate);
713 int (*compute_global_watermarks)(struct drm_atomic_state *state);
714 void (*update_wm)(struct intel_crtc *crtc);
715 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
716 /* Returns the active state of the crtc, and if the crtc is active,
717 * fills out the pipe-config with the hw state. */
718 bool (*get_pipe_config)(struct intel_crtc *,
719 struct intel_crtc_state *);
720 void (*get_initial_plane_config)(struct intel_crtc *,
721 struct intel_initial_plane_config *);
722 int (*crtc_compute_clock)(struct intel_crtc *crtc,
723 struct intel_crtc_state *crtc_state);
724 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
725 struct drm_atomic_state *old_state);
726 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
727 struct drm_atomic_state *old_state);
728 void (*update_crtcs)(struct drm_atomic_state *state);
729 void (*audio_codec_enable)(struct drm_connector *connector,
730 struct intel_encoder *encoder,
731 const struct drm_display_mode *adjusted_mode);
732 void (*audio_codec_disable)(struct intel_encoder *encoder);
733 void (*fdi_link_train)(struct intel_crtc *crtc,
734 const struct intel_crtc_state *crtc_state);
735 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
736 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
737 /* clock updates for mode set */
738 /* cursor updates */
739 /* render clock increase/decrease */
740 /* display clock increase/decrease */
741 /* pll clock increase/decrease */
742
743 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
744 void (*load_luts)(struct drm_crtc_state *crtc_state);
745 };
746
747 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
748 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
749 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
750
751 struct intel_csr {
752 struct work_struct work;
753 const char *fw_path;
754 uint32_t *dmc_payload;
755 uint32_t dmc_fw_size;
756 uint32_t version;
757 uint32_t mmio_count;
758 i915_reg_t mmioaddr[8];
759 uint32_t mmiodata[8];
760 uint32_t dc_state;
761 uint32_t allowed_dc_mask;
762 };
763
764 #define DEV_INFO_FOR_EACH_FLAG(func) \
765 func(is_mobile); \
766 func(is_lp); \
767 func(is_alpha_support); \
768 /* Keep has_* in alphabetical order */ \
769 func(has_64bit_reloc); \
770 func(has_aliasing_ppgtt); \
771 func(has_csr); \
772 func(has_ddi); \
773 func(has_dp_mst); \
774 func(has_reset_engine); \
775 func(has_fbc); \
776 func(has_fpga_dbg); \
777 func(has_full_ppgtt); \
778 func(has_full_48bit_ppgtt); \
779 func(has_gmch_display); \
780 func(has_guc); \
781 func(has_guc_ct); \
782 func(has_hotplug); \
783 func(has_l3_dpf); \
784 func(has_llc); \
785 func(has_logical_ring_contexts); \
786 func(has_logical_ring_preemption); \
787 func(has_overlay); \
788 func(has_pooled_eu); \
789 func(has_psr); \
790 func(has_rc6); \
791 func(has_rc6p); \
792 func(has_resource_streamer); \
793 func(has_runtime_pm); \
794 func(has_snoop); \
795 func(unfenced_needs_alignment); \
796 func(cursor_needs_physical); \
797 func(hws_needs_physical); \
798 func(overlay_needs_physical); \
799 func(supports_tv); \
800 func(has_ipc);
801
802 struct sseu_dev_info {
803 u8 slice_mask;
804 u8 subslice_mask;
805 u8 eu_total;
806 u8 eu_per_subslice;
807 u8 min_eu_in_pool;
808 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
809 u8 subslice_7eu[3];
810 u8 has_slice_pg:1;
811 u8 has_subslice_pg:1;
812 u8 has_eu_pg:1;
813 };
814
815 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
816 {
817 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
818 }
819
820 /* Keep in gen based order, and chronological order within a gen */
821 enum intel_platform {
822 INTEL_PLATFORM_UNINITIALIZED = 0,
823 INTEL_I830,
824 INTEL_I845G,
825 INTEL_I85X,
826 INTEL_I865G,
827 INTEL_I915G,
828 INTEL_I915GM,
829 INTEL_I945G,
830 INTEL_I945GM,
831 INTEL_G33,
832 INTEL_PINEVIEW,
833 INTEL_I965G,
834 INTEL_I965GM,
835 INTEL_G45,
836 INTEL_GM45,
837 INTEL_IRONLAKE,
838 INTEL_SANDYBRIDGE,
839 INTEL_IVYBRIDGE,
840 INTEL_VALLEYVIEW,
841 INTEL_HASWELL,
842 INTEL_BROADWELL,
843 INTEL_CHERRYVIEW,
844 INTEL_SKYLAKE,
845 INTEL_BROXTON,
846 INTEL_KABYLAKE,
847 INTEL_GEMINILAKE,
848 INTEL_COFFEELAKE,
849 INTEL_CANNONLAKE,
850 INTEL_MAX_PLATFORMS
851 };
852
853 struct intel_device_info {
854 u16 device_id;
855 u16 gen_mask;
856
857 u8 gen;
858 u8 gt; /* GT number, 0 if undefined */
859 u8 num_rings;
860 u8 ring_mask; /* Rings supported by the HW */
861
862 enum intel_platform platform;
863 u32 platform_mask;
864
865 u32 display_mmio_offset;
866
867 u8 num_pipes;
868 u8 num_sprites[I915_MAX_PIPES];
869 u8 num_scalers[I915_MAX_PIPES];
870
871 unsigned int page_sizes; /* page sizes supported by the HW */
872
873 #define DEFINE_FLAG(name) u8 name:1
874 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
875 #undef DEFINE_FLAG
876 u16 ddb_size; /* in blocks */
877
878 /* Register offsets for the various display pipes and transcoders */
879 int pipe_offsets[I915_MAX_TRANSCODERS];
880 int trans_offsets[I915_MAX_TRANSCODERS];
881 int palette_offsets[I915_MAX_PIPES];
882 int cursor_offsets[I915_MAX_PIPES];
883
884 /* Slice/subslice/EU info */
885 struct sseu_dev_info sseu;
886
887 struct color_luts {
888 u16 degamma_lut_size;
889 u16 gamma_lut_size;
890 } color;
891 };
892
893 struct intel_display_error_state;
894
895 struct i915_gpu_state {
896 struct kref ref;
897 struct timeval time;
898 struct timeval boottime;
899 struct timeval uptime;
900
901 struct drm_i915_private *i915;
902
903 char error_msg[128];
904 bool simulated;
905 bool awake;
906 bool wakelock;
907 bool suspended;
908 int iommu;
909 u32 reset_count;
910 u32 suspend_count;
911 struct intel_device_info device_info;
912 struct i915_params params;
913
914 /* Generic register state */
915 u32 eir;
916 u32 pgtbl_er;
917 u32 ier;
918 u32 gtier[4], ngtier;
919 u32 ccid;
920 u32 derrmr;
921 u32 forcewake;
922 u32 error; /* gen6+ */
923 u32 err_int; /* gen7 */
924 u32 fault_data0; /* gen8, gen9 */
925 u32 fault_data1; /* gen8, gen9 */
926 u32 done_reg;
927 u32 gac_eco;
928 u32 gam_ecochk;
929 u32 gab_ctl;
930 u32 gfx_mode;
931
932 u32 nfence;
933 u64 fence[I915_MAX_NUM_FENCES];
934 struct intel_overlay_error_state *overlay;
935 struct intel_display_error_state *display;
936 struct drm_i915_error_object *semaphore;
937 struct drm_i915_error_object *guc_log;
938
939 struct drm_i915_error_engine {
940 int engine_id;
941 /* Software tracked state */
942 bool waiting;
943 int num_waiters;
944 unsigned long hangcheck_timestamp;
945 bool hangcheck_stalled;
946 enum intel_engine_hangcheck_action hangcheck_action;
947 struct i915_address_space *vm;
948 int num_requests;
949 u32 reset_count;
950
951 /* position of active request inside the ring */
952 u32 rq_head, rq_post, rq_tail;
953
954 /* our own tracking of ring head and tail */
955 u32 cpu_ring_head;
956 u32 cpu_ring_tail;
957
958 u32 last_seqno;
959
960 /* Register state */
961 u32 start;
962 u32 tail;
963 u32 head;
964 u32 ctl;
965 u32 mode;
966 u32 hws;
967 u32 ipeir;
968 u32 ipehr;
969 u32 bbstate;
970 u32 instpm;
971 u32 instps;
972 u32 seqno;
973 u64 bbaddr;
974 u64 acthd;
975 u32 fault_reg;
976 u64 faddr;
977 u32 rc_psmi; /* sleep state */
978 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
979 struct intel_instdone instdone;
980
981 struct drm_i915_error_context {
982 char comm[TASK_COMM_LEN];
983 pid_t pid;
984 u32 handle;
985 u32 hw_id;
986 int priority;
987 int ban_score;
988 int active;
989 int guilty;
990 } context;
991
992 struct drm_i915_error_object {
993 u64 gtt_offset;
994 u64 gtt_size;
995 int page_count;
996 int unused;
997 u32 *pages[0];
998 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
999
1000 struct drm_i915_error_object **user_bo;
1001 long user_bo_count;
1002
1003 struct drm_i915_error_object *wa_ctx;
1004
1005 struct drm_i915_error_request {
1006 long jiffies;
1007 pid_t pid;
1008 u32 context;
1009 int priority;
1010 int ban_score;
1011 u32 seqno;
1012 u32 head;
1013 u32 tail;
1014 } *requests, execlist[EXECLIST_MAX_PORTS];
1015 unsigned int num_ports;
1016
1017 struct drm_i915_error_waiter {
1018 char comm[TASK_COMM_LEN];
1019 pid_t pid;
1020 u32 seqno;
1021 } *waiters;
1022
1023 struct {
1024 u32 gfx_mode;
1025 union {
1026 u64 pdp[4];
1027 u32 pp_dir_base;
1028 };
1029 } vm_info;
1030 } engine[I915_NUM_ENGINES];
1031
1032 struct drm_i915_error_buffer {
1033 u32 size;
1034 u32 name;
1035 u32 rseqno[I915_NUM_ENGINES], wseqno;
1036 u64 gtt_offset;
1037 u32 read_domains;
1038 u32 write_domain;
1039 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1040 u32 tiling:2;
1041 u32 dirty:1;
1042 u32 purgeable:1;
1043 u32 userptr:1;
1044 s32 engine:4;
1045 u32 cache_level:3;
1046 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1047 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1048 struct i915_address_space *active_vm[I915_NUM_ENGINES];
1049 };
1050
1051 enum i915_cache_level {
1052 I915_CACHE_NONE = 0,
1053 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1054 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1055 caches, eg sampler/render caches, and the
1056 large Last-Level-Cache. LLC is coherent with
1057 the CPU, but L3 is only visible to the GPU. */
1058 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1059 };
1060
1061 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1062
1063 enum fb_op_origin {
1064 ORIGIN_GTT,
1065 ORIGIN_CPU,
1066 ORIGIN_CS,
1067 ORIGIN_FLIP,
1068 ORIGIN_DIRTYFB,
1069 };
1070
1071 struct intel_fbc {
1072 /* This is always the inner lock when overlapping with struct_mutex and
1073 * it's the outer lock when overlapping with stolen_lock. */
1074 struct mutex lock;
1075 unsigned threshold;
1076 unsigned int possible_framebuffer_bits;
1077 unsigned int busy_bits;
1078 unsigned int visible_pipes_mask;
1079 struct intel_crtc *crtc;
1080
1081 struct drm_mm_node compressed_fb;
1082 struct drm_mm_node *compressed_llb;
1083
1084 bool false_color;
1085
1086 bool enabled;
1087 bool active;
1088
1089 bool underrun_detected;
1090 struct work_struct underrun_work;
1091
1092 /*
1093 * Due to the atomic rules we can't access some structures without the
1094 * appropriate locking, so we cache information here in order to avoid
1095 * these problems.
1096 */
1097 struct intel_fbc_state_cache {
1098 struct i915_vma *vma;
1099
1100 struct {
1101 unsigned int mode_flags;
1102 uint32_t hsw_bdw_pixel_rate;
1103 } crtc;
1104
1105 struct {
1106 unsigned int rotation;
1107 int src_w;
1108 int src_h;
1109 bool visible;
1110 /*
1111 * Display surface base address adjustement for
1112 * pageflips. Note that on gen4+ this only adjusts up
1113 * to a tile, offsets within a tile are handled in
1114 * the hw itself (with the TILEOFF register).
1115 */
1116 int adjusted_x;
1117 int adjusted_y;
1118
1119 int y;
1120 } plane;
1121
1122 struct {
1123 const struct drm_format_info *format;
1124 unsigned int stride;
1125 } fb;
1126 } state_cache;
1127
1128 /*
1129 * This structure contains everything that's relevant to program the
1130 * hardware registers. When we want to figure out if we need to disable
1131 * and re-enable FBC for a new configuration we just check if there's
1132 * something different in the struct. The genx_fbc_activate functions
1133 * are supposed to read from it in order to program the registers.
1134 */
1135 struct intel_fbc_reg_params {
1136 struct i915_vma *vma;
1137
1138 struct {
1139 enum pipe pipe;
1140 enum plane plane;
1141 unsigned int fence_y_offset;
1142 } crtc;
1143
1144 struct {
1145 const struct drm_format_info *format;
1146 unsigned int stride;
1147 } fb;
1148
1149 int cfb_size;
1150 unsigned int gen9_wa_cfb_stride;
1151 } params;
1152
1153 struct intel_fbc_work {
1154 bool scheduled;
1155 u32 scheduled_vblank;
1156 struct work_struct work;
1157 } work;
1158
1159 const char *no_fbc_reason;
1160 };
1161
1162 /*
1163 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1164 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1165 * parsing for same resolution.
