]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_lrc.c
9b3e723bda78c2f3e8d20605c5272e614f1a5fc9
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define RING_EXECLIST_QFULL (1 << 0x2)
142 #define RING_EXECLIST1_VALID (1 << 0x3)
143 #define RING_EXECLIST0_VALID (1 << 0x4)
144 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
145 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
146 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
147
148 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
149 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
150 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
151 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
152 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
153 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
154
155 #define GEN8_CTX_STATUS_COMPLETED_MASK \
156 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
157 GEN8_CTX_STATUS_PREEMPTED | \
158 GEN8_CTX_STATUS_ELEMENT_SWITCH)
159
160 #define CTX_LRI_HEADER_0 0x01
161 #define CTX_CONTEXT_CONTROL 0x02
162 #define CTX_RING_HEAD 0x04
163 #define CTX_RING_TAIL 0x06
164 #define CTX_RING_BUFFER_START 0x08
165 #define CTX_RING_BUFFER_CONTROL 0x0a
166 #define CTX_BB_HEAD_U 0x0c
167 #define CTX_BB_HEAD_L 0x0e
168 #define CTX_BB_STATE 0x10
169 #define CTX_SECOND_BB_HEAD_U 0x12
170 #define CTX_SECOND_BB_HEAD_L 0x14
171 #define CTX_SECOND_BB_STATE 0x16
172 #define CTX_BB_PER_CTX_PTR 0x18
173 #define CTX_RCS_INDIRECT_CTX 0x1a
174 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
175 #define CTX_LRI_HEADER_1 0x21
176 #define CTX_CTX_TIMESTAMP 0x22
177 #define CTX_PDP3_UDW 0x24
178 #define CTX_PDP3_LDW 0x26
179 #define CTX_PDP2_UDW 0x28
180 #define CTX_PDP2_LDW 0x2a
181 #define CTX_PDP1_UDW 0x2c
182 #define CTX_PDP1_LDW 0x2e
183 #define CTX_PDP0_UDW 0x30
184 #define CTX_PDP0_LDW 0x32
185 #define CTX_LRI_HEADER_2 0x41
186 #define CTX_R_PWR_CLK_STATE 0x42
187 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
188
189 #define CTX_REG(reg_state, pos, reg, val) do { \
190 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
191 (reg_state)[(pos)+1] = (val); \
192 } while (0)
193
194 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
195 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
196 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 } while (0)
199
200 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
201 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
202 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203 } while (0)
204
205 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
206 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
207 #define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x19
208
209 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
210 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
211 #define WA_TAIL_DWORDS 2
212 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
213 #define PREEMPT_ID 0x1
214
215 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
216 struct intel_engine_cs *engine);
217 static void execlists_init_reg_state(u32 *reg_state,
218 struct i915_gem_context *ctx,
219 struct intel_engine_cs *engine,
220 struct intel_ring *ring);
221
222 /**
223 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
224 * @dev_priv: i915 device private
225 * @enable_execlists: value of i915.enable_execlists module parameter.
226 *
227 * Only certain platforms support Execlists (the prerequisites being
228 * support for Logical Ring Contexts and Aliasing PPGTT or better).
229 *
230 * Return: 1 if Execlists is supported and has to be enabled.
231 */
232 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
233 {
234 /* On platforms with execlist available, vGPU will only
235 * support execlist mode, no ring buffer mode.
236 */
237 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
238 return 1;
239
240 if (INTEL_GEN(dev_priv) >= 9)
241 return 1;
242
243 if (enable_execlists == 0)
244 return 0;
245
246 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
247 USES_PPGTT(dev_priv))
248 return 1;
249
250 return 0;
251 }
252
253 /**
254 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
255 * descriptor for a pinned context
256 * @ctx: Context to work on
257 * @engine: Engine the descriptor will be used with
258 *
259 * The context descriptor encodes various attributes of a context,
260 * including its GTT address and some flags. Because it's fairly
261 * expensive to calculate, we'll just do it once and cache the result,
262 * which remains valid until the context is unpinned.
263 *
264 * This is what a descriptor looks like, from LSB to MSB::
265 *
266 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
267 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
268 * bits 32-52: ctx ID, a globally unique tag
269 * bits 53-54: mbz, reserved for use by hardware
270 * bits 55-63: group ID, currently unused and set to 0
271 */
272 static void
273 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
274 struct intel_engine_cs *engine)
275 {
276 struct intel_context *ce = &ctx->engine[engine->id];
277 u64 desc;
278
279 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
280
281 desc = ctx->desc_template; /* bits 0-11 */
282 desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
283 /* bits 12-31 */
284 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
285
286 ce->lrc_desc = desc;
287 }
288
289 static struct i915_priolist *
290 lookup_priolist(struct intel_engine_cs *engine,
291 struct i915_priotree *pt,
292 int prio)
293 {
294 struct intel_engine_execlists * const execlists = &engine->execlists;
295 struct i915_priolist *p;
296 struct rb_node **parent, *rb;
297 bool first = true;
298
299 if (unlikely(execlists->no_priolist))
300 prio = I915_PRIORITY_NORMAL;
301
302 find_priolist:
303 /* most positive priority is scheduled first, equal priorities fifo */
304 rb = NULL;
305 parent = &execlists->queue.rb_node;
306 while (*parent) {
307 rb = *parent;
308 p = rb_entry(rb, typeof(*p), node);
309 if (prio > p->priority) {
310 parent = &rb->rb_left;
311 } else if (prio < p->priority) {
312 parent = &rb->rb_right;
313 first = false;
314 } else {
315 return p;
316 }
317 }
318
319 if (prio == I915_PRIORITY_NORMAL) {
320 p = &execlists->default_priolist;
321 } else {
322 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
323 /* Convert an allocation failure to a priority bump */
324 if (unlikely(!p)) {
325 prio = I915_PRIORITY_NORMAL; /* recurses just once */
326
327 /* To maintain ordering with all rendering, after an
328 * allocation failure we have to disable all scheduling.
329 * Requests will then be executed in fifo, and schedule
330 * will ensure that dependencies are emitted in fifo.
331 * There will be still some reordering with existing
332 * requests, so if userspace lied about their
333 * dependencies that reordering may be visible.
334 */
335 execlists->no_priolist = true;
336 goto find_priolist;
337 }
338 }
339
340 p->priority = prio;
341 INIT_LIST_HEAD(&p->requests);
342 rb_link_node(&p->node, rb, parent);
343 rb_insert_color(&p->node, &execlists->queue);
344
345 if (first)
346 execlists->first = &p->node;
347
348 return ptr_pack_bits(p, first, 1);
349 }
350
351 static void unwind_wa_tail(struct drm_i915_gem_request *rq)
352 {
353 rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
354 assert_ring_tail_valid(rq->ring, rq->tail);
355 }
356
357 static void unwind_incomplete_requests(struct intel_engine_cs *engine)
358 {
359 struct drm_i915_gem_request *rq, *rn;
360 struct i915_priolist *uninitialized_var(p);
361 int last_prio = I915_PRIORITY_INVALID;
362
363 lockdep_assert_held(&engine->timeline->lock);
364
365 list_for_each_entry_safe_reverse(rq, rn,
366 &engine->timeline->requests,
367 link) {
368 if (i915_gem_request_completed(rq))
369 return;
370
371 __i915_gem_request_unsubmit(rq);
372 unwind_wa_tail(rq);
373
374 GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
375 if (rq->priotree.priority != last_prio) {
376 p = lookup_priolist(engine,
377 &rq->priotree,
378 rq->priotree.priority);
379 p = ptr_mask_bits(p, 1);
380
381 last_prio = rq->priotree.priority;
382 }
383
384 list_add(&rq->priotree.link, &p->requests);
385 }
386 }
387
388 static inline void
389 execlists_context_status_change(struct drm_i915_gem_request *rq,
390 unsigned long status)
391 {
392 /*
393 * Only used when GVT-g is enabled now. When GVT-g is disabled,
394 * The compiler should eliminate this function as dead-code.
395 */
396 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
397 return;
398
399 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
400 status, rq);
401 }
402
403 static void
404 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
405 {
406 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
407 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
408 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
409 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
410 }
411
412 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
413 {
414 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
415 struct i915_hw_ppgtt *ppgtt =
416 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
417 u32 *reg_state = ce->lrc_reg_state;
418
419 reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
420
421 /*
422 * True 32b PPGTT with dynamic page allocation: update PDP
423 * registers and point the unallocated PDPs to scratch page.
