]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: make mappable struct resource centric
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_clflush.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
51
52 /* Primary plane formats for gen <= 3 */
53 static const uint32_t i8xx_primary_formats[] = {
54 DRM_FORMAT_C8,
55 DRM_FORMAT_RGB565,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_XRGB8888,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t i965_primary_formats[] = {
62 DRM_FORMAT_C8,
63 DRM_FORMAT_RGB565,
64 DRM_FORMAT_XRGB8888,
65 DRM_FORMAT_XBGR8888,
66 DRM_FORMAT_XRGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 };
69
70 static const uint64_t i9xx_format_modifiers[] = {
71 I915_FORMAT_MOD_X_TILED,
72 DRM_FORMAT_MOD_LINEAR,
73 DRM_FORMAT_MOD_INVALID
74 };
75
76 static const uint32_t skl_primary_formats[] = {
77 DRM_FORMAT_C8,
78 DRM_FORMAT_RGB565,
79 DRM_FORMAT_XRGB8888,
80 DRM_FORMAT_XBGR8888,
81 DRM_FORMAT_ARGB8888,
82 DRM_FORMAT_ABGR8888,
83 DRM_FORMAT_XRGB2101010,
84 DRM_FORMAT_XBGR2101010,
85 DRM_FORMAT_YUYV,
86 DRM_FORMAT_YVYU,
87 DRM_FORMAT_UYVY,
88 DRM_FORMAT_VYUY,
89 };
90
91 static const uint64_t skl_format_modifiers_noccs[] = {
92 I915_FORMAT_MOD_Yf_TILED,
93 I915_FORMAT_MOD_Y_TILED,
94 I915_FORMAT_MOD_X_TILED,
95 DRM_FORMAT_MOD_LINEAR,
96 DRM_FORMAT_MOD_INVALID
97 };
98
99 static const uint64_t skl_format_modifiers_ccs[] = {
100 I915_FORMAT_MOD_Yf_TILED_CCS,
101 I915_FORMAT_MOD_Y_TILED_CCS,
102 I915_FORMAT_MOD_Yf_TILED,
103 I915_FORMAT_MOD_Y_TILED,
104 I915_FORMAT_MOD_X_TILED,
105 DRM_FORMAT_MOD_LINEAR,
106 DRM_FORMAT_MOD_INVALID
107 };
108
109 /* Cursor formats */
110 static const uint32_t intel_cursor_formats[] = {
111 DRM_FORMAT_ARGB8888,
112 };
113
114 static const uint64_t cursor_format_modifiers[] = {
115 DRM_FORMAT_MOD_LINEAR,
116 DRM_FORMAT_MOD_INVALID
117 };
118
119 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
120 struct intel_crtc_state *pipe_config);
121 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
122 struct intel_crtc_state *pipe_config);
123
124 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
125 struct drm_i915_gem_object *obj,
126 struct drm_mode_fb_cmd2 *mode_cmd);
127 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
128 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
129 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
130 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
131 struct intel_link_m_n *m_n,
132 struct intel_link_m_n *m2_n2);
133 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
134 static void haswell_set_pipeconf(struct drm_crtc *crtc);
135 static void haswell_set_pipemisc(struct drm_crtc *crtc);
136 static void vlv_prepare_pll(struct intel_crtc *crtc,
137 const struct intel_crtc_state *pipe_config);
138 static void chv_prepare_pll(struct intel_crtc *crtc,
139 const struct intel_crtc_state *pipe_config);
140 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
141 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
142 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
143 struct intel_crtc_state *crtc_state);
144 static void skylake_pfit_enable(struct intel_crtc *crtc);
145 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
146 static void ironlake_pfit_enable(struct intel_crtc *crtc);
147 static void intel_modeset_setup_hw_state(struct drm_device *dev,
148 struct drm_modeset_acquire_ctx *ctx);
149 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
150
151 struct intel_limit {
152 struct {
153 int min, max;
154 } dot, vco, n, m, m1, m2, p, p1;
155
156 struct {
157 int dot_limit;
158 int p2_slow, p2_fast;
159 } p2;
160 };
161
162 /* returns HPLL frequency in kHz */
163 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
164 {
165 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
166
167 /* Obtain SKU information */
168 mutex_lock(&dev_priv->sb_lock);
169 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
170 CCK_FUSE_HPLL_FREQ_MASK;
171 mutex_unlock(&dev_priv->sb_lock);
172
173 return vco_freq[hpll_freq] * 1000;
174 }
175
176 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
177 const char *name, u32 reg, int ref_freq)
178 {
179 u32 val;
180 int divider;
181
182 mutex_lock(&dev_priv->sb_lock);
183 val = vlv_cck_read(dev_priv, reg);
184 mutex_unlock(&dev_priv->sb_lock);
185
186 divider = val & CCK_FREQUENCY_VALUES;
187
188 WARN((val & CCK_FREQUENCY_STATUS) !=
189 (divider << CCK_FREQUENCY_STATUS_SHIFT),
190 "%s change in progress\n", name);
191
192 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
193 }
194
195 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
196 const char *name, u32 reg)
197 {
198 if (dev_priv->hpll_freq == 0)
199 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
200
201 return vlv_get_cck_clock(dev_priv, name, reg,
202 dev_priv->hpll_freq);
203 }
204
205 static void intel_update_czclk(struct drm_i915_private *dev_priv)
206 {
207 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
208 return;
209
210 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
211 CCK_CZ_CLOCK_CONTROL);
212
213 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
214 }
215
216 static inline u32 /* units of 100MHz */
217 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
218 const struct intel_crtc_state *pipe_config)
219 {
220 if (HAS_DDI(dev_priv))
221 return pipe_config->port_clock; /* SPLL */
222 else if (IS_GEN5(dev_priv))
223 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
224 else
225 return 270000;
226 }
227
228 static const struct intel_limit intel_limits_i8xx_dac = {
229 .dot = { .min = 25000, .max = 350000 },
230 .vco = { .min = 908000, .max = 1512000 },
231 .n = { .min = 2, .max = 16 },
232 .m = { .min = 96, .max = 140 },
233 .m1 = { .min = 18, .max = 26 },
234 .m2 = { .min = 6, .max = 16 },
235 .p = { .min = 4, .max = 128 },
236 .p1 = { .min = 2, .max = 33 },
237 .p2 = { .dot_limit = 165000,
238 .p2_slow = 4, .p2_fast = 2 },
239 };
240
241 static const struct intel_limit intel_limits_i8xx_dvo = {
242 .dot = { .min = 25000, .max = 350000 },
243 .vco = { .min = 908000, .max = 1512000 },
244 .n = { .min = 2, .max = 16 },
245 .m = { .min = 96, .max = 140 },
246 .m1 = { .min = 18, .max = 26 },
247 .m2 = { .min = 6, .max = 16 },
248 .p = { .min = 4, .max = 128 },
249 .p1 = { .min = 2, .max = 33 },
250 .p2 = { .dot_limit = 165000,
251 .p2_slow = 4, .p2_fast = 4 },
252 };
253
254 static const struct intel_limit intel_limits_i8xx_lvds = {
255 .dot = { .min = 25000, .max = 350000 },
256 .vco = { .min = 908000, .max = 1512000 },
257 .n = { .min = 2, .max = 16 },
258 .m = { .min = 96, .max = 140 },
259 .m1 = { .min = 18, .max = 26 },
260 .m2 = { .min = 6, .max = 16 },
261 .p = { .min = 4, .max = 128 },
262 .p1 = { .min = 1, .max = 6 },
263 .p2 = { .dot_limit = 165000,
264 .p2_slow = 14, .p2_fast = 7 },
265 };
266
267 static const struct intel_limit intel_limits_i9xx_sdvo = {
268 .dot = { .min = 20000, .max = 400000 },
269 .vco = { .min = 1400000, .max = 2800000 },
270 .n = { .min = 1, .max = 6 },
271 .m = { .min = 70, .max = 120 },
272 .m1 = { .min = 8, .max = 18 },
273 .m2 = { .min = 3, .max = 7 },
274 .p = { .min = 5, .max = 80 },
275 .p1 = { .min = 1, .max = 8 },
276 .p2 = { .dot_limit = 200000,
277 .p2_slow = 10, .p2_fast = 5 },
278 };
279
280 static const struct intel_limit intel_limits_i9xx_lvds = {
281 .dot = { .min = 20000, .max = 400000 },
282 .vco = { .min = 1400000, .max = 2800000 },
283 .n = { .min = 1, .max = 6 },
284 .m = { .min = 70, .max = 120 },
285 .m1 = { .min = 8, .max = 18 },
286 .m2 = { .min = 3, .max = 7 },
287 .p = { .min = 7, .max = 98 },
288 .p1 = { .min = 1, .max = 8 },
289 .p2 = { .dot_limit = 112000,
290 .p2_slow = 14, .p2_fast = 7 },
291 };
292
293
294 static const struct intel_limit intel_limits_g4x_sdvo = {
295 .dot = { .min = 25000, .max = 270000 },
296 .vco = { .min = 1750000, .max = 3500000},
297 .n = { .min = 1, .max = 4 },
298 .m = { .min = 104, .max = 138 },
299 .m1 = { .min = 17, .max = 23 },
300 .m2 = { .min = 5, .max = 11 },
301 .p = { .min = 10, .max = 30 },
302 .p1 = { .min = 1, .max = 3},
303 .p2 = { .dot_limit = 270000,
304 .p2_slow = 10,
305 .p2_fast = 10
306 },
307 };
308
309 static const struct intel_limit intel_limits_g4x_hdmi = {
310 .dot = { .min = 22000, .max = 400000 },
311 .vco = { .min = 1750000, .max = 3500000},
312 .n = { .min = 1, .max = 4 },
313 .m = { .min = 104, .max = 138 },
314 .m1 = { .min = 16, .max = 23 },
315 .m2 = { .min = 5, .max = 11 },
316 .p = { .min = 5, .max = 80 },
317 .p1 = { .min = 1, .max = 8},
318 .p2 = { .dot_limit = 165000,
319 .p2_slow = 10, .p2_fast = 5 },
320 };
321
322 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
323 .dot = { .min = 20000, .max = 115000 },
324 .vco = { .min = 1750000, .max = 3500000 },
325 .n = { .min = 1, .max = 3 },
326 .m = { .min = 104, .max = 138 },
327 .m1 = { .min = 17, .max = 23 },
328 .m2 = { .min = 5, .max = 11 },
329 .p = { .min = 28, .max = 112 },
330 .p1 = { .min = 2, .max = 8 },
331 .p2 = { .dot_limit = 0,
332 .p2_slow = 14, .p2_fast = 14
333 },
334 };
335
336 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
337 .dot = { .min = 80000, .max = 224000 },
338 .vco = { .min = 1750000, .max = 3500000 },
339 .n = { .min = 1, .max = 3 },
340 .m = { .min = 104, .max = 138 },
341 .m1 = { .min = 17, .max = 23 },
342 .m2 = { .min = 5, .max = 11 },
343 .p = { .min = 14, .max = 42 },
344 .p1 = { .min = 2, .max = 6 },
345 .p2 = { .dot_limit = 0,
346 .p2_slow = 7, .p2_fast = 7
347 },
348 };
349
350 static const struct intel_limit intel_limits_pineview_sdvo = {
351 .dot = { .min = 20000, .max = 400000},
352 .vco = { .min = 1700000, .max = 3500000 },
353 /* Pineview's Ncounter is a ring counter */
354 .n = { .min = 3, .max = 6 },
355 .m = { .min = 2, .max = 256 },
356 /* Pineview only has one combined m divider, which we treat as m2. */
357 .m1 = { .min = 0, .max = 0 },
358 .m2 = { .min = 0, .max = 254 },
359 .p = { .min = 5, .max = 80 },
360 .p1 = { .min = 1, .max = 8 },
361 .p2 = { .dot_limit = 200000,
362 .p2_slow = 10, .p2_fast = 5 },
363 };
364
365 static const struct intel_limit intel_limits_pineview_lvds = {
366 .dot = { .min = 20000, .max = 400000 },
367 .vco = { .min = 1700000, .max = 3500000 },
368 .n = { .min = 3, .max = 6 },
369 .m = { .min = 2, .max = 256 },
370 .m1 = { .min = 0, .max = 0 },
371 .m2 = { .min = 0, .max = 254 },
372 .p = { .min = 7, .max = 112 },
373 .p1 = { .min = 1, .max = 8 },
374 .p2 = { .dot_limit = 112000,
375 .p2_slow = 14, .p2_fast = 14 },
376 };
377
378 /* Ironlake / Sandybridge
379 *
380 * We calculate clock using (register_value + 2) for N/M1/M2, so here
381 * the range value for them is (actual_value - 2).
382 */
383 static const struct intel_limit intel_limits_ironlake_dac = {
384 .dot = { .min = 25000, .max = 350000 },
385 .vco = { .min = 1760000, .max = 3510000 },
386 .n = { .min = 1, .max = 5 },
387 .m = { .min = 79, .max = 127 },
388 .m1 = { .min = 12, .max = 22 },
389 .m2 = { .min = 5, .max = 9 },
390 .p = { .min = 5, .max = 80 },
391 .p1 = { .min = 1, .max = 8 },
392 .p2 = { .dot_limit = 225000,
393 .p2_slow = 10, .p2_fast = 5 },
394 };
395
396 static const struct intel_limit intel_limits_ironlake_single_lvds = {
397 .dot = { .min = 25000, .max = 350000 },
398 .vco = { .min = 1760000, .max = 3510000 },
399 .n = { .min = 1, .max = 3 },
400 .m = { .min = 79, .max = 118 },
401 .m1 = { .min = 12, .max = 22 },
402 .m2 = { .min = 5, .max = 9 },
403 .p = { .min = 28, .max = 112 },
404 .p1 = { .min = 2, .max = 8 },
405 .p2 = { .dot_limit = 225000,
406 .p2_slow = 14, .p2_fast = 14 },
407 };
408
409 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
410 .dot = { .min = 25000, .max = 350000 },
411 .vco = { .min = 1760000, .max = 3510000 },
412 .n = { .min = 1, .max = 3 },
413 .m = { .min = 79, .max = 127 },
414 .m1 = { .min = 12, .max = 22 },
415 .m2 = { .min = 5, .max = 9 },
416 .p = { .min = 14, .max = 56 },
417 .p1 = { .min = 2, .max = 8 },
418 .p2 = { .dot_limit = 225000,
419 .p2_slow = 7, .p2_fast = 7 },
420 };
421
422 /* LVDS 100mhz refclk limits. */
423 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
424 .dot = { .min = 25000, .max = 350000 },
425 .vco = { .min = 1760000, .max = 3510000 },
426 .n = { .min = 1, .max = 2 },
427 .m = { .min = 79, .max = 126 },
428 .m1 = { .min = 12, .max = 22 },
429 .m2 = { .min = 5, .max = 9 },
430 .p = { .min = 28, .max = 112 },
431 .p1 = { .min = 2, .max = 8 },
432 .p2 = { .dot_limit = 225000,
433 .p2_slow = 14, .p2_fast = 14 },
434 };
435
436 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
437 .dot = { .min = 25000, .max = 350000 },
438 .vco = { .min = 1760000, .max = 3510000 },
439 .n = { .min = 1, .max = 3 },
440 .m = { .min = 79, .max = 126 },
441 .m1 = { .min = 12, .max = 22 },
442 .m2 = { .min = 5, .max = 9 },
443 .p = { .min = 14, .max = 42 },
444 .p1 = { .min = 2, .max = 6 },
445 .p2 = { .dot_limit = 225000,
446 .p2_slow = 7, .p2_fast = 7 },
447 };
448
449 static const struct intel_limit intel_limits_vlv = {
450 /*
451 * These are the data rate limits (measured in fast clocks)
452 * since those are the strictest limits we have. The fast
453 * clock and actual rate limits are more relaxed, so checking
454 * them would make no difference.
455 */
456 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
457 .vco = { .min = 4000000, .max = 6000000 },
458 .n = { .min = 1, .max = 7 },
459 .m1 = { .min = 2, .max = 3 },
460 .m2 = { .min = 11, .max = 156 },
461 .p1 = { .min = 2, .max = 3 },
462 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
463 };
464
465 static const struct intel_limit intel_limits_chv = {
466 /*
467 * These are the data rate limits (measured in fast clocks)
468 * since those are the strictest limits we have. The fast
469 * clock and actual rate limits are more relaxed, so checking
470 * them would make no difference.
471 */
472 .dot = { .min = 25000 * 5, .max = 540000 * 5},
473 .vco = { .min = 4800000, .max = 6480000 },
474 .n = { .min = 1, .max = 1 },
475 .m1 = { .min = 2, .max = 2 },
476 .m2 = { .min = 24 << 22, .max = 175 << 22 },
477 .p1 = { .min = 2, .max = 4 },
478 .p2 = { .p2_slow = 1, .p2_fast = 14 },
479 };
480
481 static const struct intel_limit intel_limits_bxt = {
482 /* FIXME: find real dot limits */
483 .dot = { .min = 0, .max = INT_MAX },
484 .vco = { .min = 4800000, .max = 6700000 },
485 .n = { .min = 1, .max = 1 },
486 .m1 = { .min = 2, .max = 2 },
487 /* FIXME: find real m2 limits */
488 .m2 = { .min = 2 << 22, .max = 255 << 22 },
489 .p1 = { .min = 2, .max = 4 },
490 .p2 = { .p2_slow = 1, .p2_fast = 20 },
491 };
492
493 static bool
494 needs_modeset(struct drm_crtc_state *state)
495 {
496 return drm_atomic_crtc_needs_modeset(state);
497 }
498
499 /*
500 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
501 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
502 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
503 * The helpers' return value is the rate of the clock that is fed to the
504 * display engine's pipe which can be the above fast dot clock rate or a
505 * divided-down version of it.
506 */
507 /* m1 is reserved as 0 in Pineview, n is a ring counter */
508 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
509 {
510 clock->m = clock->m2 + 2;
511 clock->p = clock->p1 * clock->p2;
512 if (WARN_ON(clock->n == 0 || clock->p == 0))
513 return 0;
514 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
515 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
516
517 return clock->dot;
518 }
519
520 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
521 {
522 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
523 }
524
525 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
526 {
527 clock->m = i9xx_dpll_compute_m(clock);
528 clock->p = clock->p1 * clock->p2;
529 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
530 return 0;
531 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
532 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
533
534 return clock->dot;
535 }
536
537 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
538 {
539 clock->m = clock->m1 * clock->m2;
540 clock->p = clock->p1 * clock->p2;
541 if (WARN_ON(clock->n == 0 || clock->p == 0))
542 return 0;
543 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
544 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
545
546 return clock->dot / 5;
547 }
548
549 int chv_calc_dpll_params(int refclk, struct dpll *clock)
550 {
551 clock->m = clock->m1 * clock->m2;
552 clock->p = clock->p1 * clock->p2;
553 if (WARN_ON(clock->n == 0 || clock->p == 0))
554 return 0;
555 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
556 clock->n << 22);
557 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
558
559 return clock->dot / 5;
560 }
561
562 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
563 /**
564 * Returns whether the given set of divisors are valid for a given refclk with
565 * the given connectors.
566 */
567
568 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
569 const struct intel_limit *limit,
570 const struct dpll *clock)
571 {
572 if (clock->n < limit->n.min || limit->n.max < clock->n)
573 INTELPllInvalid("n out of range\n");
574 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
575 INTELPllInvalid("p1 out of range\n");
576 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
577 INTELPllInvalid("m2 out of range\n");
578 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
579 INTELPllInvalid("m1 out of range\n");
580
581 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
582 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
583 if (clock->m1 <= clock->m2)
584 INTELPllInvalid("m1 <= m2\n");
585
586 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
587 !IS_GEN9_LP(dev_priv)) {
588 if (clock->p < limit->p.min || limit->p.max < clock->p)
589 INTELPllInvalid("p out of range\n");
590 if (clock->m < limit->m.min || limit->m.max < clock->m)
591 INTELPllInvalid("m out of range\n");
592 }
593
594 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
595 INTELPllInvalid("vco out of range\n");
596 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
597 * connector, etc., rather than just a single range.
598 */
599 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
600 INTELPllInvalid("dot out of range\n");
601
602 return true;
603 }
604
605 static int
606 i9xx_select_p2_div(const struct intel_limit *limit,
607 const struct intel_crtc_state *crtc_state,
608 int target)
609 {
610 struct drm_device *dev = crtc_state->base.crtc->dev;
611
612 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
613 /*
614 * For LVDS just rely on its current settings for dual-channel.
615 * We haven't figured out how to reliably set up different
616 * single/dual channel state, if we even can.
617 */
618 if (intel_is_dual_link_lvds(dev))
619 return limit->p2.p2_fast;
620 else
621 return limit->p2.p2_slow;
622 } else {
623 if (target < limit->p2.dot_limit)
624 return limit->p2.p2_slow;
625 else
626 return limit->p2.p2_fast;
627 }
628 }
629
630 /*
631 * Returns a set of divisors for the desired target clock with the given
632 * refclk, or FALSE. The returned values represent the clock equation:
633 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
634 *
635 * Target and reference clocks are specified in kHz.
636 *
637 * If match_clock is provided, then best_clock P divider must match the P
638 * divider from @match_clock used for LVDS downclocking.
639 */
640 static bool
641 i9xx_find_best_dpll(const struct intel_limit *limit,
642 struct intel_crtc_state *crtc_state,
643 int target, int refclk, struct dpll *match_clock,
644 struct dpll *best_clock)
645 {
646 struct drm_device *dev = crtc_state->base.crtc->dev;
647 struct dpll clock;
648 int err = target;
649
650 memset(best_clock, 0, sizeof(*best_clock));
651
652 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
653
654 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
655 clock.m1++) {
656 for (clock.m2 = limit->m2.min;
657 clock.m2 <= limit->m2.max; clock.m2++) {
658 if (clock.m2 >= clock.m1)
659 break;
660 for (clock.n = limit->n.min;
661 clock.n <= limit->n.max; clock.n++) {
662 for (clock.p1 = limit->p1.min;
663 clock.p1 <= limit->p1.max; clock.p1++) {
664 int this_err;
665
666 i9xx_calc_dpll_params(refclk, &clock);
667 if (!intel_PLL_is_valid(to_i915(dev),
668 limit,
669 &clock))
670 continue;
671 if (match_clock &&
672 clock.p != match_clock->p)
673 continue;
674
675 this_err = abs(clock.dot - target);
676 if (this_err < err) {
677 *best_clock = clock;
678 err = this_err;
679 }
680 }
681 }
682 }
683 }
684
685 return (err != target);
686 }
687
688 /*
689 * Returns a set of divisors for the desired target clock with the given
690 * refclk, or FALSE. The returned values represent the clock equation:
691 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
692 *
693 * Target and reference clocks are specified in kHz.
694 *
695 * If match_clock is provided, then best_clock P divider must match the P
696 * divider from @match_clock used for LVDS downclocking.
697 */
698 static bool
699 pnv_find_best_dpll(const struct intel_limit *limit,
700 struct intel_crtc_state *crtc_state,
701 int target, int refclk, struct dpll *match_clock,
702 struct dpll *best_clock)
703 {
704 struct drm_device *dev = crtc_state->base.crtc->dev;
705 struct dpll clock;
706 int err = target;
707
708 memset(best_clock, 0, sizeof(*best_clock));
709
710 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
711
712 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
713 clock.m1++) {
714 for (clock.m2 = limit->m2.min;
715 clock.m2 <= limit->m2.max; clock.m2++) {
716 for (clock.n = limit->n.min;
717 clock.n <= limit->n.max; clock.n++) {
718 for (clock.p1 = limit->p1.min;
719 clock.p1 <= limit->p1.max; clock.p1++) {
720 int this_err;
721
722 pnv_calc_dpll_params(refclk, &clock);
723 if (!intel_PLL_is_valid(to_i915(dev),
724 limit,
725 &clock))
726 continue;
727 if (match_clock &&
728 clock.p != match_clock->p)
729 continue;
730
731 this_err = abs(clock.dot - target);
732 if (this_err < err) {
733 *best_clock = clock;
734 err = this_err;
735 }
736 }
737 }
738 }
739 }
740
741 return (err != target);
742 }
743
744 /*
745 * Returns a set of divisors for the desired target clock with the given
746 * refclk, or FALSE. The returned values represent the clock equation:
747 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
748 *
749 * Target and reference clocks are specified in kHz.
750 *
751 * If match_clock is provided, then best_clock P divider must match the P
752 * divider from @match_clock used for LVDS downclocking.
753 */
754 static bool
755 g4x_find_best_dpll(const struct intel_limit *limit,
756 struct intel_crtc_state *crtc_state,
757 int target, int refclk, struct dpll *match_clock,
758 struct dpll *best_clock)
759 {
760 struct drm_device *dev = crtc_state->base.crtc->dev;
761 struct dpll clock;
762 int max_n;
763 bool found = false;
764 /* approximately equals target * 0.00585 */
765 int err_most = (target >> 8) + (target >> 9);
766
767 memset(best_clock, 0, sizeof(*best_clock));
768
769 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
770
771 max_n = limit->n.max;
772 /* based on hardware requirement, prefer smaller n to precision */
773 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
774 /* based on hardware requirement, prefere larger m1,m2 */
775 for (clock.m1 = limit->m1.max;
776 clock.m1 >= limit->m1.min; clock.m1--) {
777 for (clock.m2 = limit->m2.max;
778 clock.m2 >= limit->m2.min; clock.m2--) {
779 for (clock.p1 = limit->p1.max;
780 clock.p1 >= limit->p1.min; clock.p1--) {
781 int this_err;
782
783 i9xx_calc_dpll_params(refclk, &clock);
784 if (!intel_PLL_is_valid(to_i915(dev),
785 limit,
786 &clock))
787 continue;
788
789 this_err = abs(clock.dot - target);
790 if (this_err < err_most) {
791 *best_clock = clock;
792 err_most = this_err;
793 max_n = clock.n;
794 found = true;
795 }
796 }
797 }
798 }
799 }
800 return found;
801 }
802
803 /*
804 * Check if the calculated PLL configuration is more optimal compared to the
805 * best configuration and error found so far. Return the calculated error.
806 */
807 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
808 const struct dpll *calculated_clock,
809 const struct dpll *best_clock,
810 unsigned int best_error_ppm,
811 unsigned int *error_ppm)
812 {
813 /*
814 * For CHV ignore the error and consider only the P value.
815 * Prefer a bigger P value based on HW requirements.
816 */
817 if (IS_CHERRYVIEW(to_i915(dev))) {
818 *error_ppm = 0;
819
820 return calculated_clock->p > best_clock->p;
821 }
822
823 if (WARN_ON_ONCE(!target_freq))
824 return false;
825
826 *error_ppm = div_u64(1000000ULL *
827 abs(target_freq - calculated_clock->dot),
828 target_freq);
829 /*
830 * Prefer a better P value over a better (smaller) error if the error
831 * is small. Ensure this preference for future configurations too by
832 * setting the error to 0.
833 */
834 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
835 *error_ppm = 0;
836
837 return true;
838 }
839
840 return *error_ppm + 10 < best_error_ppm;
841 }
842
843 /*
844 * Returns a set of divisors for the desired target clock with the given
845 * refclk, or FALSE. The returned values represent the clock equation:
846 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
847 */
848 static bool
849 vlv_find_best_dpll(const struct intel_limit *limit,
850 struct intel_crtc_state *crtc_state,
851 int target, int refclk, struct dpll *match_clock,
852 struct dpll *best_clock)
853 {
854 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
855 struct drm_device *dev = crtc->base.dev;
856 struct dpll clock;
857 unsigned int bestppm = 1000000;
858 /* min update 19.2 MHz */
859 int max_n = min(limit->n.max, refclk / 19200);
860 bool found = false;
861
862 target *= 5; /* fast clock */
863
864 memset(best_clock, 0, sizeof(*best_clock));
865
866 /* based on hardware requirement, prefer smaller n to precision */
867 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
868 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
869 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
870 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
871 clock.p = clock.p1 * clock.p2;
872 /* based on hardware requirement, prefer bigger m1,m2 values */
873 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
874 unsigned int ppm;
875
876 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
877 refclk * clock.m1);
878
879 vlv_calc_dpll_params(refclk, &clock);
880
881 if (!intel_PLL_is_valid(to_i915(dev),
882 limit,
883 &clock))
884 continue;
885
886 if (!vlv_PLL_is_optimal(dev, target,
887 &clock,
888 best_clock,
889 bestppm, &ppm))
890 continue;
891
892 *best_clock = clock;
893 bestppm = ppm;
894 found = true;
895 }
896 }
897 }
898 }
899
900 return found;
901 }
902
903 /*
904 * Returns a set of divisors for the desired target clock with the given
905 * refclk, or FALSE. The returned values represent the clock equation:
906 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
907 */
908 static bool
909 chv_find_best_dpll(const struct intel_limit *limit,
910 struct intel_crtc_state *crtc_state,
911 int target, int refclk, struct dpll *match_clock,
912 struct dpll *best_clock)
913 {
914 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
915 struct drm_device *dev = crtc->base.dev;
916 unsigned int best_error_ppm;
917 struct dpll clock;
918 uint64_t m2;
919 int found = false;
920
921 memset(best_clock, 0, sizeof(*best_clock));
922 best_error_ppm = 1000000;
923
924 /*
925 * Based on hardware doc, the n always set to 1, and m1 always
926 * set to 2. If requires to support 200Mhz refclk, we need to
927 * revisit this because n may not 1 anymore.
928 */
929 clock.n = 1, clock.m1 = 2;
930 target *= 5; /* fast clock */
931
932 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
933 for (clock.p2 = limit->p2.p2_fast;
934 clock.p2 >= limit->p2.p2_slow;
935 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
936 unsigned int error_ppm;
937
938 clock.p = clock.p1 * clock.p2;
939
940 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
941 clock.n) << 22, refclk * clock.m1);
942
943 if (m2 > INT_MAX/clock.m1)
944 continue;
945
946 clock.m2 = m2;
947
948 chv_calc_dpll_params(refclk, &clock);
949
950 if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
951 continue;
952
953 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
954 best_error_ppm, &error_ppm))
955 continue;
956
957 *best_clock = clock;
958 best_error_ppm = error_ppm;
959 found = true;
960 }
961 }
962
963 return found;
964 }
965
966 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
967 struct dpll *best_clock)
968 {
969 int refclk = 100000;
970 const struct intel_limit *limit = &intel_limits_bxt;
971
972 return chv_find_best_dpll(limit, crtc_state,
973 target_clock, refclk, NULL, best_clock);
974 }
975
976 bool intel_crtc_active(struct intel_crtc *crtc)
977 {
978 /* Be paranoid as we can arrive here with only partial
979 * state retrieved from the hardware during setup.
980 *
981 * We can ditch the adjusted_mode.crtc_clock check as soon
982 * as Haswell has gained clock readout/fastboot support.
983 *
984 * We can ditch the crtc->primary->fb check as soon as we can
985 * properly reconstruct framebuffers.
986 *
987 * FIXME: The intel_crtc->active here should be switched to
988 * crtc->state->active once we have proper CRTC states wired up
989 * for atomic.
990 */
991 return crtc->active && crtc->base.primary->state->fb &&
992 crtc->config->base.adjusted_mode.crtc_clock;
993 }
994
995 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
996 enum pipe pipe)
997 {
998 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
999
1000 return crtc->config->cpu_transcoder;
1001 }
1002
1003 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
1004 enum pipe pipe)
1005 {
1006 i915_reg_t reg = PIPEDSL(pipe);
1007 u32 line1, line2;
1008 u32 line_mask;
1009
1010 if (IS_GEN2(dev_priv))
1011 line_mask = DSL_LINEMASK_GEN2;
1012 else
1013 line_mask = DSL_LINEMASK_GEN3;
1014
1015 line1 = I915_READ(reg) & line_mask;
1016 msleep(5);
1017 line2 = I915_READ(reg) & line_mask;
1018
1019 return line1 != line2;
1020 }
1021
1022 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
1023 {
1024 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1025 enum pipe pipe = crtc->pipe;
1026
1027 /* Wait for the display line to settle/start moving */
1028 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
1029 DRM_ERROR("pipe %c scanline %s wait timed out\n",
1030 pipe_name(pipe), onoff(state));
1031 }
1032
1033 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
1034 {
1035 wait_for_pipe_scanline_moving(crtc, false);
1036 }
1037
1038 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
1039 {
1040 wait_for_pipe_scanline_moving(crtc, true);
1041 }
1042
1043 /*
1044 * intel_wait_for_pipe_off - wait for pipe to turn off
1045 * @crtc: crtc whose pipe to wait for
1046 *
1047 * After disabling a pipe, we can't wait for vblank in the usual way,
1048 * spinning on the vblank interrupt status bit, since we won't actually
1049 * see an interrupt when the pipe is disabled.
1050 *
1051 * On Gen4 and above:
1052 * wait for the pipe register state bit to turn off
1053 *
1054 * Otherwise:
1055 * wait for the display line value to settle (it usually
1056 * ends up stopping at the start of the next frame).
1057 *
1058 */
1059 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1060 {
1061 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1062 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1063
1064 if (INTEL_GEN(dev_priv) >= 4) {
1065 i915_reg_t reg = PIPECONF(cpu_transcoder);
1066
1067 /* Wait for the Pipe State to go off */
1068 if (intel_wait_for_register(dev_priv,
1069 reg, I965_PIPECONF_ACTIVE, 0,
1070 100))
1071 WARN(1, "pipe_off wait timed out\n");
1072 } else {
1073 intel_wait_for_pipe_scanline_stopped(crtc);
1074 }
1075 }
1076
1077 /* Only for pre-ILK configs */
1078 void assert_pll(struct drm_i915_private *dev_priv,
1079 enum pipe pipe, bool state)
1080 {
1081 u32 val;
1082 bool cur_state;
1083
1084 val = I915_READ(DPLL(pipe));
1085 cur_state = !!(val & DPLL_VCO_ENABLE);
1086 I915_STATE_WARN(cur_state != state,
1087 "PLL state assertion failure (expected %s, current %s)\n",
1088 onoff(state), onoff(cur_state));
1089 }
1090
1091 /* XXX: the dsi pll is shared between MIPI DSI ports */
1092 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1093 {
1094 u32 val;
1095 bool cur_state;
1096
1097 mutex_lock(&dev_priv->sb_lock);
1098 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1099 mutex_unlock(&dev_priv->sb_lock);
1100
1101 cur_state = val & DSI_PLL_VCO_EN;
1102 I915_STATE_WARN(cur_state != state,
1103 "DSI PLL state assertion failure (expected %s, current %s)\n",
1104 onoff(state), onoff(cur_state));
1105 }
1106
1107 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1108 enum pipe pipe, bool state)
1109 {
1110 bool cur_state;
1111 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1112 pipe);
1113
1114 if (HAS_DDI(dev_priv)) {
1115 /* DDI does not have a specific FDI_TX register */
1116 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1117 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1118 } else {
1119 u32 val = I915_READ(FDI_TX_CTL(pipe));
1120 cur_state = !!(val & FDI_TX_ENABLE);
1121 }
1122 I915_STATE_WARN(cur_state != state,
1123 "FDI TX state assertion failure (expected %s, current %s)\n",
1124 onoff(state), onoff(cur_state));
1125 }
1126 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1127 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1128
1129 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1130 enum pipe pipe, bool state)
1131 {
1132 u32 val;
1133 bool cur_state;
1134
1135 val = I915_READ(FDI_RX_CTL(pipe));
1136 cur_state = !!(val & FDI_RX_ENABLE);
1137 I915_STATE_WARN(cur_state != state,
1138 "FDI RX state assertion failure (expected %s, current %s)\n",
1139 onoff(state), onoff(cur_state));
1140 }
1141 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1142 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1143
1144 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1145 enum pipe pipe)
1146 {
1147 u32 val;
1148
1149 /* ILK FDI PLL is always enabled */
1150 if (IS_GEN5(dev_priv))
1151 return;
1152
1153 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1154 if (HAS_DDI(dev_priv))
1155 return;
1156
1157 val = I915_READ(FDI_TX_CTL(pipe));
1158 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1159 }
1160
1161 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1162 enum pipe pipe, bool state)
1163 {
1164 u32 val;
1165 bool cur_state;
1166
1167 val = I915_READ(FDI_RX_CTL(pipe));
1168 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1169 I915_STATE_WARN(cur_state != state,
1170 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1171 onoff(state), onoff(cur_state));
1172 }
1173
1174 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1175 {
1176 i915_reg_t pp_reg;
1177 u32 val;
1178 enum pipe panel_pipe = PIPE_A;
1179 bool locked = true;
1180
1181 if (WARN_ON(HAS_DDI(dev_priv)))
1182 return;
1183
1184 if (HAS_PCH_SPLIT(dev_priv)) {
1185 u32 port_sel;
1186
1187 pp_reg = PP_CONTROL(0);
1188 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1189
1190 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1191 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1192 panel_pipe = PIPE_B;
1193 /* XXX: else fix for eDP */
1194 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1195 /* presumably write lock depends on pipe, not port select */
1196 pp_reg = PP_CONTROL(pipe);
1197 panel_pipe = pipe;
1198 } else {
1199 pp_reg = PP_CONTROL(0);
1200 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1201 panel_pipe = PIPE_B;
1202 }
1203
1204 val = I915_READ(pp_reg);
1205 if (!(val & PANEL_POWER_ON) ||
1206 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1207 locked = false;
1208
1209 I915_STATE_WARN(panel_pipe == pipe && locked,
1210 "panel assertion failure, pipe %c regs locked\n",
1211 pipe_name(pipe));
1212 }
1213
1214 void assert_pipe(struct drm_i915_private *dev_priv,
1215 enum pipe pipe, bool state)
1216 {
1217 bool cur_state;
1218 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1219 pipe);
1220 enum intel_display_power_domain power_domain;
1221
1222 /* we keep both pipes enabled on 830 */
1223 if (IS_I830(dev_priv))
1224 state = true;
1225
1226 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1227 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1228 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1229 cur_state = !!(val & PIPECONF_ENABLE);
1230
1231 intel_display_power_put(dev_priv, power_domain);
1232 } else {
1233 cur_state = false;
1234 }
1235
1236 I915_STATE_WARN(cur_state != state,
1237 "pipe %c assertion failure (expected %s, current %s)\n",
1238 pipe_name(pipe), onoff(state), onoff(cur_state));
1239 }
1240
1241 static void assert_plane(struct intel_plane *plane, bool state)
1242 {
1243 bool cur_state = plane->get_hw_state(plane);
1244
1245 I915_STATE_WARN(cur_state != state,
1246 "%s assertion failure (expected %s, current %s)\n",
1247 plane->base.name, onoff(state), onoff(cur_state));
1248 }
1249
1250 #define assert_plane_enabled(p) assert_plane(p, true)
1251 #define assert_plane_disabled(p) assert_plane(p, false)
1252
1253 static void assert_planes_disabled(struct intel_crtc *crtc)
1254 {
1255 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1256 struct intel_plane *plane;
1257
1258 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
1259 assert_plane_disabled(plane);
1260 }
1261
1262 static void assert_vblank_disabled(struct drm_crtc *crtc)
1263 {
1264 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1265 drm_crtc_vblank_put(crtc);
1266 }
1267
1268 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1269 enum pipe pipe)
1270 {
1271 u32 val;
1272 bool enabled;
1273
1274 val = I915_READ(PCH_TRANSCONF(pipe));
1275 enabled = !!(val & TRANS_ENABLE);
1276 I915_STATE_WARN(enabled,
1277 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1278 pipe_name(pipe));
1279 }
1280
1281 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1282 enum pipe pipe, u32 port_sel, u32 val)
1283 {
1284 if ((val & DP_PORT_EN) == 0)
1285 return false;
1286
1287 if (HAS_PCH_CPT(dev_priv)) {
1288 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1289 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1290 return false;
1291 } else if (IS_CHERRYVIEW(dev_priv)) {
1292 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1293 return false;
1294 } else {
1295 if ((val & DP_PIPE_MASK) != (pipe << 30))
1296 return false;
1297 }
1298 return true;
1299 }
1300
1301 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1302 enum pipe pipe, u32 val)
1303 {
1304 if ((val & SDVO_ENABLE) == 0)
1305 return false;
1306
1307 if (HAS_PCH_CPT(dev_priv)) {
1308 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1309 return false;
1310 } else if (IS_CHERRYVIEW(dev_priv)) {
1311 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1312 return false;
1313 } else {
1314 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1315 return false;
1316 }
1317 return true;
1318 }
1319
1320 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1321 enum pipe pipe, u32 val)
1322 {
1323 if ((val & LVDS_PORT_EN) == 0)
1324 return false;
1325
1326 if (HAS_PCH_CPT(dev_priv)) {
1327 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1328 return false;
1329 } else {
1330 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1331 return false;
1332 }
1333 return true;
1334 }
1335
1336 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1337 enum pipe pipe, u32 val)
1338 {
1339 if ((val & ADPA_DAC_ENABLE) == 0)
1340 return false;
1341 if (HAS_PCH_CPT(dev_priv)) {
1342 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1343 return false;
1344 } else {
1345 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1346 return false;
1347 }
1348 return true;
1349 }
1350
1351 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1352 enum pipe pipe, i915_reg_t reg,
1353 u32 port_sel)
1354 {
1355 u32 val = I915_READ(reg);
1356 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1357 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1358 i915_mmio_reg_offset(reg), pipe_name(pipe));
1359
1360 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1361 && (val & DP_PIPEB_SELECT),
1362 "IBX PCH dp port still using transcoder B\n");
1363 }
1364
1365 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1366 enum pipe pipe, i915_reg_t reg)
1367 {
1368 u32 val = I915_READ(reg);
1369 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1370 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1371 i915_mmio_reg_offset(reg), pipe_name(pipe));
1372
1373 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1374 && (val & SDVO_PIPE_B_SELECT),
1375 "IBX PCH hdmi port still using transcoder B\n");
1376 }
1377
1378 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1379 enum pipe pipe)
1380 {
1381 u32 val;
1382
1383 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1384 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1385 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1386
1387 val = I915_READ(PCH_ADPA);
1388 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1389 "PCH VGA enabled on transcoder %c, should be disabled\n",
1390 pipe_name(pipe));
1391
1392 val = I915_READ(PCH_LVDS);
1393 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1394 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1395 pipe_name(pipe));
1396
1397 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1398 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1399 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1400 }
1401
1402 static void _vlv_enable_pll(struct intel_crtc *crtc,
1403 const struct intel_crtc_state *pipe_config)
1404 {
1405 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1406 enum pipe pipe = crtc->pipe;
1407
1408 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1409 POSTING_READ(DPLL(pipe));
1410 udelay(150);
1411
1412 if (intel_wait_for_register(dev_priv,
1413 DPLL(pipe),
1414 DPLL_LOCK_VLV,
1415 DPLL_LOCK_VLV,
1416 1))
1417 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1418 }
1419
1420 static void vlv_enable_pll(struct intel_crtc *crtc,
1421 const struct intel_crtc_state *pipe_config)
1422 {
1423 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1424 enum pipe pipe = crtc->pipe;
1425
1426 assert_pipe_disabled(dev_priv, pipe);
1427
1428 /* PLL is protected by panel, make sure we can write it */
1429 assert_panel_unlocked(dev_priv, pipe);
1430
1431 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1432 _vlv_enable_pll(crtc, pipe_config);
1433
1434 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1435 POSTING_READ(DPLL_MD(pipe));
1436 }
1437
1438
1439 static void _chv_enable_pll(struct intel_crtc *crtc,
1440 const struct intel_crtc_state *pipe_config)
1441 {
1442 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1443 enum pipe pipe = crtc->pipe;
1444 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1445 u32 tmp;
1446
1447 mutex_lock(&dev_priv->sb_lock);
1448
1449 /* Enable back the 10bit clock to display controller */
1450 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1451 tmp |= DPIO_DCLKP_EN;
1452 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1453
1454 mutex_unlock(&dev_priv->sb_lock);
1455
1456 /*
1457 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1458 */
1459 udelay(1);
1460
1461 /* Enable PLL */
1462 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1463
1464 /* Check PLL is locked */
1465 if (intel_wait_for_register(dev_priv,
1466 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1467 1))
1468 DRM_ERROR("PLL %d failed to lock\n", pipe);
1469 }
1470
1471 static void chv_enable_pll(struct intel_crtc *crtc,
1472 const struct intel_crtc_state *pipe_config)
1473 {
1474 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1475 enum pipe pipe = crtc->pipe;
1476
1477 assert_pipe_disabled(dev_priv, pipe);
1478
1479 /* PLL is protected by panel, make sure we can write it */
1480 assert_panel_unlocked(dev_priv, pipe);
1481
1482 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1483 _chv_enable_pll(crtc, pipe_config);
1484
1485 if (pipe != PIPE_A) {
1486 /*
1487 * WaPixelRepeatModeFixForC0:chv
1488 *
1489 * DPLLCMD is AWOL. Use chicken bits to propagate
1490 * the value from DPLLBMD to either pipe B or C.
1491 */
1492 I915_WRITE(CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1493 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1494 I915_WRITE(CBR4_VLV, 0);
1495 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1496
1497 /*
1498 * DPLLB VGA mode also seems to cause problems.
1499 * We should always have it disabled.
1500 */
1501 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1502 } else {
1503 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1504 POSTING_READ(DPLL_MD(pipe));
1505 }
1506 }
1507
1508 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1509 {
1510 struct intel_crtc *crtc;
1511 int count = 0;
1512
1513 for_each_intel_crtc(&dev_priv->drm, crtc) {
1514 count += crtc->base.state->active &&
1515 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1516 }
1517
1518 return count;
1519 }
1520
1521 static void i9xx_enable_pll(struct intel_crtc *crtc,
1522 const struct intel_crtc_state *crtc_state)
1523 {
1524 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1525 i915_reg_t reg = DPLL(crtc->pipe);
1526 u32 dpll = crtc_state->dpll_hw_state.dpll;
1527 int i;
1528
1529 assert_pipe_disabled(dev_priv, crtc->pipe);
1530
1531 /* PLL is protected by panel, make sure we can write it */
1532 if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1533 assert_panel_unlocked(dev_priv, crtc->pipe);
1534
1535 /* Enable DVO 2x clock on both PLLs if necessary */
1536 if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1537 /*
1538 * It appears to be important that we don't enable this
1539 * for the current pipe before otherwise configuring the
1540 * PLL. No idea how this should be handled if multiple
1541 * DVO outputs are enabled simultaneosly.
1542 */
1543 dpll |= DPLL_DVO_2X_MODE;
1544 I915_WRITE(DPLL(!crtc->pipe),
1545 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1546 }
1547
1548 /*
1549 * Apparently we need to have VGA mode enabled prior to changing
1550 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1551 * dividers, even though the register value does change.
1552 */
1553 I915_WRITE(reg, 0);
1554
1555 I915_WRITE(reg, dpll);
1556
1557 /* Wait for the clocks to stabilize. */
1558 POSTING_READ(reg);
1559 udelay(150);
1560
1561 if (INTEL_GEN(dev_priv) >= 4) {
1562 I915_WRITE(DPLL_MD(crtc->pipe),
1563 crtc_state->dpll_hw_state.dpll_md);
1564 } else {
1565 /* The pixel multiplier can only be updated once the
1566 * DPLL is enabled and the clocks are stable.
1567 *
1568 * So write it again.
1569 */
1570 I915_WRITE(reg, dpll);
1571 }
1572
1573 /* We do this three times for luck */
1574 for (i = 0; i < 3; i++) {
1575 I915_WRITE(reg, dpll);
1576 POSTING_READ(reg);
1577 udelay(150); /* wait for warmup */
1578 }
1579 }
1580
1581 static void i9xx_disable_pll(struct intel_crtc *crtc)
1582 {
1583 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1584 enum pipe pipe = crtc->pipe;
1585
1586 /* Disable DVO 2x clock on both PLLs if necessary */
1587 if (IS_I830(dev_priv) &&
1588 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1589 !intel_num_dvo_pipes(dev_priv)) {
1590 I915_WRITE(DPLL(PIPE_B),
1591 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1592 I915_WRITE(DPLL(PIPE_A),
1593 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1594 }
1595
1596 /* Don't disable pipe or pipe PLLs if needed */
1597 if (IS_I830(dev_priv))
1598 return;
1599
1600 /* Make sure the pipe isn't still relying on us */
1601 assert_pipe_disabled(dev_priv, pipe);
1602
1603 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1604 POSTING_READ(DPLL(pipe));
1605 }
1606
1607 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1608 {
1609 u32 val;
1610
1611 /* Make sure the pipe isn't still relying on us */
1612 assert_pipe_disabled(dev_priv, pipe);
1613
1614 val = DPLL_INTEGRATED_REF_CLK_VLV |
1615 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1616 if (pipe != PIPE_A)
1617 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1618
1619 I915_WRITE(DPLL(pipe), val);
1620 POSTING_READ(DPLL(pipe));
1621 }
1622
1623 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1624 {
1625 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1626 u32 val;
1627
1628 /* Make sure the pipe isn't still relying on us */
1629 assert_pipe_disabled(dev_priv, pipe);
1630
1631 val = DPLL_SSC_REF_CLK_CHV |
1632 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1633 if (pipe != PIPE_A)
1634 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1635
1636 I915_WRITE(DPLL(pipe), val);
1637 POSTING_READ(DPLL(pipe));
1638
1639 mutex_lock(&dev_priv->sb_lock);
1640
1641 /* Disable 10bit clock to display controller */
1642 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1643 val &= ~DPIO_DCLKP_EN;
1644 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1645
1646 mutex_unlock(&dev_priv->sb_lock);
1647 }
1648
1649 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1650 struct intel_digital_port *dport,
1651 unsigned int expected_mask)
1652 {
1653 u32 port_mask;
1654 i915_reg_t dpll_reg;
1655
1656 switch (dport->port) {
1657 case PORT_B:
1658 port_mask = DPLL_PORTB_READY_MASK;
1659 dpll_reg = DPLL(0);
1660 break;
1661 case PORT_C:
1662 port_mask = DPLL_PORTC_READY_MASK;
1663 dpll_reg = DPLL(0);
1664 expected_mask <<= 4;
1665 break;
1666 case PORT_D:
1667 port_mask = DPLL_PORTD_READY_MASK;
1668 dpll_reg = DPIO_PHY_STATUS;
1669 break;
1670 default:
1671 BUG();
1672 }
1673
1674 if (intel_wait_for_register(dev_priv,
1675 dpll_reg, port_mask, expected_mask,
1676 1000))
1677 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1678 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1679 }
1680
1681 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1682 enum pipe pipe)
1683 {
1684 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1685 pipe);
1686 i915_reg_t reg;
1687 uint32_t val, pipeconf_val;
1688
1689 /* Make sure PCH DPLL is enabled */
1690 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1691
1692 /* FDI must be feeding us bits for PCH ports */
1693 assert_fdi_tx_enabled(dev_priv, pipe);
1694 assert_fdi_rx_enabled(dev_priv, pipe);
1695
1696 if (HAS_PCH_CPT(dev_priv)) {
1697 /* Workaround: Set the timing override bit before enabling the
1698 * pch transcoder. */
1699 reg = TRANS_CHICKEN2(pipe);
1700 val = I915_READ(reg);
1701 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1702 I915_WRITE(reg, val);
1703 }
1704
1705 reg = PCH_TRANSCONF(pipe);
1706 val = I915_READ(reg);
1707 pipeconf_val = I915_READ(PIPECONF(pipe));
1708
1709 if (HAS_PCH_IBX(dev_priv)) {
1710 /*
1711 * Make the BPC in transcoder be consistent with
1712 * that in pipeconf reg. For HDMI we must use 8bpc
1713 * here for both 8bpc and 12bpc.
1714 */
1715 val &= ~PIPECONF_BPC_MASK;
1716 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1717 val |= PIPECONF_8BPC;
1718 else
1719 val |= pipeconf_val & PIPECONF_BPC_MASK;
1720 }
1721
1722 val &= ~TRANS_INTERLACE_MASK;
1723 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1724 if (HAS_PCH_IBX(dev_priv) &&
1725 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1726 val |= TRANS_LEGACY_INTERLACED_ILK;
1727 else
1728 val |= TRANS_INTERLACED;
1729 else
1730 val |= TRANS_PROGRESSIVE;
1731
1732 I915_WRITE(reg, val | TRANS_ENABLE);
1733 if (intel_wait_for_register(dev_priv,
1734 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1735 100))
1736 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1737 }
1738
1739 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1740 enum transcoder cpu_transcoder)
1741 {
1742 u32 val, pipeconf_val;
1743
1744 /* FDI must be feeding us bits for PCH ports */
1745 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1746 assert_fdi_rx_enabled(dev_priv, PIPE_A);
1747
1748 /* Workaround: set timing override bit. */
1749 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1750 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1751 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1752
1753 val = TRANS_ENABLE;
1754 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1755
1756 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1757 PIPECONF_INTERLACED_ILK)
1758 val |= TRANS_INTERLACED;
1759 else
1760 val |= TRANS_PROGRESSIVE;
1761
1762 I915_WRITE(LPT_TRANSCONF, val);
1763 if (intel_wait_for_register(dev_priv,
1764 LPT_TRANSCONF,
1765 TRANS_STATE_ENABLE,
1766 TRANS_STATE_ENABLE,
1767 100))
1768 DRM_ERROR("Failed to enable PCH transcoder\n");
1769 }
1770
1771 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1772 enum pipe pipe)
1773 {
1774 i915_reg_t reg;
1775 uint32_t val;
1776
1777 /* FDI relies on the transcoder */
1778 assert_fdi_tx_disabled(dev_priv, pipe);
1779 assert_fdi_rx_disabled(dev_priv, pipe);
1780
1781 /* Ports must be off as well */
1782 assert_pch_ports_disabled(dev_priv, pipe);
1783
1784 reg = PCH_TRANSCONF(pipe);
1785 val = I915_READ(reg);
1786 val &= ~TRANS_ENABLE;
1787 I915_WRITE(reg, val);
1788 /* wait for PCH transcoder off, transcoder state */
1789 if (intel_wait_for_register(dev_priv,
1790 reg, TRANS_STATE_ENABLE, 0,
1791 50))
1792 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1793
1794 if (HAS_PCH_CPT(dev_priv)) {
1795 /* Workaround: Clear the timing override chicken bit again. */
1796 reg = TRANS_CHICKEN2(pipe);
1797 val = I915_READ(reg);
1798 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1799 I915_WRITE(reg, val);
1800 }
1801 }
1802
1803 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1804 {
1805 u32 val;
1806
1807 val = I915_READ(LPT_TRANSCONF);
1808 val &= ~TRANS_ENABLE;
1809 I915_WRITE(LPT_TRANSCONF, val);
1810 /* wait for PCH transcoder off, transcoder state */
1811 if (intel_wait_for_register(dev_priv,
1812 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1813 50))
1814 DRM_ERROR("Failed to disable PCH transcoder\n");
1815
1816 /* Workaround: clear timing override bit. */
1817 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1818 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1819 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1820 }
1821
1822 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1823 {
1824 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1825
1826 WARN_ON(!crtc->config->has_pch_encoder);
1827
1828 if (HAS_PCH_LPT(dev_priv))
1829 return PIPE_A;
1830 else
1831 return crtc->pipe;
1832 }
1833
1834 /**
1835 * intel_enable_pipe - enable a pipe, asserting requirements
1836 * @crtc: crtc responsible for the pipe
1837 *
1838 * Enable @crtc's pipe, making sure that various hardware specific requirements
1839 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1840 */
1841 static void intel_enable_pipe(struct intel_crtc *crtc)
1842 {
1843 struct drm_device *dev = crtc->base.dev;
1844 struct drm_i915_private *dev_priv = to_i915(dev);
1845 enum pipe pipe = crtc->pipe;
1846 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1847 i915_reg_t reg;
1848 u32 val;
1849
1850 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1851
1852 assert_planes_disabled(crtc);
1853
1854 /*
1855 * A pipe without a PLL won't actually be able to drive bits from
1856 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1857 * need the check.
1858 */
1859 if (HAS_GMCH_DISPLAY(dev_priv)) {
1860 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1861 assert_dsi_pll_enabled(dev_priv);
1862 else
1863 assert_pll_enabled(dev_priv, pipe);
1864 } else {
1865 if (crtc->config->has_pch_encoder) {
1866 /* if driving the PCH, we need FDI enabled */
1867 assert_fdi_rx_pll_enabled(dev_priv,
1868 intel_crtc_pch_transcoder(crtc));
1869 assert_fdi_tx_pll_enabled(dev_priv,
1870 (enum pipe) cpu_transcoder);
1871 }
1872 /* FIXME: assert CPU port conditions for SNB+ */
1873 }
1874
1875 reg = PIPECONF(cpu_transcoder);
1876 val = I915_READ(reg);
1877 if (val & PIPECONF_ENABLE) {
1878 /* we keep both pipes enabled on 830 */
1879 WARN_ON(!IS_I830(dev_priv));
1880 return;
1881 }
1882
1883 I915_WRITE(reg, val | PIPECONF_ENABLE);
1884 POSTING_READ(reg);
1885
1886 /*
1887 * Until the pipe starts PIPEDSL reads will return a stale value,
1888 * which causes an apparent vblank timestamp jump when PIPEDSL
1889 * resets to its proper value. That also messes up the frame count
1890 * when it's derived from the timestamps. So let's wait for the
1891 * pipe to start properly before we call drm_crtc_vblank_on()
1892 */
1893 if (dev->max_vblank_count == 0)
1894 intel_wait_for_pipe_scanline_moving(crtc);
1895 }
1896
1897 /**
1898 * intel_disable_pipe - disable a pipe, asserting requirements
1899 * @crtc: crtc whose pipes is to be disabled
1900 *
1901 * Disable the pipe of @crtc, making sure that various hardware
1902 * specific requirements are met, if applicable, e.g. plane
1903 * disabled, panel fitter off, etc.
1904 *
1905 * Will wait until the pipe has shut down before returning.
1906 */
1907 static void intel_disable_pipe(struct intel_crtc *crtc)
1908 {
1909 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1910 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1911 enum pipe pipe = crtc->pipe;
1912 i915_reg_t reg;
1913 u32 val;
1914
1915 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
1916
1917 /*
1918 * Make sure planes won't keep trying to pump pixels to us,
1919 * or we might hang the display.
1920 */
1921 assert_planes_disabled(crtc);
1922
1923 reg = PIPECONF(cpu_transcoder);
1924 val = I915_READ(reg);
1925 if ((val & PIPECONF_ENABLE) == 0)
1926 return;
1927
1928 /*
1929 * Double wide has implications for planes
1930 * so best keep it disabled when not needed.
