]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/iommu/arm-smmu-v3.c
iommu: Remove iommu_register_instance interface
[mirror_ubuntu-bionic-kernel.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2 * IOMMU API for ARM architected SMMUv3 implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 *
16 * Copyright (C) 2015 ARM Limited
17 *
18 * Author: Will Deacon <will.deacon@arm.com>
19 *
20 * This driver is powered by bad coffee and bombay mix.
21 */
22
23 #include <linux/acpi.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/delay.h>
26 #include <linux/dma-iommu.h>
27 #include <linux/err.h>
28 #include <linux/interrupt.h>
29 #include <linux/iommu.h>
30 #include <linux/iopoll.h>
31 #include <linux/module.h>
32 #include <linux/msi.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_iommu.h>
36 #include <linux/of_platform.h>
37 #include <linux/pci.h>
38 #include <linux/platform_device.h>
39
40 #include <linux/amba/bus.h>
41
42 #include "io-pgtable.h"
43
44 /* MMIO registers */
45 #define ARM_SMMU_IDR0 0x0
46 #define IDR0_ST_LVL_SHIFT 27
47 #define IDR0_ST_LVL_MASK 0x3
48 #define IDR0_ST_LVL_2LVL (1 << IDR0_ST_LVL_SHIFT)
49 #define IDR0_STALL_MODEL_SHIFT 24
50 #define IDR0_STALL_MODEL_MASK 0x3
51 #define IDR0_STALL_MODEL_STALL (0 << IDR0_STALL_MODEL_SHIFT)
52 #define IDR0_STALL_MODEL_FORCE (2 << IDR0_STALL_MODEL_SHIFT)
53 #define IDR0_TTENDIAN_SHIFT 21
54 #define IDR0_TTENDIAN_MASK 0x3
55 #define IDR0_TTENDIAN_LE (2 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_TTENDIAN_BE (3 << IDR0_TTENDIAN_SHIFT)
57 #define IDR0_TTENDIAN_MIXED (0 << IDR0_TTENDIAN_SHIFT)
58 #define IDR0_CD2L (1 << 19)
59 #define IDR0_VMID16 (1 << 18)
60 #define IDR0_PRI (1 << 16)
61 #define IDR0_SEV (1 << 14)
62 #define IDR0_MSI (1 << 13)
63 #define IDR0_ASID16 (1 << 12)
64 #define IDR0_ATS (1 << 10)
65 #define IDR0_HYP (1 << 9)
66 #define IDR0_COHACC (1 << 4)
67 #define IDR0_TTF_SHIFT 2
68 #define IDR0_TTF_MASK 0x3
69 #define IDR0_TTF_AARCH64 (2 << IDR0_TTF_SHIFT)
70 #define IDR0_TTF_AARCH32_64 (3 << IDR0_TTF_SHIFT)
71 #define IDR0_S1P (1 << 1)
72 #define IDR0_S2P (1 << 0)
73
74 #define ARM_SMMU_IDR1 0x4
75 #define IDR1_TABLES_PRESET (1 << 30)
76 #define IDR1_QUEUES_PRESET (1 << 29)
77 #define IDR1_REL (1 << 28)
78 #define IDR1_CMDQ_SHIFT 21
79 #define IDR1_CMDQ_MASK 0x1f
80 #define IDR1_EVTQ_SHIFT 16
81 #define IDR1_EVTQ_MASK 0x1f
82 #define IDR1_PRIQ_SHIFT 11
83 #define IDR1_PRIQ_MASK 0x1f
84 #define IDR1_SSID_SHIFT 6
85 #define IDR1_SSID_MASK 0x1f
86 #define IDR1_SID_SHIFT 0
87 #define IDR1_SID_MASK 0x3f
88
89 #define ARM_SMMU_IDR5 0x14
90 #define IDR5_STALL_MAX_SHIFT 16
91 #define IDR5_STALL_MAX_MASK 0xffff
92 #define IDR5_GRAN64K (1 << 6)
93 #define IDR5_GRAN16K (1 << 5)
94 #define IDR5_GRAN4K (1 << 4)
95 #define IDR5_OAS_SHIFT 0
96 #define IDR5_OAS_MASK 0x7
97 #define IDR5_OAS_32_BIT (0 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_36_BIT (1 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_40_BIT (2 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_42_BIT (3 << IDR5_OAS_SHIFT)
101 #define IDR5_OAS_44_BIT (4 << IDR5_OAS_SHIFT)
102 #define IDR5_OAS_48_BIT (5 << IDR5_OAS_SHIFT)
103
104 #define ARM_SMMU_CR0 0x20
105 #define CR0_CMDQEN (1 << 3)
106 #define CR0_EVTQEN (1 << 2)
107 #define CR0_PRIQEN (1 << 1)
108 #define CR0_SMMUEN (1 << 0)
109
110 #define ARM_SMMU_CR0ACK 0x24
111
112 #define ARM_SMMU_CR1 0x28
113 #define CR1_SH_NSH 0
114 #define CR1_SH_OSH 2
115 #define CR1_SH_ISH 3
116 #define CR1_CACHE_NC 0
117 #define CR1_CACHE_WB 1
118 #define CR1_CACHE_WT 2
119 #define CR1_TABLE_SH_SHIFT 10
120 #define CR1_TABLE_OC_SHIFT 8
121 #define CR1_TABLE_IC_SHIFT 6
122 #define CR1_QUEUE_SH_SHIFT 4
123 #define CR1_QUEUE_OC_SHIFT 2
124 #define CR1_QUEUE_IC_SHIFT 0
125
126 #define ARM_SMMU_CR2 0x2c
127 #define CR2_PTM (1 << 2)
128 #define CR2_RECINVSID (1 << 1)
129 #define CR2_E2H (1 << 0)
130
131 #define ARM_SMMU_GBPA 0x44
132 #define GBPA_ABORT (1 << 20)
133 #define GBPA_UPDATE (1 << 31)
134
135 #define ARM_SMMU_IRQ_CTRL 0x50
136 #define IRQ_CTRL_EVTQ_IRQEN (1 << 2)
137 #define IRQ_CTRL_PRIQ_IRQEN (1 << 1)
138 #define IRQ_CTRL_GERROR_IRQEN (1 << 0)
139
140 #define ARM_SMMU_IRQ_CTRLACK 0x54
141
142 #define ARM_SMMU_GERROR 0x60
143 #define GERROR_SFM_ERR (1 << 8)
144 #define GERROR_MSI_GERROR_ABT_ERR (1 << 7)
145 #define GERROR_MSI_PRIQ_ABT_ERR (1 << 6)
146 #define GERROR_MSI_EVTQ_ABT_ERR (1 << 5)
147 #define GERROR_MSI_CMDQ_ABT_ERR (1 << 4)
148 #define GERROR_PRIQ_ABT_ERR (1 << 3)
149 #define GERROR_EVTQ_ABT_ERR (1 << 2)
150 #define GERROR_CMDQ_ERR (1 << 0)
151 #define GERROR_ERR_MASK 0xfd
152
153 #define ARM_SMMU_GERRORN 0x64
154
155 #define ARM_SMMU_GERROR_IRQ_CFG0 0x68
156 #define ARM_SMMU_GERROR_IRQ_CFG1 0x70
157 #define ARM_SMMU_GERROR_IRQ_CFG2 0x74
158
159 #define ARM_SMMU_STRTAB_BASE 0x80
160 #define STRTAB_BASE_RA (1UL << 62)
161 #define STRTAB_BASE_ADDR_SHIFT 6
162 #define STRTAB_BASE_ADDR_MASK 0x3ffffffffffUL
163
164 #define ARM_SMMU_STRTAB_BASE_CFG 0x88
165 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT 0
166 #define STRTAB_BASE_CFG_LOG2SIZE_MASK 0x3f
167 #define STRTAB_BASE_CFG_SPLIT_SHIFT 6
168 #define STRTAB_BASE_CFG_SPLIT_MASK 0x1f
169 #define STRTAB_BASE_CFG_FMT_SHIFT 16
170 #define STRTAB_BASE_CFG_FMT_MASK 0x3
171 #define STRTAB_BASE_CFG_FMT_LINEAR (0 << STRTAB_BASE_CFG_FMT_SHIFT)
172 #define STRTAB_BASE_CFG_FMT_2LVL (1 << STRTAB_BASE_CFG_FMT_SHIFT)
173
174 #define ARM_SMMU_CMDQ_BASE 0x90
175 #define ARM_SMMU_CMDQ_PROD 0x98
176 #define ARM_SMMU_CMDQ_CONS 0x9c
177
178 #define ARM_SMMU_EVTQ_BASE 0xa0
179 #define ARM_SMMU_EVTQ_PROD 0x100a8
180 #define ARM_SMMU_EVTQ_CONS 0x100ac
181 #define ARM_SMMU_EVTQ_IRQ_CFG0 0xb0
182 #define ARM_SMMU_EVTQ_IRQ_CFG1 0xb8
183 #define ARM_SMMU_EVTQ_IRQ_CFG2 0xbc
184
185 #define ARM_SMMU_PRIQ_BASE 0xc0
186 #define ARM_SMMU_PRIQ_PROD 0x100c8
187 #define ARM_SMMU_PRIQ_CONS 0x100cc
188 #define ARM_SMMU_PRIQ_IRQ_CFG0 0xd0
189 #define ARM_SMMU_PRIQ_IRQ_CFG1 0xd8
190 #define ARM_SMMU_PRIQ_IRQ_CFG2 0xdc
191
192 /* Common MSI config fields */
193 #define MSI_CFG0_ADDR_SHIFT 2
194 #define MSI_CFG0_ADDR_MASK 0x3fffffffffffUL
195 #define MSI_CFG2_SH_SHIFT 4
196 #define MSI_CFG2_SH_NSH (0UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_SH_OSH (2UL << MSI_CFG2_SH_SHIFT)
198 #define MSI_CFG2_SH_ISH (3UL << MSI_CFG2_SH_SHIFT)
199 #define MSI_CFG2_MEMATTR_SHIFT 0
200 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE (0x1 << MSI_CFG2_MEMATTR_SHIFT)
201
202 #define Q_IDX(q, p) ((p) & ((1 << (q)->max_n_shift) - 1))
203 #define Q_WRP(q, p) ((p) & (1 << (q)->max_n_shift))
204 #define Q_OVERFLOW_FLAG (1 << 31)
205 #define Q_OVF(q, p) ((p) & Q_OVERFLOW_FLAG)
206 #define Q_ENT(q, p) ((q)->base + \
207 Q_IDX(q, p) * (q)->ent_dwords)
208
209 #define Q_BASE_RWA (1UL << 62)
210 #define Q_BASE_ADDR_SHIFT 5
211 #define Q_BASE_ADDR_MASK 0xfffffffffffUL
212 #define Q_BASE_LOG2SIZE_SHIFT 0
213 #define Q_BASE_LOG2SIZE_MASK 0x1fUL
214
215 /*
216 * Stream table.