1166 */
1167 enum drrs_refresh_rate_type {
1168 DRRS_HIGH_RR,
1169 DRRS_LOW_RR,
1170 DRRS_MAX_RR, /* RR count */
1171 };
1172
1173 enum drrs_support_type {
1174 DRRS_NOT_SUPPORTED = 0,
1175 STATIC_DRRS_SUPPORT = 1,
1176 SEAMLESS_DRRS_SUPPORT = 2
1177 };
1178
1179 struct intel_dp;
1180 struct i915_drrs {
1181 struct mutex mutex;
1182 struct delayed_work work;
1183 struct intel_dp *dp;
1184 unsigned busy_frontbuffer_bits;
1185 enum drrs_refresh_rate_type refresh_rate_type;
1186 enum drrs_support_type type;
1187 };
1188
1189 struct i915_psr {
1190 struct mutex lock;
1191 bool sink_support;
1192 bool source_ok;
1193 struct intel_dp *enabled;
1194 bool active;
1195 struct delayed_work work;
1196 unsigned busy_frontbuffer_bits;
1197 bool psr2_support;
1198 bool aux_frame_sync;
1199 bool link_standby;
1200 bool y_cord_support;
1201 bool colorimetry_support;
1202 bool alpm;
1203
1204 void (*enable_source)(struct intel_dp *,
1205 const struct intel_crtc_state *);
1206 void (*disable_source)(struct intel_dp *,
1207 const struct intel_crtc_state *);
1208 void (*enable_sink)(struct intel_dp *);
1209 void (*activate)(struct intel_dp *);
1210 void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *);
1211 };
1212
1213 enum intel_pch {
1214 PCH_NONE = 0, /* No PCH present */
1215 PCH_IBX, /* Ibexpeak PCH */
1216 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */
1217 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */
1218 PCH_SPT, /* Sunrisepoint PCH */
1219 PCH_KBP, /* Kaby Lake PCH */
1220 PCH_CNP, /* Cannon Lake PCH */
1221 PCH_NOP,
1222 };
1223
1224 enum intel_sbi_destination {
1225 SBI_ICLK,
1226 SBI_MPHY,
1227 };
1228
1229 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1230 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1231 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1232 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1233 #define QUIRK_INCREASE_T12_DELAY (1<<6)
1234
1235 struct intel_fbdev;
1236 struct intel_fbc_work;
1237
1238 struct intel_gmbus {
1239 struct i2c_adapter adapter;
1240 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1241 u32 force_bit;
1242 u32 reg0;
1243 i915_reg_t gpio_reg;
1244 struct i2c_algo_bit_data bit_algo;
1245 struct drm_i915_private *dev_priv;
1246 };
1247
1248 struct i915_suspend_saved_registers {
1249 u32 saveDSPARB;
1250 u32 saveFBC_CONTROL;
1251 u32 saveCACHE_MODE_0;
1252 u32 saveMI_ARB_STATE;
1253 u32 saveSWF0[16];
1254 u32 saveSWF1[16];
1255 u32 saveSWF3[3];
1256 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1257 u32 savePCH_PORT_HOTPLUG;
1258 u16 saveGCDGMBUS;
1259 };
1260
1261 struct vlv_s0ix_state {
1262 /* GAM */
1263 u32 wr_watermark;
1264 u32 gfx_prio_ctrl;
1265 u32 arb_mode;
1266 u32 gfx_pend_tlb0;
1267 u32 gfx_pend_tlb1;
1268 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1269 u32 media_max_req_count;
1270 u32 gfx_max_req_count;
1271 u32 render_hwsp;
1272 u32 ecochk;
1273 u32 bsd_hwsp;
1274 u32 blt_hwsp;
1275 u32 tlb_rd_addr;
1276
1277 /* MBC */
1278 u32 g3dctl;
1279 u32 gsckgctl;
1280 u32 mbctl;
1281
1282 /* GCP */
1283 u32 ucgctl1;
1284 u32 ucgctl3;
1285 u32 rcgctl1;
1286 u32 rcgctl2;
1287 u32 rstctl;
1288 u32 misccpctl;
1289
1290 /* GPM */
1291 u32 gfxpause;
1292 u32 rpdeuhwtc;
1293 u32 rpdeuc;
1294 u32 ecobus;
1295 u32 pwrdwnupctl;
1296 u32 rp_down_timeout;
1297 u32 rp_deucsw;
1298 u32 rcubmabdtmr;
1299 u32 rcedata;
1300 u32 spare2gh;
1301
1302 /* Display 1 CZ domain */
1303 u32 gt_imr;
1304 u32 gt_ier;
1305 u32 pm_imr;
1306 u32 pm_ier;
1307 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1308
1309 /* GT SA CZ domain */
1310 u32 tilectl;
1311 u32 gt_fifoctl;
1312 u32 gtlc_wake_ctrl;
1313 u32 gtlc_survive;
1314 u32 pmwgicz;
1315
1316 /* Display 2 CZ domain */
1317 u32 gu_ctl0;
1318 u32 gu_ctl1;
1319 u32 pcbr;
1320 u32 clock_gate_dis2;
1321 };
1322
1323 struct intel_rps_ei {
1324 ktime_t ktime;
1325 u32 render_c0;
1326 u32 media_c0;
1327 };
1328
1329 struct intel_rps {
1330 /*
1331 * work, interrupts_enabled and pm_iir are protected by
1332 * dev_priv->irq_lock
1333 */
1334 struct work_struct work;
1335 bool interrupts_enabled;
1336 u32 pm_iir;
1337
1338 /* PM interrupt bits that should never be masked */
1339 u32 pm_intrmsk_mbz;
1340
1341 /* Frequencies are stored in potentially platform dependent multiples.
1342 * In other words, *_freq needs to be multiplied by X to be interesting.
1343 * Soft limits are those which are used for the dynamic reclocking done
1344 * by the driver (raise frequencies under heavy loads, and lower for
1345 * lighter loads). Hard limits are those imposed by the hardware.
1346 *
1347 * A distinction is made for overclocking, which is never enabled by
1348 * default, and is considered to be above the hard limit if it's
1349 * possible at all.
1350 */
1351 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1352 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1353 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1354 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1355 u8 min_freq; /* AKA RPn. Minimum frequency */
1356 u8 boost_freq; /* Frequency to request when wait boosting */
1357 u8 idle_freq; /* Frequency to request when we are idle */
1358 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1359 u8 rp1_freq; /* "less than" RP0 power/freqency */
1360 u8 rp0_freq; /* Non-overclocked max frequency. */
1361 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1362
1363 u8 up_threshold; /* Current %busy required to uplock */
1364 u8 down_threshold; /* Current %busy required to downclock */
1365
1366 int last_adj;
1367 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1368
1369 bool enabled;
1370 atomic_t num_waiters;
1371 atomic_t boosts;
1372
1373 /* manual wa residency calculations */
1374 struct intel_rps_ei ei;
1375 };
1376
1377 struct intel_rc6 {
1378 bool enabled;
1379 };
1380
1381 struct intel_llc_pstate {
1382 bool enabled;
1383 };
1384
1385 struct intel_gen6_power_mgmt {
1386 struct intel_rps rps;
1387 struct intel_rc6 rc6;
1388 struct intel_llc_pstate llc_pstate;
1389 struct delayed_work autoenable_work;
1390 };
1391
1392 /* defined intel_pm.c */
1393 extern spinlock_t mchdev_lock;
1394
1395 struct intel_ilk_power_mgmt {
1396 u8 cur_delay;
1397 u8 min_delay;
1398 u8 max_delay;
1399 u8 fmax;
1400 u8 fstart;
1401
1402 u64 last_count1;
1403 unsigned long last_time1;
1404 unsigned long chipset_power;
1405 u64 last_count2;
1406 u64 last_time2;
1407 unsigned long gfx_power;
1408 u8 corr;
1409
1410 int c_m;
1411 int r_t;
1412 };
1413
1414 struct drm_i915_private;
1415 struct i915_power_well;
1416
1417 struct i915_power_well_ops {
1418 /*
1419 * Synchronize the well's hw state to match the current sw state, for
1420 * example enable/disable it based on the current refcount. Called
1421 * during driver init and resume time, possibly after first calling
1422 * the enable/disable handlers.
1423 */
1424 void (*sync_hw)(struct drm_i915_private *dev_priv,
1425 struct i915_power_well *power_well);
1426 /*
1427 * Enable the well and resources that depend on it (for example
1428 * interrupts located on the well). Called after the 0->1 refcount
1429 * transition.
1430 */
1431 void (*enable)(struct drm_i915_private *dev_priv,
1432 struct i915_power_well *power_well);
1433 /*
1434 * Disable the well and resources that depend on it. Called after
1435 * the 1->0 refcount transition.
1436 */
1437 void (*disable)(struct drm_i915_private *dev_priv,
1438 struct i915_power_well *power_well);
1439 /* Returns the hw enabled state. */
1440 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1441 struct i915_power_well *power_well);
1442 };
1443
1444 /* Power well structure for haswell */
1445 struct i915_power_well {
1446 const char *name;
1447 bool always_on;
1448 /* power well enable/disable usage count */
1449 int count;
1450 /* cached hw enabled state */
1451 bool hw_enabled;
1452 u64 domains;
1453 /* unique identifier for this power well */
1454 enum i915_power_well_id id;
1455 /*
1456 * Arbitraty data associated with this power well. Platform and power
1457 * well specific.
1458 */
1459 union {
1460 struct {
1461 enum dpio_phy phy;
1462 } bxt;
1463 struct {
1464 /* Mask of pipes whose IRQ logic is backed by the pw */
1465 u8 irq_pipe_mask;
1466 /* The pw is backing the VGA functionality */
1467 bool has_vga:1;
1468 bool has_fuses:1;
1469 } hsw;
1470 };
1471 const struct i915_power_well_ops *ops;
1472 };
1473
1474 struct i915_power_domains {
1475 /*
1476 * Power wells needed for initialization at driver init and suspend
1477 * time are on. They are kept on until after the first modeset.
1478 */
1479 bool init_power_on;
1480 bool initializing;
1481 int power_well_count;
1482
1483 struct mutex lock;
1484 int domain_use_count[POWER_DOMAIN_NUM];
1485 struct i915_power_well *power_wells;
1486 };
1487
1488 #define MAX_L3_SLICES 2
1489 struct intel_l3_parity {
1490 u32 *remap_info[MAX_L3_SLICES];
1491 struct work_struct error_work;
1492 int which_slice;
1493 };
1494
1495 struct i915_gem_mm {
1496 /** Memory allocator for GTT stolen memory */
1497 struct drm_mm stolen;
1498 /** Protects the usage of the GTT stolen memory allocator. This is
1499 * always the inner lock when overlapping with struct_mutex. */
1500 struct mutex stolen_lock;
1501
1502 /* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
1503 spinlock_t obj_lock;
1504
1505 /** List of all objects in gtt_space. Used to restore gtt
1506 * mappings on resume */
1507 struct list_head bound_list;
1508 /**
1509 * List of objects which are not bound to the GTT (thus
1510 * are idle and not used by the GPU). These objects may or may
1511 * not actually have any pages attached.
1512 */
1513 struct list_head unbound_list;
1514
1515 /** List of all objects in gtt_space, currently mmaped by userspace.
1516 * All objects within this list must also be on bound_list.
1517 */
1518 struct list_head userfault_list;
1519
1520 /**
1521 * List of objects which are pending destruction.
1522 */
1523 struct llist_head free_list;
1524 struct work_struct free_work;
1525 spinlock_t free_lock;
1526
1527 /**
1528 * Small stash of WC pages
1529 */
1530 struct pagevec wc_stash;
1531
1532 /** Usable portion of the GTT for GEM */
1533 dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1534
1535 /**
1536 * tmpfs instance used for shmem backed objects
1537 */
1538 struct vfsmount *gemfs;
1539
1540 /** PPGTT used for aliasing the PPGTT with the GTT */
1541 struct i915_hw_ppgtt *aliasing_ppgtt;
1542
1543 struct notifier_block oom_notifier;
1544 struct notifier_block vmap_notifier;
1545 struct shrinker shrinker;
1546
1547 /** LRU list of objects with fence regs on them. */
1548 struct list_head fence_list;
1549
1550 /**
1551 * Workqueue to fault in userptr pages, flushed by the execbuf
1552 * when required but otherwise left to userspace to try again
1553 * on EAGAIN.
1554 */
1555 struct workqueue_struct *userptr_wq;
1556
1557 u64 unordered_timeline;
1558
1559 /* the indicator for dispatch video commands on two BSD rings */
1560 atomic_t bsd_engine_dispatch_index;
1561
1562 /** Bit 6 swizzling required for X tiling */
1563 uint32_t bit_6_swizzle_x;
1564 /** Bit 6 swizzling required for Y tiling */
1565 uint32_t bit_6_swizzle_y;
1566
1567 /* accounting, useful for userland debugging */
1568 spinlock_t object_stat_lock;
1569 u64 object_memory;
1570 u32 object_count;
1571 };
1572
1573 struct drm_i915_error_state_buf {
1574 struct drm_i915_private *i915;
1575 unsigned bytes;
1576 unsigned size;
1577 int err;
1578 u8 *buf;
1579 loff_t start;
1580 loff_t pos;
1581 };
1582
1583 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1584 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1585
1586 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1587 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1588
1589 struct i915_gpu_error {
1590 /* For hangcheck timer */
1591 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1592 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1593
1594 struct delayed_work hangcheck_work;
1595
1596 /* For reset and error_state handling. */
1597 spinlock_t lock;
1598 /* Protected by the above dev->gpu_error.lock. */
1599 struct i915_gpu_state *first_error;
1600
1601 atomic_t pending_fb_pin;
1602
1603 unsigned long missed_irq_rings;
1604
1605 /**
1606 * State variable controlling the reset flow and count
1607 *
1608 * This is a counter which gets incremented when reset is triggered,
1609 *
1610 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1611 * meaning that any waiters holding onto the struct_mutex should
1612 * relinquish the lock immediately in order for the reset to start.