424 * PML4 is allocated during ppgtt init, so this is not needed
425 * in 48-bit mode.
426 */
427 if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
428 execlists_update_context_pdps(ppgtt, reg_state);
429
430 /*
431 * Make sure the context image is complete before we submit it to HW.
432 *
433 * Ostensibly, writes (including the WCB) should be flushed prior to
434 * an uncached write such as our mmio register access, the empirical
435 * evidence (esp. on Braswell) suggests that the WC write into memory
436 * may not be visible to the HW prior to the completion of the UC
437 * register write and that we may begin execution from the context
438 * before its image is complete leading to invalid PD chasing.
439 *
440 * Furthermore, Braswell, at least, wants a full mb to be sure that
441 * the writes are coherent in memory (visible to the GPU) prior to
442 * execution, and not just visible to other CPUs (as is the result of
443 * wmb).
444 */
445 mb();
446 return ce->lrc_desc;
447 }
448
449 static inline void elsp_write(u64 desc, u32 __iomem *elsp)
450 {
451 writel(upper_32_bits(desc), elsp);
452 writel(lower_32_bits(desc), elsp);
453 }
454
455 static void execlists_submit_ports(struct intel_engine_cs *engine)
456 {
457 struct execlist_port *port = engine->execlists.port;
458 u32 __iomem *elsp =
459 engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
460 unsigned int n;
461
462 for (n = execlists_num_ports(&engine->execlists); n--; ) {
463 struct drm_i915_gem_request *rq;
464 unsigned int count;
465 u64 desc;
466
467 rq = port_unpack(&port[n], &count);
468 if (rq) {
469 GEM_BUG_ON(count > !n);
470 if (!count++)
471 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
472 port_set(&port[n], port_pack(rq, count));
473 desc = execlists_update_context(rq);
474 GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
475 } else {
476 GEM_BUG_ON(!n);
477 desc = 0;
478 }
479
480 elsp_write(desc, elsp);
481 }
482 }
483
484 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
485 {
486 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
487 i915_gem_context_force_single_submission(ctx));
488 }
489
490 static bool can_merge_ctx(const struct i915_gem_context *prev,
491 const struct i915_gem_context *next)
492 {
493 if (prev != next)
494 return false;
495
496 if (ctx_single_port_submission(prev))
497 return false;
498
499 return true;
500 }
501
502 static void port_assign(struct execlist_port *port,
503 struct drm_i915_gem_request *rq)
504 {
505 GEM_BUG_ON(rq == port_request(port));
506
507 if (port_isset(port))
508 i915_gem_request_put(port_request(port));
509
510 port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
511 }
512
513 static void inject_preempt_context(struct intel_engine_cs *engine)
514 {
515 struct intel_context *ce =
516 &engine->i915->preempt_context->engine[engine->id];
517 u32 __iomem *elsp =
518 engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
519 unsigned int n;
520
521 GEM_BUG_ON(engine->i915->preempt_context->hw_id != PREEMPT_ID);
522 GEM_BUG_ON(!IS_ALIGNED(ce->ring->size, WA_TAIL_BYTES));
523
524 memset(ce->ring->vaddr + ce->ring->tail, 0, WA_TAIL_BYTES);
525 ce->ring->tail += WA_TAIL_BYTES;
526 ce->ring->tail &= (ce->ring->size - 1);
527 ce->lrc_reg_state[CTX_RING_TAIL+1] = ce->ring->tail;
528
529 for (n = execlists_num_ports(&engine->execlists); --n; )
530 elsp_write(0, elsp);
531
532 elsp_write(ce->lrc_desc, elsp);
533 }
534
535 static bool can_preempt(struct intel_engine_cs *engine)
536 {
537 return INTEL_INFO(engine->i915)->has_logical_ring_preemption;
538 }
539
540 static void execlists_dequeue(struct intel_engine_cs *engine)
541 {
542 struct intel_engine_execlists * const execlists = &engine->execlists;
543 struct execlist_port *port = execlists->port;
544 const struct execlist_port * const last_port =
545 &execlists->port[execlists->port_mask];
546 struct drm_i915_gem_request *last = port_request(port);
547 struct rb_node *rb;
548 bool submit = false;
549
550 /* Hardware submission is through 2 ports. Conceptually each port
551 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
552 * static for a context, and unique to each, so we only execute
553 * requests belonging to a single context from each ring. RING_HEAD
554 * is maintained by the CS in the context image, it marks the place
555 * where it got up to last time, and through RING_TAIL we tell the CS
556 * where we want to execute up to this time.
557 *
558 * In this list the requests are in order of execution. Consecutive
559 * requests from the same context are adjacent in the ringbuffer. We
560 * can combine these requests into a single RING_TAIL update:
561 *
562 * RING_HEAD...req1...req2
563 * ^- RING_TAIL
564 * since to execute req2 the CS must first execute req1.
565 *
566 * Our goal then is to point each port to the end of a consecutive
567 * sequence of requests as being the most optimal (fewest wake ups
568 * and context switches) submission.
569 */
570
571 spin_lock_irq(&engine->timeline->lock);
572 rb = execlists->first;
573 GEM_BUG_ON(rb_first(&execlists->queue) != rb);
574 if (!rb)
575 goto unlock;
576
577 if (last) {
578 /*
579 * Don't resubmit or switch until all outstanding
580 * preemptions (lite-restore) are seen. Then we
581 * know the next preemption status we see corresponds
582 * to this ELSP update.
583 */
584 if (port_count(&port[0]) > 1)
585 goto unlock;
586
587 if (can_preempt(engine) &&
588 rb_entry(rb, struct i915_priolist, node)->priority >
589 max(last->priotree.priority, 0)) {
590 /*
591 * Switch to our empty preempt context so
592 * the state of the GPU is known (idle).
593 */
594 inject_preempt_context(engine);
595 execlists_set_active(execlists,
596 EXECLISTS_ACTIVE_PREEMPT);
597 goto unlock;
598 } else {
599 /*
600 * In theory, we could coalesce more requests onto
601 * the second port (the first port is active, with
602 * no preemptions pending). However, that means we
603 * then have to deal with the possible lite-restore
604 * of the second port (as we submit the ELSP, there
605 * may be a context-switch) but also we may complete
606 * the resubmission before the context-switch. Ergo,
607 * coalescing onto the second port will cause a
608 * preemption event, but we cannot predict whether
609 * that will affect port[0] or port[1].
610 *
611 * If the second port is already active, we can wait
612 * until the next context-switch before contemplating
613 * new requests. The GPU will be busy and we should be
614 * able to resubmit the new ELSP before it idles,
615 * avoiding pipeline bubbles (momentary pauses where
616 * the driver is unable to keep up the supply of new
617 * work).
618 */
619 if (port_count(&port[1]))
620 goto unlock;
621
622 /* WaIdleLiteRestore:bdw,skl
623 * Apply the wa NOOPs to prevent
624 * ring:HEAD == req:TAIL as we resubmit the
625 * request. See gen8_emit_breadcrumb() for
626 * where we prepare the padding after the
627 * end of the request.
628 */
629 last->tail = last->wa_tail;
630 }
631 }
632
633 do {
634 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
635 struct drm_i915_gem_request *rq, *rn;
636
637 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
638 /*
639 * Can we combine this request with the current port?
640 * It has to be the same context/ringbuffer and not
641 * have any exceptions (e.g. GVT saying never to
642 * combine contexts).
643 *
644 * If we can combine the requests, we can execute both
645 * by updating the RING_TAIL to point to the end of the
646 * second request, and so we never need to tell the
647 * hardware about the first.
648 */
649 if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
650 /*
651 * If we are on the second port and cannot
652 * combine this request with the last, then we
653 * are done.
654 */
655 if (port == last_port) {
656 __list_del_many(&p->requests,
657 &rq->priotree.link);
658 goto done;
659 }
660
661 /*
662 * If GVT overrides us we only ever submit
663 * port[0], leaving port[1] empty. Note that we
664 * also have to be careful that we don't queue
665 * the same context (even though a different
666 * request) to the second port.
