]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_ringbuffer.c
f7e5c287e811821d2abf58902d2d8c4ab7e6cf0c
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 /* Rough estimate of the typical request size, performing a flush,
38 * set-context and then emitting the batch.
39 */
40 #define LEGACY_REQUEST_SIZE 200
41
42 static unsigned int __intel_ring_space(unsigned int head,
43 unsigned int tail,
44 unsigned int size)
45 {
46 /*
47 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
48 * same cacheline, the Head Pointer must not be greater than the Tail
49 * Pointer."
50 */
51 GEM_BUG_ON(!is_power_of_2(size));
52 return (head - tail - CACHELINE_BYTES) & (size - 1);
53 }
54
55 unsigned int intel_ring_update_space(struct intel_ring *ring)
56 {
57 unsigned int space;
58
59 space = __intel_ring_space(ring->head, ring->emit, ring->size);
60
61 ring->space = space;
62 return space;
63 }
64
65 static int
66 gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
67 {
68 u32 cmd, *cs;
69
70 cmd = MI_FLUSH;
71
72 if (mode & EMIT_INVALIDATE)
73 cmd |= MI_READ_FLUSH;
74
75 cs = intel_ring_begin(req, 2);
76 if (IS_ERR(cs))
77 return PTR_ERR(cs);
78
79 *cs++ = cmd;
80 *cs++ = MI_NOOP;
81 intel_ring_advance(req, cs);
82
83 return 0;
84 }
85
86 static int
87 gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
88 {
89 u32 cmd, *cs;
90
91 /*
92 * read/write caches:
93 *
94 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
95 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
96 * also flushed at 2d versus 3d pipeline switches.
97 *
98 * read-only caches:
99 *
100 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
101 * MI_READ_FLUSH is set, and is always flushed on 965.
102 *
103 * I915_GEM_DOMAIN_COMMAND may not exist?
104 *
105 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
106 * invalidated when MI_EXE_FLUSH is set.
107 *
108 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
109 * invalidated with every MI_FLUSH.
110 *
111 * TLBs:
112 *
113 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
114 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
115 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
116 * are flushed at any MI_FLUSH.
117 */
118
119 cmd = MI_FLUSH;
120 if (mode & EMIT_INVALIDATE) {
121 cmd |= MI_EXE_FLUSH;
122 if (IS_G4X(req->i915) || IS_GEN5(req->i915))
123 cmd |= MI_INVALIDATE_ISP;
124 }
125
126 cs = intel_ring_begin(req, 2);
127 if (IS_ERR(cs))
128 return PTR_ERR(cs);
129
130 *cs++ = cmd;
131 *cs++ = MI_NOOP;
132 intel_ring_advance(req, cs);
133
134 return 0;
135 }
136
137 /**
138 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
139 * implementing two workarounds on gen6. From section 1.4.7.1
140 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
141 *
142 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
143 * produced by non-pipelined state commands), software needs to first
144 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
145 * 0.
146 *
147 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
148 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
149 *
150 * And the workaround for these two requires this workaround first:
151 *
152 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
153 * BEFORE the pipe-control with a post-sync op and no write-cache
154 * flushes.
155 *
156 * And this last workaround is tricky because of the requirements on
157 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
158 * volume 2 part 1:
159 *
160 * "1 of the following must also be set:
161 * - Render Target Cache Flush Enable ([12] of DW1)
162 * - Depth Cache Flush Enable ([0] of DW1)
163 * - Stall at Pixel Scoreboard ([1] of DW1)
164 * - Depth Stall ([13] of DW1)
165 * - Post-Sync Operation ([13] of DW1)
166 * - Notify Enable ([8] of DW1)"
167 *
168 * The cache flushes require the workaround flush that triggered this
169 * one, so we can't use it. Depth stall would trigger the same.
170 * Post-sync nonzero is what triggered this second workaround, so we
171 * can't use that one either. Notify enable is IRQs, which aren't
172 * really our business. That leaves only stall at scoreboard.
173 */
174 static int
175 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176 {
177 u32 scratch_addr =
178 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
179 u32 *cs;
180
181 cs = intel_ring_begin(req, 6);
182 if (IS_ERR(cs))
183 return PTR_ERR(cs);
184
185 *cs++ = GFX_OP_PIPE_CONTROL(5);
186 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
187 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
188 *cs++ = 0; /* low dword */
189 *cs++ = 0; /* high dword */
190 *cs++ = MI_NOOP;
191 intel_ring_advance(req, cs);
192
193 cs = intel_ring_begin(req, 6);
194 if (IS_ERR(cs))
195 return PTR_ERR(cs);
196
197 *cs++ = GFX_OP_PIPE_CONTROL(5);
198 *cs++ = PIPE_CONTROL_QW_WRITE;
199 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
200 *cs++ = 0;
201 *cs++ = 0;
202 *cs++ = MI_NOOP;
203 intel_ring_advance(req, cs);
204
205 return 0;
206 }
207
208 static int
209 gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
210 {
211 u32 scratch_addr =
212 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
213 u32 *cs, flags = 0;
214 int ret;
215
216 /* Force SNB workarounds for PIPE_CONTROL flushes */
217 ret = intel_emit_post_sync_nonzero_flush(req);
218 if (ret)
219 return ret;
220
221 /* Just flush everything. Experiments have shown that reducing the
222 * number of bits based on the write domains has little performance
223 * impact.
224 */
225 if (mode & EMIT_FLUSH) {
226 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
227 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
228 /*
229 * Ensure that any following seqno writes only happen
230 * when the render cache is indeed flushed.
231 */
232 flags |= PIPE_CONTROL_CS_STALL;
233 }
234 if (mode & EMIT_INVALIDATE) {
235 flags |= PIPE_CONTROL_TLB_INVALIDATE;
236 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
237 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
238 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
239 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
240 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
241 /*
242 * TLB invalidate requires a post-sync write.
243 */
244 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
245 }
246
247 cs = intel_ring_begin(req, 4);
248 if (IS_ERR(cs))
249 return PTR_ERR(cs);
250
251 *cs++ = GFX_OP_PIPE_CONTROL(4);
252 *cs++ = flags;
253 *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
254 *cs++ = 0;
255 intel_ring_advance(req, cs);
256
257 return 0;
258 }
259
260 static int
261 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
262 {
263 u32 *cs;
264
265 cs = intel_ring_begin(req, 4);
266 if (IS_ERR(cs))
267 return PTR_ERR(cs);
268
269 *cs++ = GFX_OP_PIPE_CONTROL(4);
270 *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
271 *cs++ = 0;
272 *cs++ = 0;
273 intel_ring_advance(req, cs);
274
275 return 0;
276 }
277
278 static int
279 gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
280 {
281 u32 scratch_addr =
282 i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
283 u32 *cs, flags = 0;
284
285 /*
286 * Ensure that any following seqno writes only happen when the render
287 * cache is indeed flushed.
288 *
289 * Workaround: 4th PIPE_CONTROL command (except the ones with only
290 * read-cache invalidate bits set) must have the CS_STALL bit set. We
291 * don't try to be clever and just set it unconditionally.
292 */
293 flags |= PIPE_CONTROL_CS_STALL;
294
295 /* Just flush everything. Experiments have shown that reducing the
296 * number of bits based on the write domains has little performance
297 * impact.
298 */
299 if (mode & EMIT_FLUSH) {
300 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
301 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
302 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
303 flags |= PIPE_CONTROL_FLUSH_ENABLE;
304 }
305 if (mode & EMIT_INVALIDATE) {
306 flags |= PIPE_CONTROL_TLB_INVALIDATE;
307 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
308 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
309 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
310 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
311 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
312 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
313 /*
314 * TLB invalidate requires a post-sync write.