1613 *
1614 * If reset is not completed succesfully, the I915_WEDGE bit is
1615 * set meaning that hardware is terminally sour and there is no
1616 * recovery. All waiters on the reset_queue will be woken when
1617 * that happens.
1618 *
1619 * This counter is used by the wait_seqno code to notice that reset
1620 * event happened and it needs to restart the entire ioctl (since most
1621 * likely the seqno it waited for won't ever signal anytime soon).
1622 *
1623 * This is important for lock-free wait paths, where no contended lock
1624 * naturally enforces the correct ordering between the bail-out of the
1625 * waiter and the gpu reset work code.
1626 */
1627 unsigned long reset_count;
1628
1629 /**
1630 * flags: Control various stages of the GPU reset
1631 *
1632 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1633 * other users acquiring the struct_mutex. To do this we set the
1634 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1635 * and then check for that bit before acquiring the struct_mutex (in
1636 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1637 * secondary role in preventing two concurrent global reset attempts.
1638 *
1639 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1640 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1641 * but it may be held by some long running waiter (that we cannot
1642 * interrupt without causing trouble). Once we are ready to do the GPU
1643 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1644 * they already hold the struct_mutex and want to participate they can
1645 * inspect the bit and do the reset directly, otherwise the worker
1646 * waits for the struct_mutex.
1647 *
1648 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1649 * acquire the struct_mutex to reset an engine, we need an explicit
1650 * flag to prevent two concurrent reset attempts in the same engine.
1651 * As the number of engines continues to grow, allocate the flags from
1652 * the most significant bits.
1653 *
1654 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1655 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1656 * i915_gem_request_alloc(), this bit is checked and the sequence
1657 * aborted (with -EIO reported to userspace) if set.
1658 */
1659 unsigned long flags;
1660 #define I915_RESET_BACKOFF 0
1661 #define I915_RESET_HANDOFF 1
1662 #define I915_RESET_MODESET 2
1663 #define I915_WEDGED (BITS_PER_LONG - 1)
1664 #define I915_RESET_ENGINE (I915_WEDGED - I915_NUM_ENGINES)
1665
1666 /** Number of times an engine has been reset */
1667 u32 reset_engine_count[I915_NUM_ENGINES];
1668
1669 /**
1670 * Waitqueue to signal when a hang is detected. Used to for waiters
1671 * to release the struct_mutex for the reset to procede.
1672 */
1673 wait_queue_head_t wait_queue;
1674
1675 /**
1676 * Waitqueue to signal when the reset has completed. Used by clients
1677 * that wait for dev_priv->mm.wedged to settle.
1678 */
1679 wait_queue_head_t reset_queue;
1680
1681 /* For missed irq/seqno simulation. */
1682 unsigned long test_irq_rings;
1683 };
1684
1685 enum modeset_restore {
1686 MODESET_ON_LID_OPEN,
1687 MODESET_DONE,
1688 MODESET_SUSPENDED,
1689 };
1690
1691 #define DP_AUX_A 0x40
1692 #define DP_AUX_B 0x10
1693 #define DP_AUX_C 0x20
1694 #define DP_AUX_D 0x30
1695
1696 #define DDC_PIN_B 0x05
1697 #define DDC_PIN_C 0x04
1698 #define DDC_PIN_D 0x06
1699
1700 struct ddi_vbt_port_info {
1701 /*
1702 * This is an index in the HDMI/DVI DDI buffer translation table.
1703 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1704 * populate this field.
1705 */
1706 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1707 uint8_t hdmi_level_shift;
1708
1709 uint8_t supports_dvi:1;
1710 uint8_t supports_hdmi:1;
1711 uint8_t supports_dp:1;
1712 uint8_t supports_edp:1;
1713
1714 uint8_t alternate_aux_channel;
1715 uint8_t alternate_ddc_pin;
1716
1717 uint8_t dp_boost_level;
1718 uint8_t hdmi_boost_level;
1719 };
1720
1721 enum psr_lines_to_wait {
1722 PSR_0_LINES_TO_WAIT = 0,
1723 PSR_1_LINE_TO_WAIT,
1724 PSR_4_LINES_TO_WAIT,
1725 PSR_8_LINES_TO_WAIT
1726 };
1727
1728 struct intel_vbt_data {
1729 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1730 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1731
1732 /* Feature bits */
1733 unsigned int int_tv_support:1;
1734 unsigned int lvds_dither:1;
1735 unsigned int lvds_vbt:1;
1736 unsigned int int_crt_support:1;
1737 unsigned int lvds_use_ssc:1;
1738 unsigned int display_clock_mode:1;
1739 unsigned int fdi_rx_polarity_inverted:1;
1740 unsigned int panel_type:4;
1741 int lvds_ssc_freq;
1742 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1743
1744 enum drrs_support_type drrs_type;
1745
1746 struct {
1747 int rate;
1748 int lanes;
1749 int preemphasis;
1750 int vswing;
1751 bool low_vswing;
1752 bool initialized;
1753 bool support;
1754 int bpp;
1755 struct edp_power_seq pps;
1756 } edp;
1757
1758 struct {
1759 bool full_link;
1760 bool require_aux_wakeup;
1761 int idle_frames;
1762 enum psr_lines_to_wait lines_to_wait;
1763 int tp1_wakeup_time;
1764 int tp2_tp3_wakeup_time;
1765 } psr;
1766
1767 struct {
1768 u16 pwm_freq_hz;
1769 bool present;
1770 bool active_low_pwm;
1771 u8 min_brightness; /* min_brightness/255 of max */
1772 u8 controller; /* brightness controller number */
1773 enum intel_backlight_type type;
1774 } backlight;
1775
1776 /* MIPI DSI */
1777 struct {
1778 u16 panel_id;
1779 struct mipi_config *config;
1780 struct mipi_pps_data *pps;
1781 u16 bl_ports;
1782 u16 cabc_ports;
1783 u8 seq_version;
1784 u32 size;
1785 u8 *data;
1786 const u8 *sequence[MIPI_SEQ_MAX];
1787 } dsi;
1788
1789 int crt_ddc_pin;
1790
1791 int child_dev_num;
1792 struct child_device_config *child_dev;
1793
1794 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1795 struct sdvo_device_mapping sdvo_mappings[2];
1796 };
1797
1798 enum intel_ddb_partitioning {
1799 INTEL_DDB_PART_1_2,
1800 INTEL_DDB_PART_5_6, /* IVB+ */
1801 };
1802
1803 struct intel_wm_level {
1804 bool enable;
1805 uint32_t pri_val;
1806 uint32_t spr_val;
1807 uint32_t cur_val;
1808 uint32_t fbc_val;
1809 };
1810
1811 struct ilk_wm_values {
1812 uint32_t wm_pipe[3];
1813 uint32_t wm_lp[3];
1814 uint32_t wm_lp_spr[3];
1815 uint32_t wm_linetime[3];
1816 bool enable_fbc_wm;
1817 enum intel_ddb_partitioning partitioning;
1818 };
1819
1820 struct g4x_pipe_wm {
1821 uint16_t plane[I915_MAX_PLANES];
1822 uint16_t fbc;
1823 };
1824
1825 struct g4x_sr_wm {
1826 uint16_t plane;
1827 uint16_t cursor;
1828 uint16_t fbc;
1829 };
1830
1831 struct vlv_wm_ddl_values {
1832 uint8_t plane[I915_MAX_PLANES];
1833 };
1834
1835 struct vlv_wm_values {
1836 struct g4x_pipe_wm pipe[3];
1837 struct g4x_sr_wm sr;
1838 struct vlv_wm_ddl_values ddl[3];
1839 uint8_t level;
1840 bool cxsr;
1841 };
1842
1843 struct g4x_wm_values {
1844 struct g4x_pipe_wm pipe[2];
1845 struct g4x_sr_wm sr;
1846 struct g4x_sr_wm hpll;
1847 bool cxsr;
1848 bool hpll_en;
1849 bool fbc_en;
1850 };
1851
1852 struct skl_ddb_entry {
1853 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1854 };
1855
1856 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1857 {
1858 return entry->end - entry->start;
1859 }
1860
1861 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1862 const struct skl_ddb_entry *e2)
1863 {
1864 if (e1->start == e2->start && e1->end == e2->end)
1865 return true;
1866
1867 return false;
1868 }
1869
1870 struct skl_ddb_allocation {
1871 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1872 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1873 };
1874
1875 struct skl_wm_values {
1876 unsigned dirty_pipes;
1877 struct skl_ddb_allocation ddb;
1878 };
1879
1880 struct skl_wm_level {
1881 bool plane_en;
1882 uint16_t plane_res_b;
1883 uint8_t plane_res_l;
1884 };
1885
1886 /* Stores plane specific WM parameters */
1887 struct skl_wm_params {
1888 bool x_tiled, y_tiled;
1889 bool rc_surface;
1890 uint32_t width;
1891 uint8_t cpp;
1892 uint32_t plane_pixel_rate;
1893 uint32_t y_min_scanlines;
1894 uint32_t plane_bytes_per_line;
1895 uint_fixed_16_16_t plane_blocks_per_line;
1896 uint_fixed_16_16_t y_tile_minimum;
1897 uint32_t linetime_us;
1898 };
1899
1900 /*
1901 * This struct helps tracking the state needed for runtime PM, which puts the
1902 * device in PCI D3 state. Notice that when this happens, nothing on the
1903 * graphics device works, even register access, so we don't get interrupts nor
1904 * anything else.
1905 *
1906 * Every piece of our code that needs to actually touch the hardware needs to
1907 * either call intel_runtime_pm_get or call intel_display_power_get with the
1908 * appropriate power domain.
1909 *
1910 * Our driver uses the autosuspend delay feature, which means we'll only really
1911 * suspend if we stay with zero refcount for a certain amount of time. The
1912 * default value is currently very conservative (see intel_runtime_pm_enable), but
1913 * it can be changed with the standard runtime PM files from sysfs.
1914 *
1915 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1916 * goes back to false exactly before we reenable the IRQs. We use this variable
1917 * to check if someone is trying to enable/disable IRQs while they're supposed
1918 * to be disabled. This shouldn't happen and we'll print some error messages in
1919 * case it happens.
1920 *
1921 * For more, read the Documentation/power/runtime_pm.txt.
1922 */
1923 struct i915_runtime_pm {
1924 atomic_t wakeref_count;
1925 bool suspended;
1926 bool irqs_enabled;
1927 };
1928
1929 enum intel_pipe_crc_source {
1930 INTEL_PIPE_CRC_SOURCE_NONE,
1931 INTEL_PIPE_CRC_SOURCE_PLANE1,
1932 INTEL_PIPE_CRC_SOURCE_PLANE2,
1933 INTEL_PIPE_CRC_SOURCE_PF,
1934 INTEL_PIPE_CRC_SOURCE_PIPE,
1935 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1936 INTEL_PIPE_CRC_SOURCE_TV,
1937 INTEL_PIPE_CRC_SOURCE_DP_B,
1938 INTEL_PIPE_CRC_SOURCE_DP_C,
1939 INTEL_PIPE_CRC_SOURCE_DP_D,
1940 INTEL_PIPE_CRC_SOURCE_AUTO,
1941 INTEL_PIPE_CRC_SOURCE_MAX,
1942 };
1943
1944 struct intel_pipe_crc_entry {
1945 uint32_t frame;
1946 uint32_t crc[5];
1947 };
1948
1949 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1950 struct intel_pipe_crc {
1951 spinlock_t lock;
1952 bool opened; /* exclusive access to the result file */
1953 struct intel_pipe_crc_entry *entries;
1954 enum intel_pipe_crc_source source;
1955 int head, tail;
1956 wait_queue_head_t wq;
1957 int skipped;
1958 };
1959
1960 struct i915_frontbuffer_tracking {
1961 spinlock_t lock;
1962
1963 /*
1964 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1965 * scheduled flips.
1966 */
1967 unsigned busy_bits;
1968 unsigned flip_bits;
1969 };
1970
1971 struct i915_wa_reg {
1972 i915_reg_t addr;
1973 u32 value;
1974 /* bitmask representing WA bits */
1975 u32 mask;
1976 };
1977
1978 #define I915_MAX_WA_REGS 16
1979
1980 struct i915_workarounds {
1981 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1982 u32 count;
1983 u32 hw_whitelist_count[I915_NUM_ENGINES];
1984 };
1985
1986 struct i915_virtual_gpu {
1987 bool active;
1988 u32 caps;
1989 };
1990
1991 /* used in computing the new watermarks state */
1992 struct intel_wm_config {
1993 unsigned int num_pipes_active;
1994 bool sprites_enabled;
1995 bool sprites_scaled;
1996 };
1997
1998 struct i915_oa_format {
1999 u32 format;
2000 int size;
2001 };
2002
2003 struct i915_oa_reg {
2004 i915_reg_t addr;
2005 u32 value;
2006 };
2007
2008 struct i915_oa_config {
2009 char uuid[UUID_STRING_LEN + 1];
2010 int id;
2011
2012 const struct i915_oa_reg *mux_regs;
2013 u32 mux_regs_len;
2014 const struct i915_oa_reg *b_counter_regs;
2015 u32 b_counter_regs_len;
2016 const struct i915_oa_reg *flex_regs;
2017 u32 flex_regs_len;
2018
2019 struct attribute_group sysfs_metric;
2020 struct attribute *attrs[2];
2021 struct device_attribute sysfs_metric_id;
2022
2023 atomic_t ref_count;
2024 };
2025
2026 struct i915_perf_stream;
2027
2028 /**
2029 * struct i915_perf_stream_ops - the OPs to support a specific stream type
2030 */
2031 struct i915_perf_stream_ops {
2032 /**
2033 * @enable: Enables the collection of HW samples, either in response to
2034 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
2035 * without `I915_PERF_FLAG_DISABLED`.