667 */
668 if (ctx_single_port_submission(last->ctx) ||
669 ctx_single_port_submission(rq->ctx)) {
670 __list_del_many(&p->requests,
671 &rq->priotree.link);
672 goto done;
673 }
674
675 GEM_BUG_ON(last->ctx == rq->ctx);
676
677 if (submit)
678 port_assign(port, last);
679 port++;
680
681 GEM_BUG_ON(port_isset(port));
682 }
683
684 INIT_LIST_HEAD(&rq->priotree.link);
685 __i915_gem_request_submit(rq);
686 trace_i915_gem_request_in(rq, port_index(port, execlists));
687 last = rq;
688 submit = true;
689 }
690
691 rb = rb_next(rb);
692 rb_erase(&p->node, &execlists->queue);
693 INIT_LIST_HEAD(&p->requests);
694 if (p->priority != I915_PRIORITY_NORMAL)
695 kmem_cache_free(engine->i915->priorities, p);
696 } while (rb);
697 done:
698 execlists->first = rb;
699 if (submit)
700 port_assign(port, last);
701 unlock:
702 spin_unlock_irq(&engine->timeline->lock);
703
704 if (submit) {
705 execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
706 execlists_submit_ports(engine);
707 }
708 }
709
710 static void
711 execlist_cancel_port_requests(struct intel_engine_execlists *execlists)
712 {
713 struct execlist_port *port = execlists->port;
714 unsigned int num_ports = execlists_num_ports(execlists);
715
716 while (num_ports-- && port_isset(port)) {
717 struct drm_i915_gem_request *rq = port_request(port);
718
719 GEM_BUG_ON(!execlists->active);
720 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
721 i915_gem_request_put(rq);
722
723 memset(port, 0, sizeof(*port));
724 port++;
725 }
726 }
727
728 static void execlists_cancel_requests(struct intel_engine_cs *engine)
729 {
730 struct intel_engine_execlists * const execlists = &engine->execlists;
731 struct drm_i915_gem_request *rq, *rn;
732 struct rb_node *rb;
733 unsigned long flags;
734
735 spin_lock_irqsave(&engine->timeline->lock, flags);
736
737 /* Cancel the requests on the HW and clear the ELSP tracker. */
738 execlist_cancel_port_requests(execlists);
739
740 /* Mark all executing requests as skipped. */
741 list_for_each_entry(rq, &engine->timeline->requests, link) {
742 GEM_BUG_ON(!rq->global_seqno);
743 if (!i915_gem_request_completed(rq))
744 dma_fence_set_error(&rq->fence, -EIO);
745 }
746
747 /* Flush the queued requests to the timeline list (for retiring). */
748 rb = execlists->first;
749 while (rb) {
750 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
751
752 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
753 INIT_LIST_HEAD(&rq->priotree.link);
754
755 dma_fence_set_error(&rq->fence, -EIO);
756 __i915_gem_request_submit(rq);
757 }
758
759 rb = rb_next(rb);
760 rb_erase(&p->node, &execlists->queue);
761 INIT_LIST_HEAD(&p->requests);
762 if (p->priority != I915_PRIORITY_NORMAL)
763 kmem_cache_free(engine->i915->priorities, p);
764 }
765
766 /* Remaining _unready_ requests will be nop'ed when submitted */
767
768
769 execlists->queue = RB_ROOT;
770 execlists->first = NULL;
771 GEM_BUG_ON(port_isset(execlists->port));
772
773 /*
774 * The port is checked prior to scheduling a tasklet, but
775 * just in case we have suspended the tasklet to do the
776 * wedging make sure that when it wakes, it decides there
777 * is no work to do by clearing the irq_posted bit.
778 */
779 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
780
781 spin_unlock_irqrestore(&engine->timeline->lock, flags);
782 }
783
784 /*
785 * Check the unread Context Status Buffers and manage the submission of new
786 * contexts to the ELSP accordingly.
787 */
788 static void intel_lrc_irq_handler(unsigned long data)
789 {
790 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
791 struct intel_engine_execlists * const execlists = &engine->execlists;
792 struct execlist_port * const port = execlists->port;
793 struct drm_i915_private *dev_priv = engine->i915;
794
795 /* We can skip acquiring intel_runtime_pm_get() here as it was taken
796 * on our behalf by the request (see i915_gem_mark_busy()) and it will
797 * not be relinquished until the device is idle (see
798 * i915_gem_idle_work_handler()). As a precaution, we make sure
799 * that all ELSP are drained i.e. we have processed the CSB,
800 * before allowing ourselves to idle and calling intel_runtime_pm_put().
801 */
802 GEM_BUG_ON(!dev_priv->gt.awake);
803
804 intel_uncore_forcewake_get(dev_priv, execlists->fw_domains);
805
806 /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
807 * imposing the cost of a locked atomic transaction when submitting a
808 * new request (outside of the context-switch interrupt).
809 */
810 while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
811 /* The HWSP contains a (cacheable) mirror of the CSB */
812 const u32 *buf =
813 &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
814 unsigned int head, tail;
815
816 if (unlikely(execlists->csb_use_mmio)) {
817 buf = (u32 * __force)
818 (dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
819 execlists->csb_head = -1; /* force mmio read of CSB ptrs */
820 }
821
822 /* The write will be ordered by the uncached read (itself
823 * a memory barrier), so we do not need another in the form
824 * of a locked instruction. The race between the interrupt
825 * handler and the split test/clear is harmless as we order
826 * our clear before the CSB read. If the interrupt arrived
827 * first between the test and the clear, we read the updated
828 * CSB and clear the bit. If the interrupt arrives as we read
829 * the CSB or later (i.e. after we had cleared the bit) the bit
830 * is set and we do a new loop.
831 */
832 __clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
833 if (unlikely(execlists->csb_head == -1)) { /* following a reset */
834 head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
835 tail = GEN8_CSB_WRITE_PTR(head);
836 head = GEN8_CSB_READ_PTR(head);
837 execlists->csb_head = head;
838 } else {
839 const int write_idx =
840 intel_hws_csb_write_index(dev_priv) -
841 I915_HWS_CSB_BUF0_INDEX;
842
843 head = execlists->csb_head;
844 tail = READ_ONCE(buf[write_idx]);
845 }
846
847 while (head != tail) {
848 struct drm_i915_gem_request *rq;
849 unsigned int status;
850 unsigned int count;
851
852 if (++head == GEN8_CSB_ENTRIES)
853 head = 0;
854
855 /* We are flying near dragons again.
856 *
857 * We hold a reference to the request in execlist_port[]
858 * but no more than that. We are operating in softirq
859 * context and so cannot hold any mutex or sleep. That
860 * prevents us stopping the requests we are processing
861 * in port[] from being retired simultaneously (the
862 * breadcrumb will be complete before we see the
863 * context-switch). As we only hold the reference to the
864 * request, any pointer chasing underneath the request
865 * is subject to a potential use-after-free. Thus we
866 * store all of the bookkeeping within port[] as
867 * required, and avoid using unguarded pointers beneath
868 * request itself. The same applies to the atomic
869 * status notifier.