1931 */
1932 if (crtc->config->double_wide)
1933 val &= ~PIPECONF_DOUBLE_WIDE;
1934
1935 /* Don't disable pipe or pipe PLLs if needed */
1936 if (!IS_I830(dev_priv))
1937 val &= ~PIPECONF_ENABLE;
1938
1939 I915_WRITE(reg, val);
1940 if ((val & PIPECONF_ENABLE) == 0)
1941 intel_wait_for_pipe_off(crtc);
1942 }
1943
1944 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1945 {
1946 return IS_GEN2(dev_priv) ? 2048 : 4096;
1947 }
1948
1949 static unsigned int
1950 intel_tile_width_bytes(const struct drm_framebuffer *fb, int plane)
1951 {
1952 struct drm_i915_private *dev_priv = to_i915(fb->dev);
1953 unsigned int cpp = fb->format->cpp[plane];
1954
1955 switch (fb->modifier) {
1956 case DRM_FORMAT_MOD_LINEAR:
1957 return cpp;
1958 case I915_FORMAT_MOD_X_TILED:
1959 if (IS_GEN2(dev_priv))
1960 return 128;
1961 else
1962 return 512;
1963 case I915_FORMAT_MOD_Y_TILED_CCS:
1964 if (plane == 1)
1965 return 128;
1966 /* fall through */
1967 case I915_FORMAT_MOD_Y_TILED:
1968 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
1969 return 128;
1970 else
1971 return 512;
1972 case I915_FORMAT_MOD_Yf_TILED_CCS:
1973 if (plane == 1)
1974 return 128;
1975 /* fall through */
1976 case I915_FORMAT_MOD_Yf_TILED:
1977 switch (cpp) {
1978 case 1:
1979 return 64;
1980 case 2:
1981 case 4:
1982 return 128;
1983 case 8:
1984 case 16:
1985 return 256;
1986 default:
1987 MISSING_CASE(cpp);
1988 return cpp;
1989 }
1990 break;
1991 default:
1992 MISSING_CASE(fb->modifier);
1993 return cpp;
1994 }
1995 }
1996
1997 static unsigned int
1998 intel_tile_height(const struct drm_framebuffer *fb, int plane)
1999 {
2000 if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
2001 return 1;
2002 else
2003 return intel_tile_size(to_i915(fb->dev)) /
2004 intel_tile_width_bytes(fb, plane);
2005 }
2006
2007 /* Return the tile dimensions in pixel units */
2008 static void intel_tile_dims(const struct drm_framebuffer *fb, int plane,
2009 unsigned int *tile_width,
2010 unsigned int *tile_height)
2011 {
2012 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, plane);
2013 unsigned int cpp = fb->format->cpp[plane];
2014
2015 *tile_width = tile_width_bytes / cpp;
2016 *tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes;
2017 }
2018
2019 unsigned int
2020 intel_fb_align_height(const struct drm_framebuffer *fb,
2021 int plane, unsigned int height)
2022 {
2023 unsigned int tile_height = intel_tile_height(fb, plane);
2024
2025 return ALIGN(height, tile_height);
2026 }
2027
2028 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2029 {
2030 unsigned int size = 0;
2031 int i;
2032
2033 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2034 size += rot_info->plane[i].width * rot_info->plane[i].height;
2035
2036 return size;
2037 }
2038
2039 static void
2040 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2041 const struct drm_framebuffer *fb,
2042 unsigned int rotation)
2043 {
2044 view->type = I915_GGTT_VIEW_NORMAL;
2045 if (drm_rotation_90_or_270(rotation)) {
2046 view->type = I915_GGTT_VIEW_ROTATED;
2047 view->rotated = to_intel_framebuffer(fb)->rot_info;
2048 }
2049 }
2050
2051 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2052 {
2053 if (IS_I830(dev_priv))
2054 return 16 * 1024;
2055 else if (IS_I85X(dev_priv))
2056 return 256;
2057 else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2058 return 32;
2059 else
2060 return 4 * 1024;
2061 }
2062
2063 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2064 {
2065 if (INTEL_INFO(dev_priv)->gen >= 9)
2066 return 256 * 1024;
2067 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2068 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2069 return 128 * 1024;
2070 else if (INTEL_INFO(dev_priv)->gen >= 4)
2071 return 4 * 1024;
2072 else
2073 return 0;
2074 }
2075
2076 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2077 int plane)
2078 {
2079 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2080
2081 /* AUX_DIST needs only 4K alignment */
2082 if (plane == 1)
2083 return 4096;
2084
2085 switch (fb->modifier) {
2086 case DRM_FORMAT_MOD_LINEAR:
2087 return intel_linear_alignment(dev_priv);
2088 case I915_FORMAT_MOD_X_TILED:
2089 if (INTEL_GEN(dev_priv) >= 9)
2090 return 256 * 1024;
2091 return 0;
2092 case I915_FORMAT_MOD_Y_TILED_CCS:
2093 case I915_FORMAT_MOD_Yf_TILED_CCS:
2094 case I915_FORMAT_MOD_Y_TILED:
2095 case I915_FORMAT_MOD_Yf_TILED:
2096 return 1 * 1024 * 1024;
2097 default:
2098 MISSING_CASE(fb->modifier);
2099 return 0;
2100 }
2101 }
2102
2103 struct i915_vma *
2104 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2105 {
2106 struct drm_device *dev = fb->dev;
2107 struct drm_i915_private *dev_priv = to_i915(dev);
2108 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2109 struct i915_ggtt_view view;
2110 struct i915_vma *vma;
2111 u32 alignment;
2112
2113 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2114
2115 alignment = intel_surf_alignment(fb, 0);
2116
2117 intel_fill_fb_ggtt_view(&view, fb, rotation);
2118
2119 /* Note that the w/a also requires 64 PTE of padding following the
2120 * bo. We currently fill all unused PTE with the shadow page and so
2121 * we should always have valid PTE following the scanout preventing
2122 * the VT-d warning.
2123 */
2124 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2125 alignment = 256 * 1024;
2126
2127 /*
2128 * Global gtt pte registers are special registers which actually forward
2129 * writes to a chunk of system memory. Which means that there is no risk
2130 * that the register values disappear as soon as we call
2131 * intel_runtime_pm_put(), so it is correct to wrap only the
2132 * pin/unpin/fence and not more.
2133 */
2134 intel_runtime_pm_get(dev_priv);
2135
2136 atomic_inc(&dev_priv->gpu_error.pending_fb_pin);
2137
2138 vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2139 if (IS_ERR(vma))
2140 goto err;
2141
2142 if (i915_vma_is_map_and_fenceable(vma)) {
2143 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2144 * fence, whereas 965+ only requires a fence if using
2145 * framebuffer compression. For simplicity, we always, when
2146 * possible, install a fence as the cost is not that onerous.
2147 *
2148 * If we fail to fence the tiled scanout, then either the
2149 * modeset will reject the change (which is highly unlikely as
2150 * the affected systems, all but one, do not have unmappable
2151 * space) or we will not be able to enable full powersaving
2152 * techniques (also likely not to apply due to various limits
2153 * FBC and the like impose on the size of the buffer, which
2154 * presumably we violated anyway with this unmappable buffer).
2155 * Anyway, it is presumably better to stumble onwards with
2156 * something and try to run the system in a "less than optimal"
2157 * mode that matches the user configuration.
2158 */
2159 i915_vma_pin_fence(vma);
2160 }
2161
2162 i915_vma_get(vma);
2163 err:
2164 atomic_dec(&dev_priv->gpu_error.pending_fb_pin);
2165
2166 intel_runtime_pm_put(dev_priv);
2167 return vma;
2168 }
2169
2170 void intel_unpin_fb_vma(struct i915_vma *vma)
2171 {
2172 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
2173
2174 i915_vma_unpin_fence(vma);
2175 i915_gem_object_unpin_from_display_plane(vma);
2176 i915_vma_put(vma);
2177 }
2178
2179 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2180 unsigned int rotation)
2181 {
2182 if (drm_rotation_90_or_270(rotation))
2183 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2184 else
2185 return fb->pitches[plane];
2186 }
2187
2188 /*
2189 * Convert the x/y offsets into a linear offset.
2190 * Only valid with 0/180 degree rotation, which is fine since linear
2191 * offset is only used with linear buffers on pre-hsw and tiled buffers
2192 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2193 */
2194 u32 intel_fb_xy_to_linear(int x, int y,
2195 const struct intel_plane_state *state,
2196 int plane)
2197 {
2198 const struct drm_framebuffer *fb = state->base.fb;
2199 unsigned int cpp = fb->format->cpp[plane];
2200 unsigned int pitch = fb->pitches[plane];
2201
2202 return y * pitch + x * cpp;
2203 }
2204
2205 /*
2206 * Add the x/y offsets derived from fb->offsets[] to the user
2207 * specified plane src x/y offsets. The resulting x/y offsets
2208 * specify the start of scanout from the beginning of the gtt mapping.
2209 */
2210 void intel_add_fb_offsets(int *x, int *y,
2211 const struct intel_plane_state *state,
2212 int plane)
2213
2214 {
2215 const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2216 unsigned int rotation = state->base.rotation;
2217
2218 if (drm_rotation_90_or_270(rotation)) {
2219 *x += intel_fb->rotated[plane].x;
2220 *y += intel_fb->rotated[plane].y;
2221 } else {
2222 *x += intel_fb->normal[plane].x;
2223 *y += intel_fb->normal[plane].y;
2224 }
2225 }
2226
2227 static u32 __intel_adjust_tile_offset(int *x, int *y,
2228 unsigned int tile_width,
2229 unsigned int tile_height,
2230 unsigned int tile_size,
2231 unsigned int pitch_tiles,
2232 u32 old_offset,
2233 u32 new_offset)
2234 {
2235 unsigned int pitch_pixels = pitch_tiles * tile_width;
2236 unsigned int tiles;
2237
2238 WARN_ON(old_offset & (tile_size - 1));
2239 WARN_ON(new_offset & (tile_size - 1));
2240 WARN_ON(new_offset > old_offset);
2241
2242 tiles = (old_offset - new_offset) / tile_size;
2243
2244 *y += tiles / pitch_tiles * tile_height;
2245 *x += tiles % pitch_tiles * tile_width;
2246
2247 /* minimize x in case it got needlessly big */
2248 *y += *x / pitch_pixels * tile_height;
2249 *x %= pitch_pixels;
2250
2251 return new_offset;
2252 }
2253
2254 static u32 _intel_adjust_tile_offset(int *x, int *y,
2255 const struct drm_framebuffer *fb, int plane,
2256 unsigned int rotation,
2257 u32 old_offset, u32 new_offset)
2258 {
2259 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2260 unsigned int cpp = fb->format->cpp[plane];
2261 unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2262
2263 WARN_ON(new_offset > old_offset);
2264
2265 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2266 unsigned int tile_size, tile_width, tile_height;
2267 unsigned int pitch_tiles;
2268
2269 tile_size = intel_tile_size(dev_priv);
2270 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2271
2272 if (drm_rotation_90_or_270(rotation)) {
2273 pitch_tiles = pitch / tile_height;
2274 swap(tile_width, tile_height);
2275 } else {
2276 pitch_tiles = pitch / (tile_width * cpp);
2277 }
2278
2279 __intel_adjust_tile_offset(x, y, tile_width, tile_height,
2280 tile_size, pitch_tiles,
2281 old_offset, new_offset);
2282 } else {
2283 old_offset += *y * pitch + *x * cpp;
2284
2285 *y = (old_offset - new_offset) / pitch;
2286 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2287 }
2288
2289 return new_offset;
2290 }
2291
2292 /*
2293 * Adjust the tile offset by moving the difference into
2294 * the x/y offsets.
2295 */
2296 static u32 intel_adjust_tile_offset(int *x, int *y,
2297 const struct intel_plane_state *state, int plane,
2298 u32 old_offset, u32 new_offset)
2299 {
2300 return _intel_adjust_tile_offset(x, y, state->base.fb, plane,
2301 state->base.rotation,
2302 old_offset, new_offset);
2303 }
2304
2305 /*
2306 * Computes the linear offset to the base tile and adjusts
2307 * x, y. bytes per pixel is assumed to be a power-of-two.
2308 *
2309 * In the 90/270 rotated case, x and y are assumed
2310 * to be already rotated to match the rotated GTT view, and
2311 * pitch is the tile_height aligned framebuffer height.
2312 *
2313 * This function is used when computing the derived information
2314 * under intel_framebuffer, so using any of that information
2315 * here is not allowed. Anything under drm_framebuffer can be
2316 * used. This is why the user has to pass in the pitch since it
2317 * is specified in the rotated orientation.
2318 */
2319 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2320 int *x, int *y,
2321 const struct drm_framebuffer *fb, int plane,
2322 unsigned int pitch,
2323 unsigned int rotation,
2324 u32 alignment)
2325 {
2326 uint64_t fb_modifier = fb->modifier;
2327 unsigned int cpp = fb->format->cpp[plane];
2328 u32 offset, offset_aligned;
2329
2330 if (alignment)
2331 alignment--;
2332
2333 if (fb_modifier != DRM_FORMAT_MOD_LINEAR) {
2334 unsigned int tile_size, tile_width, tile_height;
2335 unsigned int tile_rows, tiles, pitch_tiles;
2336
2337 tile_size = intel_tile_size(dev_priv);
2338 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2339
2340 if (drm_rotation_90_or_270(rotation)) {
2341 pitch_tiles = pitch / tile_height;
2342 swap(tile_width, tile_height);
2343 } else {
2344 pitch_tiles = pitch / (tile_width * cpp);
2345 }
2346
2347 tile_rows = *y / tile_height;
2348 *y %= tile_height;
2349
2350 tiles = *x / tile_width;
2351 *x %= tile_width;
2352
2353 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2354 offset_aligned = offset & ~alignment;
2355
2356 __intel_adjust_tile_offset(x, y, tile_width, tile_height,
2357 tile_size, pitch_tiles,
2358 offset, offset_aligned);
2359 } else {
2360 offset = *y * pitch + *x * cpp;
2361 offset_aligned = offset & ~alignment;
2362
2363 *y = (offset & alignment) / pitch;
2364 *x = ((offset & alignment) - *y * pitch) / cpp;
2365 }
2366
2367 return offset_aligned;
2368 }
2369
2370 u32 intel_compute_tile_offset(int *x, int *y,
2371 const struct intel_plane_state *state,
2372 int plane)
2373 {
2374 struct intel_plane *intel_plane = to_intel_plane(state->base.plane);
2375 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2376 const struct drm_framebuffer *fb = state->base.fb;
2377 unsigned int rotation = state->base.rotation;
2378 int pitch = intel_fb_pitch(fb, plane, rotation);
2379 u32 alignment;
2380
2381 if (intel_plane->id == PLANE_CURSOR)
2382 alignment = intel_cursor_alignment(dev_priv);
2383 else
2384 alignment = intel_surf_alignment(fb, plane);
2385
2386 return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2387 rotation, alignment);
2388 }
2389
2390 /* Convert the fb->offset[] into x/y offsets */
2391 static int intel_fb_offset_to_xy(int *x, int *y,
2392 const struct drm_framebuffer *fb, int plane)
2393 {
2394 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2395
2396 if (fb->modifier != DRM_FORMAT_MOD_LINEAR &&
2397 fb->offsets[plane] % intel_tile_size(dev_priv))
2398 return -EINVAL;
2399
2400 *x = 0;
2401 *y = 0;
2402
2403 _intel_adjust_tile_offset(x, y,
2404 fb, plane, DRM_MODE_ROTATE_0,
2405 fb->offsets[plane], 0);
2406
2407 return 0;
2408 }
2409
2410 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2411 {
2412 switch (fb_modifier) {
2413 case I915_FORMAT_MOD_X_TILED:
2414 return I915_TILING_X;
2415 case I915_FORMAT_MOD_Y_TILED:
2416 case I915_FORMAT_MOD_Y_TILED_CCS:
2417 return I915_TILING_Y;
2418 default:
2419 return I915_TILING_NONE;
2420 }
2421 }
2422
2423 static const struct drm_format_info ccs_formats[] = {
2424 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2425 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2426 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2427 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2428 };
2429
2430 static const struct drm_format_info *
2431 lookup_format_info(const struct drm_format_info formats[],
2432 int num_formats, u32 format)
2433 {
2434 int i;
2435
2436 for (i = 0; i < num_formats; i++) {
2437 if (formats[i].format == format)
2438 return &formats[i];
2439 }
2440
2441 return NULL;
2442 }
2443
2444 static const struct drm_format_info *
2445 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
2446 {
2447 switch (cmd->modifier[0]) {
2448 case I915_FORMAT_MOD_Y_TILED_CCS:
2449 case I915_FORMAT_MOD_Yf_TILED_CCS:
2450 return lookup_format_info(ccs_formats,
2451 ARRAY_SIZE(ccs_formats),
2452 cmd->pixel_format);
2453 default:
2454 return NULL;
2455 }
2456 }
2457
2458 static int
2459 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2460 struct drm_framebuffer *fb)
2461 {
2462 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2463 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2464 u32 gtt_offset_rotated = 0;
2465 unsigned int max_size = 0;
2466 int i, num_planes = fb->format->num_planes;
2467 unsigned int tile_size = intel_tile_size(dev_priv);
2468
2469 for (i = 0; i < num_planes; i++) {
2470 unsigned int width, height;
2471 unsigned int cpp, size;
2472 u32 offset;
2473 int x, y;
2474 int ret;
2475
2476 cpp = fb->format->cpp[i];
2477 width = drm_framebuffer_plane_width(fb->width, fb, i);
2478 height = drm_framebuffer_plane_height(fb->height, fb, i);
2479
2480 ret = intel_fb_offset_to_xy(&x, &y, fb, i);
2481 if (ret) {
2482 DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2483 i, fb->offsets[i]);
2484 return ret;
2485 }
2486
2487 if ((fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
2488 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS) && i == 1) {
2489 int hsub = fb->format->hsub;
2490 int vsub = fb->format->vsub;
2491 int tile_width, tile_height;
2492 int main_x, main_y;
2493 int ccs_x, ccs_y;
2494
2495 intel_tile_dims(fb, i, &tile_width, &tile_height);
2496 tile_width *= hsub;
2497 tile_height *= vsub;
2498
2499 ccs_x = (x * hsub) % tile_width;
2500 ccs_y = (y * vsub) % tile_height;
2501 main_x = intel_fb->normal[0].x % tile_width;
2502 main_y = intel_fb->normal[0].y % tile_height;
2503
2504 /*
2505 * CCS doesn't have its own x/y offset register, so the intra CCS tile
2506 * x/y offsets must match between CCS and the main surface.
2507 */
2508 if (main_x != ccs_x || main_y != ccs_y) {
2509 DRM_DEBUG_KMS("Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n",
2510 main_x, main_y,
2511 ccs_x, ccs_y,
2512 intel_fb->normal[0].x,
2513 intel_fb->normal[0].y,
2514 x, y);
2515 return -EINVAL;
2516 }
2517 }
2518
2519 /*
2520 * The fence (if used) is aligned to the start of the object
2521 * so having the framebuffer wrap around across the edge of the
2522 * fenced region doesn't really work. We have no API to configure
2523 * the fence start offset within the object (nor could we probably
2524 * on gen2/3). So it's just easier if we just require that the
2525 * fb layout agrees with the fence layout. We already check that the
2526 * fb stride matches the fence stride elsewhere.
2527 */
2528 if (i == 0 && i915_gem_object_is_tiled(intel_fb->obj) &&
2529 (x + width) * cpp > fb->pitches[i]) {
2530 DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2531 i, fb->offsets[i]);
2532 return -EINVAL;
2533 }
2534
2535 /*
2536 * First pixel of the framebuffer from
2537 * the start of the normal gtt mapping.
2538 */
2539 intel_fb->normal[i].x = x;
2540 intel_fb->normal[i].y = y;
2541
2542 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2543 fb, i, fb->pitches[i],
2544 DRM_MODE_ROTATE_0, tile_size);
2545 offset /= tile_size;
2546
2547 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2548 unsigned int tile_width, tile_height;
2549 unsigned int pitch_tiles;
2550 struct drm_rect r;
2551
2552 intel_tile_dims(fb, i, &tile_width, &tile_height);
2553
2554 rot_info->plane[i].offset = offset;
2555 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2556 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2557 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2558
2559 intel_fb->rotated[i].pitch =
2560 rot_info->plane[i].height * tile_height;
2561
2562 /* how many tiles does this plane need */
2563 size = rot_info->plane[i].stride * rot_info->plane[i].height;
2564 /*
2565 * If the plane isn't horizontally tile aligned,
2566 * we need one more tile.
2567 */
2568 if (x != 0)
2569 size++;
2570
2571 /* rotate the x/y offsets to match the GTT view */
2572 r.x1 = x;
2573 r.y1 = y;
2574 r.x2 = x + width;
2575 r.y2 = y + height;
2576 drm_rect_rotate(&r,
2577 rot_info->plane[i].width * tile_width,
2578 rot_info->plane[i].height * tile_height,
2579 DRM_MODE_ROTATE_270);
2580 x = r.x1;
2581 y = r.y1;
2582
2583 /* rotate the tile dimensions to match the GTT view */
2584 pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2585 swap(tile_width, tile_height);
2586
2587 /*
2588 * We only keep the x/y offsets, so push all of the
2589 * gtt offset into the x/y offsets.
2590 */
2591 __intel_adjust_tile_offset(&x, &y,
2592 tile_width, tile_height,
2593 tile_size, pitch_tiles,
2594 gtt_offset_rotated * tile_size, 0);
2595
2596 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2597
2598 /*
2599 * First pixel of the framebuffer from
2600 * the start of the rotated gtt mapping.
2601 */
2602 intel_fb->rotated[i].x = x;
2603 intel_fb->rotated[i].y = y;
2604 } else {
2605 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2606 x * cpp, tile_size);
2607 }
2608
2609 /* how many tiles in total needed in the bo */
2610 max_size = max(max_size, offset + size);
2611 }
2612
2613 if (max_size * tile_size > intel_fb->obj->base.size) {
2614 DRM_DEBUG_KMS("fb too big for bo (need %u bytes, have %zu bytes)\n",
2615 max_size * tile_size, intel_fb->obj->base.size);
2616 return -EINVAL;
2617 }
2618
2619 return 0;
2620 }
2621
2622 static int i9xx_format_to_fourcc(int format)
2623 {
2624 switch (format) {
2625 case DISPPLANE_8BPP:
2626 return DRM_FORMAT_C8;
2627 case DISPPLANE_BGRX555:
2628 return DRM_FORMAT_XRGB1555;
2629 case DISPPLANE_BGRX565:
2630 return DRM_FORMAT_RGB565;
2631 default:
2632 case DISPPLANE_BGRX888:
2633 return DRM_FORMAT_XRGB8888;
2634 case DISPPLANE_RGBX888:
2635 return DRM_FORMAT_XBGR8888;
2636 case DISPPLANE_BGRX101010:
2637 return DRM_FORMAT_XRGB2101010;
2638 case DISPPLANE_RGBX101010:
2639 return DRM_FORMAT_XBGR2101010;
2640 }
2641 }
2642
2643 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2644 {
2645 switch (format) {
2646 case PLANE_CTL_FORMAT_RGB_565:
2647 return DRM_FORMAT_RGB565;
2648 default:
2649 case PLANE_CTL_FORMAT_XRGB_8888:
2650 if (rgb_order) {
2651 if (alpha)
2652 return DRM_FORMAT_ABGR8888;
2653 else
2654 return DRM_FORMAT_XBGR8888;
2655 } else {
2656 if (alpha)
2657 return DRM_FORMAT_ARGB8888;
2658 else
2659 return DRM_FORMAT_XRGB8888;
2660 }
2661 case PLANE_CTL_FORMAT_XRGB_2101010:
2662 if (rgb_order)
2663 return DRM_FORMAT_XBGR2101010;
2664 else
2665 return DRM_FORMAT_XRGB2101010;
2666 }
2667 }
2668
2669 static bool
2670 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2671 struct intel_initial_plane_config *plane_config)
2672 {
2673 struct drm_device *dev = crtc->base.dev;
2674 struct drm_i915_private *dev_priv = to_i915(dev);
2675 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2676 struct drm_i915_gem_object *obj = NULL;
2677 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2678 struct drm_framebuffer *fb = &plane_config->fb->base;
2679 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2680 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2681 PAGE_SIZE);
2682
2683 size_aligned -= base_aligned;
2684
2685 if (plane_config->size == 0)
2686 return false;
2687
2688 /* If the FB is too big, just don't use it since fbdev is not very
2689 * important and we should probably use that space with FBC or other
2690 * features. */
2691 if (size_aligned * 2 > ggtt->stolen_usable_size)
2692 return false;
2693
2694 mutex_lock(&dev->struct_mutex);
2695 obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
2696 base_aligned,
2697 base_aligned,
2698 size_aligned);
2699 mutex_unlock(&dev->struct_mutex);
2700 if (!obj)
2701 return false;
2702
2703 if (plane_config->tiling == I915_TILING_X)
2704 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2705
2706 mode_cmd.pixel_format = fb->format->format;
2707 mode_cmd.width = fb->width;
2708 mode_cmd.height = fb->height;
2709 mode_cmd.pitches[0] = fb->pitches[0];
2710 mode_cmd.modifier[0] = fb->modifier;
2711 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2712
2713 if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
2714 DRM_DEBUG_KMS("intel fb init failed\n");
2715 goto out_unref_obj;
2716 }
2717
2718
2719 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2720 return true;
2721
2722 out_unref_obj:
2723 i915_gem_object_put(obj);
2724 return false;
2725 }
2726
2727 static void
2728 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
2729 struct intel_plane_state *plane_state,
2730 bool visible)
2731 {
2732 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2733
2734 plane_state->base.visible = visible;
2735
2736 /* FIXME pre-g4x don't work like this */
2737 if (visible) {
2738 crtc_state->base.plane_mask |= BIT(drm_plane_index(&plane->base));
2739 crtc_state->active_planes |= BIT(plane->id);
2740 } else {
2741 crtc_state->base.plane_mask &= ~BIT(drm_plane_index(&plane->base));
2742 crtc_state->active_planes &= ~BIT(plane->id);
2743 }
2744
2745 DRM_DEBUG_KMS("%s active planes 0x%x\n",
2746 crtc_state->base.crtc->name,
2747 crtc_state->active_planes);
2748 }
2749
2750 static void intel_plane_disable_noatomic(struct intel_crtc *crtc,
2751 struct intel_plane *plane)
2752 {
2753 struct intel_crtc_state *crtc_state =
2754 to_intel_crtc_state(crtc->base.state);
2755 struct intel_plane_state *plane_state =
2756 to_intel_plane_state(plane->base.state);
2757
2758 intel_set_plane_visible(crtc_state, plane_state, false);
2759
2760 if (plane->id == PLANE_PRIMARY)
2761 intel_pre_disable_primary_noatomic(&crtc->base);
2762
2763 trace_intel_disable_plane(&plane->base, crtc);
2764 plane->disable_plane(plane, crtc);
2765 }
2766
2767 static void
2768 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2769 struct intel_initial_plane_config *plane_config)
2770 {
2771 struct drm_device *dev = intel_crtc->base.dev;
2772 struct drm_i915_private *dev_priv = to_i915(dev);
2773 struct drm_crtc *c;
2774 struct drm_i915_gem_object *obj;
2775 struct drm_plane *primary = intel_crtc->base.primary;
2776 struct drm_plane_state *plane_state = primary->state;
2777 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2778 struct intel_plane *intel_plane = to_intel_plane(primary);
2779 struct intel_plane_state *intel_state =
2780 to_intel_plane_state(plane_state);
2781 struct drm_framebuffer *fb;
2782
2783 if (!plane_config->fb)
2784 return;
2785
2786 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2787 fb = &plane_config->fb->base;
2788 goto valid_fb;
2789 }
2790
2791 kfree(plane_config->fb);
2792
2793 /*
2794 * Failed to alloc the obj, check to see if we should share
2795 * an fb with another CRTC instead
2796 */
2797 for_each_crtc(dev, c) {
2798 struct intel_plane_state *state;
2799
2800 if (c == &intel_crtc->base)
2801 continue;
2802
2803 if (!to_intel_crtc(c)->active)
2804 continue;
2805
2806 state = to_intel_plane_state(c->primary->state);
2807 if (!state->vma)
2808 continue;
2809
2810 if (intel_plane_ggtt_offset(state) == plane_config->base) {
2811 fb = c->primary->fb;
2812 drm_framebuffer_get(fb);
2813 goto valid_fb;
2814 }
2815 }
2816
2817 /*
2818 * We've failed to reconstruct the BIOS FB. Current display state
2819 * indicates that the primary plane is visible, but has a NULL FB,
2820 * which will lead to problems later if we don't fix it up. The
2821 * simplest solution is to just disable the primary plane now and
2822 * pretend the BIOS never had it enabled.
2823 */
2824 intel_plane_disable_noatomic(intel_crtc, intel_plane);
2825
2826 return;
2827
2828 valid_fb:
2829 mutex_lock(&dev->struct_mutex);
2830 intel_state->vma =
2831 intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
2832 mutex_unlock(&dev->struct_mutex);
2833 if (IS_ERR(intel_state->vma)) {
2834 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
2835 intel_crtc->pipe, PTR_ERR(intel_state->vma));
2836
2837 intel_state->vma = NULL;
2838 drm_framebuffer_put(fb);
2839 return;
2840 }
2841
2842 plane_state->src_x = 0;
2843 plane_state->src_y = 0;
2844 plane_state->src_w = fb->width << 16;
2845 plane_state->src_h = fb->height << 16;
2846
2847 plane_state->crtc_x = 0;
2848 plane_state->crtc_y = 0;
2849 plane_state->crtc_w = fb->width;
2850 plane_state->crtc_h = fb->height;
2851
2852 intel_state->base.src = drm_plane_state_src(plane_state);
2853 intel_state->base.dst = drm_plane_state_dest(plane_state);
2854
2855 obj = intel_fb_obj(fb);
2856 if (i915_gem_object_is_tiled(obj))
2857 dev_priv->preserve_bios_swizzle = true;
2858
2859 drm_framebuffer_get(fb);
2860 primary->fb = primary->state->fb = fb;
2861 primary->crtc = primary->state->crtc = &intel_crtc->base;
2862
2863 intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2864 to_intel_plane_state(plane_state),
2865 true);
2866
2867 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2868 &obj->frontbuffer_bits);
2869 }
2870
2871 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2872 unsigned int rotation)
2873 {
2874 int cpp = fb->format->cpp[plane];
2875
2876 switch (fb->modifier) {
2877 case DRM_FORMAT_MOD_LINEAR:
2878 case I915_FORMAT_MOD_X_TILED:
2879 switch (cpp) {
2880 case 8:
2881 return 4096;
2882 case 4:
2883 case 2:
2884 case 1:
2885 return 8192;
2886 default:
2887 MISSING_CASE(cpp);
2888 break;
2889 }
2890 break;
2891 case I915_FORMAT_MOD_Y_TILED_CCS:
2892 case I915_FORMAT_MOD_Yf_TILED_CCS:
2893 /* FIXME AUX plane? */
2894 case I915_FORMAT_MOD_Y_TILED:
2895 case I915_FORMAT_MOD_Yf_TILED:
2896 switch (cpp) {
2897 case 8:
2898 return 2048;
2899 case 4:
2900 return 4096;
2901 case 2:
2902 case 1:
2903 return 8192;
2904 default:
2905 MISSING_CASE(cpp);
2906 break;
2907 }
2908 break;
2909 default:
2910 MISSING_CASE(fb->modifier);
2911 }
2912
2913 return 2048;
2914 }
2915
2916 static bool skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state,
2917 int main_x, int main_y, u32 main_offset)
2918 {
2919 const struct drm_framebuffer *fb = plane_state->base.fb;
2920 int hsub = fb->format->hsub;
2921 int vsub = fb->format->vsub;
2922 int aux_x = plane_state->aux.x;
2923 int aux_y = plane_state->aux.y;
2924 u32 aux_offset = plane_state->aux.offset;
2925 u32 alignment = intel_surf_alignment(fb, 1);
2926
2927 while (aux_offset >= main_offset && aux_y <= main_y) {
2928 int x, y;
2929
2930 if (aux_x == main_x && aux_y == main_y)
2931 break;
2932
2933 if (aux_offset == 0)
2934 break;
2935
2936 x = aux_x / hsub;
2937 y = aux_y / vsub;
2938 aux_offset = intel_adjust_tile_offset(&x, &y, plane_state, 1,
2939 aux_offset, aux_offset - alignment);
2940 aux_x = x * hsub + aux_x % hsub;
2941 aux_y = y * vsub + aux_y % vsub;
2942 }
2943
2944 if (aux_x != main_x || aux_y != main_y)
2945 return false;
2946
2947 plane_state->aux.offset = aux_offset;
2948 plane_state->aux.x = aux_x;
2949 plane_state->aux.y = aux_y;
2950
2951 return true;
2952 }
2953
2954 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2955 {
2956 const struct drm_framebuffer *fb = plane_state->base.fb;
2957 unsigned int rotation = plane_state->base.rotation;
2958 int x = plane_state->base.src.x1 >> 16;
2959 int y = plane_state->base.src.y1 >> 16;
2960 int w = drm_rect_width(&plane_state->base.src) >> 16;
2961 int h = drm_rect_height(&plane_state->base.src) >> 16;
2962 int max_width = skl_max_plane_width(fb, 0, rotation);
2963 int max_height = 4096;
2964 u32 alignment, offset, aux_offset = plane_state->aux.offset;
2965
2966 if (w > max_width || h > max_height) {
2967 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2968 w, h, max_width, max_height);
2969 return -EINVAL;
2970 }
2971
2972 intel_add_fb_offsets(&x, &y, plane_state, 0);
2973 offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2974 alignment = intel_surf_alignment(fb, 0);
2975
2976 /*
2977 * AUX surface offset is specified as the distance from the
2978 * main surface offset, and it must be non-negative. Make
2979 * sure that is what we will get.
2980 */
2981 if (offset > aux_offset)
2982 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2983 offset, aux_offset & ~(alignment - 1));
2984
2985 /*
2986 * When using an X-tiled surface, the plane blows up
2987 * if the x offset + width exceed the stride.
2988 *
2989 * TODO: linear and Y-tiled seem fine, Yf untested,
2990 */
2991 if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
2992 int cpp = fb->format->cpp[0];
2993
2994 while ((x + w) * cpp > fb->pitches[0]) {
2995 if (offset == 0) {
2996 DRM_DEBUG_KMS("Unable to find suitable display surface offset due to X-tiling\n");
2997 return -EINVAL;
2998 }
2999
3000 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
3001 offset, offset - alignment);
3002 }
3003 }
3004
3005 /*
3006 * CCS AUX surface doesn't have its own x/y offsets, we must make sure
3007 * they match with the main surface x/y offsets.
3008 */
3009 if (fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
3010 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS) {
3011 while (!skl_check_main_ccs_coordinates(plane_state, x, y, offset)) {
3012 if (offset == 0)
3013 break;
3014
3015 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
3016 offset, offset - alignment);
3017 }
3018
3019 if (x != plane_state->aux.x || y != plane_state->aux.y) {
3020 DRM_DEBUG_KMS("Unable to find suitable display surface offset due to CCS\n");
3021 return -EINVAL;
3022 }
3023 }
3024
3025 plane_state->main.offset = offset;
3026 plane_state->main.x = x;
3027 plane_state->main.y = y;
3028
3029 return 0;
3030 }
3031
3032 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
3033 {
3034 const struct drm_framebuffer *fb = plane_state->base.fb;
3035 unsigned int rotation = plane_state->base.rotation;
3036 int max_width = skl_max_plane_width(fb, 1, rotation);
3037 int max_height = 4096;
3038 int x = plane_state->base.src.x1 >> 17;
3039 int y = plane_state->base.src.y1 >> 17;
3040 int w = drm_rect_width(&plane_state->base.src) >> 17;
3041 int h = drm_rect_height(&plane_state->base.src) >> 17;
3042 u32 offset;
3043
3044 intel_add_fb_offsets(&x, &y, plane_state, 1);
3045 offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
3046
3047 /* FIXME not quite sure how/if these apply to the chroma plane */
3048 if (w > max_width || h > max_height) {
3049 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
3050 w, h, max_width, max_height);
3051 return -EINVAL;
3052 }
3053
3054 plane_state->aux.offset = offset;
3055 plane_state->aux.x = x;
3056 plane_state->aux.y = y;
3057
3058 return 0;
3059 }
3060
3061 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state)
3062 {
3063 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
3064 struct intel_crtc *crtc = to_intel_crtc(plane_state->base.crtc);
3065 const struct drm_framebuffer *fb = plane_state->base.fb;
3066 int src_x = plane_state->base.src.x1 >> 16;
3067 int src_y = plane_state->base.src.y1 >> 16;
3068 int hsub = fb->format->hsub;
3069 int vsub = fb->format->vsub;
3070 int x = src_x / hsub;
3071 int y = src_y / vsub;
3072 u32 offset;
3073
3074 switch (plane->id) {
3075 case PLANE_PRIMARY:
3076 case PLANE_SPRITE0:
3077 break;
3078 default:
3079 DRM_DEBUG_KMS("RC support only on plane 1 and 2\n");
3080 return -EINVAL;
3081 }
3082
3083 if (crtc->pipe == PIPE_C) {
3084 DRM_DEBUG_KMS("No RC support on pipe C\n");
3085 return -EINVAL;
3086 }
3087
3088 if (plane_state->base.rotation & ~(DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180)) {
3089 DRM_DEBUG_KMS("RC support only with 0/180 degree rotation %x\n",
3090 plane_state->base.rotation);
3091 return -EINVAL;
3092 }
3093
3094 intel_add_fb_offsets(&x, &y, plane_state, 1);
3095 offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
3096
3097 plane_state->aux.offset = offset;
3098 plane_state->aux.x = x * hsub + src_x % hsub;
3099 plane_state->aux.y = y * vsub + src_y % vsub;
3100
3101 return 0;
3102 }
3103
3104 int skl_check_plane_surface(struct intel_plane_state *plane_state)
3105 {
3106 const struct drm_framebuffer *fb = plane_state->base.fb;
3107 unsigned int rotation = plane_state->base.rotation;
3108 int ret;
3109
3110 if (!plane_state->base.visible)
3111 return 0;
3112
3113 /* Rotate src coordinates to match rotated GTT view */
3114 if (drm_rotation_90_or_270(rotation))
3115 drm_rect_rotate(&plane_state->base.src,
3116 fb->width << 16, fb->height << 16,
3117 DRM_MODE_ROTATE_270);
3118
3119 /*
3120 * Handle the AUX surface first since
3121 * the main surface setup depends on it.
3122 */
3123 if (fb->format->format == DRM_FORMAT_NV12) {
3124 ret = skl_check_nv12_aux_surface(plane_state);
3125 if (ret)
3126 return ret;
3127 } else if (fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
3128 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS) {
3129 ret = skl_check_ccs_aux_surface(plane_state);
3130 if (ret)
3131 return ret;
3132 } else {
3133 plane_state->aux.offset = ~0xfff;
3134 plane_state->aux.x = 0;
3135 plane_state->aux.y = 0;
3136 }
3137
3138 ret = skl_check_main_surface(plane_state);
3139 if (ret)
3140 return ret;
3141
3142 return 0;
3143 }
3144
3145 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
3146 const struct intel_plane_state *plane_state)
3147 {
3148 struct drm_i915_private *dev_priv =
3149 to_i915(plane_state->base.plane->dev);
3150 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3151 const struct drm_framebuffer *fb = plane_state->base.fb;
3152 unsigned int rotation = plane_state->base.rotation;
3153 u32 dspcntr;
3154
3155 dspcntr = DISPLAY_PLANE_ENABLE | DISPPLANE_GAMMA_ENABLE;
3156
3157 if (IS_G4X(dev_priv) || IS_GEN5(dev_priv) ||
3158 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
3159 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3160
3161 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3162 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3163
3164 if (INTEL_GEN(dev_priv) < 4)
3165 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
3166
3167 switch (fb->format->format) {
3168 case DRM_FORMAT_C8:
3169 dspcntr |= DISPPLANE_8BPP;
3170 break;
3171 case DRM_FORMAT_XRGB1555:
3172 dspcntr |= DISPPLANE_BGRX555;
3173 break;
3174 case DRM_FORMAT_RGB565:
3175 dspcntr |= DISPPLANE_BGRX565;
3176 break;
3177 case DRM_FORMAT_XRGB8888:
3178 dspcntr |= DISPPLANE_BGRX888;
3179 break;
3180 case DRM_FORMAT_XBGR8888:
3181 dspcntr |= DISPPLANE_RGBX888;
3182 break;
3183 case DRM_FORMAT_XRGB2101010:
3184 dspcntr |= DISPPLANE_BGRX101010;
3185 break;
3186 case DRM_FORMAT_XBGR2101010:
3187 dspcntr |= DISPPLANE_RGBX101010;
3188 break;
3189 default:
3190 MISSING_CASE(fb->format->format);
3191 return 0;
3192 }
3193
3194 if (INTEL_GEN(dev_priv) >= 4 &&
3195 fb->modifier == I915_FORMAT_MOD_X_TILED)
3196 dspcntr |= DISPPLANE_TILED;
3197
3198 if (rotation & DRM_MODE_ROTATE_180)
3199 dspcntr |= DISPPLANE_ROTATE_180;
3200
3201 if (rotation & DRM_MODE_REFLECT_X)
3202 dspcntr |= DISPPLANE_MIRROR;
3203
3204 return dspcntr;
3205 }
3206
3207 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
3208 {
3209 struct drm_i915_private *dev_priv =
3210 to_i915(plane_state->base.plane->dev);
3211 int src_x = plane_state->base.src.x1 >> 16;
3212 int src_y = plane_state->base.src.y1 >> 16;
3213 u32 offset;
3214
3215 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
3216
3217 if (INTEL_GEN(dev_priv) >= 4)
3218 offset = intel_compute_tile_offset(&src_x, &src_y,
3219 plane_state, 0);
3220 else
3221 offset = 0;
3222
3223 /* HSW/BDW do this automagically in hardware */
3224 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
3225 unsigned int rotation = plane_state->base.rotation;
3226 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3227 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3228
3229 if (rotation & DRM_MODE_ROTATE_180) {
3230 src_x += src_w - 1;
3231 src_y += src_h - 1;
3232 } else if (rotation & DRM_MODE_REFLECT_X) {
3233 src_x += src_w - 1;
3234 }
3235 }
3236
3237 plane_state->main.offset = offset;
3238 plane_state->main.x = src_x;
3239 plane_state->main.y = src_y;
3240
3241 return 0;
3242 }
3243
3244 static void i9xx_update_primary_plane(struct intel_plane *primary,
3245 const struct intel_crtc_state *crtc_state,
3246 const struct intel_plane_state *plane_state)
3247 {
3248 struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3249 const struct drm_framebuffer *fb = plane_state->base.fb;
3250 enum plane plane = primary->plane;
3251 u32 linear_offset;
3252 u32 dspcntr = plane_state->ctl;
3253 i915_reg_t reg = DSPCNTR(plane);
3254 int x = plane_state->main.x;
3255 int y = plane_state->main.y;
3256 unsigned long irqflags;
3257 u32 dspaddr_offset;
3258
3259 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3260
3261 if (INTEL_GEN(dev_priv) >= 4)
3262 dspaddr_offset = plane_state->main.offset;
3263 else
3264 dspaddr_offset = linear_offset;
3265
3266 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3267
3268 if (INTEL_GEN(dev_priv) < 4) {
3269 /* pipesrc and dspsize control the size that is scaled from,
3270 * which should always be the user's requested size.
3271 */
3272 I915_WRITE_FW(DSPSIZE(plane),
3273 ((crtc_state->pipe_src_h - 1) << 16) |
3274 (crtc_state->pipe_src_w - 1));
3275 I915_WRITE_FW(DSPPOS(plane), 0);
3276 } else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3277 I915_WRITE_FW(PRIMSIZE(plane),
3278 ((crtc_state->pipe_src_h - 1) << 16) |
3279 (crtc_state->pipe_src_w - 1));
3280 I915_WRITE_FW(PRIMPOS(plane), 0);
3281 I915_WRITE_FW(PRIMCNSTALPHA(plane), 0);
3282 }
3283
3284 I915_WRITE_FW(reg, dspcntr);
3285
3286 I915_WRITE_FW(DSPSTRIDE(plane), fb->pitches[0]);
3287 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3288 I915_WRITE_FW(DSPSURF(plane),
3289 intel_plane_ggtt_offset(plane_state) +
3290 dspaddr_offset);
3291 I915_WRITE_FW(DSPOFFSET(plane), (y << 16) | x);
3292 } else if (INTEL_GEN(dev_priv) >= 4) {
3293 I915_WRITE_FW(DSPSURF(plane),
3294 intel_plane_ggtt_offset(plane_state) +
3295 dspaddr_offset);
3296 I915_WRITE_FW(DSPTILEOFF(plane), (y << 16) | x);
3297 I915_WRITE_FW(DSPLINOFF(plane), linear_offset);
3298 } else {
3299 I915_WRITE_FW(DSPADDR(plane),
3300 intel_plane_ggtt_offset(plane_state) +
3301 dspaddr_offset);
3302 }
3303 POSTING_READ_FW(reg);
3304
3305 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3306 }
3307
3308 static void i9xx_disable_primary_plane(struct intel_plane *primary,
3309 struct intel_crtc *crtc)
3310 {
3311 struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3312 enum plane plane = primary->plane;
3313 unsigned long irqflags;
3314
3315 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3316
3317 I915_WRITE_FW(DSPCNTR(plane), 0);
3318 if (INTEL_INFO(dev_priv)->gen >= 4)
3319 I915_WRITE_FW(DSPSURF(plane), 0);
3320 else
3321 I915_WRITE_FW(DSPADDR(plane), 0);
3322 POSTING_READ_FW(DSPCNTR(plane));
3323
3324 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3325 }
3326
3327 static bool i9xx_plane_get_hw_state(struct intel_plane *primary)
3328 {
3329
3330 struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3331 enum intel_display_power_domain power_domain;
3332 enum plane plane = primary->plane;
3333 enum pipe pipe = primary->pipe;
3334 bool ret;
3335
3336 /*
3337 * Not 100% correct for planes that can move between pipes,
3338 * but that's only the case for gen2-4 which don't have any
3339 * display power wells.
3340 */
3341 power_domain = POWER_DOMAIN_PIPE(pipe);
3342 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3343 return false;
3344
3345 ret = I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE;
3346
3347 intel_display_power_put(dev_priv, power_domain);
3348
3349 return ret;
3350 }
3351
3352 static u32
3353 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int plane)
3354 {
3355 if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
3356 return 64;
3357 else
3358 return intel_tile_width_bytes(fb, plane);
3359 }
3360
3361 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3362 {
3363 struct drm_device *dev = intel_crtc->base.dev;
3364 struct drm_i915_private *dev_priv = to_i915(dev);
3365
3366 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3367 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3368 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3369 }
3370
3371 /*
3372 * This function detaches (aka. unbinds) unused scalers in hardware
3373 */
3374 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3375 {
3376 struct intel_crtc_scaler_state *scaler_state;
3377 int i;
3378
3379 scaler_state = &intel_crtc->config->scaler_state;
3380
3381 /* loop through and disable scalers that aren't in use */
3382 for (i = 0; i < intel_crtc->num_scalers; i++) {
3383 if (!scaler_state->scalers[i].in_use)
3384 skl_detach_scaler(intel_crtc, i);
3385 }
3386 }
3387
3388 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3389 unsigned int rotation)
3390 {
3391 u32 stride;
3392
3393 if (plane >= fb->format->num_planes)
3394 return 0;
3395
3396 stride = intel_fb_pitch(fb, plane, rotation);
3397
3398 /*
3399 * The stride is either expressed as a multiple of 64 bytes chunks for
3400 * linear buffers or in number of tiles for tiled buffers.
3401 */
3402 if (drm_rotation_90_or_270(rotation))
3403 stride /= intel_tile_height(fb, plane);
3404 else
3405 stride /= intel_fb_stride_alignment(fb, plane);
3406
3407 return stride;
3408 }
3409
3410 static u32 skl_plane_ctl_format(uint32_t pixel_format)
3411 {
3412 switch (pixel_format) {
3413 case DRM_FORMAT_C8:
3414 return PLANE_CTL_FORMAT_INDEXED;
3415 case DRM_FORMAT_RGB565:
3416 return PLANE_CTL_FORMAT_RGB_565;
3417 case DRM_FORMAT_XBGR8888:
3418 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3419 case DRM_FORMAT_XRGB8888:
3420 return PLANE_CTL_FORMAT_XRGB_8888;
3421 /*
3422 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3423 * to be already pre-multiplied. We need to add a knob (or a different
3424 * DRM_FORMAT) for user-space to configure that.
3425 */
3426 case DRM_FORMAT_ABGR8888:
3427 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3428 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3429 case DRM_FORMAT_ARGB8888:
3430 return PLANE_CTL_FORMAT_XRGB_8888 |
3431 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3432 case DRM_FORMAT_XRGB2101010:
3433 return PLANE_CTL_FORMAT_XRGB_2101010;
3434 case DRM_FORMAT_XBGR2101010:
3435 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3436 case DRM_FORMAT_YUYV:
3437 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3438 case DRM_FORMAT_YVYU:
3439 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3440 case DRM_FORMAT_UYVY:
3441 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3442 case DRM_FORMAT_VYUY:
3443 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3444 default:
3445 MISSING_CASE(pixel_format);
3446 }
3447
3448 return 0;
3449 }
3450
3451 static u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3452 {
3453 switch (fb_modifier) {
3454 case DRM_FORMAT_MOD_LINEAR:
3455 break;
3456 case I915_FORMAT_MOD_X_TILED:
3457 return PLANE_CTL_TILED_X;
3458 case I915_FORMAT_MOD_Y_TILED:
3459 return PLANE_CTL_TILED_Y;
3460 case I915_FORMAT_MOD_Y_TILED_CCS:
3461 return PLANE_CTL_TILED_Y | PLANE_CTL_DECOMPRESSION_ENABLE;
3462 case I915_FORMAT_MOD_Yf_TILED:
3463 return PLANE_CTL_TILED_YF;
3464 case I915_FORMAT_MOD_Yf_TILED_CCS:
3465 return PLANE_CTL_TILED_YF | PLANE_CTL_DECOMPRESSION_ENABLE;
3466 default:
3467 MISSING_CASE(fb_modifier);
3468 }
3469
3470 return 0;
3471 }
3472
3473 static u32 skl_plane_ctl_rotation(unsigned int rotation)
3474 {
3475 switch (rotation) {
3476 case DRM_MODE_ROTATE_0:
3477 break;
3478 /*
3479 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
3480 * while i915 HW rotation is clockwise, thats why this swapping.
3481 */
3482 case DRM_MODE_ROTATE_90:
3483 return PLANE_CTL_ROTATE_270;
3484 case DRM_MODE_ROTATE_180:
3485 return PLANE_CTL_ROTATE_180;
3486 case DRM_MODE_ROTATE_270:
3487 return PLANE_CTL_ROTATE_90;
3488 default:
3489 MISSING_CASE(rotation);
3490 }
3491
3492 return 0;
3493 }
3494
3495 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
3496 const struct intel_plane_state *plane_state)
3497 {
3498 struct drm_i915_private *dev_priv =
3499 to_i915(plane_state->base.plane->dev);
3500 const struct drm_framebuffer *fb = plane_state->base.fb;
3501 unsigned int rotation = plane_state->base.rotation;
3502 const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
3503 u32 plane_ctl;
3504
3505 plane_ctl = PLANE_CTL_ENABLE;
3506
3507 if (!IS_GEMINILAKE(dev_priv) && !IS_CANNONLAKE(dev_priv)) {
3508 plane_ctl |=
3509 PLANE_CTL_PIPE_GAMMA_ENABLE |
3510 PLANE_CTL_PIPE_CSC_ENABLE |
3511 PLANE_CTL_PLANE_GAMMA_DISABLE;
3512 }
3513
3514 plane_ctl |= skl_plane_ctl_format(fb->format->format);
3515 plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3516 plane_ctl |= skl_plane_ctl_rotation(rotation);
3517
3518 if (key->flags & I915_SET_COLORKEY_DESTINATION)
3519 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
3520 else if (key->flags & I915_SET_COLORKEY_SOURCE)
3521 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
3522
3523 return plane_ctl;
3524 }
3525
3526 static int
3527 __intel_display_resume(struct drm_device *dev,
3528 struct drm_atomic_state *state,
3529 struct drm_modeset_acquire_ctx *ctx)
3530 {
3531 struct drm_crtc_state *crtc_state;
3532 struct drm_crtc *crtc;
3533 int i, ret;
3534
3535 intel_modeset_setup_hw_state(dev, ctx);
3536 i915_redisable_vga(to_i915(dev));
3537
3538 if (!state)
3539 return 0;
3540
3541 /*
3542 * We've duplicated the state, pointers to the old state are invalid.
3543 *
3544 * Don't attempt to use the old state until we commit the duplicated state.
3545 */
3546 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
3547 /*
3548 * Force recalculation even if we restore
3549 * current state. With fast modeset this may not result
3550 * in a modeset when the state is compatible.
3551 */
3552 crtc_state->mode_changed = true;
3553 }
3554
3555 /* ignore any reset values/BIOS leftovers in the WM registers */
3556 if (!HAS_GMCH_DISPLAY(to_i915(dev)))
3557 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3558
3559 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
3560
3561 WARN_ON(ret == -EDEADLK);
3562 return ret;
3563 }
3564
3565 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3566 {
3567 return intel_has_gpu_reset(dev_priv) &&
3568 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3569 }
3570
3571 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3572 {
3573 struct drm_device *dev = &dev_priv->drm;
3574 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3575 struct drm_atomic_state *state;
3576 int ret;
3577
3578
3579 /* reset doesn't touch the display */
3580 if (!i915_modparams.force_reset_modeset_test &&
3581 !gpu_reset_clobbers_display(dev_priv))
3582 return;
3583
3584 /* We have a modeset vs reset deadlock, defensively unbreak it. */
3585 set_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags);
3586 wake_up_all(&dev_priv->gpu_error.wait_queue);
3587
3588 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
3589 DRM_DEBUG_KMS("Modeset potentially stuck, unbreaking through wedging\n");
3590 i915_gem_set_wedged(dev_priv);
3591 }
3592
3593 /*
3594 * Need mode_config.mutex so that we don't
3595 * trample ongoing ->detect() and whatnot.
3596 */
3597 mutex_lock(&dev->mode_config.mutex);
3598 drm_modeset_acquire_init(ctx, 0);
3599 while (1) {
3600 ret = drm_modeset_lock_all_ctx(dev, ctx);
3601 if (ret != -EDEADLK)
3602 break;
3603
3604 drm_modeset_backoff(ctx);
3605 }
3606 /*
3607 * Disabling the crtcs gracefully seems nicer. Also the
3608 * g33 docs say we should at least disable all the planes.
3609 */
3610 state = drm_atomic_helper_duplicate_state(dev, ctx);
3611 if (IS_ERR(state)) {
3612 ret = PTR_ERR(state);
3613 DRM_ERROR("Duplicating state failed with %i\n", ret);
3614 return;
3615 }
3616
3617 ret = drm_atomic_helper_disable_all(dev, ctx);
3618 if (ret) {
3619 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3620 drm_atomic_state_put(state);
3621 return;
3622 }
3623
3624 dev_priv->modeset_restore_state = state;
3625 state->acquire_ctx = ctx;
3626 }
3627
3628 void intel_finish_reset(struct drm_i915_private *dev_priv)
3629 {
3630 struct drm_device *dev = &dev_priv->drm;
3631 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3632 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3633 int ret;
3634
3635 /* reset doesn't touch the display */
3636 if (!i915_modparams.force_reset_modeset_test &&
3637 !gpu_reset_clobbers_display(dev_priv))
3638 return;
3639
3640 if (!state)
3641 goto unlock;
3642
3643 dev_priv->modeset_restore_state = NULL;
3644
3645 /* reset doesn't touch the display */
3646 if (!gpu_reset_clobbers_display(dev_priv)) {
3647 /* for testing only restore the display */
3648 ret = __intel_display_resume(dev, state, ctx);
3649 if (ret)
3650 DRM_ERROR("Restoring old state failed with %i\n", ret);
3651 } else {
3652 /*
3653 * The display has been reset as well,
3654 * so need a full re-initialization.
3655 */
3656 intel_runtime_pm_disable_interrupts(dev_priv);
3657 intel_runtime_pm_enable_interrupts(dev_priv);
3658
3659 intel_pps_unlock_regs_wa(dev_priv);
3660 intel_modeset_init_hw(dev);
3661 intel_init_clock_gating(dev_priv);
3662
3663 spin_lock_irq(&dev_priv->irq_lock);
3664 if (dev_priv->display.hpd_irq_setup)
3665 dev_priv->display.hpd_irq_setup(dev_priv);
3666 spin_unlock_irq(&dev_priv->irq_lock);
3667
3668 ret = __intel_display_resume(dev, state, ctx);
3669 if (ret)
3670 DRM_ERROR("Restoring old state failed with %i\n", ret);
3671
3672 intel_hpd_init(dev_priv);
3673 }
3674
3675 drm_atomic_state_put(state);
3676 unlock:
3677 drm_modeset_drop_locks(ctx);
3678 drm_modeset_acquire_fini(ctx);
3679 mutex_unlock(&dev->mode_config.mutex);
3680
3681 clear_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags);
3682 }
3683
3684 static void intel_update_pipe_config(const struct intel_crtc_state *old_crtc_state,
3685 const struct intel_crtc_state *new_crtc_state)
3686 {
3687 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
3688 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3689
3690 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3691 crtc->base.mode = new_crtc_state->base.mode;
3692
3693 /*
3694 * Update pipe size and adjust fitter if needed: the reason for this is
3695 * that in compute_mode_changes we check the native mode (not the pfit
3696 * mode) to see if we can flip rather than do a full mode set. In the
3697 * fastboot case, we'll flip, but if we don't update the pipesrc and
3698 * pfit state, we'll end up with a big fb scanned out into the wrong
3699 * sized surface.