217 *
218 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
219 * 2lvl: 128k L1 entries,
220 * 256 lazy entries per table (each table covers a PCI bus)
221 */
222 #define STRTAB_L1_SZ_SHIFT 20
223 #define STRTAB_SPLIT 8
224
225 #define STRTAB_L1_DESC_DWORDS 1
226 #define STRTAB_L1_DESC_SPAN_SHIFT 0
227 #define STRTAB_L1_DESC_SPAN_MASK 0x1fUL
228 #define STRTAB_L1_DESC_L2PTR_SHIFT 6
229 #define STRTAB_L1_DESC_L2PTR_MASK 0x3ffffffffffUL
230
231 #define STRTAB_STE_DWORDS 8
232 #define STRTAB_STE_0_V (1UL << 0)
233 #define STRTAB_STE_0_CFG_SHIFT 1
234 #define STRTAB_STE_0_CFG_MASK 0x7UL
235 #define STRTAB_STE_0_CFG_ABORT (0UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_BYPASS (4UL << STRTAB_STE_0_CFG_SHIFT)
237 #define STRTAB_STE_0_CFG_S1_TRANS (5UL << STRTAB_STE_0_CFG_SHIFT)
238 #define STRTAB_STE_0_CFG_S2_TRANS (6UL << STRTAB_STE_0_CFG_SHIFT)
239
240 #define STRTAB_STE_0_S1FMT_SHIFT 4
241 #define STRTAB_STE_0_S1FMT_LINEAR (0UL << STRTAB_STE_0_S1FMT_SHIFT)
242 #define STRTAB_STE_0_S1CTXPTR_SHIFT 6
243 #define STRTAB_STE_0_S1CTXPTR_MASK 0x3ffffffffffUL
244 #define STRTAB_STE_0_S1CDMAX_SHIFT 59
245 #define STRTAB_STE_0_S1CDMAX_MASK 0x1fUL
246
247 #define STRTAB_STE_1_S1C_CACHE_NC 0UL
248 #define STRTAB_STE_1_S1C_CACHE_WBRA 1UL
249 #define STRTAB_STE_1_S1C_CACHE_WT 2UL
250 #define STRTAB_STE_1_S1C_CACHE_WB 3UL
251 #define STRTAB_STE_1_S1C_SH_NSH 0UL
252 #define STRTAB_STE_1_S1C_SH_OSH 2UL
253 #define STRTAB_STE_1_S1C_SH_ISH 3UL
254 #define STRTAB_STE_1_S1CIR_SHIFT 2
255 #define STRTAB_STE_1_S1COR_SHIFT 4
256 #define STRTAB_STE_1_S1CSH_SHIFT 6
257
258 #define STRTAB_STE_1_S1STALLD (1UL << 27)
259
260 #define STRTAB_STE_1_EATS_ABT 0UL
261 #define STRTAB_STE_1_EATS_TRANS 1UL
262 #define STRTAB_STE_1_EATS_S1CHK 2UL
263 #define STRTAB_STE_1_EATS_SHIFT 28
264
265 #define STRTAB_STE_1_STRW_NSEL1 0UL
266 #define STRTAB_STE_1_STRW_EL2 2UL
267 #define STRTAB_STE_1_STRW_SHIFT 30
268
269 #define STRTAB_STE_1_SHCFG_INCOMING 1UL
270 #define STRTAB_STE_1_SHCFG_SHIFT 44
271
272 #define STRTAB_STE_1_PRIVCFG_UNPRIV 2UL
273 #define STRTAB_STE_1_PRIVCFG_SHIFT 48
274
275 #define STRTAB_STE_2_S2VMID_SHIFT 0
276 #define STRTAB_STE_2_S2VMID_MASK 0xffffUL
277 #define STRTAB_STE_2_VTCR_SHIFT 32
278 #define STRTAB_STE_2_VTCR_MASK 0x7ffffUL
279 #define STRTAB_STE_2_S2AA64 (1UL << 51)
280 #define STRTAB_STE_2_S2ENDI (1UL << 52)
281 #define STRTAB_STE_2_S2PTW (1UL << 54)
282 #define STRTAB_STE_2_S2R (1UL << 58)
283
284 #define STRTAB_STE_3_S2TTB_SHIFT 4
285 #define STRTAB_STE_3_S2TTB_MASK 0xfffffffffffUL
286
287 /* Context descriptor (stage-1 only) */
288 #define CTXDESC_CD_DWORDS 8
289 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT 0
290 #define ARM64_TCR_T0SZ_SHIFT 0
291 #define ARM64_TCR_T0SZ_MASK 0x1fUL
292 #define CTXDESC_CD_0_TCR_TG0_SHIFT 6
293 #define ARM64_TCR_TG0_SHIFT 14
294 #define ARM64_TCR_TG0_MASK 0x3UL
295 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT 8
296 #define ARM64_TCR_IRGN0_SHIFT 8
297 #define ARM64_TCR_IRGN0_MASK 0x3UL
298 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT 10
299 #define ARM64_TCR_ORGN0_SHIFT 10
300 #define ARM64_TCR_ORGN0_MASK 0x3UL
301 #define CTXDESC_CD_0_TCR_SH0_SHIFT 12
302 #define ARM64_TCR_SH0_SHIFT 12
303 #define ARM64_TCR_SH0_MASK 0x3UL
304 #define CTXDESC_CD_0_TCR_EPD0_SHIFT 14
305 #define ARM64_TCR_EPD0_SHIFT 7
306 #define ARM64_TCR_EPD0_MASK 0x1UL
307 #define CTXDESC_CD_0_TCR_EPD1_SHIFT 30
308 #define ARM64_TCR_EPD1_SHIFT 23
309 #define ARM64_TCR_EPD1_MASK 0x1UL
310
311 #define CTXDESC_CD_0_ENDI (1UL << 15)
312 #define CTXDESC_CD_0_V (1UL << 31)
313
314 #define CTXDESC_CD_0_TCR_IPS_SHIFT 32
315 #define ARM64_TCR_IPS_SHIFT 32
316 #define ARM64_TCR_IPS_MASK 0x7UL
317 #define CTXDESC_CD_0_TCR_TBI0_SHIFT 38
318 #define ARM64_TCR_TBI0_SHIFT 37
319 #define ARM64_TCR_TBI0_MASK 0x1UL
320
321 #define CTXDESC_CD_0_AA64 (1UL << 41)
322 #define CTXDESC_CD_0_R (1UL << 45)
323 #define CTXDESC_CD_0_A (1UL << 46)
324 #define CTXDESC_CD_0_ASET_SHIFT 47
325 #define CTXDESC_CD_0_ASET_SHARED (0UL << CTXDESC_CD_0_ASET_SHIFT)
326 #define CTXDESC_CD_0_ASET_PRIVATE (1UL << CTXDESC_CD_0_ASET_SHIFT)
327 #define CTXDESC_CD_0_ASID_SHIFT 48
328 #define CTXDESC_CD_0_ASID_MASK 0xffffUL
329
330 #define CTXDESC_CD_1_TTB0_SHIFT 4
331 #define CTXDESC_CD_1_TTB0_MASK 0xfffffffffffUL
332
333 #define CTXDESC_CD_3_MAIR_SHIFT 0
334
335 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
336 #define ARM_SMMU_TCR2CD(tcr, fld) \
337 (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK) \
338 << CTXDESC_CD_0_TCR_##fld##_SHIFT)
339
340 /* Command queue */
341 #define CMDQ_ENT_DWORDS 2
342 #define CMDQ_MAX_SZ_SHIFT 8
343
344 #define CMDQ_ERR_SHIFT 24
345 #define CMDQ_ERR_MASK 0x7f
346 #define CMDQ_ERR_CERROR_NONE_IDX 0
347 #define CMDQ_ERR_CERROR_ILL_IDX 1
348 #define CMDQ_ERR_CERROR_ABT_IDX 2
349
350 #define CMDQ_0_OP_SHIFT 0
351 #define CMDQ_0_OP_MASK 0xffUL
352 #define CMDQ_0_SSV (1UL << 11)
353
354 #define CMDQ_PREFETCH_0_SID_SHIFT 32
355 #define CMDQ_PREFETCH_1_SIZE_SHIFT 0
356 #define CMDQ_PREFETCH_1_ADDR_MASK ~0xfffUL
357
358 #define CMDQ_CFGI_0_SID_SHIFT 32
359 #define CMDQ_CFGI_0_SID_MASK 0xffffffffUL
360 #define CMDQ_CFGI_1_LEAF (1UL << 0)
361 #define CMDQ_CFGI_1_RANGE_SHIFT 0
362 #define CMDQ_CFGI_1_RANGE_MASK 0x1fUL
363
364 #define CMDQ_TLBI_0_VMID_SHIFT 32
365 #define CMDQ_TLBI_0_ASID_SHIFT 48
366 #define CMDQ_TLBI_1_LEAF (1UL << 0)
367 #define CMDQ_TLBI_1_VA_MASK ~0xfffUL
368 #define CMDQ_TLBI_1_IPA_MASK 0xfffffffff000UL
369
370 #define CMDQ_PRI_0_SSID_SHIFT 12
371 #define CMDQ_PRI_0_SSID_MASK 0xfffffUL
372 #define CMDQ_PRI_0_SID_SHIFT 32
373 #define CMDQ_PRI_0_SID_MASK 0xffffffffUL
374 #define CMDQ_PRI_1_GRPID_SHIFT 0
375 #define CMDQ_PRI_1_GRPID_MASK 0x1ffUL
376 #define CMDQ_PRI_1_RESP_SHIFT 12
377 #define CMDQ_PRI_1_RESP_DENY (0UL << CMDQ_PRI_1_RESP_SHIFT)
378 #define CMDQ_PRI_1_RESP_FAIL (1UL << CMDQ_PRI_1_RESP_SHIFT)
379 #define CMDQ_PRI_1_RESP_SUCC (2UL << CMDQ_PRI_1_RESP_SHIFT)
380
381 #define CMDQ_SYNC_0_CS_SHIFT 12
382 #define CMDQ_SYNC_0_CS_NONE (0UL << CMDQ_SYNC_0_CS_SHIFT)
383 #define CMDQ_SYNC_0_CS_SEV (2UL << CMDQ_SYNC_0_CS_SHIFT)
384
385 /* Event queue */
386 #define EVTQ_ENT_DWORDS 4
387 #define EVTQ_MAX_SZ_SHIFT 7
388
389 #define EVTQ_0_ID_SHIFT 0
390 #define EVTQ_0_ID_MASK 0xffUL
391
392 /* PRI queue */
393 #define PRIQ_ENT_DWORDS 2
394 #define PRIQ_MAX_SZ_SHIFT 8
395
396 #define PRIQ_0_SID_SHIFT 0
397 #define PRIQ_0_SID_MASK 0xffffffffUL
398 #define PRIQ_0_SSID_SHIFT 32
399 #define PRIQ_0_SSID_MASK 0xfffffUL
400 #define PRIQ_0_PERM_PRIV (1UL << 58)
401 #define PRIQ_0_PERM_EXEC (1UL << 59)
402 #define PRIQ_0_PERM_READ (1UL << 60)
403 #define PRIQ_0_PERM_WRITE (1UL << 61)
404 #define PRIQ_0_PRG_LAST (1UL << 62)
405 #define PRIQ_0_SSID_V (1UL << 63)
406
407 #define PRIQ_1_PRG_IDX_SHIFT 0
408 #define PRIQ_1_PRG_IDX_MASK 0x1ffUL
409 #define PRIQ_1_ADDR_SHIFT 12
410 #define PRIQ_1_ADDR_MASK 0xfffffffffffffUL
411
412 /* High-level queue structures */
413 #define ARM_SMMU_POLL_TIMEOUT_US 100
414
415 static bool disable_bypass;
416 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
417 MODULE_PARM_DESC(disable_bypass,
418 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
419
420 enum pri_resp {