2036 */
2037 void (*enable)(struct i915_perf_stream *stream);
2038
2039 /**
2040 * @disable: Disables the collection of HW samples, either in response
2041 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
2042 * the stream.
2043 */
2044 void (*disable)(struct i915_perf_stream *stream);
2045
2046 /**
2047 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
2048 * once there is something ready to read() for the stream
2049 */
2050 void (*poll_wait)(struct i915_perf_stream *stream,
2051 struct file *file,
2052 poll_table *wait);
2053
2054 /**
2055 * @wait_unlocked: For handling a blocking read, wait until there is
2056 * something to ready to read() for the stream. E.g. wait on the same
2057 * wait queue that would be passed to poll_wait().
2058 */
2059 int (*wait_unlocked)(struct i915_perf_stream *stream);
2060
2061 /**
2062 * @read: Copy buffered metrics as records to userspace
2063 * **buf**: the userspace, destination buffer
2064 * **count**: the number of bytes to copy, requested by userspace
2065 * **offset**: zero at the start of the read, updated as the read
2066 * proceeds, it represents how many bytes have been copied so far and
2067 * the buffer offset for copying the next record.
2068 *
2069 * Copy as many buffered i915 perf samples and records for this stream
2070 * to userspace as will fit in the given buffer.
2071 *
2072 * Only write complete records; returning -%ENOSPC if there isn't room
2073 * for a complete record.
2074 *
2075 * Return any error condition that results in a short read such as
2076 * -%ENOSPC or -%EFAULT, even though these may be squashed before
2077 * returning to userspace.
2078 */
2079 int (*read)(struct i915_perf_stream *stream,
2080 char __user *buf,
2081 size_t count,
2082 size_t *offset);
2083
2084 /**
2085 * @destroy: Cleanup any stream specific resources.
2086 *
2087 * The stream will always be disabled before this is called.
2088 */
2089 void (*destroy)(struct i915_perf_stream *stream);
2090 };
2091
2092 /**
2093 * struct i915_perf_stream - state for a single open stream FD
2094 */
2095 struct i915_perf_stream {
2096 /**
2097 * @dev_priv: i915 drm device
2098 */
2099 struct drm_i915_private *dev_priv;
2100
2101 /**
2102 * @link: Links the stream into ``&drm_i915_private->streams``
2103 */
2104 struct list_head link;
2105
2106 /**
2107 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2108 * properties given when opening a stream, representing the contents
2109 * of a single sample as read() by userspace.
2110 */
2111 u32 sample_flags;
2112
2113 /**
2114 * @sample_size: Considering the configured contents of a sample
2115 * combined with the required header size, this is the total size
2116 * of a single sample record.
2117 */
2118 int sample_size;
2119
2120 /**
2121 * @ctx: %NULL if measuring system-wide across all contexts or a
2122 * specific context that is being monitored.
2123 */
2124 struct i915_gem_context *ctx;
2125
2126 /**
2127 * @enabled: Whether the stream is currently enabled, considering
2128 * whether the stream was opened in a disabled state and based
2129 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2130 */
2131 bool enabled;
2132
2133 /**
2134 * @ops: The callbacks providing the implementation of this specific
2135 * type of configured stream.
2136 */
2137 const struct i915_perf_stream_ops *ops;
2138
2139 /**
2140 * @oa_config: The OA configuration used by the stream.
2141 */
2142 struct i915_oa_config *oa_config;
2143 };
2144
2145 /**
2146 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2147 */
2148 struct i915_oa_ops {
2149 /**
2150 * @is_valid_b_counter_reg: Validates register's address for
2151 * programming boolean counters for a particular platform.
2152 */
2153 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
2154 u32 addr);
2155
2156 /**
2157 * @is_valid_mux_reg: Validates register's address for programming mux
2158 * for a particular platform.
2159 */
2160 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
2161
2162 /**
2163 * @is_valid_flex_reg: Validates register's address for programming
2164 * flex EU filtering for a particular platform.
2165 */
2166 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
2167
2168 /**
2169 * @init_oa_buffer: Resets the head and tail pointers of the
2170 * circular buffer for periodic OA reports.
2171 *
2172 * Called when first opening a stream for OA metrics, but also may be
2173 * called in response to an OA buffer overflow or other error
2174 * condition.
2175 *
2176 * Note it may be necessary to clear the full OA buffer here as part of
2177 * maintaining the invariable that new reports must be written to
2178 * zeroed memory for us to be able to reliable detect if an expected
2179 * report has not yet landed in memory. (At least on Haswell the OA
2180 * buffer tail pointer is not synchronized with reports being visible
2181 * to the CPU)
2182 */
2183 void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2184
2185 /**
2186 * @enable_metric_set: Selects and applies any MUX configuration to set
2187 * up the Boolean and Custom (B/C) counters that are part of the
2188 * counter reports being sampled. May apply system constraints such as
2189 * disabling EU clock gating as required.
2190 */
2191 int (*enable_metric_set)(struct drm_i915_private *dev_priv,
2192 const struct i915_oa_config *oa_config);
2193
2194 /**
2195 * @disable_metric_set: Remove system constraints associated with using
2196 * the OA unit.
2197 */
2198 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2199
2200 /**
2201 * @oa_enable: Enable periodic sampling
2202 */
2203 void (*oa_enable)(struct drm_i915_private *dev_priv);
2204
2205 /**
2206 * @oa_disable: Disable periodic sampling
2207 */
2208 void (*oa_disable)(struct drm_i915_private *dev_priv);
2209
2210 /**
2211 * @read: Copy data from the circular OA buffer into a given userspace
2212 * buffer.
2213 */
2214 int (*read)(struct i915_perf_stream *stream,
2215 char __user *buf,
2216 size_t count,
2217 size_t *offset);
2218
2219 /**
2220 * @oa_hw_tail_read: read the OA tail pointer register
2221 *
2222 * In particular this enables us to share all the fiddly code for
2223 * handling the OA unit tail pointer race that affects multiple
2224 * generations.
2225 */
2226 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2227 };
2228
2229 struct intel_cdclk_state {
2230 unsigned int cdclk, vco, ref;
2231 };
2232
2233 struct drm_i915_private {
2234 struct drm_device drm;
2235
2236 struct kmem_cache *objects;
2237 struct kmem_cache *vmas;
2238 struct kmem_cache *luts;
2239 struct kmem_cache *requests;
2240 struct kmem_cache *dependencies;
2241 struct kmem_cache *priorities;
2242
2243 const struct intel_device_info info;
2244
2245 void __iomem *regs;
2246
2247 struct intel_uncore uncore;
2248
2249 struct i915_virtual_gpu vgpu;
2250
2251 struct intel_gvt *gvt;
2252
2253 struct intel_huc huc;
2254 struct intel_guc guc;
2255
2256 struct intel_csr csr;
2257
2258 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2259
2260 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2261 * controller on different i2c buses. */
2262 struct mutex gmbus_mutex;
2263
2264 /**
2265 * Base address of the gmbus and gpio block.
2266 */
2267 uint32_t gpio_mmio_base;
2268
2269 /* MMIO base address for MIPI regs */
2270 uint32_t mipi_mmio_base;
2271
2272 uint32_t psr_mmio_base;
2273
2274 uint32_t pps_mmio_base;
2275
2276 wait_queue_head_t gmbus_wait_queue;
2277
2278 struct pci_dev *bridge_dev;
2279 struct intel_engine_cs *engine[I915_NUM_ENGINES];
2280 /* Context used internally to idle the GPU and setup initial state */
2281 struct i915_gem_context *kernel_context;
2282 /* Context only to be used for injecting preemption commands */
2283 struct i915_gem_context *preempt_context;
2284 struct i915_vma *semaphore;
2285
2286 struct drm_dma_handle *status_page_dmah;
2287 struct resource mch_res;
2288
2289 /* protects the irq masks */
2290 spinlock_t irq_lock;
2291
2292 bool display_irqs_enabled;
2293
2294 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2295 struct pm_qos_request pm_qos;
2296
2297 /* Sideband mailbox protection */
2298 struct mutex sb_lock;
2299
2300 /** Cached value of IMR to avoid reads in updating the bitfield */
2301 union {
2302 u32 irq_mask;
2303 u32 de_irq_mask[I915_MAX_PIPES];
2304 };
2305 u32 gt_irq_mask;
2306 u32 pm_imr;
2307 u32 pm_ier;
2308 u32 pm_rps_events;
2309 u32 pm_guc_events;
2310 u32 pipestat_irq_mask[I915_MAX_PIPES];
2311
2312 struct i915_hotplug hotplug;
2313 struct intel_fbc fbc;
2314 struct i915_drrs drrs;
2315 struct intel_opregion opregion;
2316 struct intel_vbt_data vbt;
2317
2318 bool preserve_bios_swizzle;
2319
2320 /* overlay */
2321 struct intel_overlay *overlay;
2322
2323 /* backlight registers and fields in struct intel_panel */
2324 struct mutex backlight_lock;
2325
2326 /* LVDS info */
2327 bool no_aux_handshake;
2328
2329 /* protects panel power sequencer state */
2330 struct mutex pps_mutex;
2331
2332 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2333 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2334
2335 unsigned int fsb_freq, mem_freq, is_ddr3;
2336 unsigned int skl_preferred_vco_freq;
2337 unsigned int max_cdclk_freq;
2338
2339 unsigned int max_dotclk_freq;
2340 unsigned int rawclk_freq;
2341 unsigned int hpll_freq;
2342 unsigned int czclk_freq;
2343
2344 struct {
2345 /*
2346 * The current logical cdclk state.
2347 * See intel_atomic_state.cdclk.logical
2348 *
2349 * For reading holding any crtc lock is sufficient,
2350 * for writing must hold all of them.
2351 */
2352 struct intel_cdclk_state logical;
2353 /*
2354 * The current actual cdclk state.
2355 * See intel_atomic_state.cdclk.actual
2356 */
2357 struct intel_cdclk_state actual;
2358 /* The current hardware cdclk state */
2359 struct intel_cdclk_state hw;
2360 } cdclk;
2361
2362 /**
2363 * wq - Driver workqueue for GEM.
2364 *
2365 * NOTE: Work items scheduled here are not allowed to grab any modeset
2366 * locks, for otherwise the flushing done in the pageflip code will
2367 * result in deadlocks.
2368 */
2369 struct workqueue_struct *wq;
2370
2371 /* ordered wq for modesets */
2372 struct workqueue_struct *modeset_wq;
2373
2374 /* Display functions */
2375 struct drm_i915_display_funcs display;
2376
2377 /* PCH chipset type */
2378 enum intel_pch pch_type;
2379 unsigned short pch_id;
2380
2381 unsigned long quirks;
2382
2383 enum modeset_restore modeset_restore;
2384 struct mutex modeset_restore_lock;
2385 struct drm_atomic_state *modeset_restore_state;
2386 struct drm_modeset_acquire_ctx reset_ctx;
2387
2388 struct list_head vm_list; /* Global list of all address spaces */
2389 struct i915_ggtt ggtt; /* VM representing the global address space */
2390
2391 struct i915_gem_mm mm;
2392 DECLARE_HASHTABLE(mm_structs, 7);
2393 struct mutex mm_lock;
2394
2395 struct intel_ppat ppat;
2396
2397 /* Kernel Modesetting */
2398
2399 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2400 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2401
2402 #ifdef CONFIG_DEBUG_FS
2403 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2404 #endif
2405
2406 /* dpll and cdclk state is protected by connection_mutex */
2407 int num_shared_dpll;
2408 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2409 const struct intel_dpll_mgr *dpll_mgr;
2410
2411 /*
2412 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2413 * Must be global rather than per dpll, because on some platforms
2414 * plls share registers.
2415 */
2416 struct mutex dpll_lock;
2417
2418 unsigned int active_crtcs;
2419 /* minimum acceptable cdclk for each pipe */
2420 int min_cdclk[I915_MAX_PIPES];
2421
2422 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2423
2424 struct i915_workarounds workarounds;
2425
2426 struct i915_frontbuffer_tracking fb_tracking;
2427
2428 struct intel_atomic_helper {
2429 struct llist_head free_list;
2430 struct work_struct free_work;
2431 } atomic_helper;
2432
2433 u16 orig_clock;
2434
2435 bool mchbar_need_disable;
2436
2437 struct intel_l3_parity l3_parity;
2438
2439 /* Cannot be determined by PCIID. You must always read a register. */
2440 u32 edram_cap;
2441
2442 /*
2443 * Protects RPS/RC6 register access and PCU communication.
2444 * Must be taken after struct_mutex if nested. Note that
2445 * this lock may be held for long periods of time when
2446 * talking to hw - so only take it when talking to hw!