3700 */
3701
3702 I915_WRITE(PIPESRC(crtc->pipe),
3703 ((new_crtc_state->pipe_src_w - 1) << 16) |
3704 (new_crtc_state->pipe_src_h - 1));
3705
3706 /* on skylake this is done by detaching scalers */
3707 if (INTEL_GEN(dev_priv) >= 9) {
3708 skl_detach_scalers(crtc);
3709
3710 if (new_crtc_state->pch_pfit.enabled)
3711 skylake_pfit_enable(crtc);
3712 } else if (HAS_PCH_SPLIT(dev_priv)) {
3713 if (new_crtc_state->pch_pfit.enabled)
3714 ironlake_pfit_enable(crtc);
3715 else if (old_crtc_state->pch_pfit.enabled)
3716 ironlake_pfit_disable(crtc, true);
3717 }
3718 }
3719
3720 static void intel_fdi_normal_train(struct intel_crtc *crtc)
3721 {
3722 struct drm_device *dev = crtc->base.dev;
3723 struct drm_i915_private *dev_priv = to_i915(dev);
3724 int pipe = crtc->pipe;
3725 i915_reg_t reg;
3726 u32 temp;
3727
3728 /* enable normal train */
3729 reg = FDI_TX_CTL(pipe);
3730 temp = I915_READ(reg);
3731 if (IS_IVYBRIDGE(dev_priv)) {
3732 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3733 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3734 } else {
3735 temp &= ~FDI_LINK_TRAIN_NONE;
3736 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3737 }
3738 I915_WRITE(reg, temp);
3739
3740 reg = FDI_RX_CTL(pipe);
3741 temp = I915_READ(reg);
3742 if (HAS_PCH_CPT(dev_priv)) {
3743 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3744 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3745 } else {
3746 temp &= ~FDI_LINK_TRAIN_NONE;
3747 temp |= FDI_LINK_TRAIN_NONE;
3748 }
3749 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3750
3751 /* wait one idle pattern time */
3752 POSTING_READ(reg);
3753 udelay(1000);
3754
3755 /* IVB wants error correction enabled */
3756 if (IS_IVYBRIDGE(dev_priv))
3757 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3758 FDI_FE_ERRC_ENABLE);
3759 }
3760
3761 /* The FDI link training functions for ILK/Ibexpeak. */
3762 static void ironlake_fdi_link_train(struct intel_crtc *crtc,
3763 const struct intel_crtc_state *crtc_state)
3764 {
3765 struct drm_device *dev = crtc->base.dev;
3766 struct drm_i915_private *dev_priv = to_i915(dev);
3767 int pipe = crtc->pipe;
3768 i915_reg_t reg;
3769 u32 temp, tries;
3770
3771 /* FDI needs bits from pipe first */
3772 assert_pipe_enabled(dev_priv, pipe);
3773
3774 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3775 for train result */
3776 reg = FDI_RX_IMR(pipe);
3777 temp = I915_READ(reg);
3778 temp &= ~FDI_RX_SYMBOL_LOCK;
3779 temp &= ~FDI_RX_BIT_LOCK;
3780 I915_WRITE(reg, temp);
3781 I915_READ(reg);
3782 udelay(150);
3783
3784 /* enable CPU FDI TX and PCH FDI RX */
3785 reg = FDI_TX_CTL(pipe);
3786 temp = I915_READ(reg);
3787 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3788 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3789 temp &= ~FDI_LINK_TRAIN_NONE;
3790 temp |= FDI_LINK_TRAIN_PATTERN_1;
3791 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3792
3793 reg = FDI_RX_CTL(pipe);
3794 temp = I915_READ(reg);
3795 temp &= ~FDI_LINK_TRAIN_NONE;
3796 temp |= FDI_LINK_TRAIN_PATTERN_1;
3797 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3798
3799 POSTING_READ(reg);
3800 udelay(150);
3801
3802 /* Ironlake workaround, enable clock pointer after FDI enable*/
3803 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3804 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3805 FDI_RX_PHASE_SYNC_POINTER_EN);
3806
3807 reg = FDI_RX_IIR(pipe);
3808 for (tries = 0; tries < 5; tries++) {
3809 temp = I915_READ(reg);
3810 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3811
3812 if ((temp & FDI_RX_BIT_LOCK)) {
3813 DRM_DEBUG_KMS("FDI train 1 done.\n");
3814 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3815 break;
3816 }
3817 }
3818 if (tries == 5)
3819 DRM_ERROR("FDI train 1 fail!\n");
3820
3821 /* Train 2 */
3822 reg = FDI_TX_CTL(pipe);
3823 temp = I915_READ(reg);
3824 temp &= ~FDI_LINK_TRAIN_NONE;
3825 temp |= FDI_LINK_TRAIN_PATTERN_2;
3826 I915_WRITE(reg, temp);
3827
3828 reg = FDI_RX_CTL(pipe);
3829 temp = I915_READ(reg);
3830 temp &= ~FDI_LINK_TRAIN_NONE;
3831 temp |= FDI_LINK_TRAIN_PATTERN_2;
3832 I915_WRITE(reg, temp);
3833
3834 POSTING_READ(reg);
3835 udelay(150);
3836
3837 reg = FDI_RX_IIR(pipe);
3838 for (tries = 0; tries < 5; tries++) {
3839 temp = I915_READ(reg);
3840 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3841
3842 if (temp & FDI_RX_SYMBOL_LOCK) {
3843 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3844 DRM_DEBUG_KMS("FDI train 2 done.\n");
3845 break;
3846 }
3847 }
3848 if (tries == 5)
3849 DRM_ERROR("FDI train 2 fail!\n");
3850
3851 DRM_DEBUG_KMS("FDI train done\n");
3852
3853 }
3854
3855 static const int snb_b_fdi_train_param[] = {
3856 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3857 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3858 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3859 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3860 };
3861
3862 /* The FDI link training functions for SNB/Cougarpoint. */
3863 static void gen6_fdi_link_train(struct intel_crtc *crtc,
3864 const struct intel_crtc_state *crtc_state)
3865 {
3866 struct drm_device *dev = crtc->base.dev;
3867 struct drm_i915_private *dev_priv = to_i915(dev);
3868 int pipe = crtc->pipe;
3869 i915_reg_t reg;
3870 u32 temp, i, retry;
3871
3872 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3873 for train result */
3874 reg = FDI_RX_IMR(pipe);
3875 temp = I915_READ(reg);
3876 temp &= ~FDI_RX_SYMBOL_LOCK;
3877 temp &= ~FDI_RX_BIT_LOCK;
3878 I915_WRITE(reg, temp);
3879
3880 POSTING_READ(reg);
3881 udelay(150);
3882
3883 /* enable CPU FDI TX and PCH FDI RX */
3884 reg = FDI_TX_CTL(pipe);
3885 temp = I915_READ(reg);
3886 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3887 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3888 temp &= ~FDI_LINK_TRAIN_NONE;
3889 temp |= FDI_LINK_TRAIN_PATTERN_1;
3890 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3891 /* SNB-B */
3892 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3893 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3894
3895 I915_WRITE(FDI_RX_MISC(pipe),
3896 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3897
3898 reg = FDI_RX_CTL(pipe);
3899 temp = I915_READ(reg);
3900 if (HAS_PCH_CPT(dev_priv)) {
3901 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3902 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3903 } else {
3904 temp &= ~FDI_LINK_TRAIN_NONE;
3905 temp |= FDI_LINK_TRAIN_PATTERN_1;
3906 }
3907 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3908
3909 POSTING_READ(reg);
3910 udelay(150);
3911
3912 for (i = 0; i < 4; i++) {
3913 reg = FDI_TX_CTL(pipe);
3914 temp = I915_READ(reg);
3915 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3916 temp |= snb_b_fdi_train_param[i];
3917 I915_WRITE(reg, temp);
3918
3919 POSTING_READ(reg);
3920 udelay(500);
3921
3922 for (retry = 0; retry < 5; retry++) {
3923 reg = FDI_RX_IIR(pipe);
3924 temp = I915_READ(reg);
3925 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3926 if (temp & FDI_RX_BIT_LOCK) {
3927 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3928 DRM_DEBUG_KMS("FDI train 1 done.\n");
3929 break;
3930 }
3931 udelay(50);
3932 }
3933 if (retry < 5)
3934 break;
3935 }
3936 if (i == 4)
3937 DRM_ERROR("FDI train 1 fail!\n");
3938
3939 /* Train 2 */
3940 reg = FDI_TX_CTL(pipe);
3941 temp = I915_READ(reg);
3942 temp &= ~FDI_LINK_TRAIN_NONE;
3943 temp |= FDI_LINK_TRAIN_PATTERN_2;
3944 if (IS_GEN6(dev_priv)) {
3945 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3946 /* SNB-B */
3947 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3948 }
3949 I915_WRITE(reg, temp);
3950
3951 reg = FDI_RX_CTL(pipe);
3952 temp = I915_READ(reg);
3953 if (HAS_PCH_CPT(dev_priv)) {
3954 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3955 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3956 } else {
3957 temp &= ~FDI_LINK_TRAIN_NONE;
3958 temp |= FDI_LINK_TRAIN_PATTERN_2;
3959 }
3960 I915_WRITE(reg, temp);
3961
3962 POSTING_READ(reg);
3963 udelay(150);
3964
3965 for (i = 0; i < 4; i++) {
3966 reg = FDI_TX_CTL(pipe);
3967 temp = I915_READ(reg);
3968 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3969 temp |= snb_b_fdi_train_param[i];
3970 I915_WRITE(reg, temp);
3971
3972 POSTING_READ(reg);
3973 udelay(500);
3974
3975 for (retry = 0; retry < 5; retry++) {
3976 reg = FDI_RX_IIR(pipe);
3977 temp = I915_READ(reg);
3978 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3979 if (temp & FDI_RX_SYMBOL_LOCK) {
3980 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3981 DRM_DEBUG_KMS("FDI train 2 done.\n");
3982 break;
3983 }
3984 udelay(50);
3985 }
3986 if (retry < 5)
3987 break;
3988 }
3989 if (i == 4)
3990 DRM_ERROR("FDI train 2 fail!\n");
3991
3992 DRM_DEBUG_KMS("FDI train done.\n");
3993 }
3994
3995 /* Manual link training for Ivy Bridge A0 parts */
3996 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
3997 const struct intel_crtc_state *crtc_state)
3998 {
3999 struct drm_device *dev = crtc->base.dev;
4000 struct drm_i915_private *dev_priv = to_i915(dev);
4001 int pipe = crtc->pipe;
4002 i915_reg_t reg;
4003 u32 temp, i, j;
4004
4005 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4006 for train result */
4007 reg = FDI_RX_IMR(pipe);
4008 temp = I915_READ(reg);
4009 temp &= ~FDI_RX_SYMBOL_LOCK;
4010 temp &= ~FDI_RX_BIT_LOCK;
4011 I915_WRITE(reg, temp);
4012
4013 POSTING_READ(reg);
4014 udelay(150);
4015
4016 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4017 I915_READ(FDI_RX_IIR(pipe)));
4018
4019 /* Try each vswing and preemphasis setting twice before moving on */
4020 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4021 /* disable first in case we need to retry */
4022 reg = FDI_TX_CTL(pipe);
4023 temp = I915_READ(reg);
4024 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4025 temp &= ~FDI_TX_ENABLE;
4026 I915_WRITE(reg, temp);
4027
4028 reg = FDI_RX_CTL(pipe);
4029 temp = I915_READ(reg);
4030 temp &= ~FDI_LINK_TRAIN_AUTO;
4031 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4032 temp &= ~FDI_RX_ENABLE;
4033 I915_WRITE(reg, temp);
4034
4035 /* enable CPU FDI TX and PCH FDI RX */
4036 reg = FDI_TX_CTL(pipe);
4037 temp = I915_READ(reg);
4038 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4039 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4040 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4041 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4042 temp |= snb_b_fdi_train_param[j/2];
4043 temp |= FDI_COMPOSITE_SYNC;
4044 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4045
4046 I915_WRITE(FDI_RX_MISC(pipe),
4047 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4048
4049 reg = FDI_RX_CTL(pipe);
4050 temp = I915_READ(reg);
4051 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4052 temp |= FDI_COMPOSITE_SYNC;
4053 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4054
4055 POSTING_READ(reg);
4056 udelay(1); /* should be 0.5us */
4057
4058 for (i = 0; i < 4; i++) {
4059 reg = FDI_RX_IIR(pipe);
4060 temp = I915_READ(reg);
4061 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4062
4063 if (temp & FDI_RX_BIT_LOCK ||
4064 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4065 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4066 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4067 i);
4068 break;
4069 }
4070 udelay(1); /* should be 0.5us */
4071 }
4072 if (i == 4) {
4073 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4074 continue;
4075 }
4076
4077 /* Train 2 */
4078 reg = FDI_TX_CTL(pipe);
4079 temp = I915_READ(reg);
4080 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4081 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4082 I915_WRITE(reg, temp);
4083
4084 reg = FDI_RX_CTL(pipe);
4085 temp = I915_READ(reg);
4086 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4087 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4088 I915_WRITE(reg, temp);
4089
4090 POSTING_READ(reg);
4091 udelay(2); /* should be 1.5us */
4092
4093 for (i = 0; i < 4; i++) {
4094 reg = FDI_RX_IIR(pipe);
4095 temp = I915_READ(reg);
4096 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4097
4098 if (temp & FDI_RX_SYMBOL_LOCK ||
4099 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4100 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4101 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4102 i);
4103 goto train_done;
4104 }
4105 udelay(2); /* should be 1.5us */
4106 }
4107 if (i == 4)
4108 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4109 }
4110
4111 train_done:
4112 DRM_DEBUG_KMS("FDI train done.\n");
4113 }
4114
4115 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4116 {
4117 struct drm_device *dev = intel_crtc->base.dev;
4118 struct drm_i915_private *dev_priv = to_i915(dev);
4119 int pipe = intel_crtc->pipe;
4120 i915_reg_t reg;
4121 u32 temp;
4122
4123 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4124 reg = FDI_RX_CTL(pipe);
4125 temp = I915_READ(reg);
4126 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4127 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4128 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4129 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4130
4131 POSTING_READ(reg);
4132 udelay(200);
4133
4134 /* Switch from Rawclk to PCDclk */
4135 temp = I915_READ(reg);
4136 I915_WRITE(reg, temp | FDI_PCDCLK);
4137
4138 POSTING_READ(reg);
4139 udelay(200);
4140
4141 /* Enable CPU FDI TX PLL, always on for Ironlake */
4142 reg = FDI_TX_CTL(pipe);
4143 temp = I915_READ(reg);
4144 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4145 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4146
4147 POSTING_READ(reg);
4148 udelay(100);
4149 }
4150 }
4151
4152 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4153 {
4154 struct drm_device *dev = intel_crtc->base.dev;
4155 struct drm_i915_private *dev_priv = to_i915(dev);
4156 int pipe = intel_crtc->pipe;
4157 i915_reg_t reg;
4158 u32 temp;
4159
4160 /* Switch from PCDclk to Rawclk */
4161 reg = FDI_RX_CTL(pipe);
4162 temp = I915_READ(reg);
4163 I915_WRITE(reg, temp & ~FDI_PCDCLK);
4164
4165 /* Disable CPU FDI TX PLL */
4166 reg = FDI_TX_CTL(pipe);
4167 temp = I915_READ(reg);
4168 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4169
4170 POSTING_READ(reg);
4171 udelay(100);
4172
4173 reg = FDI_RX_CTL(pipe);
4174 temp = I915_READ(reg);
4175 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4176
4177 /* Wait for the clocks to turn off. */
4178 POSTING_READ(reg);
4179 udelay(100);
4180 }
4181
4182 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4183 {
4184 struct drm_device *dev = crtc->dev;
4185 struct drm_i915_private *dev_priv = to_i915(dev);
4186 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4187 int pipe = intel_crtc->pipe;
4188 i915_reg_t reg;
4189 u32 temp;
4190
4191 /* disable CPU FDI tx and PCH FDI rx */
4192 reg = FDI_TX_CTL(pipe);
4193 temp = I915_READ(reg);
4194 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4195 POSTING_READ(reg);
4196
4197 reg = FDI_RX_CTL(pipe);
4198 temp = I915_READ(reg);
4199 temp &= ~(0x7 << 16);
4200 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4201 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4202
4203 POSTING_READ(reg);
4204 udelay(100);
4205
4206 /* Ironlake workaround, disable clock pointer after downing FDI */
4207 if (HAS_PCH_IBX(dev_priv))
4208 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4209
4210 /* still set train pattern 1 */
4211 reg = FDI_TX_CTL(pipe);
4212 temp = I915_READ(reg);
4213 temp &= ~FDI_LINK_TRAIN_NONE;
4214 temp |= FDI_LINK_TRAIN_PATTERN_1;
4215 I915_WRITE(reg, temp);
4216
4217 reg = FDI_RX_CTL(pipe);
4218 temp = I915_READ(reg);
4219 if (HAS_PCH_CPT(dev_priv)) {
4220 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4221 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4222 } else {
4223 temp &= ~FDI_LINK_TRAIN_NONE;
4224 temp |= FDI_LINK_TRAIN_PATTERN_1;
4225 }
4226 /* BPC in FDI rx is consistent with that in PIPECONF */
4227 temp &= ~(0x07 << 16);
4228 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4229 I915_WRITE(reg, temp);
4230
4231 POSTING_READ(reg);
4232 udelay(100);
4233 }
4234
4235 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
4236 {
4237 struct drm_crtc *crtc;
4238 bool cleanup_done;
4239
4240 drm_for_each_crtc(crtc, &dev_priv->drm) {
4241 struct drm_crtc_commit *commit;
4242 spin_lock(&crtc->commit_lock);
4243 commit = list_first_entry_or_null(&crtc->commit_list,
4244 struct drm_crtc_commit, commit_entry);
4245 cleanup_done = commit ?
4246 try_wait_for_completion(&commit->cleanup_done) : true;
4247 spin_unlock(&crtc->commit_lock);
4248
4249 if (cleanup_done)
4250 continue;
4251
4252 drm_crtc_wait_one_vblank(crtc);
4253
4254 return true;
4255 }
4256
4257 return false;
4258 }
4259
4260 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4261 {
4262 u32 temp;
4263
4264 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4265
4266 mutex_lock(&dev_priv->sb_lock);
4267
4268 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4269 temp |= SBI_SSCCTL_DISABLE;
4270 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4271
4272 mutex_unlock(&dev_priv->sb_lock);
4273 }
4274
4275 /* Program iCLKIP clock to the desired frequency */
4276 static void lpt_program_iclkip(struct intel_crtc *crtc)
4277 {
4278 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4279 int clock = crtc->config->base.adjusted_mode.crtc_clock;
4280 u32 divsel, phaseinc, auxdiv, phasedir = 0;
4281 u32 temp;
4282
4283 lpt_disable_iclkip(dev_priv);
4284
4285 /* The iCLK virtual clock root frequency is in MHz,
4286 * but the adjusted_mode->crtc_clock in in KHz. To get the
4287 * divisors, it is necessary to divide one by another, so we
4288 * convert the virtual clock precision to KHz here for higher
4289 * precision.
4290 */
4291 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4292 u32 iclk_virtual_root_freq = 172800 * 1000;
4293 u32 iclk_pi_range = 64;
4294 u32 desired_divisor;
4295
4296 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4297 clock << auxdiv);
4298 divsel = (desired_divisor / iclk_pi_range) - 2;
4299 phaseinc = desired_divisor % iclk_pi_range;
4300
4301 /*
4302 * Near 20MHz is a corner case which is
4303 * out of range for the 7-bit divisor
4304 */
4305 if (divsel <= 0x7f)
4306 break;
4307 }
4308
4309 /* This should not happen with any sane values */
4310 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4311 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4312 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4313 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4314
4315 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4316 clock,
4317 auxdiv,
4318 divsel,
4319 phasedir,
4320 phaseinc);
4321
4322 mutex_lock(&dev_priv->sb_lock);
4323
4324 /* Program SSCDIVINTPHASE6 */
4325 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4326 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4327 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4328 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4329 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4330 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4331 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4332 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4333
4334 /* Program SSCAUXDIV */
4335 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4336 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4337 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4338 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4339
4340 /* Enable modulator and associated divider */
4341 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4342 temp &= ~SBI_SSCCTL_DISABLE;
4343 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4344
4345 mutex_unlock(&dev_priv->sb_lock);
4346
4347 /* Wait for initialization time */
4348 udelay(24);
4349
4350 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4351 }
4352
4353 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4354 {
4355 u32 divsel, phaseinc, auxdiv;
4356 u32 iclk_virtual_root_freq = 172800 * 1000;
4357 u32 iclk_pi_range = 64;
4358 u32 desired_divisor;
4359 u32 temp;
4360
4361 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4362 return 0;
4363
4364 mutex_lock(&dev_priv->sb_lock);
4365
4366 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4367 if (temp & SBI_SSCCTL_DISABLE) {
4368 mutex_unlock(&dev_priv->sb_lock);
4369 return 0;
4370 }
4371
4372 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4373 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4374 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4375 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4376 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4377
4378 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4379 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4380 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4381
4382 mutex_unlock(&dev_priv->sb_lock);
4383
4384 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4385
4386 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4387 desired_divisor << auxdiv);
4388 }
4389
4390 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4391 enum pipe pch_transcoder)
4392 {
4393 struct drm_device *dev = crtc->base.dev;
4394 struct drm_i915_private *dev_priv = to_i915(dev);
4395 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4396
4397 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4398 I915_READ(HTOTAL(cpu_transcoder)));
4399 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4400 I915_READ(HBLANK(cpu_transcoder)));
4401 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4402 I915_READ(HSYNC(cpu_transcoder)));
4403
4404 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4405 I915_READ(VTOTAL(cpu_transcoder)));
4406 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4407 I915_READ(VBLANK(cpu_transcoder)));
4408 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4409 I915_READ(VSYNC(cpu_transcoder)));
4410 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4411 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4412 }
4413
4414 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4415 {
4416 struct drm_i915_private *dev_priv = to_i915(dev);
4417 uint32_t temp;
4418
4419 temp = I915_READ(SOUTH_CHICKEN1);
4420 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4421 return;
4422
4423 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4424 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4425
4426 temp &= ~FDI_BC_BIFURCATION_SELECT;
4427 if (enable)
4428 temp |= FDI_BC_BIFURCATION_SELECT;
4429
4430 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4431 I915_WRITE(SOUTH_CHICKEN1, temp);
4432 POSTING_READ(SOUTH_CHICKEN1);
4433 }
4434
4435 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4436 {
4437 struct drm_device *dev = intel_crtc->base.dev;
4438
4439 switch (intel_crtc->pipe) {
4440 case PIPE_A:
4441 break;
4442 case PIPE_B:
4443 if (intel_crtc->config->fdi_lanes > 2)
4444 cpt_set_fdi_bc_bifurcation(dev, false);
4445 else
4446 cpt_set_fdi_bc_bifurcation(dev, true);
4447
4448 break;
4449 case PIPE_C:
4450 cpt_set_fdi_bc_bifurcation(dev, true);
4451
4452 break;
4453 default:
4454 BUG();
4455 }
4456 }
4457
4458 /* Return which DP Port should be selected for Transcoder DP control */
4459 static enum port
4460 intel_trans_dp_port_sel(struct intel_crtc *crtc)
4461 {
4462 struct drm_device *dev = crtc->base.dev;
4463 struct intel_encoder *encoder;
4464
4465 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
4466 if (encoder->type == INTEL_OUTPUT_DP ||
4467 encoder->type == INTEL_OUTPUT_EDP)
4468 return enc_to_dig_port(&encoder->base)->port;
4469 }
4470
4471 return -1;
4472 }
4473
4474 /*
4475 * Enable PCH resources required for PCH ports:
4476 * - PCH PLLs
4477 * - FDI training & RX/TX
4478 * - update transcoder timings
4479 * - DP transcoding bits
4480 * - transcoder
4481 */
4482 static void ironlake_pch_enable(const struct intel_crtc_state *crtc_state)
4483 {
4484 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4485 struct drm_device *dev = crtc->base.dev;
4486 struct drm_i915_private *dev_priv = to_i915(dev);
4487 int pipe = crtc->pipe;
4488 u32 temp;
4489
4490 assert_pch_transcoder_disabled(dev_priv, pipe);
4491
4492 if (IS_IVYBRIDGE(dev_priv))
4493 ivybridge_update_fdi_bc_bifurcation(crtc);
4494
4495 /* Write the TU size bits before fdi link training, so that error
4496 * detection works. */
4497 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4498 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4499
4500 /* For PCH output, training FDI link */
4501 dev_priv->display.fdi_link_train(crtc, crtc_state);
4502
4503 /* We need to program the right clock selection before writing the pixel
4504 * mutliplier into the DPLL. */
4505 if (HAS_PCH_CPT(dev_priv)) {
4506 u32 sel;
4507
4508 temp = I915_READ(PCH_DPLL_SEL);
4509 temp |= TRANS_DPLL_ENABLE(pipe);
4510 sel = TRANS_DPLLB_SEL(pipe);
4511 if (crtc_state->shared_dpll ==
4512 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4513 temp |= sel;
4514 else
4515 temp &= ~sel;
4516 I915_WRITE(PCH_DPLL_SEL, temp);
4517 }
4518
4519 /* XXX: pch pll's can be enabled any time before we enable the PCH
4520 * transcoder, and we actually should do this to not upset any PCH
4521 * transcoder that already use the clock when we share it.
4522 *
4523 * Note that enable_shared_dpll tries to do the right thing, but
4524 * get_shared_dpll unconditionally resets the pll - we need that to have
4525 * the right LVDS enable sequence. */
4526 intel_enable_shared_dpll(crtc);
4527
4528 /* set transcoder timing, panel must allow it */
4529 assert_panel_unlocked(dev_priv, pipe);
4530 ironlake_pch_transcoder_set_timings(crtc, pipe);
4531
4532 intel_fdi_normal_train(crtc);
4533
4534 /* For PCH DP, enable TRANS_DP_CTL */
4535 if (HAS_PCH_CPT(dev_priv) &&
4536 intel_crtc_has_dp_encoder(crtc_state)) {
4537 const struct drm_display_mode *adjusted_mode =
4538 &crtc_state->base.adjusted_mode;
4539 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4540 i915_reg_t reg = TRANS_DP_CTL(pipe);
4541 temp = I915_READ(reg);
4542 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4543 TRANS_DP_SYNC_MASK |
4544 TRANS_DP_BPC_MASK);
4545 temp |= TRANS_DP_OUTPUT_ENABLE;
4546 temp |= bpc << 9; /* same format but at 11:9 */
4547
4548 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4549 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4550 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4551 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4552
4553 switch (intel_trans_dp_port_sel(crtc)) {
4554 case PORT_B:
4555 temp |= TRANS_DP_PORT_SEL_B;
4556 break;
4557 case PORT_C:
4558 temp |= TRANS_DP_PORT_SEL_C;
4559 break;
4560 case PORT_D:
4561 temp |= TRANS_DP_PORT_SEL_D;
4562 break;
4563 default:
4564 BUG();
4565 }
4566
4567 I915_WRITE(reg, temp);
4568 }
4569
4570 ironlake_enable_pch_transcoder(dev_priv, pipe);
4571 }
4572
4573 static void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
4574 {
4575 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4576 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4577 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
4578
4579 assert_pch_transcoder_disabled(dev_priv, PIPE_A);
4580
4581 lpt_program_iclkip(crtc);
4582
4583 /* Set transcoder timing. */
4584 ironlake_pch_transcoder_set_timings(crtc, PIPE_A);
4585
4586 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4587 }
4588
4589 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4590 {
4591 struct drm_i915_private *dev_priv = to_i915(dev);
4592 i915_reg_t dslreg = PIPEDSL(pipe);
4593 u32 temp;
4594
4595 temp = I915_READ(dslreg);
4596 udelay(500);
4597 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4598 if (wait_for(I915_READ(dslreg) != temp, 5))
4599 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4600 }
4601 }
4602
4603 static int
4604 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4605 unsigned int scaler_user, int *scaler_id,
4606 int src_w, int src_h, int dst_w, int dst_h)
4607 {
4608 struct intel_crtc_scaler_state *scaler_state =
4609 &crtc_state->scaler_state;
4610 struct intel_crtc *intel_crtc =
4611 to_intel_crtc(crtc_state->base.crtc);
4612 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4613 const struct drm_display_mode *adjusted_mode =
4614 &crtc_state->base.adjusted_mode;
4615 int need_scaling;
4616
4617 /*
4618 * Src coordinates are already rotated by 270 degrees for
4619 * the 90/270 degree plane rotation cases (to match the
4620 * GTT mapping), hence no need to account for rotation here.
4621 */
4622 need_scaling = src_w != dst_w || src_h != dst_h;
4623
4624 if (crtc_state->ycbcr420 && scaler_user == SKL_CRTC_INDEX)
4625 need_scaling = true;
4626
4627 /*
4628 * Scaling/fitting not supported in IF-ID mode in GEN9+
4629 * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
4630 * Once NV12 is enabled, handle it here while allocating scaler
4631 * for NV12.
4632 */
4633 if (INTEL_GEN(dev_priv) >= 9 && crtc_state->base.enable &&
4634 need_scaling && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4635 DRM_DEBUG_KMS("Pipe/Plane scaling not supported with IF-ID mode\n");
4636 return -EINVAL;
4637 }
4638
4639 /*
4640 * if plane is being disabled or scaler is no more required or force detach
4641 * - free scaler binded to this plane/crtc
4642 * - in order to do this, update crtc->scaler_usage
4643 *
4644 * Here scaler state in crtc_state is set free so that
4645 * scaler can be assigned to other user. Actual register
4646 * update to free the scaler is done in plane/panel-fit programming.
4647 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4648 */
4649 if (force_detach || !need_scaling) {
4650 if (*scaler_id >= 0) {
4651 scaler_state->scaler_users &= ~(1 << scaler_user);
4652 scaler_state->scalers[*scaler_id].in_use = 0;
4653
4654 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4655 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4656 intel_crtc->pipe, scaler_user, *scaler_id,
4657 scaler_state->scaler_users);
4658 *scaler_id = -1;
4659 }
4660 return 0;
4661 }
4662
4663 /* range checks */
4664 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4665 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4666
4667 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4668 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4669 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4670 "size is out of scaler range\n",
4671 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4672 return -EINVAL;
4673 }
4674
4675 /* mark this plane as a scaler user in crtc_state */
4676 scaler_state->scaler_users |= (1 << scaler_user);
4677 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4678 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4679 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4680 scaler_state->scaler_users);
4681
4682 return 0;
4683 }
4684
4685 /**
4686 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4687 *
4688 * @state: crtc's scaler state
4689 *
4690 * Return
4691 * 0 - scaler_usage updated successfully
4692 * error - requested scaling cannot be supported or other error condition
4693 */
4694 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4695 {
4696 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4697
4698 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4699 &state->scaler_state.scaler_id,
4700 state->pipe_src_w, state->pipe_src_h,
4701 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4702 }
4703
4704 /**
4705 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4706 *
4707 * @state: crtc's scaler state
4708 * @plane_state: atomic plane state to update
4709 *
4710 * Return
4711 * 0 - scaler_usage updated successfully
4712 * error - requested scaling cannot be supported or other error condition
4713 */
4714 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4715 struct intel_plane_state *plane_state)
4716 {
4717
4718 struct intel_plane *intel_plane =
4719 to_intel_plane(plane_state->base.plane);
4720 struct drm_framebuffer *fb = plane_state->base.fb;
4721 int ret;
4722
4723 bool force_detach = !fb || !plane_state->base.visible;
4724
4725 ret = skl_update_scaler(crtc_state, force_detach,
4726 drm_plane_index(&intel_plane->base),
4727 &plane_state->scaler_id,
4728 drm_rect_width(&plane_state->base.src) >> 16,
4729 drm_rect_height(&plane_state->base.src) >> 16,
4730 drm_rect_width(&plane_state->base.dst),
4731 drm_rect_height(&plane_state->base.dst));
4732
4733 if (ret || plane_state->scaler_id < 0)
4734 return ret;
4735
4736 /* check colorkey */
4737 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4738 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4739 intel_plane->base.base.id,
4740 intel_plane->base.name);
4741 return -EINVAL;
4742 }
4743
4744 /* Check src format */
4745 switch (fb->format->format) {
4746 case DRM_FORMAT_RGB565:
4747 case DRM_FORMAT_XBGR8888:
4748 case DRM_FORMAT_XRGB8888:
4749 case DRM_FORMAT_ABGR8888:
4750 case DRM_FORMAT_ARGB8888:
4751 case DRM_FORMAT_XRGB2101010:
4752 case DRM_FORMAT_XBGR2101010:
4753 case DRM_FORMAT_YUYV:
4754 case DRM_FORMAT_YVYU:
4755 case DRM_FORMAT_UYVY:
4756 case DRM_FORMAT_VYUY:
4757 break;
4758 default:
4759 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4760 intel_plane->base.base.id, intel_plane->base.name,
4761 fb->base.id, fb->format->format);
4762 return -EINVAL;
4763 }
4764
4765 return 0;
4766 }
4767
4768 static void skylake_scaler_disable(struct intel_crtc *crtc)
4769 {
4770 int i;
4771
4772 for (i = 0; i < crtc->num_scalers; i++)
4773 skl_detach_scaler(crtc, i);
4774 }
4775
4776 static void skylake_pfit_enable(struct intel_crtc *crtc)
4777 {
4778 struct drm_device *dev = crtc->base.dev;
4779 struct drm_i915_private *dev_priv = to_i915(dev);
4780 int pipe = crtc->pipe;
4781 struct intel_crtc_scaler_state *scaler_state =
4782 &crtc->config->scaler_state;
4783
4784 if (crtc->config->pch_pfit.enabled) {
4785 int id;
4786
4787 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0))
4788 return;
4789
4790 id = scaler_state->scaler_id;
4791 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4792 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4793 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4794 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4795 }
4796 }
4797
4798 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4799 {
4800 struct drm_device *dev = crtc->base.dev;
4801 struct drm_i915_private *dev_priv = to_i915(dev);
4802 int pipe = crtc->pipe;
4803
4804 if (crtc->config->pch_pfit.enabled) {
4805 /* Force use of hard-coded filter coefficients
4806 * as some pre-programmed values are broken,
4807 * e.g. x201.
4808 */
4809 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4810 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4811 PF_PIPE_SEL_IVB(pipe));
4812 else
4813 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4814 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4815 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4816 }
4817 }
4818
4819 void hsw_enable_ips(struct intel_crtc *crtc)
4820 {
4821 struct drm_device *dev = crtc->base.dev;
4822 struct drm_i915_private *dev_priv = to_i915(dev);
4823
4824 if (!crtc->config->ips_enabled)
4825 return;
4826
4827 /*
4828 * We can only enable IPS after we enable a plane and wait for a vblank
4829 * This function is called from post_plane_update, which is run after
4830 * a vblank wait.
4831 */
4832
4833 assert_plane_enabled(to_intel_plane(crtc->base.primary));
4834
4835 if (IS_BROADWELL(dev_priv)) {
4836 mutex_lock(&dev_priv->pcu_lock);
4837 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL,
4838 IPS_ENABLE | IPS_PCODE_CONTROL));
4839 mutex_unlock(&dev_priv->pcu_lock);
4840 /* Quoting Art Runyan: "its not safe to expect any particular
4841 * value in IPS_CTL bit 31 after enabling IPS through the
4842 * mailbox." Moreover, the mailbox may return a bogus state,
4843 * so we need to just enable it and continue on.
4844 */
4845 } else {
4846 I915_WRITE(IPS_CTL, IPS_ENABLE);
4847 /* The bit only becomes 1 in the next vblank, so this wait here
4848 * is essentially intel_wait_for_vblank. If we don't have this
4849 * and don't wait for vblanks until the end of crtc_enable, then
4850 * the HW state readout code will complain that the expected
4851 * IPS_CTL value is not the one we read. */
4852 if (intel_wait_for_register(dev_priv,
4853 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4854 50))
4855 DRM_ERROR("Timed out waiting for IPS enable\n");
4856 }
4857 }
4858
4859 void hsw_disable_ips(struct intel_crtc *crtc)
4860 {
4861 struct drm_device *dev = crtc->base.dev;
4862 struct drm_i915_private *dev_priv = to_i915(dev);
4863
4864 if (!crtc->config->ips_enabled)
4865 return;
4866
4867 assert_plane_enabled(to_intel_plane(crtc->base.primary));
4868
4869 if (IS_BROADWELL(dev_priv)) {
4870 mutex_lock(&dev_priv->pcu_lock);
4871 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4872 mutex_unlock(&dev_priv->pcu_lock);
4873 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4874 if (intel_wait_for_register(dev_priv,
4875 IPS_CTL, IPS_ENABLE, 0,
4876 42))
4877 DRM_ERROR("Timed out waiting for IPS disable\n");
4878 } else {
4879 I915_WRITE(IPS_CTL, 0);
4880 POSTING_READ(IPS_CTL);
4881 }
4882
4883 /* We need to wait for a vblank before we can disable the plane. */
4884 intel_wait_for_vblank(dev_priv, crtc->pipe);
4885 }
4886
4887 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4888 {
4889 if (intel_crtc->overlay) {
4890 struct drm_device *dev = intel_crtc->base.dev;
4891
4892 mutex_lock(&dev->struct_mutex);
4893 (void) intel_overlay_switch_off(intel_crtc->overlay);
4894 mutex_unlock(&dev->struct_mutex);
4895 }
4896
4897 /* Let userspace switch the overlay on again. In most cases userspace
4898 * has to recompute where to put it anyway.
4899 */
4900 }
4901
4902 /**
4903 * intel_post_enable_primary - Perform operations after enabling primary plane
4904 * @crtc: the CRTC whose primary plane was just enabled
4905 *
4906 * Performs potentially sleeping operations that must be done after the primary
4907 * plane is enabled, such as updating FBC and IPS. Note that this may be
4908 * called due to an explicit primary plane update, or due to an implicit
4909 * re-enable that is caused when a sprite plane is updated to no longer
4910 * completely hide the primary plane.
4911 */
4912 static void
4913 intel_post_enable_primary(struct drm_crtc *crtc)
4914 {
4915 struct drm_device *dev = crtc->dev;
4916 struct drm_i915_private *dev_priv = to_i915(dev);
4917 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4918 int pipe = intel_crtc->pipe;
4919
4920 /*
4921 * FIXME IPS should be fine as long as one plane is
4922 * enabled, but in practice it seems to have problems
4923 * when going from primary only to sprite only and vice
4924 * versa.
4925 */
4926 hsw_enable_ips(intel_crtc);
4927
4928 /*
4929 * Gen2 reports pipe underruns whenever all planes are disabled.
4930 * So don't enable underrun reporting before at least some planes
4931 * are enabled.
4932 * FIXME: Need to fix the logic to work when we turn off all planes
4933 * but leave the pipe running.
4934 */
4935 if (IS_GEN2(dev_priv))
4936 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4937
4938 /* Underruns don't always raise interrupts, so check manually. */
4939 intel_check_cpu_fifo_underruns(dev_priv);
4940 intel_check_pch_fifo_underruns(dev_priv);
4941 }
4942
4943 /* FIXME move all this to pre_plane_update() with proper state tracking */
4944 static void
4945 intel_pre_disable_primary(struct drm_crtc *crtc)
4946 {
4947 struct drm_device *dev = crtc->dev;
4948 struct drm_i915_private *dev_priv = to_i915(dev);
4949 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4950 int pipe = intel_crtc->pipe;
4951
4952 /*
4953 * Gen2 reports pipe underruns whenever all planes are disabled.
4954 * So diasble underrun reporting before all the planes get disabled.
4955 * FIXME: Need to fix the logic to work when we turn off all planes
4956 * but leave the pipe running.
4957 */
4958 if (IS_GEN2(dev_priv))
4959 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4960
4961 /*
4962 * FIXME IPS should be fine as long as one plane is
4963 * enabled, but in practice it seems to have problems
4964 * when going from primary only to sprite only and vice
4965 * versa.
4966 */
4967 hsw_disable_ips(intel_crtc);
4968 }
4969
4970 /* FIXME get rid of this and use pre_plane_update */
4971 static void
4972 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4973 {
4974 struct drm_device *dev = crtc->dev;
4975 struct drm_i915_private *dev_priv = to_i915(dev);
4976 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4977 int pipe = intel_crtc->pipe;
4978
4979 intel_pre_disable_primary(crtc);
4980
4981 /*
4982 * Vblank time updates from the shadow to live plane control register
4983 * are blocked if the memory self-refresh mode is active at that
4984 * moment. So to make sure the plane gets truly disabled, disable
4985 * first the self-refresh mode. The self-refresh enable bit in turn
4986 * will be checked/applied by the HW only at the next frame start
4987 * event which is after the vblank start event, so we need to have a
4988 * wait-for-vblank between disabling the plane and the pipe.
4989 */
4990 if (HAS_GMCH_DISPLAY(dev_priv) &&
4991 intel_set_memory_cxsr(dev_priv, false))
4992 intel_wait_for_vblank(dev_priv, pipe);
4993 }
4994
4995 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4996 {
4997 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4998 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4999 struct intel_crtc_state *pipe_config =
5000 intel_atomic_get_new_crtc_state(to_intel_atomic_state(old_state),
5001 crtc);
5002 struct drm_plane *primary = crtc->base.primary;
5003 struct drm_plane_state *old_pri_state =
5004 drm_atomic_get_existing_plane_state(old_state, primary);
5005
5006 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5007
5008 if (pipe_config->update_wm_post && pipe_config->base.active)
5009 intel_update_watermarks(crtc);
5010
5011 if (old_pri_state) {
5012 struct intel_plane_state *primary_state =
5013 intel_atomic_get_new_plane_state(to_intel_atomic_state(old_state),
5014 to_intel_plane(primary));
5015 struct intel_plane_state *old_primary_state =
5016 to_intel_plane_state(old_pri_state);
5017
5018 intel_fbc_post_update(crtc);
5019
5020 if (primary_state->base.visible &&
5021 (needs_modeset(&pipe_config->base) ||
5022 !old_primary_state->base.visible))
5023 intel_post_enable_primary(&crtc->base);
5024 }
5025 }
5026
5027 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state,
5028 struct intel_crtc_state *pipe_config)
5029 {
5030 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5031 struct drm_device *dev = crtc->base.dev;
5032 struct drm_i915_private *dev_priv = to_i915(dev);
5033 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5034 struct drm_plane *primary = crtc->base.primary;
5035 struct drm_plane_state *old_pri_state =
5036 drm_atomic_get_existing_plane_state(old_state, primary);
5037 bool modeset = needs_modeset(&pipe_config->base);
5038 struct intel_atomic_state *old_intel_state =
5039 to_intel_atomic_state(old_state);
5040
5041 if (old_pri_state) {
5042 struct intel_plane_state *primary_state =
5043 intel_atomic_get_new_plane_state(old_intel_state,
5044 to_intel_plane(primary));
5045 struct intel_plane_state *old_primary_state =
5046 to_intel_plane_state(old_pri_state);
5047
5048 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5049
5050 if (old_primary_state->base.visible &&
5051 (modeset || !primary_state->base.visible))
5052 intel_pre_disable_primary(&crtc->base);
5053 }
5054
5055 /*
5056 * Vblank time updates from the shadow to live plane control register
5057 * are blocked if the memory self-refresh mode is active at that
5058 * moment. So to make sure the plane gets truly disabled, disable
5059 * first the self-refresh mode. The self-refresh enable bit in turn
5060 * will be checked/applied by the HW only at the next frame start
5061 * event which is after the vblank start event, so we need to have a
5062 * wait-for-vblank between disabling the plane and the pipe.
5063 */
5064 if (HAS_GMCH_DISPLAY(dev_priv) && old_crtc_state->base.active &&
5065 pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
5066 intel_wait_for_vblank(dev_priv, crtc->pipe);
5067
5068 /*
5069 * IVB workaround: must disable low power watermarks for at least
5070 * one frame before enabling scaling. LP watermarks can be re-enabled
5071 * when scaling is disabled.
5072 *
5073 * WaCxSRDisabledForSpriteScaling:ivb
5074 */
5075 if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev))
5076 intel_wait_for_vblank(dev_priv, crtc->pipe);
5077
5078 /*
5079 * If we're doing a modeset, we're done. No need to do any pre-vblank
5080 * watermark programming here.
5081 */
5082 if (needs_modeset(&pipe_config->base))
5083 return;
5084
5085 /*
5086 * For platforms that support atomic watermarks, program the
5087 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
5088 * will be the intermediate values that are safe for both pre- and
5089 * post- vblank; when vblank happens, the 'active' values will be set
5090 * to the final 'target' values and we'll do this again to get the
5091 * optimal watermarks. For gen9+ platforms, the values we program here
5092 * will be the final target values which will get automatically latched
5093 * at vblank time; no further programming will be necessary.
5094 *
5095 * If a platform hasn't been transitioned to atomic watermarks yet,
5096 * we'll continue to update watermarks the old way, if flags tell
5097 * us to.
5098 */
5099 if (dev_priv->display.initial_watermarks != NULL)
5100 dev_priv->display.initial_watermarks(old_intel_state,
5101 pipe_config);
5102 else if (pipe_config->update_wm_pre)
5103 intel_update_watermarks(crtc);
5104 }
5105
5106 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5107 {
5108 struct drm_device *dev = crtc->dev;
5109 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5110 struct drm_plane *p;
5111 int pipe = intel_crtc->pipe;
5112
5113 intel_crtc_dpms_overlay_disable(intel_crtc);
5114
5115 drm_for_each_plane_mask(p, dev, plane_mask)
5116 to_intel_plane(p)->disable_plane(to_intel_plane(p), intel_crtc);
5117
5118 /*
5119 * FIXME: Once we grow proper nuclear flip support out of this we need
5120 * to compute the mask of flip planes precisely. For the time being
5121 * consider this a flip to a NULL plane.
5122 */
5123 intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5124 }
5125
5126 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5127 struct intel_crtc_state *crtc_state,
5128 struct drm_atomic_state *old_state)
5129 {
5130 struct drm_connector_state *conn_state;
5131 struct drm_connector *conn;
5132 int i;
5133
5134 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5135 struct intel_encoder *encoder =
5136 to_intel_encoder(conn_state->best_encoder);
5137
5138 if (conn_state->crtc != crtc)
5139 continue;
5140
5141 if (encoder->pre_pll_enable)
5142 encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5143 }
5144 }
5145
5146 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5147 struct intel_crtc_state *crtc_state,
5148 struct drm_atomic_state *old_state)
5149 {
5150 struct drm_connector_state *conn_state;
5151 struct drm_connector *conn;
5152 int i;
5153
5154 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5155 struct intel_encoder *encoder =
5156 to_intel_encoder(conn_state->best_encoder);
5157
5158 if (conn_state->crtc != crtc)
5159 continue;
5160
5161 if (encoder->pre_enable)
5162 encoder->pre_enable(encoder, crtc_state, conn_state);
5163 }
5164 }
5165
5166 static void intel_encoders_enable(struct drm_crtc *crtc,
5167 struct intel_crtc_state *crtc_state,
5168 struct drm_atomic_state *old_state)
5169 {
5170 struct drm_connector_state *conn_state;
5171 struct drm_connector *conn;
5172 int i;
5173
5174 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5175 struct intel_encoder *encoder =
5176 to_intel_encoder(conn_state->best_encoder);
5177
5178 if (conn_state->crtc != crtc)
5179 continue;
5180
5181 encoder->enable(encoder, crtc_state, conn_state);
5182 intel_opregion_notify_encoder(encoder, true);
5183 }
5184 }
5185
5186 static void intel_encoders_disable(struct drm_crtc *crtc,
5187 struct intel_crtc_state *old_crtc_state,
5188 struct drm_atomic_state *old_state)
5189 {
5190 struct drm_connector_state *old_conn_state;
5191 struct drm_connector *conn;
5192 int i;
5193
5194 for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5195 struct intel_encoder *encoder =
5196 to_intel_encoder(old_conn_state->best_encoder);
5197
5198 if (old_conn_state->crtc != crtc)
5199 continue;
5200
5201 intel_opregion_notify_encoder(encoder, false);
5202 encoder->disable(encoder, old_crtc_state, old_conn_state);
5203 }
5204 }
5205
5206 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5207 struct intel_crtc_state *old_crtc_state,
5208 struct drm_atomic_state *old_state)
5209 {
5210 struct drm_connector_state *old_conn_state;
5211 struct drm_connector *conn;
5212 int i;
5213
5214 for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5215 struct intel_encoder *encoder =
5216 to_intel_encoder(old_conn_state->best_encoder);
5217
5218 if (old_conn_state->crtc != crtc)
5219 continue;
5220
5221 if (encoder->post_disable)
5222 encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5223 }
5224 }
5225
5226 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5227 struct intel_crtc_state *old_crtc_state,
5228 struct drm_atomic_state *old_state)
5229 {
5230 struct drm_connector_state *old_conn_state;
5231 struct drm_connector *conn;
5232 int i;
5233
5234 for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5235 struct intel_encoder *encoder =
5236 to_intel_encoder(old_conn_state->best_encoder);
5237
5238 if (old_conn_state->crtc != crtc)
5239 continue;
5240
5241 if (encoder->post_pll_disable)
5242 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5243 }
5244 }
5245
5246 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5247 struct drm_atomic_state *old_state)
5248 {
5249 struct drm_crtc *crtc = pipe_config->base.crtc;
5250 struct drm_device *dev = crtc->dev;
5251 struct drm_i915_private *dev_priv = to_i915(dev);
5252 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5253 int pipe = intel_crtc->pipe;
5254 struct intel_atomic_state *old_intel_state =
5255 to_intel_atomic_state(old_state);
5256
5257 if (WARN_ON(intel_crtc->active))
5258 return;
5259
5260 /*
5261 * Sometimes spurious CPU pipe underruns happen during FDI
5262 * training, at least with VGA+HDMI cloning. Suppress them.
5263 *
5264 * On ILK we get an occasional spurious CPU pipe underruns
5265 * between eDP port A enable and vdd enable. Also PCH port
5266 * enable seems to result in the occasional CPU pipe underrun.
5267 *
5268 * Spurious PCH underruns also occur during PCH enabling.
5269 */
5270 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5271 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5272 if (intel_crtc->config->has_pch_encoder)
5273 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5274
5275 if (intel_crtc->config->has_pch_encoder)
5276 intel_prepare_shared_dpll(intel_crtc);
5277
5278 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5279 intel_dp_set_m_n(intel_crtc, M1_N1);
5280
5281 intel_set_pipe_timings(intel_crtc);
5282 intel_set_pipe_src_size(intel_crtc);
5283
5284 if (intel_crtc->config->has_pch_encoder) {
5285 intel_cpu_transcoder_set_m_n(intel_crtc,
5286 &intel_crtc->config->fdi_m_n, NULL);
5287 }
5288
5289 ironlake_set_pipeconf(crtc);
5290
5291 intel_crtc->active = true;
5292
5293 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5294
5295 if (intel_crtc->config->has_pch_encoder) {
5296 /* Note: FDI PLL enabling _must_ be done before we enable the
5297 * cpu pipes, hence this is separate from all the other fdi/pch
5298 * enabling. */
5299 ironlake_fdi_pll_enable(intel_crtc);
5300 } else {
5301 assert_fdi_tx_disabled(dev_priv, pipe);
5302 assert_fdi_rx_disabled(dev_priv, pipe);
5303 }
5304
5305 ironlake_pfit_enable(intel_crtc);
5306
5307 /*
5308 * On ILK+ LUT must be loaded before the pipe is running but with
5309 * clocks enabled
5310 */
5311 intel_color_load_luts(&pipe_config->base);
5312
5313 if (dev_priv->display.initial_watermarks != NULL)
5314 dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5315 intel_enable_pipe(intel_crtc);
5316
5317 if (intel_crtc->config->has_pch_encoder)
5318 ironlake_pch_enable(pipe_config);
5319
5320 assert_vblank_disabled(crtc);
5321 drm_crtc_vblank_on(crtc);
5322
5323 intel_encoders_enable(crtc, pipe_config, old_state);
5324
5325 if (HAS_PCH_CPT(dev_priv))
5326 cpt_verify_modeset(dev, intel_crtc->pipe);
5327
5328 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5329 if (intel_crtc->config->has_pch_encoder)
5330 intel_wait_for_vblank(dev_priv, pipe);
5331 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5332 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5333 }
5334
5335 /* IPS only exists on ULT machines and is tied to pipe A. */
5336 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5337 {
5338 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5339 }
5340
5341 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv,
5342 enum pipe pipe, bool apply)
5343 {
5344 u32 val = I915_READ(CLKGATE_DIS_PSL(pipe));
5345 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
5346
5347 if (apply)
5348 val |= mask;
5349 else
5350 val &= ~mask;
5351
5352 I915_WRITE(CLKGATE_DIS_PSL(pipe), val);
5353 }
5354
5355 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5356 struct drm_atomic_state *old_state)
5357 {
5358 struct drm_crtc *crtc = pipe_config->base.crtc;
5359 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5360 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5361 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5362 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5363 struct intel_atomic_state *old_intel_state =
5364 to_intel_atomic_state(old_state);
5365 bool psl_clkgate_wa;
5366
5367 if (WARN_ON(intel_crtc->active))
5368 return;
5369
5370 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5371
5372 if (intel_crtc->config->shared_dpll)
5373 intel_enable_shared_dpll(intel_crtc);
5374
5375 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5376 intel_dp_set_m_n(intel_crtc, M1_N1);
5377
5378 if (!transcoder_is_dsi(cpu_transcoder))
5379 intel_set_pipe_timings(intel_crtc);
5380
5381 intel_set_pipe_src_size(intel_crtc);
5382
5383 if (cpu_transcoder != TRANSCODER_EDP &&
5384 !transcoder_is_dsi(cpu_transcoder)) {
5385 I915_WRITE(PIPE_MULT(cpu_transcoder),
5386 intel_crtc->config->pixel_multiplier - 1);
5387 }
5388
5389 if (intel_crtc->config->has_pch_encoder) {
5390 intel_cpu_transcoder_set_m_n(intel_crtc,
5391 &intel_crtc->config->fdi_m_n, NULL);
5392 }
5393
5394 if (!transcoder_is_dsi(cpu_transcoder))
5395 haswell_set_pipeconf(crtc);
5396
5397 haswell_set_pipemisc(crtc);
5398
5399 intel_color_set_csc(&pipe_config->base);
5400
5401 intel_crtc->active = true;
5402
5403 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5404
5405 if (!transcoder_is_dsi(cpu_transcoder))
5406 intel_ddi_enable_pipe_clock(pipe_config);
5407
5408 /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */
5409 psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) &&
5410 intel_crtc->config->pch_pfit.enabled;
5411 if (psl_clkgate_wa)
5412 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true);
5413
5414 if (INTEL_GEN(dev_priv) >= 9)
5415 skylake_pfit_enable(intel_crtc);
5416 else
5417 ironlake_pfit_enable(intel_crtc);
5418
5419 /*
5420 * On ILK+ LUT must be loaded before the pipe is running but with
5421 * clocks enabled
5422 */
5423 intel_color_load_luts(&pipe_config->base);
5424
5425 intel_ddi_set_pipe_settings(pipe_config);
5426 if (!transcoder_is_dsi(cpu_transcoder))
5427 intel_ddi_enable_transcoder_func(pipe_config);
5428
5429 if (dev_priv->display.initial_watermarks != NULL)
5430 dev_priv->display.initial_watermarks(old_intel_state, pipe_config);
5431
5432 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5433 if (!transcoder_is_dsi(cpu_transcoder))
5434 intel_enable_pipe(intel_crtc);
5435
5436 if (intel_crtc->config->has_pch_encoder)
5437 lpt_pch_enable(pipe_config);
5438
5439 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5440 intel_ddi_set_vc_payload_alloc(pipe_config, true);
5441
5442 assert_vblank_disabled(crtc);
5443 drm_crtc_vblank_on(crtc);
5444
5445 intel_encoders_enable(crtc, pipe_config, old_state);
5446
5447 if (psl_clkgate_wa) {
5448 intel_wait_for_vblank(dev_priv, pipe);
5449 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false);
5450 }
5451
5452 /* If we change the relative order between pipe/planes enabling, we need
5453 * to change the workaround. */
5454 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5455 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5456 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5457 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5458 }
5459 }
5460
5461 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5462 {
5463 struct drm_device *dev = crtc->base.dev;
5464 struct drm_i915_private *dev_priv = to_i915(dev);
5465 int pipe = crtc->pipe;
5466
5467 /* To avoid upsetting the power well on haswell only disable the pfit if
5468 * it's in use. The hw state code will make sure we get this right. */
5469 if (force || crtc->config->pch_pfit.enabled) {
5470 I915_WRITE(PF_CTL(pipe), 0);
5471 I915_WRITE(PF_WIN_POS(pipe), 0);
5472 I915_WRITE(PF_WIN_SZ(pipe), 0);
5473 }
5474 }
5475
5476 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5477 struct drm_atomic_state *old_state)
5478 {
5479 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5480 struct drm_device *dev = crtc->dev;
5481 struct drm_i915_private *dev_priv = to_i915(dev);
5482 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5483 int pipe = intel_crtc->pipe;
5484
5485 /*
5486 * Sometimes spurious CPU pipe underruns happen when the
5487 * pipe is already disabled, but FDI RX/TX is still enabled.
5488 * Happens at least with VGA+HDMI cloning. Suppress them.
5489 */
5490 if (intel_crtc->config->has_pch_encoder) {
5491 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5492 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5493 }
5494
5495 intel_encoders_disable(crtc, old_crtc_state, old_state);
5496
5497 drm_crtc_vblank_off(crtc);
5498 assert_vblank_disabled(crtc);
5499
5500 intel_disable_pipe(intel_crtc);
5501
5502 ironlake_pfit_disable(intel_crtc, false);
5503
5504 if (intel_crtc->config->has_pch_encoder)
5505 ironlake_fdi_disable(crtc);
5506
5507 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5508
5509 if (intel_crtc->config->has_pch_encoder) {
5510 ironlake_disable_pch_transcoder(dev_priv, pipe);
5511
5512 if (HAS_PCH_CPT(dev_priv)) {
5513 i915_reg_t reg;
5514 u32 temp;
5515
5516 /* disable TRANS_DP_CTL */
5517 reg = TRANS_DP_CTL(pipe);
5518 temp = I915_READ(reg);
5519 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5520 TRANS_DP_PORT_SEL_MASK);
5521 temp |= TRANS_DP_PORT_SEL_NONE;
5522 I915_WRITE(reg, temp);
5523
5524 /* disable DPLL_SEL */
5525 temp = I915_READ(PCH_DPLL_SEL);
5526 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5527 I915_WRITE(PCH_DPLL_SEL, temp);
5528 }
5529
5530 ironlake_fdi_pll_disable(intel_crtc);
5531 }
5532
5533 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5534 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5535 }
5536
5537 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5538 struct drm_atomic_state *old_state)
5539 {
5540 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5541 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5542 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5543 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5544
5545 intel_encoders_disable(crtc, old_crtc_state, old_state);
5546
5547 drm_crtc_vblank_off(crtc);
5548 assert_vblank_disabled(crtc);
5549
5550 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5551 if (!transcoder_is_dsi(cpu_transcoder))
5552 intel_disable_pipe(intel_crtc);
5553
5554 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5555 intel_ddi_set_vc_payload_alloc(intel_crtc->config, false);
5556
5557 if (!transcoder_is_dsi(cpu_transcoder))
5558 intel_ddi_disable_transcoder_func(old_crtc_state);
5559
5560 if (INTEL_GEN(dev_priv) >= 9)
5561 skylake_scaler_disable(intel_crtc);
5562 else
5563 ironlake_pfit_disable(intel_crtc, false);
5564
5565 if (!transcoder_is_dsi(cpu_transcoder))
5566 intel_ddi_disable_pipe_clock(intel_crtc->config);
5567
5568 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5569 }
5570
5571 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5572 {
5573 struct drm_device *dev = crtc->base.dev;
5574 struct drm_i915_private *dev_priv = to_i915(dev);
5575 struct intel_crtc_state *pipe_config = crtc->config;
5576
5577 if (!pipe_config->gmch_pfit.control)
5578 return;
5579
5580 /*
5581 * The panel fitter should only be adjusted whilst the pipe is disabled,
5582 * according to register description and PRM.
5583 */
5584 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5585 assert_pipe_disabled(dev_priv, crtc->pipe);
5586
5587 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5588 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5589
5590 /* Border color in case we don't scale up to the full screen. Black by
5591 * default, change to something else for debugging. */
5592 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5593 }
5594
5595 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
5596 {
5597 switch (port) {
5598 case PORT_A:
5599 return POWER_DOMAIN_PORT_DDI_A_LANES;
5600 case PORT_B:
5601 return POWER_DOMAIN_PORT_DDI_B_LANES;
5602 case PORT_C:
5603 return POWER_DOMAIN_PORT_DDI_C_LANES;
5604 case PORT_D:
5605 return POWER_DOMAIN_PORT_DDI_D_LANES;
5606 case PORT_E:
5607 return POWER_DOMAIN_PORT_DDI_E_LANES;
5608 default:
5609 MISSING_CASE(port);
5610 return POWER_DOMAIN_PORT_OTHER;
5611 }
5612 }
5613
5614 static u64 get_crtc_power_domains(struct drm_crtc *crtc,
5615 struct intel_crtc_state *crtc_state)
5616 {
5617 struct drm_device *dev = crtc->dev;
5618 struct drm_i915_private *dev_priv = to_i915(dev);
5619 struct drm_encoder *encoder;
5620 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5621 enum pipe pipe = intel_crtc->pipe;
5622 u64 mask;
5623 enum transcoder transcoder = crtc_state->cpu_transcoder;
5624
5625 if (!crtc_state->base.active)
5626 return 0;
5627
5628 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5629 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5630 if (crtc_state->pch_pfit.enabled ||
5631 crtc_state->pch_pfit.force_thru)
5632 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5633
5634 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5635 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5636
5637 mask |= BIT_ULL(intel_encoder->power_domain);
5638 }
5639
5640 if (HAS_DDI(dev_priv) && crtc_state->has_audio)
5641 mask |= BIT(POWER_DOMAIN_AUDIO);
5642
5643 if (crtc_state->shared_dpll)
5644 mask |= BIT_ULL(POWER_DOMAIN_PLLS);
5645
5646 return mask;
5647 }
5648
5649 static u64
5650 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5651 struct intel_crtc_state *crtc_state)
5652 {
5653 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5654 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5655 enum intel_display_power_domain domain;
5656 u64 domains, new_domains, old_domains;
5657
5658 old_domains = intel_crtc->enabled_power_domains;
5659 intel_crtc->enabled_power_domains = new_domains =
5660 get_crtc_power_domains(crtc, crtc_state);
5661
5662 domains = new_domains & ~old_domains;
5663
5664 for_each_power_domain(domain, domains)
5665 intel_display_power_get(dev_priv, domain);
5666
5667 return old_domains & ~new_domains;
5668 }
5669
5670 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5671 u64 domains)
5672 {
5673 enum intel_display_power_domain domain;
5674
5675 for_each_power_domain(domain, domains)
5676 intel_display_power_put(dev_priv, domain);
5677 }
5678
5679 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
5680 struct drm_atomic_state *old_state)
5681 {
5682 struct intel_atomic_state *old_intel_state =
5683 to_intel_atomic_state(old_state);
5684 struct drm_crtc *crtc = pipe_config->base.crtc;
5685 struct drm_device *dev = crtc->dev;
5686 struct drm_i915_private *dev_priv = to_i915(dev);
5687 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5688 int pipe = intel_crtc->pipe;
5689
5690 if (WARN_ON(intel_crtc->active))
5691 return;
5692
5693 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5694 intel_dp_set_m_n(intel_crtc, M1_N1);
5695
5696 intel_set_pipe_timings(intel_crtc);
5697 intel_set_pipe_src_size(intel_crtc);
5698
5699 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
5700 struct drm_i915_private *dev_priv = to_i915(dev);
5701
5702 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5703 I915_WRITE(CHV_CANVAS(pipe), 0);
5704 }
5705
5706 i9xx_set_pipeconf(intel_crtc);
5707
5708 intel_crtc->active = true;
5709
5710 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5711
5712 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5713
5714 if (IS_CHERRYVIEW(dev_priv)) {
5715 chv_prepare_pll(intel_crtc, intel_crtc->config);
5716 chv_enable_pll(intel_crtc, intel_crtc->config);
5717 } else {
5718 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5719 vlv_enable_pll(intel_crtc, intel_crtc->config);
5720 }
5721
5722 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5723
5724 i9xx_pfit_enable(intel_crtc);
5725
5726 intel_color_load_luts(&pipe_config->base);
5727
5728 dev_priv->display.initial_watermarks(old_intel_state,
5729 pipe_config);
5730 intel_enable_pipe(intel_crtc);
5731
5732 assert_vblank_disabled(crtc);
5733 drm_crtc_vblank_on(crtc);
5734
5735 intel_encoders_enable(crtc, pipe_config, old_state);
5736 }
5737
5738 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5739 {
5740 struct drm_device *dev = crtc->base.dev;
5741 struct drm_i915_private *dev_priv = to_i915(dev);
5742
5743 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5744 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5745 }
5746
5747 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
5748 struct drm_atomic_state *old_state)
5749 {
5750 struct intel_atomic_state *old_intel_state =
5751 to_intel_atomic_state(old_state);
5752 struct drm_crtc *crtc = pipe_config->base.crtc;
5753 struct drm_device *dev = crtc->dev;
5754 struct drm_i915_private *dev_priv = to_i915(dev);
5755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5756 enum pipe pipe = intel_crtc->pipe;
5757
5758 if (WARN_ON(intel_crtc->active))
5759 return;
5760
5761 i9xx_set_pll_dividers(intel_crtc);
5762
5763 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5764 intel_dp_set_m_n(intel_crtc, M1_N1);
5765
5766 intel_set_pipe_timings(intel_crtc);
5767 intel_set_pipe_src_size(intel_crtc);
5768
5769 i9xx_set_pipeconf(intel_crtc);
5770
5771 intel_crtc->active = true;
5772
5773 if (!IS_GEN2(dev_priv))
5774 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5775
5776 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5777
5778 i9xx_enable_pll(intel_crtc, pipe_config);
5779
5780 i9xx_pfit_enable(intel_crtc);
5781
5782 intel_color_load_luts(&pipe_config->base);
5783
5784 if (dev_priv->display.initial_watermarks != NULL)
5785 dev_priv->display.initial_watermarks(old_intel_state,
5786 intel_crtc->config);
5787 else
5788 intel_update_watermarks(intel_crtc);
5789 intel_enable_pipe(intel_crtc);
5790
5791 assert_vblank_disabled(crtc);
5792 drm_crtc_vblank_on(crtc);
5793
5794 intel_encoders_enable(crtc, pipe_config, old_state);
5795 }
5796
5797 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5798 {
5799 struct drm_device *dev = crtc->base.dev;
5800 struct drm_i915_private *dev_priv = to_i915(dev);
5801
5802 if (!crtc->config->gmch_pfit.control)
5803 return;
5804
5805 assert_pipe_disabled(dev_priv, crtc->pipe);
5806
5807 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5808 I915_READ(PFIT_CONTROL));
5809 I915_WRITE(PFIT_CONTROL, 0);
5810 }
5811
5812 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
5813 struct drm_atomic_state *old_state)
5814 {
5815 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5816 struct drm_device *dev = crtc->dev;
5817 struct drm_i915_private *dev_priv = to_i915(dev);
5818 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5819 int pipe = intel_crtc->pipe;
5820
5821 /*
5822 * On gen2 planes are double buffered but the pipe isn't, so we must
5823 * wait for planes to fully turn off before disabling the pipe.