870 */
871
872 status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
873 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
874 continue;
875
876 if (status & GEN8_CTX_STATUS_ACTIVE_IDLE &&
877 buf[2*head + 1] == PREEMPT_ID) {
878 execlist_cancel_port_requests(execlists);
879
880 spin_lock_irq(&engine->timeline->lock);
881 unwind_incomplete_requests(engine);
882 spin_unlock_irq(&engine->timeline->lock);
883
884 GEM_BUG_ON(!execlists_is_active(execlists,
885 EXECLISTS_ACTIVE_PREEMPT));
886 execlists_clear_active(execlists,
887 EXECLISTS_ACTIVE_PREEMPT);
888 continue;
889 }
890
891 if (status & GEN8_CTX_STATUS_PREEMPTED &&
892 execlists_is_active(execlists,
893 EXECLISTS_ACTIVE_PREEMPT))
894 continue;
895
896 GEM_BUG_ON(!execlists_is_active(execlists,
897 EXECLISTS_ACTIVE_USER));
898
899 /* Check the context/desc id for this event matches */
900 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
901
902 rq = port_unpack(port, &count);
903 GEM_BUG_ON(count == 0);
904 if (--count == 0) {
905 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
906 GEM_BUG_ON(!i915_gem_request_completed(rq));
907 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
908
909 trace_i915_gem_request_out(rq);
910 i915_gem_request_put(rq);
911
912 execlists_port_complete(execlists, port);
913 } else {
914 port_set(port, port_pack(rq, count));
915 }
916
917 /* After the final element, the hw should be idle */
918 GEM_BUG_ON(port_count(port) == 0 &&
919 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
920 if (port_count(port) == 0)
921 execlists_clear_active(execlists,
922 EXECLISTS_ACTIVE_USER);
923 }
924
925 if (head != execlists->csb_head) {
926 execlists->csb_head = head;
927 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
928 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
929 }
930 }
931
932 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
933 execlists_dequeue(engine);
934
935 intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
936 }
937
938 static void insert_request(struct intel_engine_cs *engine,
939 struct i915_priotree *pt,
940 int prio)
941 {
942 struct i915_priolist *p = lookup_priolist(engine, pt, prio);
943
944 list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
945 if (ptr_unmask_bits(p, 1))
946 tasklet_hi_schedule(&engine->execlists.irq_tasklet);
947 }
948
949 static void execlists_submit_request(struct drm_i915_gem_request *request)
950 {
951 struct intel_engine_cs *engine = request->engine;
952 unsigned long flags;
953
954 /* Will be called from irq-context when using foreign fences. */
955 spin_lock_irqsave(&engine->timeline->lock, flags);
956
957 insert_request(engine, &request->priotree, request->priotree.priority);
958
959 GEM_BUG_ON(!engine->execlists.first);
960 GEM_BUG_ON(list_empty(&request->priotree.link));
961
962 spin_unlock_irqrestore(&engine->timeline->lock, flags);
963 }
964
965 static struct drm_i915_gem_request *pt_to_request(struct i915_priotree *pt)
966 {
967 return container_of(pt, struct drm_i915_gem_request, priotree);
968 }
969
970 static struct intel_engine_cs *
971 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
972 {
973 struct intel_engine_cs *engine = pt_to_request(pt)->engine;
974
975 GEM_BUG_ON(!locked);
976
977 if (engine != locked) {
978 spin_unlock(&locked->timeline->lock);
979 spin_lock(&engine->timeline->lock);
980 }
981
982 return engine;
983 }
984
985 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
986 {
987 struct intel_engine_cs *engine;
988 struct i915_dependency *dep, *p;
989 struct i915_dependency stack;
990 LIST_HEAD(dfs);
991
992 GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
993
994 if (i915_gem_request_completed(request))
995 return;
996
997 if (prio <= READ_ONCE(request->priotree.priority))
998 return;
999
1000 /* Need BKL in order to use the temporary link inside i915_dependency */
1001 lockdep_assert_held(&request->i915->drm.struct_mutex);
1002
1003 stack.signaler = &request->priotree;
1004 list_add(&stack.dfs_link, &dfs);
1005
1006 /* Recursively bump all dependent priorities to match the new request.
1007 *
1008 * A naive approach would be to use recursion:
1009 * static void update_priorities(struct i915_priotree *pt, prio) {
1010 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
1011 * update_priorities(dep->signal, prio)
1012 * insert_request(pt);
1013 * }
1014 * but that may have unlimited recursion depth and so runs a very
1015 * real risk of overunning the kernel stack. Instead, we build
1016 * a flat list of all dependencies starting with the current request.
1017 * As we walk the list of dependencies, we add all of its dependencies
1018 * to the end of the list (this may include an already visited
1019 * request) and continue to walk onwards onto the new dependencies. The
1020 * end result is a topological list of requests in reverse order, the
1021 * last element in the list is the request we must execute first.
1022 */
1023 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
1024 struct i915_priotree *pt = dep->signaler;
1025
1026 /* Within an engine, there can be no cycle, but we may
1027 * refer to the same dependency chain multiple times
1028 * (redundant dependencies are not eliminated) and across
1029 * engines.
1030 */
1031 list_for_each_entry(p, &pt->signalers_list, signal_link) {
1032 if (i915_gem_request_completed(pt_to_request(p->signaler)))
1033 continue;
1034
1035 GEM_BUG_ON(p->signaler->priority < pt->priority);
1036 if (prio > READ_ONCE(p->signaler->priority))
1037 list_move_tail(&p->dfs_link, &dfs);
1038 }
1039
1040 list_safe_reset_next(dep, p, dfs_link);
1041 }
1042
1043 /* If we didn't need to bump any existing priorities, and we haven't
1044 * yet submitted this request (i.e. there is no potential race with
1045 * execlists_submit_request()), we can set our own priority and skip
1046 * acquiring the engine locks.
1047 */
1048 if (request->priotree.priority == I915_PRIORITY_INVALID) {
1049 GEM_BUG_ON(!list_empty(&request->priotree.link));
1050 request->priotree.priority = prio;
1051 if (stack.dfs_link.next == stack.dfs_link.prev)
1052 return;
1053 __list_del_entry(&stack.dfs_link);
1054 }
1055
1056 engine = request->engine;
1057 spin_lock_irq(&engine->timeline->lock);
1058
1059 /* Fifo and depth-first replacement ensure our deps execute before us */
1060 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1061 struct i915_priotree *pt = dep->signaler;
1062
1063 INIT_LIST_HEAD(&dep->dfs_link);
1064
1065 engine = pt_lock_engine(pt, engine);
1066
1067 if (prio <= pt->priority)
1068 continue;
1069
1070 pt->priority = prio;
1071 if (!list_empty(&pt->link)) {
1072 __list_del_entry(&pt->link);
1073 insert_request(engine, pt, prio);
1074 }
1075 }
1076
1077 spin_unlock_irq(&engine->timeline->lock);
1078 }
1079
1080 static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1081 {
1082 unsigned int flags;
1083 int err;
1084
1085 /*
1086 * Clear this page out of any CPU caches for coherent swap-in/out.
1087 * We only want to do this on the first bind so that we do not stall
1088 * on an active context (which by nature is already on the GPU).
1089 */
1090 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1091 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1092 if (err)
1093 return err;
1094 }
1095
1096 flags = PIN_GLOBAL | PIN_HIGH;
1097 if (ctx->ggtt_offset_bias)
1098 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1099
1100 return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1101 }
1102
1103 static struct intel_ring *
1104 execlists_context_pin(struct intel_engine_cs *engine,
1105 struct i915_gem_context *ctx)
1106 {
1107 struct intel_context *ce = &ctx->engine[engine->id];
1108 void *vaddr;
1109 int ret;
1110
1111 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1112
1113 if (likely(ce->pin_count++))
1114 goto out;
1115 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1116
1117 if (!ce->state) {
1118 ret = execlists_context_deferred_alloc(ctx, engine);
1119 if (ret)
1120 goto err;
1121 }
1122 GEM_BUG_ON(!ce->state);
1123
1124 ret = __context_pin(ctx, ce->state);
1125 if (ret)
1126 goto err;
1127
1128 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1129 if (IS_ERR(vaddr)) {
1130 ret = PTR_ERR(vaddr);
1131 goto unpin_vma;
1132 }
1133
1134 ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1135 if (ret)
1136 goto unpin_map;
1137
1138 intel_lr_context_descriptor_update(ctx, engine);
1139
1140 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1141 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1142 i915_ggtt_offset(ce->ring->vma);
1143
1144 ce->state->obj->pin_global++;
1145 i915_gem_context_get(ctx);
1146 out:
1147 return ce->ring;
1148
1149 unpin_map:
1150 i915_gem_object_unpin_map(ce->state->obj);
1151 unpin_vma:
1152 __i915_vma_unpin(ce->state);
1153 err:
1154 ce->pin_count = 0;
1155 return ERR_PTR(ret);
1156 }
1157
1158 static void execlists_context_unpin(struct intel_engine_cs *engine,
1159 struct i915_gem_context *ctx)
1160 {
1161 struct intel_context *ce = &ctx->engine[engine->id];
1162
1163 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1164 GEM_BUG_ON(ce->pin_count == 0);
1165
1166 if (--ce->pin_count)
1167 return;
1168
1169 intel_ring_unpin(ce->ring);
1170
1171 ce->state->obj->pin_global--;
1172 i915_gem_object_unpin_map(ce->state->obj);
1173 i915_vma_unpin(ce->state);
1174
1175 i915_gem_context_put(ctx);
1176 }
1177
1178 static int execlists_request_alloc(struct drm_i915_gem_request *request)
1179 {
1180 struct intel_engine_cs *engine = request->engine;
1181 struct intel_context *ce = &request->ctx->engine[engine->id];
1182 u32 *cs;
1183 int ret;
1184
1185 GEM_BUG_ON(!ce->pin_count);
1186
1187 /* Flush enough space to reduce the likelihood of waiting after
1188 * we start building the request - in which case we will just
1189 * have to repeat work.