2447 */
2448 struct mutex pcu_lock;
2449
2450 /* gen6+ GT PM state */
2451 struct intel_gen6_power_mgmt gt_pm;
2452
2453 /* ilk-only ips/rps state. Everything in here is protected by the global
2454 * mchdev_lock in intel_pm.c */
2455 struct intel_ilk_power_mgmt ips;
2456
2457 struct i915_power_domains power_domains;
2458
2459 struct i915_psr psr;
2460
2461 struct i915_gpu_error gpu_error;
2462
2463 struct drm_i915_gem_object *vlv_pctx;
2464
2465 /* list of fbdev register on this device */
2466 struct intel_fbdev *fbdev;
2467 struct work_struct fbdev_suspend_work;
2468
2469 struct drm_property *broadcast_rgb_property;
2470 struct drm_property *force_audio_property;
2471
2472 /* hda/i915 audio component */
2473 struct i915_audio_component *audio_component;
2474 bool audio_component_registered;
2475 /**
2476 * av_mutex - mutex for audio/video sync
2477 *
2478 */
2479 struct mutex av_mutex;
2480
2481 struct {
2482 struct list_head list;
2483 struct llist_head free_list;
2484 struct work_struct free_work;
2485
2486 /* The hw wants to have a stable context identifier for the
2487 * lifetime of the context (for OA, PASID, faults, etc).
2488 * This is limited in execlists to 21 bits.
2489 */
2490 struct ida hw_ida;
2491 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2492 } contexts;
2493
2494 u32 fdi_rx_config;
2495
2496 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2497 u32 chv_phy_control;
2498 /*
2499 * Shadows for CHV DPLL_MD regs to keep the state
2500 * checker somewhat working in the presence hardware
2501 * crappiness (can't read out DPLL_MD for pipes B & C).
2502 */
2503 u32 chv_dpll_md[I915_MAX_PIPES];
2504 u32 bxt_phy_grc;
2505
2506 u32 suspend_count;
2507 bool power_domains_suspended;
2508 struct i915_suspend_saved_registers regfile;
2509 struct vlv_s0ix_state vlv_s0ix_state;
2510
2511 enum {
2512 I915_SAGV_UNKNOWN = 0,
2513 I915_SAGV_DISABLED,
2514 I915_SAGV_ENABLED,
2515 I915_SAGV_NOT_CONTROLLED
2516 } sagv_status;
2517
2518 struct {
2519 /*
2520 * Raw watermark latency values:
2521 * in 0.1us units for WM0,
2522 * in 0.5us units for WM1+.
2523 */
2524 /* primary */
2525 uint16_t pri_latency[5];
2526 /* sprite */
2527 uint16_t spr_latency[5];
2528 /* cursor */
2529 uint16_t cur_latency[5];
2530 /*
2531 * Raw watermark memory latency values
2532 * for SKL for all 8 levels
2533 * in 1us units.
2534 */
2535 uint16_t skl_latency[8];
2536
2537 /* current hardware state */
2538 union {
2539 struct ilk_wm_values hw;
2540 struct skl_wm_values skl_hw;
2541 struct vlv_wm_values vlv;
2542 struct g4x_wm_values g4x;
2543 };
2544
2545 uint8_t max_level;
2546
2547 /*
2548 * Should be held around atomic WM register writing; also
2549 * protects * intel_crtc->wm.active and
2550 * cstate->wm.need_postvbl_update.
2551 */
2552 struct mutex wm_mutex;
2553
2554 /*
2555 * Set during HW readout of watermarks/DDB. Some platforms
2556 * need to know when we're still using BIOS-provided values
2557 * (which we don't fully trust).
2558 */
2559 bool distrust_bios_wm;
2560 } wm;
2561
2562 struct i915_runtime_pm runtime_pm;
2563
2564 struct {
2565 bool initialized;
2566
2567 struct kobject *metrics_kobj;
2568 struct ctl_table_header *sysctl_header;
2569
2570 /*
2571 * Lock associated with adding/modifying/removing OA configs
2572 * in dev_priv->perf.metrics_idr.
2573 */
2574 struct mutex metrics_lock;
2575
2576 /*
2577 * List of dynamic configurations, you need to hold
2578 * dev_priv->perf.metrics_lock to access it.
2579 */
2580 struct idr metrics_idr;
2581
2582 /*
2583 * Lock associated with anything below within this structure
2584 * except exclusive_stream.
2585 */
2586 struct mutex lock;
2587 struct list_head streams;
2588
2589 struct {
2590 /*
2591 * The stream currently using the OA unit. If accessed
2592 * outside a syscall associated to its file
2593 * descriptor, you need to hold
2594 * dev_priv->drm.struct_mutex.
2595 */
2596 struct i915_perf_stream *exclusive_stream;
2597
2598 u32 specific_ctx_id;
2599
2600 struct hrtimer poll_check_timer;
2601 wait_queue_head_t poll_wq;
2602 bool pollin;
2603
2604 /**
2605 * For rate limiting any notifications of spurious
2606 * invalid OA reports
2607 */
2608 struct ratelimit_state spurious_report_rs;
2609
2610 bool periodic;
2611 int period_exponent;
2612 int timestamp_frequency;
2613
2614 struct i915_oa_config test_config;
2615
2616 struct {
2617 struct i915_vma *vma;
2618 u8 *vaddr;
2619 u32 last_ctx_id;
2620 int format;
2621 int format_size;
2622
2623 /**
2624 * Locks reads and writes to all head/tail state
2625 *
2626 * Consider: the head and tail pointer state
2627 * needs to be read consistently from a hrtimer
2628 * callback (atomic context) and read() fop
2629 * (user context) with tail pointer updates
2630 * happening in atomic context and head updates
2631 * in user context and the (unlikely)
2632 * possibility of read() errors needing to
2633 * reset all head/tail state.
2634 *
2635 * Note: Contention or performance aren't
2636 * currently a significant concern here
2637 * considering the relatively low frequency of
2638 * hrtimer callbacks (5ms period) and that
2639 * reads typically only happen in response to a
2640 * hrtimer event and likely complete before the
2641 * next callback.
2642 *
2643 * Note: This lock is not held *while* reading
2644 * and copying data to userspace so the value
2645 * of head observed in htrimer callbacks won't
2646 * represent any partial consumption of data.
2647 */
2648 spinlock_t ptr_lock;
2649
2650 /**
2651 * One 'aging' tail pointer and one 'aged'
2652 * tail pointer ready to used for reading.
2653 *
2654 * Initial values of 0xffffffff are invalid
2655 * and imply that an update is required
2656 * (and should be ignored by an attempted
2657 * read)
2658 */
2659 struct {
2660 u32 offset;
2661 } tails[2];
2662
2663 /**
2664 * Index for the aged tail ready to read()
2665 * data up to.
2666 */
2667 unsigned int aged_tail_idx;
2668
2669 /**
2670 * A monotonic timestamp for when the current
2671 * aging tail pointer was read; used to
2672 * determine when it is old enough to trust.
2673 */
2674 u64 aging_timestamp;
2675
2676 /**
2677 * Although we can always read back the head
2678 * pointer register, we prefer to avoid
2679 * trusting the HW state, just to avoid any
2680 * risk that some hardware condition could
2681 * somehow bump the head pointer unpredictably
2682 * and cause us to forward the wrong OA buffer
2683 * data to userspace.
2684 */
2685 u32 head;
2686 } oa_buffer;
2687
2688 u32 gen7_latched_oastatus1;
2689 u32 ctx_oactxctrl_offset;
2690 u32 ctx_flexeu0_offset;
2691
2692 /**
2693 * The RPT_ID/reason field for Gen8+ includes a bit
2694 * to determine if the CTX ID in the report is valid
2695 * but the specific bit differs between Gen 8 and 9
2696 */
2697 u32 gen8_valid_ctx_bit;
2698
2699 struct i915_oa_ops ops;
2700 const struct i915_oa_format *oa_formats;
2701 } oa;
2702 } perf;
2703
2704 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2705 struct {
2706 void (*resume)(struct drm_i915_private *);
2707 void (*cleanup_engine)(struct intel_engine_cs *engine);
2708
2709 struct list_head timelines;
2710 struct i915_gem_timeline global_timeline;
2711 u32 active_requests;
2712
2713 /**
2714 * Is the GPU currently considered idle, or busy executing
2715 * userspace requests? Whilst idle, we allow runtime power
2716 * management to power down the hardware and display clocks.
2717 * In order to reduce the effect on performance, there
2718 * is a slight delay before we do so.
2719 */
2720 bool awake;
2721
2722 /**
2723 * We leave the user IRQ off as much as possible,
2724 * but this means that requests will finish and never
2725 * be retired once the system goes idle. Set a timer to
2726 * fire periodically while the ring is running. When it
2727 * fires, go retire requests.
2728 */
2729 struct delayed_work retire_work;
2730
2731 /**
2732 * When we detect an idle GPU, we want to turn on
2733 * powersaving features. So once we see that there
2734 * are no more requests outstanding and no more
2735 * arrive within a small period of time, we fire
2736 * off the idle_work.
2737 */
2738 struct delayed_work idle_work;
2739
2740 ktime_t last_init_time;
2741 } gt;
2742
2743 /* perform PHY state sanity checks? */
2744 bool chv_phy_assert[2];
2745
2746 bool ipc_enabled;
2747
2748 /* Hack to bypass TMDS_OE write on DP->HDMI dongle */
2749 bool bypass_tmds_oe;
2750
2751 /* Used to save the pipe-to-encoder mapping for audio */
2752 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2753
2754 /* necessary resource sharing with HDMI LPE audio driver. */
2755 struct {
2756 struct platform_device *platdev;
2757 int irq;
2758 } lpe_audio;
2759
2760 /*
2761 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2762 * will be rejected. Instead look for a better place.
2763 */
2764 };
2765
2766 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2767 {
2768 return container_of(dev, struct drm_i915_private, drm);
2769 }
2770
2771 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2772 {
2773 return to_i915(dev_get_drvdata(kdev));
2774 }
2775
2776 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2777 {
2778 return container_of(guc, struct drm_i915_private, guc);
2779 }
2780
2781 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2782 {
2783 return container_of(huc, struct drm_i915_private, huc);
2784 }
2785
2786 /* Simple iterator over all initialised engines */
2787 #define for_each_engine(engine__, dev_priv__, id__) \
2788 for ((id__) = 0; \
2789 (id__) < I915_NUM_ENGINES; \
2790 (id__)++) \
2791 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2792
2793 /* Iterator over subset of engines selected by mask */
2794 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2795 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2796 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2797
2798 enum hdmi_force_audio {
2799 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2800 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2801 HDMI_AUDIO_AUTO, /* trust EDID */
2802 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2803 };
2804
2805 #define I915_GTT_OFFSET_NONE ((u32)-1)
2806
2807 /*
2808 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2809 * considered to be the frontbuffer for the given plane interface-wise. This
2810 * doesn't mean that the hw necessarily already scans it out, but that any
2811 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2812 *
2813 * We have one bit per pipe and per scanout plane type.
2814 */
2815 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2816 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2817 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2818 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2819 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2820 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2821 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2822 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2823 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2824 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2825 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2826 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2827
2828 /*
2829 * Optimised SGL iterator for GEM objects
2830 */
2831 static __always_inline struct sgt_iter {
2832 struct scatterlist *sgp;
2833 union {
2834 unsigned long pfn;
2835 dma_addr_t dma;
2836 };
2837 unsigned int curr;
2838 unsigned int max;
2839 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2840 struct sgt_iter s = { .sgp = sgl };
2841
2842 if (s.sgp) {
2843 s.max = s.curr = s.sgp->offset;
2844 s.max += s.sgp->length;
2845 if (dma)
2846 s.dma = sg_dma_address(s.sgp);
2847 else
2848 s.pfn = page_to_pfn(sg_page(s.sgp));
2849 }
2850
2851 return s;
2852 }
2853
2854 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2855 {
2856 ++sg;
2857 if (unlikely(sg_is_chain(sg)))
2858 sg = sg_chain_ptr(sg);
2859 return sg;
2860 }
2861
2862 /**
2863 * __sg_next - return the next scatterlist entry in a list
2864 * @sg: The current sg entry
2865 *
2866 * Description:
2867 * If the entry is the last, return NULL; otherwise, step to the next
2868 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2869 * otherwise just return the pointer to the current element.
2870 **/
2871 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2872 {
2873 #ifdef CONFIG_DEBUG_SG
2874 BUG_ON(sg->sg_magic != SG_MAGIC);
2875 #endif
2876 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2877 }
2878
2879 /**
2880 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2881 * @__dmap: DMA address (output)
2882 * @__iter: 'struct sgt_iter' (iterator state, internal)
2883 * @__sgt: sg_table to iterate over (input)
2884 */
2885 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2886 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2887 ((__dmap) = (__iter).dma + (__iter).curr); \
2888 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \
2889 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2890
2891 /**
2892 * for_each_sgt_page - iterate over the pages of the given sg_table
2893 * @__pp: page pointer (output)
2894 * @__iter: 'struct sgt_iter' (iterator state, internal)
2895 * @__sgt: sg_table to iterate over (input)
2896 */
2897 #define for_each_sgt_page(__pp, __iter, __sgt) \
2898 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2899 ((__pp) = (__iter).pfn == 0 ? NULL : \
2900 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2901 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \
2902 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2903
2904 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2905 {
2906 unsigned int page_sizes;
2907
2908 page_sizes = 0;
2909 while (sg) {
2910 GEM_BUG_ON(sg->offset);
2911 GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2912 page_sizes |= sg->length;
2913 sg = __sg_next(sg);
2914 }
2915
2916 return page_sizes;
2917 }
2918
2919 static inline unsigned int i915_sg_segment_size(void)
2920 {
2921 unsigned int size = swiotlb_max_segment();
2922
2923 if (size == 0)
2924 return SCATTERLIST_MAX_SEGMENT;
2925
2926 size = rounddown(size, PAGE_SIZE);
2927 /* swiotlb_max_segment_size can return 1 byte when it means one page. */
2928 if (size < PAGE_SIZE)
2929 size = PAGE_SIZE;
2930
2931 return size;
2932 }
2933
2934 static inline const struct intel_device_info *
2935 intel_info(const struct drm_i915_private *dev_priv)
2936 {
2937 return &dev_priv->info;
2938 }
2939
2940 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2941
2942 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2943 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2944
2945 #define REVID_FOREVER 0xff
2946 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2947
2948 #define GEN_FOREVER (0)
2949
2950 #define INTEL_GEN_MASK(s, e) ( \
2951 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2952 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2953 GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \
2954 (s) != GEN_FOREVER ? (s) - 1 : 0) \
2955 )
2956
2957 /*
2958 * Returns true if Gen is in inclusive range [Start, End].