5824 */
5825 if (IS_GEN2(dev_priv))
5826 intel_wait_for_vblank(dev_priv, pipe);
5827
5828 intel_encoders_disable(crtc, old_crtc_state, old_state);
5829
5830 drm_crtc_vblank_off(crtc);
5831 assert_vblank_disabled(crtc);
5832
5833 intel_disable_pipe(intel_crtc);
5834
5835 i9xx_pfit_disable(intel_crtc);
5836
5837 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5838
5839 if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
5840 if (IS_CHERRYVIEW(dev_priv))
5841 chv_disable_pll(dev_priv, pipe);
5842 else if (IS_VALLEYVIEW(dev_priv))
5843 vlv_disable_pll(dev_priv, pipe);
5844 else
5845 i9xx_disable_pll(intel_crtc);
5846 }
5847
5848 intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
5849
5850 if (!IS_GEN2(dev_priv))
5851 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5852
5853 if (!dev_priv->display.initial_watermarks)
5854 intel_update_watermarks(intel_crtc);
5855
5856 /* clock the pipe down to 640x480@60 to potentially save power */
5857 if (IS_I830(dev_priv))
5858 i830_enable_pipe(dev_priv, pipe);
5859 }
5860
5861 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc,
5862 struct drm_modeset_acquire_ctx *ctx)
5863 {
5864 struct intel_encoder *encoder;
5865 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5866 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5867 enum intel_display_power_domain domain;
5868 struct intel_plane *plane;
5869 u64 domains;
5870 struct drm_atomic_state *state;
5871 struct intel_crtc_state *crtc_state;
5872 int ret;
5873
5874 if (!intel_crtc->active)
5875 return;
5876
5877 for_each_intel_plane_on_crtc(&dev_priv->drm, intel_crtc, plane) {
5878 const struct intel_plane_state *plane_state =
5879 to_intel_plane_state(plane->base.state);
5880
5881 if (plane_state->base.visible)
5882 intel_plane_disable_noatomic(intel_crtc, plane);
5883 }
5884
5885 state = drm_atomic_state_alloc(crtc->dev);
5886 if (!state) {
5887 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
5888 crtc->base.id, crtc->name);
5889 return;
5890 }
5891
5892 state->acquire_ctx = ctx;
5893
5894 /* Everything's already locked, -EDEADLK can't happen. */
5895 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5896 ret = drm_atomic_add_affected_connectors(state, crtc);
5897
5898 WARN_ON(IS_ERR(crtc_state) || ret);
5899
5900 dev_priv->display.crtc_disable(crtc_state, state);
5901
5902 drm_atomic_state_put(state);
5903
5904 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
5905 crtc->base.id, crtc->name);
5906
5907 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
5908 crtc->state->active = false;
5909 intel_crtc->active = false;
5910 crtc->enabled = false;
5911 crtc->state->connector_mask = 0;
5912 crtc->state->encoder_mask = 0;
5913
5914 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
5915 encoder->base.crtc = NULL;
5916
5917 intel_fbc_disable(intel_crtc);
5918 intel_update_watermarks(intel_crtc);
5919 intel_disable_shared_dpll(intel_crtc);
5920
5921 domains = intel_crtc->enabled_power_domains;
5922 for_each_power_domain(domain, domains)
5923 intel_display_power_put(dev_priv, domain);
5924 intel_crtc->enabled_power_domains = 0;
5925
5926 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
5927 dev_priv->min_cdclk[intel_crtc->pipe] = 0;
5928 }
5929
5930 /*
5931 * turn all crtc's off, but do not adjust state
5932 * This has to be paired with a call to intel_modeset_setup_hw_state.
5933 */
5934 int intel_display_suspend(struct drm_device *dev)
5935 {
5936 struct drm_i915_private *dev_priv = to_i915(dev);
5937 struct drm_atomic_state *state;
5938 int ret;
5939
5940 state = drm_atomic_helper_suspend(dev);
5941 ret = PTR_ERR_OR_ZERO(state);
5942 if (ret)
5943 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
5944 else
5945 dev_priv->modeset_restore_state = state;
5946 return ret;
5947 }
5948
5949 void intel_encoder_destroy(struct drm_encoder *encoder)
5950 {
5951 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5952
5953 drm_encoder_cleanup(encoder);
5954 kfree(intel_encoder);
5955 }
5956
5957 /* Cross check the actual hw state with our own modeset state tracking (and it's
5958 * internal consistency). */
5959 static void intel_connector_verify_state(struct drm_crtc_state *crtc_state,
5960 struct drm_connector_state *conn_state)
5961 {
5962 struct intel_connector *connector = to_intel_connector(conn_state->connector);
5963
5964 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5965 connector->base.base.id,
5966 connector->base.name);
5967
5968 if (connector->get_hw_state(connector)) {
5969 struct intel_encoder *encoder = connector->encoder;
5970
5971 I915_STATE_WARN(!crtc_state,
5972 "connector enabled without attached crtc\n");
5973
5974 if (!crtc_state)
5975 return;
5976
5977 I915_STATE_WARN(!crtc_state->active,
5978 "connector is active, but attached crtc isn't\n");
5979
5980 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
5981 return;
5982
5983 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
5984 "atomic encoder doesn't match attached encoder\n");
5985
5986 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
5987 "attached encoder crtc differs from connector crtc\n");
5988 } else {
5989 I915_STATE_WARN(crtc_state && crtc_state->active,
5990 "attached crtc is active, but connector isn't\n");
5991 I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
5992 "best encoder set without crtc!\n");
5993 }
5994 }
5995
5996 int intel_connector_init(struct intel_connector *connector)
5997 {
5998 struct intel_digital_connector_state *conn_state;
5999
6000 /*
6001 * Allocate enough memory to hold intel_digital_connector_state,
6002 * This might be a few bytes too many, but for connectors that don't
6003 * need it we'll free the state and allocate a smaller one on the first
6004 * succesful commit anyway.
6005 */
6006 conn_state = kzalloc(sizeof(*conn_state), GFP_KERNEL);
6007 if (!conn_state)
6008 return -ENOMEM;
6009
6010 __drm_atomic_helper_connector_reset(&connector->base,
6011 &conn_state->base);
6012
6013 return 0;
6014 }
6015
6016 struct intel_connector *intel_connector_alloc(void)
6017 {
6018 struct intel_connector *connector;
6019
6020 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6021 if (!connector)
6022 return NULL;
6023
6024 if (intel_connector_init(connector) < 0) {
6025 kfree(connector);
6026 return NULL;
6027 }
6028
6029 return connector;
6030 }
6031
6032 /*
6033 * Free the bits allocated by intel_connector_alloc.
6034 * This should only be used after intel_connector_alloc has returned
6035 * successfully, and before drm_connector_init returns successfully.
6036 * Otherwise the destroy callbacks for the connector and the state should
6037 * take care of proper cleanup/free
6038 */
6039 void intel_connector_free(struct intel_connector *connector)
6040 {
6041 kfree(to_intel_digital_connector_state(connector->base.state));
6042 kfree(connector);
6043 }
6044
6045 /* Simple connector->get_hw_state implementation for encoders that support only
6046 * one connector and no cloning and hence the encoder state determines the state
6047 * of the connector. */
6048 bool intel_connector_get_hw_state(struct intel_connector *connector)
6049 {
6050 enum pipe pipe = 0;
6051 struct intel_encoder *encoder = connector->encoder;
6052
6053 return encoder->get_hw_state(encoder, &pipe);
6054 }
6055
6056 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6057 {
6058 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6059 return crtc_state->fdi_lanes;
6060
6061 return 0;
6062 }
6063
6064 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6065 struct intel_crtc_state *pipe_config)
6066 {
6067 struct drm_i915_private *dev_priv = to_i915(dev);
6068 struct drm_atomic_state *state = pipe_config->base.state;
6069 struct intel_crtc *other_crtc;
6070 struct intel_crtc_state *other_crtc_state;
6071
6072 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6073 pipe_name(pipe), pipe_config->fdi_lanes);
6074 if (pipe_config->fdi_lanes > 4) {
6075 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6076 pipe_name(pipe), pipe_config->fdi_lanes);
6077 return -EINVAL;
6078 }
6079
6080 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
6081 if (pipe_config->fdi_lanes > 2) {
6082 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6083 pipe_config->fdi_lanes);
6084 return -EINVAL;
6085 } else {
6086 return 0;
6087 }
6088 }
6089
6090 if (INTEL_INFO(dev_priv)->num_pipes == 2)
6091 return 0;
6092
6093 /* Ivybridge 3 pipe is really complicated */
6094 switch (pipe) {
6095 case PIPE_A:
6096 return 0;
6097 case PIPE_B:
6098 if (pipe_config->fdi_lanes <= 2)
6099 return 0;
6100
6101 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
6102 other_crtc_state =
6103 intel_atomic_get_crtc_state(state, other_crtc);
6104 if (IS_ERR(other_crtc_state))
6105 return PTR_ERR(other_crtc_state);
6106
6107 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6108 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6109 pipe_name(pipe), pipe_config->fdi_lanes);
6110 return -EINVAL;
6111 }
6112 return 0;
6113 case PIPE_C:
6114 if (pipe_config->fdi_lanes > 2) {
6115 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6116 pipe_name(pipe), pipe_config->fdi_lanes);
6117 return -EINVAL;
6118 }
6119
6120 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
6121 other_crtc_state =
6122 intel_atomic_get_crtc_state(state, other_crtc);
6123 if (IS_ERR(other_crtc_state))
6124 return PTR_ERR(other_crtc_state);
6125
6126 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6127 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6128 return -EINVAL;
6129 }
6130 return 0;
6131 default:
6132 BUG();
6133 }
6134 }
6135
6136 #define RETRY 1
6137 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6138 struct intel_crtc_state *pipe_config)
6139 {
6140 struct drm_device *dev = intel_crtc->base.dev;
6141 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6142 int lane, link_bw, fdi_dotclock, ret;
6143 bool needs_recompute = false;
6144
6145 retry:
6146 /* FDI is a binary signal running at ~2.7GHz, encoding
6147 * each output octet as 10 bits. The actual frequency
6148 * is stored as a divider into a 100MHz clock, and the
6149 * mode pixel clock is stored in units of 1KHz.
6150 * Hence the bw of each lane in terms of the mode signal
6151 * is:
6152 */
6153 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6154
6155 fdi_dotclock = adjusted_mode->crtc_clock;
6156
6157 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6158 pipe_config->pipe_bpp);
6159
6160 pipe_config->fdi_lanes = lane;
6161
6162 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6163 link_bw, &pipe_config->fdi_m_n, false);
6164
6165 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6166 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6167 pipe_config->pipe_bpp -= 2*3;
6168 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6169 pipe_config->pipe_bpp);
6170 needs_recompute = true;
6171 pipe_config->bw_constrained = true;
6172
6173 goto retry;
6174 }
6175
6176 if (needs_recompute)
6177 return RETRY;
6178
6179 return ret;
6180 }
6181
6182 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6183 struct intel_crtc_state *pipe_config)
6184 {
6185 if (pipe_config->ips_force_disable)
6186 return false;
6187
6188 if (pipe_config->pipe_bpp > 24)
6189 return false;
6190
6191 /* HSW can handle pixel rate up to cdclk? */
6192 if (IS_HASWELL(dev_priv))
6193 return true;
6194
6195 /*
6196 * We compare against max which means we must take
6197 * the increased cdclk requirement into account when
6198 * calculating the new cdclk.
6199 *
6200 * Should measure whether using a lower cdclk w/o IPS
6201 */
6202 return pipe_config->pixel_rate <=
6203 dev_priv->max_cdclk_freq * 95 / 100;
6204 }
6205
6206 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6207 struct intel_crtc_state *pipe_config)
6208 {
6209 struct drm_device *dev = crtc->base.dev;
6210 struct drm_i915_private *dev_priv = to_i915(dev);
6211
6212 pipe_config->ips_enabled = i915_modparams.enable_ips &&
6213 hsw_crtc_supports_ips(crtc) &&
6214 pipe_config_supports_ips(dev_priv, pipe_config);
6215 }
6216
6217 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6218 {
6219 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6220
6221 /* GDG double wide on either pipe, otherwise pipe A only */
6222 return INTEL_INFO(dev_priv)->gen < 4 &&
6223 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6224 }
6225
6226 static uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
6227 {
6228 uint32_t pixel_rate;
6229
6230 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
6231
6232 /*
6233 * We only use IF-ID interlacing. If we ever use
6234 * PF-ID we'll need to adjust the pixel_rate here.
6235 */
6236
6237 if (pipe_config->pch_pfit.enabled) {
6238 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
6239 uint32_t pfit_size = pipe_config->pch_pfit.size;
6240
6241 pipe_w = pipe_config->pipe_src_w;
6242 pipe_h = pipe_config->pipe_src_h;
6243
6244 pfit_w = (pfit_size >> 16) & 0xFFFF;
6245 pfit_h = pfit_size & 0xFFFF;
6246 if (pipe_w < pfit_w)
6247 pipe_w = pfit_w;
6248 if (pipe_h < pfit_h)
6249 pipe_h = pfit_h;
6250
6251 if (WARN_ON(!pfit_w || !pfit_h))
6252 return pixel_rate;
6253
6254 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
6255 pfit_w * pfit_h);
6256 }
6257
6258 return pixel_rate;
6259 }
6260
6261 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
6262 {
6263 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
6264
6265 if (HAS_GMCH_DISPLAY(dev_priv))
6266 /* FIXME calculate proper pipe pixel rate for GMCH pfit */
6267 crtc_state->pixel_rate =
6268 crtc_state->base.adjusted_mode.crtc_clock;
6269 else
6270 crtc_state->pixel_rate =
6271 ilk_pipe_pixel_rate(crtc_state);
6272 }
6273
6274 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6275 struct intel_crtc_state *pipe_config)
6276 {
6277 struct drm_device *dev = crtc->base.dev;
6278 struct drm_i915_private *dev_priv = to_i915(dev);
6279 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6280 int clock_limit = dev_priv->max_dotclk_freq;
6281
6282 if (INTEL_GEN(dev_priv) < 4) {
6283 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6284
6285 /*
6286 * Enable double wide mode when the dot clock
6287 * is > 90% of the (display) core speed.
6288 */
6289 if (intel_crtc_supports_double_wide(crtc) &&
6290 adjusted_mode->crtc_clock > clock_limit) {
6291 clock_limit = dev_priv->max_dotclk_freq;
6292 pipe_config->double_wide = true;
6293 }
6294 }
6295
6296 if (adjusted_mode->crtc_clock > clock_limit) {
6297 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6298 adjusted_mode->crtc_clock, clock_limit,
6299 yesno(pipe_config->double_wide));
6300 return -EINVAL;
6301 }
6302
6303 if (pipe_config->ycbcr420 && pipe_config->base.ctm) {
6304 /*
6305 * There is only one pipe CSC unit per pipe, and we need that
6306 * for output conversion from RGB->YCBCR. So if CTM is already
6307 * applied we can't support YCBCR420 output.
6308 */
6309 DRM_DEBUG_KMS("YCBCR420 and CTM together are not possible\n");
6310 return -EINVAL;
6311 }
6312
6313 /*
6314 * Pipe horizontal size must be even in:
6315 * - DVO ganged mode
6316 * - LVDS dual channel mode
6317 * - Double wide pipe
6318 */
6319 if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6320 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6321 pipe_config->pipe_src_w &= ~1;
6322
6323 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6324 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6325 */
6326 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
6327 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6328 return -EINVAL;
6329
6330 intel_crtc_compute_pixel_rate(pipe_config);
6331
6332 if (HAS_IPS(dev_priv))
6333 hsw_compute_ips_config(crtc, pipe_config);
6334
6335 if (pipe_config->has_pch_encoder)
6336 return ironlake_fdi_compute_config(crtc, pipe_config);
6337
6338 return 0;
6339 }
6340
6341 static void
6342 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6343 {
6344 while (*num > DATA_LINK_M_N_MASK ||
6345 *den > DATA_LINK_M_N_MASK) {
6346 *num >>= 1;
6347 *den >>= 1;
6348 }
6349 }
6350
6351 static void compute_m_n(unsigned int m, unsigned int n,
6352 uint32_t *ret_m, uint32_t *ret_n,
6353 bool reduce_m_n)
6354 {
6355 /*
6356 * Reduce M/N as much as possible without loss in precision. Several DP
6357 * dongles in particular seem to be fussy about too large *link* M/N
6358 * values. The passed in values are more likely to have the least
6359 * significant bits zero than M after rounding below, so do this first.
6360 */
6361 if (reduce_m_n) {
6362 while ((m & 1) == 0 && (n & 1) == 0) {
6363 m >>= 1;
6364 n >>= 1;
6365 }
6366 }
6367
6368 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6369 *ret_m = div_u64((uint64_t) m * *ret_n, n);
6370 intel_reduce_m_n_ratio(ret_m, ret_n);
6371 }
6372
6373 void
6374 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6375 int pixel_clock, int link_clock,
6376 struct intel_link_m_n *m_n,
6377 bool reduce_m_n)
6378 {
6379 m_n->tu = 64;
6380
6381 compute_m_n(bits_per_pixel * pixel_clock,
6382 link_clock * nlanes * 8,
6383 &m_n->gmch_m, &m_n->gmch_n,
6384 reduce_m_n);
6385
6386 compute_m_n(pixel_clock, link_clock,
6387 &m_n->link_m, &m_n->link_n,
6388 reduce_m_n);
6389 }
6390
6391 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6392 {
6393 if (i915_modparams.panel_use_ssc >= 0)
6394 return i915_modparams.panel_use_ssc != 0;
6395 return dev_priv->vbt.lvds_use_ssc
6396 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6397 }
6398
6399 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6400 {
6401 return (1 << dpll->n) << 16 | dpll->m2;
6402 }
6403
6404 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6405 {
6406 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6407 }
6408
6409 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6410 struct intel_crtc_state *crtc_state,
6411 struct dpll *reduced_clock)
6412 {
6413 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6414 u32 fp, fp2 = 0;
6415
6416 if (IS_PINEVIEW(dev_priv)) {
6417 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6418 if (reduced_clock)
6419 fp2 = pnv_dpll_compute_fp(reduced_clock);
6420 } else {
6421 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6422 if (reduced_clock)
6423 fp2 = i9xx_dpll_compute_fp(reduced_clock);
6424 }
6425
6426 crtc_state->dpll_hw_state.fp0 = fp;
6427
6428 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6429 reduced_clock) {
6430 crtc_state->dpll_hw_state.fp1 = fp2;
6431 } else {
6432 crtc_state->dpll_hw_state.fp1 = fp;
6433 }
6434 }
6435
6436 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6437 pipe)
6438 {
6439 u32 reg_val;
6440
6441 /*
6442 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6443 * and set it to a reasonable value instead.
6444 */
6445 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6446 reg_val &= 0xffffff00;
6447 reg_val |= 0x00000030;
6448 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6449
6450 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6451 reg_val &= 0x00ffffff;
6452 reg_val |= 0x8c000000;
6453 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6454
6455 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6456 reg_val &= 0xffffff00;
6457 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6458
6459 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6460 reg_val &= 0x00ffffff;
6461 reg_val |= 0xb0000000;
6462 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6463 }
6464
6465 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6466 struct intel_link_m_n *m_n)
6467 {
6468 struct drm_device *dev = crtc->base.dev;
6469 struct drm_i915_private *dev_priv = to_i915(dev);
6470 int pipe = crtc->pipe;
6471
6472 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6473 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6474 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6475 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6476 }
6477
6478 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6479 struct intel_link_m_n *m_n,
6480 struct intel_link_m_n *m2_n2)
6481 {
6482 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6483 int pipe = crtc->pipe;
6484 enum transcoder transcoder = crtc->config->cpu_transcoder;
6485
6486 if (INTEL_GEN(dev_priv) >= 5) {
6487 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6488 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6489 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6490 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6491 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6492 * for gen < 8) and if DRRS is supported (to make sure the
6493 * registers are not unnecessarily accessed).
6494 */
6495 if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
6496 INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
6497 I915_WRITE(PIPE_DATA_M2(transcoder),
6498 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6499 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6500 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6501 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6502 }
6503 } else {
6504 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6505 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6506 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6507 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6508 }
6509 }
6510
6511 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6512 {
6513 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6514
6515 if (m_n == M1_N1) {
6516 dp_m_n = &crtc->config->dp_m_n;
6517 dp_m2_n2 = &crtc->config->dp_m2_n2;
6518 } else if (m_n == M2_N2) {
6519
6520 /*
6521 * M2_N2 registers are not supported. Hence m2_n2 divider value
6522 * needs to be programmed into M1_N1.
6523 */
6524 dp_m_n = &crtc->config->dp_m2_n2;
6525 } else {
6526 DRM_ERROR("Unsupported divider value\n");
6527 return;
6528 }
6529
6530 if (crtc->config->has_pch_encoder)
6531 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6532 else
6533 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6534 }
6535
6536 static void vlv_compute_dpll(struct intel_crtc *crtc,
6537 struct intel_crtc_state *pipe_config)
6538 {
6539 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
6540 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6541 if (crtc->pipe != PIPE_A)
6542 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6543
6544 /* DPLL not used with DSI, but still need the rest set up */
6545 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6546 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
6547 DPLL_EXT_BUFFER_ENABLE_VLV;
6548
6549 pipe_config->dpll_hw_state.dpll_md =
6550 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6551 }
6552
6553 static void chv_compute_dpll(struct intel_crtc *crtc,
6554 struct intel_crtc_state *pipe_config)
6555 {
6556 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
6557 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6558 if (crtc->pipe != PIPE_A)
6559 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6560
6561 /* DPLL not used with DSI, but still need the rest set up */
6562 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6563 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
6564
6565 pipe_config->dpll_hw_state.dpll_md =
6566 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6567 }
6568
6569 static void vlv_prepare_pll(struct intel_crtc *crtc,
6570 const struct intel_crtc_state *pipe_config)
6571 {
6572 struct drm_device *dev = crtc->base.dev;
6573 struct drm_i915_private *dev_priv = to_i915(dev);
6574 enum pipe pipe = crtc->pipe;
6575 u32 mdiv;
6576 u32 bestn, bestm1, bestm2, bestp1, bestp2;
6577 u32 coreclk, reg_val;
6578
6579 /* Enable Refclk */
6580 I915_WRITE(DPLL(pipe),
6581 pipe_config->dpll_hw_state.dpll &
6582 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
6583
6584 /* No need to actually set up the DPLL with DSI */
6585 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6586 return;
6587
6588 mutex_lock(&dev_priv->sb_lock);
6589
6590 bestn = pipe_config->dpll.n;
6591 bestm1 = pipe_config->dpll.m1;
6592 bestm2 = pipe_config->dpll.m2;
6593 bestp1 = pipe_config->dpll.p1;
6594 bestp2 = pipe_config->dpll.p2;
6595
6596 /* See eDP HDMI DPIO driver vbios notes doc */
6597
6598 /* PLL B needs special handling */
6599 if (pipe == PIPE_B)
6600 vlv_pllb_recal_opamp(dev_priv, pipe);
6601
6602 /* Set up Tx target for periodic Rcomp update */
6603 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6604
6605 /* Disable target IRef on PLL */
6606 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6607 reg_val &= 0x00ffffff;
6608 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6609
6610 /* Disable fast lock */
6611 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6612
6613 /* Set idtafcrecal before PLL is enabled */
6614 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6615 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6616 mdiv |= ((bestn << DPIO_N_SHIFT));
6617 mdiv |= (1 << DPIO_K_SHIFT);
6618
6619 /*
6620 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6621 * but we don't support that).
6622 * Note: don't use the DAC post divider as it seems unstable.
6623 */
6624 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6625 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6626
6627 mdiv |= DPIO_ENABLE_CALIBRATION;
6628 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6629
6630 /* Set HBR and RBR LPF coefficients */
6631 if (pipe_config->port_clock == 162000 ||
6632 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
6633 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
6634 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6635 0x009f0003);
6636 else
6637 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6638 0x00d0000f);
6639
6640 if (intel_crtc_has_dp_encoder(pipe_config)) {
6641 /* Use SSC source */
6642 if (pipe == PIPE_A)
6643 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6644 0x0df40000);
6645 else
6646 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6647 0x0df70000);
6648 } else { /* HDMI or VGA */
6649 /* Use bend source */
6650 if (pipe == PIPE_A)
6651 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6652 0x0df70000);
6653 else
6654 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6655 0x0df40000);
6656 }
6657
6658 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6659 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6660 if (intel_crtc_has_dp_encoder(crtc->config))
6661 coreclk |= 0x01000000;
6662 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6663
6664 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6665 mutex_unlock(&dev_priv->sb_lock);
6666 }
6667
6668 static void chv_prepare_pll(struct intel_crtc *crtc,
6669 const struct intel_crtc_state *pipe_config)
6670 {
6671 struct drm_device *dev = crtc->base.dev;
6672 struct drm_i915_private *dev_priv = to_i915(dev);
6673 enum pipe pipe = crtc->pipe;
6674 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6675 u32 loopfilter, tribuf_calcntr;
6676 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6677 u32 dpio_val;
6678 int vco;
6679
6680 /* Enable Refclk and SSC */
6681 I915_WRITE(DPLL(pipe),
6682 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6683
6684 /* No need to actually set up the DPLL with DSI */
6685 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6686 return;
6687
6688 bestn = pipe_config->dpll.n;
6689 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6690 bestm1 = pipe_config->dpll.m1;
6691 bestm2 = pipe_config->dpll.m2 >> 22;
6692 bestp1 = pipe_config->dpll.p1;
6693 bestp2 = pipe_config->dpll.p2;
6694 vco = pipe_config->dpll.vco;
6695 dpio_val = 0;
6696 loopfilter = 0;
6697
6698 mutex_lock(&dev_priv->sb_lock);
6699
6700 /* p1 and p2 divider */
6701 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6702 5 << DPIO_CHV_S1_DIV_SHIFT |
6703 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6704 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6705 1 << DPIO_CHV_K_DIV_SHIFT);
6706
6707 /* Feedback post-divider - m2 */
6708 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6709
6710 /* Feedback refclk divider - n and m1 */
6711 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6712 DPIO_CHV_M1_DIV_BY_2 |
6713 1 << DPIO_CHV_N_DIV_SHIFT);
6714
6715 /* M2 fraction division */
6716 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6717
6718 /* M2 fraction division enable */
6719 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6720 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6721 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6722 if (bestm2_frac)
6723 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6724 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6725
6726 /* Program digital lock detect threshold */
6727 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6728 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6729 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6730 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6731 if (!bestm2_frac)
6732 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6733 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6734
6735 /* Loop filter */
6736 if (vco == 5400000) {
6737 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6738 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6739 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6740 tribuf_calcntr = 0x9;
6741 } else if (vco <= 6200000) {
6742 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6743 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6744 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6745 tribuf_calcntr = 0x9;
6746 } else if (vco <= 6480000) {
6747 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6748 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6749 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6750 tribuf_calcntr = 0x8;
6751 } else {
6752 /* Not supported. Apply the same limits as in the max case */
6753 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6754 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6755 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6756 tribuf_calcntr = 0;
6757 }
6758 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6759
6760 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6761 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6762 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6763 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6764
6765 /* AFC Recal */
6766 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6767 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6768 DPIO_AFC_RECAL);
6769
6770 mutex_unlock(&dev_priv->sb_lock);
6771 }
6772
6773 /**
6774 * vlv_force_pll_on - forcibly enable just the PLL
6775 * @dev_priv: i915 private structure
6776 * @pipe: pipe PLL to enable
6777 * @dpll: PLL configuration
6778 *
6779 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6780 * in cases where we need the PLL enabled even when @pipe is not going to
6781 * be enabled.
6782 */
6783 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
6784 const struct dpll *dpll)
6785 {
6786 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
6787 struct intel_crtc_state *pipe_config;
6788
6789 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
6790 if (!pipe_config)
6791 return -ENOMEM;
6792
6793 pipe_config->base.crtc = &crtc->base;
6794 pipe_config->pixel_multiplier = 1;
6795 pipe_config->dpll = *dpll;
6796
6797 if (IS_CHERRYVIEW(dev_priv)) {
6798 chv_compute_dpll(crtc, pipe_config);
6799 chv_prepare_pll(crtc, pipe_config);
6800 chv_enable_pll(crtc, pipe_config);
6801 } else {
6802 vlv_compute_dpll(crtc, pipe_config);
6803 vlv_prepare_pll(crtc, pipe_config);
6804 vlv_enable_pll(crtc, pipe_config);
6805 }
6806
6807 kfree(pipe_config);
6808
6809 return 0;
6810 }
6811
6812 /**
6813 * vlv_force_pll_off - forcibly disable just the PLL
6814 * @dev_priv: i915 private structure
6815 * @pipe: pipe PLL to disable
6816 *
6817 * Disable the PLL for @pipe. To be used in cases where we need
6818 * the PLL enabled even when @pipe is not going to be enabled.
6819 */
6820 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
6821 {
6822 if (IS_CHERRYVIEW(dev_priv))
6823 chv_disable_pll(dev_priv, pipe);
6824 else
6825 vlv_disable_pll(dev_priv, pipe);
6826 }
6827
6828 static void i9xx_compute_dpll(struct intel_crtc *crtc,
6829 struct intel_crtc_state *crtc_state,
6830 struct dpll *reduced_clock)
6831 {
6832 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6833 u32 dpll;
6834 struct dpll *clock = &crtc_state->dpll;
6835
6836 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6837
6838 dpll = DPLL_VGA_MODE_DIS;
6839
6840 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
6841 dpll |= DPLLB_MODE_LVDS;
6842 else
6843 dpll |= DPLLB_MODE_DAC_SERIAL;
6844
6845 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
6846 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
6847 dpll |= (crtc_state->pixel_multiplier - 1)
6848 << SDVO_MULTIPLIER_SHIFT_HIRES;
6849 }
6850
6851 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
6852 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
6853 dpll |= DPLL_SDVO_HIGH_SPEED;
6854
6855 if (intel_crtc_has_dp_encoder(crtc_state))
6856 dpll |= DPLL_SDVO_HIGH_SPEED;
6857
6858 /* compute bitmask from p1 value */
6859 if (IS_PINEVIEW(dev_priv))
6860 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6861 else {
6862 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6863 if (IS_G4X(dev_priv) && reduced_clock)
6864 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6865 }
6866 switch (clock->p2) {
6867 case 5:
6868 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6869 break;
6870 case 7:
6871 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6872 break;
6873 case 10:
6874 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6875 break;
6876 case 14:
6877 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6878 break;
6879 }
6880 if (INTEL_GEN(dev_priv) >= 4)
6881 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6882
6883 if (crtc_state->sdvo_tv_clock)
6884 dpll |= PLL_REF_INPUT_TVCLKINBC;
6885 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6886 intel_panel_use_ssc(dev_priv))
6887 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6888 else
6889 dpll |= PLL_REF_INPUT_DREFCLK;
6890
6891 dpll |= DPLL_VCO_ENABLE;
6892 crtc_state->dpll_hw_state.dpll = dpll;
6893
6894 if (INTEL_GEN(dev_priv) >= 4) {
6895 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6896 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6897 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6898 }
6899 }
6900
6901 static void i8xx_compute_dpll(struct intel_crtc *crtc,
6902 struct intel_crtc_state *crtc_state,
6903 struct dpll *reduced_clock)
6904 {
6905 struct drm_device *dev = crtc->base.dev;
6906 struct drm_i915_private *dev_priv = to_i915(dev);
6907 u32 dpll;
6908 struct dpll *clock = &crtc_state->dpll;
6909
6910 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6911
6912 dpll = DPLL_VGA_MODE_DIS;
6913
6914 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
6915 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6916 } else {
6917 if (clock->p1 == 2)
6918 dpll |= PLL_P1_DIVIDE_BY_TWO;
6919 else
6920 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6921 if (clock->p2 == 4)
6922 dpll |= PLL_P2_DIVIDE_BY_4;
6923 }
6924
6925 if (!IS_I830(dev_priv) &&
6926 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
6927 dpll |= DPLL_DVO_2X_MODE;
6928
6929 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6930 intel_panel_use_ssc(dev_priv))
6931 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6932 else
6933 dpll |= PLL_REF_INPUT_DREFCLK;
6934
6935 dpll |= DPLL_VCO_ENABLE;
6936 crtc_state->dpll_hw_state.dpll = dpll;
6937 }
6938
6939 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6940 {
6941 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
6942 enum pipe pipe = intel_crtc->pipe;
6943 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6944 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
6945 uint32_t crtc_vtotal, crtc_vblank_end;
6946 int vsyncshift = 0;
6947
6948 /* We need to be careful not to changed the adjusted mode, for otherwise
6949 * the hw state checker will get angry at the mismatch. */
6950 crtc_vtotal = adjusted_mode->crtc_vtotal;
6951 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6952
6953 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6954 /* the chip adds 2 halflines automatically */
6955 crtc_vtotal -= 1;
6956 crtc_vblank_end -= 1;
6957
6958 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
6959 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6960 else
6961 vsyncshift = adjusted_mode->crtc_hsync_start -
6962 adjusted_mode->crtc_htotal / 2;
6963 if (vsyncshift < 0)
6964 vsyncshift += adjusted_mode->crtc_htotal;
6965 }
6966
6967 if (INTEL_GEN(dev_priv) > 3)
6968 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6969
6970 I915_WRITE(HTOTAL(cpu_transcoder),
6971 (adjusted_mode->crtc_hdisplay - 1) |
6972 ((adjusted_mode->crtc_htotal - 1) << 16));
6973 I915_WRITE(HBLANK(cpu_transcoder),
6974 (adjusted_mode->crtc_hblank_start - 1) |
6975 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6976 I915_WRITE(HSYNC(cpu_transcoder),
6977 (adjusted_mode->crtc_hsync_start - 1) |
6978 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6979
6980 I915_WRITE(VTOTAL(cpu_transcoder),
6981 (adjusted_mode->crtc_vdisplay - 1) |
6982 ((crtc_vtotal - 1) << 16));
6983 I915_WRITE(VBLANK(cpu_transcoder),
6984 (adjusted_mode->crtc_vblank_start - 1) |
6985 ((crtc_vblank_end - 1) << 16));
6986 I915_WRITE(VSYNC(cpu_transcoder),
6987 (adjusted_mode->crtc_vsync_start - 1) |
6988 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6989
6990 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6991 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6992 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6993 * bits. */
6994 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
6995 (pipe == PIPE_B || pipe == PIPE_C))
6996 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6997
6998 }
6999
7000 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7001 {
7002 struct drm_device *dev = intel_crtc->base.dev;
7003 struct drm_i915_private *dev_priv = to_i915(dev);
7004 enum pipe pipe = intel_crtc->pipe;
7005
7006 /* pipesrc controls the size that is scaled from, which should
7007 * always be the user's requested size.
7008 */
7009 I915_WRITE(PIPESRC(pipe),
7010 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7011 (intel_crtc->config->pipe_src_h - 1));
7012 }
7013
7014 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7015 struct intel_crtc_state *pipe_config)
7016 {
7017 struct drm_device *dev = crtc->base.dev;
7018 struct drm_i915_private *dev_priv = to_i915(dev);
7019 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7020 uint32_t tmp;
7021
7022 tmp = I915_READ(HTOTAL(cpu_transcoder));
7023 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7024 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7025 tmp = I915_READ(HBLANK(cpu_transcoder));
7026 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7027 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7028 tmp = I915_READ(HSYNC(cpu_transcoder));
7029 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7030 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7031
7032 tmp = I915_READ(VTOTAL(cpu_transcoder));
7033 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7034 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7035 tmp = I915_READ(VBLANK(cpu_transcoder));
7036 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7037 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7038 tmp = I915_READ(VSYNC(cpu_transcoder));
7039 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7040 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7041
7042 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7043 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7044 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7045 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7046 }
7047 }
7048
7049 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7050 struct intel_crtc_state *pipe_config)
7051 {
7052 struct drm_device *dev = crtc->base.dev;
7053 struct drm_i915_private *dev_priv = to_i915(dev);
7054 u32 tmp;
7055
7056 tmp = I915_READ(PIPESRC(crtc->pipe));
7057 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7058 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7059
7060 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7061 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7062 }
7063
7064 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7065 struct intel_crtc_state *pipe_config)
7066 {
7067 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7068 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7069 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7070 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7071
7072 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7073 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7074 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7075 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7076
7077 mode->flags = pipe_config->base.adjusted_mode.flags;
7078 mode->type = DRM_MODE_TYPE_DRIVER;
7079
7080 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7081
7082 mode->hsync = drm_mode_hsync(mode);
7083 mode->vrefresh = drm_mode_vrefresh(mode);
7084 drm_mode_set_name(mode);
7085 }
7086
7087 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7088 {
7089 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
7090 uint32_t pipeconf;
7091
7092 pipeconf = 0;
7093
7094 /* we keep both pipes enabled on 830 */
7095 if (IS_I830(dev_priv))
7096 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7097
7098 if (intel_crtc->config->double_wide)
7099 pipeconf |= PIPECONF_DOUBLE_WIDE;
7100
7101 /* only g4x and later have fancy bpc/dither controls */
7102 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7103 IS_CHERRYVIEW(dev_priv)) {
7104 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7105 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7106 pipeconf |= PIPECONF_DITHER_EN |
7107 PIPECONF_DITHER_TYPE_SP;
7108
7109 switch (intel_crtc->config->pipe_bpp) {
7110 case 18:
7111 pipeconf |= PIPECONF_6BPC;
7112 break;
7113 case 24:
7114 pipeconf |= PIPECONF_8BPC;
7115 break;
7116 case 30:
7117 pipeconf |= PIPECONF_10BPC;
7118 break;
7119 default:
7120 /* Case prevented by intel_choose_pipe_bpp_dither. */
7121 BUG();
7122 }
7123 }
7124
7125 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7126 if (INTEL_GEN(dev_priv) < 4 ||
7127 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7128 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7129 else
7130 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7131 } else
7132 pipeconf |= PIPECONF_PROGRESSIVE;
7133
7134 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7135 intel_crtc->config->limited_color_range)
7136 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7137
7138 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7139 POSTING_READ(PIPECONF(intel_crtc->pipe));
7140 }
7141
7142 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7143 struct intel_crtc_state *crtc_state)
7144 {
7145 struct drm_device *dev = crtc->base.dev;
7146 struct drm_i915_private *dev_priv = to_i915(dev);
7147 const struct intel_limit *limit;
7148 int refclk = 48000;
7149
7150 memset(&crtc_state->dpll_hw_state, 0,
7151 sizeof(crtc_state->dpll_hw_state));
7152
7153 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7154 if (intel_panel_use_ssc(dev_priv)) {
7155 refclk = dev_priv->vbt.lvds_ssc_freq;
7156 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7157 }
7158
7159 limit = &intel_limits_i8xx_lvds;
7160 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
7161 limit = &intel_limits_i8xx_dvo;
7162 } else {
7163 limit = &intel_limits_i8xx_dac;
7164 }
7165
7166 if (!crtc_state->clock_set &&
7167 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7168 refclk, NULL, &crtc_state->dpll)) {
7169 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7170 return -EINVAL;
7171 }
7172
7173 i8xx_compute_dpll(crtc, crtc_state, NULL);
7174
7175 return 0;
7176 }
7177
7178 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7179 struct intel_crtc_state *crtc_state)
7180 {
7181 struct drm_device *dev = crtc->base.dev;
7182 struct drm_i915_private *dev_priv = to_i915(dev);
7183 const struct intel_limit *limit;
7184 int refclk = 96000;
7185
7186 memset(&crtc_state->dpll_hw_state, 0,
7187 sizeof(crtc_state->dpll_hw_state));
7188
7189 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7190 if (intel_panel_use_ssc(dev_priv)) {
7191 refclk = dev_priv->vbt.lvds_ssc_freq;
7192 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7193 }
7194
7195 if (intel_is_dual_link_lvds(dev))
7196 limit = &intel_limits_g4x_dual_channel_lvds;
7197 else
7198 limit = &intel_limits_g4x_single_channel_lvds;
7199 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7200 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7201 limit = &intel_limits_g4x_hdmi;
7202 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7203 limit = &intel_limits_g4x_sdvo;
7204 } else {
7205 /* The option is for other outputs */
7206 limit = &intel_limits_i9xx_sdvo;
7207 }
7208
7209 if (!crtc_state->clock_set &&
7210 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7211 refclk, NULL, &crtc_state->dpll)) {
7212 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7213 return -EINVAL;
7214 }
7215
7216 i9xx_compute_dpll(crtc, crtc_state, NULL);
7217
7218 return 0;
7219 }
7220
7221 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7222 struct intel_crtc_state *crtc_state)
7223 {
7224 struct drm_device *dev = crtc->base.dev;
7225 struct drm_i915_private *dev_priv = to_i915(dev);
7226 const struct intel_limit *limit;
7227 int refclk = 96000;
7228
7229 memset(&crtc_state->dpll_hw_state, 0,
7230 sizeof(crtc_state->dpll_hw_state));
7231
7232 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7233 if (intel_panel_use_ssc(dev_priv)) {
7234 refclk = dev_priv->vbt.lvds_ssc_freq;
7235 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7236 }
7237
7238 limit = &intel_limits_pineview_lvds;
7239 } else {
7240 limit = &intel_limits_pineview_sdvo;
7241 }
7242
7243 if (!crtc_state->clock_set &&
7244 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7245 refclk, NULL, &crtc_state->dpll)) {
7246 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7247 return -EINVAL;
7248 }
7249
7250 i9xx_compute_dpll(crtc, crtc_state, NULL);
7251
7252 return 0;
7253 }
7254
7255 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7256 struct intel_crtc_state *crtc_state)
7257 {
7258 struct drm_device *dev = crtc->base.dev;
7259 struct drm_i915_private *dev_priv = to_i915(dev);
7260 const struct intel_limit *limit;
7261 int refclk = 96000;
7262
7263 memset(&crtc_state->dpll_hw_state, 0,
7264 sizeof(crtc_state->dpll_hw_state));
7265
7266 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7267 if (intel_panel_use_ssc(dev_priv)) {
7268 refclk = dev_priv->vbt.lvds_ssc_freq;
7269 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7270 }
7271
7272 limit = &intel_limits_i9xx_lvds;
7273 } else {
7274 limit = &intel_limits_i9xx_sdvo;
7275 }
7276
7277 if (!crtc_state->clock_set &&
7278 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7279 refclk, NULL, &crtc_state->dpll)) {
7280 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7281 return -EINVAL;
7282 }
7283
7284 i9xx_compute_dpll(crtc, crtc_state, NULL);
7285
7286 return 0;
7287 }
7288
7289 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7290 struct intel_crtc_state *crtc_state)
7291 {
7292 int refclk = 100000;
7293 const struct intel_limit *limit = &intel_limits_chv;
7294
7295 memset(&crtc_state->dpll_hw_state, 0,
7296 sizeof(crtc_state->dpll_hw_state));
7297
7298 if (!crtc_state->clock_set &&
7299 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7300 refclk, NULL, &crtc_state->dpll)) {
7301 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7302 return -EINVAL;
7303 }
7304
7305 chv_compute_dpll(crtc, crtc_state);
7306
7307 return 0;
7308 }
7309
7310 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7311 struct intel_crtc_state *crtc_state)
7312 {
7313 int refclk = 100000;
7314 const struct intel_limit *limit = &intel_limits_vlv;
7315
7316 memset(&crtc_state->dpll_hw_state, 0,
7317 sizeof(crtc_state->dpll_hw_state));
7318
7319 if (!crtc_state->clock_set &&
7320 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7321 refclk, NULL, &crtc_state->dpll)) {
7322 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7323 return -EINVAL;
7324 }
7325
7326 vlv_compute_dpll(crtc, crtc_state);
7327
7328 return 0;
7329 }
7330
7331 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7332 struct intel_crtc_state *pipe_config)
7333 {
7334 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7335 uint32_t tmp;
7336
7337 if (INTEL_GEN(dev_priv) <= 3 &&
7338 (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
7339 return;
7340
7341 tmp = I915_READ(PFIT_CONTROL);
7342 if (!(tmp & PFIT_ENABLE))
7343 return;
7344
7345 /* Check whether the pfit is attached to our pipe. */
7346 if (INTEL_GEN(dev_priv) < 4) {
7347 if (crtc->pipe != PIPE_B)
7348 return;
7349 } else {
7350 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7351 return;
7352 }
7353
7354 pipe_config->gmch_pfit.control = tmp;
7355 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7356 }
7357
7358 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7359 struct intel_crtc_state *pipe_config)
7360 {
7361 struct drm_device *dev = crtc->base.dev;
7362 struct drm_i915_private *dev_priv = to_i915(dev);
7363 int pipe = pipe_config->cpu_transcoder;
7364 struct dpll clock;
7365 u32 mdiv;
7366 int refclk = 100000;
7367
7368 /* In case of DSI, DPLL will not be used */
7369 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7370 return;
7371
7372 mutex_lock(&dev_priv->sb_lock);
7373 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7374 mutex_unlock(&dev_priv->sb_lock);
7375
7376 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7377 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7378 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7379 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7380 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7381
7382 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7383 }
7384
7385 static void
7386 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7387 struct intel_initial_plane_config *plane_config)
7388 {
7389 struct drm_device *dev = crtc->base.dev;
7390 struct drm_i915_private *dev_priv = to_i915(dev);
7391 u32 val, base, offset;
7392 int pipe = crtc->pipe, plane = crtc->plane;
7393 int fourcc, pixel_format;
7394 unsigned int aligned_height;
7395 struct drm_framebuffer *fb;
7396 struct intel_framebuffer *intel_fb;
7397
7398 val = I915_READ(DSPCNTR(plane));
7399 if (!(val & DISPLAY_PLANE_ENABLE))
7400 return;
7401
7402 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7403 if (!intel_fb) {
7404 DRM_DEBUG_KMS("failed to alloc fb\n");
7405 return;
7406 }
7407
7408 fb = &intel_fb->base;
7409
7410 fb->dev = dev;
7411
7412 if (INTEL_GEN(dev_priv) >= 4) {
7413 if (val & DISPPLANE_TILED) {
7414 plane_config->tiling = I915_TILING_X;
7415 fb->modifier = I915_FORMAT_MOD_X_TILED;
7416 }
7417 }
7418
7419 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7420 fourcc = i9xx_format_to_fourcc(pixel_format);
7421 fb->format = drm_format_info(fourcc);
7422
7423 if (INTEL_GEN(dev_priv) >= 4) {
7424 if (plane_config->tiling)
7425 offset = I915_READ(DSPTILEOFF(plane));
7426 else
7427 offset = I915_READ(DSPLINOFF(plane));
7428 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7429 } else {
7430 base = I915_READ(DSPADDR(plane));
7431 }
7432 plane_config->base = base;
7433
7434 val = I915_READ(PIPESRC(pipe));
7435 fb->width = ((val >> 16) & 0xfff) + 1;
7436 fb->height = ((val >> 0) & 0xfff) + 1;
7437
7438 val = I915_READ(DSPSTRIDE(pipe));
7439 fb->pitches[0] = val & 0xffffffc0;
7440
7441 aligned_height = intel_fb_align_height(fb, 0, fb->height);
7442
7443 plane_config->size = fb->pitches[0] * aligned_height;
7444
7445 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7446 pipe_name(pipe), plane, fb->width, fb->height,
7447 fb->format->cpp[0] * 8, base, fb->pitches[0],
7448 plane_config->size);
7449
7450 plane_config->fb = intel_fb;
7451 }
7452
7453 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7454 struct intel_crtc_state *pipe_config)
7455 {
7456 struct drm_device *dev = crtc->base.dev;
7457 struct drm_i915_private *dev_priv = to_i915(dev);
7458 int pipe = pipe_config->cpu_transcoder;
7459 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7460 struct dpll clock;
7461 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
7462 int refclk = 100000;
7463
7464 /* In case of DSI, DPLL will not be used */
7465 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7466 return;
7467
7468 mutex_lock(&dev_priv->sb_lock);
7469 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7470 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7471 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7472 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7473 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7474 mutex_unlock(&dev_priv->sb_lock);
7475
7476 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7477 clock.m2 = (pll_dw0 & 0xff) << 22;
7478 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
7479 clock.m2 |= pll_dw2 & 0x3fffff;
7480 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7481 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7482 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7483
7484 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
7485 }
7486
7487 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7488 struct intel_crtc_state *pipe_config)
7489 {
7490 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7491 enum intel_display_power_domain power_domain;
7492 uint32_t tmp;
7493 bool ret;
7494
7495 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
7496 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
7497 return false;
7498
7499 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7500 pipe_config->shared_dpll = NULL;
7501
7502 ret = false;
7503
7504 tmp = I915_READ(PIPECONF(crtc->pipe));
7505 if (!(tmp & PIPECONF_ENABLE))
7506 goto out;
7507
7508 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7509 IS_CHERRYVIEW(dev_priv)) {
7510 switch (tmp & PIPECONF_BPC_MASK) {
7511 case PIPECONF_6BPC:
7512 pipe_config->pipe_bpp = 18;
7513 break;
7514 case PIPECONF_8BPC:
7515 pipe_config->pipe_bpp = 24;
7516 break;
7517 case PIPECONF_10BPC:
7518 pipe_config->pipe_bpp = 30;
7519 break;
7520 default:
7521 break;
7522 }
7523 }
7524
7525 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7526 (tmp & PIPECONF_COLOR_RANGE_SELECT))
7527 pipe_config->limited_color_range = true;
7528
7529 if (INTEL_GEN(dev_priv) < 4)
7530 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7531
7532 intel_get_pipe_timings(crtc, pipe_config);
7533 intel_get_pipe_src_size(crtc, pipe_config);
7534
7535 i9xx_get_pfit_config(crtc, pipe_config);
7536
7537 if (INTEL_GEN(dev_priv) >= 4) {
7538 /* No way to read it out on pipes B and C */
7539 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
7540 tmp = dev_priv->chv_dpll_md[crtc->pipe];
7541 else
7542 tmp = I915_READ(DPLL_MD(crtc->pipe));
7543 pipe_config->pixel_multiplier =
7544 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7545 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7546 pipe_config->dpll_hw_state.dpll_md = tmp;
7547 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
7548 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
7549 tmp = I915_READ(DPLL(crtc->pipe));
7550 pipe_config->pixel_multiplier =
7551 ((tmp & SDVO_MULTIPLIER_MASK)
7552 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7553 } else {
7554 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7555 * port and will be fixed up in the encoder->get_config
7556 * function. */
7557 pipe_config->pixel_multiplier = 1;
7558 }
7559 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7560 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
7561 /*
7562 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7563 * on 830. Filter it out here so that we don't
7564 * report errors due to that.
7565 */
7566 if (IS_I830(dev_priv))
7567 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7568
7569 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7570 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7571 } else {
7572 /* Mask out read-only status bits. */
7573 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7574 DPLL_PORTC_READY_MASK |
7575 DPLL_PORTB_READY_MASK);
7576 }
7577
7578 if (IS_CHERRYVIEW(dev_priv))
7579 chv_crtc_clock_get(crtc, pipe_config);
7580 else if (IS_VALLEYVIEW(dev_priv))
7581 vlv_crtc_clock_get(crtc, pipe_config);
7582 else
7583 i9xx_crtc_clock_get(crtc, pipe_config);
7584
7585 /*
7586 * Normally the dotclock is filled in by the encoder .get_config()
7587 * but in case the pipe is enabled w/o any ports we need a sane
7588 * default.
7589 */
7590 pipe_config->base.adjusted_mode.crtc_clock =
7591 pipe_config->port_clock / pipe_config->pixel_multiplier;
7592
7593 ret = true;
7594
7595 out:
7596 intel_display_power_put(dev_priv, power_domain);
7597
7598 return ret;
7599 }
7600
7601 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
7602 {
7603 struct intel_encoder *encoder;
7604 int i;
7605 u32 val, final;
7606 bool has_lvds = false;
7607 bool has_cpu_edp = false;
7608 bool has_panel = false;
7609 bool has_ck505 = false;
7610 bool can_ssc = false;
7611 bool using_ssc_source = false;
7612
7613 /* We need to take the global config into account */
7614 for_each_intel_encoder(&dev_priv->drm, encoder) {
7615 switch (encoder->type) {
7616 case INTEL_OUTPUT_LVDS:
7617 has_panel = true;
7618 has_lvds = true;
7619 break;
7620 case INTEL_OUTPUT_EDP:
7621 has_panel = true;
7622 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7623 has_cpu_edp = true;
7624 break;
7625 default:
7626 break;
7627 }
7628 }
7629
7630 if (HAS_PCH_IBX(dev_priv)) {
7631 has_ck505 = dev_priv->vbt.display_clock_mode;
7632 can_ssc = has_ck505;
7633 } else {
7634 has_ck505 = false;
7635 can_ssc = true;
7636 }
7637
7638 /* Check if any DPLLs are using the SSC source */
7639 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
7640 u32 temp = I915_READ(PCH_DPLL(i));
7641
7642 if (!(temp & DPLL_VCO_ENABLE))
7643 continue;
7644
7645 if ((temp & PLL_REF_INPUT_MASK) ==
7646 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7647 using_ssc_source = true;
7648 break;
7649 }
7650 }
7651
7652 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
7653 has_panel, has_lvds, has_ck505, using_ssc_source);
7654
7655 /* Ironlake: try to setup display ref clock before DPLL
7656 * enabling. This is only under driver's control after
7657 * PCH B stepping, previous chipset stepping should be
7658 * ignoring this setting.
7659 */
7660 val = I915_READ(PCH_DREF_CONTROL);
7661
7662 /* As we must carefully and slowly disable/enable each source in turn,
7663 * compute the final state we want first and check if we need to
7664 * make any changes at all.