1190 */
1191 request->reserved_space += EXECLISTS_REQUEST_SIZE;
1192
1193 cs = intel_ring_begin(request, 0);
1194 if (IS_ERR(cs))
1195 return PTR_ERR(cs);
1196
1197 if (!ce->initialised) {
1198 ret = engine->init_context(request);
1199 if (ret)
1200 return ret;
1201
1202 ce->initialised = true;
1203 }
1204
1205 /* Note that after this point, we have committed to using
1206 * this request as it is being used to both track the
1207 * state of engine initialisation and liveness of the
1208 * golden renderstate above. Think twice before you try
1209 * to cancel/unwind this request now.
1210 */
1211
1212 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1213 return 0;
1214 }
1215
1216 /*
1217 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1218 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1219 * but there is a slight complication as this is applied in WA batch where the
1220 * values are only initialized once so we cannot take register value at the
1221 * beginning and reuse it further; hence we save its value to memory, upload a
1222 * constant value with bit21 set and then we restore it back with the saved value.
1223 * To simplify the WA, a constant value is formed by using the default value
1224 * of this register. This shouldn't be a problem because we are only modifying
1225 * it for a short period and this batch in non-premptible. We can ofcourse
1226 * use additional instructions that read the actual value of the register
1227 * at that time and set our bit of interest but it makes the WA complicated.
1228 *
1229 * This WA is also required for Gen9 so extracting as a function avoids
1230 * code duplication.
1231 */
1232 static u32 *
1233 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1234 {
1235 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1236 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1237 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1238 *batch++ = 0;
1239
1240 *batch++ = MI_LOAD_REGISTER_IMM(1);
1241 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1242 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1243
1244 batch = gen8_emit_pipe_control(batch,
1245 PIPE_CONTROL_CS_STALL |
1246 PIPE_CONTROL_DC_FLUSH_ENABLE,
1247 0);
1248
1249 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1250 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1251 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1252 *batch++ = 0;
1253
1254 return batch;
1255 }
1256
1257 /*
1258 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1259 * initialized at the beginning and shared across all contexts but this field
1260 * helps us to have multiple batches at different offsets and select them based
1261 * on a criteria. At the moment this batch always start at the beginning of the page
1262 * and at this point we don't have multiple wa_ctx batch buffers.
1263 *
1264 * The number of WA applied are not known at the beginning; we use this field
1265 * to return the no of DWORDS written.
1266 *
1267 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1268 * so it adds NOOPs as padding to make it cacheline aligned.
1269 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1270 * makes a complete batch buffer.
1271 */
1272 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1273 {
1274 /* WaDisableCtxRestoreArbitration:bdw,chv */
1275 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1276
1277 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1278 if (IS_BROADWELL(engine->i915))
1279 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1280
1281 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1282 /* Actual scratch location is at 128 bytes offset */
1283 batch = gen8_emit_pipe_control(batch,
1284 PIPE_CONTROL_FLUSH_L3 |
1285 PIPE_CONTROL_GLOBAL_GTT_IVB |
1286 PIPE_CONTROL_CS_STALL |
1287 PIPE_CONTROL_QW_WRITE,
1288 i915_ggtt_offset(engine->scratch) +
1289 2 * CACHELINE_BYTES);
1290
1291 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1292
1293 /* Pad to end of cacheline */
1294 while ((unsigned long)batch % CACHELINE_BYTES)
1295 *batch++ = MI_NOOP;
1296
1297 /*
1298 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1299 * execution depends on the length specified in terms of cache lines
1300 * in the register CTX_RCS_INDIRECT_CTX
1301 */
1302
1303 return batch;
1304 }
1305
1306 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1307 {
1308 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1309
1310 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1311 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1312
1313 *batch++ = MI_LOAD_REGISTER_IMM(3);
1314
1315 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1316 *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1317 *batch++ = _MASKED_BIT_DISABLE(
1318 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1319
1320 /* BSpec: 11391 */
1321 *batch++ = i915_mmio_reg_offset(FF_SLICE_CHICKEN);
1322 *batch++ = _MASKED_BIT_ENABLE(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX);
1323
1324 /* BSpec: 11299 */
1325 *batch++ = i915_mmio_reg_offset(_3D_CHICKEN3);
1326 *batch++ = _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX);
1327
1328 *batch++ = MI_NOOP;
1329
1330 /* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
1331 batch = gen8_emit_pipe_control(batch,
1332 PIPE_CONTROL_FLUSH_L3 |
1333 PIPE_CONTROL_GLOBAL_GTT_IVB |
1334 PIPE_CONTROL_CS_STALL |
1335 PIPE_CONTROL_QW_WRITE,
1336 i915_ggtt_offset(engine->scratch) +
1337 2 * CACHELINE_BYTES);
1338
1339 /* WaMediaPoolStateCmdInWABB:bxt,glk */
1340 if (HAS_POOLED_EU(engine->i915)) {
1341 /*
1342 * EU pool configuration is setup along with golden context
1343 * during context initialization. This value depends on
1344 * device type (2x6 or 3x6) and needs to be updated based
1345 * on which subslice is disabled especially for 2x6
1346 * devices, however it is safe to load default
1347 * configuration of 3x6 device instead of masking off
1348 * corresponding bits because HW ignores bits of a disabled
1349 * subslice and drops down to appropriate config. Please
1350 * see render_state_setup() in i915_gem_render_state.c for
1351 * possible configurations, to avoid duplication they are
1352 * not shown here again.
1353 */
1354 *batch++ = GEN9_MEDIA_POOL_STATE;
1355 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1356 *batch++ = 0x00777000;
1357 *batch++ = 0;
1358 *batch++ = 0;
1359 *batch++ = 0;
1360 }
1361
1362 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1363
1364 /* Pad to end of cacheline */
1365 while ((unsigned long)batch % CACHELINE_BYTES)
1366 *batch++ = MI_NOOP;
1367
1368 return batch;
1369 }
1370
1371 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1372
1373 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1374 {
1375 struct drm_i915_gem_object *obj;
1376 struct i915_vma *vma;
1377 int err;
1378
1379 obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1380 if (IS_ERR(obj))
1381 return PTR_ERR(obj);
1382
1383 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1384 if (IS_ERR(vma)) {
1385 err = PTR_ERR(vma);
1386 goto err;
1387 }
1388
1389 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1390 if (err)
1391 goto err;
1392
1393 engine->wa_ctx.vma = vma;
1394 return 0;
1395
1396 err:
1397 i915_gem_object_put(obj);
1398 return err;
1399 }
1400
1401 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1402 {
1403 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1404 }
1405
1406 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1407
1408 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1409 {
1410 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1411 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1412 &wa_ctx->per_ctx };
1413 wa_bb_func_t wa_bb_fn[2];
1414 struct page *page;
1415 void *batch, *batch_ptr;
1416 unsigned int i;
1417 int ret;
1418
1419 if (WARN_ON(engine->id != RCS || !engine->scratch))
1420 return -EINVAL;
1421
1422 switch (INTEL_GEN(engine->i915)) {
1423 case 10:
1424 return 0;
1425 case 9:
1426 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1427 wa_bb_fn[1] = NULL;
1428 break;
1429 case 8:
1430 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1431 wa_bb_fn[1] = NULL;
1432 break;
1433 default:
1434 MISSING_CASE(INTEL_GEN(engine->i915));
1435 return 0;
1436 }
1437
1438 ret = lrc_setup_wa_ctx(engine);
1439 if (ret) {
1440 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1441 return ret;
1442 }
1443
1444 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1445 batch = batch_ptr = kmap_atomic(page);
1446
1447 /*
1448 * Emit the two workaround batch buffers, recording the offset from the
1449 * start of the workaround batch buffer object for each and their
1450 * respective sizes.