2959 *
2960 * Use GEN_FOREVER for unbound start and or end.
2961 */
2962 #define IS_GEN(dev_priv, s, e) \
2963 (!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2964
2965 /*
2966 * Return true if revision is in range [since,until] inclusive.
2967 *
2968 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2969 */
2970 #define IS_REVID(p, since, until) \
2971 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2972
2973 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p))
2974
2975 #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830)
2976 #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G)
2977 #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X)
2978 #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G)
2979 #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G)
2980 #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM)
2981 #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G)
2982 #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM)
2983 #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G)
2984 #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM)
2985 #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45)
2986 #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45)
2987 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2988 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2989 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2990 #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2991 #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33)
2992 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2993 #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2994 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \
2995 (dev_priv)->info.gt == 1)
2996 #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2997 #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2998 #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL)
2999 #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL)
3000 #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
3001 #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON)
3002 #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
3003 #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
3004 #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
3005 #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
3006 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
3007 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
3008 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
3009 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
3010 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
3011 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
3012 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
3013 /* ULX machines are also considered ULT. */
3014 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
3015 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
3016 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
3017 (dev_priv)->info.gt == 3)
3018 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
3019 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
3020 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
3021 (dev_priv)->info.gt == 3)
3022 /* ULX machines are also considered ULT. */
3023 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
3024 INTEL_DEVID(dev_priv) == 0x0A1E)
3025 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
3026 INTEL_DEVID(dev_priv) == 0x1913 || \
3027 INTEL_DEVID(dev_priv) == 0x1916 || \
3028 INTEL_DEVID(dev_priv) == 0x1921 || \
3029 INTEL_DEVID(dev_priv) == 0x1926)
3030 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
3031 INTEL_DEVID(dev_priv) == 0x1915 || \
3032 INTEL_DEVID(dev_priv) == 0x191E)
3033 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
3034 INTEL_DEVID(dev_priv) == 0x5913 || \
3035 INTEL_DEVID(dev_priv) == 0x5916 || \
3036 INTEL_DEVID(dev_priv) == 0x5921 || \
3037 INTEL_DEVID(dev_priv) == 0x5926)
3038 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
3039 INTEL_DEVID(dev_priv) == 0x5915 || \
3040 INTEL_DEVID(dev_priv) == 0x591E)
3041 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \
3042 (dev_priv)->info.gt == 2)
3043 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
3044 (dev_priv)->info.gt == 3)
3045 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
3046 (dev_priv)->info.gt == 4)
3047 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \
3048 (dev_priv)->info.gt == 2)
3049 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \
3050 (dev_priv)->info.gt == 3)
3051 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \
3052 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
3053 #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \
3054 (dev_priv)->info.gt == 2)
3055
3056 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
3057
3058 #define SKL_REVID_A0 0x0
3059 #define SKL_REVID_B0 0x1
3060 #define SKL_REVID_C0 0x2
3061 #define SKL_REVID_D0 0x3
3062 #define SKL_REVID_E0 0x4
3063 #define SKL_REVID_F0 0x5
3064 #define SKL_REVID_G0 0x6
3065 #define SKL_REVID_H0 0x7
3066
3067 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
3068
3069 #define BXT_REVID_A0 0x0
3070 #define BXT_REVID_A1 0x1
3071 #define BXT_REVID_B0 0x3
3072 #define BXT_REVID_B_LAST 0x8
3073 #define BXT_REVID_C0 0x9
3074
3075 #define IS_BXT_REVID(dev_priv, since, until) \
3076 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
3077
3078 #define KBL_REVID_A0 0x0
3079 #define KBL_REVID_B0 0x1
3080 #define KBL_REVID_C0 0x2
3081 #define KBL_REVID_D0 0x3
3082 #define KBL_REVID_E0 0x4
3083
3084 #define IS_KBL_REVID(dev_priv, since, until) \
3085 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
3086
3087 #define GLK_REVID_A0 0x0
3088 #define GLK_REVID_A1 0x1
3089
3090 #define IS_GLK_REVID(dev_priv, since, until) \
3091 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
3092
3093 #define CNL_REVID_A0 0x0
3094 #define CNL_REVID_B0 0x1
3095 #define CNL_REVID_C0 0x2
3096
3097 #define IS_CNL_REVID(p, since, until) \
3098 (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
3099
3100 /*
3101 * The genX designation typically refers to the render engine, so render
3102 * capability related checks should use IS_GEN, while display and other checks
3103 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
3104 * chips, etc.).
3105 */
3106 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
3107 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
3108 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
3109 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
3110 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
3111 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
3112 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
3113 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
3114 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9)))
3115
3116 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
3117 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv))
3118 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
3119
3120 #define ENGINE_MASK(id) BIT(id)
3121 #define RENDER_RING ENGINE_MASK(RCS)
3122 #define BSD_RING ENGINE_MASK(VCS)
3123 #define BLT_RING ENGINE_MASK(BCS)
3124 #define VEBOX_RING ENGINE_MASK(VECS)
3125 #define BSD2_RING ENGINE_MASK(VCS2)
3126 #define ALL_ENGINES (~0)
3127
3128 #define HAS_ENGINE(dev_priv, id) \
3129 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
3130
3131 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
3132 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
3133 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
3134 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
3135
3136 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
3137 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
3138 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
3139 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
3140 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
3141
3142 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
3143
3144 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
3145 ((dev_priv)->info.has_logical_ring_contexts)
3146 #define USES_PPGTT(dev_priv) (i915_modparams.enable_ppgtt)
3147 #define USES_FULL_PPGTT(dev_priv) (i915_modparams.enable_ppgtt >= 2)
3148 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915_modparams.enable_ppgtt == 3)
3149 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
3150 GEM_BUG_ON((sizes) == 0); \
3151 ((sizes) & ~(dev_priv)->info.page_sizes) == 0; \
3152 })
3153
3154 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
3155 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
3156 ((dev_priv)->info.overlay_needs_physical)
3157
3158 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
3159 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
3160
3161 /* WaRsDisableCoarsePowerGating:skl,bxt */
3162 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
3163 (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
3164
3165 /*
3166 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
3167 * even when in MSI mode. This results in spurious interrupt warnings if the
3168 * legacy irq no. is shared with another device. The kernel then disables that
3169 * interrupt source and so prevents the other device from working properly.
3170 *
3171 * Since we don't enable MSI anymore on gen4, we can always use GMBUS/AUX
3172 * interrupts.
3173 */
3174 #define HAS_AUX_IRQ(dev_priv) true
3175 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
3176
3177 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
3178 * rows, which changed the alignment requirements and fence programming.
3179 */
3180 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
3181 !(IS_I915G(dev_priv) || \
3182 IS_I915GM(dev_priv)))
3183 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
3184 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
3185
3186 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
3187 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
3188 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
3189
3190 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
3191
3192 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
3193
3194 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
3195 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
3196 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
3197 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
3198 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
3199
3200 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
3201
3202 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3203 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3204
3205 #define HAS_IPC(dev_priv) ((dev_priv)->info.has_ipc)
3206
3207 /*
3208 * For now, anything with a GuC requires uCode loading, and then supports
3209 * command submission once loaded. But these are logically independent
3210 * properties, so we have separate macros to test them.
3211 */
3212 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
3213 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct)
3214 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3215 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
3216 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3217
3218 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3219
3220 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
3221
3222 #define INTEL_PCH_DEVICE_ID_MASK 0xff80
3223 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
3224 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
3225 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
3226 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
3227 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
3228 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80
3229 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80
3230 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
3231 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
3232 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280
3233 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300
3234 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80
3235 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
3236 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
3237 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
3238
3239 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3240 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3241 #define HAS_PCH_CNP_LP(dev_priv) \
3242 ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3243 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3244 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3245 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3246 #define HAS_PCH_LPT_LP(dev_priv) \
3247 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3248 (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3249 #define HAS_PCH_LPT_H(dev_priv) \
3250 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3251 (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3252 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3253 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3254 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3255 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3256
3257 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3258
3259 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3260
3261 /* DPF == dynamic parity feature */
3262 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3263 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3264 2 : HAS_L3_DPF(dev_priv))
3265
3266 #define GT_FREQUENCY_MULTIPLIER 50
3267 #define GEN9_FREQ_SCALER 3
3268
3269 #include "i915_trace.h"
3270
3271 static inline bool intel_vtd_active(void)
3272 {
3273 #ifdef CONFIG_INTEL_IOMMU
3274 if (intel_iommu_gfx_mapped)
3275 return true;
3276 #endif
3277 return false;
3278 }
3279
3280 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3281 {
3282 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3283 }
3284
3285 static inline bool
3286 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3287 {
3288 return IS_BROXTON(dev_priv) && intel_vtd_active();
3289 }
3290
3291 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3292 int enable_ppgtt);
3293
3294 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3295
3296 /* i915_drv.c */
3297 void __printf(3, 4)
3298 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3299 const char *fmt, ...);
3300
3301 #define i915_report_error(dev_priv, fmt, ...) \
3302 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3303
3304 #ifdef CONFIG_COMPAT
3305 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3306 unsigned long arg);
3307 #else
3308 #define i915_compat_ioctl NULL
3309 #endif
3310 extern const struct dev_pm_ops i915_pm_ops;
3311
3312 extern int i915_driver_load(struct pci_dev *pdev,
3313 const struct pci_device_id *ent);
3314 extern void i915_driver_unload(struct drm_device *dev);
3315 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3316 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3317
3318 #define I915_RESET_QUIET BIT(0)
3319 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
3320 extern int i915_reset_engine(struct intel_engine_cs *engine,
3321 unsigned int flags);
3322
3323 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3324 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3325 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3326 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3327 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3328 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3329 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3330 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3331 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3332
3333 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3334 int intel_engines_init(struct drm_i915_private *dev_priv);
3335
3336 /* intel_hotplug.c */
3337 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3338 u32 pin_mask, u32 long_mask);
3339 void intel_hpd_init(struct drm_i915_private *dev_priv);
3340 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3341 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3342 enum port intel_hpd_pin_to_port(enum hpd_pin pin);
3343 enum hpd_pin intel_hpd_pin(enum port port);
3344 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3345 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3346
3347 /* i915_irq.c */
3348 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3349 {
3350 unsigned long delay;
3351
3352 if (unlikely(!i915_modparams.enable_hangcheck))
3353 return;
3354
3355 /* Don't continually defer the hangcheck so that it is always run at
3356 * least once after work has been scheduled on any ring. Otherwise,
3357 * we will ignore a hung ring if a second ring is kept busy.
3358 */
3359
3360 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3361 queue_delayed_work(system_long_wq,
3362 &dev_priv->gpu_error.hangcheck_work, delay);
3363 }
3364
3365 __printf(3, 4)
3366 void i915_handle_error(struct drm_i915_private *dev_priv,
3367 u32 engine_mask,
3368 const char *fmt, ...);
3369
3370 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3371 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3372 int intel_irq_install(struct drm_i915_private *dev_priv);
3373 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3374
3375 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3376 {
3377 return dev_priv->gvt;
3378 }
3379
3380 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3381 {
3382 return dev_priv->vgpu.active;
3383 }
3384
3385 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
3386 enum pipe pipe);
3387 void
3388 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3389 u32 status_mask);
3390
3391 void
3392 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3393 u32 status_mask);
3394
3395 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3396 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3397 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3398 uint32_t mask,
3399 uint32_t bits);
3400 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3401 uint32_t interrupt_mask,
3402 uint32_t enabled_irq_mask);
3403 static inline void
3404 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3405 {
3406 ilk_update_display_irq(dev_priv, bits, bits);
3407 }
3408 static inline void
3409 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3410 {
3411 ilk_update_display_irq(dev_priv, bits, 0);
3412 }
3413 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3414 enum pipe pipe,
3415 uint32_t interrupt_mask,
3416 uint32_t enabled_irq_mask);
3417 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3418 enum pipe pipe, uint32_t bits)
3419 {
3420 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3421 }
3422 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3423 enum pipe pipe, uint32_t bits)
3424 {
3425 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3426 }
3427 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3428 uint32_t interrupt_mask,
3429 uint32_t enabled_irq_mask);
3430 static inline void
3431 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3432 {
3433 ibx_display_interrupt_update(dev_priv, bits, bits);
3434 }
3435 static inline void
3436 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3437 {
3438 ibx_display_interrupt_update(dev_priv, bits, 0);
3439 }
3440
3441 /* i915_gem.c */
3442 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3443 struct drm_file *file_priv);
3444 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3445 struct drm_file *file_priv);
3446 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3447 struct drm_file *file_priv);
3448 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3449 struct drm_file *file_priv);
3450 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3451 struct drm_file *file_priv);
3452 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3453 struct drm_file *file_priv);
3454 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3455 struct drm_file *file_priv);
3456 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3457 struct drm_file *file_priv);
3458 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3459 struct drm_file *file_priv);
3460 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3461 struct drm_file *file_priv);
3462 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3463 struct drm_file *file);
3464 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3465 struct drm_file *file);
3466 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3467 struct drm_file *file_priv);
3468 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3469 struct drm_file *file_priv);
3470 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3471 struct drm_file *file_priv);
3472 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3473 struct drm_file *file_priv);
3474 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3475 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3476 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3477 struct drm_file *file);
3478 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3479 struct drm_file *file_priv);
3480 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3481 struct drm_file *file_priv);
3482 void i915_gem_sanitize(struct drm_i915_private *i915);
3483 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3484 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3485 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3486 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3487 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3488
3489 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3490 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3491 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3492 const struct drm_i915_gem_object_ops *ops);
3493 struct drm_i915_gem_object *
3494 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3495 struct drm_i915_gem_object *
3496 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3497 const void *data, size_t size);
3498 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3499 void i915_gem_free_object(struct drm_gem_object *obj);
3500
3501 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3502 {
3503 /* A single pass should suffice to release all the freed objects (along
3504 * most call paths) , but be a little more paranoid in that freeing
3505 * the objects does take a little amount of time, during which the rcu
3506 * callbacks could have added new objects into the freed list, and
3507 * armed the work again.