7665 */
7666 final = val;
7667 final &= ~DREF_NONSPREAD_SOURCE_MASK;
7668 if (has_ck505)
7669 final |= DREF_NONSPREAD_CK505_ENABLE;
7670 else
7671 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7672
7673 final &= ~DREF_SSC_SOURCE_MASK;
7674 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7675 final &= ~DREF_SSC1_ENABLE;
7676
7677 if (has_panel) {
7678 final |= DREF_SSC_SOURCE_ENABLE;
7679
7680 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7681 final |= DREF_SSC1_ENABLE;
7682
7683 if (has_cpu_edp) {
7684 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7685 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7686 else
7687 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7688 } else
7689 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7690 } else if (using_ssc_source) {
7691 final |= DREF_SSC_SOURCE_ENABLE;
7692 final |= DREF_SSC1_ENABLE;
7693 }
7694
7695 if (final == val)
7696 return;
7697
7698 /* Always enable nonspread source */
7699 val &= ~DREF_NONSPREAD_SOURCE_MASK;
7700
7701 if (has_ck505)
7702 val |= DREF_NONSPREAD_CK505_ENABLE;
7703 else
7704 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7705
7706 if (has_panel) {
7707 val &= ~DREF_SSC_SOURCE_MASK;
7708 val |= DREF_SSC_SOURCE_ENABLE;
7709
7710 /* SSC must be turned on before enabling the CPU output */
7711 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7712 DRM_DEBUG_KMS("Using SSC on panel\n");
7713 val |= DREF_SSC1_ENABLE;
7714 } else
7715 val &= ~DREF_SSC1_ENABLE;
7716
7717 /* Get SSC going before enabling the outputs */
7718 I915_WRITE(PCH_DREF_CONTROL, val);
7719 POSTING_READ(PCH_DREF_CONTROL);
7720 udelay(200);
7721
7722 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7723
7724 /* Enable CPU source on CPU attached eDP */
7725 if (has_cpu_edp) {
7726 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7727 DRM_DEBUG_KMS("Using SSC on eDP\n");
7728 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7729 } else
7730 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7731 } else
7732 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7733
7734 I915_WRITE(PCH_DREF_CONTROL, val);
7735 POSTING_READ(PCH_DREF_CONTROL);
7736 udelay(200);
7737 } else {
7738 DRM_DEBUG_KMS("Disabling CPU source output\n");
7739
7740 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7741
7742 /* Turn off CPU output */
7743 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7744
7745 I915_WRITE(PCH_DREF_CONTROL, val);
7746 POSTING_READ(PCH_DREF_CONTROL);
7747 udelay(200);
7748
7749 if (!using_ssc_source) {
7750 DRM_DEBUG_KMS("Disabling SSC source\n");
7751
7752 /* Turn off the SSC source */
7753 val &= ~DREF_SSC_SOURCE_MASK;
7754 val |= DREF_SSC_SOURCE_DISABLE;
7755
7756 /* Turn off SSC1 */
7757 val &= ~DREF_SSC1_ENABLE;
7758
7759 I915_WRITE(PCH_DREF_CONTROL, val);
7760 POSTING_READ(PCH_DREF_CONTROL);
7761 udelay(200);
7762 }
7763 }
7764
7765 BUG_ON(val != final);
7766 }
7767
7768 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7769 {
7770 uint32_t tmp;
7771
7772 tmp = I915_READ(SOUTH_CHICKEN2);
7773 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7774 I915_WRITE(SOUTH_CHICKEN2, tmp);
7775
7776 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
7777 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7778 DRM_ERROR("FDI mPHY reset assert timeout\n");
7779
7780 tmp = I915_READ(SOUTH_CHICKEN2);
7781 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7782 I915_WRITE(SOUTH_CHICKEN2, tmp);
7783
7784 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
7785 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7786 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7787 }
7788
7789 /* WaMPhyProgramming:hsw */
7790 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7791 {
7792 uint32_t tmp;
7793
7794 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7795 tmp &= ~(0xFF << 24);
7796 tmp |= (0x12 << 24);
7797 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7798
7799 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7800 tmp |= (1 << 11);
7801 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7802
7803 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7804 tmp |= (1 << 11);
7805 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7806
7807 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7808 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7809 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7810
7811 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7812 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7813 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7814
7815 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7816 tmp &= ~(7 << 13);
7817 tmp |= (5 << 13);
7818 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7819
7820 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7821 tmp &= ~(7 << 13);
7822 tmp |= (5 << 13);
7823 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7824
7825 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7826 tmp &= ~0xFF;
7827 tmp |= 0x1C;
7828 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7829
7830 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7831 tmp &= ~0xFF;
7832 tmp |= 0x1C;
7833 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7834
7835 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7836 tmp &= ~(0xFF << 16);
7837 tmp |= (0x1C << 16);
7838 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7839
7840 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7841 tmp &= ~(0xFF << 16);
7842 tmp |= (0x1C << 16);
7843 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7844
7845 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7846 tmp |= (1 << 27);
7847 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7848
7849 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7850 tmp |= (1 << 27);
7851 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7852
7853 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7854 tmp &= ~(0xF << 28);
7855 tmp |= (4 << 28);
7856 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7857
7858 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7859 tmp &= ~(0xF << 28);
7860 tmp |= (4 << 28);
7861 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7862 }
7863
7864 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7865 * Programming" based on the parameters passed:
7866 * - Sequence to enable CLKOUT_DP
7867 * - Sequence to enable CLKOUT_DP without spread
7868 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7869 */
7870 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
7871 bool with_spread, bool with_fdi)
7872 {
7873 uint32_t reg, tmp;
7874
7875 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7876 with_spread = true;
7877 if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
7878 with_fdi, "LP PCH doesn't have FDI\n"))
7879 with_fdi = false;
7880
7881 mutex_lock(&dev_priv->sb_lock);
7882
7883 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7884 tmp &= ~SBI_SSCCTL_DISABLE;
7885 tmp |= SBI_SSCCTL_PATHALT;
7886 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7887
7888 udelay(24);
7889
7890 if (with_spread) {
7891 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7892 tmp &= ~SBI_SSCCTL_PATHALT;
7893 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7894
7895 if (with_fdi) {
7896 lpt_reset_fdi_mphy(dev_priv);
7897 lpt_program_fdi_mphy(dev_priv);
7898 }
7899 }
7900
7901 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7902 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7903 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7904 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7905
7906 mutex_unlock(&dev_priv->sb_lock);
7907 }
7908
7909 /* Sequence to disable CLKOUT_DP */
7910 static void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
7911 {
7912 uint32_t reg, tmp;
7913
7914 mutex_lock(&dev_priv->sb_lock);
7915
7916 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7917 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7918 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7919 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7920
7921 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7922 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7923 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7924 tmp |= SBI_SSCCTL_PATHALT;
7925 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7926 udelay(32);
7927 }
7928 tmp |= SBI_SSCCTL_DISABLE;
7929 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7930 }
7931
7932 mutex_unlock(&dev_priv->sb_lock);
7933 }
7934
7935 #define BEND_IDX(steps) ((50 + (steps)) / 5)
7936
7937 static const uint16_t sscdivintphase[] = {
7938 [BEND_IDX( 50)] = 0x3B23,
7939 [BEND_IDX( 45)] = 0x3B23,
7940 [BEND_IDX( 40)] = 0x3C23,
7941 [BEND_IDX( 35)] = 0x3C23,
7942 [BEND_IDX( 30)] = 0x3D23,
7943 [BEND_IDX( 25)] = 0x3D23,
7944 [BEND_IDX( 20)] = 0x3E23,
7945 [BEND_IDX( 15)] = 0x3E23,
7946 [BEND_IDX( 10)] = 0x3F23,
7947 [BEND_IDX( 5)] = 0x3F23,
7948 [BEND_IDX( 0)] = 0x0025,
7949 [BEND_IDX( -5)] = 0x0025,
7950 [BEND_IDX(-10)] = 0x0125,
7951 [BEND_IDX(-15)] = 0x0125,
7952 [BEND_IDX(-20)] = 0x0225,
7953 [BEND_IDX(-25)] = 0x0225,
7954 [BEND_IDX(-30)] = 0x0325,
7955 [BEND_IDX(-35)] = 0x0325,
7956 [BEND_IDX(-40)] = 0x0425,
7957 [BEND_IDX(-45)] = 0x0425,
7958 [BEND_IDX(-50)] = 0x0525,
7959 };
7960
7961 /*
7962 * Bend CLKOUT_DP
7963 * steps -50 to 50 inclusive, in steps of 5
7964 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
7965 * change in clock period = -(steps / 10) * 5.787 ps
7966 */
7967 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
7968 {
7969 uint32_t tmp;
7970 int idx = BEND_IDX(steps);
7971
7972 if (WARN_ON(steps % 5 != 0))
7973 return;
7974
7975 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
7976 return;
7977
7978 mutex_lock(&dev_priv->sb_lock);
7979
7980 if (steps % 10 != 0)
7981 tmp = 0xAAAAAAAB;
7982 else
7983 tmp = 0x00000000;
7984 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
7985
7986 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
7987 tmp &= 0xffff0000;
7988 tmp |= sscdivintphase[idx];
7989 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
7990
7991 mutex_unlock(&dev_priv->sb_lock);
7992 }
7993
7994 #undef BEND_IDX
7995
7996 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
7997 {
7998 struct intel_encoder *encoder;
7999 bool has_vga = false;
8000
8001 for_each_intel_encoder(&dev_priv->drm, encoder) {
8002 switch (encoder->type) {
8003 case INTEL_OUTPUT_ANALOG:
8004 has_vga = true;
8005 break;
8006 default:
8007 break;
8008 }
8009 }
8010
8011 if (has_vga) {
8012 lpt_bend_clkout_dp(dev_priv, 0);
8013 lpt_enable_clkout_dp(dev_priv, true, true);
8014 } else {
8015 lpt_disable_clkout_dp(dev_priv);
8016 }
8017 }
8018
8019 /*
8020 * Initialize reference clocks when the driver loads
8021 */
8022 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
8023 {
8024 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
8025 ironlake_init_pch_refclk(dev_priv);
8026 else if (HAS_PCH_LPT(dev_priv))
8027 lpt_init_pch_refclk(dev_priv);
8028 }
8029
8030 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8031 {
8032 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8033 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8034 int pipe = intel_crtc->pipe;
8035 uint32_t val;
8036
8037 val = 0;
8038
8039 switch (intel_crtc->config->pipe_bpp) {
8040 case 18:
8041 val |= PIPECONF_6BPC;
8042 break;
8043 case 24:
8044 val |= PIPECONF_8BPC;
8045 break;
8046 case 30:
8047 val |= PIPECONF_10BPC;
8048 break;
8049 case 36:
8050 val |= PIPECONF_12BPC;
8051 break;
8052 default:
8053 /* Case prevented by intel_choose_pipe_bpp_dither. */
8054 BUG();
8055 }
8056
8057 if (intel_crtc->config->dither)
8058 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8059
8060 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8061 val |= PIPECONF_INTERLACED_ILK;
8062 else
8063 val |= PIPECONF_PROGRESSIVE;
8064
8065 if (intel_crtc->config->limited_color_range)
8066 val |= PIPECONF_COLOR_RANGE_SELECT;
8067
8068 I915_WRITE(PIPECONF(pipe), val);
8069 POSTING_READ(PIPECONF(pipe));
8070 }
8071
8072 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8073 {
8074 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8075 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8076 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8077 u32 val = 0;
8078
8079 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8080 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8081
8082 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8083 val |= PIPECONF_INTERLACED_ILK;
8084 else
8085 val |= PIPECONF_PROGRESSIVE;
8086
8087 I915_WRITE(PIPECONF(cpu_transcoder), val);
8088 POSTING_READ(PIPECONF(cpu_transcoder));
8089 }
8090
8091 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8092 {
8093 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8094 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8095 struct intel_crtc_state *config = intel_crtc->config;
8096
8097 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8098 u32 val = 0;
8099
8100 switch (intel_crtc->config->pipe_bpp) {
8101 case 18:
8102 val |= PIPEMISC_DITHER_6_BPC;
8103 break;
8104 case 24:
8105 val |= PIPEMISC_DITHER_8_BPC;
8106 break;
8107 case 30:
8108 val |= PIPEMISC_DITHER_10_BPC;
8109 break;
8110 case 36:
8111 val |= PIPEMISC_DITHER_12_BPC;
8112 break;
8113 default:
8114 /* Case prevented by pipe_config_set_bpp. */
8115 BUG();
8116 }
8117
8118 if (intel_crtc->config->dither)
8119 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8120
8121 if (config->ycbcr420) {
8122 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV |
8123 PIPEMISC_YUV420_ENABLE |
8124 PIPEMISC_YUV420_MODE_FULL_BLEND;
8125 }
8126
8127 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8128 }
8129 }
8130
8131 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8132 {
8133 /*
8134 * Account for spread spectrum to avoid
8135 * oversubscribing the link. Max center spread
8136 * is 2.5%; use 5% for safety's sake.
8137 */
8138 u32 bps = target_clock * bpp * 21 / 20;
8139 return DIV_ROUND_UP(bps, link_bw * 8);
8140 }
8141
8142 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8143 {
8144 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8145 }
8146
8147 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8148 struct intel_crtc_state *crtc_state,
8149 struct dpll *reduced_clock)
8150 {
8151 struct drm_crtc *crtc = &intel_crtc->base;
8152 struct drm_device *dev = crtc->dev;
8153 struct drm_i915_private *dev_priv = to_i915(dev);
8154 u32 dpll, fp, fp2;
8155 int factor;
8156
8157 /* Enable autotuning of the PLL clock (if permissible) */
8158 factor = 21;
8159 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8160 if ((intel_panel_use_ssc(dev_priv) &&
8161 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8162 (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
8163 factor = 25;
8164 } else if (crtc_state->sdvo_tv_clock)
8165 factor = 20;
8166
8167 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8168
8169 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8170 fp |= FP_CB_TUNE;
8171
8172 if (reduced_clock) {
8173 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8174
8175 if (reduced_clock->m < factor * reduced_clock->n)
8176 fp2 |= FP_CB_TUNE;
8177 } else {
8178 fp2 = fp;
8179 }
8180
8181 dpll = 0;
8182
8183 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8184 dpll |= DPLLB_MODE_LVDS;
8185 else
8186 dpll |= DPLLB_MODE_DAC_SERIAL;
8187
8188 dpll |= (crtc_state->pixel_multiplier - 1)
8189 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8190
8191 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8192 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8193 dpll |= DPLL_SDVO_HIGH_SPEED;
8194
8195 if (intel_crtc_has_dp_encoder(crtc_state))
8196 dpll |= DPLL_SDVO_HIGH_SPEED;
8197
8198 /*
8199 * The high speed IO clock is only really required for
8200 * SDVO/HDMI/DP, but we also enable it for CRT to make it
8201 * possible to share the DPLL between CRT and HDMI. Enabling
8202 * the clock needlessly does no real harm, except use up a
8203 * bit of power potentially.
8204 *
8205 * We'll limit this to IVB with 3 pipes, since it has only two
8206 * DPLLs and so DPLL sharing is the only way to get three pipes
8207 * driving PCH ports at the same time. On SNB we could do this,
8208 * and potentially avoid enabling the second DPLL, but it's not
8209 * clear if it''s a win or loss power wise. No point in doing
8210 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
8211 */
8212 if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
8213 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
8214 dpll |= DPLL_SDVO_HIGH_SPEED;
8215
8216 /* compute bitmask from p1 value */
8217 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8218 /* also FPA1 */
8219 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8220
8221 switch (crtc_state->dpll.p2) {
8222 case 5:
8223 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8224 break;
8225 case 7:
8226 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8227 break;
8228 case 10:
8229 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8230 break;
8231 case 14:
8232 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8233 break;
8234 }
8235
8236 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8237 intel_panel_use_ssc(dev_priv))
8238 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8239 else
8240 dpll |= PLL_REF_INPUT_DREFCLK;
8241
8242 dpll |= DPLL_VCO_ENABLE;
8243
8244 crtc_state->dpll_hw_state.dpll = dpll;
8245 crtc_state->dpll_hw_state.fp0 = fp;
8246 crtc_state->dpll_hw_state.fp1 = fp2;
8247 }
8248
8249 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8250 struct intel_crtc_state *crtc_state)
8251 {
8252 struct drm_device *dev = crtc->base.dev;
8253 struct drm_i915_private *dev_priv = to_i915(dev);
8254 const struct intel_limit *limit;
8255 int refclk = 120000;
8256
8257 memset(&crtc_state->dpll_hw_state, 0,
8258 sizeof(crtc_state->dpll_hw_state));
8259
8260 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8261 if (!crtc_state->has_pch_encoder)
8262 return 0;
8263
8264 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8265 if (intel_panel_use_ssc(dev_priv)) {
8266 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8267 dev_priv->vbt.lvds_ssc_freq);
8268 refclk = dev_priv->vbt.lvds_ssc_freq;
8269 }
8270
8271 if (intel_is_dual_link_lvds(dev)) {
8272 if (refclk == 100000)
8273 limit = &intel_limits_ironlake_dual_lvds_100m;
8274 else
8275 limit = &intel_limits_ironlake_dual_lvds;
8276 } else {
8277 if (refclk == 100000)
8278 limit = &intel_limits_ironlake_single_lvds_100m;
8279 else
8280 limit = &intel_limits_ironlake_single_lvds;
8281 }
8282 } else {
8283 limit = &intel_limits_ironlake_dac;
8284 }
8285
8286 if (!crtc_state->clock_set &&
8287 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8288 refclk, NULL, &crtc_state->dpll)) {
8289 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8290 return -EINVAL;
8291 }
8292
8293 ironlake_compute_dpll(crtc, crtc_state, NULL);
8294
8295 if (!intel_get_shared_dpll(crtc, crtc_state, NULL)) {
8296 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8297 pipe_name(crtc->pipe));
8298 return -EINVAL;
8299 }
8300
8301 return 0;
8302 }
8303
8304 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8305 struct intel_link_m_n *m_n)
8306 {
8307 struct drm_device *dev = crtc->base.dev;
8308 struct drm_i915_private *dev_priv = to_i915(dev);
8309 enum pipe pipe = crtc->pipe;
8310
8311 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8312 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8313 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8314 & ~TU_SIZE_MASK;
8315 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8316 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8317 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8318 }
8319
8320 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8321 enum transcoder transcoder,
8322 struct intel_link_m_n *m_n,
8323 struct intel_link_m_n *m2_n2)
8324 {
8325 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8326 enum pipe pipe = crtc->pipe;
8327
8328 if (INTEL_GEN(dev_priv) >= 5) {
8329 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8330 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8331 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8332 & ~TU_SIZE_MASK;
8333 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8334 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8335 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8336 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8337 * gen < 8) and if DRRS is supported (to make sure the
8338 * registers are not unnecessarily read).
8339 */
8340 if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
8341 crtc->config->has_drrs) {
8342 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8343 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8344 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8345 & ~TU_SIZE_MASK;
8346 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8347 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8348 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8349 }
8350 } else {
8351 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8352 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8353 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8354 & ~TU_SIZE_MASK;
8355 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8356 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8357 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8358 }
8359 }
8360
8361 void intel_dp_get_m_n(struct intel_crtc *crtc,
8362 struct intel_crtc_state *pipe_config)
8363 {
8364 if (pipe_config->has_pch_encoder)
8365 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8366 else
8367 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8368 &pipe_config->dp_m_n,
8369 &pipe_config->dp_m2_n2);
8370 }
8371
8372 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8373 struct intel_crtc_state *pipe_config)
8374 {
8375 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8376 &pipe_config->fdi_m_n, NULL);
8377 }
8378
8379 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8380 struct intel_crtc_state *pipe_config)
8381 {
8382 struct drm_device *dev = crtc->base.dev;
8383 struct drm_i915_private *dev_priv = to_i915(dev);
8384 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8385 uint32_t ps_ctrl = 0;
8386 int id = -1;
8387 int i;
8388
8389 /* find scaler attached to this pipe */
8390 for (i = 0; i < crtc->num_scalers; i++) {
8391 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8392 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8393 id = i;
8394 pipe_config->pch_pfit.enabled = true;
8395 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8396 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8397 break;
8398 }
8399 }
8400
8401 scaler_state->scaler_id = id;
8402 if (id >= 0) {
8403 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8404 } else {
8405 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8406 }
8407 }
8408
8409 static void
8410 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8411 struct intel_initial_plane_config *plane_config)
8412 {
8413 struct drm_device *dev = crtc->base.dev;
8414 struct drm_i915_private *dev_priv = to_i915(dev);
8415 u32 val, base, offset, stride_mult, tiling;
8416 int pipe = crtc->pipe;
8417 int fourcc, pixel_format;
8418 unsigned int aligned_height;
8419 struct drm_framebuffer *fb;
8420 struct intel_framebuffer *intel_fb;
8421
8422 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8423 if (!intel_fb) {
8424 DRM_DEBUG_KMS("failed to alloc fb\n");
8425 return;
8426 }
8427
8428 fb = &intel_fb->base;
8429
8430 fb->dev = dev;
8431
8432 val = I915_READ(PLANE_CTL(pipe, 0));
8433 if (!(val & PLANE_CTL_ENABLE))
8434 goto error;
8435
8436 pixel_format = val & PLANE_CTL_FORMAT_MASK;
8437 fourcc = skl_format_to_fourcc(pixel_format,
8438 val & PLANE_CTL_ORDER_RGBX,
8439 val & PLANE_CTL_ALPHA_MASK);
8440 fb->format = drm_format_info(fourcc);
8441
8442 tiling = val & PLANE_CTL_TILED_MASK;
8443 switch (tiling) {
8444 case PLANE_CTL_TILED_LINEAR:
8445 fb->modifier = DRM_FORMAT_MOD_LINEAR;
8446 break;
8447 case PLANE_CTL_TILED_X:
8448 plane_config->tiling = I915_TILING_X;
8449 fb->modifier = I915_FORMAT_MOD_X_TILED;
8450 break;
8451 case PLANE_CTL_TILED_Y:
8452 if (val & PLANE_CTL_DECOMPRESSION_ENABLE)
8453 fb->modifier = I915_FORMAT_MOD_Y_TILED_CCS;
8454 else
8455 fb->modifier = I915_FORMAT_MOD_Y_TILED;
8456 break;
8457 case PLANE_CTL_TILED_YF:
8458 if (val & PLANE_CTL_DECOMPRESSION_ENABLE)
8459 fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS;
8460 else
8461 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
8462 break;
8463 default:
8464 MISSING_CASE(tiling);
8465 goto error;
8466 }
8467
8468 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8469 plane_config->base = base;
8470
8471 offset = I915_READ(PLANE_OFFSET(pipe, 0));
8472
8473 val = I915_READ(PLANE_SIZE(pipe, 0));
8474 fb->height = ((val >> 16) & 0xfff) + 1;
8475 fb->width = ((val >> 0) & 0x1fff) + 1;
8476
8477 val = I915_READ(PLANE_STRIDE(pipe, 0));
8478 stride_mult = intel_fb_stride_alignment(fb, 0);
8479 fb->pitches[0] = (val & 0x3ff) * stride_mult;
8480
8481 aligned_height = intel_fb_align_height(fb, 0, fb->height);
8482
8483 plane_config->size = fb->pitches[0] * aligned_height;
8484
8485 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8486 pipe_name(pipe), fb->width, fb->height,
8487 fb->format->cpp[0] * 8, base, fb->pitches[0],
8488 plane_config->size);
8489
8490 plane_config->fb = intel_fb;
8491 return;
8492
8493 error:
8494 kfree(intel_fb);
8495 }
8496
8497 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8498 struct intel_crtc_state *pipe_config)
8499 {
8500 struct drm_device *dev = crtc->base.dev;
8501 struct drm_i915_private *dev_priv = to_i915(dev);
8502 uint32_t tmp;
8503
8504 tmp = I915_READ(PF_CTL(crtc->pipe));
8505
8506 if (tmp & PF_ENABLE) {
8507 pipe_config->pch_pfit.enabled = true;
8508 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8509 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8510
8511 /* We currently do not free assignements of panel fitters on
8512 * ivb/hsw (since we don't use the higher upscaling modes which
8513 * differentiates them) so just WARN about this case for now. */
8514 if (IS_GEN7(dev_priv)) {
8515 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8516 PF_PIPE_SEL_IVB(crtc->pipe));
8517 }
8518 }
8519 }
8520
8521 static void
8522 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8523 struct intel_initial_plane_config *plane_config)
8524 {
8525 struct drm_device *dev = crtc->base.dev;
8526 struct drm_i915_private *dev_priv = to_i915(dev);
8527 u32 val, base, offset;
8528 int pipe = crtc->pipe;
8529 int fourcc, pixel_format;
8530 unsigned int aligned_height;
8531 struct drm_framebuffer *fb;
8532 struct intel_framebuffer *intel_fb;
8533
8534 val = I915_READ(DSPCNTR(pipe));
8535 if (!(val & DISPLAY_PLANE_ENABLE))
8536 return;
8537
8538 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8539 if (!intel_fb) {
8540 DRM_DEBUG_KMS("failed to alloc fb\n");
8541 return;
8542 }
8543
8544 fb = &intel_fb->base;
8545
8546 fb->dev = dev;
8547
8548 if (INTEL_GEN(dev_priv) >= 4) {
8549 if (val & DISPPLANE_TILED) {
8550 plane_config->tiling = I915_TILING_X;
8551 fb->modifier = I915_FORMAT_MOD_X_TILED;
8552 }
8553 }
8554
8555 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8556 fourcc = i9xx_format_to_fourcc(pixel_format);
8557 fb->format = drm_format_info(fourcc);
8558
8559 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8560 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
8561 offset = I915_READ(DSPOFFSET(pipe));
8562 } else {
8563 if (plane_config->tiling)
8564 offset = I915_READ(DSPTILEOFF(pipe));
8565 else
8566 offset = I915_READ(DSPLINOFF(pipe));
8567 }
8568 plane_config->base = base;
8569
8570 val = I915_READ(PIPESRC(pipe));
8571 fb->width = ((val >> 16) & 0xfff) + 1;
8572 fb->height = ((val >> 0) & 0xfff) + 1;
8573
8574 val = I915_READ(DSPSTRIDE(pipe));
8575 fb->pitches[0] = val & 0xffffffc0;
8576
8577 aligned_height = intel_fb_align_height(fb, 0, fb->height);
8578
8579 plane_config->size = fb->pitches[0] * aligned_height;
8580
8581 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8582 pipe_name(pipe), fb->width, fb->height,
8583 fb->format->cpp[0] * 8, base, fb->pitches[0],
8584 plane_config->size);
8585
8586 plane_config->fb = intel_fb;
8587 }
8588
8589 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8590 struct intel_crtc_state *pipe_config)
8591 {
8592 struct drm_device *dev = crtc->base.dev;
8593 struct drm_i915_private *dev_priv = to_i915(dev);
8594 enum intel_display_power_domain power_domain;
8595 uint32_t tmp;
8596 bool ret;
8597
8598 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8599 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8600 return false;
8601
8602 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8603 pipe_config->shared_dpll = NULL;
8604
8605 ret = false;
8606 tmp = I915_READ(PIPECONF(crtc->pipe));
8607 if (!(tmp & PIPECONF_ENABLE))
8608 goto out;
8609
8610 switch (tmp & PIPECONF_BPC_MASK) {
8611 case PIPECONF_6BPC:
8612 pipe_config->pipe_bpp = 18;
8613 break;
8614 case PIPECONF_8BPC:
8615 pipe_config->pipe_bpp = 24;
8616 break;
8617 case PIPECONF_10BPC:
8618 pipe_config->pipe_bpp = 30;
8619 break;
8620 case PIPECONF_12BPC:
8621 pipe_config->pipe_bpp = 36;
8622 break;
8623 default:
8624 break;
8625 }
8626
8627 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8628 pipe_config->limited_color_range = true;
8629
8630 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8631 struct intel_shared_dpll *pll;
8632 enum intel_dpll_id pll_id;
8633
8634 pipe_config->has_pch_encoder = true;
8635
8636 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8637 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8638 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8639
8640 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8641
8642 if (HAS_PCH_IBX(dev_priv)) {
8643 /*
8644 * The pipe->pch transcoder and pch transcoder->pll
8645 * mapping is fixed.
8646 */
8647 pll_id = (enum intel_dpll_id) crtc->pipe;
8648 } else {
8649 tmp = I915_READ(PCH_DPLL_SEL);
8650 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8651 pll_id = DPLL_ID_PCH_PLL_B;
8652 else
8653 pll_id= DPLL_ID_PCH_PLL_A;
8654 }
8655
8656 pipe_config->shared_dpll =
8657 intel_get_shared_dpll_by_id(dev_priv, pll_id);
8658 pll = pipe_config->shared_dpll;
8659
8660 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
8661 &pipe_config->dpll_hw_state));
8662
8663 tmp = pipe_config->dpll_hw_state.dpll;
8664 pipe_config->pixel_multiplier =
8665 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8666 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8667
8668 ironlake_pch_clock_get(crtc, pipe_config);
8669 } else {
8670 pipe_config->pixel_multiplier = 1;
8671 }
8672
8673 intel_get_pipe_timings(crtc, pipe_config);
8674 intel_get_pipe_src_size(crtc, pipe_config);
8675
8676 ironlake_get_pfit_config(crtc, pipe_config);
8677
8678 ret = true;
8679
8680 out:
8681 intel_display_power_put(dev_priv, power_domain);
8682
8683 return ret;
8684 }
8685
8686 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8687 {
8688 struct drm_device *dev = &dev_priv->drm;
8689 struct intel_crtc *crtc;
8690
8691 for_each_intel_crtc(dev, crtc)
8692 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8693 pipe_name(crtc->pipe));
8694
8695 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_CTL_DRIVER(HSW_DISP_PW_GLOBAL)),
8696 "Display power well on\n");
8697 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8698 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8699 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8700 I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
8701 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8702 "CPU PWM1 enabled\n");
8703 if (IS_HASWELL(dev_priv))
8704 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8705 "CPU PWM2 enabled\n");
8706 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8707 "PCH PWM1 enabled\n");
8708 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8709 "Utility pin enabled\n");
8710 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8711
8712 /*
8713 * In theory we can still leave IRQs enabled, as long as only the HPD
8714 * interrupts remain enabled. We used to check for that, but since it's
8715 * gen-specific and since we only disable LCPLL after we fully disable
8716 * the interrupts, the check below should be enough.
8717 */
8718 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8719 }
8720
8721 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8722 {
8723 if (IS_HASWELL(dev_priv))
8724 return I915_READ(D_COMP_HSW);
8725 else
8726 return I915_READ(D_COMP_BDW);
8727 }
8728
8729 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8730 {
8731 if (IS_HASWELL(dev_priv)) {
8732 mutex_lock(&dev_priv->pcu_lock);
8733 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8734 val))
8735 DRM_DEBUG_KMS("Failed to write to D_COMP\n");
8736 mutex_unlock(&dev_priv->pcu_lock);
8737 } else {
8738 I915_WRITE(D_COMP_BDW, val);
8739 POSTING_READ(D_COMP_BDW);
8740 }
8741 }
8742
8743 /*
8744 * This function implements pieces of two sequences from BSpec:
8745 * - Sequence for display software to disable LCPLL
8746 * - Sequence for display software to allow package C8+
8747 * The steps implemented here are just the steps that actually touch the LCPLL
8748 * register. Callers should take care of disabling all the display engine
8749 * functions, doing the mode unset, fixing interrupts, etc.
8750 */
8751 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8752 bool switch_to_fclk, bool allow_power_down)
8753 {
8754 uint32_t val;
8755
8756 assert_can_disable_lcpll(dev_priv);
8757
8758 val = I915_READ(LCPLL_CTL);
8759
8760 if (switch_to_fclk) {
8761 val |= LCPLL_CD_SOURCE_FCLK;
8762 I915_WRITE(LCPLL_CTL, val);
8763
8764 if (wait_for_us(I915_READ(LCPLL_CTL) &
8765 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8766 DRM_ERROR("Switching to FCLK failed\n");
8767
8768 val = I915_READ(LCPLL_CTL);
8769 }
8770
8771 val |= LCPLL_PLL_DISABLE;
8772 I915_WRITE(LCPLL_CTL, val);
8773 POSTING_READ(LCPLL_CTL);
8774
8775 if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
8776 DRM_ERROR("LCPLL still locked\n");
8777
8778 val = hsw_read_dcomp(dev_priv);
8779 val |= D_COMP_COMP_DISABLE;
8780 hsw_write_dcomp(dev_priv, val);
8781 ndelay(100);
8782
8783 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8784 1))
8785 DRM_ERROR("D_COMP RCOMP still in progress\n");
8786
8787 if (allow_power_down) {
8788 val = I915_READ(LCPLL_CTL);
8789 val |= LCPLL_POWER_DOWN_ALLOW;
8790 I915_WRITE(LCPLL_CTL, val);
8791 POSTING_READ(LCPLL_CTL);
8792 }
8793 }
8794
8795 /*
8796 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8797 * source.
8798 */
8799 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8800 {
8801 uint32_t val;
8802
8803 val = I915_READ(LCPLL_CTL);
8804
8805 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8806 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8807 return;
8808
8809 /*
8810 * Make sure we're not on PC8 state before disabling PC8, otherwise
8811 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8812 */
8813 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8814
8815 if (val & LCPLL_POWER_DOWN_ALLOW) {
8816 val &= ~LCPLL_POWER_DOWN_ALLOW;
8817 I915_WRITE(LCPLL_CTL, val);
8818 POSTING_READ(LCPLL_CTL);
8819 }
8820
8821 val = hsw_read_dcomp(dev_priv);
8822 val |= D_COMP_COMP_FORCE;
8823 val &= ~D_COMP_COMP_DISABLE;
8824 hsw_write_dcomp(dev_priv, val);
8825
8826 val = I915_READ(LCPLL_CTL);
8827 val &= ~LCPLL_PLL_DISABLE;
8828 I915_WRITE(LCPLL_CTL, val);
8829
8830 if (intel_wait_for_register(dev_priv,
8831 LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
8832 5))
8833 DRM_ERROR("LCPLL not locked yet\n");
8834
8835 if (val & LCPLL_CD_SOURCE_FCLK) {
8836 val = I915_READ(LCPLL_CTL);
8837 val &= ~LCPLL_CD_SOURCE_FCLK;
8838 I915_WRITE(LCPLL_CTL, val);
8839
8840 if (wait_for_us((I915_READ(LCPLL_CTL) &
8841 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8842 DRM_ERROR("Switching back to LCPLL failed\n");
8843 }
8844
8845 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8846 intel_update_cdclk(dev_priv);
8847 }
8848
8849 /*
8850 * Package states C8 and deeper are really deep PC states that can only be
8851 * reached when all the devices on the system allow it, so even if the graphics
8852 * device allows PC8+, it doesn't mean the system will actually get to these
8853 * states. Our driver only allows PC8+ when going into runtime PM.
8854 *
8855 * The requirements for PC8+ are that all the outputs are disabled, the power
8856 * well is disabled and most interrupts are disabled, and these are also
8857 * requirements for runtime PM. When these conditions are met, we manually do
8858 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8859 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8860 * hang the machine.
8861 *
8862 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8863 * the state of some registers, so when we come back from PC8+ we need to
8864 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8865 * need to take care of the registers kept by RC6. Notice that this happens even
8866 * if we don't put the device in PCI D3 state (which is what currently happens
8867 * because of the runtime PM support).
8868 *
8869 * For more, read "Display Sequences for Package C8" on the hardware
8870 * documentation.
8871 */
8872 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8873 {
8874 uint32_t val;
8875
8876 DRM_DEBUG_KMS("Enabling package C8+\n");
8877
8878 if (HAS_PCH_LPT_LP(dev_priv)) {
8879 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8880 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8881 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8882 }
8883
8884 lpt_disable_clkout_dp(dev_priv);
8885 hsw_disable_lcpll(dev_priv, true, true);
8886 }
8887
8888 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8889 {
8890 uint32_t val;
8891
8892 DRM_DEBUG_KMS("Disabling package C8+\n");
8893
8894 hsw_restore_lcpll(dev_priv);
8895 lpt_init_pch_refclk(dev_priv);
8896
8897 if (HAS_PCH_LPT_LP(dev_priv)) {
8898 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8899 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8900 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8901 }
8902 }
8903
8904 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8905 struct intel_crtc_state *crtc_state)
8906 {
8907 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
8908 struct intel_encoder *encoder =
8909 intel_ddi_get_crtc_new_encoder(crtc_state);
8910
8911 if (!intel_get_shared_dpll(crtc, crtc_state, encoder)) {
8912 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8913 pipe_name(crtc->pipe));
8914 return -EINVAL;
8915 }
8916 }
8917
8918 return 0;
8919 }
8920
8921 static void cannonlake_get_ddi_pll(struct drm_i915_private *dev_priv,
8922 enum port port,
8923 struct intel_crtc_state *pipe_config)
8924 {
8925 enum intel_dpll_id id;
8926 u32 temp;
8927
8928 temp = I915_READ(DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
8929 id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port);
8930
8931 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL2))
8932 return;
8933
8934 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8935 }
8936
8937 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
8938 enum port port,
8939 struct intel_crtc_state *pipe_config)
8940 {
8941 enum intel_dpll_id id;
8942
8943 switch (port) {
8944 case PORT_A:
8945 id = DPLL_ID_SKL_DPLL0;
8946 break;
8947 case PORT_B:
8948 id = DPLL_ID_SKL_DPLL1;
8949 break;
8950 case PORT_C:
8951 id = DPLL_ID_SKL_DPLL2;
8952 break;
8953 default:
8954 DRM_ERROR("Incorrect port type\n");
8955 return;
8956 }
8957
8958 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8959 }
8960
8961 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8962 enum port port,
8963 struct intel_crtc_state *pipe_config)
8964 {
8965 enum intel_dpll_id id;
8966 u32 temp;
8967
8968 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8969 id = temp >> (port * 3 + 1);
8970
8971 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
8972 return;
8973
8974 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8975 }
8976
8977 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8978 enum port port,
8979 struct intel_crtc_state *pipe_config)
8980 {
8981 enum intel_dpll_id id;
8982 uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8983
8984 switch (ddi_pll_sel) {
8985 case PORT_CLK_SEL_WRPLL1:
8986 id = DPLL_ID_WRPLL1;
8987 break;
8988 case PORT_CLK_SEL_WRPLL2:
8989 id = DPLL_ID_WRPLL2;
8990 break;
8991 case PORT_CLK_SEL_SPLL:
8992 id = DPLL_ID_SPLL;
8993 break;
8994 case PORT_CLK_SEL_LCPLL_810:
8995 id = DPLL_ID_LCPLL_810;
8996 break;
8997 case PORT_CLK_SEL_LCPLL_1350:
8998 id = DPLL_ID_LCPLL_1350;
8999 break;
9000 case PORT_CLK_SEL_LCPLL_2700:
9001 id = DPLL_ID_LCPLL_2700;
9002 break;
9003 default:
9004 MISSING_CASE(ddi_pll_sel);
9005 /* fall through */
9006 case PORT_CLK_SEL_NONE:
9007 return;
9008 }
9009
9010 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9011 }
9012
9013 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9014 struct intel_crtc_state *pipe_config,
9015 u64 *power_domain_mask)
9016 {
9017 struct drm_device *dev = crtc->base.dev;
9018 struct drm_i915_private *dev_priv = to_i915(dev);
9019 enum intel_display_power_domain power_domain;
9020 u32 tmp;
9021
9022 /*
9023 * The pipe->transcoder mapping is fixed with the exception of the eDP
9024 * transcoder handled below.
9025 */
9026 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9027
9028 /*
9029 * XXX: Do intel_display_power_get_if_enabled before reading this (for
9030 * consistency and less surprising code; it's in always on power).
9031 */
9032 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9033 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9034 enum pipe trans_edp_pipe;
9035 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9036 default:
9037 WARN(1, "unknown pipe linked to edp transcoder\n");
9038 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9039 case TRANS_DDI_EDP_INPUT_A_ON:
9040 trans_edp_pipe = PIPE_A;
9041 break;
9042 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9043 trans_edp_pipe = PIPE_B;
9044 break;
9045 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9046 trans_edp_pipe = PIPE_C;
9047 break;
9048 }
9049
9050 if (trans_edp_pipe == crtc->pipe)
9051 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9052 }
9053
9054 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9055 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9056 return false;
9057 *power_domain_mask |= BIT_ULL(power_domain);
9058
9059 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9060
9061 return tmp & PIPECONF_ENABLE;
9062 }
9063
9064 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9065 struct intel_crtc_state *pipe_config,
9066 u64 *power_domain_mask)
9067 {
9068 struct drm_device *dev = crtc->base.dev;
9069 struct drm_i915_private *dev_priv = to_i915(dev);
9070 enum intel_display_power_domain power_domain;
9071 enum port port;
9072 enum transcoder cpu_transcoder;
9073 u32 tmp;
9074
9075 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9076 if (port == PORT_A)
9077 cpu_transcoder = TRANSCODER_DSI_A;
9078 else
9079 cpu_transcoder = TRANSCODER_DSI_C;
9080
9081 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9082 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9083 continue;
9084 *power_domain_mask |= BIT_ULL(power_domain);
9085
9086 /*
9087 * The PLL needs to be enabled with a valid divider
9088 * configuration, otherwise accessing DSI registers will hang
9089 * the machine. See BSpec North Display Engine
9090 * registers/MIPI[BXT]. We can break out here early, since we
9091 * need the same DSI PLL to be enabled for both DSI ports.
9092 */
9093 if (!intel_dsi_pll_is_enabled(dev_priv))
9094 break;
9095
9096 /* XXX: this works for video mode only */
9097 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9098 if (!(tmp & DPI_ENABLE))
9099 continue;
9100
9101 tmp = I915_READ(MIPI_CTRL(port));
9102 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9103 continue;
9104
9105 pipe_config->cpu_transcoder = cpu_transcoder;
9106 break;
9107 }
9108
9109 return transcoder_is_dsi(pipe_config->cpu_transcoder);
9110 }
9111
9112 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9113 struct intel_crtc_state *pipe_config)
9114 {
9115 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9116 struct intel_shared_dpll *pll;
9117 enum port port;
9118 uint32_t tmp;
9119
9120 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9121
9122 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9123
9124 if (IS_CANNONLAKE(dev_priv))
9125 cannonlake_get_ddi_pll(dev_priv, port, pipe_config);
9126 else if (IS_GEN9_BC(dev_priv))
9127 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9128 else if (IS_GEN9_LP(dev_priv))
9129 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9130 else
9131 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9132
9133 pll = pipe_config->shared_dpll;
9134 if (pll) {
9135 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9136 &pipe_config->dpll_hw_state));
9137 }
9138
9139 /*
9140 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9141 * DDI E. So just check whether this pipe is wired to DDI E and whether
9142 * the PCH transcoder is on.
9143 */
9144 if (INTEL_GEN(dev_priv) < 9 &&
9145 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9146 pipe_config->has_pch_encoder = true;
9147
9148 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9149 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9150 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9151
9152 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9153 }
9154 }
9155
9156 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9157 struct intel_crtc_state *pipe_config)
9158 {
9159 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9160 enum intel_display_power_domain power_domain;
9161 u64 power_domain_mask;
9162 bool active;
9163
9164 intel_crtc_init_scalers(crtc, pipe_config);
9165
9166 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9167 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9168 return false;
9169 power_domain_mask = BIT_ULL(power_domain);
9170
9171 pipe_config->shared_dpll = NULL;
9172
9173 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
9174
9175 if (IS_GEN9_LP(dev_priv) &&
9176 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
9177 WARN_ON(active);
9178 active = true;
9179 }
9180
9181 if (!active)
9182 goto out;
9183
9184 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9185 haswell_get_ddi_port_state(crtc, pipe_config);
9186 intel_get_pipe_timings(crtc, pipe_config);
9187 }
9188
9189 intel_get_pipe_src_size(crtc, pipe_config);
9190
9191 pipe_config->gamma_mode =
9192 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
9193
9194 if (IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9) {
9195 u32 tmp = I915_READ(PIPEMISC(crtc->pipe));
9196 bool clrspace_yuv = tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV;
9197
9198 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
9199 bool blend_mode_420 = tmp &
9200 PIPEMISC_YUV420_MODE_FULL_BLEND;
9201
9202 pipe_config->ycbcr420 = tmp & PIPEMISC_YUV420_ENABLE;
9203 if (pipe_config->ycbcr420 != clrspace_yuv ||
9204 pipe_config->ycbcr420 != blend_mode_420)
9205 DRM_DEBUG_KMS("Bad 4:2:0 mode (%08x)\n", tmp);
9206 } else if (clrspace_yuv) {
9207 DRM_DEBUG_KMS("YCbCr 4:2:0 Unsupported\n");
9208 }
9209 }
9210
9211 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9212 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
9213 power_domain_mask |= BIT_ULL(power_domain);
9214 if (INTEL_GEN(dev_priv) >= 9)
9215 skylake_get_pfit_config(crtc, pipe_config);
9216 else
9217 ironlake_get_pfit_config(crtc, pipe_config);
9218 }
9219
9220 if (IS_HASWELL(dev_priv))
9221 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9222 (I915_READ(IPS_CTL) & IPS_ENABLE);
9223
9224 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
9225 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9226 pipe_config->pixel_multiplier =
9227 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9228 } else {
9229 pipe_config->pixel_multiplier = 1;
9230 }
9231
9232 out:
9233 for_each_power_domain(power_domain, power_domain_mask)
9234 intel_display_power_put(dev_priv, power_domain);
9235
9236 return active;
9237 }
9238
9239 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
9240 {
9241 struct drm_i915_private *dev_priv =
9242 to_i915(plane_state->base.plane->dev);
9243 const struct drm_framebuffer *fb = plane_state->base.fb;
9244 const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9245 u32 base;
9246
9247 if (INTEL_INFO(dev_priv)->cursor_needs_physical)
9248 base = obj->phys_handle->busaddr;
9249 else
9250 base = intel_plane_ggtt_offset(plane_state);
9251
9252 base += plane_state->main.offset;
9253
9254 /* ILK+ do this automagically */
9255 if (HAS_GMCH_DISPLAY(dev_priv) &&
9256 plane_state->base.rotation & DRM_MODE_ROTATE_180)
9257 base += (plane_state->base.crtc_h *
9258 plane_state->base.crtc_w - 1) * fb->format->cpp[0];
9259
9260 return base;
9261 }
9262
9263 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
9264 {
9265 int x = plane_state->base.crtc_x;
9266 int y = plane_state->base.crtc_y;
9267 u32 pos = 0;
9268
9269 if (x < 0) {
9270 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9271 x = -x;
9272 }
9273 pos |= x << CURSOR_X_SHIFT;
9274
9275 if (y < 0) {
9276 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9277 y = -y;
9278 }
9279 pos |= y << CURSOR_Y_SHIFT;
9280
9281 return pos;
9282 }
9283
9284 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
9285 {
9286 const struct drm_mode_config *config =
9287 &plane_state->base.plane->dev->mode_config;
9288 int width = plane_state->base.crtc_w;
9289 int height = plane_state->base.crtc_h;
9290
9291 return width > 0 && width <= config->cursor_width &&
9292 height > 0 && height <= config->cursor_height;
9293 }
9294
9295 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
9296 struct intel_plane_state *plane_state)
9297 {
9298 const struct drm_framebuffer *fb = plane_state->base.fb;
9299 int src_x, src_y;
9300 u32 offset;
9301 int ret;
9302
9303 ret = drm_plane_helper_check_state(&plane_state->base,
9304 &plane_state->clip,
9305 DRM_PLANE_HELPER_NO_SCALING,
9306 DRM_PLANE_HELPER_NO_SCALING,
9307 true, true);
9308 if (ret)
9309 return ret;
9310
9311 if (!fb)
9312 return 0;
9313
9314 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
9315 DRM_DEBUG_KMS("cursor cannot be tiled\n");
9316 return -EINVAL;
9317 }
9318
9319 src_x = plane_state->base.src_x >> 16;
9320 src_y = plane_state->base.src_y >> 16;
9321
9322 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
9323 offset = intel_compute_tile_offset(&src_x, &src_y, plane_state, 0);
9324
9325 if (src_x != 0 || src_y != 0) {
9326 DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n");
9327 return -EINVAL;
9328 }
9329
9330 plane_state->main.offset = offset;
9331
9332 return 0;
9333 }
9334
9335 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
9336 const struct intel_plane_state *plane_state)
9337 {
9338 const struct drm_framebuffer *fb = plane_state->base.fb;
9339
9340 return CURSOR_ENABLE |
9341 CURSOR_GAMMA_ENABLE |
9342 CURSOR_FORMAT_ARGB |
9343 CURSOR_STRIDE(fb->pitches[0]);
9344 }
9345
9346 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
9347 {
9348 int width = plane_state->base.crtc_w;
9349
9350 /*
9351 * 845g/865g are only limited by the width of their cursors,
9352 * the height is arbitrary up to the precision of the register.
9353 */
9354 return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
9355 }
9356
9357 static int i845_check_cursor(struct intel_plane *plane,
9358 struct intel_crtc_state *crtc_state,
9359 struct intel_plane_state *plane_state)
9360 {
9361 const struct drm_framebuffer *fb = plane_state->base.fb;
9362 int ret;
9363
9364 ret = intel_check_cursor(crtc_state, plane_state);
9365 if (ret)
9366 return ret;
9367
9368 /* if we want to turn off the cursor ignore width and height */
9369 if (!fb)
9370 return 0;
9371
9372 /* Check for which cursor types we support */
9373 if (!i845_cursor_size_ok(plane_state)) {
9374 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
9375 plane_state->base.crtc_w,
9376 plane_state->base.crtc_h);
9377 return -EINVAL;
9378 }
9379
9380 switch (fb->pitches[0]) {
9381 case 256:
9382 case 512:
9383 case 1024:
9384 case 2048:
9385 break;
9386 default:
9387 DRM_DEBUG_KMS("Invalid cursor stride (%u)\n",
9388 fb->pitches[0]);
9389 return -EINVAL;
9390 }
9391
9392 plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
9393
9394 return 0;
9395 }
9396
9397 static void i845_update_cursor(struct intel_plane *plane,
9398 const struct intel_crtc_state *crtc_state,
9399 const struct intel_plane_state *plane_state)
9400 {
9401 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9402 u32 cntl = 0, base = 0, pos = 0, size = 0;
9403 unsigned long irqflags;
9404
9405 if (plane_state && plane_state->base.visible) {
9406 unsigned int width = plane_state->base.crtc_w;
9407 unsigned int height = plane_state->base.crtc_h;
9408
9409 cntl = plane_state->ctl;
9410 size = (height << 12) | width;
9411
9412 base = intel_cursor_base(plane_state);
9413 pos = intel_cursor_position(plane_state);
9414 }
9415
9416 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9417
9418 /* On these chipsets we can only modify the base/size/stride
9419 * whilst the cursor is disabled.
9420 */
9421 if (plane->cursor.base != base ||
9422 plane->cursor.size != size ||
9423 plane->cursor.cntl != cntl) {
9424 I915_WRITE_FW(CURCNTR(PIPE_A), 0);
9425 I915_WRITE_FW(CURBASE(PIPE_A), base);
9426 I915_WRITE_FW(CURSIZE, size);
9427 I915_WRITE_FW(CURPOS(PIPE_A), pos);
9428 I915_WRITE_FW(CURCNTR(PIPE_A), cntl);
9429
9430 plane->cursor.base = base;
9431 plane->cursor.size = size;
9432 plane->cursor.cntl = cntl;
9433 } else {
9434 I915_WRITE_FW(CURPOS(PIPE_A), pos);
9435 }
9436
9437 POSTING_READ_FW(CURCNTR(PIPE_A));
9438
9439 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9440 }
9441
9442 static void i845_disable_cursor(struct intel_plane *plane,
9443 struct intel_crtc *crtc)
9444 {
9445 i845_update_cursor(plane, NULL, NULL);
9446 }
9447
9448 static bool i845_cursor_get_hw_state(struct intel_plane *plane)
9449 {
9450 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9451 enum intel_display_power_domain power_domain;
9452 bool ret;
9453
9454 power_domain = POWER_DOMAIN_PIPE(PIPE_A);
9455 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9456 return false;
9457
9458 ret = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
9459
9460 intel_display_power_put(dev_priv, power_domain);
9461
9462 return ret;
9463 }
9464
9465 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
9466 const struct intel_plane_state *plane_state)
9467 {
9468 struct drm_i915_private *dev_priv =
9469 to_i915(plane_state->base.plane->dev);
9470 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9471 u32 cntl;
9472
9473 cntl = MCURSOR_GAMMA_ENABLE;
9474
9475 if (HAS_DDI(dev_priv))
9476 cntl |= CURSOR_PIPE_CSC_ENABLE;
9477
9478 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
9479
9480 switch (plane_state->base.crtc_w) {
9481 case 64:
9482 cntl |= CURSOR_MODE_64_ARGB_AX;
9483 break;
9484 case 128:
9485 cntl |= CURSOR_MODE_128_ARGB_AX;
9486 break;
9487 case 256:
9488 cntl |= CURSOR_MODE_256_ARGB_AX;
9489 break;
9490 default:
9491 MISSING_CASE(plane_state->base.crtc_w);
9492 return 0;
9493 }
9494
9495 if (plane_state->base.rotation & DRM_MODE_ROTATE_180)
9496 cntl |= CURSOR_ROTATE_180;
9497
9498 return cntl;
9499 }
9500
9501 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
9502 {
9503 struct drm_i915_private *dev_priv =
9504 to_i915(plane_state->base.plane->dev);
9505 int width = plane_state->base.crtc_w;
9506 int height = plane_state->base.crtc_h;
9507
9508 if (!intel_cursor_size_ok(plane_state))
9509 return false;
9510
9511 /* Cursor width is limited to a few power-of-two sizes */
9512 switch (width) {
9513 case 256:
9514 case 128:
9515 case 64:
9516 break;
9517 default:
9518 return false;
9519 }
9520
9521 /*
9522 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
9523 * height from 8 lines up to the cursor width, when the
9524 * cursor is not rotated. Everything else requires square
9525 * cursors.
9526 */
9527 if (HAS_CUR_FBC(dev_priv) &&
9528 plane_state->base.rotation & DRM_MODE_ROTATE_0) {
9529 if (height < 8 || height > width)
9530 return false;
9531 } else {
9532 if (height != width)
9533 return false;
9534 }
9535
9536 return true;
9537 }
9538
9539 static int i9xx_check_cursor(struct intel_plane *plane,
9540 struct intel_crtc_state *crtc_state,
9541 struct intel_plane_state *plane_state)
9542 {
9543 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9544 const struct drm_framebuffer *fb = plane_state->base.fb;
9545 enum pipe pipe = plane->pipe;
9546 int ret;
9547
9548 ret = intel_check_cursor(crtc_state, plane_state);
9549 if (ret)
9550 return ret;
9551
9552 /* if we want to turn off the cursor ignore width and height */
9553 if (!fb)
9554 return 0;
9555
9556 /* Check for which cursor types we support */
9557 if (!i9xx_cursor_size_ok(plane_state)) {
9558 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
9559 plane_state->base.crtc_w,
9560 plane_state->base.crtc_h);
9561 return -EINVAL;
9562 }
9563
9564 if (fb->pitches[0] != plane_state->base.crtc_w * fb->format->cpp[0]) {
9565 DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n",
9566 fb->pitches[0], plane_state->base.crtc_w);
9567 return -EINVAL;
9568 }
9569
9570 /*
9571 * There's something wrong with the cursor on CHV pipe C.
9572 * If it straddles the left edge of the screen then
9573 * moving it away from the edge or disabling it often
9574 * results in a pipe underrun, and often that can lead to
9575 * dead pipe (constant underrun reported, and it scans
9576 * out just a solid color). To recover from that, the
9577 * display power well must be turned off and on again.
9578 * Refuse the put the cursor into that compromised position.
9579 */
9580 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
9581 plane_state->base.visible && plane_state->base.crtc_x < 0) {
9582 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
9583 return -EINVAL;
9584 }
9585
9586 plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
9587
9588 return 0;
9589 }
9590
9591 static void i9xx_update_cursor(struct intel_plane *plane,
9592 const struct intel_crtc_state *crtc_state,
9593 const struct intel_plane_state *plane_state)
9594 {
9595 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9596 enum pipe pipe = plane->pipe;
9597 u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
9598 unsigned long irqflags;
9599
9600 if (plane_state && plane_state->base.visible) {
9601 cntl = plane_state->ctl;
9602
9603 if (plane_state->base.crtc_h != plane_state->base.crtc_w)
9604 fbc_ctl = CUR_FBC_CTL_EN | (plane_state->base.crtc_h - 1);
9605
9606 base = intel_cursor_base(plane_state);
9607 pos = intel_cursor_position(plane_state);
9608 }
9609
9610 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9611
9612 /*
9613 * On some platforms writing CURCNTR first will also
9614 * cause CURPOS to be armed by the CURBASE write.
9615 * Without the CURCNTR write the CURPOS write would
9616 * arm itself. Thus we always start the full update
9617 * with a CURCNTR write.
9618 *
9619 * On other platforms CURPOS always requires the
9620 * CURBASE write to arm the update. Additonally
9621 * a write to any of the cursor register will cancel
9622 * an already armed cursor update. Thus leaving out
9623 * the CURBASE write after CURPOS could lead to a
9624 * cursor that doesn't appear to move, or even change
9625 * shape. Thus we always write CURBASE.
9626 *
9627 * CURCNTR and CUR_FBC_CTL are always
9628 * armed by the CURBASE write only.
9629 */
9630 if (plane->cursor.base != base ||
9631 plane->cursor.size != fbc_ctl ||
9632 plane->cursor.cntl != cntl) {
9633 I915_WRITE_FW(CURCNTR(pipe), cntl);
9634 if (HAS_CUR_FBC(dev_priv))
9635 I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl);
9636 I915_WRITE_FW(CURPOS(pipe), pos);
9637 I915_WRITE_FW(CURBASE(pipe), base);
9638
9639 plane->cursor.base = base;
9640 plane->cursor.size = fbc_ctl;
9641 plane->cursor.cntl = cntl;
9642 } else {
9643 I915_WRITE_FW(CURPOS(pipe), pos);
9644 I915_WRITE_FW(CURBASE(pipe), base);
9645 }
9646
9647 POSTING_READ_FW(CURBASE(pipe));
9648
9649 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9650 }
9651
9652 static void i9xx_disable_cursor(struct intel_plane *plane,
9653 struct intel_crtc *crtc)
9654 {
9655 i9xx_update_cursor(plane, NULL, NULL);
9656 }
9657
9658 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane)
9659 {
9660 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9661 enum intel_display_power_domain power_domain;
9662 enum pipe pipe = plane->pipe;
9663 bool ret;
9664
9665 /*
9666 * Not 100% correct for planes that can move between pipes,
9667 * but that's only the case for gen2-3 which don't have any
9668 * display power wells.
9669 */
9670 power_domain = POWER_DOMAIN_PIPE(pipe);
9671 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9672 return false;
9673
9674 ret = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
9675
9676 intel_display_power_put(dev_priv, power_domain);
9677
9678 return ret;
9679 }
9680
9681 /* VESA 640x480x72Hz mode to set on the pipe */
9682 static const struct drm_display_mode load_detect_mode = {
9683 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9684 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9685 };
9686
9687 struct drm_framebuffer *
9688 intel_framebuffer_create(struct drm_i915_gem_object *obj,
9689 struct drm_mode_fb_cmd2 *mode_cmd)
9690 {
9691 struct intel_framebuffer *intel_fb;
9692 int ret;
9693
9694 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9695 if (!intel_fb)
9696 return ERR_PTR(-ENOMEM);
9697
9698 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
9699 if (ret)
9700 goto err;
9701
9702 return &intel_fb->base;
9703
9704 err:
9705 kfree(intel_fb);
9706 return ERR_PTR(ret);
9707 }
9708
9709 static u32
9710 intel_framebuffer_pitch_for_width(int width, int bpp)
9711 {
9712 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9713 return ALIGN(pitch, 64);
9714 }
9715
9716 static u32
9717 intel_framebuffer_size_for_mode(const struct drm_display_mode *mode, int bpp)
9718 {
9719 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9720 return PAGE_ALIGN(pitch * mode->vdisplay);
9721 }
9722
9723 static struct drm_framebuffer *
9724 intel_framebuffer_create_for_mode(struct drm_device *dev,
9725 const struct drm_display_mode *mode,
9726 int depth, int bpp)
9727 {
9728 struct drm_framebuffer *fb;
9729 struct drm_i915_gem_object *obj;
9730 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9731
9732 obj = i915_gem_object_create(to_i915(dev),
9733 intel_framebuffer_size_for_mode(mode, bpp));
9734 if (IS_ERR(obj))
9735 return ERR_CAST(obj);
9736
9737 mode_cmd.width = mode->hdisplay;
9738 mode_cmd.height = mode->vdisplay;
9739 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9740 bpp);
9741 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9742
9743 fb = intel_framebuffer_create(obj, &mode_cmd);
9744 if (IS_ERR(fb))
9745 i915_gem_object_put(obj);
9746
9747 return fb;
9748 }
9749
9750 static struct drm_framebuffer *
9751 mode_fits_in_fbdev(struct drm_device *dev,
9752 const struct drm_display_mode *mode)
9753 {
9754 #ifdef CONFIG_DRM_FBDEV_EMULATION
9755 struct drm_i915_private *dev_priv = to_i915(dev);
9756 struct drm_i915_gem_object *obj;
9757 struct drm_framebuffer *fb;
9758
9759 if (!dev_priv->fbdev)
9760 return NULL;
9761
9762 if (!dev_priv->fbdev->fb)
9763 return NULL;
9764
9765 obj = dev_priv->fbdev->fb->obj;
9766 BUG_ON(!obj);
9767
9768 fb = &dev_priv->fbdev->fb->base;
9769 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9770 fb->format->cpp[0] * 8))
9771 return NULL;
9772
9773 if (obj->base.size < mode->vdisplay * fb->pitches[0])
9774 return NULL;
9775
9776 drm_framebuffer_get(fb);
9777 return fb;
9778 #else
9779 return NULL;
9780 #endif
9781 }
9782
9783 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9784 struct drm_crtc *crtc,
9785 const struct drm_display_mode *mode,
9786 struct drm_framebuffer *fb,
9787 int x, int y)
9788 {
9789 struct drm_plane_state *plane_state;
9790 int hdisplay, vdisplay;
9791 int ret;
9792
9793 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9794 if (IS_ERR(plane_state))
9795 return PTR_ERR(plane_state);
9796
9797 if (mode)
9798 drm_mode_get_hv_timing(mode, &hdisplay, &vdisplay);
9799 else
9800 hdisplay = vdisplay = 0;
9801
9802 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9803 if (ret)
9804 return ret;
9805 drm_atomic_set_fb_for_plane(plane_state, fb);
9806 plane_state->crtc_x = 0;
9807 plane_state->crtc_y = 0;
9808 plane_state->crtc_w = hdisplay;
9809 plane_state->crtc_h = vdisplay;
9810 plane_state->src_x = x << 16;
9811 plane_state->src_y = y << 16;
9812 plane_state->src_w = hdisplay << 16;
9813 plane_state->src_h = vdisplay << 16;
9814
9815 return 0;
9816 }
9817
9818 int intel_get_load_detect_pipe(struct drm_connector *connector,
9819 const struct drm_display_mode *mode,
9820 struct intel_load_detect_pipe *old,
9821 struct drm_modeset_acquire_ctx *ctx)
9822 {
9823 struct intel_crtc *intel_crtc;
9824 struct intel_encoder *intel_encoder =
9825 intel_attached_encoder(connector);
9826 struct drm_crtc *possible_crtc;
9827 struct drm_encoder *encoder = &intel_encoder->base;
9828 struct drm_crtc *crtc = NULL;
9829 struct drm_device *dev = encoder->dev;
9830 struct drm_i915_private *dev_priv = to_i915(dev);
9831 struct drm_framebuffer *fb;
9832 struct drm_mode_config *config = &dev->mode_config;
9833 struct drm_atomic_state *state = NULL, *restore_state = NULL;
9834 struct drm_connector_state *connector_state;
9835 struct intel_crtc_state *crtc_state;
9836 int ret, i = -1;
9837
9838 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9839 connector->base.id, connector->name,
9840 encoder->base.id, encoder->name);
9841
9842 old->restore_state = NULL;
9843
9844 WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
9845
9846 /*
9847 * Algorithm gets a little messy:
9848 *
9849 * - if the connector already has an assigned crtc, use it (but make
9850 * sure it's on first)
9851 *
9852 * - try to find the first unused crtc that can drive this connector,
9853 * and use that if we find one
9854 */
9855
9856 /* See if we already have a CRTC for this connector */
9857 if (connector->state->crtc) {
9858 crtc = connector->state->crtc;
9859
9860 ret = drm_modeset_lock(&crtc->mutex, ctx);
9861 if (ret)
9862 goto fail;
9863
9864 /* Make sure the crtc and connector are running */
9865 goto found;
9866 }
9867
9868 /* Find an unused one (if possible) */
9869 for_each_crtc(dev, possible_crtc) {
9870 i++;
9871 if (!(encoder->possible_crtcs & (1 << i)))
9872 continue;
9873
9874 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
9875 if (ret)
9876 goto fail;
9877
9878 if (possible_crtc->state->enable) {
9879 drm_modeset_unlock(&possible_crtc->mutex);
9880 continue;
9881 }
9882
9883 crtc = possible_crtc;
9884 break;
9885 }
9886
9887 /*
9888 * If we didn't find an unused CRTC, don't use any.