315 */
316 flags |= PIPE_CONTROL_QW_WRITE;
317 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
318
319 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
320
321 /* Workaround: we must issue a pipe_control with CS-stall bit
322 * set before a pipe_control command that has the state cache
323 * invalidate bit set. */
324 gen7_render_ring_cs_stall_wa(req);
325 }
326
327 cs = intel_ring_begin(req, 4);
328 if (IS_ERR(cs))
329 return PTR_ERR(cs);
330
331 *cs++ = GFX_OP_PIPE_CONTROL(4);
332 *cs++ = flags;
333 *cs++ = scratch_addr;
334 *cs++ = 0;
335 intel_ring_advance(req, cs);
336
337 return 0;
338 }
339
340 static int
341 gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
342 {
343 u32 flags;
344 u32 *cs;
345
346 cs = intel_ring_begin(req, mode & EMIT_INVALIDATE ? 12 : 6);
347 if (IS_ERR(cs))
348 return PTR_ERR(cs);
349
350 flags = PIPE_CONTROL_CS_STALL;
351
352 if (mode & EMIT_FLUSH) {
353 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
354 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
355 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
356 flags |= PIPE_CONTROL_FLUSH_ENABLE;
357 }
358 if (mode & EMIT_INVALIDATE) {
359 flags |= PIPE_CONTROL_TLB_INVALIDATE;
360 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
365 flags |= PIPE_CONTROL_QW_WRITE;
366 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
367
368 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
369 cs = gen8_emit_pipe_control(cs,
370 PIPE_CONTROL_CS_STALL |
371 PIPE_CONTROL_STALL_AT_SCOREBOARD,
372 0);
373 }
374
375 cs = gen8_emit_pipe_control(cs, flags,
376 i915_ggtt_offset(req->engine->scratch) +
377 2 * CACHELINE_BYTES);
378
379 intel_ring_advance(req, cs);
380
381 return 0;
382 }
383
384 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
385 {
386 struct drm_i915_private *dev_priv = engine->i915;
387 u32 addr;
388
389 addr = dev_priv->status_page_dmah->busaddr;
390 if (INTEL_GEN(dev_priv) >= 4)
391 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
392 I915_WRITE(HWS_PGA, addr);
393 }
394
395 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
396 {
397 struct drm_i915_private *dev_priv = engine->i915;
398 i915_reg_t mmio;
399
400 /* The ring status page addresses are no longer next to the rest of
401 * the ring registers as of gen7.
402 */
403 if (IS_GEN7(dev_priv)) {
404 switch (engine->id) {
405 /*
406 * No more rings exist on Gen7. Default case is only to shut up
407 * gcc switch check warning.
408 */
409 default:
410 GEM_BUG_ON(engine->id);
411 case RCS:
412 mmio = RENDER_HWS_PGA_GEN7;
413 break;
414 case BCS:
415 mmio = BLT_HWS_PGA_GEN7;
416 break;
417 case VCS:
418 mmio = BSD_HWS_PGA_GEN7;
419 break;
420 case VECS:
421 mmio = VEBOX_HWS_PGA_GEN7;
422 break;
423 }
424 } else if (IS_GEN6(dev_priv)) {
425 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
426 } else {
427 /* XXX: gen8 returns to sanity */
428 mmio = RING_HWS_PGA(engine->mmio_base);
429 }
430
431 if (INTEL_GEN(dev_priv) >= 6)
432 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
433
434 I915_WRITE(mmio, engine->status_page.ggtt_offset);
435 POSTING_READ(mmio);
436
437 /*
438 * Flush the TLB for this page
439 *
440 * FIXME: These two bits have disappeared on gen8, so a question
441 * arises: do we still need this and if so how should we go about
442 * invalidating the TLB?
443 */
444 if (IS_GEN(dev_priv, 6, 7)) {
445 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
446
447 /* ring should be idle before issuing a sync flush*/
448 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
449
450 I915_WRITE(reg,
451 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
452 INSTPM_SYNC_FLUSH));
453 if (intel_wait_for_register(dev_priv,
454 reg, INSTPM_SYNC_FLUSH, 0,
455 1000))
456 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
457 engine->name);
458 }
459 }
460
461 static bool stop_ring(struct intel_engine_cs *engine)
462 {
463 struct drm_i915_private *dev_priv = engine->i915;
464
465 if (INTEL_GEN(dev_priv) > 2) {
466 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
467 if (intel_wait_for_register(dev_priv,
468 RING_MI_MODE(engine->mmio_base),
469 MODE_IDLE,
470 MODE_IDLE,
471 1000)) {
472 DRM_ERROR("%s : timed out trying to stop ring\n",
473 engine->name);
474 /* Sometimes we observe that the idle flag is not
475 * set even though the ring is empty. So double
476 * check before giving up.
477 */
478 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
479 return false;
480 }
481 }
482
483 I915_WRITE_CTL(engine, 0);
484 I915_WRITE_HEAD(engine, 0);
485 I915_WRITE_TAIL(engine, 0);
486
487 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
488 }
489
490 static int init_ring_common(struct intel_engine_cs *engine)
491 {
492 struct drm_i915_private *dev_priv = engine->i915;
493 struct intel_ring *ring = engine->buffer;
494 int ret = 0;
495
496 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
497
498 if (!stop_ring(engine)) {
499 /* G45 ring initialization often fails to reset head to zero */
500 DRM_DEBUG_KMS("%s head not reset to zero "
501 "ctl %08x head %08x tail %08x start %08x\n",
502 engine->name,
503 I915_READ_CTL(engine),
504 I915_READ_HEAD(engine),
505 I915_READ_TAIL(engine),
506 I915_READ_START(engine));
507
508 if (!stop_ring(engine)) {
509 DRM_ERROR("failed to set %s head to zero "
510 "ctl %08x head %08x tail %08x start %08x\n",
511 engine->name,
512 I915_READ_CTL(engine),
513 I915_READ_HEAD(engine),
514 I915_READ_TAIL(engine),
515 I915_READ_START(engine));
516 ret = -EIO;
517 goto out;
518 }
519 }
520
521 if (HWS_NEEDS_PHYSICAL(dev_priv))
522 ring_setup_phys_status_page(engine);
523 else
524 intel_ring_setup_status_page(engine);
525
526 intel_engine_reset_breadcrumbs(engine);
527
528 /* Enforce ordering by reading HEAD register back */
529 I915_READ_HEAD(engine);
530
531 /* Initialize the ring. This must happen _after_ we've cleared the ring
532 * registers with the above sequence (the readback of the HEAD registers
533 * also enforces ordering), otherwise the hw might lose the new ring
534 * register values. */
535 I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
536
537 /* WaClearRingBufHeadRegAtInit:ctg,elk */
538 if (I915_READ_HEAD(engine))
539 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
540 engine->name, I915_READ_HEAD(engine));
541
542 intel_ring_update_space(ring);
543 I915_WRITE_HEAD(engine, ring->head);
544 I915_WRITE_TAIL(engine, ring->tail);
545 (void)I915_READ_TAIL(engine);
546
547 I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
548
549 /* If the head is still not zero, the ring is dead */
550 if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
551 RING_VALID, RING_VALID,
552 50)) {
553 DRM_ERROR("%s initialization failed "
554 "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
555 engine->name,
556 I915_READ_CTL(engine),
557 I915_READ_CTL(engine) & RING_VALID,
558 I915_READ_HEAD(engine), ring->head,
559 I915_READ_TAIL(engine), ring->tail,
560 I915_READ_START(engine),
561 i915_ggtt_offset(ring->vma));
562 ret = -EIO;
563 goto out;
564 }
565
566 intel_engine_init_hangcheck(engine);
567
568 if (INTEL_GEN(dev_priv) > 2)
569 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
570
571 out:
572 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
573
574 return ret;
575 }
576
577 static void reset_ring_common(struct intel_engine_cs *engine,
578 struct drm_i915_gem_request *request)
579 {
580 /*
581 * RC6 must be prevented until the reset is complete and the engine
582 * reinitialised. If it occurs in the middle of this sequence, the
583 * state written to/loaded from the power context is ill-defined (e.g.
584 * the PP_BASE_DIR may be lost).
585 */
586 assert_forcewakes_active(engine->i915, FORCEWAKE_ALL);
587
588 /*
589 * Try to restore the logical GPU state to match the continuation
590 * of the request queue. If we skip the context/PD restore, then
591 * the next request may try to execute assuming that its context
592 * is valid and loaded on the GPU and so may try to access invalid
593 * memory, prompting repeated GPU hangs.
594 *
595 * If the request was guilty, we still restore the logical state
596 * in case the next request requires it (e.g. the aliasing ppgtt),
597 * but skip over the hung batch.
598 *
599 * If the request was innocent, we try to replay the request with
600 * the restored context.