3508 */
3509 do {
3510 rcu_barrier();
3511 } while (flush_work(&i915->mm.free_work));
3512 }
3513
3514 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3515 {
3516 /*
3517 * Similar to objects above (see i915_gem_drain_freed-objects), in
3518 * general we have workers that are armed by RCU and then rearm
3519 * themselves in their callbacks. To be paranoid, we need to
3520 * drain the workqueue a second time after waiting for the RCU
3521 * grace period so that we catch work queued via RCU from the first
3522 * pass. As neither drain_workqueue() nor flush_workqueue() report
3523 * a result, we make an assumption that we only don't require more
3524 * than 2 passes to catch all recursive RCU delayed work.
3525 *
3526 */
3527 int pass = 2;
3528 do {
3529 rcu_barrier();
3530 drain_workqueue(i915->wq);
3531 } while (--pass);
3532 }
3533
3534 struct i915_vma * __must_check
3535 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3536 const struct i915_ggtt_view *view,
3537 u64 size,
3538 u64 alignment,
3539 u64 flags);
3540
3541 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3542 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3543
3544 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3545
3546 static inline int __sg_page_count(const struct scatterlist *sg)
3547 {
3548 return sg->length >> PAGE_SHIFT;
3549 }
3550
3551 struct scatterlist *
3552 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3553 unsigned int n, unsigned int *offset);
3554
3555 struct page *
3556 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3557 unsigned int n);
3558
3559 struct page *
3560 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3561 unsigned int n);
3562
3563 dma_addr_t
3564 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3565 unsigned long n);
3566
3567 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3568 struct sg_table *pages,
3569 unsigned int sg_page_sizes);
3570 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3571
3572 static inline int __must_check
3573 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3574 {
3575 might_lock(&obj->mm.lock);
3576
3577 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3578 return 0;
3579
3580 return __i915_gem_object_get_pages(obj);
3581 }
3582
3583 static inline bool
3584 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
3585 {
3586 return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
3587 }
3588
3589 static inline void
3590 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3591 {
3592 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3593
3594 atomic_inc(&obj->mm.pages_pin_count);
3595 }
3596
3597 static inline bool
3598 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3599 {
3600 return atomic_read(&obj->mm.pages_pin_count);
3601 }
3602
3603 static inline void
3604 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3605 {
3606 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3607 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3608
3609 atomic_dec(&obj->mm.pages_pin_count);
3610 }
3611
3612 static inline void
3613 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3614 {
3615 __i915_gem_object_unpin_pages(obj);
3616 }
3617
3618 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3619 I915_MM_NORMAL = 0,
3620 I915_MM_SHRINKER
3621 };
3622
3623 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3624 enum i915_mm_subclass subclass);
3625 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3626
3627 enum i915_map_type {
3628 I915_MAP_WB = 0,
3629 I915_MAP_WC,
3630 #define I915_MAP_OVERRIDE BIT(31)
3631 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3632 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3633 };
3634
3635 /**
3636 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3637 * @obj: the object to map into kernel address space
3638 * @type: the type of mapping, used to select pgprot_t
3639 *
3640 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3641 * pages and then returns a contiguous mapping of the backing storage into
3642 * the kernel address space. Based on the @type of mapping, the PTE will be
3643 * set to either WriteBack or WriteCombine (via pgprot_t).
3644 *
3645 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3646 * mapping is no longer required.
3647 *
3648 * Returns the pointer through which to access the mapped object, or an
3649 * ERR_PTR() on error.
3650 */
3651 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3652 enum i915_map_type type);
3653
3654 /**
3655 * i915_gem_object_unpin_map - releases an earlier mapping
3656 * @obj: the object to unmap
3657 *
3658 * After pinning the object and mapping its pages, once you are finished
3659 * with your access, call i915_gem_object_unpin_map() to release the pin
3660 * upon the mapping. Once the pin count reaches zero, that mapping may be
3661 * removed.
3662 */
3663 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3664 {
3665 i915_gem_object_unpin_pages(obj);
3666 }
3667
3668 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3669 unsigned int *needs_clflush);
3670 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3671 unsigned int *needs_clflush);
3672 #define CLFLUSH_BEFORE BIT(0)
3673 #define CLFLUSH_AFTER BIT(1)
3674 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3675
3676 static inline void
3677 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3678 {
3679 i915_gem_object_unpin_pages(obj);
3680 }
3681
3682 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3683 void i915_vma_move_to_active(struct i915_vma *vma,
3684 struct drm_i915_gem_request *req,
3685 unsigned int flags);
3686 int i915_gem_dumb_create(struct drm_file *file_priv,
3687 struct drm_device *dev,
3688 struct drm_mode_create_dumb *args);
3689 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3690 uint32_t handle, uint64_t *offset);
3691 int i915_gem_mmap_gtt_version(void);
3692
3693 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3694 struct drm_i915_gem_object *new,
3695 unsigned frontbuffer_bits);
3696
3697 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3698
3699 struct drm_i915_gem_request *
3700 i915_gem_find_active_request(struct intel_engine_cs *engine);
3701
3702 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3703
3704 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3705 {
3706 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3707 }
3708
3709 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3710 {
3711 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3712 }
3713
3714 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3715 {
3716 return unlikely(test_bit(I915_WEDGED, &error->flags));
3717 }
3718
3719 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3720 {
3721 return i915_reset_backoff(error) | i915_terminally_wedged(error);
3722 }
3723
3724 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3725 {
3726 return READ_ONCE(error->reset_count);
3727 }
3728
3729 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3730 struct intel_engine_cs *engine)
3731 {
3732 return READ_ONCE(error->reset_engine_count[engine->id]);
3733 }
3734
3735 struct drm_i915_gem_request *
3736 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3737 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3738 void i915_gem_reset(struct drm_i915_private *dev_priv);
3739 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3740 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3741 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3742 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3743 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3744 struct drm_i915_gem_request *request);
3745
3746 void i915_gem_init_mmio(struct drm_i915_private *i915);
3747 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3748 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3749 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3750 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3751 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3752 unsigned int flags);
3753 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3754 void i915_gem_resume(struct drm_i915_private *dev_priv);
3755 int i915_gem_fault(struct vm_fault *vmf);
3756 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3757 unsigned int flags,
3758 long timeout,
3759 struct intel_rps_client *rps);
3760 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3761 unsigned int flags,
3762 int priority);
3763 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3764
3765 int __must_check
3766 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3767 int __must_check
3768 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3769 int __must_check
3770 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3771 struct i915_vma * __must_check
3772 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3773 u32 alignment,
3774 const struct i915_ggtt_view *view);
3775 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3776 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3777 int align);
3778 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3779 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3780
3781 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3782 enum i915_cache_level cache_level);
3783
3784 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3785 struct dma_buf *dma_buf);
3786
3787 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3788 struct drm_gem_object *gem_obj, int flags);
3789
3790 static inline struct i915_hw_ppgtt *
3791 i915_vm_to_ppgtt(struct i915_address_space *vm)
3792 {
3793 return container_of(vm, struct i915_hw_ppgtt, base);
3794 }
3795
3796 /* i915_gem_fence_reg.c */
3797 struct drm_i915_fence_reg *
3798 i915_reserve_fence(struct drm_i915_private *dev_priv);
3799 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3800
3801 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3802 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3803
3804 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3805 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3806 struct sg_table *pages);
3807 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3808 struct sg_table *pages);
3809
3810 static inline struct i915_gem_context *
3811 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3812 {
3813 return idr_find(&file_priv->context_idr, id);
3814 }
3815
3816 static inline struct i915_gem_context *
3817 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3818 {
3819 struct i915_gem_context *ctx;
3820
3821 rcu_read_lock();
3822 ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3823 if (ctx && !kref_get_unless_zero(&ctx->ref))
3824 ctx = NULL;
3825 rcu_read_unlock();
3826
3827 return ctx;
3828 }
3829
3830 static inline struct intel_timeline *
3831 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3832 struct intel_engine_cs *engine)
3833 {
3834 struct i915_address_space *vm;
3835
3836 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3837 return &vm->timeline.engine[engine->id];
3838 }
3839
3840 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3841 struct drm_file *file);
3842 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3843 struct drm_file *file);
3844 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3845 struct drm_file *file);
3846 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3847 struct i915_gem_context *ctx,
3848 uint32_t *reg_state);
3849
3850 /* i915_gem_evict.c */
3851 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3852 u64 min_size, u64 alignment,
3853 unsigned cache_level,
3854 u64 start, u64 end,
3855 unsigned flags);
3856 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3857 struct drm_mm_node *node,
3858 unsigned int flags);
3859 int i915_gem_evict_vm(struct i915_address_space *vm);
3860
3861 /* belongs in i915_gem_gtt.h */
3862 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3863 {
3864 wmb();
3865 if (INTEL_GEN(dev_priv) < 6)
3866 intel_gtt_chipset_flush();
3867 }
3868
3869 /* i915_gem_stolen.c */
3870 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3871 struct drm_mm_node *node, u64 size,
3872 unsigned alignment);
3873 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3874 struct drm_mm_node *node, u64 size,
3875 unsigned alignment, u64 start,
3876 u64 end);
3877 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3878 struct drm_mm_node *node);
3879 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3880 void i915_gem_cleanup_stolen(struct drm_device *dev);
3881 struct drm_i915_gem_object *
3882 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3883 struct drm_i915_gem_object *
3884 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3885 u32 stolen_offset,
3886 u32 gtt_offset,
3887 u32 size);
3888
3889 /* i915_gem_internal.c */
3890 struct drm_i915_gem_object *
3891 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3892 phys_addr_t size);
3893
3894 /* i915_gem_shrinker.c */
3895 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3896 unsigned long target,
3897 unsigned long *nr_scanned,
3898 unsigned flags);
3899 #define I915_SHRINK_PURGEABLE 0x1
3900 #define I915_SHRINK_UNBOUND 0x2
3901 #define I915_SHRINK_BOUND 0x4
3902 #define I915_SHRINK_ACTIVE 0x8
3903 #define I915_SHRINK_VMAPS 0x10
3904 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3905 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3906 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3907
3908
3909 /* i915_gem_tiling.c */
3910 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3911 {
3912 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3913
3914 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3915 i915_gem_object_is_tiled(obj);
3916 }
3917
3918 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3919 unsigned int tiling, unsigned int stride);
3920 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3921 unsigned int tiling, unsigned int stride);
3922
3923 /* i915_debugfs.c */
3924 #ifdef CONFIG_DEBUG_FS
3925 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3926 int i915_debugfs_connector_add(struct drm_connector *connector);
3927 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3928 #else
3929 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3930 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3931 { return 0; }
3932 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3933 #endif
3934
3935 /* i915_gpu_error.c */
3936 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3937
3938 __printf(2, 3)
3939 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3940 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3941 const struct i915_gpu_state *gpu);
3942 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3943 struct drm_i915_private *i915,
3944 size_t count, loff_t pos);
3945 static inline void i915_error_state_buf_release(
3946 struct drm_i915_error_state_buf *eb)
3947 {
3948 kfree(eb->buf);
3949 }
3950
3951 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3952 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3953 u32 engine_mask,
3954 const char *error_msg);
3955
3956 static inline struct i915_gpu_state *
3957 i915_gpu_state_get(struct i915_gpu_state *gpu)
3958 {
3959 kref_get(&gpu->ref);
3960 return gpu;
3961 }
3962
3963 void __i915_gpu_state_free(struct kref *kref);
3964 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3965 {
3966 if (gpu)
3967 kref_put(&gpu->ref, __i915_gpu_state_free);
3968 }
3969
3970 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3971 void i915_reset_error_state(struct drm_i915_private *i915);
3972
3973 #else
3974
3975 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3976 u32 engine_mask,
3977 const char *error_msg)
3978 {
3979 }
3980
3981 static inline struct i915_gpu_state *
3982 i915_first_error_state(struct drm_i915_private *i915)
3983 {
3984 return NULL;
3985 }
3986
3987 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3988 {
3989 }
3990
3991 #endif
3992
3993 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3994
3995 /* i915_cmd_parser.c */
3996 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3997 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3998 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3999 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
4000 struct drm_i915_gem_object *batch_obj,
4001 struct drm_i915_gem_object *shadow_batch_obj,
4002 u32 batch_start_offset,
4003 u32 batch_len,
4004 bool is_master);
4005
4006 /* i915_perf.c */
4007 extern void i915_perf_init(struct drm_i915_private *dev_priv);
4008 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
4009 extern void i915_perf_register(struct drm_i915_private *dev_priv);
4010 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
4011
4012 /* i915_suspend.c */
4013 extern int i915_save_state(struct drm_i915_private *dev_priv);
4014 extern int i915_restore_state(struct drm_i915_private *dev_priv);
4015
4016 /* i915_sysfs.c */
4017 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
4018 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
4019
4020 /* intel_lpe_audio.c */
4021 int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
4022 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
4023 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
4024 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
4025 enum pipe pipe, enum port port,
4026 const void *eld, int ls_clock, bool dp_output);
4027
4028 /* intel_i2c.c */
4029 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
4030 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
4031 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
4032 unsigned int pin);
4033
4034 extern struct i2c_adapter *
4035 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
4036 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
4037 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