9889 */
9890 if (!crtc) {
9891 DRM_DEBUG_KMS("no pipe available for load-detect\n");
9892 ret = -ENODEV;
9893 goto fail;
9894 }
9895
9896 found:
9897 intel_crtc = to_intel_crtc(crtc);
9898
9899 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9900 if (ret)
9901 goto fail;
9902
9903 state = drm_atomic_state_alloc(dev);
9904 restore_state = drm_atomic_state_alloc(dev);
9905 if (!state || !restore_state) {
9906 ret = -ENOMEM;
9907 goto fail;
9908 }
9909
9910 state->acquire_ctx = ctx;
9911 restore_state->acquire_ctx = ctx;
9912
9913 connector_state = drm_atomic_get_connector_state(state, connector);
9914 if (IS_ERR(connector_state)) {
9915 ret = PTR_ERR(connector_state);
9916 goto fail;
9917 }
9918
9919 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
9920 if (ret)
9921 goto fail;
9922
9923 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9924 if (IS_ERR(crtc_state)) {
9925 ret = PTR_ERR(crtc_state);
9926 goto fail;
9927 }
9928
9929 crtc_state->base.active = crtc_state->base.enable = true;
9930
9931 if (!mode)
9932 mode = &load_detect_mode;
9933
9934 /* We need a framebuffer large enough to accommodate all accesses
9935 * that the plane may generate whilst we perform load detection.
9936 * We can not rely on the fbcon either being present (we get called
9937 * during its initialisation to detect all boot displays, or it may
9938 * not even exist) or that it is large enough to satisfy the
9939 * requested mode.
9940 */
9941 fb = mode_fits_in_fbdev(dev, mode);
9942 if (fb == NULL) {
9943 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9944 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9945 } else
9946 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9947 if (IS_ERR(fb)) {
9948 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9949 ret = PTR_ERR(fb);
9950 goto fail;
9951 }
9952
9953 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
9954 drm_framebuffer_put(fb);
9955 if (ret)
9956 goto fail;
9957
9958 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
9959 if (ret)
9960 goto fail;
9961
9962 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
9963 if (!ret)
9964 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
9965 if (!ret)
9966 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
9967 if (ret) {
9968 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
9969 goto fail;
9970 }
9971
9972 ret = drm_atomic_commit(state);
9973 if (ret) {
9974 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9975 goto fail;
9976 }
9977
9978 old->restore_state = restore_state;
9979 drm_atomic_state_put(state);
9980
9981 /* let the connector get through one full cycle before testing */
9982 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
9983 return true;
9984
9985 fail:
9986 if (state) {
9987 drm_atomic_state_put(state);
9988 state = NULL;
9989 }
9990 if (restore_state) {
9991 drm_atomic_state_put(restore_state);
9992 restore_state = NULL;
9993 }
9994
9995 if (ret == -EDEADLK)
9996 return ret;
9997
9998 return false;
9999 }
10000
10001 void intel_release_load_detect_pipe(struct drm_connector *connector,
10002 struct intel_load_detect_pipe *old,
10003 struct drm_modeset_acquire_ctx *ctx)
10004 {
10005 struct intel_encoder *intel_encoder =
10006 intel_attached_encoder(connector);
10007 struct drm_encoder *encoder = &intel_encoder->base;
10008 struct drm_atomic_state *state = old->restore_state;
10009 int ret;
10010
10011 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10012 connector->base.id, connector->name,
10013 encoder->base.id, encoder->name);
10014
10015 if (!state)
10016 return;
10017
10018 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
10019 if (ret)
10020 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10021 drm_atomic_state_put(state);
10022 }
10023
10024 static int i9xx_pll_refclk(struct drm_device *dev,
10025 const struct intel_crtc_state *pipe_config)
10026 {
10027 struct drm_i915_private *dev_priv = to_i915(dev);
10028 u32 dpll = pipe_config->dpll_hw_state.dpll;
10029
10030 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10031 return dev_priv->vbt.lvds_ssc_freq;
10032 else if (HAS_PCH_SPLIT(dev_priv))
10033 return 120000;
10034 else if (!IS_GEN2(dev_priv))
10035 return 96000;
10036 else
10037 return 48000;
10038 }
10039
10040 /* Returns the clock of the currently programmed mode of the given pipe. */
10041 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10042 struct intel_crtc_state *pipe_config)
10043 {
10044 struct drm_device *dev = crtc->base.dev;
10045 struct drm_i915_private *dev_priv = to_i915(dev);
10046 int pipe = pipe_config->cpu_transcoder;
10047 u32 dpll = pipe_config->dpll_hw_state.dpll;
10048 u32 fp;
10049 struct dpll clock;
10050 int port_clock;
10051 int refclk = i9xx_pll_refclk(dev, pipe_config);
10052
10053 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10054 fp = pipe_config->dpll_hw_state.fp0;
10055 else
10056 fp = pipe_config->dpll_hw_state.fp1;
10057
10058 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10059 if (IS_PINEVIEW(dev_priv)) {
10060 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10061 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10062 } else {
10063 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10064 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10065 }
10066
10067 if (!IS_GEN2(dev_priv)) {
10068 if (IS_PINEVIEW(dev_priv))
10069 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10070 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10071 else
10072 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10073 DPLL_FPA01_P1_POST_DIV_SHIFT);
10074
10075 switch (dpll & DPLL_MODE_MASK) {
10076 case DPLLB_MODE_DAC_SERIAL:
10077 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10078 5 : 10;
10079 break;
10080 case DPLLB_MODE_LVDS:
10081 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10082 7 : 14;
10083 break;
10084 default:
10085 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10086 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10087 return;
10088 }
10089
10090 if (IS_PINEVIEW(dev_priv))
10091 port_clock = pnv_calc_dpll_params(refclk, &clock);
10092 else
10093 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10094 } else {
10095 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
10096 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10097
10098 if (is_lvds) {
10099 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10100 DPLL_FPA01_P1_POST_DIV_SHIFT);
10101
10102 if (lvds & LVDS_CLKB_POWER_UP)
10103 clock.p2 = 7;
10104 else
10105 clock.p2 = 14;
10106 } else {
10107 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10108 clock.p1 = 2;
10109 else {
10110 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10111 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10112 }
10113 if (dpll & PLL_P2_DIVIDE_BY_4)
10114 clock.p2 = 4;
10115 else
10116 clock.p2 = 2;
10117 }
10118
10119 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10120 }
10121
10122 /*
10123 * This value includes pixel_multiplier. We will use
10124 * port_clock to compute adjusted_mode.crtc_clock in the
10125 * encoder's get_config() function.
10126 */
10127 pipe_config->port_clock = port_clock;
10128 }
10129
10130 int intel_dotclock_calculate(int link_freq,
10131 const struct intel_link_m_n *m_n)
10132 {
10133 /*
10134 * The calculation for the data clock is:
10135 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10136 * But we want to avoid losing precison if possible, so:
10137 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10138 *
10139 * and the link clock is simpler:
10140 * link_clock = (m * link_clock) / n
10141 */
10142
10143 if (!m_n->link_n)
10144 return 0;
10145
10146 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n);
10147 }
10148
10149 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10150 struct intel_crtc_state *pipe_config)
10151 {
10152 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10153
10154 /* read out port_clock from the DPLL */
10155 i9xx_crtc_clock_get(crtc, pipe_config);
10156
10157 /*
10158 * In case there is an active pipe without active ports,
10159 * we may need some idea for the dotclock anyway.
10160 * Calculate one based on the FDI configuration.
10161 */
10162 pipe_config->base.adjusted_mode.crtc_clock =
10163 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10164 &pipe_config->fdi_m_n);
10165 }
10166
10167 /* Returns the currently programmed mode of the given encoder. */
10168 struct drm_display_mode *
10169 intel_encoder_current_mode(struct intel_encoder *encoder)
10170 {
10171 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
10172 struct intel_crtc_state *crtc_state;
10173 struct drm_display_mode *mode;
10174 struct intel_crtc *crtc;
10175 enum pipe pipe;
10176
10177 if (!encoder->get_hw_state(encoder, &pipe))
10178 return NULL;
10179
10180 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10181
10182 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10183 if (!mode)
10184 return NULL;
10185
10186 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
10187 if (!crtc_state) {
10188 kfree(mode);
10189 return NULL;
10190 }
10191
10192 crtc_state->base.crtc = &crtc->base;
10193
10194 if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) {
10195 kfree(crtc_state);
10196 kfree(mode);
10197 return NULL;
10198 }
10199
10200 encoder->get_config(encoder, crtc_state);
10201
10202 intel_mode_from_pipe_config(mode, crtc_state);
10203
10204 kfree(crtc_state);
10205
10206 return mode;
10207 }
10208
10209 static void intel_crtc_destroy(struct drm_crtc *crtc)
10210 {
10211 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10212
10213 drm_crtc_cleanup(crtc);
10214 kfree(intel_crtc);
10215 }
10216
10217 /**
10218 * intel_wm_need_update - Check whether watermarks need updating
10219 * @plane: drm plane
10220 * @state: new plane state
10221 *
10222 * Check current plane state versus the new one to determine whether
10223 * watermarks need to be recalculated.
10224 *
10225 * Returns true or false.
10226 */
10227 static bool intel_wm_need_update(struct drm_plane *plane,
10228 struct drm_plane_state *state)
10229 {
10230 struct intel_plane_state *new = to_intel_plane_state(state);
10231 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
10232
10233 /* Update watermarks on tiling or size changes. */
10234 if (new->base.visible != cur->base.visible)
10235 return true;
10236
10237 if (!cur->base.fb || !new->base.fb)
10238 return false;
10239
10240 if (cur->base.fb->modifier != new->base.fb->modifier ||
10241 cur->base.rotation != new->base.rotation ||
10242 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
10243 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
10244 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
10245 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
10246 return true;
10247
10248 return false;
10249 }
10250
10251 static bool needs_scaling(const struct intel_plane_state *state)
10252 {
10253 int src_w = drm_rect_width(&state->base.src) >> 16;
10254 int src_h = drm_rect_height(&state->base.src) >> 16;
10255 int dst_w = drm_rect_width(&state->base.dst);
10256 int dst_h = drm_rect_height(&state->base.dst);
10257
10258 return (src_w != dst_w || src_h != dst_h);
10259 }
10260
10261 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state,
10262 struct drm_crtc_state *crtc_state,
10263 const struct intel_plane_state *old_plane_state,
10264 struct drm_plane_state *plane_state)
10265 {
10266 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
10267 struct drm_crtc *crtc = crtc_state->crtc;
10268 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10269 struct intel_plane *plane = to_intel_plane(plane_state->plane);
10270 struct drm_device *dev = crtc->dev;
10271 struct drm_i915_private *dev_priv = to_i915(dev);
10272 bool mode_changed = needs_modeset(crtc_state);
10273 bool was_crtc_enabled = old_crtc_state->base.active;
10274 bool is_crtc_enabled = crtc_state->active;
10275 bool turn_off, turn_on, visible, was_visible;
10276 struct drm_framebuffer *fb = plane_state->fb;
10277 int ret;
10278
10279 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
10280 ret = skl_update_scaler_plane(
10281 to_intel_crtc_state(crtc_state),
10282 to_intel_plane_state(plane_state));
10283 if (ret)
10284 return ret;
10285 }
10286
10287 was_visible = old_plane_state->base.visible;
10288 visible = plane_state->visible;
10289
10290 if (!was_crtc_enabled && WARN_ON(was_visible))
10291 was_visible = false;
10292
10293 /*
10294 * Visibility is calculated as if the crtc was on, but
10295 * after scaler setup everything depends on it being off
10296 * when the crtc isn't active.
10297 *
10298 * FIXME this is wrong for watermarks. Watermarks should also
10299 * be computed as if the pipe would be active. Perhaps move
10300 * per-plane wm computation to the .check_plane() hook, and
10301 * only combine the results from all planes in the current place?
10302 */
10303 if (!is_crtc_enabled) {
10304 plane_state->visible = visible = false;
10305 to_intel_crtc_state(crtc_state)->active_planes &= ~BIT(plane->id);
10306 }
10307
10308 if (!was_visible && !visible)
10309 return 0;
10310
10311 if (fb != old_plane_state->base.fb)
10312 pipe_config->fb_changed = true;
10313
10314 turn_off = was_visible && (!visible || mode_changed);
10315 turn_on = visible && (!was_visible || mode_changed);
10316
10317 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
10318 intel_crtc->base.base.id, intel_crtc->base.name,
10319 plane->base.base.id, plane->base.name,
10320 fb ? fb->base.id : -1);
10321
10322 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
10323 plane->base.base.id, plane->base.name,
10324 was_visible, visible,
10325 turn_off, turn_on, mode_changed);
10326
10327 if (turn_on) {
10328 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
10329 pipe_config->update_wm_pre = true;
10330
10331 /* must disable cxsr around plane enable/disable */
10332 if (plane->id != PLANE_CURSOR)
10333 pipe_config->disable_cxsr = true;
10334 } else if (turn_off) {
10335 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
10336 pipe_config->update_wm_post = true;
10337
10338 /* must disable cxsr around plane enable/disable */
10339 if (plane->id != PLANE_CURSOR)
10340 pipe_config->disable_cxsr = true;
10341 } else if (intel_wm_need_update(&plane->base, plane_state)) {
10342 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
10343 /* FIXME bollocks */
10344 pipe_config->update_wm_pre = true;
10345 pipe_config->update_wm_post = true;
10346 }
10347 }
10348
10349 if (visible || was_visible)
10350 pipe_config->fb_bits |= plane->frontbuffer_bit;
10351
10352 /*
10353 * WaCxSRDisabledForSpriteScaling:ivb
10354 *
10355 * cstate->update_wm was already set above, so this flag will
10356 * take effect when we commit and program watermarks.
10357 */
10358 if (plane->id == PLANE_SPRITE0 && IS_IVYBRIDGE(dev_priv) &&
10359 needs_scaling(to_intel_plane_state(plane_state)) &&
10360 !needs_scaling(old_plane_state))
10361 pipe_config->disable_lp_wm = true;
10362
10363 return 0;
10364 }
10365
10366 static bool encoders_cloneable(const struct intel_encoder *a,
10367 const struct intel_encoder *b)
10368 {
10369 /* masks could be asymmetric, so check both ways */
10370 return a == b || (a->cloneable & (1 << b->type) &&
10371 b->cloneable & (1 << a->type));
10372 }
10373
10374 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
10375 struct intel_crtc *crtc,
10376 struct intel_encoder *encoder)
10377 {
10378 struct intel_encoder *source_encoder;
10379 struct drm_connector *connector;
10380 struct drm_connector_state *connector_state;
10381 int i;
10382
10383 for_each_new_connector_in_state(state, connector, connector_state, i) {
10384 if (connector_state->crtc != &crtc->base)
10385 continue;
10386
10387 source_encoder =
10388 to_intel_encoder(connector_state->best_encoder);
10389 if (!encoders_cloneable(encoder, source_encoder))
10390 return false;
10391 }
10392
10393 return true;
10394 }
10395
10396 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
10397 struct drm_crtc_state *crtc_state)
10398 {
10399 struct drm_device *dev = crtc->dev;
10400 struct drm_i915_private *dev_priv = to_i915(dev);
10401 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10402 struct intel_crtc_state *pipe_config =
10403 to_intel_crtc_state(crtc_state);
10404 struct drm_atomic_state *state = crtc_state->state;
10405 int ret;
10406 bool mode_changed = needs_modeset(crtc_state);
10407
10408 if (mode_changed && !crtc_state->active)
10409 pipe_config->update_wm_post = true;
10410
10411 if (mode_changed && crtc_state->enable &&
10412 dev_priv->display.crtc_compute_clock &&
10413 !WARN_ON(pipe_config->shared_dpll)) {
10414 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
10415 pipe_config);
10416 if (ret)
10417 return ret;
10418 }
10419
10420 if (crtc_state->color_mgmt_changed) {
10421 ret = intel_color_check(crtc, crtc_state);
10422 if (ret)
10423 return ret;
10424
10425 /*
10426 * Changing color management on Intel hardware is
10427 * handled as part of planes update.
10428 */
10429 crtc_state->planes_changed = true;
10430 }
10431
10432 ret = 0;
10433 if (dev_priv->display.compute_pipe_wm) {
10434 ret = dev_priv->display.compute_pipe_wm(pipe_config);
10435 if (ret) {
10436 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
10437 return ret;
10438 }
10439 }
10440
10441 if (dev_priv->display.compute_intermediate_wm &&
10442 !to_intel_atomic_state(state)->skip_intermediate_wm) {
10443 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
10444 return 0;
10445
10446 /*
10447 * Calculate 'intermediate' watermarks that satisfy both the
10448 * old state and the new state. We can program these
10449 * immediately.
10450 */
10451 ret = dev_priv->display.compute_intermediate_wm(dev,
10452 intel_crtc,
10453 pipe_config);
10454 if (ret) {
10455 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
10456 return ret;
10457 }
10458 } else if (dev_priv->display.compute_intermediate_wm) {
10459 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
10460 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
10461 }
10462
10463 if (INTEL_GEN(dev_priv) >= 9) {
10464 if (mode_changed)
10465 ret = skl_update_scaler_crtc(pipe_config);
10466
10467 if (!ret)
10468 ret = skl_check_pipe_max_pixel_rate(intel_crtc,
10469 pipe_config);
10470 if (!ret)
10471 ret = intel_atomic_setup_scalers(dev_priv, intel_crtc,
10472 pipe_config);
10473 }
10474
10475 return ret;
10476 }
10477
10478 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
10479 .atomic_begin = intel_begin_crtc_commit,
10480 .atomic_flush = intel_finish_crtc_commit,
10481 .atomic_check = intel_crtc_atomic_check,
10482 };
10483
10484 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
10485 {
10486 struct intel_connector *connector;
10487 struct drm_connector_list_iter conn_iter;
10488
10489 drm_connector_list_iter_begin(dev, &conn_iter);
10490 for_each_intel_connector_iter(connector, &conn_iter) {
10491 if (connector->base.state->crtc)
10492 drm_connector_unreference(&connector->base);
10493
10494 if (connector->base.encoder) {
10495 connector->base.state->best_encoder =
10496 connector->base.encoder;
10497 connector->base.state->crtc =
10498 connector->base.encoder->crtc;
10499
10500 drm_connector_reference(&connector->base);
10501 } else {
10502 connector->base.state->best_encoder = NULL;
10503 connector->base.state->crtc = NULL;
10504 }
10505 }
10506 drm_connector_list_iter_end(&conn_iter);
10507 }
10508
10509 static void
10510 connected_sink_compute_bpp(struct intel_connector *connector,
10511 struct intel_crtc_state *pipe_config)
10512 {
10513 const struct drm_display_info *info = &connector->base.display_info;
10514 int bpp = pipe_config->pipe_bpp;
10515
10516 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10517 connector->base.base.id,
10518 connector->base.name);
10519
10520 /* Don't use an invalid EDID bpc value */
10521 if (info->bpc != 0 && info->bpc * 3 < bpp) {
10522 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10523 bpp, info->bpc * 3);
10524 pipe_config->pipe_bpp = info->bpc * 3;
10525 }
10526
10527 /* Clamp bpp to 8 on screens without EDID 1.4 */
10528 if (info->bpc == 0 && bpp > 24) {
10529 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10530 bpp);
10531 pipe_config->pipe_bpp = 24;
10532 }
10533 }
10534
10535 static int
10536 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10537 struct intel_crtc_state *pipe_config)
10538 {
10539 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10540 struct drm_atomic_state *state;
10541 struct drm_connector *connector;
10542 struct drm_connector_state *connector_state;
10543 int bpp, i;
10544
10545 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
10546 IS_CHERRYVIEW(dev_priv)))
10547 bpp = 10*3;
10548 else if (INTEL_GEN(dev_priv) >= 5)
10549 bpp = 12*3;
10550 else
10551 bpp = 8*3;
10552
10553
10554 pipe_config->pipe_bpp = bpp;
10555
10556 state = pipe_config->base.state;
10557
10558 /* Clamp display bpp to EDID value */
10559 for_each_new_connector_in_state(state, connector, connector_state, i) {
10560 if (connector_state->crtc != &crtc->base)
10561 continue;
10562
10563 connected_sink_compute_bpp(to_intel_connector(connector),
10564 pipe_config);
10565 }
10566
10567 return bpp;
10568 }
10569
10570 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10571 {
10572 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10573 "type: 0x%x flags: 0x%x\n",
10574 mode->crtc_clock,
10575 mode->crtc_hdisplay, mode->crtc_hsync_start,
10576 mode->crtc_hsync_end, mode->crtc_htotal,
10577 mode->crtc_vdisplay, mode->crtc_vsync_start,
10578 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10579 }
10580
10581 static inline void
10582 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
10583 unsigned int lane_count, struct intel_link_m_n *m_n)
10584 {
10585 DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10586 id, lane_count,
10587 m_n->gmch_m, m_n->gmch_n,
10588 m_n->link_m, m_n->link_n, m_n->tu);
10589 }
10590
10591 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x
10592
10593 static const char * const output_type_str[] = {
10594 OUTPUT_TYPE(UNUSED),
10595 OUTPUT_TYPE(ANALOG),
10596 OUTPUT_TYPE(DVO),
10597 OUTPUT_TYPE(SDVO),
10598 OUTPUT_TYPE(LVDS),
10599 OUTPUT_TYPE(TVOUT),
10600 OUTPUT_TYPE(HDMI),
10601 OUTPUT_TYPE(DP),
10602 OUTPUT_TYPE(EDP),
10603 OUTPUT_TYPE(DSI),
10604 OUTPUT_TYPE(UNKNOWN),
10605 OUTPUT_TYPE(DP_MST),
10606 };
10607
10608 #undef OUTPUT_TYPE
10609
10610 static void snprintf_output_types(char *buf, size_t len,
10611 unsigned int output_types)
10612 {
10613 char *str = buf;
10614 int i;
10615
10616 str[0] = '\0';
10617
10618 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) {
10619 int r;
10620
10621 if ((output_types & BIT(i)) == 0)
10622 continue;
10623
10624 r = snprintf(str, len, "%s%s",
10625 str != buf ? "," : "", output_type_str[i]);
10626 if (r >= len)
10627 break;
10628 str += r;
10629 len -= r;
10630
10631 output_types &= ~BIT(i);
10632 }
10633
10634 WARN_ON_ONCE(output_types != 0);
10635 }
10636
10637 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10638 struct intel_crtc_state *pipe_config,
10639 const char *context)
10640 {
10641 struct drm_device *dev = crtc->base.dev;
10642 struct drm_i915_private *dev_priv = to_i915(dev);
10643 struct drm_plane *plane;
10644 struct intel_plane *intel_plane;
10645 struct intel_plane_state *state;
10646 struct drm_framebuffer *fb;
10647 char buf[64];
10648
10649 DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
10650 crtc->base.base.id, crtc->base.name, context);
10651
10652 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types);
10653 DRM_DEBUG_KMS("output_types: %s (0x%x)\n",
10654 buf, pipe_config->output_types);
10655
10656 DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
10657 transcoder_name(pipe_config->cpu_transcoder),
10658 pipe_config->pipe_bpp, pipe_config->dither);
10659
10660 if (pipe_config->has_pch_encoder)
10661 intel_dump_m_n_config(pipe_config, "fdi",
10662 pipe_config->fdi_lanes,
10663 &pipe_config->fdi_m_n);
10664
10665 if (pipe_config->ycbcr420)
10666 DRM_DEBUG_KMS("YCbCr 4:2:0 output enabled\n");
10667
10668 if (intel_crtc_has_dp_encoder(pipe_config)) {
10669 intel_dump_m_n_config(pipe_config, "dp m_n",
10670 pipe_config->lane_count, &pipe_config->dp_m_n);
10671 if (pipe_config->has_drrs)
10672 intel_dump_m_n_config(pipe_config, "dp m2_n2",
10673 pipe_config->lane_count,
10674 &pipe_config->dp_m2_n2);
10675 }
10676
10677 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10678 pipe_config->has_audio, pipe_config->has_infoframe);
10679
10680 DRM_DEBUG_KMS("requested mode:\n");
10681 drm_mode_debug_printmodeline(&pipe_config->base.mode);
10682 DRM_DEBUG_KMS("adjusted mode:\n");
10683 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10684 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
10685 DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
10686 pipe_config->port_clock,
10687 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
10688 pipe_config->pixel_rate);
10689
10690 if (INTEL_GEN(dev_priv) >= 9)
10691 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
10692 crtc->num_scalers,
10693 pipe_config->scaler_state.scaler_users,
10694 pipe_config->scaler_state.scaler_id);
10695
10696 if (HAS_GMCH_DISPLAY(dev_priv))
10697 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10698 pipe_config->gmch_pfit.control,
10699 pipe_config->gmch_pfit.pgm_ratios,
10700 pipe_config->gmch_pfit.lvds_border_bits);
10701 else
10702 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10703 pipe_config->pch_pfit.pos,
10704 pipe_config->pch_pfit.size,
10705 enableddisabled(pipe_config->pch_pfit.enabled));
10706
10707 DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
10708 pipe_config->ips_enabled, pipe_config->double_wide);
10709
10710 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
10711
10712 DRM_DEBUG_KMS("planes on this crtc\n");
10713 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
10714 struct drm_format_name_buf format_name;
10715 intel_plane = to_intel_plane(plane);
10716 if (intel_plane->pipe != crtc->pipe)
10717 continue;
10718
10719 state = to_intel_plane_state(plane->state);
10720 fb = state->base.fb;
10721 if (!fb) {
10722 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
10723 plane->base.id, plane->name, state->scaler_id);
10724 continue;
10725 }
10726
10727 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
10728 plane->base.id, plane->name,
10729 fb->base.id, fb->width, fb->height,
10730 drm_get_format_name(fb->format->format, &format_name));
10731 if (INTEL_GEN(dev_priv) >= 9)
10732 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
10733 state->scaler_id,
10734 state->base.src.x1 >> 16,
10735 state->base.src.y1 >> 16,
10736 drm_rect_width(&state->base.src) >> 16,
10737 drm_rect_height(&state->base.src) >> 16,
10738 state->base.dst.x1, state->base.dst.y1,
10739 drm_rect_width(&state->base.dst),
10740 drm_rect_height(&state->base.dst));
10741 }
10742 }
10743
10744 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
10745 {
10746 struct drm_device *dev = state->dev;
10747 struct drm_connector *connector;
10748 struct drm_connector_list_iter conn_iter;
10749 unsigned int used_ports = 0;
10750 unsigned int used_mst_ports = 0;
10751
10752 /*
10753 * Walk the connector list instead of the encoder
10754 * list to detect the problem on ddi platforms
10755 * where there's just one encoder per digital port.
10756 */
10757 drm_connector_list_iter_begin(dev, &conn_iter);
10758 drm_for_each_connector_iter(connector, &conn_iter) {
10759 struct drm_connector_state *connector_state;
10760 struct intel_encoder *encoder;
10761
10762 connector_state = drm_atomic_get_existing_connector_state(state, connector);
10763 if (!connector_state)
10764 connector_state = connector->state;
10765
10766 if (!connector_state->best_encoder)
10767 continue;
10768
10769 encoder = to_intel_encoder(connector_state->best_encoder);
10770
10771 WARN_ON(!connector_state->crtc);
10772
10773 switch (encoder->type) {
10774 unsigned int port_mask;
10775 case INTEL_OUTPUT_UNKNOWN:
10776 if (WARN_ON(!HAS_DDI(to_i915(dev))))
10777 break;
10778 case INTEL_OUTPUT_DP:
10779 case INTEL_OUTPUT_HDMI:
10780 case INTEL_OUTPUT_EDP:
10781 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10782
10783 /* the same port mustn't appear more than once */
10784 if (used_ports & port_mask)
10785 return false;
10786
10787 used_ports |= port_mask;
10788 break;
10789 case INTEL_OUTPUT_DP_MST:
10790 used_mst_ports |=
10791 1 << enc_to_mst(&encoder->base)->primary->port;
10792 break;
10793 default:
10794 break;
10795 }
10796 }
10797 drm_connector_list_iter_end(&conn_iter);
10798
10799 /* can't mix MST and SST/HDMI on the same port */
10800 if (used_ports & used_mst_ports)
10801 return false;
10802
10803 return true;
10804 }
10805
10806 static void
10807 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
10808 {
10809 struct drm_i915_private *dev_priv =
10810 to_i915(crtc_state->base.crtc->dev);
10811 struct intel_crtc_scaler_state scaler_state;
10812 struct intel_dpll_hw_state dpll_hw_state;
10813 struct intel_shared_dpll *shared_dpll;
10814 struct intel_crtc_wm_state wm_state;
10815 bool force_thru, ips_force_disable;
10816
10817 /* FIXME: before the switch to atomic started, a new pipe_config was
10818 * kzalloc'd. Code that depends on any field being zero should be
10819 * fixed, so that the crtc_state can be safely duplicated. For now,
10820 * only fields that are know to not cause problems are preserved. */
10821
10822 scaler_state = crtc_state->scaler_state;
10823 shared_dpll = crtc_state->shared_dpll;
10824 dpll_hw_state = crtc_state->dpll_hw_state;
10825 force_thru = crtc_state->pch_pfit.force_thru;
10826 ips_force_disable = crtc_state->ips_force_disable;
10827 if (IS_G4X(dev_priv) ||
10828 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
10829 wm_state = crtc_state->wm;
10830
10831 /* Keep base drm_crtc_state intact, only clear our extended struct */
10832 BUILD_BUG_ON(offsetof(struct intel_crtc_state, base));
10833 memset(&crtc_state->base + 1, 0,
10834 sizeof(*crtc_state) - sizeof(crtc_state->base));
10835
10836 crtc_state->scaler_state = scaler_state;
10837 crtc_state->shared_dpll = shared_dpll;
10838 crtc_state->dpll_hw_state = dpll_hw_state;
10839 crtc_state->pch_pfit.force_thru = force_thru;
10840 crtc_state->ips_force_disable = ips_force_disable;
10841 if (IS_G4X(dev_priv) ||
10842 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
10843 crtc_state->wm = wm_state;
10844 }
10845
10846 static int
10847 intel_modeset_pipe_config(struct drm_crtc *crtc,
10848 struct intel_crtc_state *pipe_config)
10849 {
10850 struct drm_atomic_state *state = pipe_config->base.state;
10851 struct intel_encoder *encoder;
10852 struct drm_connector *connector;
10853 struct drm_connector_state *connector_state;
10854 int base_bpp, ret = -EINVAL;
10855 int i;
10856 bool retry = true;
10857
10858 clear_intel_crtc_state(pipe_config);
10859
10860 pipe_config->cpu_transcoder =
10861 (enum transcoder) to_intel_crtc(crtc)->pipe;
10862
10863 /*
10864 * Sanitize sync polarity flags based on requested ones. If neither
10865 * positive or negative polarity is requested, treat this as meaning
10866 * negative polarity.
10867 */
10868 if (!(pipe_config->base.adjusted_mode.flags &
10869 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10870 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10871
10872 if (!(pipe_config->base.adjusted_mode.flags &
10873 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10874 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10875
10876 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10877 pipe_config);
10878 if (base_bpp < 0)
10879 goto fail;
10880
10881 /*
10882 * Determine the real pipe dimensions. Note that stereo modes can
10883 * increase the actual pipe size due to the frame doubling and
10884 * insertion of additional space for blanks between the frame. This
10885 * is stored in the crtc timings. We use the requested mode to do this
10886 * computation to clearly distinguish it from the adjusted mode, which
10887 * can be changed by the connectors in the below retry loop.
10888 */
10889 drm_mode_get_hv_timing(&pipe_config->base.mode,
10890 &pipe_config->pipe_src_w,
10891 &pipe_config->pipe_src_h);
10892
10893 for_each_new_connector_in_state(state, connector, connector_state, i) {
10894 if (connector_state->crtc != crtc)
10895 continue;
10896
10897 encoder = to_intel_encoder(connector_state->best_encoder);
10898
10899 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
10900 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10901 goto fail;
10902 }
10903
10904 /*
10905 * Determine output_types before calling the .compute_config()
10906 * hooks so that the hooks can use this information safely.
10907 */
10908 pipe_config->output_types |= 1 << encoder->type;
10909 }
10910
10911 encoder_retry:
10912 /* Ensure the port clock defaults are reset when retrying. */
10913 pipe_config->port_clock = 0;
10914 pipe_config->pixel_multiplier = 1;
10915
10916 /* Fill in default crtc timings, allow encoders to overwrite them. */
10917 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10918 CRTC_STEREO_DOUBLE);
10919
10920 /* Pass our mode to the connectors and the CRTC to give them a chance to
10921 * adjust it according to limitations or connector properties, and also
10922 * a chance to reject the mode entirely.
10923 */
10924 for_each_new_connector_in_state(state, connector, connector_state, i) {
10925 if (connector_state->crtc != crtc)
10926 continue;
10927
10928 encoder = to_intel_encoder(connector_state->best_encoder);
10929
10930 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
10931 DRM_DEBUG_KMS("Encoder config failure\n");
10932 goto fail;
10933 }
10934 }
10935
10936 /* Set default port clock if not overwritten by the encoder. Needs to be
10937 * done afterwards in case the encoder adjusts the mode. */
10938 if (!pipe_config->port_clock)
10939 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
10940 * pipe_config->pixel_multiplier;
10941
10942 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10943 if (ret < 0) {
10944 DRM_DEBUG_KMS("CRTC fixup failed\n");
10945 goto fail;
10946 }
10947
10948 if (ret == RETRY) {
10949 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10950 ret = -EINVAL;
10951 goto fail;
10952 }
10953
10954 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10955 retry = false;
10956 goto encoder_retry;
10957 }
10958
10959 /* Dithering seems to not pass-through bits correctly when it should, so
10960 * only enable it on 6bpc panels and when its not a compliance
10961 * test requesting 6bpc video pattern.
10962 */
10963 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
10964 !pipe_config->dither_force_disable;
10965 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
10966 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10967
10968 fail:
10969 return ret;
10970 }
10971
10972 static void
10973 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
10974 {
10975 struct drm_crtc *crtc;
10976 struct drm_crtc_state *new_crtc_state;
10977 int i;
10978
10979 /* Double check state. */
10980 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
10981 to_intel_crtc(crtc)->config = to_intel_crtc_state(new_crtc_state);
10982
10983 /*
10984 * Update legacy state to satisfy fbc code. This can
10985 * be removed when fbc uses the atomic state.
10986 */
10987 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
10988 struct drm_plane_state *plane_state = crtc->primary->state;
10989
10990 crtc->primary->fb = plane_state->fb;
10991 crtc->x = plane_state->src_x >> 16;
10992 crtc->y = plane_state->src_y >> 16;
10993 }
10994 }
10995 }
10996
10997 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10998 {
10999 int diff;
11000
11001 if (clock1 == clock2)
11002 return true;
11003
11004 if (!clock1 || !clock2)
11005 return false;
11006
11007 diff = abs(clock1 - clock2);
11008
11009 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11010 return true;
11011
11012 return false;
11013 }
11014
11015 static bool
11016 intel_compare_m_n(unsigned int m, unsigned int n,
11017 unsigned int m2, unsigned int n2,
11018 bool exact)
11019 {
11020 if (m == m2 && n == n2)
11021 return true;
11022
11023 if (exact || !m || !n || !m2 || !n2)
11024 return false;
11025
11026 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
11027
11028 if (n > n2) {
11029 while (n > n2) {
11030 m2 <<= 1;
11031 n2 <<= 1;
11032 }
11033 } else if (n < n2) {
11034 while (n < n2) {
11035 m <<= 1;
11036 n <<= 1;
11037 }
11038 }
11039
11040 if (n != n2)
11041 return false;
11042
11043 return intel_fuzzy_clock_check(m, m2);
11044 }
11045
11046 static bool
11047 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
11048 struct intel_link_m_n *m2_n2,
11049 bool adjust)
11050 {
11051 if (m_n->tu == m2_n2->tu &&
11052 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
11053 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
11054 intel_compare_m_n(m_n->link_m, m_n->link_n,
11055 m2_n2->link_m, m2_n2->link_n, !adjust)) {
11056 if (adjust)
11057 *m2_n2 = *m_n;
11058
11059 return true;
11060 }
11061
11062 return false;
11063 }
11064
11065 static void __printf(3, 4)
11066 pipe_config_err(bool adjust, const char *name, const char *format, ...)
11067 {
11068 char *level;
11069 unsigned int category;
11070 struct va_format vaf;
11071 va_list args;
11072
11073 if (adjust) {
11074 level = KERN_DEBUG;
11075 category = DRM_UT_KMS;
11076 } else {
11077 level = KERN_ERR;
11078 category = DRM_UT_NONE;
11079 }
11080
11081 va_start(args, format);
11082 vaf.fmt = format;
11083 vaf.va = &args;
11084
11085 drm_printk(level, category, "mismatch in %s %pV", name, &vaf);
11086
11087 va_end(args);
11088 }
11089
11090 static bool
11091 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
11092 struct intel_crtc_state *current_config,
11093 struct intel_crtc_state *pipe_config,
11094 bool adjust)
11095 {
11096 bool ret = true;
11097
11098 #define PIPE_CONF_CHECK_X(name) \
11099 if (current_config->name != pipe_config->name) { \
11100 pipe_config_err(adjust, __stringify(name), \
11101 "(expected 0x%08x, found 0x%08x)\n", \
11102 current_config->name, \
11103 pipe_config->name); \
11104 ret = false; \
11105 }
11106
11107 #define PIPE_CONF_CHECK_I(name) \
11108 if (current_config->name != pipe_config->name) { \
11109 pipe_config_err(adjust, __stringify(name), \
11110 "(expected %i, found %i)\n", \
11111 current_config->name, \
11112 pipe_config->name); \
11113 ret = false; \
11114 }
11115
11116 #define PIPE_CONF_CHECK_P(name) \
11117 if (current_config->name != pipe_config->name) { \
11118 pipe_config_err(adjust, __stringify(name), \
11119 "(expected %p, found %p)\n", \
11120 current_config->name, \
11121 pipe_config->name); \
11122 ret = false; \
11123 }
11124
11125 #define PIPE_CONF_CHECK_M_N(name) \
11126 if (!intel_compare_link_m_n(&current_config->name, \
11127 &pipe_config->name,\
11128 adjust)) { \
11129 pipe_config_err(adjust, __stringify(name), \
11130 "(expected tu %i gmch %i/%i link %i/%i, " \
11131 "found tu %i, gmch %i/%i link %i/%i)\n", \
11132 current_config->name.tu, \
11133 current_config->name.gmch_m, \
11134 current_config->name.gmch_n, \
11135 current_config->name.link_m, \
11136 current_config->name.link_n, \
11137 pipe_config->name.tu, \
11138 pipe_config->name.gmch_m, \
11139 pipe_config->name.gmch_n, \
11140 pipe_config->name.link_m, \
11141 pipe_config->name.link_n); \
11142 ret = false; \
11143 }
11144
11145 /* This is required for BDW+ where there is only one set of registers for
11146 * switching between high and low RR.
11147 * This macro can be used whenever a comparison has to be made between one
11148 * hw state and multiple sw state variables.
11149 */
11150 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
11151 if (!intel_compare_link_m_n(&current_config->name, \
11152 &pipe_config->name, adjust) && \
11153 !intel_compare_link_m_n(&current_config->alt_name, \
11154 &pipe_config->name, adjust)) { \
11155 pipe_config_err(adjust, __stringify(name), \
11156 "(expected tu %i gmch %i/%i link %i/%i, " \
11157 "or tu %i gmch %i/%i link %i/%i, " \
11158 "found tu %i, gmch %i/%i link %i/%i)\n", \
11159 current_config->name.tu, \
11160 current_config->name.gmch_m, \
11161 current_config->name.gmch_n, \
11162 current_config->name.link_m, \
11163 current_config->name.link_n, \
11164 current_config->alt_name.tu, \
11165 current_config->alt_name.gmch_m, \
11166 current_config->alt_name.gmch_n, \
11167 current_config->alt_name.link_m, \
11168 current_config->alt_name.link_n, \
11169 pipe_config->name.tu, \
11170 pipe_config->name.gmch_m, \
11171 pipe_config->name.gmch_n, \
11172 pipe_config->name.link_m, \
11173 pipe_config->name.link_n); \
11174 ret = false; \
11175 }
11176
11177 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
11178 if ((current_config->name ^ pipe_config->name) & (mask)) { \
11179 pipe_config_err(adjust, __stringify(name), \
11180 "(%x) (expected %i, found %i)\n", \
11181 (mask), \
11182 current_config->name & (mask), \
11183 pipe_config->name & (mask)); \
11184 ret = false; \
11185 }
11186
11187 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11188 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11189 pipe_config_err(adjust, __stringify(name), \
11190 "(expected %i, found %i)\n", \
11191 current_config->name, \
11192 pipe_config->name); \
11193 ret = false; \
11194 }
11195
11196 #define PIPE_CONF_QUIRK(quirk) \
11197 ((current_config->quirks | pipe_config->quirks) & (quirk))
11198
11199 PIPE_CONF_CHECK_I(cpu_transcoder);
11200
11201 PIPE_CONF_CHECK_I(has_pch_encoder);
11202 PIPE_CONF_CHECK_I(fdi_lanes);
11203 PIPE_CONF_CHECK_M_N(fdi_m_n);
11204
11205 PIPE_CONF_CHECK_I(lane_count);
11206 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
11207
11208 if (INTEL_GEN(dev_priv) < 8) {
11209 PIPE_CONF_CHECK_M_N(dp_m_n);
11210
11211 if (current_config->has_drrs)
11212 PIPE_CONF_CHECK_M_N(dp_m2_n2);
11213 } else
11214 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
11215
11216 PIPE_CONF_CHECK_X(output_types);
11217
11218 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11219 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11220 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11221 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11222 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11223 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11224
11225 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11226 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11227 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11228 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11229 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11230 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11231
11232 PIPE_CONF_CHECK_I(pixel_multiplier);
11233 PIPE_CONF_CHECK_I(has_hdmi_sink);
11234 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
11235 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11236 PIPE_CONF_CHECK_I(limited_color_range);
11237
11238 PIPE_CONF_CHECK_I(hdmi_scrambling);
11239 PIPE_CONF_CHECK_I(hdmi_high_tmds_clock_ratio);
11240 PIPE_CONF_CHECK_I(has_infoframe);
11241 PIPE_CONF_CHECK_I(ycbcr420);
11242
11243 PIPE_CONF_CHECK_I(has_audio);
11244
11245 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11246 DRM_MODE_FLAG_INTERLACE);
11247
11248 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11249 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11250 DRM_MODE_FLAG_PHSYNC);
11251 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11252 DRM_MODE_FLAG_NHSYNC);
11253 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11254 DRM_MODE_FLAG_PVSYNC);
11255 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11256 DRM_MODE_FLAG_NVSYNC);
11257 }
11258
11259 PIPE_CONF_CHECK_X(gmch_pfit.control);
11260 /* pfit ratios are autocomputed by the hw on gen4+ */
11261 if (INTEL_GEN(dev_priv) < 4)
11262 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
11263 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
11264
11265 if (!adjust) {
11266 PIPE_CONF_CHECK_I(pipe_src_w);
11267 PIPE_CONF_CHECK_I(pipe_src_h);
11268
11269 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11270 if (current_config->pch_pfit.enabled) {
11271 PIPE_CONF_CHECK_X(pch_pfit.pos);
11272 PIPE_CONF_CHECK_X(pch_pfit.size);
11273 }
11274
11275 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
11276 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
11277 }
11278
11279 /* BDW+ don't expose a synchronous way to read the state */
11280 if (IS_HASWELL(dev_priv))
11281 PIPE_CONF_CHECK_I(ips_enabled);
11282
11283 PIPE_CONF_CHECK_I(double_wide);
11284
11285 PIPE_CONF_CHECK_P(shared_dpll);
11286 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11287 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11288 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11289 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11290 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11291 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
11292 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11293 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11294 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11295 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0);
11296 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0);
11297 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4);
11298 PIPE_CONF_CHECK_X(dpll_hw_state.pll0);
11299 PIPE_CONF_CHECK_X(dpll_hw_state.pll1);
11300 PIPE_CONF_CHECK_X(dpll_hw_state.pll2);
11301 PIPE_CONF_CHECK_X(dpll_hw_state.pll3);
11302 PIPE_CONF_CHECK_X(dpll_hw_state.pll6);
11303 PIPE_CONF_CHECK_X(dpll_hw_state.pll8);
11304 PIPE_CONF_CHECK_X(dpll_hw_state.pll9);
11305 PIPE_CONF_CHECK_X(dpll_hw_state.pll10);
11306 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12);
11307
11308 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
11309 PIPE_CONF_CHECK_X(dsi_pll.div);
11310
11311 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
11312 PIPE_CONF_CHECK_I(pipe_bpp);
11313
11314 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11315 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11316
11317 #undef PIPE_CONF_CHECK_X
11318 #undef PIPE_CONF_CHECK_I
11319 #undef PIPE_CONF_CHECK_P
11320 #undef PIPE_CONF_CHECK_FLAGS
11321 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11322 #undef PIPE_CONF_QUIRK
11323
11324 return ret;
11325 }
11326
11327 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
11328 const struct intel_crtc_state *pipe_config)
11329 {
11330 if (pipe_config->has_pch_encoder) {
11331 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11332 &pipe_config->fdi_m_n);
11333 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
11334
11335 /*
11336 * FDI already provided one idea for the dotclock.
11337 * Yell if the encoder disagrees.
11338 */
11339 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
11340 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11341 fdi_dotclock, dotclock);
11342 }
11343 }
11344
11345 static void verify_wm_state(struct drm_crtc *crtc,
11346 struct drm_crtc_state *new_state)
11347 {
11348 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
11349 struct skl_ddb_allocation hw_ddb, *sw_ddb;
11350 struct skl_pipe_wm hw_wm, *sw_wm;
11351 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
11352 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
11353 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11354 const enum pipe pipe = intel_crtc->pipe;
11355 int plane, level, max_level = ilk_wm_max_level(dev_priv);
11356
11357 if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
11358 return;
11359
11360 skl_pipe_wm_get_hw_state(crtc, &hw_wm);
11361 sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
11362
11363 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11364 sw_ddb = &dev_priv->wm.skl_hw.ddb;
11365
11366 /* planes */
11367 for_each_universal_plane(dev_priv, pipe, plane) {
11368 hw_plane_wm = &hw_wm.planes[plane];
11369 sw_plane_wm = &sw_wm->planes[plane];
11370
11371 /* Watermarks */
11372 for (level = 0; level <= max_level; level++) {
11373 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
11374 &sw_plane_wm->wm[level]))
11375 continue;
11376
11377 DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11378 pipe_name(pipe), plane + 1, level,
11379 sw_plane_wm->wm[level].plane_en,
11380 sw_plane_wm->wm[level].plane_res_b,
11381 sw_plane_wm->wm[level].plane_res_l,
11382 hw_plane_wm->wm[level].plane_en,
11383 hw_plane_wm->wm[level].plane_res_b,
11384 hw_plane_wm->wm[level].plane_res_l);
11385 }
11386
11387 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
11388 &sw_plane_wm->trans_wm)) {
11389 DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11390 pipe_name(pipe), plane + 1,
11391 sw_plane_wm->trans_wm.plane_en,
11392 sw_plane_wm->trans_wm.plane_res_b,
11393 sw_plane_wm->trans_wm.plane_res_l,
11394 hw_plane_wm->trans_wm.plane_en,
11395 hw_plane_wm->trans_wm.plane_res_b,
11396 hw_plane_wm->trans_wm.plane_res_l);
11397 }
11398
11399 /* DDB */
11400 hw_ddb_entry = &hw_ddb.plane[pipe][plane];
11401 sw_ddb_entry = &sw_ddb->plane[pipe][plane];
11402
11403 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
11404 DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
11405 pipe_name(pipe), plane + 1,
11406 sw_ddb_entry->start, sw_ddb_entry->end,
11407 hw_ddb_entry->start, hw_ddb_entry->end);
11408 }
11409 }
11410
11411 /*
11412 * cursor
11413 * If the cursor plane isn't active, we may not have updated it's ddb
11414 * allocation. In that case since the ddb allocation will be updated
11415 * once the plane becomes visible, we can skip this check
11416 */
11417 if (1) {
11418 hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
11419 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
11420
11421 /* Watermarks */
11422 for (level = 0; level <= max_level; level++) {
11423 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
11424 &sw_plane_wm->wm[level]))
11425 continue;
11426
11427 DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11428 pipe_name(pipe), level,
11429 sw_plane_wm->wm[level].plane_en,
11430 sw_plane_wm->wm[level].plane_res_b,
11431 sw_plane_wm->wm[level].plane_res_l,
11432 hw_plane_wm->wm[level].plane_en,
11433 hw_plane_wm->wm[level].plane_res_b,
11434 hw_plane_wm->wm[level].plane_res_l);
11435 }
11436
11437 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
11438 &sw_plane_wm->trans_wm)) {
11439 DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11440 pipe_name(pipe),
11441 sw_plane_wm->trans_wm.plane_en,
11442 sw_plane_wm->trans_wm.plane_res_b,
11443 sw_plane_wm->trans_wm.plane_res_l,
11444 hw_plane_wm->trans_wm.plane_en,
11445 hw_plane_wm->trans_wm.plane_res_b,
11446 hw_plane_wm->trans_wm.plane_res_l);
11447 }
11448
11449 /* DDB */
11450 hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
11451 sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
11452
11453 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
11454 DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
11455 pipe_name(pipe),
11456 sw_ddb_entry->start, sw_ddb_entry->end,
11457 hw_ddb_entry->start, hw_ddb_entry->end);
11458 }
11459 }
11460 }
11461
11462 static void
11463 verify_connector_state(struct drm_device *dev,
11464 struct drm_atomic_state *state,
11465 struct drm_crtc *crtc)
11466 {
11467 struct drm_connector *connector;
11468 struct drm_connector_state *new_conn_state;
11469 int i;
11470
11471 for_each_new_connector_in_state(state, connector, new_conn_state, i) {
11472 struct drm_encoder *encoder = connector->encoder;
11473 struct drm_crtc_state *crtc_state = NULL;
11474
11475 if (new_conn_state->crtc != crtc)
11476 continue;
11477
11478 if (crtc)
11479 crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc);
11480
11481 intel_connector_verify_state(crtc_state, new_conn_state);
11482
11483 I915_STATE_WARN(new_conn_state->best_encoder != encoder,
11484 "connector's atomic encoder doesn't match legacy encoder\n");
11485 }
11486 }
11487
11488 static void
11489 verify_encoder_state(struct drm_device *dev, struct drm_atomic_state *state)
11490 {
11491 struct intel_encoder *encoder;
11492 struct drm_connector *connector;
11493 struct drm_connector_state *old_conn_state, *new_conn_state;
11494 int i;
11495
11496 for_each_intel_encoder(dev, encoder) {
11497 bool enabled = false, found = false;
11498 enum pipe pipe;
11499
11500 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11501 encoder->base.base.id,
11502 encoder->base.name);
11503
11504 for_each_oldnew_connector_in_state(state, connector, old_conn_state,
11505 new_conn_state, i) {
11506 if (old_conn_state->best_encoder == &encoder->base)
11507 found = true;
11508
11509 if (new_conn_state->best_encoder != &encoder->base)
11510 continue;
11511 found = enabled = true;
11512
11513 I915_STATE_WARN(new_conn_state->crtc !=
11514 encoder->base.crtc,
11515 "connector's crtc doesn't match encoder crtc\n");
11516 }
11517
11518 if (!found)
11519 continue;
11520
11521 I915_STATE_WARN(!!encoder->base.crtc != enabled,
11522 "encoder's enabled state mismatch "
11523 "(expected %i, found %i)\n",
11524 !!encoder->base.crtc, enabled);
11525
11526 if (!encoder->base.crtc) {
11527 bool active;
11528
11529 active = encoder->get_hw_state(encoder, &pipe);
11530 I915_STATE_WARN(active,
11531 "encoder detached but still enabled on pipe %c.\n",
11532 pipe_name(pipe));
11533 }
11534 }
11535 }
11536
11537 static void
11538 verify_crtc_state(struct drm_crtc *crtc,
11539 struct drm_crtc_state *old_crtc_state,
11540 struct drm_crtc_state *new_crtc_state)
11541 {
11542 struct drm_device *dev = crtc->dev;
11543 struct drm_i915_private *dev_priv = to_i915(dev);
11544 struct intel_encoder *encoder;
11545 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11546 struct intel_crtc_state *pipe_config, *sw_config;
11547 struct drm_atomic_state *old_state;
11548 bool active;
11549
11550 old_state = old_crtc_state->state;
11551 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
11552 pipe_config = to_intel_crtc_state(old_crtc_state);
11553 memset(pipe_config, 0, sizeof(*pipe_config));
11554 pipe_config->base.crtc = crtc;
11555 pipe_config->base.state = old_state;
11556
11557 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
11558
11559 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
11560
11561 /* we keep both pipes enabled on 830 */
11562 if (IS_I830(dev_priv))
11563 active = new_crtc_state->active;
11564
11565 I915_STATE_WARN(new_crtc_state->active != active,
11566 "crtc active state doesn't match with hw state "
11567 "(expected %i, found %i)\n", new_crtc_state->active, active);
11568
11569 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
11570 "transitional active state does not match atomic hw state "
11571 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
11572
11573 for_each_encoder_on_crtc(dev, crtc, encoder) {
11574 enum pipe pipe;
11575
11576 active = encoder->get_hw_state(encoder, &pipe);
11577 I915_STATE_WARN(active != new_crtc_state->active,
11578 "[ENCODER:%i] active %i with crtc active %i\n",
11579 encoder->base.base.id, active, new_crtc_state->active);
11580
11581 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
11582 "Encoder connected to wrong pipe %c\n",
11583 pipe_name(pipe));
11584
11585 if (active) {
11586 pipe_config->output_types |= 1 << encoder->type;
11587 encoder->get_config(encoder, pipe_config);
11588 }
11589 }
11590
11591 intel_crtc_compute_pixel_rate(pipe_config);
11592
11593 if (!new_crtc_state->active)
11594 return;
11595
11596 intel_pipe_config_sanity_check(dev_priv, pipe_config);
11597
11598 sw_config = to_intel_crtc_state(new_crtc_state);
11599 if (!intel_pipe_config_compare(dev_priv, sw_config,
11600 pipe_config, false)) {
11601 I915_STATE_WARN(1, "pipe state doesn't match!\n");
11602 intel_dump_pipe_config(intel_crtc, pipe_config,
11603 "[hw state]");
11604 intel_dump_pipe_config(intel_crtc, sw_config,
11605 "[sw state]");
11606 }
11607 }
11608
11609 static void
11610 verify_single_dpll_state(struct drm_i915_private *dev_priv,
11611 struct intel_shared_dpll *pll,
11612 struct drm_crtc *crtc,
11613 struct drm_crtc_state *new_state)
11614 {
11615 struct intel_dpll_hw_state dpll_hw_state;
11616 unsigned crtc_mask;
11617 bool active;
11618
11619 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
11620
11621 DRM_DEBUG_KMS("%s\n", pll->name);
11622
11623 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
11624
11625 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
11626 I915_STATE_WARN(!pll->on && pll->active_mask,
11627 "pll in active use but not on in sw tracking\n");
11628 I915_STATE_WARN(pll->on && !pll->active_mask,
11629 "pll is on but not used by any active crtc\n");
11630 I915_STATE_WARN(pll->on != active,
11631 "pll on state mismatch (expected %i, found %i)\n",
11632 pll->on, active);
11633 }
11634
11635 if (!crtc) {
11636 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
11637 "more active pll users than references: %x vs %x\n",
11638 pll->active_mask, pll->state.crtc_mask);
11639
11640 return;
11641 }
11642
11643 crtc_mask = 1 << drm_crtc_index(crtc);
11644
11645 if (new_state->active)
11646 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
11647 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
11648 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
11649 else
11650 I915_STATE_WARN(pll->active_mask & crtc_mask,
11651 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
11652 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
11653
11654 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
11655 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
11656 crtc_mask, pll->state.crtc_mask);
11657
11658 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
11659 &dpll_hw_state,
11660 sizeof(dpll_hw_state)),
11661 "pll hw state mismatch\n");
11662 }
11663
11664 static void
11665 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
11666 struct drm_crtc_state *old_crtc_state,
11667 struct drm_crtc_state *new_crtc_state)
11668 {
11669 struct drm_i915_private *dev_priv = to_i915(dev);
11670 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
11671 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
11672
11673 if (new_state->shared_dpll)
11674 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
11675
11676 if (old_state->shared_dpll &&
11677 old_state->shared_dpll != new_state->shared_dpll) {
11678 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
11679 struct intel_shared_dpll *pll = old_state->shared_dpll;
11680
11681 I915_STATE_WARN(pll->active_mask & crtc_mask,
11682 "pll active mismatch (didn't expect pipe %c in active mask)\n",
11683 pipe_name(drm_crtc_index(crtc)));
11684 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
11685 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
11686 pipe_name(drm_crtc_index(crtc)));
11687 }
11688 }
11689
11690 static void
11691 intel_modeset_verify_crtc(struct drm_crtc *crtc,
11692 struct drm_atomic_state *state,
11693 struct drm_crtc_state *old_state,
11694 struct drm_crtc_state *new_state)
11695 {
11696 if (!needs_modeset(new_state) &&
11697 !to_intel_crtc_state(new_state)->update_pipe)
11698 return;
11699
11700 verify_wm_state(crtc, new_state);
11701 verify_connector_state(crtc->dev, state, crtc);
11702 verify_crtc_state(crtc, old_state, new_state);
11703 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
11704 }
11705
11706 static void
11707 verify_disabled_dpll_state(struct drm_device *dev)
11708 {
11709 struct drm_i915_private *dev_priv = to_i915(dev);
11710 int i;
11711
11712 for (i = 0; i < dev_priv->num_shared_dpll; i++)
11713 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
11714 }
11715
11716 static void
11717 intel_modeset_verify_disabled(struct drm_device *dev,
11718 struct drm_atomic_state *state)
11719 {
11720 verify_encoder_state(dev, state);
11721 verify_connector_state(dev, state, NULL);
11722 verify_disabled_dpll_state(dev);
11723 }
11724
11725 static void update_scanline_offset(struct intel_crtc *crtc)
11726 {
11727 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11728
11729 /*
11730 * The scanline counter increments at the leading edge of hsync.
11731 *
11732 * On most platforms it starts counting from vtotal-1 on the
11733 * first active line. That means the scanline counter value is
11734 * always one less than what we would expect. Ie. just after
11735 * start of vblank, which also occurs at start of hsync (on the
11736 * last active line), the scanline counter will read vblank_start-1.
11737 *
11738 * On gen2 the scanline counter starts counting from 1 instead
11739 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11740 * to keep the value positive), instead of adding one.
11741 *
11742 * On HSW+ the behaviour of the scanline counter depends on the output
11743 * type. For DP ports it behaves like most other platforms, but on HDMI
11744 * there's an extra 1 line difference. So we need to add two instead of
11745 * one to the value.
11746 *
11747 * On VLV/CHV DSI the scanline counter would appear to increment
11748 * approx. 1/3 of a scanline before start of vblank. Unfortunately
11749 * that means we can't tell whether we're in vblank or not while
11750 * we're on that particular line. We must still set scanline_offset
11751 * to 1 so that the vblank timestamps come out correct when we query
11752 * the scanline counter from within the vblank interrupt handler.
11753 * However if queried just before the start of vblank we'll get an
11754 * answer that's slightly in the future.