421 PRI_RESP_DENY,
422 PRI_RESP_FAIL,
423 PRI_RESP_SUCC,
424 };
425
426 enum arm_smmu_msi_index {
427 EVTQ_MSI_INDEX,
428 GERROR_MSI_INDEX,
429 PRIQ_MSI_INDEX,
430 ARM_SMMU_MAX_MSIS,
431 };
432
433 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
434 [EVTQ_MSI_INDEX] = {
435 ARM_SMMU_EVTQ_IRQ_CFG0,
436 ARM_SMMU_EVTQ_IRQ_CFG1,
437 ARM_SMMU_EVTQ_IRQ_CFG2,
438 },
439 [GERROR_MSI_INDEX] = {
440 ARM_SMMU_GERROR_IRQ_CFG0,
441 ARM_SMMU_GERROR_IRQ_CFG1,
442 ARM_SMMU_GERROR_IRQ_CFG2,
443 },
444 [PRIQ_MSI_INDEX] = {
445 ARM_SMMU_PRIQ_IRQ_CFG0,
446 ARM_SMMU_PRIQ_IRQ_CFG1,
447 ARM_SMMU_PRIQ_IRQ_CFG2,
448 },
449 };
450
451 struct arm_smmu_cmdq_ent {
452 /* Common fields */
453 u8 opcode;
454 bool substream_valid;
455
456 /* Command-specific fields */
457 union {
458 #define CMDQ_OP_PREFETCH_CFG 0x1
459 struct {
460 u32 sid;
461 u8 size;
462 u64 addr;
463 } prefetch;
464
465 #define CMDQ_OP_CFGI_STE 0x3
466 #define CMDQ_OP_CFGI_ALL 0x4
467 struct {
468 u32 sid;
469 union {
470 bool leaf;
471 u8 span;
472 };
473 } cfgi;
474
475 #define CMDQ_OP_TLBI_NH_ASID 0x11
476 #define CMDQ_OP_TLBI_NH_VA 0x12
477 #define CMDQ_OP_TLBI_EL2_ALL 0x20
478 #define CMDQ_OP_TLBI_S12_VMALL 0x28
479 #define CMDQ_OP_TLBI_S2_IPA 0x2a
480 #define CMDQ_OP_TLBI_NSNH_ALL 0x30
481 struct {
482 u16 asid;
483 u16 vmid;
484 bool leaf;
485 u64 addr;
486 } tlbi;
487
488 #define CMDQ_OP_PRI_RESP 0x41
489 struct {
490 u32 sid;
491 u32 ssid;
492 u16 grpid;
493 enum pri_resp resp;
494 } pri;
495
496 #define CMDQ_OP_CMD_SYNC 0x46
497 };
498 };
499
500 struct arm_smmu_queue {
501 int irq; /* Wired interrupt */
502
503 __le64 *base;
504 dma_addr_t base_dma;
505 u64 q_base;
506
507 size_t ent_dwords;
508 u32 max_n_shift;
509 u32 prod;
510 u32 cons;
511
512 u32 __iomem *prod_reg;
513 u32 __iomem *cons_reg;
514 };
515
516 struct arm_smmu_cmdq {
517 struct arm_smmu_queue q;
518 spinlock_t lock;
519 };
520
521 struct arm_smmu_evtq {
522 struct arm_smmu_queue q;
523 u32 max_stalls;
524 };
525
526 struct arm_smmu_priq {
527 struct arm_smmu_queue q;
528 };
529
530 /* High-level stream table and context descriptor structures */
531 struct arm_smmu_strtab_l1_desc {
532 u8 span;
533
534 __le64 *l2ptr;
535 dma_addr_t l2ptr_dma;
536 };
537
538 struct arm_smmu_s1_cfg {
539 __le64 *cdptr;
540 dma_addr_t cdptr_dma;
541
542 struct arm_smmu_ctx_desc {
543 u16 asid;
544 u64 ttbr;
545 u64 tcr;
546 u64 mair;
547 } cd;
548 };
549
550 struct arm_smmu_s2_cfg {
551 u16 vmid;
552 u64 vttbr;
553 u64 vtcr;
554 };
555
556 struct arm_smmu_strtab_ent {
557 bool valid;
558
559 bool bypass; /* Overrides s1/s2 config */
560 struct arm_smmu_s1_cfg *s1_cfg;
561 struct arm_smmu_s2_cfg *s2_cfg;
562 };
563
564 struct arm_smmu_strtab_cfg {
565 __le64 *strtab;
566 dma_addr_t strtab_dma;
567 struct arm_smmu_strtab_l1_desc *l1_desc;
568 unsigned int num_l1_ents;
569
570 u64 strtab_base;
571 u32 strtab_base_cfg;
572 };
573
574 /* An SMMUv3 instance */
575 struct arm_smmu_device {
576 struct device *dev;
577 void __iomem *base;
578
579 #define ARM_SMMU_FEAT_2_LVL_STRTAB (1 << 0)
580 #define ARM_SMMU_FEAT_2_LVL_CDTAB (1 << 1)
581 #define ARM_SMMU_FEAT_TT_LE (1 << 2)
582 #define ARM_SMMU_FEAT_TT_BE (1 << 3)
583 #define ARM_SMMU_FEAT_PRI (1 << 4)
584 #define ARM_SMMU_FEAT_ATS (1 << 5)
585 #define ARM_SMMU_FEAT_SEV (1 << 6)
586 #define ARM_SMMU_FEAT_MSI (1 << 7)
587 #define ARM_SMMU_FEAT_COHERENCY (1 << 8)
588 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 9)
589 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 10)
590 #define ARM_SMMU_FEAT_STALLS (1 << 11)
591 #define ARM_SMMU_FEAT_HYP (1 << 12)
592 u32 features;
593
594 #define ARM_SMMU_OPT_SKIP_PREFETCH (1 << 0)
595 u32 options;
596
597 struct arm_smmu_cmdq cmdq;
598 struct arm_smmu_evtq evtq;
599 struct arm_smmu_priq priq;
600
601 int gerr_irq;
602
603 unsigned long ias; /* IPA */
604 unsigned long oas; /* PA */
605 unsigned long pgsize_bitmap;
606
607 #define ARM_SMMU_MAX_ASIDS (1 << 16)
608 unsigned int asid_bits;
609 DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
610
611 #define ARM_SMMU_MAX_VMIDS (1 << 16)
612 unsigned int vmid_bits;
613 DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
614
615 unsigned int ssid_bits;
616 unsigned int sid_bits;
617
618 struct arm_smmu_strtab_cfg strtab_cfg;
619
620 /* IOMMU core code handle */
621 struct iommu_device iommu;
622 };
623
624 /* SMMU private data for each master */
625 struct arm_smmu_master_data {
626 struct arm_smmu_device *smmu;
627 struct arm_smmu_strtab_ent ste;
628 };
629
630 /* SMMU private data for an IOMMU domain */
631 enum arm_smmu_domain_stage {
632 ARM_SMMU_DOMAIN_S1 = 0,
633 ARM_SMMU_DOMAIN_S2,
634 ARM_SMMU_DOMAIN_NESTED,
635 };
636
637 struct arm_smmu_domain {
638 struct arm_smmu_device *smmu;
639 struct mutex init_mutex; /* Protects smmu pointer */
640
641 struct io_pgtable_ops *pgtbl_ops;
642 spinlock_t pgtbl_lock;
643
644 enum arm_smmu_domain_stage stage;
645 union {
646 struct arm_smmu_s1_cfg s1_cfg;
647 struct arm_smmu_s2_cfg s2_cfg;
648 };
649
650 struct iommu_domain domain;
651 };
652
653 struct arm_smmu_option_prop {
654 u32 opt;
655 const char *prop;
656 };
657
658 static struct arm_smmu_option_prop arm_smmu_options[] = {
659 { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
660 { 0, NULL},
661 };
662
663 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
664 {
665 return container_of(dom, struct arm_smmu_domain, domain);
666 }
667
668 static void parse_driver_options(struct arm_smmu_device *smmu)
669 {
670 int i = 0;
671
672 do {
673 if (of_property_read_bool(smmu->dev->of_node,
674 arm_smmu_options[i].prop)) {
675 smmu->options |= arm_smmu_options[i].opt;
676 dev_notice(smmu->dev, "option %s\n",
677 arm_smmu_options[i].prop);
678 }
679 } while (arm_smmu_options[++i].opt);
680 }
681
682 /* Low-level queue manipulation functions */
683 static bool queue_full(struct arm_smmu_queue *q)
684 {
685 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
686 Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
687 }
688
689 static bool queue_empty(struct arm_smmu_queue *q)
690 {
691 return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
692 Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
693 }
694
695 static void queue_sync_cons(struct arm_smmu_queue *q)
696 {
697 q->cons = readl_relaxed(q->cons_reg);
698 }
699
700 static void queue_inc_cons(struct arm_smmu_queue *q)
701 {
702 u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
703
704 q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
705 writel(q->cons, q->cons_reg);
706 }
707
708 static int queue_sync_prod(struct arm_smmu_queue *q)
709 {
710 int ret = 0;
711 u32 prod = readl_relaxed(q->prod_reg);
712
713 if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
714 ret = -EOVERFLOW;
715
716 q->prod = prod;
717 return ret;
718 }
719
720 static void queue_inc_prod(struct arm_smmu_queue *q)
721 {
722 u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
723
724 q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
725 writel(q->prod, q->prod_reg);
726 }
727
728 /*
729 * Wait for the SMMU to consume items. If drain is true, wait until the queue
730 * is empty. Otherwise, wait until there is at least one free slot.
