]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/iommu/arm-smmu.c
vfio/type1: Fix error return code in vfio_iommu_type1_attach_group()
[mirror_ubuntu-bionic-kernel.git] / drivers / iommu / arm-smmu.c
1 /*
2 * IOMMU API for ARM architected SMMU implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16 *
17 * Copyright (C) 2013 ARM Limited
18 *
19 * Author: Will Deacon <will.deacon@arm.com>
20 *
21 * This driver currently supports:
22 * - SMMUv1 and v2 implementations
23 * - Stream-matching and stream-indexing
24 * - v7/v8 long-descriptor format
25 * - Non-secure access to the SMMU
26 * - Context fault reporting
27 */
28
29 #define pr_fmt(fmt) "arm-smmu: " fmt
30
31 #include <linux/acpi.h>
32 #include <linux/acpi_iort.h>
33 #include <linux/atomic.h>
34 #include <linux/delay.h>
35 #include <linux/dma-iommu.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/err.h>
38 #include <linux/interrupt.h>
39 #include <linux/io.h>
40 #include <linux/io-64-nonatomic-hi-lo.h>
41 #include <linux/iommu.h>
42 #include <linux/iopoll.h>
43 #include <linux/module.h>
44 #include <linux/of.h>
45 #include <linux/of_address.h>
46 #include <linux/of_device.h>
47 #include <linux/of_iommu.h>
48 #include <linux/pci.h>
49 #include <linux/platform_device.h>
50 #include <linux/slab.h>
51 #include <linux/spinlock.h>
52
53 #include <linux/amba/bus.h>
54
55 #include "io-pgtable.h"
56
57 /* Maximum number of context banks per SMMU */
58 #define ARM_SMMU_MAX_CBS 128
59
60 /* SMMU global address space */
61 #define ARM_SMMU_GR0(smmu) ((smmu)->base)
62 #define ARM_SMMU_GR1(smmu) ((smmu)->base + (1 << (smmu)->pgshift))
63
64 /*
65 * SMMU global address space with conditional offset to access secure
66 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
67 * nsGFSYNR0: 0x450)
68 */
69 #define ARM_SMMU_GR0_NS(smmu) \
70 ((smmu)->base + \
71 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS) \
72 ? 0x400 : 0))
73
74 /*
75 * Some 64-bit registers only make sense to write atomically, but in such
76 * cases all the data relevant to AArch32 formats lies within the lower word,
77 * therefore this actually makes more sense than it might first appear.
78 */
79 #ifdef CONFIG_64BIT
80 #define smmu_write_atomic_lq writeq_relaxed
81 #else
82 #define smmu_write_atomic_lq writel_relaxed
83 #endif
84
85 /* Configuration registers */
86 #define ARM_SMMU_GR0_sCR0 0x0
87 #define sCR0_CLIENTPD (1 << 0)
88 #define sCR0_GFRE (1 << 1)
89 #define sCR0_GFIE (1 << 2)
90 #define sCR0_GCFGFRE (1 << 4)
91 #define sCR0_GCFGFIE (1 << 5)
92 #define sCR0_USFCFG (1 << 10)
93 #define sCR0_VMIDPNE (1 << 11)
94 #define sCR0_PTM (1 << 12)
95 #define sCR0_FB (1 << 13)
96 #define sCR0_VMID16EN (1 << 31)
97 #define sCR0_BSU_SHIFT 14
98 #define sCR0_BSU_MASK 0x3
99
100 /* Auxiliary Configuration register */
101 #define ARM_SMMU_GR0_sACR 0x10
102
103 /* Identification registers */
104 #define ARM_SMMU_GR0_ID0 0x20
105 #define ARM_SMMU_GR0_ID1 0x24
106 #define ARM_SMMU_GR0_ID2 0x28
107 #define ARM_SMMU_GR0_ID3 0x2c
108 #define ARM_SMMU_GR0_ID4 0x30
109 #define ARM_SMMU_GR0_ID5 0x34
110 #define ARM_SMMU_GR0_ID6 0x38
111 #define ARM_SMMU_GR0_ID7 0x3c
112 #define ARM_SMMU_GR0_sGFSR 0x48
113 #define ARM_SMMU_GR0_sGFSYNR0 0x50
114 #define ARM_SMMU_GR0_sGFSYNR1 0x54
115 #define ARM_SMMU_GR0_sGFSYNR2 0x58
116
117 #define ID0_S1TS (1 << 30)
118 #define ID0_S2TS (1 << 29)
119 #define ID0_NTS (1 << 28)
120 #define ID0_SMS (1 << 27)
121 #define ID0_ATOSNS (1 << 26)
122 #define ID0_PTFS_NO_AARCH32 (1 << 25)
123 #define ID0_PTFS_NO_AARCH32S (1 << 24)
124 #define ID0_CTTW (1 << 14)
125 #define ID0_NUMIRPT_SHIFT 16
126 #define ID0_NUMIRPT_MASK 0xff
127 #define ID0_NUMSIDB_SHIFT 9
128 #define ID0_NUMSIDB_MASK 0xf
129 #define ID0_NUMSMRG_SHIFT 0
130 #define ID0_NUMSMRG_MASK 0xff
131
132 #define ID1_PAGESIZE (1 << 31)
133 #define ID1_NUMPAGENDXB_SHIFT 28
134 #define ID1_NUMPAGENDXB_MASK 7
135 #define ID1_NUMS2CB_SHIFT 16
136 #define ID1_NUMS2CB_MASK 0xff
137 #define ID1_NUMCB_SHIFT 0