1451 */
1452 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1453 wa_bb[i]->offset = batch_ptr - batch;
1454 if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1455 ret = -EINVAL;
1456 break;
1457 }
1458 if (wa_bb_fn[i])
1459 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1460 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1461 }
1462
1463 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1464
1465 kunmap_atomic(batch);
1466 if (ret)
1467 lrc_destroy_wa_ctx(engine);
1468
1469 return ret;
1470 }
1471
1472 static u8 gtiir[] = {
1473 [RCS] = 0,
1474 [BCS] = 0,
1475 [VCS] = 1,
1476 [VCS2] = 1,
1477 [VECS] = 3,
1478 };
1479
1480 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1481 {
1482 struct drm_i915_private *dev_priv = engine->i915;
1483 struct intel_engine_execlists * const execlists = &engine->execlists;
1484 int ret;
1485
1486 ret = intel_mocs_init_engine(engine);
1487 if (ret)
1488 return ret;
1489
1490 intel_engine_reset_breadcrumbs(engine);
1491 intel_engine_init_hangcheck(engine);
1492
1493 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1494 I915_WRITE(RING_MODE_GEN7(engine),
1495 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1496 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1497 engine->status_page.ggtt_offset);
1498 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1499
1500 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1501
1502 GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
1503
1504 /*
1505 * Clear any pending interrupt state.
1506 *
1507 * We do it twice out of paranoia that some of the IIR are double
1508 * buffered, and if we only reset it once there may still be
1509 * an interrupt pending.
1510 */
1511 I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1512 GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1513 I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1514 GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1515 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1516 execlists->csb_head = -1;
1517 execlists->active = 0;
1518
1519 /* After a GPU reset, we may have requests to replay */
1520 if (!i915_modparams.enable_guc_submission && execlists->first)
1521 tasklet_schedule(&execlists->irq_tasklet);
1522
1523 return 0;
1524 }
1525
1526 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1527 {
1528 struct drm_i915_private *dev_priv = engine->i915;
1529 int ret;
1530
1531 ret = gen8_init_common_ring(engine);
1532 if (ret)
1533 return ret;
1534
1535 /* We need to disable the AsyncFlip performance optimisations in order
1536 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1537 * programmed to '1' on all products.
1538 *
1539 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1540 */
1541 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1542
1543 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1544
1545 return init_workarounds_ring(engine);
1546 }
1547
1548 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1549 {
1550 int ret;
1551
1552 ret = gen8_init_common_ring(engine);
1553 if (ret)
1554 return ret;
1555
1556 return init_workarounds_ring(engine);
1557 }
1558
1559 static void reset_common_ring(struct intel_engine_cs *engine,
1560 struct drm_i915_gem_request *request)
1561 {
1562 struct intel_engine_execlists * const execlists = &engine->execlists;
1563 struct intel_context *ce;
1564 unsigned long flags;
1565
1566 spin_lock_irqsave(&engine->timeline->lock, flags);
1567
1568 /*
1569 * Catch up with any missed context-switch interrupts.
1570 *
1571 * Ideally we would just read the remaining CSB entries now that we
1572 * know the gpu is idle. However, the CSB registers are sometimes^W
1573 * often trashed across a GPU reset! Instead we have to rely on
1574 * guessing the missed context-switch events by looking at what
1575 * requests were completed.
1576 */
1577 execlist_cancel_port_requests(execlists);
1578
1579 /* Push back any incomplete requests for replay after the reset. */
1580 unwind_incomplete_requests(engine);
1581
1582 spin_unlock_irqrestore(&engine->timeline->lock, flags);
1583
1584 /* If the request was innocent, we leave the request in the ELSP
1585 * and will try to replay it on restarting. The context image may
1586 * have been corrupted by the reset, in which case we may have
1587 * to service a new GPU hang, but more likely we can continue on
1588 * without impact.
1589 *
1590 * If the request was guilty, we presume the context is corrupt
1591 * and have to at least restore the RING register in the context
1592 * image back to the expected values to skip over the guilty request.
1593 */
1594 if (!request || request->fence.error != -EIO)
1595 return;
1596
1597 /* We want a simple context + ring to execute the breadcrumb update.
1598 * We cannot rely on the context being intact across the GPU hang,
1599 * so clear it and rebuild just what we need for the breadcrumb.
1600 * All pending requests for this context will be zapped, and any
1601 * future request will be after userspace has had the opportunity
1602 * to recreate its own state.
1603 */
1604 ce = &request->ctx->engine[engine->id];
1605 execlists_init_reg_state(ce->lrc_reg_state,
1606 request->ctx, engine, ce->ring);
1607
1608 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1609 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1610 i915_ggtt_offset(ce->ring->vma);
1611 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1612
1613 request->ring->head = request->postfix;
1614 intel_ring_update_space(request->ring);
1615
1616 /* Reset WaIdleLiteRestore:bdw,skl as well */
1617 unwind_wa_tail(request);
1618 }
1619
1620 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1621 {
1622 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1623 struct intel_engine_cs *engine = req->engine;
1624 const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1625 u32 *cs;
1626 int i;
1627
1628 cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1629 if (IS_ERR(cs))
1630 return PTR_ERR(cs);
1631
1632 *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1633 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1634 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1635
1636 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1637 *cs++ = upper_32_bits(pd_daddr);
1638 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1639 *cs++ = lower_32_bits(pd_daddr);
1640 }
1641
1642 *cs++ = MI_NOOP;
1643 intel_ring_advance(req, cs);
1644
1645 return 0;
1646 }
1647
1648 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1649 u64 offset, u32 len,
1650 const unsigned int flags)
1651 {
1652 u32 *cs;
1653 int ret;
1654
1655 /* Don't rely in hw updating PDPs, specially in lite-restore.
1656 * Ideally, we should set Force PD Restore in ctx descriptor,
1657 * but we can't. Force Restore would be a second option, but
1658 * it is unsafe in case of lite-restore (because the ctx is
1659 * not idle). PML4 is allocated during ppgtt init so this is
1660 * not needed in 48-bit.*/
1661 if (req->ctx->ppgtt &&
1662 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1663 !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1664 !intel_vgpu_active(req->i915)) {
1665 ret = intel_logical_ring_emit_pdps(req);
1666 if (ret)
1667 return ret;
1668
1669 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1670 }
1671
1672 cs = intel_ring_begin(req, 4);
1673 if (IS_ERR(cs))
1674 return PTR_ERR(cs);
1675
1676 /*
1677 * WaDisableCtxRestoreArbitration:bdw,chv
1678 *
1679 * We don't need to perform MI_ARB_ENABLE as often as we do (in
1680 * particular all the gen that do not need the w/a at all!), if we
1681 * took care to make sure that on every switch into this context
1682 * (both ordinary and for preemption) that arbitrartion was enabled
1683 * we would be fine. However, there doesn't seem to be a downside to
1684 * being paranoid and making sure it is set before each batch and
1685 * every context-switch.
1686 *
1687 * Note that if we fail to enable arbitration before the request
1688 * is complete, then we do not see the context-switch interrupt and
1689 * the engine hangs (with RING_HEAD == RING_TAIL).
1690 *
1691 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1692 */
1693 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1694
1695 /* FIXME(BDW): Address space and security selectors. */
1696 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1697 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1698 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1699 *cs++ = lower_32_bits(offset);
1700 *cs++ = upper_32_bits(offset);
1701 intel_ring_advance(req, cs);
1702
1703 return 0;
1704 }
1705
1706 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1707 {
1708 struct drm_i915_private *dev_priv = engine->i915;
1709 I915_WRITE_IMR(engine,
1710 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1711 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1712 }
1713
1714 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1715 {
1716 struct drm_i915_private *dev_priv = engine->i915;
1717 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1718 }
1719
1720 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1721 {
1722 u32 cmd, *cs;
1723
1724 cs = intel_ring_begin(request, 4);
1725 if (IS_ERR(cs))
1726 return PTR_ERR(cs);
1727
1728 cmd = MI_FLUSH_DW + 1;
1729
1730 /* We always require a command barrier so that subsequent
1731 * commands, such as breadcrumb interrupts, are strictly ordered
1732 * wrt the contents of the write cache being flushed to memory
1733 * (and thus being coherent from the CPU).