731 */
732 static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
733 {
734 ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
735
736 while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
737 if (ktime_compare(ktime_get(), timeout) > 0)
738 return -ETIMEDOUT;
739
740 if (wfe) {
741 wfe();
742 } else {
743 cpu_relax();
744 udelay(1);
745 }
746 }
747
748 return 0;
749 }
750
751 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
752 {
753 int i;
754
755 for (i = 0; i < n_dwords; ++i)
756 *dst++ = cpu_to_le64(*src++);
757 }
758
759 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
760 {
761 if (queue_full(q))
762 return -ENOSPC;
763
764 queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
765 queue_inc_prod(q);
766 return 0;
767 }
768
769 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
770 {
771 int i;
772
773 for (i = 0; i < n_dwords; ++i)
774 *dst++ = le64_to_cpu(*src++);
775 }
776
777 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
778 {
779 if (queue_empty(q))
780 return -EAGAIN;
781
782 queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
783 queue_inc_cons(q);
784 return 0;
785 }
786
787 /* High-level queue accessors */
788 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
789 {
790 memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
791 cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
792
793 switch (ent->opcode) {
794 case CMDQ_OP_TLBI_EL2_ALL:
795 case CMDQ_OP_TLBI_NSNH_ALL:
796 break;
797 case CMDQ_OP_PREFETCH_CFG:
798 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
799 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
800 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
801 break;
802 case CMDQ_OP_CFGI_STE:
803 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
804 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
805 break;
806 case CMDQ_OP_CFGI_ALL:
807 /* Cover the entire SID range */
808 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
809 break;
810 case CMDQ_OP_TLBI_NH_VA:
811 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
812 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
813 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
814 break;
815 case CMDQ_OP_TLBI_S2_IPA:
816 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
817 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
818 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
819 break;
820 case CMDQ_OP_TLBI_NH_ASID:
821 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
822 /* Fallthrough */
823 case CMDQ_OP_TLBI_S12_VMALL:
824 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
825 break;
826 case CMDQ_OP_PRI_RESP:
827 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
828 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
829 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
830 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
831 switch (ent->pri.resp) {
832 case PRI_RESP_DENY:
833 cmd[1] |= CMDQ_PRI_1_RESP_DENY;
834 break;
835 case PRI_RESP_FAIL:
836 cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
837 break;
838 case PRI_RESP_SUCC:
839 cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
840 break;
841 default:
842 return -EINVAL;
843 }
844 break;
845 case CMDQ_OP_CMD_SYNC:
846 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
847 break;
848 default:
849 return -ENOENT;
850 }
851
852 return 0;
853 }
854
855 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
856 {
857 static const char *cerror_str[] = {
858 [CMDQ_ERR_CERROR_NONE_IDX] = "No error",
859 [CMDQ_ERR_CERROR_ILL_IDX] = "Illegal command",
860 [CMDQ_ERR_CERROR_ABT_IDX] = "Abort on command fetch",
861 };
862
863 int i;
864 u64 cmd[CMDQ_ENT_DWORDS];
865 struct arm_smmu_queue *q = &smmu->cmdq.q;
866 u32 cons = readl_relaxed(q->cons_reg);
867 u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
868 struct arm_smmu_cmdq_ent cmd_sync = {
869 .opcode = CMDQ_OP_CMD_SYNC,
870 };
871
872 dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
873 idx < ARRAY_SIZE(cerror_str) ? cerror_str[idx] : "Unknown");
874
875 switch (idx) {
876 case CMDQ_ERR_CERROR_ABT_IDX:
877 dev_err(smmu->dev, "retrying command fetch\n");
878 case CMDQ_ERR_CERROR_NONE_IDX:
879 return;
880 case CMDQ_ERR_CERROR_ILL_IDX:
881 /* Fallthrough */
882 default:
883 break;
884 }
885
886 /*
887 * We may have concurrent producers, so we need to be careful
888 * not to touch any of the shadow cmdq state.
889 */
890 queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
891 dev_err(smmu->dev, "skipping command in error state:\n");
892 for (i = 0; i < ARRAY_SIZE(cmd); ++i)
893 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
894
895 /* Convert the erroneous command into a CMD_SYNC */
896 if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
897 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
898 return;
899 }
900
901 queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
902 }
903
904 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
905 struct arm_smmu_cmdq_ent *ent)
906 {
907 u64 cmd[CMDQ_ENT_DWORDS];
908 unsigned long flags;
909 bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
910 struct arm_smmu_queue *q = &smmu->cmdq.q;
911
912 if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
913 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
914 ent->opcode);
915 return;
916 }
917
918 spin_lock_irqsave(&smmu->cmdq.lock, flags);
919 while (queue_insert_raw(q, cmd) == -ENOSPC) {
920 if (queue_poll_cons(q, false, wfe))
921 dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
922 }
923
924 if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
925 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
926 spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
927 }
928
929 /* Context descriptor manipulation functions */
930 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
931 {
932 u64 val = 0;
933
934 /* Repack the TCR. Just care about TTBR0 for now */
935 val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
936 val |= ARM_SMMU_TCR2CD(tcr, TG0);
937 val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
938 val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
939 val |= ARM_SMMU_TCR2CD(tcr, SH0);
940 val |= ARM_SMMU_TCR2CD(tcr, EPD0);
941 val |= ARM_SMMU_TCR2CD(tcr, EPD1);
942 val |= ARM_SMMU_TCR2CD(tcr, IPS);
943 val |= ARM_SMMU_TCR2CD(tcr, TBI0);
944
945 return val;
946 }
947
948 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
949 struct arm_smmu_s1_cfg *cfg)
950 {
951 u64 val;
952
953 /*
954 * We don't need to issue any invalidation here, as we'll invalidate
955 * the STE when installing the new entry anyway.
956 */
957 val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
958 #ifdef __BIG_ENDIAN
959 CTXDESC_CD_0_ENDI |
960 #endif
961 CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
962 CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
963 CTXDESC_CD_0_V;
964 cfg->cdptr[0] = cpu_to_le64(val);
965
966 val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
967 cfg->cdptr[1] = cpu_to_le64(val);
968
969 cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
970 }
971
972 /* Stream table manipulation functions */
973 static void
974 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
975 {
976 u64 val = 0;
977
978 val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
979 << STRTAB_L1_DESC_SPAN_SHIFT;
980 val |= desc->l2ptr_dma &
981 STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
982
983 *dst = cpu_to_le64(val);
984 }
985
986 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
987 {
988 struct arm_smmu_cmdq_ent cmd = {
989 .opcode = CMDQ_OP_CFGI_STE,
990 .cfgi = {
991 .sid = sid,
992 .leaf = true,
993 },
994 };
995
996 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
997 cmd.opcode = CMDQ_OP_CMD_SYNC;
998 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
999 }
1000
1001 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
1002 __le64 *dst, struct arm_smmu_strtab_ent *ste)
1003 {
1004 /*
1005 * This is hideously complicated, but we only really care about
1006 * three cases at the moment:
1007 *
1008 * 1. Invalid (all zero) -> bypass (init)
1009 * 2. Bypass -> translation (attach)
1010 * 3. Translation -> bypass (detach)
1011 *
1012 * Given that we can't update the STE atomically and the SMMU
1013 * doesn't read the thing in a defined order, that leaves us
1014 * with the following maintenance requirements:
1015 *
1016 * 1. Update Config, return (init time STEs aren't live)
1017 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1018 * 3. Update Config, sync
1019 */
1020 u64 val = le64_to_cpu(dst[0]);
1021 bool ste_live = false;
1022 struct arm_smmu_cmdq_ent prefetch_cmd = {
1023 .opcode = CMDQ_OP_PREFETCH_CFG,
1024 .prefetch = {
1025 .sid = sid,
1026 },
1027 };
1028
1029 if (val & STRTAB_STE_0_V) {
1030 u64 cfg;
1031
1032 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1033 switch (cfg) {
1034 case STRTAB_STE_0_CFG_BYPASS:
1035 break;
1036 case STRTAB_STE_0_CFG_S1_TRANS:
1037 case STRTAB_STE_0_CFG_S2_TRANS:
1038 ste_live = true;
1039 break;
1040 case STRTAB_STE_0_CFG_ABORT:
1041 if (disable_bypass)
1042 break;
1043 default:
1044 BUG(); /* STE corruption */
1045 }
1046 }
1047
1048 /* Nuke the existing Config, as we're going to rewrite it */
1049 val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1050
1051 if (ste->valid)
1052 val |= STRTAB_STE_0_V;
1053 else
1054 val &= ~STRTAB_STE_0_V;
1055
1056 if (ste->bypass) {
1057 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1058 : STRTAB_STE_0_CFG_BYPASS;
1059 dst[0] = cpu_to_le64(val);
1060 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1061 << STRTAB_STE_1_SHCFG_SHIFT);
1062 dst[2] = 0; /* Nuke the VMID */
1063 if (ste_live)
1064 arm_smmu_sync_ste_for_sid(smmu, sid);
1065 return;
1066 }
1067
1068 if (ste->s1_cfg) {
1069 BUG_ON(ste_live);
1070 dst[1] = cpu_to_le64(
1071 STRTAB_STE_1_S1C_CACHE_WBRA
1072 << STRTAB_STE_1_S1CIR_SHIFT |
1073 STRTAB_STE_1_S1C_CACHE_WBRA
1074 << STRTAB_STE_1_S1COR_SHIFT |
1075 STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1076 #ifdef CONFIG_PCI_ATS
1077 STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1078 #endif
1079 STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT |
1080 STRTAB_STE_1_PRIVCFG_UNPRIV <<
1081 STRTAB_STE_1_PRIVCFG_SHIFT);
1082
1083 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1084 dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1085
1086 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1087 << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1088 STRTAB_STE_0_CFG_S1_TRANS;
1089
1090 }
1091
1092 if (ste->s2_cfg) {
1093 BUG_ON(ste_live);
1094 dst[2] = cpu_to_le64(
1095 ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1096 (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1097 << STRTAB_STE_2_VTCR_SHIFT |
1098 #ifdef __BIG_ENDIAN
1099 STRTAB_STE_2_S2ENDI |
1100 #endif
1101 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1102 STRTAB_STE_2_S2R);
1103
1104 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1105 STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1106
1107 val |= STRTAB_STE_0_CFG_S2_TRANS;
1108 }
1109
1110 arm_smmu_sync_ste_for_sid(smmu, sid);
1111 dst[0] = cpu_to_le64(val);
1112 arm_smmu_sync_ste_for_sid(smmu, sid);
1113
1114 /* It's likely that we'll want to use the new STE soon */
1115 if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1116 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1117 }
1118
1119 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1120 {
1121 unsigned int i;
1122 struct arm_smmu_strtab_ent ste = {
1123 .valid = true,
1124 .bypass = true,
1125 };
1126
1127 for (i = 0; i < nent; ++i) {
1128 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1129 strtab += STRTAB_STE_DWORDS;
1130 }
1131 }
1132
1133 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1134 {
1135 size_t size;
1136 void *strtab;
1137 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1138 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1139
1140 if (desc->l2ptr)
1141 return 0;
1142
1143 size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1144 strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1145
1146 desc->span = STRTAB_SPLIT + 1;
1147 desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1148 GFP_KERNEL | __GFP_ZERO);
1149 if (!desc->l2ptr) {
1150 dev_err(smmu->dev,
1151 "failed to allocate l2 stream table for SID %u\n",
1152 sid);
1153 return -ENOMEM;
1154 }
1155
1156 arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1157 arm_smmu_write_strtab_l1_desc(strtab, desc);
1158 return 0;
1159 }
1160
1161 /* IRQ and event handlers */
1162 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1163 {
1164 int i;
1165 struct arm_smmu_device *smmu = dev;
1166 struct arm_smmu_queue *q = &smmu->evtq.q;
1167 u64 evt[EVTQ_ENT_DWORDS];
1168
1169 do {
1170 while (!queue_remove_raw(q, evt)) {
1171 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1172
1173 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1174 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1175 dev_info(smmu->dev, "\t0x%016llx\n",
1176 (unsigned long long)evt[i]);
1177
1178 }
1179
1180 /*
1181 * Not much we can do on overflow, so scream and pretend we're
1182 * trying harder.