11755 */
11756 if (IS_GEN2(dev_priv)) {
11757 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
11758 int vtotal;
11759
11760 vtotal = adjusted_mode->crtc_vtotal;
11761 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
11762 vtotal /= 2;
11763
11764 crtc->scanline_offset = vtotal - 1;
11765 } else if (HAS_DDI(dev_priv) &&
11766 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
11767 crtc->scanline_offset = 2;
11768 } else
11769 crtc->scanline_offset = 1;
11770 }
11771
11772 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
11773 {
11774 struct drm_device *dev = state->dev;
11775 struct drm_i915_private *dev_priv = to_i915(dev);
11776 struct drm_crtc *crtc;
11777 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
11778 int i;
11779
11780 if (!dev_priv->display.crtc_compute_clock)
11781 return;
11782
11783 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
11784 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11785 struct intel_shared_dpll *old_dpll =
11786 to_intel_crtc_state(old_crtc_state)->shared_dpll;
11787
11788 if (!needs_modeset(new_crtc_state))
11789 continue;
11790
11791 to_intel_crtc_state(new_crtc_state)->shared_dpll = NULL;
11792
11793 if (!old_dpll)
11794 continue;
11795
11796 intel_release_shared_dpll(old_dpll, intel_crtc, state);
11797 }
11798 }
11799
11800 /*
11801 * This implements the workaround described in the "notes" section of the mode
11802 * set sequence documentation. When going from no pipes or single pipe to
11803 * multiple pipes, and planes are enabled after the pipe, we need to wait at
11804 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
11805 */
11806 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
11807 {
11808 struct drm_crtc_state *crtc_state;
11809 struct intel_crtc *intel_crtc;
11810 struct drm_crtc *crtc;
11811 struct intel_crtc_state *first_crtc_state = NULL;
11812 struct intel_crtc_state *other_crtc_state = NULL;
11813 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
11814 int i;
11815
11816 /* look at all crtc's that are going to be enabled in during modeset */
11817 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
11818 intel_crtc = to_intel_crtc(crtc);
11819
11820 if (!crtc_state->active || !needs_modeset(crtc_state))
11821 continue;
11822
11823 if (first_crtc_state) {
11824 other_crtc_state = to_intel_crtc_state(crtc_state);
11825 break;
11826 } else {
11827 first_crtc_state = to_intel_crtc_state(crtc_state);
11828 first_pipe = intel_crtc->pipe;
11829 }
11830 }
11831
11832 /* No workaround needed? */
11833 if (!first_crtc_state)
11834 return 0;
11835
11836 /* w/a possibly needed, check how many crtc's are already enabled. */
11837 for_each_intel_crtc(state->dev, intel_crtc) {
11838 struct intel_crtc_state *pipe_config;
11839
11840 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
11841 if (IS_ERR(pipe_config))
11842 return PTR_ERR(pipe_config);
11843
11844 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
11845
11846 if (!pipe_config->base.active ||
11847 needs_modeset(&pipe_config->base))
11848 continue;
11849
11850 /* 2 or more enabled crtcs means no need for w/a */
11851 if (enabled_pipe != INVALID_PIPE)
11852 return 0;
11853
11854 enabled_pipe = intel_crtc->pipe;
11855 }
11856
11857 if (enabled_pipe != INVALID_PIPE)
11858 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
11859 else if (other_crtc_state)
11860 other_crtc_state->hsw_workaround_pipe = first_pipe;
11861
11862 return 0;
11863 }
11864
11865 static int intel_lock_all_pipes(struct drm_atomic_state *state)
11866 {
11867 struct drm_crtc *crtc;
11868
11869 /* Add all pipes to the state */
11870 for_each_crtc(state->dev, crtc) {
11871 struct drm_crtc_state *crtc_state;
11872
11873 crtc_state = drm_atomic_get_crtc_state(state, crtc);
11874 if (IS_ERR(crtc_state))
11875 return PTR_ERR(crtc_state);
11876 }
11877
11878 return 0;
11879 }
11880
11881 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
11882 {
11883 struct drm_crtc *crtc;
11884
11885 /*
11886 * Add all pipes to the state, and force
11887 * a modeset on all the active ones.
11888 */
11889 for_each_crtc(state->dev, crtc) {
11890 struct drm_crtc_state *crtc_state;
11891 int ret;
11892
11893 crtc_state = drm_atomic_get_crtc_state(state, crtc);
11894 if (IS_ERR(crtc_state))
11895 return PTR_ERR(crtc_state);
11896
11897 if (!crtc_state->active || needs_modeset(crtc_state))
11898 continue;
11899
11900 crtc_state->mode_changed = true;
11901
11902 ret = drm_atomic_add_affected_connectors(state, crtc);
11903 if (ret)
11904 return ret;
11905
11906 ret = drm_atomic_add_affected_planes(state, crtc);
11907 if (ret)
11908 return ret;
11909 }
11910
11911 return 0;
11912 }
11913
11914 static int intel_modeset_checks(struct drm_atomic_state *state)
11915 {
11916 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
11917 struct drm_i915_private *dev_priv = to_i915(state->dev);
11918 struct drm_crtc *crtc;
11919 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
11920 int ret = 0, i;
11921
11922 if (!check_digital_port_conflicts(state)) {
11923 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
11924 return -EINVAL;
11925 }
11926
11927 intel_state->modeset = true;
11928 intel_state->active_crtcs = dev_priv->active_crtcs;
11929 intel_state->cdclk.logical = dev_priv->cdclk.logical;
11930 intel_state->cdclk.actual = dev_priv->cdclk.actual;
11931
11932 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
11933 if (new_crtc_state->active)
11934 intel_state->active_crtcs |= 1 << i;
11935 else
11936 intel_state->active_crtcs &= ~(1 << i);
11937
11938 if (old_crtc_state->active != new_crtc_state->active)
11939 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
11940 }
11941
11942 /*
11943 * See if the config requires any additional preparation, e.g.
11944 * to adjust global state with pipes off. We need to do this
11945 * here so we can get the modeset_pipe updated config for the new
11946 * mode set on this crtc. For other crtcs we need to use the
11947 * adjusted_mode bits in the crtc directly.
11948 */
11949 if (dev_priv->display.modeset_calc_cdclk) {
11950 ret = dev_priv->display.modeset_calc_cdclk(state);
11951 if (ret < 0)
11952 return ret;
11953
11954 /*
11955 * Writes to dev_priv->cdclk.logical must protected by
11956 * holding all the crtc locks, even if we don't end up
11957 * touching the hardware
11958 */
11959 if (!intel_cdclk_state_compare(&dev_priv->cdclk.logical,
11960 &intel_state->cdclk.logical)) {
11961 ret = intel_lock_all_pipes(state);
11962 if (ret < 0)
11963 return ret;
11964 }
11965
11966 /* All pipes must be switched off while we change the cdclk. */
11967 if (!intel_cdclk_state_compare(&dev_priv->cdclk.actual,
11968 &intel_state->cdclk.actual)) {
11969 ret = intel_modeset_all_pipes(state);
11970 if (ret < 0)
11971 return ret;
11972 }
11973
11974 DRM_DEBUG_KMS("New cdclk calculated to be logical %u kHz, actual %u kHz\n",
11975 intel_state->cdclk.logical.cdclk,
11976 intel_state->cdclk.actual.cdclk);
11977 } else {
11978 to_intel_atomic_state(state)->cdclk.logical = dev_priv->cdclk.logical;
11979 }
11980
11981 intel_modeset_clear_plls(state);
11982
11983 if (IS_HASWELL(dev_priv))
11984 return haswell_mode_set_planes_workaround(state);
11985
11986 return 0;
11987 }
11988
11989 /*
11990 * Handle calculation of various watermark data at the end of the atomic check
11991 * phase. The code here should be run after the per-crtc and per-plane 'check'
11992 * handlers to ensure that all derived state has been updated.
11993 */
11994 static int calc_watermark_data(struct drm_atomic_state *state)
11995 {
11996 struct drm_device *dev = state->dev;
11997 struct drm_i915_private *dev_priv = to_i915(dev);
11998
11999 /* Is there platform-specific watermark information to calculate? */
12000 if (dev_priv->display.compute_global_watermarks)
12001 return dev_priv->display.compute_global_watermarks(state);
12002
12003 return 0;
12004 }
12005
12006 /**
12007 * intel_atomic_check - validate state object
12008 * @dev: drm device
12009 * @state: state to validate
12010 */
12011 static int intel_atomic_check(struct drm_device *dev,
12012 struct drm_atomic_state *state)
12013 {
12014 struct drm_i915_private *dev_priv = to_i915(dev);
12015 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12016 struct drm_crtc *crtc;
12017 struct drm_crtc_state *old_crtc_state, *crtc_state;
12018 int ret, i;
12019 bool any_ms = false;
12020
12021 ret = drm_atomic_helper_check_modeset(dev, state);
12022 if (ret)
12023 return ret;
12024
12025 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, crtc_state, i) {
12026 struct intel_crtc_state *pipe_config =
12027 to_intel_crtc_state(crtc_state);
12028
12029 /* Catch I915_MODE_FLAG_INHERITED */
12030 if (crtc_state->mode.private_flags != old_crtc_state->mode.private_flags)
12031 crtc_state->mode_changed = true;
12032
12033 if (!needs_modeset(crtc_state))
12034 continue;
12035
12036 if (!crtc_state->enable) {
12037 any_ms = true;
12038 continue;
12039 }
12040
12041 /* FIXME: For only active_changed we shouldn't need to do any
12042 * state recomputation at all. */
12043
12044 ret = drm_atomic_add_affected_connectors(state, crtc);
12045 if (ret)
12046 return ret;
12047
12048 ret = intel_modeset_pipe_config(crtc, pipe_config);
12049 if (ret) {
12050 intel_dump_pipe_config(to_intel_crtc(crtc),
12051 pipe_config, "[failed]");
12052 return ret;
12053 }
12054
12055 if (i915_modparams.fastboot &&
12056 intel_pipe_config_compare(dev_priv,
12057 to_intel_crtc_state(old_crtc_state),
12058 pipe_config, true)) {
12059 crtc_state->mode_changed = false;
12060 pipe_config->update_pipe = true;
12061 }
12062
12063 if (needs_modeset(crtc_state))
12064 any_ms = true;
12065
12066 ret = drm_atomic_add_affected_planes(state, crtc);
12067 if (ret)
12068 return ret;
12069
12070 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
12071 needs_modeset(crtc_state) ?
12072 "[modeset]" : "[fastset]");
12073 }
12074
12075 if (any_ms) {
12076 ret = intel_modeset_checks(state);
12077
12078 if (ret)
12079 return ret;
12080 } else {
12081 intel_state->cdclk.logical = dev_priv->cdclk.logical;
12082 }
12083
12084 ret = drm_atomic_helper_check_planes(dev, state);
12085 if (ret)
12086 return ret;
12087
12088 intel_fbc_choose_crtc(dev_priv, state);
12089 return calc_watermark_data(state);
12090 }
12091
12092 static int intel_atomic_prepare_commit(struct drm_device *dev,
12093 struct drm_atomic_state *state)
12094 {
12095 return drm_atomic_helper_prepare_planes(dev, state);
12096 }
12097
12098 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
12099 {
12100 struct drm_device *dev = crtc->base.dev;
12101
12102 if (!dev->max_vblank_count)
12103 return drm_crtc_accurate_vblank_count(&crtc->base);
12104
12105 return dev->driver->get_vblank_counter(dev, crtc->pipe);
12106 }
12107
12108 static void intel_update_crtc(struct drm_crtc *crtc,
12109 struct drm_atomic_state *state,
12110 struct drm_crtc_state *old_crtc_state,
12111 struct drm_crtc_state *new_crtc_state)
12112 {
12113 struct drm_device *dev = crtc->dev;
12114 struct drm_i915_private *dev_priv = to_i915(dev);
12115 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12116 struct intel_crtc_state *pipe_config = to_intel_crtc_state(new_crtc_state);
12117 bool modeset = needs_modeset(new_crtc_state);
12118
12119 if (modeset) {
12120 update_scanline_offset(intel_crtc);
12121 dev_priv->display.crtc_enable(pipe_config, state);
12122 } else {
12123 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
12124 pipe_config);
12125 }
12126
12127 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12128 intel_fbc_enable(
12129 intel_crtc, pipe_config,
12130 to_intel_plane_state(crtc->primary->state));
12131 }
12132
12133 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
12134 }
12135
12136 static void intel_update_crtcs(struct drm_atomic_state *state)
12137 {
12138 struct drm_crtc *crtc;
12139 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12140 int i;
12141
12142 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12143 if (!new_crtc_state->active)
12144 continue;
12145
12146 intel_update_crtc(crtc, state, old_crtc_state,
12147 new_crtc_state);
12148 }
12149 }
12150
12151 static void skl_update_crtcs(struct drm_atomic_state *state)
12152 {
12153 struct drm_i915_private *dev_priv = to_i915(state->dev);
12154 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12155 struct drm_crtc *crtc;
12156 struct intel_crtc *intel_crtc;
12157 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12158 struct intel_crtc_state *cstate;
12159 unsigned int updated = 0;
12160 bool progress;
12161 enum pipe pipe;
12162 int i;
12163
12164 const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
12165
12166 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i)
12167 /* ignore allocations for crtc's that have been turned off. */
12168 if (new_crtc_state->active)
12169 entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
12170
12171 /*
12172 * Whenever the number of active pipes changes, we need to make sure we
12173 * update the pipes in the right order so that their ddb allocations
12174 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
12175 * cause pipe underruns and other bad stuff.
12176 */
12177 do {
12178 progress = false;
12179
12180 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12181 bool vbl_wait = false;
12182 unsigned int cmask = drm_crtc_mask(crtc);
12183
12184 intel_crtc = to_intel_crtc(crtc);
12185 cstate = to_intel_crtc_state(new_crtc_state);
12186 pipe = intel_crtc->pipe;
12187
12188 if (updated & cmask || !cstate->base.active)
12189 continue;
12190
12191 if (skl_ddb_allocation_overlaps(dev_priv,
12192 entries,
12193 &cstate->wm.skl.ddb,
12194 i))
12195 continue;
12196
12197 updated |= cmask;
12198 entries[i] = &cstate->wm.skl.ddb;
12199
12200 /*
12201 * If this is an already active pipe, it's DDB changed,
12202 * and this isn't the last pipe that needs updating
12203 * then we need to wait for a vblank to pass for the
12204 * new ddb allocation to take effect.
12205 */
12206 if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
12207 &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
12208 !new_crtc_state->active_changed &&
12209 intel_state->wm_results.dirty_pipes != updated)
12210 vbl_wait = true;
12211
12212 intel_update_crtc(crtc, state, old_crtc_state,
12213 new_crtc_state);
12214
12215 if (vbl_wait)
12216 intel_wait_for_vblank(dev_priv, pipe);
12217
12218 progress = true;
12219 }
12220 } while (progress);
12221 }
12222
12223 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
12224 {
12225 struct intel_atomic_state *state, *next;
12226 struct llist_node *freed;
12227
12228 freed = llist_del_all(&dev_priv->atomic_helper.free_list);
12229 llist_for_each_entry_safe(state, next, freed, freed)
12230 drm_atomic_state_put(&state->base);
12231 }
12232
12233 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
12234 {
12235 struct drm_i915_private *dev_priv =
12236 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
12237
12238 intel_atomic_helper_free_state(dev_priv);
12239 }
12240
12241 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
12242 {
12243 struct wait_queue_entry wait_fence, wait_reset;
12244 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
12245
12246 init_wait_entry(&wait_fence, 0);
12247 init_wait_entry(&wait_reset, 0);
12248 for (;;) {
12249 prepare_to_wait(&intel_state->commit_ready.wait,
12250 &wait_fence, TASK_UNINTERRUPTIBLE);
12251 prepare_to_wait(&dev_priv->gpu_error.wait_queue,
12252 &wait_reset, TASK_UNINTERRUPTIBLE);
12253
12254
12255 if (i915_sw_fence_done(&intel_state->commit_ready)
12256 || test_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags))
12257 break;
12258
12259 schedule();
12260 }
12261 finish_wait(&intel_state->commit_ready.wait, &wait_fence);
12262 finish_wait(&dev_priv->gpu_error.wait_queue, &wait_reset);
12263 }
12264
12265 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
12266 {
12267 struct drm_device *dev = state->dev;
12268 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12269 struct drm_i915_private *dev_priv = to_i915(dev);
12270 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12271 struct drm_crtc *crtc;
12272 struct intel_crtc_state *intel_cstate;
12273 u64 put_domains[I915_MAX_PIPES] = {};
12274 int i;
12275
12276 intel_atomic_commit_fence_wait(intel_state);
12277
12278 drm_atomic_helper_wait_for_dependencies(state);
12279
12280 if (intel_state->modeset)
12281 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
12282
12283 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12284 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12285
12286 if (needs_modeset(new_crtc_state) ||
12287 to_intel_crtc_state(new_crtc_state)->update_pipe) {
12288
12289 put_domains[to_intel_crtc(crtc)->pipe] =
12290 modeset_get_crtc_power_domains(crtc,
12291 to_intel_crtc_state(new_crtc_state));
12292 }
12293
12294 if (!needs_modeset(new_crtc_state))
12295 continue;
12296
12297 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
12298 to_intel_crtc_state(new_crtc_state));
12299
12300 if (old_crtc_state->active) {
12301 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
12302 dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
12303 intel_crtc->active = false;
12304 intel_fbc_disable(intel_crtc);
12305 intel_disable_shared_dpll(intel_crtc);
12306
12307 /*
12308 * Underruns don't always raise
12309 * interrupts, so check manually.
12310 */
12311 intel_check_cpu_fifo_underruns(dev_priv);
12312 intel_check_pch_fifo_underruns(dev_priv);
12313
12314 if (!new_crtc_state->active) {
12315 /*
12316 * Make sure we don't call initial_watermarks
12317 * for ILK-style watermark updates.
12318 *
12319 * No clue what this is supposed to achieve.
12320 */
12321 if (INTEL_GEN(dev_priv) >= 9)
12322 dev_priv->display.initial_watermarks(intel_state,
12323 to_intel_crtc_state(new_crtc_state));
12324 }
12325 }
12326 }
12327
12328 /* Only after disabling all output pipelines that will be changed can we
12329 * update the the output configuration. */
12330 intel_modeset_update_crtc_state(state);
12331
12332 if (intel_state->modeset) {
12333 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
12334
12335 intel_set_cdclk(dev_priv, &dev_priv->cdclk.actual);
12336
12337 /*
12338 * SKL workaround: bspec recommends we disable the SAGV when we
12339 * have more then one pipe enabled
12340 */
12341 if (!intel_can_enable_sagv(state))
12342 intel_disable_sagv(dev_priv);
12343
12344 intel_modeset_verify_disabled(dev, state);
12345 }
12346
12347 /* Complete the events for pipes that have now been disabled */
12348 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
12349 bool modeset = needs_modeset(new_crtc_state);
12350
12351 /* Complete events for now disable pipes here. */
12352 if (modeset && !new_crtc_state->active && new_crtc_state->event) {
12353 spin_lock_irq(&dev->event_lock);
12354 drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
12355 spin_unlock_irq(&dev->event_lock);
12356
12357 new_crtc_state->event = NULL;
12358 }
12359 }
12360
12361 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
12362 dev_priv->display.update_crtcs(state);
12363
12364 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
12365 * already, but still need the state for the delayed optimization. To
12366 * fix this:
12367 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
12368 * - schedule that vblank worker _before_ calling hw_done
12369 * - at the start of commit_tail, cancel it _synchrously
12370 * - switch over to the vblank wait helper in the core after that since
12371 * we don't need out special handling any more.
12372 */
12373 drm_atomic_helper_wait_for_flip_done(dev, state);
12374
12375 /*
12376 * Now that the vblank has passed, we can go ahead and program the
12377 * optimal watermarks on platforms that need two-step watermark
12378 * programming.
12379 *
12380 * TODO: Move this (and other cleanup) to an async worker eventually.
12381 */
12382 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
12383 intel_cstate = to_intel_crtc_state(new_crtc_state);
12384
12385 if (dev_priv->display.optimize_watermarks)
12386 dev_priv->display.optimize_watermarks(intel_state,
12387 intel_cstate);
12388 }
12389
12390 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12391 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
12392
12393 if (put_domains[i])
12394 modeset_put_power_domains(dev_priv, put_domains[i]);
12395
12396 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
12397 }
12398
12399 if (intel_state->modeset && intel_can_enable_sagv(state))
12400 intel_enable_sagv(dev_priv);
12401
12402 drm_atomic_helper_commit_hw_done(state);
12403
12404 if (intel_state->modeset) {
12405 /* As one of the primary mmio accessors, KMS has a high
12406 * likelihood of triggering bugs in unclaimed access. After we
12407 * finish modesetting, see if an error has been flagged, and if
12408 * so enable debugging for the next modeset - and hope we catch
12409 * the culprit.
12410 */
12411 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
12412 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
12413 }
12414
12415 drm_atomic_helper_cleanup_planes(dev, state);
12416
12417 drm_atomic_helper_commit_cleanup_done(state);
12418
12419 drm_atomic_state_put(state);
12420
12421 intel_atomic_helper_free_state(dev_priv);
12422 }
12423
12424 static void intel_atomic_commit_work(struct work_struct *work)
12425 {
12426 struct drm_atomic_state *state =
12427 container_of(work, struct drm_atomic_state, commit_work);
12428
12429 intel_atomic_commit_tail(state);
12430 }
12431
12432 static int __i915_sw_fence_call
12433 intel_atomic_commit_ready(struct i915_sw_fence *fence,
12434 enum i915_sw_fence_notify notify)
12435 {
12436 struct intel_atomic_state *state =
12437 container_of(fence, struct intel_atomic_state, commit_ready);
12438
12439 switch (notify) {
12440 case FENCE_COMPLETE:
12441 /* we do blocking waits in the worker, nothing to do here */
12442 break;
12443 case FENCE_FREE:
12444 {
12445 struct intel_atomic_helper *helper =
12446 &to_i915(state->base.dev)->atomic_helper;
12447
12448 if (llist_add(&state->freed, &helper->free_list))
12449 schedule_work(&helper->free_work);
12450 break;
12451 }
12452 }
12453
12454 return NOTIFY_DONE;
12455 }
12456
12457 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
12458 {
12459 struct drm_plane_state *old_plane_state, *new_plane_state;
12460 struct drm_plane *plane;
12461 int i;
12462
12463 for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i)
12464 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
12465 intel_fb_obj(new_plane_state->fb),
12466 to_intel_plane(plane)->frontbuffer_bit);
12467 }
12468
12469 /**
12470 * intel_atomic_commit - commit validated state object
12471 * @dev: DRM device
12472 * @state: the top-level driver state object
12473 * @nonblock: nonblocking commit
12474 *
12475 * This function commits a top-level state object that has been validated
12476 * with drm_atomic_helper_check().
12477 *
12478 * RETURNS
12479 * Zero for success or -errno.
12480 */
12481 static int intel_atomic_commit(struct drm_device *dev,
12482 struct drm_atomic_state *state,
12483 bool nonblock)
12484 {
12485 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12486 struct drm_i915_private *dev_priv = to_i915(dev);
12487 int ret = 0;
12488
12489 drm_atomic_state_get(state);
12490 i915_sw_fence_init(&intel_state->commit_ready,
12491 intel_atomic_commit_ready);
12492
12493 /*
12494 * The intel_legacy_cursor_update() fast path takes care
12495 * of avoiding the vblank waits for simple cursor
12496 * movement and flips. For cursor on/off and size changes,
12497 * we want to perform the vblank waits so that watermark
12498 * updates happen during the correct frames. Gen9+ have
12499 * double buffered watermarks and so shouldn't need this.
12500 *
12501 * Unset state->legacy_cursor_update before the call to
12502 * drm_atomic_helper_setup_commit() because otherwise
12503 * drm_atomic_helper_wait_for_flip_done() is a noop and
12504 * we get FIFO underruns because we didn't wait
12505 * for vblank.
12506 *
12507 * FIXME doing watermarks and fb cleanup from a vblank worker
12508 * (assuming we had any) would solve these problems.
12509 */
12510 if (INTEL_GEN(dev_priv) < 9 && state->legacy_cursor_update) {
12511 struct intel_crtc_state *new_crtc_state;
12512 struct intel_crtc *crtc;
12513 int i;
12514
12515 for_each_new_intel_crtc_in_state(intel_state, crtc, new_crtc_state, i)
12516 if (new_crtc_state->wm.need_postvbl_update ||
12517 new_crtc_state->update_wm_post)
12518 state->legacy_cursor_update = false;
12519 }
12520
12521 ret = intel_atomic_prepare_commit(dev, state);
12522 if (ret) {
12523 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
12524 i915_sw_fence_commit(&intel_state->commit_ready);
12525 return ret;
12526 }
12527
12528 ret = drm_atomic_helper_setup_commit(state, nonblock);
12529 if (!ret)
12530 ret = drm_atomic_helper_swap_state(state, true);
12531
12532 if (ret) {
12533 i915_sw_fence_commit(&intel_state->commit_ready);
12534
12535 drm_atomic_helper_cleanup_planes(dev, state);
12536 return ret;
12537 }
12538 dev_priv->wm.distrust_bios_wm = false;
12539 intel_shared_dpll_swap_state(state);
12540 intel_atomic_track_fbs(state);
12541
12542 if (intel_state->modeset) {
12543 memcpy(dev_priv->min_cdclk, intel_state->min_cdclk,
12544 sizeof(intel_state->min_cdclk));
12545 dev_priv->active_crtcs = intel_state->active_crtcs;
12546 dev_priv->cdclk.logical = intel_state->cdclk.logical;
12547 dev_priv->cdclk.actual = intel_state->cdclk.actual;
12548 }
12549
12550 drm_atomic_state_get(state);
12551 INIT_WORK(&state->commit_work, intel_atomic_commit_work);
12552
12553 i915_sw_fence_commit(&intel_state->commit_ready);
12554 if (nonblock && intel_state->modeset) {
12555 queue_work(dev_priv->modeset_wq, &state->commit_work);
12556 } else if (nonblock) {
12557 queue_work(system_unbound_wq, &state->commit_work);
12558 } else {
12559 if (intel_state->modeset)
12560 flush_workqueue(dev_priv->modeset_wq);
12561 intel_atomic_commit_tail(state);
12562 }
12563
12564 return 0;
12565 }
12566
12567 static const struct drm_crtc_funcs intel_crtc_funcs = {
12568 .gamma_set = drm_atomic_helper_legacy_gamma_set,
12569 .set_config = drm_atomic_helper_set_config,
12570 .destroy = intel_crtc_destroy,
12571 .page_flip = drm_atomic_helper_page_flip,
12572 .atomic_duplicate_state = intel_crtc_duplicate_state,
12573 .atomic_destroy_state = intel_crtc_destroy_state,
12574 .set_crc_source = intel_crtc_set_crc_source,
12575 };
12576
12577 struct wait_rps_boost {
12578 struct wait_queue_entry wait;
12579
12580 struct drm_crtc *crtc;
12581 struct drm_i915_gem_request *request;
12582 };
12583
12584 static int do_rps_boost(struct wait_queue_entry *_wait,
12585 unsigned mode, int sync, void *key)
12586 {
12587 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait);
12588 struct drm_i915_gem_request *rq = wait->request;
12589
12590 gen6_rps_boost(rq, NULL);
12591 i915_gem_request_put(rq);
12592
12593 drm_crtc_vblank_put(wait->crtc);
12594
12595 list_del(&wait->wait.entry);
12596 kfree(wait);
12597 return 1;
12598 }
12599
12600 static void add_rps_boost_after_vblank(struct drm_crtc *crtc,
12601 struct dma_fence *fence)
12602 {
12603 struct wait_rps_boost *wait;
12604
12605 if (!dma_fence_is_i915(fence))
12606 return;
12607
12608 if (INTEL_GEN(to_i915(crtc->dev)) < 6)
12609 return;
12610
12611 if (drm_crtc_vblank_get(crtc))
12612 return;
12613
12614 wait = kmalloc(sizeof(*wait), GFP_KERNEL);
12615 if (!wait) {
12616 drm_crtc_vblank_put(crtc);
12617 return;
12618 }
12619
12620 wait->request = to_request(dma_fence_get(fence));
12621 wait->crtc = crtc;
12622
12623 wait->wait.func = do_rps_boost;
12624 wait->wait.flags = 0;
12625
12626 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait);
12627 }
12628
12629 /**
12630 * intel_prepare_plane_fb - Prepare fb for usage on plane
12631 * @plane: drm plane to prepare for
12632 * @fb: framebuffer to prepare for presentation
12633 *
12634 * Prepares a framebuffer for usage on a display plane. Generally this
12635 * involves pinning the underlying object and updating the frontbuffer tracking
12636 * bits. Some older platforms need special physical address handling for
12637 * cursor planes.
12638 *
12639 * Must be called with struct_mutex held.
12640 *
12641 * Returns 0 on success, negative error code on failure.
12642 */
12643 int
12644 intel_prepare_plane_fb(struct drm_plane *plane,
12645 struct drm_plane_state *new_state)
12646 {
12647 struct intel_atomic_state *intel_state =
12648 to_intel_atomic_state(new_state->state);
12649 struct drm_i915_private *dev_priv = to_i915(plane->dev);
12650 struct drm_framebuffer *fb = new_state->fb;
12651 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12652 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
12653 int ret;
12654
12655 if (old_obj) {
12656 struct drm_crtc_state *crtc_state =
12657 drm_atomic_get_existing_crtc_state(new_state->state,
12658 plane->state->crtc);
12659
12660 /* Big Hammer, we also need to ensure that any pending
12661 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
12662 * current scanout is retired before unpinning the old
12663 * framebuffer. Note that we rely on userspace rendering
12664 * into the buffer attached to the pipe they are waiting
12665 * on. If not, userspace generates a GPU hang with IPEHR
12666 * point to the MI_WAIT_FOR_EVENT.
12667 *
12668 * This should only fail upon a hung GPU, in which case we
12669 * can safely continue.
12670 */
12671 if (needs_modeset(crtc_state)) {
12672 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
12673 old_obj->resv, NULL,
12674 false, 0,
12675 GFP_KERNEL);
12676 if (ret < 0)
12677 return ret;
12678 }
12679 }
12680
12681 if (new_state->fence) { /* explicit fencing */
12682 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
12683 new_state->fence,
12684 I915_FENCE_TIMEOUT,
12685 GFP_KERNEL);
12686 if (ret < 0)
12687 return ret;
12688 }
12689
12690 if (!obj)
12691 return 0;
12692
12693 ret = i915_gem_object_pin_pages(obj);
12694 if (ret)
12695 return ret;
12696
12697 ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
12698 if (ret) {
12699 i915_gem_object_unpin_pages(obj);
12700 return ret;
12701 }
12702
12703 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
12704 INTEL_INFO(dev_priv)->cursor_needs_physical) {
12705 const int align = intel_cursor_alignment(dev_priv);
12706
12707 ret = i915_gem_object_attach_phys(obj, align);
12708 } else {
12709 struct i915_vma *vma;
12710
12711 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
12712 if (!IS_ERR(vma))
12713 to_intel_plane_state(new_state)->vma = vma;
12714 else
12715 ret = PTR_ERR(vma);
12716 }
12717
12718 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
12719
12720 mutex_unlock(&dev_priv->drm.struct_mutex);
12721 i915_gem_object_unpin_pages(obj);
12722 if (ret)
12723 return ret;
12724
12725 if (!new_state->fence) { /* implicit fencing */
12726 struct dma_fence *fence;
12727
12728 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
12729 obj->resv, NULL,
12730 false, I915_FENCE_TIMEOUT,
12731 GFP_KERNEL);
12732 if (ret < 0)
12733 return ret;
12734
12735 fence = reservation_object_get_excl_rcu(obj->resv);
12736 if (fence) {
12737 add_rps_boost_after_vblank(new_state->crtc, fence);
12738 dma_fence_put(fence);
12739 }
12740 } else {
12741 add_rps_boost_after_vblank(new_state->crtc, new_state->fence);
12742 }
12743
12744 return 0;
12745 }
12746
12747 /**
12748 * intel_cleanup_plane_fb - Cleans up an fb after plane use
12749 * @plane: drm plane to clean up for
12750 * @fb: old framebuffer that was on plane
12751 *
12752 * Cleans up a framebuffer that has just been removed from a plane.
12753 *
12754 * Must be called with struct_mutex held.
12755 */
12756 void
12757 intel_cleanup_plane_fb(struct drm_plane *plane,
12758 struct drm_plane_state *old_state)
12759 {
12760 struct i915_vma *vma;
12761
12762 /* Should only be called after a successful intel_prepare_plane_fb()! */
12763 vma = fetch_and_zero(&to_intel_plane_state(old_state)->vma);
12764 if (vma) {
12765 mutex_lock(&plane->dev->struct_mutex);
12766 intel_unpin_fb_vma(vma);
12767 mutex_unlock(&plane->dev->struct_mutex);
12768 }
12769 }
12770
12771 int
12772 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
12773 {
12774 struct drm_i915_private *dev_priv;
12775 int max_scale;
12776 int crtc_clock, max_dotclk;
12777
12778 if (!intel_crtc || !crtc_state->base.enable)
12779 return DRM_PLANE_HELPER_NO_SCALING;
12780
12781 dev_priv = to_i915(intel_crtc->base.dev);
12782
12783 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
12784 max_dotclk = to_intel_atomic_state(crtc_state->base.state)->cdclk.logical.cdclk;
12785
12786 if (IS_GEMINILAKE(dev_priv))
12787 max_dotclk *= 2;
12788
12789 if (WARN_ON_ONCE(!crtc_clock || max_dotclk < crtc_clock))
12790 return DRM_PLANE_HELPER_NO_SCALING;
12791
12792 /*
12793 * skl max scale is lower of:
12794 * close to 3 but not 3, -1 is for that purpose
12795 * or
12796 * cdclk/crtc_clock
12797 */
12798 max_scale = min((1 << 16) * 3 - 1,
12799 (1 << 8) * ((max_dotclk << 8) / crtc_clock));
12800
12801 return max_scale;
12802 }
12803
12804 static int
12805 intel_check_primary_plane(struct intel_plane *plane,
12806 struct intel_crtc_state *crtc_state,
12807 struct intel_plane_state *state)
12808 {
12809 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
12810 struct drm_crtc *crtc = state->base.crtc;
12811 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
12812 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
12813 bool can_position = false;
12814 int ret;
12815
12816 if (INTEL_GEN(dev_priv) >= 9) {
12817 /* use scaler when colorkey is not required */
12818 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
12819 min_scale = 1;
12820 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
12821 }
12822 can_position = true;
12823 }
12824
12825 ret = drm_plane_helper_check_state(&state->base,
12826 &state->clip,
12827 min_scale, max_scale,
12828 can_position, true);
12829 if (ret)
12830 return ret;
12831
12832 if (!state->base.fb)
12833 return 0;
12834
12835 if (INTEL_GEN(dev_priv) >= 9) {
12836 ret = skl_check_plane_surface(state);
12837 if (ret)
12838 return ret;
12839
12840 state->ctl = skl_plane_ctl(crtc_state, state);
12841 } else {
12842 ret = i9xx_check_plane_surface(state);
12843 if (ret)
12844 return ret;
12845
12846 state->ctl = i9xx_plane_ctl(crtc_state, state);
12847 }
12848
12849 return 0;
12850 }
12851
12852 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
12853 struct drm_crtc_state *old_crtc_state)
12854 {
12855 struct drm_device *dev = crtc->dev;
12856 struct drm_i915_private *dev_priv = to_i915(dev);
12857 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12858 struct intel_crtc_state *old_intel_cstate =
12859 to_intel_crtc_state(old_crtc_state);
12860 struct intel_atomic_state *old_intel_state =
12861 to_intel_atomic_state(old_crtc_state->state);
12862 struct intel_crtc_state *intel_cstate =
12863 intel_atomic_get_new_crtc_state(old_intel_state, intel_crtc);
12864 bool modeset = needs_modeset(&intel_cstate->base);
12865
12866 if (!modeset &&
12867 (intel_cstate->base.color_mgmt_changed ||
12868 intel_cstate->update_pipe)) {
12869 intel_color_set_csc(&intel_cstate->base);
12870 intel_color_load_luts(&intel_cstate->base);
12871 }
12872
12873 /* Perform vblank evasion around commit operation */
12874 intel_pipe_update_start(intel_cstate);
12875
12876 if (modeset)
12877 goto out;
12878
12879 if (intel_cstate->update_pipe)
12880 intel_update_pipe_config(old_intel_cstate, intel_cstate);
12881 else if (INTEL_GEN(dev_priv) >= 9)
12882 skl_detach_scalers(intel_crtc);
12883
12884 out:
12885 if (dev_priv->display.atomic_update_watermarks)
12886 dev_priv->display.atomic_update_watermarks(old_intel_state,
12887 intel_cstate);
12888 }
12889
12890 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
12891 struct drm_crtc_state *old_crtc_state)
12892 {
12893 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12894 struct intel_atomic_state *old_intel_state =
12895 to_intel_atomic_state(old_crtc_state->state);
12896 struct intel_crtc_state *new_crtc_state =
12897 intel_atomic_get_new_crtc_state(old_intel_state, intel_crtc);
12898
12899 intel_pipe_update_end(new_crtc_state);
12900 }
12901
12902 /**
12903 * intel_plane_destroy - destroy a plane
12904 * @plane: plane to destroy
12905 *
12906 * Common destruction function for all types of planes (primary, cursor,
12907 * sprite).
12908 */
12909 void intel_plane_destroy(struct drm_plane *plane)
12910 {
12911 drm_plane_cleanup(plane);
12912 kfree(to_intel_plane(plane));
12913 }
12914
12915 static bool i8xx_mod_supported(uint32_t format, uint64_t modifier)
12916 {
12917 switch (format) {
12918 case DRM_FORMAT_C8:
12919 case DRM_FORMAT_RGB565:
12920 case DRM_FORMAT_XRGB1555:
12921 case DRM_FORMAT_XRGB8888:
12922 return modifier == DRM_FORMAT_MOD_LINEAR ||
12923 modifier == I915_FORMAT_MOD_X_TILED;
12924 default:
12925 return false;
12926 }
12927 }
12928
12929 static bool i965_mod_supported(uint32_t format, uint64_t modifier)
12930 {
12931 switch (format) {
12932 case DRM_FORMAT_C8:
12933 case DRM_FORMAT_RGB565:
12934 case DRM_FORMAT_XRGB8888:
12935 case DRM_FORMAT_XBGR8888:
12936 case DRM_FORMAT_XRGB2101010:
12937 case DRM_FORMAT_XBGR2101010:
12938 return modifier == DRM_FORMAT_MOD_LINEAR ||
12939 modifier == I915_FORMAT_MOD_X_TILED;
12940 default:
12941 return false;
12942 }
12943 }
12944
12945 static bool skl_mod_supported(uint32_t format, uint64_t modifier)
12946 {
12947 switch (format) {
12948 case DRM_FORMAT_XRGB8888:
12949 case DRM_FORMAT_XBGR8888:
12950 case DRM_FORMAT_ARGB8888:
12951 case DRM_FORMAT_ABGR8888:
12952 if (modifier == I915_FORMAT_MOD_Yf_TILED_CCS ||
12953 modifier == I915_FORMAT_MOD_Y_TILED_CCS)
12954 return true;
12955 /* fall through */
12956 case DRM_FORMAT_RGB565:
12957 case DRM_FORMAT_XRGB2101010:
12958 case DRM_FORMAT_XBGR2101010:
12959 case DRM_FORMAT_YUYV:
12960 case DRM_FORMAT_YVYU:
12961 case DRM_FORMAT_UYVY:
12962 case DRM_FORMAT_VYUY:
12963 if (modifier == I915_FORMAT_MOD_Yf_TILED)
12964 return true;
12965 /* fall through */
12966 case DRM_FORMAT_C8:
12967 if (modifier == DRM_FORMAT_MOD_LINEAR ||
12968 modifier == I915_FORMAT_MOD_X_TILED ||
12969 modifier == I915_FORMAT_MOD_Y_TILED)
12970 return true;
12971 /* fall through */
12972 default:
12973 return false;
12974 }
12975 }
12976
12977 static bool intel_primary_plane_format_mod_supported(struct drm_plane *plane,
12978 uint32_t format,
12979 uint64_t modifier)
12980 {
12981 struct drm_i915_private *dev_priv = to_i915(plane->dev);
12982
12983 if (WARN_ON(modifier == DRM_FORMAT_MOD_INVALID))
12984 return false;
12985
12986 if ((modifier >> 56) != DRM_FORMAT_MOD_VENDOR_INTEL &&
12987 modifier != DRM_FORMAT_MOD_LINEAR)
12988 return false;
12989
12990 if (INTEL_GEN(dev_priv) >= 9)
12991 return skl_mod_supported(format, modifier);
12992 else if (INTEL_GEN(dev_priv) >= 4)
12993 return i965_mod_supported(format, modifier);
12994 else
12995 return i8xx_mod_supported(format, modifier);
12996
12997 unreachable();
12998 }
12999
13000 static bool intel_cursor_plane_format_mod_supported(struct drm_plane *plane,
13001 uint32_t format,
13002 uint64_t modifier)
13003 {
13004 if (WARN_ON(modifier == DRM_FORMAT_MOD_INVALID))
13005 return false;
13006
13007 return modifier == DRM_FORMAT_MOD_LINEAR && format == DRM_FORMAT_ARGB8888;
13008 }
13009
13010 static struct drm_plane_funcs intel_plane_funcs = {
13011 .update_plane = drm_atomic_helper_update_plane,
13012 .disable_plane = drm_atomic_helper_disable_plane,
13013 .destroy = intel_plane_destroy,
13014 .atomic_get_property = intel_plane_atomic_get_property,
13015 .atomic_set_property = intel_plane_atomic_set_property,
13016 .atomic_duplicate_state = intel_plane_duplicate_state,
13017 .atomic_destroy_state = intel_plane_destroy_state,
13018 .format_mod_supported = intel_primary_plane_format_mod_supported,
13019 };
13020
13021 static int
13022 intel_legacy_cursor_update(struct drm_plane *plane,
13023 struct drm_crtc *crtc,
13024 struct drm_framebuffer *fb,
13025 int crtc_x, int crtc_y,
13026 unsigned int crtc_w, unsigned int crtc_h,
13027 uint32_t src_x, uint32_t src_y,
13028 uint32_t src_w, uint32_t src_h,
13029 struct drm_modeset_acquire_ctx *ctx)
13030 {
13031 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13032 int ret;
13033 struct drm_plane_state *old_plane_state, *new_plane_state;
13034 struct intel_plane *intel_plane = to_intel_plane(plane);
13035 struct drm_framebuffer *old_fb;
13036 struct drm_crtc_state *crtc_state = crtc->state;
13037 struct i915_vma *old_vma, *vma;
13038
13039 /*
13040 * When crtc is inactive or there is a modeset pending,
13041 * wait for it to complete in the slowpath
13042 */
13043 if (!crtc_state->active || needs_modeset(crtc_state) ||
13044 to_intel_crtc_state(crtc_state)->update_pipe)
13045 goto slow;
13046
13047 old_plane_state = plane->state;
13048 /*
13049 * Don't do an async update if there is an outstanding commit modifying
13050 * the plane. This prevents our async update's changes from getting
13051 * overridden by a previous synchronous update's state.
13052 */
13053 if (old_plane_state->commit &&
13054 !try_wait_for_completion(&old_plane_state->commit->hw_done))
13055 goto slow;
13056
13057 /*
13058 * If any parameters change that may affect watermarks,
13059 * take the slowpath. Only changing fb or position should be
13060 * in the fastpath.
13061 */
13062 if (old_plane_state->crtc != crtc ||
13063 old_plane_state->src_w != src_w ||
13064 old_plane_state->src_h != src_h ||
13065 old_plane_state->crtc_w != crtc_w ||
13066 old_plane_state->crtc_h != crtc_h ||
13067 !old_plane_state->fb != !fb)
13068 goto slow;
13069
13070 new_plane_state = intel_plane_duplicate_state(plane);
13071 if (!new_plane_state)
13072 return -ENOMEM;
13073
13074 drm_atomic_set_fb_for_plane(new_plane_state, fb);
13075
13076 new_plane_state->src_x = src_x;
13077 new_plane_state->src_y = src_y;
13078 new_plane_state->src_w = src_w;
13079 new_plane_state->src_h = src_h;
13080 new_plane_state->crtc_x = crtc_x;
13081 new_plane_state->crtc_y = crtc_y;
13082 new_plane_state->crtc_w = crtc_w;
13083 new_plane_state->crtc_h = crtc_h;
13084
13085 ret = intel_plane_atomic_check_with_state(to_intel_crtc_state(crtc->state),
13086 to_intel_crtc_state(crtc->state), /* FIXME need a new crtc state? */
13087 to_intel_plane_state(plane->state),
13088 to_intel_plane_state(new_plane_state));
13089 if (ret)
13090 goto out_free;
13091
13092 ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
13093 if (ret)
13094 goto out_free;
13095
13096 if (INTEL_INFO(dev_priv)->cursor_needs_physical) {
13097 int align = intel_cursor_alignment(dev_priv);
13098
13099 ret = i915_gem_object_attach_phys(intel_fb_obj(fb), align);
13100 if (ret) {
13101 DRM_DEBUG_KMS("failed to attach phys object\n");
13102 goto out_unlock;
13103 }
13104 } else {
13105 vma = intel_pin_and_fence_fb_obj(fb, new_plane_state->rotation);
13106 if (IS_ERR(vma)) {
13107 DRM_DEBUG_KMS("failed to pin object\n");
13108
13109 ret = PTR_ERR(vma);
13110 goto out_unlock;
13111 }
13112
13113 to_intel_plane_state(new_plane_state)->vma = vma;
13114 }
13115
13116 old_fb = old_plane_state->fb;
13117
13118 i915_gem_track_fb(intel_fb_obj(old_fb), intel_fb_obj(fb),
13119 intel_plane->frontbuffer_bit);
13120
13121 /* Swap plane state */
13122 plane->state = new_plane_state;
13123
13124 if (plane->state->visible) {
13125 trace_intel_update_plane(plane, to_intel_crtc(crtc));
13126 intel_plane->update_plane(intel_plane,
13127 to_intel_crtc_state(crtc->state),
13128 to_intel_plane_state(plane->state));
13129 } else {
13130 trace_intel_disable_plane(plane, to_intel_crtc(crtc));
13131 intel_plane->disable_plane(intel_plane, to_intel_crtc(crtc));
13132 }
13133
13134 old_vma = fetch_and_zero(&to_intel_plane_state(old_plane_state)->vma);
13135 if (old_vma)
13136 intel_unpin_fb_vma(old_vma);
13137
13138 out_unlock:
13139 mutex_unlock(&dev_priv->drm.struct_mutex);
13140 out_free:
13141 if (ret)
13142 intel_plane_destroy_state(plane, new_plane_state);
13143 else
13144 intel_plane_destroy_state(plane, old_plane_state);
13145 return ret;
13146
13147 slow:
13148 return drm_atomic_helper_update_plane(plane, crtc, fb,
13149 crtc_x, crtc_y, crtc_w, crtc_h,
13150 src_x, src_y, src_w, src_h, ctx);
13151 }
13152
13153 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
13154 .update_plane = intel_legacy_cursor_update,
13155 .disable_plane = drm_atomic_helper_disable_plane,
13156 .destroy = intel_plane_destroy,
13157 .atomic_get_property = intel_plane_atomic_get_property,
13158 .atomic_set_property = intel_plane_atomic_set_property,
13159 .atomic_duplicate_state = intel_plane_duplicate_state,
13160 .atomic_destroy_state = intel_plane_destroy_state,
13161 .format_mod_supported = intel_cursor_plane_format_mod_supported,
13162 };
13163
13164 static struct intel_plane *
13165 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
13166 {
13167 struct intel_plane *primary = NULL;
13168 struct intel_plane_state *state = NULL;
13169 const uint32_t *intel_primary_formats;
13170 unsigned int supported_rotations;
13171 unsigned int num_formats;
13172 const uint64_t *modifiers;
13173 int ret;
13174
13175 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13176 if (!primary) {
13177 ret = -ENOMEM;
13178 goto fail;
13179 }
13180
13181 state = intel_create_plane_state(&primary->base);
13182 if (!state) {
13183 ret = -ENOMEM;
13184 goto fail;
13185 }
13186
13187 primary->base.state = &state->base;
13188
13189 primary->can_scale = false;
13190 primary->max_downscale = 1;
13191 if (INTEL_GEN(dev_priv) >= 9) {
13192 primary->can_scale = true;
13193 state->scaler_id = -1;
13194 }
13195 primary->pipe = pipe;
13196 /*
13197 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
13198 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
13199 */
13200 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
13201 primary->plane = (enum plane) !pipe;
13202 else
13203 primary->plane = (enum plane) pipe;
13204 primary->id = PLANE_PRIMARY;
13205 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13206 primary->check_plane = intel_check_primary_plane;
13207
13208 if (INTEL_GEN(dev_priv) >= 10) {
13209 intel_primary_formats = skl_primary_formats;
13210 num_formats = ARRAY_SIZE(skl_primary_formats);
13211 modifiers = skl_format_modifiers_ccs;
13212
13213 primary->update_plane = skl_update_plane;
13214 primary->disable_plane = skl_disable_plane;
13215 primary->get_hw_state = skl_plane_get_hw_state;
13216 } else if (INTEL_GEN(dev_priv) >= 9) {
13217 intel_primary_formats = skl_primary_formats;
13218 num_formats = ARRAY_SIZE(skl_primary_formats);
13219 if (pipe < PIPE_C)
13220 modifiers = skl_format_modifiers_ccs;
13221 else
13222 modifiers = skl_format_modifiers_noccs;
13223
13224 primary->update_plane = skl_update_plane;
13225 primary->disable_plane = skl_disable_plane;
13226 primary->get_hw_state = skl_plane_get_hw_state;
13227 } else if (INTEL_GEN(dev_priv) >= 4) {
13228 intel_primary_formats = i965_primary_formats;
13229 num_formats = ARRAY_SIZE(i965_primary_formats);
13230 modifiers = i9xx_format_modifiers;
13231
13232 primary->update_plane = i9xx_update_primary_plane;
13233 primary->disable_plane = i9xx_disable_primary_plane;
13234 primary->get_hw_state = i9xx_plane_get_hw_state;
13235 } else {
13236 intel_primary_formats = i8xx_primary_formats;
13237 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13238 modifiers = i9xx_format_modifiers;
13239
13240 primary->update_plane = i9xx_update_primary_plane;
13241 primary->disable_plane = i9xx_disable_primary_plane;
13242 primary->get_hw_state = i9xx_plane_get_hw_state;
13243 }
13244
13245 if (INTEL_GEN(dev_priv) >= 9)
13246 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13247 0, &intel_plane_funcs,
13248 intel_primary_formats, num_formats,
13249 modifiers,
13250 DRM_PLANE_TYPE_PRIMARY,
13251 "plane 1%c", pipe_name(pipe));
13252 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
13253 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13254 0, &intel_plane_funcs,
13255 intel_primary_formats, num_formats,
13256 modifiers,
13257 DRM_PLANE_TYPE_PRIMARY,
13258 "primary %c", pipe_name(pipe));
13259 else
13260 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13261 0, &intel_plane_funcs,
13262 intel_primary_formats, num_formats,
13263 modifiers,
13264 DRM_PLANE_TYPE_PRIMARY,
13265 "plane %c", plane_name(primary->plane));
13266 if (ret)
13267 goto fail;
13268
13269 if (INTEL_GEN(dev_priv) >= 9) {
13270 supported_rotations =
13271 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_90 |
13272 DRM_MODE_ROTATE_180 | DRM_MODE_ROTATE_270;
13273 } else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
13274 supported_rotations =
13275 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
13276 DRM_MODE_REFLECT_X;
13277 } else if (INTEL_GEN(dev_priv) >= 4) {
13278 supported_rotations =
13279 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
13280 } else {
13281 supported_rotations = DRM_MODE_ROTATE_0;
13282 }
13283
13284 if (INTEL_GEN(dev_priv) >= 4)
13285 drm_plane_create_rotation_property(&primary->base,
13286 DRM_MODE_ROTATE_0,
13287 supported_rotations);
13288
13289 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13290
13291 return primary;
13292
13293 fail:
13294 kfree(state);
13295 kfree(primary);
13296
13297 return ERR_PTR(ret);
13298 }
13299
13300 static struct intel_plane *
13301 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
13302 enum pipe pipe)
13303 {
13304 struct intel_plane *cursor = NULL;
13305 struct intel_plane_state *state = NULL;
13306 int ret;
13307
13308 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13309 if (!cursor) {
13310 ret = -ENOMEM;
13311 goto fail;
13312 }
13313
13314 state = intel_create_plane_state(&cursor->base);
13315 if (!state) {
13316 ret = -ENOMEM;
13317 goto fail;
13318 }
13319
13320 cursor->base.state = &state->base;
13321
13322 cursor->can_scale = false;
13323 cursor->max_downscale = 1;
13324 cursor->pipe = pipe;
13325 cursor->plane = pipe;
13326 cursor->id = PLANE_CURSOR;
13327 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13328
13329 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
13330 cursor->update_plane = i845_update_cursor;
13331 cursor->disable_plane = i845_disable_cursor;
13332 cursor->get_hw_state = i845_cursor_get_hw_state;
13333 cursor->check_plane = i845_check_cursor;
13334 } else {
13335 cursor->update_plane = i9xx_update_cursor;
13336 cursor->disable_plane = i9xx_disable_cursor;
13337 cursor->get_hw_state = i9xx_cursor_get_hw_state;
13338 cursor->check_plane = i9xx_check_cursor;
13339 }
13340
13341 cursor->cursor.base = ~0;
13342 cursor->cursor.cntl = ~0;
13343
13344 if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
13345 cursor->cursor.size = ~0;
13346
13347 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
13348 0, &intel_cursor_plane_funcs,
13349 intel_cursor_formats,
13350 ARRAY_SIZE(intel_cursor_formats),
13351 cursor_format_modifiers,
13352 DRM_PLANE_TYPE_CURSOR,
13353 "cursor %c", pipe_name(pipe));
13354 if (ret)
13355 goto fail;
13356
13357 if (INTEL_GEN(dev_priv) >= 4)
13358 drm_plane_create_rotation_property(&cursor->base,
13359 DRM_MODE_ROTATE_0,
13360 DRM_MODE_ROTATE_0 |
13361 DRM_MODE_ROTATE_180);
13362
13363 if (INTEL_GEN(dev_priv) >= 9)
13364 state->scaler_id = -1;
13365
13366 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13367
13368 return cursor;
13369
13370 fail:
13371 kfree(state);
13372 kfree(cursor);
13373
13374 return ERR_PTR(ret);
13375 }
13376
13377 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
13378 struct intel_crtc_state *crtc_state)
13379 {
13380 struct intel_crtc_scaler_state *scaler_state =
13381 &crtc_state->scaler_state;
13382 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13383 int i;
13384
13385 crtc->num_scalers = dev_priv->info.num_scalers[crtc->pipe];
13386 if (!crtc->num_scalers)
13387 return;
13388
13389 for (i = 0; i < crtc->num_scalers; i++) {
13390 struct intel_scaler *scaler = &scaler_state->scalers[i];
13391
13392 scaler->in_use = 0;
13393 scaler->mode = PS_SCALER_MODE_DYN;
13394 }
13395
13396 scaler_state->scaler_id = -1;
13397 }
13398
13399 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
13400 {
13401 struct intel_crtc *intel_crtc;
13402 struct intel_crtc_state *crtc_state = NULL;
13403 struct intel_plane *primary = NULL;
13404 struct intel_plane *cursor = NULL;
13405 int sprite, ret;
13406
13407 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13408 if (!intel_crtc)
13409 return -ENOMEM;
13410
13411 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13412 if (!crtc_state) {
13413 ret = -ENOMEM;
13414 goto fail;
13415 }
13416 intel_crtc->config = crtc_state;
13417 intel_crtc->base.state = &crtc_state->base;
13418 crtc_state->base.crtc = &intel_crtc->base;
13419
13420 primary = intel_primary_plane_create(dev_priv, pipe);
13421 if (IS_ERR(primary)) {
13422 ret = PTR_ERR(primary);
13423 goto fail;
13424 }
13425 intel_crtc->plane_ids_mask |= BIT(primary->id);
13426
13427 for_each_sprite(dev_priv, pipe, sprite) {
13428 struct intel_plane *plane;
13429
13430 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
13431 if (IS_ERR(plane)) {
13432 ret = PTR_ERR(plane);
13433 goto fail;
13434 }
13435 intel_crtc->plane_ids_mask |= BIT(plane->id);
13436 }
13437
13438 cursor = intel_cursor_plane_create(dev_priv, pipe);
13439 if (IS_ERR(cursor)) {
13440 ret = PTR_ERR(cursor);
13441 goto fail;
13442 }
13443 intel_crtc->plane_ids_mask |= BIT(cursor->id);
13444
13445 ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
13446 &primary->base, &cursor->base,
13447 &intel_crtc_funcs,
13448 "pipe %c", pipe_name(pipe));
13449 if (ret)
13450 goto fail;
13451
13452 intel_crtc->pipe = pipe;
13453 intel_crtc->plane = primary->plane;
13454
13455 /* initialize shared scalers */
13456 intel_crtc_init_scalers(intel_crtc, crtc_state);
13457
13458 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13459 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13460 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
13461 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
13462
13463 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13464
13465 intel_color_init(&intel_crtc->base);
13466
13467 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13468
13469 return 0;
13470
13471 fail:
13472 /*
13473 * drm_mode_config_cleanup() will free up any
13474 * crtcs/planes already initialized.
13475 */
13476 kfree(crtc_state);
13477 kfree(intel_crtc);
13478
13479 return ret;
13480 }
13481
13482 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13483 {
13484 struct drm_device *dev = connector->base.dev;
13485
13486 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13487
13488 if (!connector->base.state->crtc)
13489 return INVALID_PIPE;
13490
13491 return to_intel_crtc(connector->base.state->crtc)->pipe;
13492 }
13493
13494 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13495 struct drm_file *file)
13496 {
13497 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13498 struct drm_crtc *drmmode_crtc;
13499 struct intel_crtc *crtc;
13500
13501 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id);
13502 if (!drmmode_crtc)
13503 return -ENOENT;
13504
13505 crtc = to_intel_crtc(drmmode_crtc);
13506 pipe_from_crtc_id->pipe = crtc->pipe;
13507
13508 return 0;
13509 }
13510
13511 static int intel_encoder_clones(struct intel_encoder *encoder)
13512 {
13513 struct drm_device *dev = encoder->base.dev;
13514 struct intel_encoder *source_encoder;
13515 int index_mask = 0;
13516 int entry = 0;
13517
13518 for_each_intel_encoder(dev, source_encoder) {
13519 if (encoders_cloneable(encoder, source_encoder))
13520 index_mask |= (1 << entry);
13521
13522 entry++;
13523 }
13524
13525 return index_mask;
13526 }
13527
13528 static bool has_edp_a(struct drm_i915_private *dev_priv)
13529 {
13530 if (!IS_MOBILE(dev_priv))
13531 return false;
13532
13533 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13534 return false;
13535
13536 if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13537 return false;
13538
13539 return true;
13540 }
13541
13542 static bool intel_crt_present(struct drm_i915_private *dev_priv)
13543 {
13544 if (INTEL_GEN(dev_priv) >= 9)
13545 return false;
13546
13547 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
13548 return false;
13549
13550 if (IS_CHERRYVIEW(dev_priv))
13551 return false;
13552
13553 if (HAS_PCH_LPT_H(dev_priv) &&
13554 I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
13555 return false;
13556
13557 /* DDI E can't be used if DDI A requires 4 lanes */
13558 if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
13559 return false;
13560
13561 if (!dev_priv->vbt.int_crt_support)
13562 return false;
13563
13564 return true;
13565 }
13566
13567 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
13568 {
13569 int pps_num;
13570 int pps_idx;
13571
13572 if (HAS_DDI(dev_priv))
13573 return;
13574 /*
13575 * This w/a is needed at least on CPT/PPT, but to be sure apply it
13576 * everywhere where registers can be write protected.
13577 */
13578 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13579 pps_num = 2;
13580 else
13581 pps_num = 1;
13582
13583 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
13584 u32 val = I915_READ(PP_CONTROL(pps_idx));
13585
13586 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
13587 I915_WRITE(PP_CONTROL(pps_idx), val);
13588 }
13589 }
13590
13591 static void intel_pps_init(struct drm_i915_private *dev_priv)
13592 {
13593 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
13594 dev_priv->pps_mmio_base = PCH_PPS_BASE;
13595 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13596 dev_priv->pps_mmio_base = VLV_PPS_BASE;
13597 else
13598 dev_priv->pps_mmio_base = PPS_BASE;
13599
13600 intel_pps_unlock_regs_wa(dev_priv);
13601 }
13602
13603 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
13604 {
13605 struct intel_encoder *encoder;
13606 bool dpd_is_edp = false;
13607
13608 intel_pps_init(dev_priv);
13609
13610 /*
13611 * intel_edp_init_connector() depends on this completing first, to
13612 * prevent the registeration of both eDP and LVDS and the incorrect
13613 * sharing of the PPS.
13614 */
13615 intel_lvds_init(dev_priv);
13616
13617 if (intel_crt_present(dev_priv))
13618 intel_crt_init(dev_priv);
13619
13620 if (IS_GEN9_LP(dev_priv)) {
13621 /*
13622 * FIXME: Broxton doesn't support port detection via the
13623 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13624 * detect the ports.