1734 */
1735 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1736
1737 if (mode & EMIT_INVALIDATE) {
1738 cmd |= MI_INVALIDATE_TLB;
1739 if (request->engine->id == VCS)
1740 cmd |= MI_INVALIDATE_BSD;
1741 }
1742
1743 *cs++ = cmd;
1744 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1745 *cs++ = 0; /* upper addr */
1746 *cs++ = 0; /* value */
1747 intel_ring_advance(request, cs);
1748
1749 return 0;
1750 }
1751
1752 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1753 u32 mode)
1754 {
1755 struct intel_engine_cs *engine = request->engine;
1756 u32 scratch_addr =
1757 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1758 bool vf_flush_wa = false, dc_flush_wa = false;
1759 u32 *cs, flags = 0;
1760 int len;
1761
1762 flags |= PIPE_CONTROL_CS_STALL;
1763
1764 if (mode & EMIT_FLUSH) {
1765 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1766 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1767 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1768 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1769 }
1770
1771 if (mode & EMIT_INVALIDATE) {
1772 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1773 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1774 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1775 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1776 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1777 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1778 flags |= PIPE_CONTROL_QW_WRITE;
1779 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1780
1781 /*
1782 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1783 * pipe control.
1784 */
1785 if (IS_GEN9(request->i915))
1786 vf_flush_wa = true;
1787
1788 /* WaForGAMHang:kbl */
1789 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1790 dc_flush_wa = true;
1791 }
1792
1793 len = 6;
1794
1795 if (vf_flush_wa)
1796 len += 6;
1797
1798 if (dc_flush_wa)
1799 len += 12;
1800
1801 cs = intel_ring_begin(request, len);
1802 if (IS_ERR(cs))
1803 return PTR_ERR(cs);
1804
1805 if (vf_flush_wa)
1806 cs = gen8_emit_pipe_control(cs, 0, 0);
1807
1808 if (dc_flush_wa)
1809 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1810 0);
1811
1812 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
1813
1814 if (dc_flush_wa)
1815 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
1816
1817 intel_ring_advance(request, cs);
1818
1819 return 0;
1820 }
1821
1822 /*
1823 * Reserve space for 2 NOOPs at the end of each request to be
1824 * used as a workaround for not being allowed to do lite
1825 * restore with HEAD==TAIL (WaIdleLiteRestore).
1826 */
1827 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1828 {
1829 /* Ensure there's always at least one preemption point per-request. */
1830 *cs++ = MI_ARB_CHECK;
1831 *cs++ = MI_NOOP;
1832 request->wa_tail = intel_ring_offset(request, cs);
1833 }
1834
1835 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
1836 {
1837 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1838 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1839
1840 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1841 *cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1842 *cs++ = 0;
1843 *cs++ = request->global_seqno;
1844 *cs++ = MI_USER_INTERRUPT;
1845 *cs++ = MI_NOOP;
1846 request->tail = intel_ring_offset(request, cs);
1847 assert_ring_tail_valid(request->ring, request->tail);
1848
1849 gen8_emit_wa_tail(request, cs);
1850 }
1851 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1852
1853 static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1854 u32 *cs)
1855 {
1856 /* We're using qword write, seqno should be aligned to 8 bytes. */
1857 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1858
1859 /* w/a for post sync ops following a GPGPU operation we
1860 * need a prior CS_STALL, which is emitted by the flush
1861 * following the batch.
1862 */
1863 *cs++ = GFX_OP_PIPE_CONTROL(6);
1864 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1865 PIPE_CONTROL_QW_WRITE;
1866 *cs++ = intel_hws_seqno_address(request->engine);
1867 *cs++ = 0;
1868 *cs++ = request->global_seqno;
1869 /* We're thrashing one dword of HWS. */
1870 *cs++ = 0;
1871 *cs++ = MI_USER_INTERRUPT;
1872 *cs++ = MI_NOOP;
1873 request->tail = intel_ring_offset(request, cs);
1874 assert_ring_tail_valid(request->ring, request->tail);
1875
1876 gen8_emit_wa_tail(request, cs);
1877 }
1878 static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1879
1880 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1881 {
1882 int ret;
1883
1884 ret = intel_ring_workarounds_emit(req);
1885 if (ret)
1886 return ret;
1887
1888 ret = intel_rcs_context_init_mocs(req);
1889 /*
1890 * Failing to program the MOCS is non-fatal.The system will not
1891 * run at peak performance. So generate an error and carry on.
1892 */
1893 if (ret)
1894 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1895
1896 return i915_gem_render_state_emit(req);
1897 }
1898
1899 /**
1900 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1901 * @engine: Engine Command Streamer.
1902 */
1903 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1904 {
1905 struct drm_i915_private *dev_priv;
1906
1907 /*
1908 * Tasklet cannot be active at this point due intel_mark_active/idle
1909 * so this is just for documentation.
1910 */
1911 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->execlists.irq_tasklet.state)))
1912 tasklet_kill(&engine->execlists.irq_tasklet);
1913
1914 dev_priv = engine->i915;
1915
1916 if (engine->buffer) {
1917 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1918 }
1919
1920 if (engine->cleanup)
1921 engine->cleanup(engine);
1922
1923 intel_engine_cleanup_common(engine);
1924
1925 lrc_destroy_wa_ctx(engine);
1926 engine->i915 = NULL;
1927 dev_priv->engine[engine->id] = NULL;
1928 kfree(engine);
1929 }
1930
1931 static void execlists_set_default_submission(struct intel_engine_cs *engine)
1932 {
1933 engine->submit_request = execlists_submit_request;
1934 engine->cancel_requests = execlists_cancel_requests;
1935 engine->schedule = execlists_schedule;
1936 engine->execlists.irq_tasklet.func = intel_lrc_irq_handler;
1937 }
1938
1939 static void
1940 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1941 {
1942 /* Default vfuncs which can be overriden by each engine. */
1943 engine->init_hw = gen8_init_common_ring;
1944 engine->reset_hw = reset_common_ring;
1945
1946 engine->context_pin = execlists_context_pin;
1947 engine->context_unpin = execlists_context_unpin;
1948
1949 engine->request_alloc = execlists_request_alloc;
1950
1951 engine->emit_flush = gen8_emit_flush;
1952 engine->emit_breadcrumb = gen8_emit_breadcrumb;
1953 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1954
1955 engine->set_default_submission = execlists_set_default_submission;
1956
1957 engine->irq_enable = gen8_logical_ring_enable_irq;
1958 engine->irq_disable = gen8_logical_ring_disable_irq;
1959 engine->emit_bb_start = gen8_emit_bb_start;
1960 }
1961
1962 static inline void
1963 logical_ring_default_irqs(struct intel_engine_cs *engine)
1964 {
1965 unsigned shift = engine->irq_shift;
1966 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1967 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1968 }
1969
1970 static void
1971 logical_ring_setup(struct intel_engine_cs *engine)
1972 {
1973 struct drm_i915_private *dev_priv = engine->i915;
1974 enum forcewake_domains fw_domains;
1975
1976 intel_engine_setup_common(engine);
1977
1978 /* Intentionally left blank. */
1979 engine->buffer = NULL;
1980
1981 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1982 RING_ELSP(engine),
1983 FW_REG_WRITE);
1984
1985 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1986 RING_CONTEXT_STATUS_PTR(engine),
1987 FW_REG_READ | FW_REG_WRITE);
1988
1989 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1990 RING_CONTEXT_STATUS_BUF_BASE(engine),
1991 FW_REG_READ);
1992
1993 engine->execlists.fw_domains = fw_domains;
1994
1995 tasklet_init(&engine->execlists.irq_tasklet,
1996 intel_lrc_irq_handler, (unsigned long)engine);
1997
1998 logical_ring_default_vfuncs(engine);
1999 logical_ring_default_irqs(engine);
2000 }
2001
2002 static int logical_ring_init(struct intel_engine_cs *engine)
2003 {
2004 int ret;
2005
2006 ret = intel_engine_init_common(engine);
2007 if (ret)
2008 goto error;
2009
2010 return 0;
2011
2012 error:
2013 intel_logical_ring_cleanup(engine);
2014 return ret;
2015 }
2016
2017 int logical_render_ring_init(struct intel_engine_cs *engine)
2018 {
2019 struct drm_i915_private *dev_priv = engine->i915;
2020 int ret;
2021
2022 logical_ring_setup(engine);
2023
2024 if (HAS_L3_DPF(dev_priv))
2025 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2026
2027 /* Override some for render ring. */
2028 if (INTEL_GEN(dev_priv) >= 9)
2029 engine->init_hw = gen9_init_render_ring;
2030 else
2031 engine->init_hw = gen8_init_render_ring;
2032 engine->init_context = gen8_init_rcs_context;
2033 engine->emit_flush = gen8_emit_flush_render;
2034 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
2035 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
2036
2037 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2038 if (ret)
2039 return ret;
2040
2041 ret = intel_init_workaround_bb(engine);
2042 if (ret) {
2043 /*
2044 * We continue even if we fail to initialize WA batch
2045 * because we only expect rare glitches but nothing
2046 * critical to prevent us from using GPU
2047 */
2048 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2049 ret);
2050 }
2051
2052 return logical_ring_init(engine);
2053 }
2054
2055 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2056 {
2057 logical_ring_setup(engine);
2058
2059 return logical_ring_init(engine);
2060 }
2061
2062 static u32
2063 make_rpcs(struct drm_i915_private *dev_priv)
2064 {
2065 u32 rpcs = 0;
2066
2067 /*
2068 * No explicit RPCS request is needed to ensure full
2069 * slice/subslice/EU enablement prior to Gen9.