601 */
602 if (request) {
603 struct drm_i915_private *dev_priv = request->i915;
604 struct intel_context *ce = &request->ctx->engine[engine->id];
605 struct i915_hw_ppgtt *ppgtt;
606
607 /* FIXME consider gen8 reset */
608
609 if (ce->state) {
610 I915_WRITE(CCID,
611 i915_ggtt_offset(ce->state) |
612 BIT(8) /* must be set! */ |
613 CCID_EXTENDED_STATE_SAVE |
614 CCID_EXTENDED_STATE_RESTORE |
615 CCID_EN);
616 }
617
618 ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
619 if (ppgtt) {
620 u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
621
622 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
623 I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
624
625 /* Wait for the PD reload to complete */
626 if (intel_wait_for_register(dev_priv,
627 RING_PP_DIR_BASE(engine),
628 BIT(0), 0,
629 10))
630 DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
631
632 ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
633 }
634
635 /* If the rq hung, jump to its breadcrumb and skip the batch */
636 if (request->fence.error == -EIO)
637 request->ring->head = request->postfix;
638 } else {
639 engine->legacy_active_context = NULL;
640 }
641 }
642
643 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
644 {
645 int ret;
646
647 ret = intel_ring_workarounds_emit(req);
648 if (ret != 0)
649 return ret;
650
651 ret = i915_gem_render_state_emit(req);
652 if (ret)
653 return ret;
654
655 return 0;
656 }
657
658 static int init_render_ring(struct intel_engine_cs *engine)
659 {
660 struct drm_i915_private *dev_priv = engine->i915;
661 int ret = init_ring_common(engine);
662 if (ret)
663 return ret;
664
665 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
666 if (IS_GEN(dev_priv, 4, 6))
667 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
668
669 /* We need to disable the AsyncFlip performance optimisations in order
670 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
671 * programmed to '1' on all products.
672 *
673 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
674 */
675 if (IS_GEN(dev_priv, 6, 7))
676 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
677
678 /* Required for the hardware to program scanline values for waiting */
679 /* WaEnableFlushTlbInvalidationMode:snb */
680 if (IS_GEN6(dev_priv))
681 I915_WRITE(GFX_MODE,
682 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
683
684 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
685 if (IS_GEN7(dev_priv))
686 I915_WRITE(GFX_MODE_GEN7,
687 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
688 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
689
690 if (IS_GEN6(dev_priv)) {
691 /* From the Sandybridge PRM, volume 1 part 3, page 24:
692 * "If this bit is set, STCunit will have LRA as replacement
693 * policy. [...] This bit must be reset. LRA replacement
694 * policy is not supported."
695 */
696 I915_WRITE(CACHE_MODE_0,
697 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
698 }
699
700 if (IS_GEN(dev_priv, 6, 7))
701 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
702
703 if (INTEL_INFO(dev_priv)->gen >= 6)
704 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
705
706 return init_workarounds_ring(engine);
707 }
708
709 static void render_ring_cleanup(struct intel_engine_cs *engine)
710 {
711 struct drm_i915_private *dev_priv = engine->i915;
712
713 i915_vma_unpin_and_release(&dev_priv->semaphore);
714 }
715
716 static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *cs)
717 {
718 struct drm_i915_private *dev_priv = req->i915;
719 struct intel_engine_cs *waiter;
720 enum intel_engine_id id;
721
722 for_each_engine(waiter, dev_priv, id) {
723 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
724 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
725 continue;
726
727 *cs++ = GFX_OP_PIPE_CONTROL(6);
728 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_QW_WRITE |
729 PIPE_CONTROL_CS_STALL;
730 *cs++ = lower_32_bits(gtt_offset);
731 *cs++ = upper_32_bits(gtt_offset);
732 *cs++ = req->global_seqno;
733 *cs++ = 0;
734 *cs++ = MI_SEMAPHORE_SIGNAL |
735 MI_SEMAPHORE_TARGET(waiter->hw_id);
736 *cs++ = 0;
737 }
738
739 return cs;
740 }
741
742 static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *cs)
743 {
744 struct drm_i915_private *dev_priv = req->i915;
745 struct intel_engine_cs *waiter;
746 enum intel_engine_id id;
747
748 for_each_engine(waiter, dev_priv, id) {
749 u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
750 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
751 continue;
752
753 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
754 *cs++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
755 *cs++ = upper_32_bits(gtt_offset);
756 *cs++ = req->global_seqno;
757 *cs++ = MI_SEMAPHORE_SIGNAL |
758 MI_SEMAPHORE_TARGET(waiter->hw_id);
759 *cs++ = 0;
760 }
761
762 return cs;
763 }
764
765 static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *cs)
766 {
767 struct drm_i915_private *dev_priv = req->i915;
768 struct intel_engine_cs *engine;
769 enum intel_engine_id id;
770 int num_rings = 0;
771
772 for_each_engine(engine, dev_priv, id) {
773 i915_reg_t mbox_reg;
774
775 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
776 continue;
777
778 mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
779 if (i915_mmio_reg_valid(mbox_reg)) {
780 *cs++ = MI_LOAD_REGISTER_IMM(1);
781 *cs++ = i915_mmio_reg_offset(mbox_reg);
782 *cs++ = req->global_seqno;
783 num_rings++;
784 }
785 }
786 if (num_rings & 1)
787 *cs++ = MI_NOOP;
788
789 return cs;
790 }
791
792 static void cancel_requests(struct intel_engine_cs *engine)
793 {
794 struct drm_i915_gem_request *request;
795 unsigned long flags;
796
797 spin_lock_irqsave(&engine->timeline->lock, flags);
798
799 /* Mark all submitted requests as skipped. */
800 list_for_each_entry(request, &engine->timeline->requests, link) {
801 GEM_BUG_ON(!request->global_seqno);
802 if (!i915_gem_request_completed(request))
803 dma_fence_set_error(&request->fence, -EIO);
804 }
805 /* Remaining _unready_ requests will be nop'ed when submitted */
806
807 spin_unlock_irqrestore(&engine->timeline->lock, flags);
808 }
809
810 static void i9xx_submit_request(struct drm_i915_gem_request *request)
811 {
812 struct drm_i915_private *dev_priv = request->i915;
813
814 i915_gem_request_submit(request);
815
816 I915_WRITE_TAIL(request->engine,
817 intel_ring_set_tail(request->ring, request->tail));
818 }
819
820 static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
821 {
822 *cs++ = MI_STORE_DWORD_INDEX;
823 *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
824 *cs++ = req->global_seqno;
825 *cs++ = MI_USER_INTERRUPT;
826
827 req->tail = intel_ring_offset(req, cs);
828 assert_ring_tail_valid(req->ring, req->tail);
829 }
830
831 static const int i9xx_emit_breadcrumb_sz = 4;
832
833 /**
834 * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
835 *
836 * @request - request to write to the ring
837 *
838 * Update the mailbox registers in the *other* rings with the current seqno.
839 * This acts like a signal in the canonical semaphore.
840 */
841 static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
842 {
843 return i9xx_emit_breadcrumb(req,
844 req->engine->semaphore.signal(req, cs));
845 }
846
847 static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
848 u32 *cs)
849 {
850 struct intel_engine_cs *engine = req->engine;
851
852 if (engine->semaphore.signal)
853 cs = engine->semaphore.signal(req, cs);
854
855 *cs++ = GFX_OP_PIPE_CONTROL(6);
856 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
857 PIPE_CONTROL_QW_WRITE;
858 *cs++ = intel_hws_seqno_address(engine);
859 *cs++ = 0;
860 *cs++ = req->global_seqno;
861 /* We're thrashing one dword of HWS. */
862 *cs++ = 0;
863 *cs++ = MI_USER_INTERRUPT;
864 *cs++ = MI_NOOP;
865
866 req->tail = intel_ring_offset(req, cs);
867 assert_ring_tail_valid(req->ring, req->tail);
868 }
869
870 static const int gen8_render_emit_breadcrumb_sz = 8;
871
872 /**
873 * intel_ring_sync - sync the waiter to the signaller on seqno
874 *
875 * @waiter - ring that is waiting
876 * @signaller - ring which has, or will signal
877 * @seqno - seqno which the waiter will block on
878 */
879
880 static int
881 gen8_ring_sync_to(struct drm_i915_gem_request *req,
882 struct drm_i915_gem_request *signal)
883 {
884 struct drm_i915_private *dev_priv = req->i915;
885 u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
886 struct i915_hw_ppgtt *ppgtt;
887 u32 *cs;
888
889 cs = intel_ring_begin(req, 4);
890 if (IS_ERR(cs))
891 return PTR_ERR(cs);
892
893 *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT |
894 MI_SEMAPHORE_SAD_GTE_SDD;
895 *cs++ = signal->global_seqno;
896 *cs++ = lower_32_bits(offset);
897 *cs++ = upper_32_bits(offset);
898 intel_ring_advance(req, cs);
899
900 /* When the !RCS engines idle waiting upon a semaphore, they lose their
901 * pagetables and we must reload them before executing the batch.