13625 */
13626 intel_ddi_init(dev_priv, PORT_A);
13627 intel_ddi_init(dev_priv, PORT_B);
13628 intel_ddi_init(dev_priv, PORT_C);
13629
13630 intel_dsi_init(dev_priv);
13631 } else if (HAS_DDI(dev_priv)) {
13632 int found;
13633
13634 /*
13635 * Haswell uses DDI functions to detect digital outputs.
13636 * On SKL pre-D0 the strap isn't connected, so we assume
13637 * it's there.
13638 */
13639 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
13640 /* WaIgnoreDDIAStrap: skl */
13641 if (found || IS_GEN9_BC(dev_priv))
13642 intel_ddi_init(dev_priv, PORT_A);
13643
13644 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13645 * register */
13646 found = I915_READ(SFUSE_STRAP);
13647
13648 if (found & SFUSE_STRAP_DDIB_DETECTED)
13649 intel_ddi_init(dev_priv, PORT_B);
13650 if (found & SFUSE_STRAP_DDIC_DETECTED)
13651 intel_ddi_init(dev_priv, PORT_C);
13652 if (found & SFUSE_STRAP_DDID_DETECTED)
13653 intel_ddi_init(dev_priv, PORT_D);
13654 /*
13655 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
13656 */
13657 if (IS_GEN9_BC(dev_priv) &&
13658 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
13659 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
13660 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
13661 intel_ddi_init(dev_priv, PORT_E);
13662
13663 } else if (HAS_PCH_SPLIT(dev_priv)) {
13664 int found;
13665 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D);
13666
13667 if (has_edp_a(dev_priv))
13668 intel_dp_init(dev_priv, DP_A, PORT_A);
13669
13670 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13671 /* PCH SDVOB multiplex with HDMIB */
13672 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
13673 if (!found)
13674 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
13675 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13676 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
13677 }
13678
13679 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13680 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
13681
13682 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13683 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
13684
13685 if (I915_READ(PCH_DP_C) & DP_DETECTED)
13686 intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
13687
13688 if (I915_READ(PCH_DP_D) & DP_DETECTED)
13689 intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
13690 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
13691 bool has_edp, has_port;
13692
13693 /*
13694 * The DP_DETECTED bit is the latched state of the DDC
13695 * SDA pin at boot. However since eDP doesn't require DDC
13696 * (no way to plug in a DP->HDMI dongle) the DDC pins for
13697 * eDP ports may have been muxed to an alternate function.
13698 * Thus we can't rely on the DP_DETECTED bit alone to detect
13699 * eDP ports. Consult the VBT as well as DP_DETECTED to
13700 * detect eDP ports.
13701 *
13702 * Sadly the straps seem to be missing sometimes even for HDMI
13703 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
13704 * and VBT for the presence of the port. Additionally we can't
13705 * trust the port type the VBT declares as we've seen at least
13706 * HDMI ports that the VBT claim are DP or eDP.
13707 */
13708 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B);
13709 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
13710 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
13711 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
13712 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
13713 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
13714
13715 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C);
13716 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
13717 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
13718 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
13719 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
13720 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
13721
13722 if (IS_CHERRYVIEW(dev_priv)) {
13723 /*
13724 * eDP not supported on port D,
13725 * so no need to worry about it
13726 */
13727 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
13728 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
13729 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
13730 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
13731 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
13732 }
13733
13734 intel_dsi_init(dev_priv);
13735 } else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
13736 bool found = false;
13737
13738 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13739 DRM_DEBUG_KMS("probing SDVOB\n");
13740 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
13741 if (!found && IS_G4X(dev_priv)) {
13742 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
13743 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
13744 }
13745
13746 if (!found && IS_G4X(dev_priv))
13747 intel_dp_init(dev_priv, DP_B, PORT_B);
13748 }
13749
13750 /* Before G4X SDVOC doesn't have its own detect register */
13751
13752 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13753 DRM_DEBUG_KMS("probing SDVOC\n");
13754 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
13755 }
13756
13757 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
13758
13759 if (IS_G4X(dev_priv)) {
13760 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
13761 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
13762 }
13763 if (IS_G4X(dev_priv))
13764 intel_dp_init(dev_priv, DP_C, PORT_C);
13765 }
13766
13767 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
13768 intel_dp_init(dev_priv, DP_D, PORT_D);
13769 } else if (IS_GEN2(dev_priv))
13770 intel_dvo_init(dev_priv);
13771
13772 if (SUPPORTS_TV(dev_priv))
13773 intel_tv_init(dev_priv);
13774
13775 intel_psr_init(dev_priv);
13776
13777 for_each_intel_encoder(&dev_priv->drm, encoder) {
13778 encoder->base.possible_crtcs = encoder->crtc_mask;
13779 encoder->base.possible_clones =
13780 intel_encoder_clones(encoder);
13781 }
13782
13783 intel_init_pch_refclk(dev_priv);
13784
13785 drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
13786 }
13787
13788 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
13789 {
13790 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13791
13792 drm_framebuffer_cleanup(fb);
13793
13794 i915_gem_object_lock(intel_fb->obj);
13795 WARN_ON(!intel_fb->obj->framebuffer_references--);
13796 i915_gem_object_unlock(intel_fb->obj);
13797
13798 i915_gem_object_put(intel_fb->obj);
13799
13800 kfree(intel_fb);
13801 }
13802
13803 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
13804 struct drm_file *file,
13805 unsigned int *handle)
13806 {
13807 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13808 struct drm_i915_gem_object *obj = intel_fb->obj;
13809
13810 if (obj->userptr.mm) {
13811 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
13812 return -EINVAL;
13813 }
13814
13815 return drm_gem_handle_create(file, &obj->base, handle);
13816 }
13817
13818 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
13819 struct drm_file *file,
13820 unsigned flags, unsigned color,
13821 struct drm_clip_rect *clips,
13822 unsigned num_clips)
13823 {
13824 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13825
13826 i915_gem_object_flush_if_display(obj);
13827 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
13828
13829 return 0;
13830 }
13831
13832 static const struct drm_framebuffer_funcs intel_fb_funcs = {
13833 .destroy = intel_user_framebuffer_destroy,
13834 .create_handle = intel_user_framebuffer_create_handle,
13835 .dirty = intel_user_framebuffer_dirty,
13836 };
13837
13838 static
13839 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
13840 uint64_t fb_modifier, uint32_t pixel_format)
13841 {
13842 u32 gen = INTEL_GEN(dev_priv);
13843
13844 if (gen >= 9) {
13845 int cpp = drm_format_plane_cpp(pixel_format, 0);
13846
13847 /* "The stride in bytes must not exceed the of the size of 8K
13848 * pixels and 32K bytes."
13849 */
13850 return min(8192 * cpp, 32768);
13851 } else if (gen >= 5 && !HAS_GMCH_DISPLAY(dev_priv)) {
13852 return 32*1024;
13853 } else if (gen >= 4) {
13854 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13855 return 16*1024;
13856 else
13857 return 32*1024;
13858 } else if (gen >= 3) {
13859 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13860 return 8*1024;
13861 else
13862 return 16*1024;
13863 } else {
13864 /* XXX DSPC is limited to 4k tiled */
13865 return 8*1024;
13866 }
13867 }
13868
13869 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
13870 struct drm_i915_gem_object *obj,
13871 struct drm_mode_fb_cmd2 *mode_cmd)
13872 {
13873 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
13874 struct drm_framebuffer *fb = &intel_fb->base;
13875 struct drm_format_name_buf format_name;
13876 u32 pitch_limit;
13877 unsigned int tiling, stride;
13878 int ret = -EINVAL;
13879 int i;
13880
13881 i915_gem_object_lock(obj);
13882 obj->framebuffer_references++;
13883 tiling = i915_gem_object_get_tiling(obj);
13884 stride = i915_gem_object_get_stride(obj);
13885 i915_gem_object_unlock(obj);
13886
13887 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
13888 /*
13889 * If there's a fence, enforce that
13890 * the fb modifier and tiling mode match.
13891 */
13892 if (tiling != I915_TILING_NONE &&
13893 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
13894 DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n");
13895 goto err;
13896 }
13897 } else {
13898 if (tiling == I915_TILING_X) {
13899 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
13900 } else if (tiling == I915_TILING_Y) {
13901 DRM_DEBUG_KMS("No Y tiling for legacy addfb\n");
13902 goto err;
13903 }
13904 }
13905
13906 /* Passed in modifier sanity checking. */
13907 switch (mode_cmd->modifier[0]) {
13908 case I915_FORMAT_MOD_Y_TILED_CCS:
13909 case I915_FORMAT_MOD_Yf_TILED_CCS:
13910 switch (mode_cmd->pixel_format) {
13911 case DRM_FORMAT_XBGR8888:
13912 case DRM_FORMAT_ABGR8888:
13913 case DRM_FORMAT_XRGB8888:
13914 case DRM_FORMAT_ARGB8888:
13915 break;
13916 default:
13917 DRM_DEBUG_KMS("RC supported only with RGB8888 formats\n");
13918 goto err;
13919 }
13920 /* fall through */
13921 case I915_FORMAT_MOD_Y_TILED:
13922 case I915_FORMAT_MOD_Yf_TILED:
13923 if (INTEL_GEN(dev_priv) < 9) {
13924 DRM_DEBUG_KMS("Unsupported tiling 0x%llx!\n",
13925 mode_cmd->modifier[0]);
13926 goto err;
13927 }
13928 case DRM_FORMAT_MOD_LINEAR:
13929 case I915_FORMAT_MOD_X_TILED:
13930 break;
13931 default:
13932 DRM_DEBUG_KMS("Unsupported fb modifier 0x%llx!\n",
13933 mode_cmd->modifier[0]);
13934 goto err;
13935 }
13936
13937 /*
13938 * gen2/3 display engine uses the fence if present,
13939 * so the tiling mode must match the fb modifier exactly.
13940 */
13941 if (INTEL_INFO(dev_priv)->gen < 4 &&
13942 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
13943 DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n");
13944 goto err;
13945 }
13946
13947 pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
13948 mode_cmd->pixel_format);
13949 if (mode_cmd->pitches[0] > pitch_limit) {
13950 DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n",
13951 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
13952 "tiled" : "linear",
13953 mode_cmd->pitches[0], pitch_limit);
13954 goto err;
13955 }
13956
13957 /*
13958 * If there's a fence, enforce that
13959 * the fb pitch and fence stride match.
13960 */
13961 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
13962 DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n",
13963 mode_cmd->pitches[0], stride);
13964 goto err;
13965 }
13966
13967 /* Reject formats not supported by any plane early. */
13968 switch (mode_cmd->pixel_format) {
13969 case DRM_FORMAT_C8:
13970 case DRM_FORMAT_RGB565:
13971 case DRM_FORMAT_XRGB8888:
13972 case DRM_FORMAT_ARGB8888:
13973 break;
13974 case DRM_FORMAT_XRGB1555:
13975 if (INTEL_GEN(dev_priv) > 3) {
13976 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
13977 drm_get_format_name(mode_cmd->pixel_format, &format_name));
13978 goto err;
13979 }
13980 break;
13981 case DRM_FORMAT_ABGR8888:
13982 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
13983 INTEL_GEN(dev_priv) < 9) {
13984 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
13985 drm_get_format_name(mode_cmd->pixel_format, &format_name));
13986 goto err;
13987 }
13988 break;
13989 case DRM_FORMAT_XBGR8888:
13990 case DRM_FORMAT_XRGB2101010:
13991 case DRM_FORMAT_XBGR2101010:
13992 if (INTEL_GEN(dev_priv) < 4) {
13993 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
13994 drm_get_format_name(mode_cmd->pixel_format, &format_name));
13995 goto err;
13996 }
13997 break;
13998 case DRM_FORMAT_ABGR2101010:
13999 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
14000 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14001 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14002 goto err;
14003 }
14004 break;
14005 case DRM_FORMAT_YUYV:
14006 case DRM_FORMAT_UYVY:
14007 case DRM_FORMAT_YVYU:
14008 case DRM_FORMAT_VYUY:
14009 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
14010 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14011 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14012 goto err;
14013 }
14014 break;
14015 default:
14016 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14017 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14018 goto err;
14019 }
14020
14021 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14022 if (mode_cmd->offsets[0] != 0)
14023 goto err;
14024
14025 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd);
14026
14027 for (i = 0; i < fb->format->num_planes; i++) {
14028 u32 stride_alignment;
14029
14030 if (mode_cmd->handles[i] != mode_cmd->handles[0]) {
14031 DRM_DEBUG_KMS("bad plane %d handle\n", i);
14032 goto err;
14033 }
14034
14035 stride_alignment = intel_fb_stride_alignment(fb, i);
14036
14037 /*
14038 * Display WA #0531: skl,bxt,kbl,glk
14039 *
14040 * Render decompression and plane width > 3840
14041 * combined with horizontal panning requires the
14042 * plane stride to be a multiple of 4. We'll just
14043 * require the entire fb to accommodate that to avoid
14044 * potential runtime errors at plane configuration time.
14045 */
14046 if (IS_GEN9(dev_priv) && i == 0 && fb->width > 3840 &&
14047 (fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
14048 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS))
14049 stride_alignment *= 4;
14050
14051 if (fb->pitches[i] & (stride_alignment - 1)) {
14052 DRM_DEBUG_KMS("plane %d pitch (%d) must be at least %u byte aligned\n",
14053 i, fb->pitches[i], stride_alignment);
14054 goto err;
14055 }
14056 }
14057
14058 intel_fb->obj = obj;
14059
14060 ret = intel_fill_fb_info(dev_priv, fb);
14061 if (ret)
14062 goto err;
14063
14064 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs);
14065 if (ret) {
14066 DRM_ERROR("framebuffer init failed %d\n", ret);
14067 goto err;
14068 }
14069
14070 return 0;
14071
14072 err:
14073 i915_gem_object_lock(obj);
14074 obj->framebuffer_references--;
14075 i915_gem_object_unlock(obj);
14076 return ret;
14077 }
14078
14079 static struct drm_framebuffer *
14080 intel_user_framebuffer_create(struct drm_device *dev,
14081 struct drm_file *filp,
14082 const struct drm_mode_fb_cmd2 *user_mode_cmd)
14083 {
14084 struct drm_framebuffer *fb;
14085 struct drm_i915_gem_object *obj;
14086 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14087
14088 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
14089 if (!obj)
14090 return ERR_PTR(-ENOENT);
14091
14092 fb = intel_framebuffer_create(obj, &mode_cmd);
14093 if (IS_ERR(fb))
14094 i915_gem_object_put(obj);
14095
14096 return fb;
14097 }
14098
14099 static void intel_atomic_state_free(struct drm_atomic_state *state)
14100 {
14101 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14102
14103 drm_atomic_state_default_release(state);
14104
14105 i915_sw_fence_fini(&intel_state->commit_ready);
14106
14107 kfree(state);
14108 }
14109
14110 static const struct drm_mode_config_funcs intel_mode_funcs = {
14111 .fb_create = intel_user_framebuffer_create,
14112 .get_format_info = intel_get_format_info,
14113 .output_poll_changed = intel_fbdev_output_poll_changed,
14114 .atomic_check = intel_atomic_check,
14115 .atomic_commit = intel_atomic_commit,
14116 .atomic_state_alloc = intel_atomic_state_alloc,
14117 .atomic_state_clear = intel_atomic_state_clear,
14118 .atomic_state_free = intel_atomic_state_free,
14119 };
14120
14121 /**
14122 * intel_init_display_hooks - initialize the display modesetting hooks
14123 * @dev_priv: device private
14124 */
14125 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14126 {
14127 intel_init_cdclk_hooks(dev_priv);
14128
14129 if (INTEL_INFO(dev_priv)->gen >= 9) {
14130 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14131 dev_priv->display.get_initial_plane_config =
14132 skylake_get_initial_plane_config;
14133 dev_priv->display.crtc_compute_clock =
14134 haswell_crtc_compute_clock;
14135 dev_priv->display.crtc_enable = haswell_crtc_enable;
14136 dev_priv->display.crtc_disable = haswell_crtc_disable;
14137 } else if (HAS_DDI(dev_priv)) {
14138 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14139 dev_priv->display.get_initial_plane_config =
14140 ironlake_get_initial_plane_config;
14141 dev_priv->display.crtc_compute_clock =
14142 haswell_crtc_compute_clock;
14143 dev_priv->display.crtc_enable = haswell_crtc_enable;
14144 dev_priv->display.crtc_disable = haswell_crtc_disable;
14145 } else if (HAS_PCH_SPLIT(dev_priv)) {
14146 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14147 dev_priv->display.get_initial_plane_config =
14148 ironlake_get_initial_plane_config;
14149 dev_priv->display.crtc_compute_clock =
14150 ironlake_crtc_compute_clock;
14151 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14152 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14153 } else if (IS_CHERRYVIEW(dev_priv)) {
14154 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14155 dev_priv->display.get_initial_plane_config =
14156 i9xx_get_initial_plane_config;
14157 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14158 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14159 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14160 } else if (IS_VALLEYVIEW(dev_priv)) {
14161 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14162 dev_priv->display.get_initial_plane_config =
14163 i9xx_get_initial_plane_config;
14164 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14165 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14166 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14167 } else if (IS_G4X(dev_priv)) {
14168 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14169 dev_priv->display.get_initial_plane_config =
14170 i9xx_get_initial_plane_config;
14171 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14172 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14173 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14174 } else if (IS_PINEVIEW(dev_priv)) {
14175 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14176 dev_priv->display.get_initial_plane_config =
14177 i9xx_get_initial_plane_config;
14178 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14179 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14180 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14181 } else if (!IS_GEN2(dev_priv)) {
14182 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14183 dev_priv->display.get_initial_plane_config =
14184 i9xx_get_initial_plane_config;
14185 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14186 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14187 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14188 } else {
14189 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14190 dev_priv->display.get_initial_plane_config =
14191 i9xx_get_initial_plane_config;
14192 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14193 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14194 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14195 }
14196
14197 if (IS_GEN5(dev_priv)) {
14198 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14199 } else if (IS_GEN6(dev_priv)) {
14200 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14201 } else if (IS_IVYBRIDGE(dev_priv)) {
14202 /* FIXME: detect B0+ stepping and use auto training */
14203 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14204 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
14205 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14206 }
14207
14208 if (INTEL_GEN(dev_priv) >= 9)
14209 dev_priv->display.update_crtcs = skl_update_crtcs;
14210 else
14211 dev_priv->display.update_crtcs = intel_update_crtcs;
14212 }
14213
14214 /*
14215 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14216 */
14217 static void quirk_ssc_force_disable(struct drm_device *dev)
14218 {
14219 struct drm_i915_private *dev_priv = to_i915(dev);
14220 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14221 DRM_INFO("applying lvds SSC disable quirk\n");
14222 }
14223
14224 /*
14225 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14226 * brightness value
14227 */
14228 static void quirk_invert_brightness(struct drm_device *dev)
14229 {
14230 struct drm_i915_private *dev_priv = to_i915(dev);
14231 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14232 DRM_INFO("applying inverted panel brightness quirk\n");
14233 }
14234
14235 /* Some VBT's incorrectly indicate no backlight is present */
14236 static void quirk_backlight_present(struct drm_device *dev)
14237 {
14238 struct drm_i915_private *dev_priv = to_i915(dev);
14239 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14240 DRM_INFO("applying backlight present quirk\n");
14241 }
14242
14243 /* Toshiba Satellite P50-C-18C requires T12 delay to be min 800ms
14244 * which is 300 ms greater than eDP spec T12 min.
14245 */
14246 static void quirk_increase_t12_delay(struct drm_device *dev)
14247 {
14248 struct drm_i915_private *dev_priv = to_i915(dev);
14249
14250 dev_priv->quirks |= QUIRK_INCREASE_T12_DELAY;
14251 DRM_INFO("Applying T12 delay quirk\n");
14252 }
14253
14254 /*
14255 * GeminiLake NUC HDMI outputs require additional off time
14256 * this allows the onboard retimer to correctly sync to signal
14257 */
14258 static void quirk_increase_ddi_disabled_time(struct drm_device *dev)
14259 {
14260 struct drm_i915_private *dev_priv = to_i915(dev);
14261
14262 dev_priv->quirks |= QUIRK_INCREASE_DDI_DISABLED_TIME;
14263 DRM_INFO("Applying Increase DDI Disabled quirk\n");
14264 }
14265
14266 struct intel_quirk {
14267 int device;
14268 int subsystem_vendor;
14269 int subsystem_device;
14270 void (*hook)(struct drm_device *dev);
14271 };
14272
14273 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14274 struct intel_dmi_quirk {
14275 void (*hook)(struct drm_device *dev);
14276 const struct dmi_system_id (*dmi_id_list)[];
14277 };
14278
14279 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14280 {
14281 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14282 return 1;
14283 }
14284
14285 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14286 {
14287 .dmi_id_list = &(const struct dmi_system_id[]) {
14288 {
14289 .callback = intel_dmi_reverse_brightness,
14290 .ident = "NCR Corporation",
14291 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14292 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14293 },
14294 },
14295 { } /* terminating entry */
14296 },
14297 .hook = quirk_invert_brightness,
14298 },
14299 };
14300
14301 static struct intel_quirk intel_quirks[] = {
14302 /* Lenovo U160 cannot use SSC on LVDS */
14303 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14304
14305 /* Sony Vaio Y cannot use SSC on LVDS */
14306 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14307
14308 /* Acer Aspire 5734Z must invert backlight brightness */
14309 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14310
14311 /* Acer/eMachines G725 */
14312 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14313
14314 /* Acer/eMachines e725 */
14315 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14316
14317 /* Acer/Packard Bell NCL20 */
14318 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14319
14320 /* Acer Aspire 4736Z */
14321 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14322
14323 /* Acer Aspire 5336 */
14324 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14325
14326 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14327 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14328
14329 /* Acer C720 Chromebook (Core i3 4005U) */
14330 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14331
14332 /* Apple Macbook 2,1 (Core 2 T7400) */
14333 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14334
14335 /* Apple Macbook 4,1 */
14336 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14337
14338 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14339 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14340
14341 /* HP Chromebook 14 (Celeron 2955U) */
14342 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14343
14344 /* Dell Chromebook 11 */
14345 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14346
14347 /* Dell Chromebook 11 (2015 version) */
14348 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14349
14350 /* Toshiba Satellite P50-C-18C */
14351 { 0x191B, 0x1179, 0xF840, quirk_increase_t12_delay },
14352
14353 /* GeminiLake NUC */
14354 { 0x3185, 0x8086, 0x2072, quirk_increase_ddi_disabled_time },
14355 { 0x3184, 0x8086, 0x2072, quirk_increase_ddi_disabled_time },
14356 /* ASRock ITX*/
14357 { 0x3185, 0x1849, 0x2212, quirk_increase_ddi_disabled_time },
14358 { 0x3184, 0x1849, 0x2212, quirk_increase_ddi_disabled_time },
14359 };
14360
14361 static void intel_init_quirks(struct drm_device *dev)
14362 {
14363 struct pci_dev *d = dev->pdev;
14364 int i;
14365
14366 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14367 struct intel_quirk *q = &intel_quirks[i];
14368
14369 if (d->device == q->device &&
14370 (d->subsystem_vendor == q->subsystem_vendor ||
14371 q->subsystem_vendor == PCI_ANY_ID) &&
14372 (d->subsystem_device == q->subsystem_device ||
14373 q->subsystem_device == PCI_ANY_ID))
14374 q->hook(dev);
14375 }
14376 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14377 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14378 intel_dmi_quirks[i].hook(dev);
14379 }
14380 }
14381
14382 /* Disable the VGA plane that we never use */
14383 static void i915_disable_vga(struct drm_i915_private *dev_priv)
14384 {
14385 struct pci_dev *pdev = dev_priv->drm.pdev;
14386 u8 sr1;
14387 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
14388
14389 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14390 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
14391 outb(SR01, VGA_SR_INDEX);
14392 sr1 = inb(VGA_SR_DATA);
14393 outb(sr1 | 1<<5, VGA_SR_DATA);
14394 vga_put(pdev, VGA_RSRC_LEGACY_IO);
14395 udelay(300);
14396
14397 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14398 POSTING_READ(vga_reg);
14399 }
14400
14401 void intel_modeset_init_hw(struct drm_device *dev)
14402 {
14403 struct drm_i915_private *dev_priv = to_i915(dev);
14404
14405 intel_update_cdclk(dev_priv);
14406 dev_priv->cdclk.logical = dev_priv->cdclk.actual = dev_priv->cdclk.hw;
14407 }
14408
14409 /*
14410 * Calculate what we think the watermarks should be for the state we've read
14411 * out of the hardware and then immediately program those watermarks so that
14412 * we ensure the hardware settings match our internal state.
14413 *
14414 * We can calculate what we think WM's should be by creating a duplicate of the
14415 * current state (which was constructed during hardware readout) and running it
14416 * through the atomic check code to calculate new watermark values in the
14417 * state object.
14418 */
14419 static void sanitize_watermarks(struct drm_device *dev)
14420 {
14421 struct drm_i915_private *dev_priv = to_i915(dev);
14422 struct drm_atomic_state *state;
14423 struct intel_atomic_state *intel_state;
14424 struct drm_crtc *crtc;
14425 struct drm_crtc_state *cstate;
14426 struct drm_modeset_acquire_ctx ctx;
14427 int ret;
14428 int i;
14429
14430 /* Only supported on platforms that use atomic watermark design */
14431 if (!dev_priv->display.optimize_watermarks)
14432 return;
14433
14434 /*
14435 * We need to hold connection_mutex before calling duplicate_state so
14436 * that the connector loop is protected.
14437 */
14438 drm_modeset_acquire_init(&ctx, 0);
14439 retry:
14440 ret = drm_modeset_lock_all_ctx(dev, &ctx);
14441 if (ret == -EDEADLK) {
14442 drm_modeset_backoff(&ctx);
14443 goto retry;
14444 } else if (WARN_ON(ret)) {
14445 goto fail;
14446 }
14447
14448 state = drm_atomic_helper_duplicate_state(dev, &ctx);
14449 if (WARN_ON(IS_ERR(state)))
14450 goto fail;
14451
14452 intel_state = to_intel_atomic_state(state);
14453
14454 /*
14455 * Hardware readout is the only time we don't want to calculate
14456 * intermediate watermarks (since we don't trust the current
14457 * watermarks).
14458 */
14459 if (!HAS_GMCH_DISPLAY(dev_priv))
14460 intel_state->skip_intermediate_wm = true;
14461
14462 ret = intel_atomic_check(dev, state);
14463 if (ret) {
14464 /*
14465 * If we fail here, it means that the hardware appears to be
14466 * programmed in a way that shouldn't be possible, given our
14467 * understanding of watermark requirements. This might mean a
14468 * mistake in the hardware readout code or a mistake in the
14469 * watermark calculations for a given platform. Raise a WARN
14470 * so that this is noticeable.
14471 *
14472 * If this actually happens, we'll have to just leave the
14473 * BIOS-programmed watermarks untouched and hope for the best.
14474 */
14475 WARN(true, "Could not determine valid watermarks for inherited state\n");
14476 goto put_state;
14477 }
14478
14479 /* Write calculated watermark values back */
14480 for_each_new_crtc_in_state(state, crtc, cstate, i) {
14481 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
14482
14483 cs->wm.need_postvbl_update = true;
14484 dev_priv->display.optimize_watermarks(intel_state, cs);
14485
14486 to_intel_crtc_state(crtc->state)->wm = cs->wm;
14487 }
14488
14489 put_state:
14490 drm_atomic_state_put(state);
14491 fail:
14492 drm_modeset_drop_locks(&ctx);
14493 drm_modeset_acquire_fini(&ctx);
14494 }
14495
14496 int intel_modeset_init(struct drm_device *dev)
14497 {
14498 struct drm_i915_private *dev_priv = to_i915(dev);
14499 struct i915_ggtt *ggtt = &dev_priv->ggtt;
14500 enum pipe pipe;
14501 struct intel_crtc *crtc;
14502
14503 dev_priv->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0);
14504
14505 drm_mode_config_init(dev);
14506
14507 dev->mode_config.min_width = 0;
14508 dev->mode_config.min_height = 0;
14509
14510 dev->mode_config.preferred_depth = 24;
14511 dev->mode_config.prefer_shadow = 1;
14512
14513 dev->mode_config.allow_fb_modifiers = true;
14514
14515 dev->mode_config.funcs = &intel_mode_funcs;
14516
14517 init_llist_head(&dev_priv->atomic_helper.free_list);
14518 INIT_WORK(&dev_priv->atomic_helper.free_work,
14519 intel_atomic_helper_free_state_worker);
14520
14521 intel_init_quirks(dev);
14522
14523 intel_init_pm(dev_priv);
14524
14525 if (INTEL_INFO(dev_priv)->num_pipes == 0)
14526 return 0;
14527
14528 /*
14529 * There may be no VBT; and if the BIOS enabled SSC we can
14530 * just keep using it to avoid unnecessary flicker. Whereas if the
14531 * BIOS isn't using it, don't assume it will work even if the VBT
14532 * indicates as much.
14533 */
14534 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
14535 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14536 DREF_SSC1_ENABLE);
14537
14538 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14539 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14540 bios_lvds_use_ssc ? "en" : "dis",
14541 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14542 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14543 }
14544 }
14545
14546 if (IS_GEN2(dev_priv)) {
14547 dev->mode_config.max_width = 2048;
14548 dev->mode_config.max_height = 2048;
14549 } else if (IS_GEN3(dev_priv)) {
14550 dev->mode_config.max_width = 4096;
14551 dev->mode_config.max_height = 4096;
14552 } else {
14553 dev->mode_config.max_width = 8192;
14554 dev->mode_config.max_height = 8192;
14555 }
14556
14557 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
14558 dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512;
14559 dev->mode_config.cursor_height = 1023;
14560 } else if (IS_GEN2(dev_priv)) {
14561 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14562 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14563 } else {
14564 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14565 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14566 }
14567
14568 dev->mode_config.fb_base = ggtt->gmadr.start;
14569
14570 DRM_DEBUG_KMS("%d display pipe%s available.\n",
14571 INTEL_INFO(dev_priv)->num_pipes,
14572 INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
14573
14574 for_each_pipe(dev_priv, pipe) {
14575 int ret;
14576
14577 ret = intel_crtc_init(dev_priv, pipe);
14578 if (ret) {
14579 drm_mode_config_cleanup(dev);
14580 return ret;
14581 }
14582 }
14583
14584 intel_shared_dpll_init(dev);
14585
14586 intel_update_czclk(dev_priv);
14587 intel_modeset_init_hw(dev);
14588
14589 if (dev_priv->max_cdclk_freq == 0)
14590 intel_update_max_cdclk(dev_priv);
14591
14592 /* Just disable it once at startup */
14593 i915_disable_vga(dev_priv);
14594 intel_setup_outputs(dev_priv);
14595
14596 drm_modeset_lock_all(dev);
14597 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
14598 drm_modeset_unlock_all(dev);
14599
14600 for_each_intel_crtc(dev, crtc) {
14601 struct intel_initial_plane_config plane_config = {};
14602
14603 if (!crtc->active)
14604 continue;
14605
14606 /*
14607 * Note that reserving the BIOS fb up front prevents us
14608 * from stuffing other stolen allocations like the ring
14609 * on top. This prevents some ugliness at boot time, and
14610 * can even allow for smooth boot transitions if the BIOS
14611 * fb is large enough for the active pipe configuration.
14612 */
14613 dev_priv->display.get_initial_plane_config(crtc,
14614 &plane_config);
14615
14616 /*
14617 * If the fb is shared between multiple heads, we'll
14618 * just get the first one.
14619 */
14620 intel_find_initial_plane_obj(crtc, &plane_config);
14621 }
14622
14623 /*
14624 * Make sure hardware watermarks really match the state we read out.
14625 * Note that we need to do this after reconstructing the BIOS fb's
14626 * since the watermark calculation done here will use pstate->fb.
14627 */
14628 if (!HAS_GMCH_DISPLAY(dev_priv))
14629 sanitize_watermarks(dev);
14630
14631 return 0;
14632 }
14633
14634 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
14635 {
14636 /* 640x480@60Hz, ~25175 kHz */
14637 struct dpll clock = {
14638 .m1 = 18,
14639 .m2 = 7,
14640 .p1 = 13,
14641 .p2 = 4,
14642 .n = 2,
14643 };
14644 u32 dpll, fp;
14645 int i;
14646
14647 WARN_ON(i9xx_calc_dpll_params(48000, &clock) != 25154);
14648
14649 DRM_DEBUG_KMS("enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
14650 pipe_name(pipe), clock.vco, clock.dot);
14651
14652 fp = i9xx_dpll_compute_fp(&clock);
14653 dpll = (I915_READ(DPLL(pipe)) & DPLL_DVO_2X_MODE) |
14654 DPLL_VGA_MODE_DIS |
14655 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
14656 PLL_P2_DIVIDE_BY_4 |
14657 PLL_REF_INPUT_DREFCLK |
14658 DPLL_VCO_ENABLE;
14659
14660 I915_WRITE(FP0(pipe), fp);
14661 I915_WRITE(FP1(pipe), fp);
14662
14663 I915_WRITE(HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
14664 I915_WRITE(HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
14665 I915_WRITE(HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
14666 I915_WRITE(VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
14667 I915_WRITE(VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
14668 I915_WRITE(VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
14669 I915_WRITE(PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
14670
14671 /*
14672 * Apparently we need to have VGA mode enabled prior to changing
14673 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
14674 * dividers, even though the register value does change.
14675 */
14676 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
14677 I915_WRITE(DPLL(pipe), dpll);
14678
14679 /* Wait for the clocks to stabilize. */
14680 POSTING_READ(DPLL(pipe));
14681 udelay(150);
14682
14683 /* The pixel multiplier can only be updated once the
14684 * DPLL is enabled and the clocks are stable.
14685 *
14686 * So write it again.
14687 */
14688 I915_WRITE(DPLL(pipe), dpll);
14689
14690 /* We do this three times for luck */
14691 for (i = 0; i < 3 ; i++) {
14692 I915_WRITE(DPLL(pipe), dpll);
14693 POSTING_READ(DPLL(pipe));
14694 udelay(150); /* wait for warmup */
14695 }
14696
14697 I915_WRITE(PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
14698 POSTING_READ(PIPECONF(pipe));
14699 }
14700
14701 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
14702 {
14703 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
14704
14705 DRM_DEBUG_KMS("disabling pipe %c due to force quirk\n",
14706 pipe_name(pipe));
14707
14708 WARN_ON(I915_READ(DSPCNTR(PLANE_A)) & DISPLAY_PLANE_ENABLE);
14709 WARN_ON(I915_READ(DSPCNTR(PLANE_B)) & DISPLAY_PLANE_ENABLE);
14710 WARN_ON(I915_READ(DSPCNTR(PLANE_C)) & DISPLAY_PLANE_ENABLE);
14711 WARN_ON(I915_READ(CURCNTR(PIPE_A)) & CURSOR_MODE);
14712 WARN_ON(I915_READ(CURCNTR(PIPE_B)) & CURSOR_MODE);
14713
14714 I915_WRITE(PIPECONF(pipe), 0);
14715 POSTING_READ(PIPECONF(pipe));
14716
14717 intel_wait_for_pipe_scanline_stopped(crtc);
14718
14719 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
14720 POSTING_READ(DPLL(pipe));
14721 }
14722
14723 static bool intel_plane_mapping_ok(struct intel_crtc *crtc,
14724 struct intel_plane *primary)
14725 {
14726 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14727 enum plane plane = primary->plane;
14728 u32 val = I915_READ(DSPCNTR(plane));
14729
14730 return (val & DISPLAY_PLANE_ENABLE) == 0 ||
14731 (val & DISPPLANE_SEL_PIPE_MASK) == DISPPLANE_SEL_PIPE(crtc->pipe);
14732 }
14733
14734 static void
14735 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv)
14736 {
14737 struct intel_crtc *crtc;
14738
14739 if (INTEL_GEN(dev_priv) >= 4)
14740 return;
14741
14742 for_each_intel_crtc(&dev_priv->drm, crtc) {
14743 struct intel_plane *plane =
14744 to_intel_plane(crtc->base.primary);
14745
14746 if (intel_plane_mapping_ok(crtc, plane))
14747 continue;
14748
14749 DRM_DEBUG_KMS("%s attached to the wrong pipe, disabling plane\n",
14750 plane->base.name);
14751 intel_plane_disable_noatomic(crtc, plane);
14752 }
14753 }
14754
14755 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
14756 {
14757 struct drm_device *dev = crtc->base.dev;
14758 struct intel_encoder *encoder;
14759
14760 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
14761 return true;
14762
14763 return false;
14764 }
14765
14766 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
14767 {
14768 struct drm_device *dev = encoder->base.dev;
14769 struct intel_connector *connector;
14770
14771 for_each_connector_on_encoder(dev, &encoder->base, connector)
14772 return connector;
14773
14774 return NULL;
14775 }
14776
14777 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
14778 enum pipe pch_transcoder)
14779 {
14780 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
14781 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A);
14782 }
14783
14784 static void intel_sanitize_crtc(struct intel_crtc *crtc,
14785 struct drm_modeset_acquire_ctx *ctx)
14786 {
14787 struct drm_device *dev = crtc->base.dev;
14788 struct drm_i915_private *dev_priv = to_i915(dev);
14789 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
14790
14791 /* Clear any frame start delays used for debugging left by the BIOS */
14792 if (!transcoder_is_dsi(cpu_transcoder)) {
14793 i915_reg_t reg = PIPECONF(cpu_transcoder);
14794
14795 I915_WRITE(reg,
14796 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14797 }
14798
14799 /* restore vblank interrupts to correct state */
14800 drm_crtc_vblank_reset(&crtc->base);
14801 if (crtc->active) {
14802 struct intel_plane *plane;
14803
14804 drm_crtc_vblank_on(&crtc->base);
14805
14806 /* Disable everything but the primary plane */
14807 for_each_intel_plane_on_crtc(dev, crtc, plane) {
14808 const struct intel_plane_state *plane_state =
14809 to_intel_plane_state(plane->base.state);
14810
14811 if (plane_state->base.visible &&
14812 plane->base.type != DRM_PLANE_TYPE_PRIMARY)
14813 intel_plane_disable_noatomic(crtc, plane);
14814 }
14815 }
14816
14817 /* Adjust the state of the output pipe according to whether we
14818 * have active connectors/encoders. */
14819 if (crtc->active && !intel_crtc_has_encoders(crtc))
14820 intel_crtc_disable_noatomic(&crtc->base, ctx);
14821
14822 if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
14823 /*
14824 * We start out with underrun reporting disabled to avoid races.
14825 * For correct bookkeeping mark this on active crtcs.
14826 *
14827 * Also on gmch platforms we dont have any hardware bits to
14828 * disable the underrun reporting. Which means we need to start
14829 * out with underrun reporting disabled also on inactive pipes,
14830 * since otherwise we'll complain about the garbage we read when
14831 * e.g. coming up after runtime pm.
14832 *
14833 * No protection against concurrent access is required - at
14834 * worst a fifo underrun happens which also sets this to false.
14835 */
14836 crtc->cpu_fifo_underrun_disabled = true;
14837 /*
14838 * We track the PCH trancoder underrun reporting state
14839 * within the crtc. With crtc for pipe A housing the underrun
14840 * reporting state for PCH transcoder A, crtc for pipe B housing
14841 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
14842 * and marking underrun reporting as disabled for the non-existing
14843 * PCH transcoders B and C would prevent enabling the south
14844 * error interrupt (see cpt_can_enable_serr_int()).
14845 */
14846 if (has_pch_trancoder(dev_priv, crtc->pipe))
14847 crtc->pch_fifo_underrun_disabled = true;
14848 }
14849 }
14850
14851 static void intel_sanitize_encoder(struct intel_encoder *encoder)
14852 {
14853 struct intel_connector *connector;
14854
14855 /* We need to check both for a crtc link (meaning that the
14856 * encoder is active and trying to read from a pipe) and the
14857 * pipe itself being active. */
14858 bool has_active_crtc = encoder->base.crtc &&
14859 to_intel_crtc(encoder->base.crtc)->active;
14860
14861 connector = intel_encoder_find_connector(encoder);
14862 if (connector && !has_active_crtc) {
14863 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14864 encoder->base.base.id,
14865 encoder->base.name);
14866
14867 /* Connector is active, but has no active pipe. This is
14868 * fallout from our resume register restoring. Disable
14869 * the encoder manually again. */
14870 if (encoder->base.crtc) {
14871 struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
14872
14873 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14874 encoder->base.base.id,
14875 encoder->base.name);
14876 encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
14877 if (encoder->post_disable)
14878 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
14879 }
14880 encoder->base.crtc = NULL;
14881
14882 /* Inconsistent output/port/pipe state happens presumably due to
14883 * a bug in one of the get_hw_state functions. Or someplace else
14884 * in our code, like the register restore mess on resume. Clamp
14885 * things to off as a safer default. */
14886
14887 connector->base.dpms = DRM_MODE_DPMS_OFF;
14888 connector->base.encoder = NULL;
14889 }
14890 /* Enabled encoders without active connectors will be fixed in
14891 * the crtc fixup. */
14892 }
14893
14894 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
14895 {
14896 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
14897
14898 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14899 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14900 i915_disable_vga(dev_priv);
14901 }
14902 }
14903
14904 void i915_redisable_vga(struct drm_i915_private *dev_priv)
14905 {
14906 /* This function can be called both from intel_modeset_setup_hw_state or
14907 * at a very early point in our resume sequence, where the power well
14908 * structures are not yet restored. Since this function is at a very
14909 * paranoid "someone might have enabled VGA while we were not looking"
14910 * level, just check if the power well is enabled instead of trying to
14911 * follow the "don't touch the power well if we don't need it" policy
14912 * the rest of the driver uses. */
14913 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
14914 return;
14915
14916 i915_redisable_vga_power_on(dev_priv);
14917
14918 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
14919 }
14920
14921 /* FIXME read out full plane state for all planes */
14922 static void readout_plane_state(struct intel_crtc *crtc)
14923 {
14924 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14925 struct intel_crtc_state *crtc_state =
14926 to_intel_crtc_state(crtc->base.state);
14927 struct intel_plane *plane;
14928
14929 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
14930 struct intel_plane_state *plane_state =
14931 to_intel_plane_state(plane->base.state);
14932 bool visible = plane->get_hw_state(plane);
14933
14934 intel_set_plane_visible(crtc_state, plane_state, visible);
14935 }
14936 }
14937
14938 static void intel_modeset_readout_hw_state(struct drm_device *dev)
14939 {
14940 struct drm_i915_private *dev_priv = to_i915(dev);
14941 enum pipe pipe;
14942 struct intel_crtc *crtc;
14943 struct intel_encoder *encoder;
14944 struct intel_connector *connector;
14945 struct drm_connector_list_iter conn_iter;
14946 int i;
14947
14948 dev_priv->active_crtcs = 0;
14949
14950 for_each_intel_crtc(dev, crtc) {
14951 struct intel_crtc_state *crtc_state =
14952 to_intel_crtc_state(crtc->base.state);
14953
14954 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
14955 memset(crtc_state, 0, sizeof(*crtc_state));
14956 crtc_state->base.crtc = &crtc->base;
14957
14958 crtc_state->base.active = crtc_state->base.enable =
14959 dev_priv->display.get_pipe_config(crtc, crtc_state);
14960
14961 crtc->base.enabled = crtc_state->base.enable;
14962 crtc->active = crtc_state->base.active;
14963
14964 if (crtc_state->base.active)
14965 dev_priv->active_crtcs |= 1 << crtc->pipe;
14966
14967 readout_plane_state(crtc);
14968
14969 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
14970 crtc->base.base.id, crtc->base.name,
14971 enableddisabled(crtc_state->base.active));
14972 }
14973
14974 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14975 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14976
14977 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
14978 &pll->state.hw_state);
14979 pll->state.crtc_mask = 0;
14980 for_each_intel_crtc(dev, crtc) {
14981 struct intel_crtc_state *crtc_state =
14982 to_intel_crtc_state(crtc->base.state);
14983
14984 if (crtc_state->base.active &&
14985 crtc_state->shared_dpll == pll)
14986 pll->state.crtc_mask |= 1 << crtc->pipe;
14987 }
14988 pll->active_mask = pll->state.crtc_mask;
14989
14990 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
14991 pll->name, pll->state.crtc_mask, pll->on);
14992 }
14993
14994 for_each_intel_encoder(dev, encoder) {
14995 pipe = 0;
14996
14997 if (encoder->get_hw_state(encoder, &pipe)) {
14998 struct intel_crtc_state *crtc_state;
14999
15000 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15001 crtc_state = to_intel_crtc_state(crtc->base.state);
15002
15003 encoder->base.crtc = &crtc->base;
15004 crtc_state->output_types |= 1 << encoder->type;
15005 encoder->get_config(encoder, crtc_state);
15006 } else {
15007 encoder->base.crtc = NULL;
15008 }
15009
15010 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15011 encoder->base.base.id, encoder->base.name,
15012 enableddisabled(encoder->base.crtc),
15013 pipe_name(pipe));
15014 }
15015
15016 drm_connector_list_iter_begin(dev, &conn_iter);
15017 for_each_intel_connector_iter(connector, &conn_iter) {
15018 if (connector->get_hw_state(connector)) {
15019 connector->base.dpms = DRM_MODE_DPMS_ON;
15020
15021 encoder = connector->encoder;
15022 connector->base.encoder = &encoder->base;
15023
15024 if (encoder->base.crtc &&
15025 encoder->base.crtc->state->active) {
15026 /*
15027 * This has to be done during hardware readout
15028 * because anything calling .crtc_disable may
15029 * rely on the connector_mask being accurate.
15030 */
15031 encoder->base.crtc->state->connector_mask |=
15032 1 << drm_connector_index(&connector->base);
15033 encoder->base.crtc->state->encoder_mask |=
15034 1 << drm_encoder_index(&encoder->base);
15035 }
15036
15037 } else {
15038 connector->base.dpms = DRM_MODE_DPMS_OFF;
15039 connector->base.encoder = NULL;
15040 }
15041 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15042 connector->base.base.id, connector->base.name,
15043 enableddisabled(connector->base.encoder));
15044 }
15045 drm_connector_list_iter_end(&conn_iter);
15046
15047 for_each_intel_crtc(dev, crtc) {
15048 struct intel_crtc_state *crtc_state =
15049 to_intel_crtc_state(crtc->base.state);
15050 int min_cdclk = 0;
15051
15052 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15053 if (crtc_state->base.active) {
15054 intel_mode_from_pipe_config(&crtc->base.mode, crtc_state);
15055 intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state);
15056 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15057
15058 /*
15059 * The initial mode needs to be set in order to keep
15060 * the atomic core happy. It wants a valid mode if the
15061 * crtc's enabled, so we do the above call.
15062 *
15063 * But we don't set all the derived state fully, hence
15064 * set a flag to indicate that a full recalculation is
15065 * needed on the next commit.
15066 */
15067 crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
15068
15069 intel_crtc_compute_pixel_rate(crtc_state);
15070
15071 if (dev_priv->display.modeset_calc_cdclk) {
15072 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
15073 if (WARN_ON(min_cdclk < 0))
15074 min_cdclk = 0;
15075 }
15076
15077 drm_calc_timestamping_constants(&crtc->base,
15078 &crtc_state->base.adjusted_mode);
15079 update_scanline_offset(crtc);
15080 }
15081
15082 dev_priv->min_cdclk[crtc->pipe] = min_cdclk;
15083
15084 intel_pipe_config_sanity_check(dev_priv, crtc_state);
15085 }
15086 }
15087
15088 static void
15089 get_encoder_power_domains(struct drm_i915_private *dev_priv)
15090 {
15091 struct intel_encoder *encoder;
15092
15093 for_each_intel_encoder(&dev_priv->drm, encoder) {
15094 u64 get_domains;
15095 enum intel_display_power_domain domain;
15096
15097 if (!encoder->get_power_domains)
15098 continue;
15099
15100 get_domains = encoder->get_power_domains(encoder);
15101 for_each_power_domain(domain, get_domains)
15102 intel_display_power_get(dev_priv, domain);
15103 }
15104 }
15105
15106 /* Scan out the current hw modeset state,
15107 * and sanitizes it to the current state
15108 */
15109 static void
15110 intel_modeset_setup_hw_state(struct drm_device *dev,
15111 struct drm_modeset_acquire_ctx *ctx)
15112 {
15113 struct drm_i915_private *dev_priv = to_i915(dev);
15114 enum pipe pipe;
15115 struct intel_crtc *crtc;
15116 struct intel_encoder *encoder;
15117 int i;
15118
15119 if (IS_HASWELL(dev_priv)) {
15120 /*
15121 * WaRsPkgCStateDisplayPMReq:hsw
15122 * System hang if this isn't done before disabling all planes!
15123 */
15124 I915_WRITE(CHICKEN_PAR1_1,
15125 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
15126 }
15127
15128 intel_modeset_readout_hw_state(dev);
15129
15130 /* HW state is read out, now we need to sanitize this mess. */
15131 get_encoder_power_domains(dev_priv);
15132
15133 intel_sanitize_plane_mapping(dev_priv);
15134
15135 for_each_intel_encoder(dev, encoder) {
15136 intel_sanitize_encoder(encoder);
15137 }
15138
15139 for_each_pipe(dev_priv, pipe) {
15140 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15141
15142 intel_sanitize_crtc(crtc, ctx);
15143 intel_dump_pipe_config(crtc, crtc->config,
15144 "[setup_hw_state]");
15145 }
15146
15147 intel_modeset_update_connector_atomic_state(dev);
15148
15149 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15150 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15151
15152 if (!pll->on || pll->active_mask)
15153 continue;
15154
15155 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15156
15157 pll->funcs.disable(dev_priv, pll);
15158 pll->on = false;
15159 }
15160
15161 if (IS_G4X(dev_priv)) {
15162 g4x_wm_get_hw_state(dev);
15163 g4x_wm_sanitize(dev_priv);
15164 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15165 vlv_wm_get_hw_state(dev);
15166 vlv_wm_sanitize(dev_priv);
15167 } else if (INTEL_GEN(dev_priv) >= 9) {
15168 skl_wm_get_hw_state(dev);
15169 } else if (HAS_PCH_SPLIT(dev_priv)) {
15170 ilk_wm_get_hw_state(dev);
15171 }
15172
15173 for_each_intel_crtc(dev, crtc) {
15174 u64 put_domains;
15175
15176 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15177 if (WARN_ON(put_domains))
15178 modeset_put_power_domains(dev_priv, put_domains);
15179 }
15180 intel_display_set_init_power(dev_priv, false);
15181
15182 intel_power_domains_verify_state(dev_priv);
15183
15184 intel_fbc_init_pipe_state(dev_priv);
15185 }
15186
15187 void intel_display_resume(struct drm_device *dev)
15188 {
15189 struct drm_i915_private *dev_priv = to_i915(dev);
15190 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15191 struct drm_modeset_acquire_ctx ctx;
15192 int ret;
15193
15194 dev_priv->modeset_restore_state = NULL;
15195 if (state)
15196 state->acquire_ctx = &ctx;
15197
15198 drm_modeset_acquire_init(&ctx, 0);
15199
15200 while (1) {
15201 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15202 if (ret != -EDEADLK)
15203 break;
15204
15205 drm_modeset_backoff(&ctx);
15206 }
15207
15208 if (!ret)
15209 ret = __intel_display_resume(dev, state, &ctx);
15210
15211 intel_enable_ipc(dev_priv);
15212 drm_modeset_drop_locks(&ctx);
15213 drm_modeset_acquire_fini(&ctx);
15214
15215 if (ret)
15216 DRM_ERROR("Restoring old state failed with %i\n", ret);
15217 if (state)
15218 drm_atomic_state_put(state);
15219 }
15220
15221 void intel_modeset_gem_init(struct drm_device *dev)
15222 {
15223 struct drm_i915_private *dev_priv = to_i915(dev);
15224
15225 intel_init_gt_powersave(dev_priv);
15226
15227 intel_init_clock_gating(dev_priv);
15228
15229 intel_setup_overlay(dev_priv);
15230 }
15231
15232 int intel_connector_register(struct drm_connector *connector)
15233 {
15234 struct intel_connector *intel_connector = to_intel_connector(connector);
15235 int ret;
15236
15237 ret = intel_backlight_device_register(intel_connector);
15238 if (ret)
15239 goto err;
15240
15241 return 0;
15242
15243 err:
15244 return ret;
15245 }
15246
15247 void intel_connector_unregister(struct drm_connector *connector)
15248 {
15249 struct intel_connector *intel_connector = to_intel_connector(connector);
15250
15251 intel_backlight_device_unregister(intel_connector);
15252 intel_panel_destroy_backlight(connector);
15253 }
15254
15255 static void intel_hpd_poll_fini(struct drm_device *dev)
15256 {
15257 struct intel_connector *connector;
15258 struct drm_connector_list_iter conn_iter;
15259
15260 /* First disable polling... */
15261 drm_kms_helper_poll_fini(dev);
15262
15263 /* Then kill the work that may have been queued by hpd. */
15264 drm_connector_list_iter_begin(dev, &conn_iter);
15265 for_each_intel_connector_iter(connector, &conn_iter) {
15266 if (connector->modeset_retry_work.func)
15267 cancel_work_sync(&connector->modeset_retry_work);
15268 }
15269 drm_connector_list_iter_end(&conn_iter);
15270 }
15271
15272 void intel_modeset_cleanup(struct drm_device *dev)
15273 {
15274 struct drm_i915_private *dev_priv = to_i915(dev);
15275
15276 flush_work(&dev_priv->atomic_helper.free_work);
15277 WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
15278
15279 intel_disable_gt_powersave(dev_priv);
15280
15281 /*
15282 * Interrupts and polling as the first thing to avoid creating havoc.
15283 * Too much stuff here (turning of connectors, ...) would
15284 * experience fancy races otherwise.
15285 */
15286 intel_irq_uninstall(dev_priv);
15287
15288 /*
15289 * Due to the hpd irq storm handling the hotplug work can re-arm the
15290 * poll handlers. Hence disable polling after hpd handling is shut down.
15291 */
15292 intel_hpd_poll_fini(dev);
15293
15294 /* poll work can call into fbdev, hence clean that up afterwards */
15295 intel_fbdev_fini(dev_priv);
15296
15297 intel_unregister_dsm_handler();
15298
15299 intel_fbc_global_disable(dev_priv);
15300
15301 /* flush any delayed tasks or pending work */
15302 flush_scheduled_work();
15303
15304 drm_mode_config_cleanup(dev);
15305
15306 intel_cleanup_overlay(dev_priv);
15307
15308 intel_cleanup_gt_powersave(dev_priv);
15309
15310 intel_teardown_gmbus(dev_priv);
15311
15312 destroy_workqueue(dev_priv->modeset_wq);
15313 }
15314
15315 void intel_connector_attach_encoder(struct intel_connector *connector,
15316 struct intel_encoder *encoder)
15317 {
15318 connector->encoder = encoder;
15319 drm_mode_connector_attach_encoder(&connector->base,
15320 &encoder->base);
15321 }
15322
15323 /*
15324 * set vga decode state - true == enable VGA decode
15325 */
15326 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
15327 {
15328 unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15329 u16 gmch_ctrl;
15330
15331 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15332 DRM_ERROR("failed to read control word\n");
15333 return -EIO;
15334 }
15335
15336 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15337 return 0;
15338
15339 if (state)
15340 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15341 else
15342 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15343
15344 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15345 DRM_ERROR("failed to write control word\n");
15346 return -EIO;
15347 }
15348
15349 return 0;
15350 }
15351
15352 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
15353
15354 struct intel_display_error_state {
15355
15356 u32 power_well_driver;
15357
15358 int num_transcoders;
15359
15360 struct intel_cursor_error_state {
15361 u32 control;
15362 u32 position;
15363 u32 base;
15364 u32 size;
15365 } cursor[I915_MAX_PIPES];
15366
15367 struct intel_pipe_error_state {
15368 bool power_domain_on;
15369 u32 source;
15370 u32 stat;
15371 } pipe[I915_MAX_PIPES];
15372
15373 struct intel_plane_error_state {
15374 u32 control;
15375 u32 stride;
15376 u32 size;
15377 u32 pos;
15378 u32 addr;
15379 u32 surface;
15380 u32 tile_offset;
15381 } plane[I915_MAX_PIPES];
15382
15383 struct intel_transcoder_error_state {
15384 bool power_domain_on;
15385 enum transcoder cpu_transcoder;
15386
15387 u32 conf;
15388
15389 u32 htotal;
15390 u32 hblank;
15391 u32 hsync;
15392 u32 vtotal;
15393 u32 vblank;
15394 u32 vsync;
15395 } transcoder[4];
15396 };
15397
15398 struct intel_display_error_state *
15399 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
15400 {
15401 struct intel_display_error_state *error;
15402 int transcoders[] = {
15403 TRANSCODER_A,
15404 TRANSCODER_B,
15405 TRANSCODER_C,
15406 TRANSCODER_EDP,
15407 };
15408 int i;
15409
15410 if (INTEL_INFO(dev_priv)->num_pipes == 0)
15411 return NULL;
15412
15413 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15414 if (error == NULL)
15415 return NULL;
15416
15417 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15418 error->power_well_driver =
15419 I915_READ(HSW_PWR_WELL_CTL_DRIVER(HSW_DISP_PW_GLOBAL));
15420
15421 for_each_pipe(dev_priv, i) {
15422 error->pipe[i].power_domain_on =
15423 __intel_display_power_is_enabled(dev_priv,
15424 POWER_DOMAIN_PIPE(i));
15425 if (!error->pipe[i].power_domain_on)
15426 continue;
15427
15428 error->cursor[i].control = I915_READ(CURCNTR(i));
15429 error->cursor[i].position = I915_READ(CURPOS(i));
15430 error->cursor[i].base = I915_READ(CURBASE(i));
15431
15432 error->plane[i].control = I915_READ(DSPCNTR(i));
15433 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15434 if (INTEL_GEN(dev_priv) <= 3) {
15435 error->plane[i].size = I915_READ(DSPSIZE(i));
15436 error->plane[i].pos = I915_READ(DSPPOS(i));
15437 }
15438 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15439 error->plane[i].addr = I915_READ(DSPADDR(i));
15440 if (INTEL_GEN(dev_priv) >= 4) {
15441 error->plane[i].surface = I915_READ(DSPSURF(i));
15442 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15443 }
15444
15445 error->pipe[i].source = I915_READ(PIPESRC(i));
15446
15447 if (HAS_GMCH_DISPLAY(dev_priv))
15448 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15449 }
15450
15451 /* Note: this does not include DSI transcoders. */
15452 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
15453 if (HAS_DDI(dev_priv))
15454 error->num_transcoders++; /* Account for eDP. */
15455
15456 for (i = 0; i < error->num_transcoders; i++) {
15457 enum transcoder cpu_transcoder = transcoders[i];
15458
15459 error->transcoder[i].power_domain_on =
15460 __intel_display_power_is_enabled(dev_priv,
15461 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15462 if (!error->transcoder[i].power_domain_on)
15463 continue;
15464
15465 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15466
15467 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15468 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15469 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15470 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15471 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15472 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15473 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15474 }
15475
15476 return error;
15477 }
15478
15479 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15480
15481 void
15482 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15483 struct intel_display_error_state *error)
15484 {
15485 struct drm_i915_private *dev_priv = m->i915;
15486 int i;
15487
15488 if (!error)
15489 return;
15490
15491 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
15492 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15493 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15494 error->power_well_driver);
15495 for_each_pipe(dev_priv, i) {
15496 err_printf(m, "Pipe [%d]:\n", i);
15497 err_printf(m, " Power: %s\n",
15498 onoff(error->pipe[i].power_domain_on));
15499 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15500 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15501
15502 err_printf(m, "Plane [%d]:\n", i);
15503 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15504 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15505 if (INTEL_GEN(dev_priv) <= 3) {
15506 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15507 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15508 }
15509 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15510 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15511 if (INTEL_GEN(dev_priv) >= 4) {
15512 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15513 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15514 }
15515
15516 err_printf(m, "Cursor [%d]:\n", i);
15517 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15518 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15519 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15520 }
15521
15522 for (i = 0; i < error->num_transcoders; i++) {
15523 err_printf(m, "CPU transcoder: %s\n",
15524 transcoder_name(error->transcoder[i].cpu_transcoder));
15525 err_printf(m, " Power: %s\n",
15526 onoff(error->transcoder[i].power_domain_on));
15527 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15528 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15529 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15530 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15531 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15532 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15533 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15534 }
15535 }
15536
15537 #endif