1183 */
1184 if (queue_sync_prod(q) == -EOVERFLOW)
1185 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1186 } while (!queue_empty(q));
1187
1188 /* Sync our overflow flag, as we believe we're up to speed */
1189 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1190 return IRQ_HANDLED;
1191 }
1192
1193 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1194 {
1195 u32 sid, ssid;
1196 u16 grpid;
1197 bool ssv, last;
1198
1199 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1200 ssv = evt[0] & PRIQ_0_SSID_V;
1201 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1202 last = evt[0] & PRIQ_0_PRG_LAST;
1203 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1204
1205 dev_info(smmu->dev, "unexpected PRI request received:\n");
1206 dev_info(smmu->dev,
1207 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1208 sid, ssid, grpid, last ? "L" : "",
1209 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1210 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1211 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1212 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1213 evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1214
1215 if (last) {
1216 struct arm_smmu_cmdq_ent cmd = {
1217 .opcode = CMDQ_OP_PRI_RESP,
1218 .substream_valid = ssv,
1219 .pri = {
1220 .sid = sid,
1221 .ssid = ssid,
1222 .grpid = grpid,
1223 .resp = PRI_RESP_DENY,
1224 },
1225 };
1226
1227 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1228 }
1229 }
1230
1231 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1232 {
1233 struct arm_smmu_device *smmu = dev;
1234 struct arm_smmu_queue *q = &smmu->priq.q;
1235 u64 evt[PRIQ_ENT_DWORDS];
1236
1237 do {
1238 while (!queue_remove_raw(q, evt))
1239 arm_smmu_handle_ppr(smmu, evt);
1240
1241 if (queue_sync_prod(q) == -EOVERFLOW)
1242 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1243 } while (!queue_empty(q));
1244
1245 /* Sync our overflow flag, as we believe we're up to speed */
1246 q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1247 return IRQ_HANDLED;
1248 }
1249
1250 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1251 {
1252 /* We don't actually use CMD_SYNC interrupts for anything */
1253 return IRQ_HANDLED;
1254 }
1255
1256 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1257
1258 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1259 {
1260 u32 gerror, gerrorn, active;
1261 struct arm_smmu_device *smmu = dev;
1262
1263 gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1264 gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1265
1266 active = gerror ^ gerrorn;
1267 if (!(active & GERROR_ERR_MASK))
1268 return IRQ_NONE; /* No errors pending */
1269
1270 dev_warn(smmu->dev,
1271 "unexpected global error reported (0x%08x), this could be serious\n",
1272 active);
1273
1274 if (active & GERROR_SFM_ERR) {
1275 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1276 arm_smmu_device_disable(smmu);
1277 }
1278
1279 if (active & GERROR_MSI_GERROR_ABT_ERR)
1280 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1281
1282 if (active & GERROR_MSI_PRIQ_ABT_ERR)
1283 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1284
1285 if (active & GERROR_MSI_EVTQ_ABT_ERR)
1286 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1287
1288 if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1289 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1290 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1291 }
1292
1293 if (active & GERROR_PRIQ_ABT_ERR)
1294 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1295
1296 if (active & GERROR_EVTQ_ABT_ERR)
1297 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1298
1299 if (active & GERROR_CMDQ_ERR)
1300 arm_smmu_cmdq_skip_err(smmu);
1301
1302 writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1303 return IRQ_HANDLED;
1304 }
1305
1306 /* IO_PGTABLE API */
1307 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1308 {
1309 struct arm_smmu_cmdq_ent cmd;
1310
1311 cmd.opcode = CMDQ_OP_CMD_SYNC;
1312 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1313 }
1314
1315 static void arm_smmu_tlb_sync(void *cookie)
1316 {
1317 struct arm_smmu_domain *smmu_domain = cookie;
1318 __arm_smmu_tlb_sync(smmu_domain->smmu);
1319 }
1320
1321 static void arm_smmu_tlb_inv_context(void *cookie)
1322 {
1323 struct arm_smmu_domain *smmu_domain = cookie;
1324 struct arm_smmu_device *smmu = smmu_domain->smmu;
1325 struct arm_smmu_cmdq_ent cmd;
1326
1327 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1328 cmd.opcode = CMDQ_OP_TLBI_NH_ASID;
1329 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1330 cmd.tlbi.vmid = 0;
1331 } else {
1332 cmd.opcode = CMDQ_OP_TLBI_S12_VMALL;
1333 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1334 }
1335
1336 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1337 __arm_smmu_tlb_sync(smmu);
1338 }
1339
1340 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1341 size_t granule, bool leaf, void *cookie)
1342 {
1343 struct arm_smmu_domain *smmu_domain = cookie;
1344 struct arm_smmu_device *smmu = smmu_domain->smmu;
1345 struct arm_smmu_cmdq_ent cmd = {
1346 .tlbi = {
1347 .leaf = leaf,
1348 .addr = iova,
1349 },
1350 };
1351
1352 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1353 cmd.opcode = CMDQ_OP_TLBI_NH_VA;
1354 cmd.tlbi.asid = smmu_domain->s1_cfg.cd.asid;
1355 } else {
1356 cmd.opcode = CMDQ_OP_TLBI_S2_IPA;
1357 cmd.tlbi.vmid = smmu_domain->s2_cfg.vmid;
1358 }
1359
1360 do {
1361 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1362 cmd.tlbi.addr += granule;
1363 } while (size -= granule);
1364 }
1365
1366 static const struct iommu_gather_ops arm_smmu_gather_ops = {
1367 .tlb_flush_all = arm_smmu_tlb_inv_context,
1368 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
1369 .tlb_sync = arm_smmu_tlb_sync,
1370 };
1371
1372 /* IOMMU API */
1373 static bool arm_smmu_capable(enum iommu_cap cap)
1374 {
1375 switch (cap) {
1376 case IOMMU_CAP_CACHE_COHERENCY:
1377 return true;
1378 case IOMMU_CAP_INTR_REMAP:
1379 return true; /* MSIs are just memory writes */
1380 case IOMMU_CAP_NOEXEC:
1381 return true;
1382 default:
1383 return false;
1384 }
1385 }
1386
1387 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1388 {
1389 struct arm_smmu_domain *smmu_domain;
1390
1391 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1392 return NULL;
1393
1394 /*
1395 * Allocate the domain and initialise some of its data structures.
1396 * We can't really do anything meaningful until we've added a
1397 * master.
1398 */
1399 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1400 if (!smmu_domain)
1401 return NULL;
1402
1403 if (type == IOMMU_DOMAIN_DMA &&
1404 iommu_get_dma_cookie(&smmu_domain->domain)) {
1405 kfree(smmu_domain);
1406 return NULL;
1407 }
1408
1409 mutex_init(&smmu_domain->init_mutex);
1410 spin_lock_init(&smmu_domain->pgtbl_lock);
1411 return &smmu_domain->domain;
1412 }
1413
1414 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1415 {
1416 int idx, size = 1 << span;
1417
1418 do {
1419 idx = find_first_zero_bit(map, size);
1420 if (idx == size)
1421 return -ENOSPC;
1422 } while (test_and_set_bit(idx, map));
1423
1424 return idx;
1425 }
1426
1427 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1428 {
1429 clear_bit(idx, map);
1430 }
1431
1432 static void arm_smmu_domain_free(struct iommu_domain *domain)
1433 {
1434 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1435 struct arm_smmu_device *smmu = smmu_domain->smmu;
1436
1437 iommu_put_dma_cookie(domain);
1438 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1439
1440 /* Free the CD and ASID, if we allocated them */
1441 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1442 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1443
1444 if (cfg->cdptr) {
1445 dmam_free_coherent(smmu_domain->smmu->dev,
1446 CTXDESC_CD_DWORDS << 3,
1447 cfg->cdptr,
1448 cfg->cdptr_dma);
1449
1450 arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1451 }
1452 } else {
1453 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1454 if (cfg->vmid)
1455 arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1456 }
1457
1458 kfree(smmu_domain);
1459 }
1460
1461 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1462 struct io_pgtable_cfg *pgtbl_cfg)
1463 {
1464 int ret;
1465 int asid;
1466 struct arm_smmu_device *smmu = smmu_domain->smmu;
1467 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1468
1469 asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1470 if (asid < 0)
1471 return asid;
1472
1473 cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1474 &cfg->cdptr_dma,
1475 GFP_KERNEL | __GFP_ZERO);
1476 if (!cfg->cdptr) {
1477 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1478 ret = -ENOMEM;
1479 goto out_free_asid;
1480 }
1481
1482 cfg->cd.asid = (u16)asid;
1483 cfg->cd.ttbr = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1484 cfg->cd.tcr = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1485 cfg->cd.mair = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1486 return 0;
1487
1488 out_free_asid:
1489 arm_smmu_bitmap_free(smmu->asid_map, asid);
1490 return ret;
1491 }
1492
1493 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1494 struct io_pgtable_cfg *pgtbl_cfg)
1495 {
1496 int vmid;
1497 struct arm_smmu_device *smmu = smmu_domain->smmu;
1498 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1499
1500 vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1501 if (vmid < 0)
1502 return vmid;
1503
1504 cfg->vmid = (u16)vmid;
1505 cfg->vttbr = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1506 cfg->vtcr = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1507 return 0;
1508 }
1509
1510 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1511 {
1512 int ret;
1513 unsigned long ias, oas;
1514 enum io_pgtable_fmt fmt;
1515 struct io_pgtable_cfg pgtbl_cfg;
1516 struct io_pgtable_ops *pgtbl_ops;
1517 int (*finalise_stage_fn)(struct arm_smmu_domain *,
1518 struct io_pgtable_cfg *);
1519 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1520 struct arm_smmu_device *smmu = smmu_domain->smmu;
1521
1522 /* Restrict the stage to what we can actually support */
1523 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1524 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1525 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1526 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1527
1528 switch (smmu_domain->stage) {
1529 case ARM_SMMU_DOMAIN_S1:
1530 ias = VA_BITS;
1531 oas = smmu->ias;
1532 fmt = ARM_64_LPAE_S1;
1533 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1534 break;
1535 case ARM_SMMU_DOMAIN_NESTED:
1536 case ARM_SMMU_DOMAIN_S2:
1537 ias = smmu->ias;
1538 oas = smmu->oas;
1539 fmt = ARM_64_LPAE_S2;
1540 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1541 break;
1542 default:
1543 return -EINVAL;
1544 }
1545
1546 pgtbl_cfg = (struct io_pgtable_cfg) {
1547 .pgsize_bitmap = smmu->pgsize_bitmap,
1548 .ias = ias,
1549 .oas = oas,
1550 .tlb = &arm_smmu_gather_ops,
1551 .iommu_dev = smmu->dev,
1552 };
1553
1554 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1555 if (!pgtbl_ops)
1556 return -ENOMEM;
1557
1558 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1559 domain->geometry.aperture_end = (1UL << ias) - 1;
1560 domain->geometry.force_aperture = true;
1561 smmu_domain->pgtbl_ops = pgtbl_ops;
1562
1563 ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1564 if (ret < 0)
1565 free_io_pgtable_ops(pgtbl_ops);
1566
1567 return ret;
1568 }
1569
1570 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1571 {
1572 __le64 *step;
1573 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1574
1575 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1576 struct arm_smmu_strtab_l1_desc *l1_desc;
1577 int idx;