902 * We do this on the i915_switch_context() following the wait and
903 * before the dispatch.
904 */
905 ppgtt = req->ctx->ppgtt;
906 if (ppgtt && req->engine->id != RCS)
907 ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
908 return 0;
909 }
910
911 static int
912 gen6_ring_sync_to(struct drm_i915_gem_request *req,
913 struct drm_i915_gem_request *signal)
914 {
915 u32 dw1 = MI_SEMAPHORE_MBOX |
916 MI_SEMAPHORE_COMPARE |
917 MI_SEMAPHORE_REGISTER;
918 u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
919 u32 *cs;
920
921 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
922
923 cs = intel_ring_begin(req, 4);
924 if (IS_ERR(cs))
925 return PTR_ERR(cs);
926
927 *cs++ = dw1 | wait_mbox;
928 /* Throughout all of the GEM code, seqno passed implies our current
929 * seqno is >= the last seqno executed. However for hardware the
930 * comparison is strictly greater than.
931 */
932 *cs++ = signal->global_seqno - 1;
933 *cs++ = 0;
934 *cs++ = MI_NOOP;
935 intel_ring_advance(req, cs);
936
937 return 0;
938 }
939
940 static void
941 gen5_seqno_barrier(struct intel_engine_cs *engine)
942 {
943 /* MI_STORE are internally buffered by the GPU and not flushed
944 * either by MI_FLUSH or SyncFlush or any other combination of
945 * MI commands.
946 *
947 * "Only the submission of the store operation is guaranteed.
948 * The write result will be complete (coherent) some time later
949 * (this is practically a finite period but there is no guaranteed
950 * latency)."
951 *
952 * Empirically, we observe that we need a delay of at least 75us to
953 * be sure that the seqno write is visible by the CPU.
954 */
955 usleep_range(125, 250);
956 }
957
958 static void
959 gen6_seqno_barrier(struct intel_engine_cs *engine)
960 {
961 struct drm_i915_private *dev_priv = engine->i915;
962
963 /* Workaround to force correct ordering between irq and seqno writes on
964 * ivb (and maybe also on snb) by reading from a CS register (like
965 * ACTHD) before reading the status page.
966 *
967 * Note that this effectively stalls the read by the time it takes to
968 * do a memory transaction, which more or less ensures that the write
969 * from the GPU has sufficient time to invalidate the CPU cacheline.
970 * Alternatively we could delay the interrupt from the CS ring to give
971 * the write time to land, but that would incur a delay after every
972 * batch i.e. much more frequent than a delay when waiting for the
973 * interrupt (with the same net latency).
974 *
975 * Also note that to prevent whole machine hangs on gen7, we have to
976 * take the spinlock to guard against concurrent cacheline access.
977 */
978 spin_lock_irq(&dev_priv->uncore.lock);
979 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
980 spin_unlock_irq(&dev_priv->uncore.lock);
981 }
982
983 static void
984 gen5_irq_enable(struct intel_engine_cs *engine)
985 {
986 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
987 }
988
989 static void
990 gen5_irq_disable(struct intel_engine_cs *engine)
991 {
992 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
993 }
994
995 static void
996 i9xx_irq_enable(struct intel_engine_cs *engine)
997 {
998 struct drm_i915_private *dev_priv = engine->i915;
999
1000 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1001 I915_WRITE(IMR, dev_priv->irq_mask);
1002 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1003 }
1004
1005 static void
1006 i9xx_irq_disable(struct intel_engine_cs *engine)
1007 {
1008 struct drm_i915_private *dev_priv = engine->i915;
1009
1010 dev_priv->irq_mask |= engine->irq_enable_mask;
1011 I915_WRITE(IMR, dev_priv->irq_mask);
1012 }
1013
1014 static void
1015 i8xx_irq_enable(struct intel_engine_cs *engine)
1016 {
1017 struct drm_i915_private *dev_priv = engine->i915;
1018
1019 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1020 I915_WRITE16(IMR, dev_priv->irq_mask);
1021 POSTING_READ16(RING_IMR(engine->mmio_base));
1022 }
1023
1024 static void
1025 i8xx_irq_disable(struct intel_engine_cs *engine)
1026 {
1027 struct drm_i915_private *dev_priv = engine->i915;
1028
1029 dev_priv->irq_mask |= engine->irq_enable_mask;
1030 I915_WRITE16(IMR, dev_priv->irq_mask);
1031 }
1032
1033 static int
1034 bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1035 {
1036 u32 *cs;
1037
1038 cs = intel_ring_begin(req, 2);
1039 if (IS_ERR(cs))
1040 return PTR_ERR(cs);
1041
1042 *cs++ = MI_FLUSH;
1043 *cs++ = MI_NOOP;
1044 intel_ring_advance(req, cs);
1045 return 0;
1046 }
1047
1048 static void
1049 gen6_irq_enable(struct intel_engine_cs *engine)
1050 {
1051 struct drm_i915_private *dev_priv = engine->i915;
1052
1053 I915_WRITE_IMR(engine,
1054 ~(engine->irq_enable_mask |
1055 engine->irq_keep_mask));
1056 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1057 }
1058
1059 static void
1060 gen6_irq_disable(struct intel_engine_cs *engine)
1061 {
1062 struct drm_i915_private *dev_priv = engine->i915;
1063
1064 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1065 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1066 }
1067
1068 static void
1069 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1070 {
1071 struct drm_i915_private *dev_priv = engine->i915;
1072
1073 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1074 gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
1075 }
1076
1077 static void
1078 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1079 {
1080 struct drm_i915_private *dev_priv = engine->i915;
1081
1082 I915_WRITE_IMR(engine, ~0);
1083 gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
1084 }
1085
1086 static void
1087 gen8_irq_enable(struct intel_engine_cs *engine)
1088 {
1089 struct drm_i915_private *dev_priv = engine->i915;
1090
1091 I915_WRITE_IMR(engine,
1092 ~(engine->irq_enable_mask |
1093 engine->irq_keep_mask));
1094 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1095 }
1096
1097 static void
1098 gen8_irq_disable(struct intel_engine_cs *engine)
1099 {
1100 struct drm_i915_private *dev_priv = engine->i915;
1101
1102 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1103 }
1104
1105 static int
1106 i965_emit_bb_start(struct drm_i915_gem_request *req,
1107 u64 offset, u32 length,
1108 unsigned int dispatch_flags)
1109 {
1110 u32 *cs;
1111
1112 cs = intel_ring_begin(req, 2);
1113 if (IS_ERR(cs))
1114 return PTR_ERR(cs);
1115
1116 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
1117 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
1118 *cs++ = offset;
1119 intel_ring_advance(req, cs);
1120
1121 return 0;
1122 }
1123
1124 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1125 #define I830_BATCH_LIMIT (256*1024)
1126 #define I830_TLB_ENTRIES (2)
1127 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1128 static int
1129 i830_emit_bb_start(struct drm_i915_gem_request *req,
1130 u64 offset, u32 len,
1131 unsigned int dispatch_flags)
1132 {
1133 u32 *cs, cs_offset = i915_ggtt_offset(req->engine->scratch);
1134
1135 cs = intel_ring_begin(req, 6);
1136 if (IS_ERR(cs))
1137 return PTR_ERR(cs);
1138
1139 /* Evict the invalid PTE TLBs */
1140 *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1141 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1142 *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1143 *cs++ = cs_offset;
1144 *cs++ = 0xdeadbeef;
1145 *cs++ = MI_NOOP;
1146 intel_ring_advance(req, cs);
1147
1148 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1149 if (len > I830_BATCH_LIMIT)
1150 return -ENOSPC;
1151
1152 cs = intel_ring_begin(req, 6 + 2);
1153 if (IS_ERR(cs))
1154 return PTR_ERR(cs);
1155
1156 /* Blit the batch (which has now all relocs applied) to the
1157 * stable batch scratch bo area (so that the CS never
1158 * stumbles over its tlb invalidation bug) ...