2070 */
2071 if (INTEL_GEN(dev_priv) < 9)
2072 return 0;
2073
2074 /*
2075 * Starting in Gen9, render power gating can leave
2076 * slice/subslice/EU in a partially enabled state. We
2077 * must make an explicit request through RPCS for full
2078 * enablement.
2079 */
2080 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2081 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2082 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2083 GEN8_RPCS_S_CNT_SHIFT;
2084 rpcs |= GEN8_RPCS_ENABLE;
2085 }
2086
2087 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2088 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2089 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2090 GEN8_RPCS_SS_CNT_SHIFT;
2091 rpcs |= GEN8_RPCS_ENABLE;
2092 }
2093
2094 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2095 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2096 GEN8_RPCS_EU_MIN_SHIFT;
2097 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2098 GEN8_RPCS_EU_MAX_SHIFT;
2099 rpcs |= GEN8_RPCS_ENABLE;
2100 }
2101
2102 return rpcs;
2103 }
2104
2105 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2106 {
2107 u32 indirect_ctx_offset;
2108
2109 switch (INTEL_GEN(engine->i915)) {
2110 default:
2111 MISSING_CASE(INTEL_GEN(engine->i915));
2112 /* fall through */
2113 case 10:
2114 indirect_ctx_offset =
2115 GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2116 break;
2117 case 9:
2118 indirect_ctx_offset =
2119 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2120 break;
2121 case 8:
2122 indirect_ctx_offset =
2123 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2124 break;
2125 }
2126
2127 return indirect_ctx_offset;
2128 }
2129
2130 static void execlists_init_reg_state(u32 *regs,
2131 struct i915_gem_context *ctx,
2132 struct intel_engine_cs *engine,
2133 struct intel_ring *ring)
2134 {
2135 struct drm_i915_private *dev_priv = engine->i915;
2136 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2137 u32 base = engine->mmio_base;
2138 bool rcs = engine->id == RCS;
2139
2140 /* A context is actually a big batch buffer with several
2141 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2142 * values we are setting here are only for the first context restore:
2143 * on a subsequent save, the GPU will recreate this batchbuffer with new
2144 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2145 * we are not initializing here).
2146 */
2147 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2148 MI_LRI_FORCE_POSTED;
2149
2150 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2151 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2152 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2153 (HAS_RESOURCE_STREAMER(dev_priv) ?
2154 CTX_CTRL_RS_CTX_ENABLE : 0)));
2155 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2156 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2157 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2158 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2159 RING_CTL_SIZE(ring->size) | RING_VALID);
2160 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2161 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2162 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2163 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2164 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2165 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2166 if (rcs) {
2167 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2168
2169 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2170 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2171 RING_INDIRECT_CTX_OFFSET(base), 0);
2172 if (wa_ctx->indirect_ctx.size) {
2173 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2174
2175 regs[CTX_RCS_INDIRECT_CTX + 1] =
2176 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2177 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2178
2179 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2180 intel_lr_indirect_ctx_offset(engine) << 6;
2181 }
2182
2183 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2184 if (wa_ctx->per_ctx.size) {
2185 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2186
2187 regs[CTX_BB_PER_CTX_PTR + 1] =
2188 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2189 }
2190 }
2191
2192 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2193
2194 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2195 /* PDP values well be assigned later if needed */
2196 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2197 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2198 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2199 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2200 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2201 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2202 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2203 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2204
2205 if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2206 /* 64b PPGTT (48bit canonical)
2207 * PDP0_DESCRIPTOR contains the base address to PML4 and
2208 * other PDP Descriptors are ignored.
2209 */
2210 ASSIGN_CTX_PML4(ppgtt, regs);
2211 }
2212
2213 if (rcs) {
2214 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2215 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2216 make_rpcs(dev_priv));
2217
2218 i915_oa_init_reg_state(engine, ctx, regs);
2219 }
2220 }
2221
2222 static int
2223 populate_lr_context(struct i915_gem_context *ctx,
2224 struct drm_i915_gem_object *ctx_obj,
2225 struct intel_engine_cs *engine,
2226 struct intel_ring *ring)
2227 {
2228 void *vaddr;
2229 int ret;
2230
2231 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2232 if (ret) {
2233 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2234 return ret;
2235 }
2236
2237 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2238 if (IS_ERR(vaddr)) {
2239 ret = PTR_ERR(vaddr);
2240 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2241 return ret;
2242 }
2243 ctx_obj->mm.dirty = true;
2244
2245 /* The second page of the context object contains some fields which must
2246 * be set up prior to the first execution. */
2247
2248 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2249 ctx, engine, ring);
2250
2251 i915_gem_object_unpin_map(ctx_obj);
2252
2253 return 0;
2254 }
2255
2256 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2257 struct intel_engine_cs *engine)
2258 {
2259 struct drm_i915_gem_object *ctx_obj;
2260 struct intel_context *ce = &ctx->engine[engine->id];
2261 struct i915_vma *vma;
2262 uint32_t context_size;
2263 struct intel_ring *ring;
2264 int ret;
2265
2266 WARN_ON(ce->state);
2267
2268 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2269
2270 /*
2271 * Before the actual start of the context image, we insert a few pages
2272 * for our own use and for sharing with the GuC.
2273 */
2274 context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2275
2276 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2277 if (IS_ERR(ctx_obj)) {
2278 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2279 return PTR_ERR(ctx_obj);
2280 }
2281
2282 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2283 if (IS_ERR(vma)) {
2284 ret = PTR_ERR(vma);
2285 goto error_deref_obj;
2286 }
2287
2288 ring = intel_engine_create_ring(engine, ctx->ring_size);
2289 if (IS_ERR(ring)) {
2290 ret = PTR_ERR(ring);
2291 goto error_deref_obj;
2292 }
2293
2294 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2295 if (ret) {
2296 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2297 goto error_ring_free;
2298 }
2299
2300 ce->ring = ring;
2301 ce->state = vma;
2302 ce->initialised |= engine->init_context == NULL;
2303
2304 return 0;
2305
2306 error_ring_free:
2307 intel_ring_free(ring);
2308 error_deref_obj:
2309 i915_gem_object_put(ctx_obj);
2310 return ret;
2311 }
2312
2313 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2314 {
2315 struct intel_engine_cs *engine;
2316 struct i915_gem_context *ctx;
2317 enum intel_engine_id id;
2318
2319 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2320 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2321 * that stored in context. As we only write new commands from
2322 * ce->ring->tail onwards, everything before that is junk. If the GPU
2323 * starts reading from its RING_HEAD from the context, it may try to
2324 * execute that junk and die.
2325 *
2326 * So to avoid that we reset the context images upon resume. For
2327 * simplicity, we just zero everything out.
2328 */
2329 list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2330 for_each_engine(engine, dev_priv, id) {
2331 struct intel_context *ce = &ctx->engine[engine->id];
2332 u32 *reg;
2333
2334 if (!ce->state)
2335 continue;
2336
2337 reg = i915_gem_object_pin_map(ce->state->obj,
2338 I915_MAP_WB);
2339 if (WARN_ON(IS_ERR(reg)))
2340 continue;
2341
2342 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2343 reg[CTX_RING_HEAD+1] = 0;
2344 reg[CTX_RING_TAIL+1] = 0;
2345
2346 ce->state->obj->mm.dirty = true;
2347 i915_gem_object_unpin_map(ce->state->obj);
2348
2349 intel_ring_reset(ce->ring, 0);
2350 }
2351 }
2352 }