1578
1579 /* Two-level walk */
1580 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1581 l1_desc = &cfg->l1_desc[idx];
1582 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1583 step = &l1_desc->l2ptr[idx];
1584 } else {
1585 /* Simple linear lookup */
1586 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1587 }
1588
1589 return step;
1590 }
1591
1592 static int arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1593 {
1594 int i;
1595 struct arm_smmu_master_data *master = fwspec->iommu_priv;
1596 struct arm_smmu_device *smmu = master->smmu;
1597
1598 for (i = 0; i < fwspec->num_ids; ++i) {
1599 u32 sid = fwspec->ids[i];
1600 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1601
1602 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1603 }
1604
1605 return 0;
1606 }
1607
1608 static void arm_smmu_detach_dev(struct device *dev)
1609 {
1610 struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1611
1612 master->ste.bypass = true;
1613 if (arm_smmu_install_ste_for_dev(dev->iommu_fwspec) < 0)
1614 dev_warn(dev, "failed to install bypass STE\n");
1615 }
1616
1617 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1618 {
1619 int ret = 0;
1620 struct arm_smmu_device *smmu;
1621 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1622 struct arm_smmu_master_data *master;
1623 struct arm_smmu_strtab_ent *ste;
1624
1625 if (!dev->iommu_fwspec)
1626 return -ENOENT;
1627
1628 master = dev->iommu_fwspec->iommu_priv;
1629 smmu = master->smmu;
1630 ste = &master->ste;
1631
1632 /* Already attached to a different domain? */
1633 if (!ste->bypass)
1634 arm_smmu_detach_dev(dev);
1635
1636 mutex_lock(&smmu_domain->init_mutex);
1637
1638 if (!smmu_domain->smmu) {
1639 smmu_domain->smmu = smmu;
1640 ret = arm_smmu_domain_finalise(domain);
1641 if (ret) {
1642 smmu_domain->smmu = NULL;
1643 goto out_unlock;
1644 }
1645 } else if (smmu_domain->smmu != smmu) {
1646 dev_err(dev,
1647 "cannot attach to SMMU %s (upstream of %s)\n",
1648 dev_name(smmu_domain->smmu->dev),
1649 dev_name(smmu->dev));
1650 ret = -ENXIO;
1651 goto out_unlock;
1652 }
1653
1654 ste->bypass = false;
1655 ste->valid = true;
1656
1657 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1658 ste->s1_cfg = &smmu_domain->s1_cfg;
1659 ste->s2_cfg = NULL;
1660 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1661 } else {
1662 ste->s1_cfg = NULL;
1663 ste->s2_cfg = &smmu_domain->s2_cfg;
1664 }
1665
1666 ret = arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1667 if (ret < 0)
1668 ste->valid = false;
1669
1670 out_unlock:
1671 mutex_unlock(&smmu_domain->init_mutex);
1672 return ret;
1673 }
1674
1675 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1676 phys_addr_t paddr, size_t size, int prot)
1677 {
1678 int ret;
1679 unsigned long flags;
1680 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1681 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1682
1683 if (!ops)
1684 return -ENODEV;
1685
1686 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1687 ret = ops->map(ops, iova, paddr, size, prot);
1688 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1689 return ret;
1690 }
1691
1692 static size_t
1693 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1694 {
1695 size_t ret;
1696 unsigned long flags;
1697 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1698 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1699
1700 if (!ops)
1701 return 0;
1702
1703 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1704 ret = ops->unmap(ops, iova, size);
1705 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1706 return ret;
1707 }
1708
1709 static phys_addr_t
1710 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1711 {
1712 phys_addr_t ret;
1713 unsigned long flags;
1714 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1715 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1716
1717 if (!ops)
1718 return 0;
1719
1720 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1721 ret = ops->iova_to_phys(ops, iova);
1722 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1723
1724 return ret;
1725 }
1726
1727 static struct platform_driver arm_smmu_driver;
1728
1729 static int arm_smmu_match_node(struct device *dev, void *data)
1730 {
1731 return dev->fwnode == data;
1732 }
1733
1734 static
1735 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1736 {
1737 struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1738 fwnode, arm_smmu_match_node);
1739 put_device(dev);
1740 return dev ? dev_get_drvdata(dev) : NULL;
1741 }
1742
1743 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1744 {
1745 unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1746
1747 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1748 limit *= 1UL << STRTAB_SPLIT;
1749
1750 return sid < limit;
1751 }
1752
1753 static struct iommu_ops arm_smmu_ops;
1754
1755 static int arm_smmu_add_device(struct device *dev)
1756 {
1757 int i, ret;
1758 struct arm_smmu_device *smmu;
1759 struct arm_smmu_master_data *master;
1760 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1761 struct iommu_group *group;
1762
1763 if (!fwspec || fwspec->ops != &arm_smmu_ops)
1764 return -ENODEV;
1765 /*
1766 * We _can_ actually withstand dodgy bus code re-calling add_device()
1767 * without an intervening remove_device()/of_xlate() sequence, but
1768 * we're not going to do so quietly...
1769 */
1770 if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1771 master = fwspec->iommu_priv;
1772 smmu = master->smmu;
1773 } else {
1774 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1775 if (!smmu)
1776 return -ENODEV;
1777 master = kzalloc(sizeof(*master), GFP_KERNEL);
1778 if (!master)
1779 return -ENOMEM;
1780
1781 master->smmu = smmu;
1782 fwspec->iommu_priv = master;
1783 }
1784
1785 /* Check the SIDs are in range of the SMMU and our stream table */
1786 for (i = 0; i < fwspec->num_ids; i++) {
1787 u32 sid = fwspec->ids[i];
1788
1789 if (!arm_smmu_sid_in_range(smmu, sid))
1790 return -ERANGE;
1791
1792 /* Ensure l2 strtab is initialised */
1793 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1794 ret = arm_smmu_init_l2_strtab(smmu, sid);
1795 if (ret)
1796 return ret;
1797 }
1798 }
1799
1800 group = iommu_group_get_for_dev(dev);
1801 if (!IS_ERR(group)) {
1802 iommu_group_put(group);
1803 iommu_device_link(&smmu->iommu, dev);
1804 }
1805
1806 return PTR_ERR_OR_ZERO(group);
1807 }
1808
1809 static void arm_smmu_remove_device(struct device *dev)
1810 {
1811 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1812 struct arm_smmu_master_data *master;
1813 struct arm_smmu_device *smmu;
1814
1815 if (!fwspec || fwspec->ops != &arm_smmu_ops)
1816 return;
1817
1818 master = fwspec->iommu_priv;
1819 smmu = master->smmu;
1820 if (master && master->ste.valid)
1821 arm_smmu_detach_dev(dev);
1822 iommu_group_remove_device(dev);
1823 iommu_device_unlink(&smmu->iommu, dev);
1824 kfree(master);
1825 iommu_fwspec_free(dev);
1826 }
1827
1828 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1829 {
1830 struct iommu_group *group;
1831
1832 /*
1833 * We don't support devices sharing stream IDs other than PCI RID
1834 * aliases, since the necessary ID-to-device lookup becomes rather
1835 * impractical given a potential sparse 32-bit stream ID space.
1836 */
1837 if (dev_is_pci(dev))
1838 group = pci_device_group(dev);
1839 else
1840 group = generic_device_group(dev);
1841
1842 return group;
1843 }
1844
1845 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1846 enum iommu_attr attr, void *data)
1847 {
1848 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1849
1850 switch (attr) {
1851 case DOMAIN_ATTR_NESTING:
1852 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1853 return 0;
1854 default:
1855 return -ENODEV;
1856 }
1857 }
1858
1859 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1860 enum iommu_attr attr, void *data)
1861 {
1862 int ret = 0;
1863 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1864
1865 mutex_lock(&smmu_domain->init_mutex);
1866
1867 switch (attr) {
1868 case DOMAIN_ATTR_NESTING:
1869 if (smmu_domain->smmu) {
1870 ret = -EPERM;
1871 goto out_unlock;
1872 }
1873
1874 if (*(int *)data)
1875 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1876 else
1877 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1878
1879 break;
1880 default:
1881 ret = -ENODEV;
1882 }
1883
1884 out_unlock:
1885 mutex_unlock(&smmu_domain->init_mutex);
1886 return ret;
1887 }
1888
1889 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1890 {
1891 return iommu_fwspec_add_ids(dev, args->args, 1);
1892 }
1893
1894 static struct iommu_ops arm_smmu_ops = {
1895 .capable = arm_smmu_capable,
1896 .domain_alloc = arm_smmu_domain_alloc,
1897 .domain_free = arm_smmu_domain_free,
1898 .attach_dev = arm_smmu_attach_dev,
1899 .map = arm_smmu_map,
1900 .unmap = arm_smmu_unmap,
1901 .map_sg = default_iommu_map_sg,
1902 .iova_to_phys = arm_smmu_iova_to_phys,
1903 .add_device = arm_smmu_add_device,
1904 .remove_device = arm_smmu_remove_device,
1905 .device_group = arm_smmu_device_group,
1906 .domain_get_attr = arm_smmu_domain_get_attr,
1907 .domain_set_attr = arm_smmu_domain_set_attr,
1908 .of_xlate = arm_smmu_of_xlate,
1909 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1910 };
1911
1912 /* Probing and initialisation functions */
1913 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1914 struct arm_smmu_queue *q,
1915 unsigned long prod_off,
1916 unsigned long cons_off,
1917 size_t dwords)
1918 {
1919 size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1920
1921 q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1922 if (!q->base) {
1923 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1924 qsz);
1925 return -ENOMEM;
1926 }
1927
1928 q->prod_reg = smmu->base + prod_off;
1929 q->cons_reg = smmu->base + cons_off;
1930 q->ent_dwords = dwords;
1931
1932 q->q_base = Q_BASE_RWA;
1933 q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1934 q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1935 << Q_BASE_LOG2SIZE_SHIFT;
1936
1937 q->prod = q->cons = 0;
1938 return 0;
1939 }
1940
1941 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1942 {
1943 int ret;
1944
1945 /* cmdq */
1946 spin_lock_init(&smmu->cmdq.lock);
1947 ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1948 ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1949 if (ret)
1950 return ret;
1951
1952 /* evtq */
1953 ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1954 ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1955 if (ret)
1956 return ret;
1957
1958 /* priq */
1959 if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1960 return 0;
1961
1962 return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1963 ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
1964 }
1965
1966 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
1967 {
1968 unsigned int i;
1969 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1970 size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
1971 void *strtab = smmu->strtab_cfg.strtab;
1972
1973 cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
1974 if (!cfg->l1_desc) {
1975 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
1976 return -ENOMEM;
1977 }
1978
1979 for (i = 0; i < cfg->num_l1_ents; ++i) {
1980 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
1981 strtab += STRTAB_L1_DESC_DWORDS << 3;
1982 }
1983
1984 return 0;
1985 }
1986
1987 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
1988 {
1989 void *strtab;
1990 u64 reg;
1991 u32 size, l1size;
1992 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1993
1994 /*
1995 * If we can resolve everything with a single L2 table, then we
1996 * just need a single L1 descriptor. Otherwise, calculate the L1
1997 * size, capped to the SIDSIZE.