1159 */
1160 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
1161 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1162 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1163 *cs++ = cs_offset;
1164 *cs++ = 4096;
1165 *cs++ = offset;
1166
1167 *cs++ = MI_FLUSH;
1168 *cs++ = MI_NOOP;
1169 intel_ring_advance(req, cs);
1170
1171 /* ... and execute it. */
1172 offset = cs_offset;
1173 }
1174
1175 cs = intel_ring_begin(req, 2);
1176 if (IS_ERR(cs))
1177 return PTR_ERR(cs);
1178
1179 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1180 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1181 MI_BATCH_NON_SECURE);
1182 intel_ring_advance(req, cs);
1183
1184 return 0;
1185 }
1186
1187 static int
1188 i915_emit_bb_start(struct drm_i915_gem_request *req,
1189 u64 offset, u32 len,
1190 unsigned int dispatch_flags)
1191 {
1192 u32 *cs;
1193
1194 cs = intel_ring_begin(req, 2);
1195 if (IS_ERR(cs))
1196 return PTR_ERR(cs);
1197
1198 *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1199 *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1200 MI_BATCH_NON_SECURE);
1201 intel_ring_advance(req, cs);
1202
1203 return 0;
1204 }
1205
1206
1207
1208 int intel_ring_pin(struct intel_ring *ring,
1209 struct drm_i915_private *i915,
1210 unsigned int offset_bias)
1211 {
1212 enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
1213 struct i915_vma *vma = ring->vma;
1214 unsigned int flags;
1215 void *addr;
1216 int ret;
1217
1218 GEM_BUG_ON(ring->vaddr);
1219
1220
1221 flags = PIN_GLOBAL;
1222 if (offset_bias)
1223 flags |= PIN_OFFSET_BIAS | offset_bias;
1224 if (vma->obj->stolen)
1225 flags |= PIN_MAPPABLE;
1226
1227 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1228 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1229 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1230 else
1231 ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1232 if (unlikely(ret))
1233 return ret;
1234 }
1235
1236 ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1237 if (unlikely(ret))
1238 return ret;
1239
1240 if (i915_vma_is_map_and_fenceable(vma))
1241 addr = (void __force *)i915_vma_pin_iomap(vma);
1242 else
1243 addr = i915_gem_object_pin_map(vma->obj, map);
1244 if (IS_ERR(addr))
1245 goto err;
1246
1247 vma->obj->pin_global++;
1248
1249 ring->vaddr = addr;
1250 return 0;
1251
1252 err:
1253 i915_vma_unpin(vma);
1254 return PTR_ERR(addr);
1255 }
1256
1257 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1258 {
1259 GEM_BUG_ON(!list_empty(&ring->request_list));
1260 ring->tail = tail;
1261 ring->head = tail;
1262 ring->emit = tail;
1263 intel_ring_update_space(ring);
1264 }
1265
1266 void intel_ring_unpin(struct intel_ring *ring)
1267 {
1268 GEM_BUG_ON(!ring->vma);
1269 GEM_BUG_ON(!ring->vaddr);
1270
1271 /* Discard any unused bytes beyond that submitted to hw. */
1272 intel_ring_reset(ring, ring->tail);
1273
1274 if (i915_vma_is_map_and_fenceable(ring->vma))
1275 i915_vma_unpin_iomap(ring->vma);
1276 else
1277 i915_gem_object_unpin_map(ring->vma->obj);
1278 ring->vaddr = NULL;
1279
1280 ring->vma->obj->pin_global--;
1281 i915_vma_unpin(ring->vma);
1282 }
1283
1284 static struct i915_vma *
1285 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1286 {
1287 struct i915_address_space *vm = &dev_priv->ggtt.base;
1288 struct drm_i915_gem_object *obj;
1289 struct i915_vma *vma;
1290
1291 obj = i915_gem_object_create_stolen(dev_priv, size);
1292 if (!obj)
1293 obj = i915_gem_object_create_internal(dev_priv, size);
1294 if (IS_ERR(obj))
1295 return ERR_CAST(obj);
1296
1297 /*
1298 * Mark ring buffers as read-only from GPU side (so no stray overwrites)
1299 * if supported by the platform's GGTT.
1300 */
1301 if (vm->has_read_only)
1302 i915_gem_object_set_readonly(obj);
1303
1304 vma = i915_vma_instance(obj, vm, NULL);
1305 if (IS_ERR(vma))
1306 goto err;
1307
1308 return vma;
1309
1310 err:
1311 i915_gem_object_put(obj);
1312 return vma;
1313 }
1314
1315 struct intel_ring *
1316 intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1317 {
1318 struct intel_ring *ring;
1319 struct i915_vma *vma;
1320
1321 GEM_BUG_ON(!is_power_of_2(size));
1322 GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1323
1324 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1325 if (!ring)
1326 return ERR_PTR(-ENOMEM);
1327
1328 INIT_LIST_HEAD(&ring->request_list);
1329
1330 ring->size = size;
1331 /* Workaround an erratum on the i830 which causes a hang if
1332 * the TAIL pointer points to within the last 2 cachelines
1333 * of the buffer.
1334 */
1335 ring->effective_size = size;
1336 if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1337 ring->effective_size -= 2 * CACHELINE_BYTES;
1338
1339 intel_ring_update_space(ring);
1340
1341 vma = intel_ring_create_vma(engine->i915, size);
1342 if (IS_ERR(vma)) {
1343 kfree(ring);
1344 return ERR_CAST(vma);
1345 }
1346 ring->vma = vma;
1347
1348 return ring;
1349 }
1350
1351 void
1352 intel_ring_free(struct intel_ring *ring)
1353 {
1354 struct drm_i915_gem_object *obj = ring->vma->obj;
1355
1356 i915_vma_close(ring->vma);
1357 __i915_gem_object_release_unless_active(obj);
1358
1359 kfree(ring);
1360 }
1361
1362 static int context_pin(struct i915_gem_context *ctx)
1363 {
1364 struct i915_vma *vma = ctx->engine[RCS].state;
1365 int ret;
1366
1367 /*
1368 * Clear this page out of any CPU caches for coherent swap-in/out.
1369 * We only want to do this on the first bind so that we do not stall
1370 * on an active context (which by nature is already on the GPU).
1371 */
1372 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1373 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1374 if (ret)
1375 return ret;
1376 }
1377
1378 return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
1379 PIN_GLOBAL | PIN_HIGH);
1380 }
1381
1382 static struct i915_vma *
1383 alloc_context_vma(struct intel_engine_cs *engine)
1384 {
1385 struct drm_i915_private *i915 = engine->i915;
1386 struct drm_i915_gem_object *obj;
1387 struct i915_vma *vma;
1388
1389 obj = i915_gem_object_create(i915, engine->context_size);
1390 if (IS_ERR(obj))
1391 return ERR_CAST(obj);
1392
1393 /*
1394 * Try to make the context utilize L3 as well as LLC.
1395 *
1396 * On VLV we don't have L3 controls in the PTEs so we
1397 * shouldn't touch the cache level, especially as that
1398 * would make the object snooped which might have a
1399 * negative performance impact.
1400 *
1401 * Snooping is required on non-llc platforms in execlist
1402 * mode, but since all GGTT accesses use PAT entry 0 we
1403 * get snooping anyway regardless of cache_level.
1404 *
1405 * This is only applicable for Ivy Bridge devices since
1406 * later platforms don't have L3 control bits in the PTE.