4038 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
4039 {
4040 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
4041 }
4042 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
4043
4044 /* intel_bios.c */
4045 void intel_bios_init(struct drm_i915_private *dev_priv);
4046 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
4047 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
4048 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
4049 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
4050 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
4051 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
4052 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
4053 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
4054 enum port port);
4055 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
4056 enum port port);
4057
4058
4059 /* intel_opregion.c */
4060 #ifdef CONFIG_ACPI
4061 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
4062 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
4063 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
4064 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
4065 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
4066 bool enable);
4067 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
4068 pci_power_t state);
4069 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
4070 #else
4071 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
4072 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
4073 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
4074 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
4075 {
4076 }
4077 static inline int
4078 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
4079 {
4080 return 0;
4081 }
4082 static inline int
4083 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
4084 {
4085 return 0;
4086 }
4087 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
4088 {
4089 return -ENODEV;
4090 }
4091 #endif
4092
4093 /* intel_acpi.c */
4094 #ifdef CONFIG_ACPI
4095 extern void intel_register_dsm_handler(void);
4096 extern void intel_unregister_dsm_handler(void);
4097 #else
4098 static inline void intel_register_dsm_handler(void) { return; }
4099 static inline void intel_unregister_dsm_handler(void) { return; }
4100 #endif /* CONFIG_ACPI */
4101
4102 /* intel_device_info.c */
4103 static inline struct intel_device_info *
4104 mkwrite_device_info(struct drm_i915_private *dev_priv)
4105 {
4106 return (struct intel_device_info *)&dev_priv->info;
4107 }
4108
4109 const char *intel_platform_name(enum intel_platform platform);
4110 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
4111 void intel_device_info_dump(struct drm_i915_private *dev_priv);
4112
4113 /* modesetting */
4114 extern void intel_modeset_init_hw(struct drm_device *dev);
4115 extern int intel_modeset_init(struct drm_device *dev);
4116 extern void intel_modeset_gem_init(struct drm_device *dev);
4117 extern void intel_modeset_cleanup(struct drm_device *dev);
4118 extern int intel_connector_register(struct drm_connector *);
4119 extern void intel_connector_unregister(struct drm_connector *);
4120 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
4121 bool state);
4122 extern void intel_display_resume(struct drm_device *dev);
4123 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
4124 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
4125 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
4126 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
4127 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
4128 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
4129 bool enable);
4130
4131 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
4132 struct drm_file *file);
4133
4134 /* overlay */
4135 extern struct intel_overlay_error_state *
4136 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
4137 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
4138 struct intel_overlay_error_state *error);
4139
4140 extern struct intel_display_error_state *
4141 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
4142 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
4143 struct intel_display_error_state *error);
4144
4145 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
4146 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
4147 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
4148 u32 reply_mask, u32 reply, int timeout_base_ms);
4149
4150 /* intel_sideband.c */
4151 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
4152 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
4153 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
4154 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
4155 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
4156 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
4157 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4158 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
4159 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4160 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
4161 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4162 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
4163 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
4164 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
4165 enum intel_sbi_destination destination);
4166 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
4167 enum intel_sbi_destination destination);
4168 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
4169 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4170
4171 /* intel_dpio_phy.c */
4172 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
4173 enum dpio_phy *phy, enum dpio_channel *ch);
4174 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
4175 enum port port, u32 margin, u32 scale,
4176 u32 enable, u32 deemphasis);
4177 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4178 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4179 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
4180 enum dpio_phy phy);
4181 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
4182 enum dpio_phy phy);
4183 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
4184 uint8_t lane_count);
4185 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
4186 uint8_t lane_lat_optim_mask);
4187 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
4188
4189 void chv_set_phy_signal_level(struct intel_encoder *encoder,
4190 u32 deemph_reg_value, u32 margin_reg_value,
4191 bool uniq_trans_scale);
4192 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
4193 bool reset);
4194 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
4195 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4196 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
4197 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
4198
4199 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
4200 u32 demph_reg_value, u32 preemph_reg_value,
4201 u32 uniqtranscale_reg_value, u32 tx3_demph);
4202 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
4203 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4204 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
4205
4206 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
4207 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
4208 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
4209 const i915_reg_t reg);
4210
4211 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
4212 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
4213
4214 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
4215 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
4216 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
4217 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
4218
4219 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
4220 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
4221 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
4222 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
4223
4224 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
4225 * will be implemented using 2 32-bit writes in an arbitrary order with
4226 * an arbitrary delay between them. This can cause the hardware to
4227 * act upon the intermediate value, possibly leading to corruption and
4228 * machine death. For this reason we do not support I915_WRITE64, or
4229 * dev_priv->uncore.funcs.mmio_writeq.
4230 *
4231 * When reading a 64-bit value as two 32-bit values, the delay may cause
4232 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
4233 * occasionally a 64-bit register does not actualy support a full readq
4234 * and must be read using two 32-bit reads.
4235 *
4236 * You have been warned.
4237 */
4238 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
4239
4240 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
4241 u32 upper, lower, old_upper, loop = 0; \
4242 upper = I915_READ(upper_reg); \
4243 do { \
4244 old_upper = upper; \
4245 lower = I915_READ(lower_reg); \
4246 upper = I915_READ(upper_reg); \
4247 } while (upper != old_upper && loop++ < 2); \
4248 (u64)upper << 32 | lower; })
4249
4250 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
4251 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
4252
4253 #define __raw_read(x, s) \
4254 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4255 i915_reg_t reg) \
4256 { \
4257 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4258 }
4259
4260 #define __raw_write(x, s) \
4261 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4262 i915_reg_t reg, uint##x##_t val) \
4263 { \
4264 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4265 }
4266 __raw_read(8, b)
4267 __raw_read(16, w)
4268 __raw_read(32, l)
4269 __raw_read(64, q)
4270
4271 __raw_write(8, b)
4272 __raw_write(16, w)
4273 __raw_write(32, l)
4274 __raw_write(64, q)
4275
4276 #undef __raw_read
4277 #undef __raw_write
4278
4279 /* These are untraced mmio-accessors that are only valid to be used inside
4280 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4281 * controlled.
4282 *
4283 * Think twice, and think again, before using these.
4284 *
4285 * As an example, these accessors can possibly be used between:
4286 *
4287 * spin_lock_irq(&dev_priv->uncore.lock);
4288 * intel_uncore_forcewake_get__locked();
4289 *
4290 * and
4291 *
4292 * intel_uncore_forcewake_put__locked();
4293 * spin_unlock_irq(&dev_priv->uncore.lock);
4294 *
4295 *
4296 * Note: some registers may not need forcewake held, so
4297 * intel_uncore_forcewake_{get,put} can be omitted, see
4298 * intel_uncore_forcewake_for_reg().
4299 *
4300 * Certain architectures will die if the same cacheline is concurrently accessed
4301 * by different clients (e.g. on Ivybridge). Access to registers should
4302 * therefore generally be serialised, by either the dev_priv->uncore.lock or
4303 * a more localised lock guarding all access to that bank of registers.
4304 */
4305 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4306 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4307 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4308 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4309
4310 /* "Broadcast RGB" property */
4311 #define INTEL_BROADCAST_RGB_AUTO 0
4312 #define INTEL_BROADCAST_RGB_FULL 1
4313 #define INTEL_BROADCAST_RGB_LIMITED 2
4314
4315 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4316 {
4317 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4318 return VLV_VGACNTRL;
4319 else if (INTEL_GEN(dev_priv) >= 5)
4320 return CPU_VGACNTRL;
4321 else
4322 return VGACNTRL;
4323 }
4324
4325 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4326 {
4327 unsigned long j = msecs_to_jiffies(m);
4328
4329 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4330 }
4331
4332 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4333 {
4334 /* nsecs_to_jiffies64() does not guard against overflow */
4335 if (NSEC_PER_SEC % HZ &&
4336 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
4337 return MAX_JIFFY_OFFSET;
4338
4339 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4340 }
4341
4342 static inline unsigned long
4343 timespec_to_jiffies_timeout(const struct timespec *value)
4344 {
4345 unsigned long j = timespec_to_jiffies(value);
4346
4347 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4348 }
4349
4350 /*
4351 * If you need to wait X milliseconds between events A and B, but event B
4352 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4353 * when event A happened, then just before event B you call this function and
4354 * pass the timestamp as the first argument, and X as the second argument.
4355 */
4356 static inline void
4357 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4358 {
4359 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4360
4361 /*
4362 * Don't re-read the value of "jiffies" every time since it may change
4363 * behind our back and break the math.
4364 */
4365 tmp_jiffies = jiffies;
4366 target_jiffies = timestamp_jiffies +
4367 msecs_to_jiffies_timeout(to_wait_ms);
4368
4369 if (time_after(target_jiffies, tmp_jiffies)) {
4370 remaining_jiffies = target_jiffies - tmp_jiffies;
4371 while (remaining_jiffies)
4372 remaining_jiffies =
4373 schedule_timeout_uninterruptible(remaining_jiffies);
4374 }
4375 }
4376
4377 static inline bool
4378 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4379 {
4380 struct intel_engine_cs *engine = req->engine;
4381 u32 seqno;
4382
4383 /* Note that the engine may have wrapped around the seqno, and
4384 * so our request->global_seqno will be ahead of the hardware,
4385 * even though it completed the request before wrapping. We catch
4386 * this by kicking all the waiters before resetting the seqno
4387 * in hardware, and also signal the fence.
4388 */
4389 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4390 return true;
4391
4392 /* The request was dequeued before we were awoken. We check after
4393 * inspecting the hw to confirm that this was the same request
4394 * that generated the HWS update. The memory barriers within
4395 * the request execution are sufficient to ensure that a check
4396 * after reading the value from hw matches this request.
4397 */
4398 seqno = i915_gem_request_global_seqno(req);
4399 if (!seqno)
4400 return false;
4401
4402 /* Before we do the heavier coherent read of the seqno,
4403 * check the value (hopefully) in the CPU cacheline.
4404 */
4405 if (__i915_gem_request_completed(req, seqno))
4406 return true;
4407
4408 /* Ensure our read of the seqno is coherent so that we
4409 * do not "miss an interrupt" (i.e. if this is the last
4410 * request and the seqno write from the GPU is not visible
4411 * by the time the interrupt fires, we will see that the
4412 * request is incomplete and go back to sleep awaiting
4413 * another interrupt that will never come.)
4414 *
4415 * Strictly, we only need to do this once after an interrupt,
4416 * but it is easier and safer to do it every time the waiter
4417 * is woken.
4418 */
4419 if (engine->irq_seqno_barrier &&
4420 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4421 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4422
4423 /* The ordering of irq_posted versus applying the barrier
4424 * is crucial. The clearing of the current irq_posted must
4425 * be visible before we perform the barrier operation,
4426 * such that if a subsequent interrupt arrives, irq_posted
4427 * is reasserted and our task rewoken (which causes us to
4428 * do another __i915_request_irq_complete() immediately
4429 * and reapply the barrier). Conversely, if the clear
4430 * occurs after the barrier, then an interrupt that arrived
4431 * whilst we waited on the barrier would not trigger a
4432 * barrier on the next pass, and the read may not see the
4433 * seqno update.
4434 */
4435 engine->irq_seqno_barrier(engine);
4436
4437 /* If we consume the irq, but we are no longer the bottom-half,
4438 * the real bottom-half may not have serialised their own
4439 * seqno check with the irq-barrier (i.e. may have inspected
4440 * the seqno before we believe it coherent since they see
4441 * irq_posted == false but we are still running).
4442 */
4443 spin_lock_irq(&b->irq_lock);
4444 if (b->irq_wait && b->irq_wait->tsk != current)
4445 /* Note that if the bottom-half is changed as we
4446 * are sending the wake-up, the new bottom-half will
4447 * be woken by whomever made the change. We only have
4448 * to worry about when we steal the irq-posted for
4449 * ourself.
4450 */
4451 wake_up_process(b->irq_wait->tsk);
4452 spin_unlock_irq(&b->irq_lock);
4453
4454 if (__i915_gem_request_completed(req, seqno))
4455 return true;
4456 }
4457
4458 return false;
4459 }
4460
4461 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4462 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4463
4464 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4465 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4466 * perform the operation. To check beforehand, pass in the parameters to
4467 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4468 * you only need to pass in the minor offsets, page-aligned pointers are
4469 * always valid.
4470 *
4471 * For just checking for SSE4.1, in the foreknowledge that the future use
4472 * will be correctly aligned, just use i915_has_memcpy_from_wc().
4473 */
4474 #define i915_can_memcpy_from_wc(dst, src, len) \
4475 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4476
4477 #define i915_has_memcpy_from_wc() \
4478 i915_memcpy_from_wc(NULL, NULL, 0)
4479
4480 /* i915_mm.c */
4481 int remap_io_mapping(struct vm_area_struct *vma,
4482 unsigned long addr, unsigned long pfn, unsigned long size,
4483 struct io_mapping *iomap);
4484
4485 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
4486 {
4487 if (INTEL_GEN(i915) >= 10)
4488 return CNL_HWS_CSB_WRITE_INDEX;
4489 else
4490 return I915_HWS_CSB_WRITE_INDEX;
4491 }
4492
4493 #endif