1998 */
1999 if (smmu->sid_bits < STRTAB_SPLIT) {
2000 size = 0;
2001 } else {
2002 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2003 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2004 }
2005 cfg->num_l1_ents = 1 << size;
2006
2007 size += STRTAB_SPLIT;
2008 if (size < smmu->sid_bits)
2009 dev_warn(smmu->dev,
2010 "2-level strtab only covers %u/%u bits of SID\n",
2011 size, smmu->sid_bits);
2012
2013 l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2014 strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2015 GFP_KERNEL | __GFP_ZERO);
2016 if (!strtab) {
2017 dev_err(smmu->dev,
2018 "failed to allocate l1 stream table (%u bytes)\n",
2019 size);
2020 return -ENOMEM;
2021 }
2022 cfg->strtab = strtab;
2023
2024 /* Configure strtab_base_cfg for 2 levels */
2025 reg = STRTAB_BASE_CFG_FMT_2LVL;
2026 reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2027 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2028 reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2029 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2030 cfg->strtab_base_cfg = reg;
2031
2032 return arm_smmu_init_l1_strtab(smmu);
2033 }
2034
2035 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2036 {
2037 void *strtab;
2038 u64 reg;
2039 u32 size;
2040 struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2041
2042 size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2043 strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2044 GFP_KERNEL | __GFP_ZERO);
2045 if (!strtab) {
2046 dev_err(smmu->dev,
2047 "failed to allocate linear stream table (%u bytes)\n",
2048 size);
2049 return -ENOMEM;
2050 }
2051 cfg->strtab = strtab;
2052 cfg->num_l1_ents = 1 << smmu->sid_bits;
2053
2054 /* Configure strtab_base_cfg for a linear table covering all SIDs */
2055 reg = STRTAB_BASE_CFG_FMT_LINEAR;
2056 reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2057 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2058 cfg->strtab_base_cfg = reg;
2059
2060 arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2061 return 0;
2062 }
2063
2064 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2065 {
2066 u64 reg;
2067 int ret;
2068
2069 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2070 ret = arm_smmu_init_strtab_2lvl(smmu);
2071 else
2072 ret = arm_smmu_init_strtab_linear(smmu);
2073
2074 if (ret)
2075 return ret;
2076
2077 /* Set the strtab base address */
2078 reg = smmu->strtab_cfg.strtab_dma &
2079 STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2080 reg |= STRTAB_BASE_RA;
2081 smmu->strtab_cfg.strtab_base = reg;
2082
2083 /* Allocate the first VMID for stage-2 bypass STEs */
2084 set_bit(0, smmu->vmid_map);
2085 return 0;
2086 }
2087
2088 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2089 {
2090 int ret;
2091
2092 ret = arm_smmu_init_queues(smmu);
2093 if (ret)
2094 return ret;
2095
2096 return arm_smmu_init_strtab(smmu);
2097 }
2098
2099 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2100 unsigned int reg_off, unsigned int ack_off)
2101 {
2102 u32 reg;
2103
2104 writel_relaxed(val, smmu->base + reg_off);
2105 return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2106 1, ARM_SMMU_POLL_TIMEOUT_US);
2107 }
2108
2109 /* GBPA is "special" */
2110 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2111 {
2112 int ret;
2113 u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2114
2115 ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2116 1, ARM_SMMU_POLL_TIMEOUT_US);
2117 if (ret)
2118 return ret;
2119
2120 reg &= ~clr;
2121 reg |= set;
2122 writel_relaxed(reg | GBPA_UPDATE, gbpa);
2123 return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2124 1, ARM_SMMU_POLL_TIMEOUT_US);
2125 }
2126
2127 static void arm_smmu_free_msis(void *data)
2128 {
2129 struct device *dev = data;
2130 platform_msi_domain_free_irqs(dev);
2131 }
2132
2133 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2134 {
2135 phys_addr_t doorbell;
2136 struct device *dev = msi_desc_to_dev(desc);
2137 struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2138 phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2139
2140 doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2141 doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2142
2143 writeq_relaxed(doorbell, smmu->base + cfg[0]);
2144 writel_relaxed(msg->data, smmu->base + cfg[1]);
2145 writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2146 }
2147
2148 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2149 {
2150 struct msi_desc *desc;
2151 int ret, nvec = ARM_SMMU_MAX_MSIS;
2152 struct device *dev = smmu->dev;
2153
2154 /* Clear the MSI address regs */
2155 writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2156 writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2157
2158 if (smmu->features & ARM_SMMU_FEAT_PRI)
2159 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2160 else
2161 nvec--;
2162
2163 if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2164 return;
2165
2166 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2167 ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2168 if (ret) {
2169 dev_warn(dev, "failed to allocate MSIs\n");
2170 return;
2171 }
2172
2173 for_each_msi_entry(desc, dev) {
2174 switch (desc->platform.msi_index) {
2175 case EVTQ_MSI_INDEX:
2176 smmu->evtq.q.irq = desc->irq;
2177 break;
2178 case GERROR_MSI_INDEX:
2179 smmu->gerr_irq = desc->irq;
2180 break;
2181 case PRIQ_MSI_INDEX:
2182 smmu->priq.q.irq = desc->irq;
2183 break;
2184 default: /* Unknown */
2185 continue;
2186 }
2187 }
2188
2189 /* Add callback to free MSIs on teardown */
2190 devm_add_action(dev, arm_smmu_free_msis, dev);
2191 }
2192
2193 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2194 {
2195 int ret, irq;
2196 u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2197
2198 /* Disable IRQs first */
2199 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2200 ARM_SMMU_IRQ_CTRLACK);
2201 if (ret) {
2202 dev_err(smmu->dev, "failed to disable irqs\n");
2203 return ret;
2204 }
2205
2206 arm_smmu_setup_msis(smmu);
2207
2208 /* Request interrupt lines */
2209 irq = smmu->evtq.q.irq;
2210 if (irq) {
2211 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2212 arm_smmu_evtq_thread,
2213 IRQF_ONESHOT,
2214 "arm-smmu-v3-evtq", smmu);
2215 if (ret < 0)
2216 dev_warn(smmu->dev, "failed to enable evtq irq\n");
2217 }
2218
2219 irq = smmu->cmdq.q.irq;
2220 if (irq) {
2221 ret = devm_request_irq(smmu->dev, irq,
2222 arm_smmu_cmdq_sync_handler, 0,
2223 "arm-smmu-v3-cmdq-sync", smmu);
2224 if (ret < 0)
2225 dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2226 }
2227
2228 irq = smmu->gerr_irq;
2229 if (irq) {
2230 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2231 0, "arm-smmu-v3-gerror", smmu);
2232 if (ret < 0)
2233 dev_warn(smmu->dev, "failed to enable gerror irq\n");
2234 }
2235
2236 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2237 irq = smmu->priq.q.irq;
2238 if (irq) {
2239 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2240 arm_smmu_priq_thread,
2241 IRQF_ONESHOT,
2242 "arm-smmu-v3-priq",
2243 smmu);
2244 if (ret < 0)
2245 dev_warn(smmu->dev,
2246 "failed to enable priq irq\n");
2247 else
2248 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2249 }
2250 }
2251
2252 /* Enable interrupt generation on the SMMU */
2253 ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2254 ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2255 if (ret)
2256 dev_warn(smmu->dev, "failed to enable irqs\n");
2257
2258 return 0;
2259 }
2260
2261 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2262 {
2263 int ret;
2264
2265 ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2266 if (ret)
2267 dev_err(smmu->dev, "failed to clear cr0\n");
2268
2269 return ret;
2270 }
2271
2272 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2273 {
2274 int ret;
2275 u32 reg, enables;
2276 struct arm_smmu_cmdq_ent cmd;
2277
2278 /* Clear CR0 and sync (disables SMMU and queue processing) */
2279 reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2280 if (reg & CR0_SMMUEN)
2281 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2282
2283 ret = arm_smmu_device_disable(smmu);
2284 if (ret)
2285 return ret;
2286
2287 /* CR1 (table and queue memory attributes) */
2288 reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2289 (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2290 (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2291 (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2292 (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2293 (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2294 writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2295
2296 /* CR2 (random crap) */
2297 reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2298 writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2299
2300 /* Stream table */
2301 writeq_relaxed(smmu->strtab_cfg.strtab_base,
2302 smmu->base + ARM_SMMU_STRTAB_BASE);
2303 writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2304 smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2305
2306 /* Command queue */
2307 writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2308 writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2309 writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2310
2311 enables = CR0_CMDQEN;
2312 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2313 ARM_SMMU_CR0ACK);
2314 if (ret) {
2315 dev_err(smmu->dev, "failed to enable command queue\n");
2316 return ret;
2317 }
2318
2319 /* Invalidate any cached configuration */
2320 cmd.opcode = CMDQ_OP_CFGI_ALL;
2321 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2322 cmd.opcode = CMDQ_OP_CMD_SYNC;
2323 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2324
2325 /* Invalidate any stale TLB entries */
2326 if (smmu->features & ARM_SMMU_FEAT_HYP) {
2327 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2328 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2329 }
2330
2331 cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2332 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2333 cmd.opcode = CMDQ_OP_CMD_SYNC;
2334 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2335
2336 /* Event queue */
2337 writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2338 writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2339 writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2340
2341 enables |= CR0_EVTQEN;
2342 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2343 ARM_SMMU_CR0ACK);
2344 if (ret) {
2345 dev_err(smmu->dev, "failed to enable event queue\n");
2346 return ret;
2347 }
2348
2349 /* PRI queue */
2350 if (smmu->features & ARM_SMMU_FEAT_PRI) {
2351 writeq_relaxed(smmu->priq.q.q_base,
2352 smmu->base + ARM_SMMU_PRIQ_BASE);
2353 writel_relaxed(smmu->priq.q.prod,
2354 smmu->base + ARM_SMMU_PRIQ_PROD);
2355 writel_relaxed(smmu->priq.q.cons,
2356 smmu->base + ARM_SMMU_PRIQ_CONS);
2357
2358 enables |= CR0_PRIQEN;
2359 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2360 ARM_SMMU_CR0ACK);
2361 if (ret) {
2362 dev_err(smmu->dev, "failed to enable PRI queue\n");
2363 return ret;
2364 }
2365 }
2366
2367 ret = arm_smmu_setup_irqs(smmu);
2368 if (ret) {
2369 dev_err(smmu->dev, "failed to setup irqs\n");
2370 return ret;
2371 }
2372
2373
2374 /* Enable the SMMU interface, or ensure bypass */
2375 if (!bypass || disable_bypass) {
2376 enables |= CR0_SMMUEN;
2377 } else {
2378 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2379 if (ret) {
2380 dev_err(smmu->dev, "GBPA not responding to update\n");
2381 return ret;
2382 }
2383 }
2384 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2385 ARM_SMMU_CR0ACK);
2386 if (ret) {
2387 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2388 return ret;
2389 }
2390
2391 return 0;
2392 }
2393
2394 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2395 {
2396 u32 reg;
2397 bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2398
2399 /* IDR0 */
2400 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2401
2402 /* 2-level structures */
2403 if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2404 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2405
2406 if (reg & IDR0_CD2L)
2407 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2408
2409 /*
2410 * Translation table endianness.