1407 */
1408 if (IS_IVYBRIDGE(i915)) {
1409 /* Ignore any error, regard it as a simple optimisation */
1410 i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1411 }
1412
1413 vma = i915_vma_instance(obj, &i915->ggtt.base, NULL);
1414 if (IS_ERR(vma))
1415 i915_gem_object_put(obj);
1416
1417 return vma;
1418 }
1419
1420 static struct intel_ring *
1421 intel_ring_context_pin(struct intel_engine_cs *engine,
1422 struct i915_gem_context *ctx)
1423 {
1424 struct intel_context *ce = &ctx->engine[engine->id];
1425 int ret;
1426
1427 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1428
1429 if (likely(ce->pin_count++))
1430 goto out;
1431 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1432
1433 if (!ce->state && engine->context_size) {
1434 struct i915_vma *vma;
1435
1436 vma = alloc_context_vma(engine);
1437 if (IS_ERR(vma)) {
1438 ret = PTR_ERR(vma);
1439 goto err;
1440 }
1441
1442 ce->state = vma;
1443 }
1444
1445 if (ce->state) {
1446 ret = context_pin(ctx);
1447 if (ret)
1448 goto err;
1449
1450 ce->state->obj->pin_global++;
1451 }
1452
1453 /* The kernel context is only used as a placeholder for flushing the
1454 * active context. It is never used for submitting user rendering and
1455 * as such never requires the golden render context, and so we can skip
1456 * emitting it when we switch to the kernel context. This is required
1457 * as during eviction we cannot allocate and pin the renderstate in
1458 * order to initialise the context.
1459 */
1460 if (i915_gem_context_is_kernel(ctx))
1461 ce->initialised = true;
1462
1463 i915_gem_context_get(ctx);
1464
1465 out:
1466 /* One ringbuffer to rule them all */
1467 return engine->buffer;
1468
1469 err:
1470 ce->pin_count = 0;
1471 return ERR_PTR(ret);
1472 }
1473
1474 static void intel_ring_context_unpin(struct intel_engine_cs *engine,
1475 struct i915_gem_context *ctx)
1476 {
1477 struct intel_context *ce = &ctx->engine[engine->id];
1478
1479 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1480 GEM_BUG_ON(ce->pin_count == 0);
1481
1482 if (--ce->pin_count)
1483 return;
1484
1485 if (ce->state) {
1486 ce->state->obj->pin_global--;
1487 i915_vma_unpin(ce->state);
1488 }
1489
1490 i915_gem_context_put(ctx);
1491 }
1492
1493 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1494 {
1495 struct intel_ring *ring;
1496 int err;
1497
1498 intel_engine_setup_common(engine);
1499
1500 err = intel_engine_init_common(engine);
1501 if (err)
1502 goto err;
1503
1504 ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
1505 if (IS_ERR(ring)) {
1506 err = PTR_ERR(ring);
1507 goto err;
1508 }
1509
1510 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1511 err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
1512 if (err)
1513 goto err_ring;
1514
1515 GEM_BUG_ON(engine->buffer);
1516 engine->buffer = ring;
1517
1518 return 0;
1519
1520 err_ring:
1521 intel_ring_free(ring);
1522 err:
1523 intel_engine_cleanup_common(engine);
1524 return err;
1525 }
1526
1527 void intel_engine_cleanup(struct intel_engine_cs *engine)
1528 {
1529 struct drm_i915_private *dev_priv = engine->i915;
1530
1531 WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1532 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1533
1534 intel_ring_unpin(engine->buffer);
1535 intel_ring_free(engine->buffer);
1536
1537 if (engine->cleanup)
1538 engine->cleanup(engine);
1539
1540 intel_engine_cleanup_common(engine);
1541
1542 dev_priv->engine[engine->id] = NULL;
1543 kfree(engine);
1544 }
1545
1546 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1547 {
1548 struct intel_engine_cs *engine;
1549 enum intel_engine_id id;
1550
1551 /* Restart from the beginning of the rings for convenience */
1552 for_each_engine(engine, dev_priv, id)
1553 intel_ring_reset(engine->buffer, 0);
1554 }
1555
1556 static int ring_request_alloc(struct drm_i915_gem_request *request)
1557 {
1558 u32 *cs;
1559
1560 GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);
1561
1562 /* Flush enough space to reduce the likelihood of waiting after
1563 * we start building the request - in which case we will just
1564 * have to repeat work.
1565 */
1566 request->reserved_space += LEGACY_REQUEST_SIZE;
1567
1568 cs = intel_ring_begin(request, 0);
1569 if (IS_ERR(cs))
1570 return PTR_ERR(cs);
1571
1572 request->reserved_space -= LEGACY_REQUEST_SIZE;
1573 return 0;
1574 }
1575
1576 static noinline int wait_for_space(struct drm_i915_gem_request *req,
1577 unsigned int bytes)
1578 {
1579 struct intel_ring *ring = req->ring;
1580 struct drm_i915_gem_request *target;
1581 long timeout;
1582
1583 lockdep_assert_held(&req->i915->drm.struct_mutex);
1584
1585 if (intel_ring_update_space(ring) >= bytes)
1586 return 0;
1587
1588 /*
1589 * Space is reserved in the ringbuffer for finalising the request,
1590 * as that cannot be allowed to fail. During request finalisation,
1591 * reserved_space is set to 0 to stop the overallocation and the
1592 * assumption is that then we never need to wait (which has the
1593 * risk of failing with EINTR).
1594 *
1595 * See also i915_gem_request_alloc() and i915_add_request().
1596 */
1597 GEM_BUG_ON(!req->reserved_space);
1598
1599 list_for_each_entry(target, &ring->request_list, ring_link) {
1600 /* Would completion of this request free enough space? */
1601 if (bytes <= __intel_ring_space(target->postfix,
1602 ring->emit, ring->size))
1603 break;
1604 }
1605
1606 if (WARN_ON(&target->ring_link == &ring->request_list))
1607 return -ENOSPC;
1608
1609 timeout = i915_wait_request(target,
1610 I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1611 MAX_SCHEDULE_TIMEOUT);
1612 if (timeout < 0)
1613 return timeout;
1614
1615 i915_gem_request_retire_upto(target);
1616
1617 intel_ring_update_space(ring);
1618 GEM_BUG_ON(ring->space < bytes);
1619 return 0;
1620 }
1621
1622 u32 *intel_ring_begin(struct drm_i915_gem_request *req,
1623 unsigned int num_dwords)
1624 {
1625 struct intel_ring *ring = req->ring;
1626 const unsigned int remain_usable = ring->effective_size - ring->emit;
1627 const unsigned int bytes = num_dwords * sizeof(u32);
1628 unsigned int need_wrap = 0;
1629 unsigned int total_bytes;
1630 u32 *cs;
1631
1632 /* Packets must be qword aligned. */
1633 GEM_BUG_ON(num_dwords & 1);
1634
1635 total_bytes = bytes + req->reserved_space;
1636 GEM_BUG_ON(total_bytes > ring->effective_size);
1637
1638 if (unlikely(total_bytes > remain_usable)) {
1639 const int remain_actual = ring->size - ring->emit;
1640
1641 if (bytes > remain_usable) {
1642 /*
1643 * Not enough space for the basic request. So need to
1644 * flush out the remainder and then wait for
1645 * base + reserved.
1646 */
1647 total_bytes += remain_actual;
1648 need_wrap = remain_actual | 1;
1649 } else {
1650 /*
1651 * The base request will fit but the reserved space
1652 * falls off the end. So we don't need an immediate
1653 * wrap and only need to effectively wait for the
1654 * reserved size from the start of ringbuffer.
1655 */
1656 total_bytes = req->reserved_space + remain_actual;
1657 }
1658 }
1659
1660 if (unlikely(total_bytes > ring->space)) {
1661 int ret = wait_for_space(req, total_bytes);
1662 if (unlikely(ret))
1663 return ERR_PTR(ret);
1664 }
1665
1666 if (unlikely(need_wrap)) {
1667 need_wrap &= ~1;
1668 GEM_BUG_ON(need_wrap > ring->space);
1669 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1670
1671 /* Fill the tail with MI_NOOP */
1672 memset(ring->vaddr + ring->emit, 0, need_wrap);
1673 ring->emit = 0;
1674 ring->space -= need_wrap;
1675 }
1676
1677 GEM_BUG_ON(ring->emit > ring->size - bytes);
1678 GEM_BUG_ON(ring->space < bytes);
1679 cs = ring->vaddr + ring->emit;
1680 GEM_DEBUG_EXEC(memset(cs, POISON_INUSE, bytes));
1681 ring->emit += bytes;
1682 ring->space -= bytes;
1683
1684 return cs;
1685 }
1686
1687 /* Align the ring tail to a cacheline boundary */
1688 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
1689 {
1690 int num_dwords =
1691 (req->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1692 u32 *cs;
1693
1694 if (num_dwords == 0)
1695 return 0;
1696
1697 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1698 cs = intel_ring_begin(req, num_dwords);
1699 if (IS_ERR(cs))
1700 return PTR_ERR(cs);
1701
1702 while (num_dwords--)
1703 *cs++ = MI_NOOP;
1704
1705 intel_ring_advance(req, cs);
1706
1707 return 0;
1708 }
1709
1710 static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
1711 {
1712 struct drm_i915_private *dev_priv = request->i915;
1713
1714 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1715
1716 /* Every tail move must follow the sequence below */
1717
1718 /* Disable notification that the ring is IDLE. The GT
1719 * will then assume that it is busy and bring it out of rc6.
1720 */
1721 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1722 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1723
1724 /* Clear the context id. Here be magic! */
1725 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1726
1727 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1728 if (__intel_wait_for_register_fw(dev_priv,
1729 GEN6_BSD_SLEEP_PSMI_CONTROL,
1730 GEN6_BSD_SLEEP_INDICATOR,
1731 0,
1732 1000, 0, NULL))
1733 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1734
1735 /* Now that the ring is fully powered up, update the tail */
1736 i9xx_submit_request(request);
1737
1738 /* Let the ring send IDLE messages to the GT again,
1739 * and so let it sleep to conserve power when idle.
1740 */
1741 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1742 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1743
1744 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1745 }
1746
1747 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1748 {
1749 u32 cmd, *cs;
1750
1751 cs = intel_ring_begin(req, 4);
1752 if (IS_ERR(cs))
1753 return PTR_ERR(cs);
1754
1755 cmd = MI_FLUSH_DW;
1756 if (INTEL_GEN(req->i915) >= 8)
1757 cmd += 1;
1758
1759 /* We always require a command barrier so that subsequent
1760 * commands, such as breadcrumb interrupts, are strictly ordered
1761 * wrt the contents of the write cache being flushed to memory
1762 * (and thus being coherent from the CPU).
1763 */
1764 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1765
1766 /*
1767 * Bspec vol 1c.5 - video engine command streamer:
1768 * "If ENABLED, all TLBs will be invalidated once the flush
1769 * operation is complete. This bit is only valid when the
1770 * Post-Sync Operation field is a value of 1h or 3h."
1771 */
1772 if (mode & EMIT_INVALIDATE)
1773 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1774
1775 *cs++ = cmd;
1776 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1777 if (INTEL_GEN(req->i915) >= 8) {
1778 *cs++ = 0; /* upper addr */
1779 *cs++ = 0; /* value */
1780 } else {
1781 *cs++ = 0;
1782 *cs++ = MI_NOOP;
1783 }
1784 intel_ring_advance(req, cs);
1785 return 0;
1786 }
1787
1788 static int
1789 gen8_emit_bb_start(struct drm_i915_gem_request *req,
1790 u64 offset, u32 len,
1791 unsigned int dispatch_flags)
1792 {
1793 bool ppgtt = USES_PPGTT(req->i915) &&
1794 !(dispatch_flags & I915_DISPATCH_SECURE);
1795 u32 *cs;
1796
1797 cs = intel_ring_begin(req, 4);
1798 if (IS_ERR(cs))
1799 return PTR_ERR(cs);
1800
1801 /* FIXME(BDW): Address space and security selectors. */
1802 *cs++ = MI_BATCH_BUFFER_START_GEN8 | (ppgtt << 8) | (dispatch_flags &
1803 I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1804 *cs++ = lower_32_bits(offset);
1805 *cs++ = upper_32_bits(offset);
1806 *cs++ = MI_NOOP;
1807 intel_ring_advance(req, cs);
1808
1809 return 0;
1810 }
1811
1812 static int
1813 hsw_emit_bb_start(struct drm_i915_gem_request *req,
1814 u64 offset, u32 len,
1815 unsigned int dispatch_flags)
1816 {
1817 u32 *cs;
1818
1819 cs = intel_ring_begin(req, 2);
1820 if (IS_ERR(cs))
1821 return PTR_ERR(cs);
1822
1823 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1824 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
1825 (dispatch_flags & I915_DISPATCH_RS ?
1826 MI_BATCH_RESOURCE_STREAMER : 0);
1827 /* bit0-7 is the length on GEN6+ */
1828 *cs++ = offset;
1829 intel_ring_advance(req, cs);
1830
1831 return 0;
1832 }
1833
1834 static int
1835 gen6_emit_bb_start(struct drm_i915_gem_request *req,
1836 u64 offset, u32 len,
1837 unsigned int dispatch_flags)
1838 {
1839 u32 *cs;
1840
1841 cs = intel_ring_begin(req, 2);
1842 if (IS_ERR(cs))
1843 return PTR_ERR(cs);
1844
1845 *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1846 0 : MI_BATCH_NON_SECURE_I965);
1847 /* bit0-7 is the length on GEN6+ */
1848 *cs++ = offset;
1849 intel_ring_advance(req, cs);
1850
1851 return 0;
1852 }
1853
1854 /* Blitter support (SandyBridge+) */
1855
1856 static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1857 {
1858 u32 cmd, *cs;
1859
1860 cs = intel_ring_begin(req, 4);
1861 if (IS_ERR(cs))
1862 return PTR_ERR(cs);
1863
1864 cmd = MI_FLUSH_DW;
1865 if (INTEL_GEN(req->i915) >= 8)
1866 cmd += 1;
1867
1868 /* We always require a command barrier so that subsequent
1869 * commands, such as breadcrumb interrupts, are strictly ordered
1870 * wrt the contents of the write cache being flushed to memory
1871 * (and thus being coherent from the CPU).
1872 */
1873 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1874
1875 /*
1876 * Bspec vol 1c.3 - blitter engine command streamer:
1877 * "If ENABLED, all TLBs will be invalidated once the flush
1878 * operation is complete. This bit is only valid when the
1879 * Post-Sync Operation field is a value of 1h or 3h."
1880 */
1881 if (mode & EMIT_INVALIDATE)
1882 cmd |= MI_INVALIDATE_TLB;
1883 *cs++ = cmd;
1884 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1885 if (INTEL_GEN(req->i915) >= 8) {
1886 *cs++ = 0; /* upper addr */
1887 *cs++ = 0; /* value */
1888 } else {
1889 *cs++ = 0;
1890 *cs++ = MI_NOOP;
1891 }
1892 intel_ring_advance(req, cs);
1893
1894 return 0;
1895 }
1896
1897 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
1898 struct intel_engine_cs *engine)
1899 {
1900 struct drm_i915_gem_object *obj;
1901 int ret, i;
1902
1903 if (!i915_modparams.semaphores)
1904 return;
1905
1906 if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
1907 struct i915_vma *vma;
1908
1909 obj = i915_gem_object_create(dev_priv, PAGE_SIZE);
1910 if (IS_ERR(obj))
1911 goto err;
1912
1913 vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1914 if (IS_ERR(vma))
1915 goto err_obj;
1916
1917 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1918 if (ret)
1919 goto err_obj;
1920
1921 ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1922 if (ret)
1923 goto err_obj;
1924
1925 dev_priv->semaphore = vma;
1926 }
1927
1928 if (INTEL_GEN(dev_priv) >= 8) {
1929 u32 offset = i915_ggtt_offset(dev_priv->semaphore);
1930
1931 engine->semaphore.sync_to = gen8_ring_sync_to;
1932 engine->semaphore.signal = gen8_xcs_signal;
1933
1934 for (i = 0; i < I915_NUM_ENGINES; i++) {
1935 u32 ring_offset;
1936
1937 if (i != engine->id)
1938 ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
1939 else
1940 ring_offset = MI_SEMAPHORE_SYNC_INVALID;
1941
1942 engine->semaphore.signal_ggtt[i] = ring_offset;
1943 }
1944 } else if (INTEL_GEN(dev_priv) >= 6) {
1945 engine->semaphore.sync_to = gen6_ring_sync_to;
1946 engine->semaphore.signal = gen6_signal;
1947
1948 /*
1949 * The current semaphore is only applied on pre-gen8
1950 * platform. And there is no VCS2 ring on the pre-gen8
1951 * platform. So the semaphore between RCS and VCS2 is
1952 * initialized as INVALID. Gen8 will initialize the
1953 * sema between VCS2 and RCS later.