2411 * We currently require the same endianness as the CPU, but this
2412 * could be changed later by adding a new IO_PGTABLE_QUIRK.
2413 */
2414 switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2415 case IDR0_TTENDIAN_MIXED:
2416 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2417 break;
2418 #ifdef __BIG_ENDIAN
2419 case IDR0_TTENDIAN_BE:
2420 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2421 break;
2422 #else
2423 case IDR0_TTENDIAN_LE:
2424 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2425 break;
2426 #endif
2427 default:
2428 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2429 return -ENXIO;
2430 }
2431
2432 /* Boolean feature flags */
2433 if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2434 smmu->features |= ARM_SMMU_FEAT_PRI;
2435
2436 if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2437 smmu->features |= ARM_SMMU_FEAT_ATS;
2438
2439 if (reg & IDR0_SEV)
2440 smmu->features |= ARM_SMMU_FEAT_SEV;
2441
2442 if (reg & IDR0_MSI)
2443 smmu->features |= ARM_SMMU_FEAT_MSI;
2444
2445 if (reg & IDR0_HYP)
2446 smmu->features |= ARM_SMMU_FEAT_HYP;
2447
2448 /*
2449 * The coherency feature as set by FW is used in preference to the ID
2450 * register, but warn on mismatch.
2451 */
2452 if (!!(reg & IDR0_COHACC) != coherent)
2453 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2454 coherent ? "true" : "false");
2455
2456 switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2457 case IDR0_STALL_MODEL_STALL:
2458 /* Fallthrough */
2459 case IDR0_STALL_MODEL_FORCE:
2460 smmu->features |= ARM_SMMU_FEAT_STALLS;
2461 }
2462
2463 if (reg & IDR0_S1P)
2464 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2465
2466 if (reg & IDR0_S2P)
2467 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2468
2469 if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2470 dev_err(smmu->dev, "no translation support!\n");
2471 return -ENXIO;
2472 }
2473
2474 /* We only support the AArch64 table format at present */
2475 switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2476 case IDR0_TTF_AARCH32_64:
2477 smmu->ias = 40;
2478 /* Fallthrough */
2479 case IDR0_TTF_AARCH64:
2480 break;
2481 default:
2482 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2483 return -ENXIO;
2484 }
2485
2486 /* ASID/VMID sizes */
2487 smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2488 smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2489
2490 /* IDR1 */
2491 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2492 if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2493 dev_err(smmu->dev, "embedded implementation not supported\n");
2494 return -ENXIO;
2495 }
2496
2497 /* Queue sizes, capped at 4k */
2498 smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2499 reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2500 if (!smmu->cmdq.q.max_n_shift) {
2501 /* Odd alignment restrictions on the base, so ignore for now */
2502 dev_err(smmu->dev, "unit-length command queue not supported\n");
2503 return -ENXIO;
2504 }
2505
2506 smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2507 reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2508 smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2509 reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2510
2511 /* SID/SSID sizes */
2512 smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2513 smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2514
2515 /* IDR5 */
2516 reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2517
2518 /* Maximum number of outstanding stalls */
2519 smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2520 & IDR5_STALL_MAX_MASK;
2521
2522 /* Page sizes */
2523 if (reg & IDR5_GRAN64K)
2524 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2525 if (reg & IDR5_GRAN16K)
2526 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2527 if (reg & IDR5_GRAN4K)
2528 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2529
2530 if (arm_smmu_ops.pgsize_bitmap == -1UL)
2531 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2532 else
2533 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2534
2535 /* Output address size */
2536 switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2537 case IDR5_OAS_32_BIT:
2538 smmu->oas = 32;
2539 break;
2540 case IDR5_OAS_36_BIT:
2541 smmu->oas = 36;
2542 break;
2543 case IDR5_OAS_40_BIT:
2544 smmu->oas = 40;
2545 break;
2546 case IDR5_OAS_42_BIT:
2547 smmu->oas = 42;
2548 break;
2549 case IDR5_OAS_44_BIT:
2550 smmu->oas = 44;
2551 break;
2552 default:
2553 dev_info(smmu->dev,
2554 "unknown output address size. Truncating to 48-bit\n");
2555 /* Fallthrough */
2556 case IDR5_OAS_48_BIT:
2557 smmu->oas = 48;
2558 }
2559
2560 /* Set the DMA mask for our table walker */
2561 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2562 dev_warn(smmu->dev,
2563 "failed to set DMA mask for table walker\n");
2564
2565 smmu->ias = max(smmu->ias, smmu->oas);
2566
2567 dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2568 smmu->ias, smmu->oas, smmu->features);
2569 return 0;
2570 }
2571
2572 #ifdef CONFIG_ACPI
2573 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2574 struct arm_smmu_device *smmu)
2575 {
2576 struct acpi_iort_smmu_v3 *iort_smmu;
2577 struct device *dev = smmu->dev;
2578 struct acpi_iort_node *node;
2579
2580 node = *(struct acpi_iort_node **)dev_get_platdata(dev);
2581
2582 /* Retrieve SMMUv3 specific data */
2583 iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
2584
2585 if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
2586 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2587
2588 return 0;
2589 }
2590 #else
2591 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2592 struct arm_smmu_device *smmu)
2593 {
2594 return -ENODEV;
2595 }
2596 #endif
2597
2598 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2599 struct arm_smmu_device *smmu)
2600 {
2601 struct device *dev = &pdev->dev;
2602 u32 cells;
2603 int ret = -EINVAL;
2604
2605 if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2606 dev_err(dev, "missing #iommu-cells property\n");
2607 else if (cells != 1)
2608 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2609 else
2610 ret = 0;
2611
2612 parse_driver_options(smmu);
2613
2614 if (of_dma_is_coherent(dev->of_node))
2615 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2616
2617 return ret;
2618 }
2619
2620 static int arm_smmu_device_probe(struct platform_device *pdev)
2621 {
2622 int irq, ret;
2623 struct resource *res;
2624 resource_size_t ioaddr;
2625 struct arm_smmu_device *smmu;
2626 struct device *dev = &pdev->dev;
2627 bool bypass;
2628
2629 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2630 if (!smmu) {
2631 dev_err(dev, "failed to allocate arm_smmu_device\n");
2632 return -ENOMEM;
2633 }
2634 smmu->dev = dev;
2635
2636 /* Base address */
2637 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2638 if (resource_size(res) + 1 < SZ_128K) {
2639 dev_err(dev, "MMIO region too small (%pr)\n", res);
2640 return -EINVAL;
2641 }
2642 ioaddr = res->start;
2643
2644 smmu->base = devm_ioremap_resource(dev, res);
2645 if (IS_ERR(smmu->base))
2646 return PTR_ERR(smmu->base);
2647
2648 /* Interrupt lines */
2649 irq = platform_get_irq_byname(pdev, "eventq");
2650 if (irq > 0)
2651 smmu->evtq.q.irq = irq;
2652
2653 irq = platform_get_irq_byname(pdev, "priq");
2654 if (irq > 0)
2655 smmu->priq.q.irq = irq;
2656
2657 irq = platform_get_irq_byname(pdev, "cmdq-sync");
2658 if (irq > 0)
2659 smmu->cmdq.q.irq = irq;
2660
2661 irq = platform_get_irq_byname(pdev, "gerror");
2662 if (irq > 0)
2663 smmu->gerr_irq = irq;
2664
2665 if (dev->of_node) {
2666 ret = arm_smmu_device_dt_probe(pdev, smmu);
2667 } else {
2668 ret = arm_smmu_device_acpi_probe(pdev, smmu);
2669 if (ret == -ENODEV)
2670 return ret;
2671 }
2672
2673 /* Set bypass mode according to firmware probing result */
2674 bypass = !!ret;
2675
2676 /* Probe the h/w */
2677 ret = arm_smmu_device_hw_probe(smmu);
2678 if (ret)
2679 return ret;
2680
2681 /* Initialise in-memory data structures */
2682 ret = arm_smmu_init_structures(smmu);
2683 if (ret)
2684 return ret;
2685
2686 /* Record our private device structure */
2687 platform_set_drvdata(pdev, smmu);
2688
2689 /* Reset the device */
2690 ret = arm_smmu_device_reset(smmu, bypass);
2691 if (ret)
2692 return ret;
2693
2694 /* And we're up. Go go go! */
2695 ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
2696 "smmu3.%pa", &ioaddr);
2697 if (ret)
2698 return ret;
2699
2700 iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
2701 iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);
2702
2703 ret = iommu_device_register(&smmu->iommu);
2704
2705 #ifdef CONFIG_PCI
2706 if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2707 pci_request_acs();
2708 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2709 if (ret)
2710 return ret;
2711 }
2712 #endif
2713 #ifdef CONFIG_ARM_AMBA
2714 if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2715 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2716 if (ret)
2717 return ret;
2718 }
2719 #endif
2720 if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2721 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2722 if (ret)
2723 return ret;
2724 }
2725 return 0;
2726 }
2727
2728 static int arm_smmu_device_remove(struct platform_device *pdev)
2729 {
2730 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2731
2732 arm_smmu_device_disable(smmu);
2733 return 0;
2734 }
2735
2736 static struct of_device_id arm_smmu_of_match[] = {
2737 { .compatible = "arm,smmu-v3", },
2738 { },
2739 };
2740 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2741
2742 static struct platform_driver arm_smmu_driver = {
2743 .driver = {
2744 .name = "arm-smmu-v3",
2745 .of_match_table = of_match_ptr(arm_smmu_of_match),
2746 },
2747 .probe = arm_smmu_device_probe,
2748 .remove = arm_smmu_device_remove,
2749 };
2750
2751 static int __init arm_smmu_init(void)
2752 {
2753 static bool registered;
2754 int ret = 0;
2755
2756 if (!registered) {
2757 ret = platform_driver_register(&arm_smmu_driver);
2758 registered = !ret;
2759 }
2760 return ret;
2761 }
2762
2763 static void __exit arm_smmu_exit(void)
2764 {
2765 return platform_driver_unregister(&arm_smmu_driver);
2766 }
2767
2768 subsys_initcall(arm_smmu_init);
2769 module_exit(arm_smmu_exit);
2770
2771 static int __init arm_smmu_of_init(struct device_node *np)
2772 {
2773 int ret = arm_smmu_init();
2774
2775 if (ret)
2776 return ret;
2777
2778 if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
2779 return -ENODEV;
2780
2781 return 0;
2782 }
2783 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", arm_smmu_of_init);
2784
2785 #ifdef CONFIG_ACPI
2786 static int __init acpi_smmu_v3_init(struct acpi_table_header *table)
2787 {
2788 if (iort_node_match(ACPI_IORT_NODE_SMMU_V3))
2789 return arm_smmu_init();
2790
2791 return 0;
2792 }
2793 IORT_ACPI_DECLARE(arm_smmu_v3, ACPI_SIG_IORT, acpi_smmu_v3_init);
2794 #endif
2795
2796 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2797 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2798 MODULE_LICENSE("GPL v2");