1954 */
1955 for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
1956 static const struct {
1957 u32 wait_mbox;
1958 i915_reg_t mbox_reg;
1959 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
1960 [RCS_HW] = {
1961 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
1962 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
1963 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
1964 },
1965 [VCS_HW] = {
1966 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
1967 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
1968 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
1969 },
1970 [BCS_HW] = {
1971 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
1972 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
1973 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
1974 },
1975 [VECS_HW] = {
1976 [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
1977 [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
1978 [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
1979 },
1980 };
1981 u32 wait_mbox;
1982 i915_reg_t mbox_reg;
1983
1984 if (i == engine->hw_id) {
1985 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
1986 mbox_reg = GEN6_NOSYNC;
1987 } else {
1988 wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
1989 mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
1990 }
1991
1992 engine->semaphore.mbox.wait[i] = wait_mbox;
1993 engine->semaphore.mbox.signal[i] = mbox_reg;
1994 }
1995 }
1996
1997 return;
1998
1999 err_obj:
2000 i915_gem_object_put(obj);
2001 err:
2002 DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
2003 i915_modparams.semaphores = 0;
2004 }
2005
2006 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2007 struct intel_engine_cs *engine)
2008 {
2009 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
2010
2011 if (INTEL_GEN(dev_priv) >= 8) {
2012 engine->irq_enable = gen8_irq_enable;
2013 engine->irq_disable = gen8_irq_disable;
2014 engine->irq_seqno_barrier = gen6_seqno_barrier;
2015 } else if (INTEL_GEN(dev_priv) >= 6) {
2016 engine->irq_enable = gen6_irq_enable;
2017 engine->irq_disable = gen6_irq_disable;
2018 engine->irq_seqno_barrier = gen6_seqno_barrier;
2019 } else if (INTEL_GEN(dev_priv) >= 5) {
2020 engine->irq_enable = gen5_irq_enable;
2021 engine->irq_disable = gen5_irq_disable;
2022 engine->irq_seqno_barrier = gen5_seqno_barrier;
2023 } else if (INTEL_GEN(dev_priv) >= 3) {
2024 engine->irq_enable = i9xx_irq_enable;
2025 engine->irq_disable = i9xx_irq_disable;
2026 } else {
2027 engine->irq_enable = i8xx_irq_enable;
2028 engine->irq_disable = i8xx_irq_disable;
2029 }
2030 }
2031
2032 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2033 {
2034 engine->submit_request = i9xx_submit_request;
2035 engine->cancel_requests = cancel_requests;
2036 }
2037
2038 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2039 {
2040 engine->submit_request = gen6_bsd_submit_request;
2041 engine->cancel_requests = cancel_requests;
2042 }
2043
2044 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2045 struct intel_engine_cs *engine)
2046 {
2047 intel_ring_init_irq(dev_priv, engine);
2048 intel_ring_init_semaphores(dev_priv, engine);
2049
2050 engine->init_hw = init_ring_common;
2051 engine->reset_hw = reset_ring_common;
2052
2053 engine->context_pin = intel_ring_context_pin;
2054 engine->context_unpin = intel_ring_context_unpin;
2055
2056 engine->request_alloc = ring_request_alloc;
2057
2058 engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2059 engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2060 if (i915_modparams.semaphores) {
2061 int num_rings;
2062
2063 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2064
2065 num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2066 if (INTEL_GEN(dev_priv) >= 8) {
2067 engine->emit_breadcrumb_sz += num_rings * 6;
2068 } else {
2069 engine->emit_breadcrumb_sz += num_rings * 3;
2070 if (num_rings & 1)
2071 engine->emit_breadcrumb_sz++;
2072 }
2073 }
2074
2075 engine->set_default_submission = i9xx_set_default_submission;
2076
2077 if (INTEL_GEN(dev_priv) >= 8)
2078 engine->emit_bb_start = gen8_emit_bb_start;
2079 else if (INTEL_GEN(dev_priv) >= 6)
2080 engine->emit_bb_start = gen6_emit_bb_start;
2081 else if (INTEL_GEN(dev_priv) >= 4)
2082 engine->emit_bb_start = i965_emit_bb_start;
2083 else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2084 engine->emit_bb_start = i830_emit_bb_start;
2085 else
2086 engine->emit_bb_start = i915_emit_bb_start;
2087 }
2088
2089 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2090 {
2091 struct drm_i915_private *dev_priv = engine->i915;
2092 int ret;
2093
2094 intel_ring_default_vfuncs(dev_priv, engine);
2095
2096 if (HAS_L3_DPF(dev_priv))
2097 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2098
2099 if (INTEL_GEN(dev_priv) >= 8) {
2100 engine->init_context = intel_rcs_ctx_init;
2101 engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
2102 engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
2103 engine->emit_flush = gen8_render_ring_flush;
2104 if (i915_modparams.semaphores) {
2105 int num_rings;
2106
2107 engine->semaphore.signal = gen8_rcs_signal;
2108
2109 num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2110 engine->emit_breadcrumb_sz += num_rings * 8;
2111 }
2112 } else if (INTEL_GEN(dev_priv) >= 6) {
2113 engine->init_context = intel_rcs_ctx_init;
2114 engine->emit_flush = gen7_render_ring_flush;
2115 if (IS_GEN6(dev_priv))
2116 engine->emit_flush = gen6_render_ring_flush;
2117 } else if (IS_GEN5(dev_priv)) {
2118 engine->emit_flush = gen4_render_ring_flush;
2119 } else {
2120 if (INTEL_GEN(dev_priv) < 4)
2121 engine->emit_flush = gen2_render_ring_flush;
2122 else
2123 engine->emit_flush = gen4_render_ring_flush;
2124 engine->irq_enable_mask = I915_USER_INTERRUPT;
2125 }
2126
2127 if (IS_HASWELL(dev_priv))
2128 engine->emit_bb_start = hsw_emit_bb_start;
2129
2130 engine->init_hw = init_render_ring;
2131 engine->cleanup = render_ring_cleanup;
2132
2133 ret = intel_init_ring_buffer(engine);
2134 if (ret)
2135 return ret;
2136
2137 if (INTEL_GEN(dev_priv) >= 6) {
2138 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2139 if (ret)
2140 return ret;
2141 } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2142 ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2143 if (ret)
2144 return ret;
2145 }
2146
2147 return 0;
2148 }
2149
2150 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2151 {
2152 struct drm_i915_private *dev_priv = engine->i915;
2153
2154 intel_ring_default_vfuncs(dev_priv, engine);
2155
2156 if (INTEL_GEN(dev_priv) >= 6) {
2157 /* gen6 bsd needs a special wa for tail updates */
2158 if (IS_GEN6(dev_priv))
2159 engine->set_default_submission = gen6_bsd_set_default_submission;
2160 engine->emit_flush = gen6_bsd_ring_flush;
2161 if (INTEL_GEN(dev_priv) < 8)
2162 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2163 } else {
2164 engine->mmio_base = BSD_RING_BASE;
2165 engine->emit_flush = bsd_ring_flush;
2166 if (IS_GEN5(dev_priv))
2167 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2168 else
2169 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2170 }
2171
2172 return intel_init_ring_buffer(engine);
2173 }
2174
2175 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2176 {
2177 struct drm_i915_private *dev_priv = engine->i915;
2178
2179 intel_ring_default_vfuncs(dev_priv, engine);
2180
2181 engine->emit_flush = gen6_ring_flush;
2182 if (INTEL_GEN(dev_priv) < 8)
2183 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2184
2185 return intel_init_ring_buffer(engine);
2186 }
2187
2188 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2189 {
2190 struct drm_i915_private *dev_priv = engine->i915;
2191
2192 intel_ring_default_vfuncs(dev_priv, engine);
2193
2194 engine->emit_flush = gen6_ring_flush;
2195
2196 if (INTEL_GEN(dev_priv) < 8) {
2197 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2198 engine->irq_enable = hsw_vebox_irq_enable;
2199 engine->irq_disable = hsw_vebox_irq_disable;
2200 }
2201
2202 return intel_init_ring_buffer(engine);
2203 }