138 #define ID1_NUMCB_MASK 0xff
139
140 #define ID2_OAS_SHIFT 4
141 #define ID2_OAS_MASK 0xf
142 #define ID2_IAS_SHIFT 0
143 #define ID2_IAS_MASK 0xf
144 #define ID2_UBS_SHIFT 8
145 #define ID2_UBS_MASK 0xf
146 #define ID2_PTFS_4K (1 << 12)
147 #define ID2_PTFS_16K (1 << 13)
148 #define ID2_PTFS_64K (1 << 14)
149 #define ID2_VMID16 (1 << 15)
150
151 #define ID7_MAJOR_SHIFT 4
152 #define ID7_MAJOR_MASK 0xf
153
154 /* Global TLB invalidation */
155 #define ARM_SMMU_GR0_TLBIVMID 0x64
156 #define ARM_SMMU_GR0_TLBIALLNSNH 0x68
157 #define ARM_SMMU_GR0_TLBIALLH 0x6c
158 #define ARM_SMMU_GR0_sTLBGSYNC 0x70
159 #define ARM_SMMU_GR0_sTLBGSTATUS 0x74
160 #define sTLBGSTATUS_GSACTIVE (1 << 0)
161 #define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
162
163 /* Stream mapping registers */
164 #define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
165 #define SMR_VALID (1 << 31)
166 #define SMR_MASK_SHIFT 16
167 #define SMR_ID_SHIFT 0
168
169 #define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
170 #define S2CR_CBNDX_SHIFT 0
171 #define S2CR_CBNDX_MASK 0xff
172 #define S2CR_TYPE_SHIFT 16
173 #define S2CR_TYPE_MASK 0x3
174 enum arm_smmu_s2cr_type {
175 S2CR_TYPE_TRANS,
176 S2CR_TYPE_BYPASS,
177 S2CR_TYPE_FAULT,
178 };
179
180 #define S2CR_PRIVCFG_SHIFT 24
181 #define S2CR_PRIVCFG_MASK 0x3
182 enum arm_smmu_s2cr_privcfg {
183 S2CR_PRIVCFG_DEFAULT,
184 S2CR_PRIVCFG_DIPAN,
185 S2CR_PRIVCFG_UNPRIV,
186 S2CR_PRIVCFG_PRIV,
187 };
188
189 /* Context bank attribute registers */
190 #define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
191 #define CBAR_VMID_SHIFT 0
192 #define CBAR_VMID_MASK 0xff
193 #define CBAR_S1_BPSHCFG_SHIFT 8
194 #define CBAR_S1_BPSHCFG_MASK 3
195 #define CBAR_S1_BPSHCFG_NSH 3
196 #define CBAR_S1_MEMATTR_SHIFT 12
197 #define CBAR_S1_MEMATTR_MASK 0xf
198 #define CBAR_S1_MEMATTR_WB 0xf
199 #define CBAR_TYPE_SHIFT 16
200 #define CBAR_TYPE_MASK 0x3
201 #define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
202 #define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
203 #define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
204 #define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
205 #define CBAR_IRPTNDX_SHIFT 24
206 #define CBAR_IRPTNDX_MASK 0xff
207
208 #define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
209 #define CBA2R_RW64_32BIT (0 << 0)
210 #define CBA2R_RW64_64BIT (1 << 0)
211 #define CBA2R_VMID_SHIFT 16
212 #define CBA2R_VMID_MASK 0xffff
213
214 /* Translation context bank */
215 #define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
216 #define ARM_SMMU_CB(smmu, n) ((n) * (1 << (smmu)->pgshift))
217
218 #define ARM_SMMU_CB_SCTLR 0x0
219 #define ARM_SMMU_CB_ACTLR 0x4
220 #define ARM_SMMU_CB_RESUME 0x8
221 #define ARM_SMMU_CB_TTBCR2 0x10
222 #define ARM_SMMU_CB_TTBR0 0x20
223 #define ARM_SMMU_CB_TTBR1 0x28
224 #define ARM_SMMU_CB_TTBCR 0x30
225 #define ARM_SMMU_CB_CONTEXTIDR 0x34
226 #define ARM_SMMU_CB_S1_MAIR0 0x38
227 #define ARM_SMMU_CB_S1_MAIR1 0x3c
228 #define ARM_SMMU_CB_PAR 0x50
229 #define ARM_SMMU_CB_FSR 0x58
230 #define ARM_SMMU_CB_FAR 0x60
231 #define ARM_SMMU_CB_FSYNR0 0x68
232 #define ARM_SMMU_CB_S1_TLBIVA 0x600
233 #define ARM_SMMU_CB_S1_TLBIASID 0x610
234 #define ARM_SMMU_CB_S1_TLBIVAL 0x620
235 #define ARM_SMMU_CB_S2_TLBIIPAS2 0x630
236 #define ARM_SMMU_CB_S2_TLBIIPAS2L 0x638
237 #define ARM_SMMU_CB_ATS1PR 0x800
238 #define ARM_SMMU_CB_ATSR 0x8f0
239
240 #define SCTLR_S1_ASIDPNE (1 << 12)
241 #define SCTLR_CFCFG (1 << 7)
242 #define SCTLR_CFIE (1 << 6)
243 #define SCTLR_CFRE (1 << 5)
244 #define SCTLR_E (1 << 4)
245 #define SCTLR_AFE (1 << 2)
246 #define SCTLR_TRE (1 << 1)
247 #define SCTLR_M (1 << 0)
248
249 #define ARM_MMU500_ACTLR_CPRE (1 << 1)
250
251 #define ARM_MMU500_ACR_CACHE_LOCK (1 << 26)
252 #define ARM_MMU500_ACR_SMTNMB_TLBEN (1 << 8)
253
254 #define CB_PAR_F (1 << 0)
255
256 #define ATSR_ACTIVE (1 << 0)
257
258 #define RESUME_RETRY (0 << 0)
259 #define RESUME_TERMINATE (1 << 0)
260
261 #define TTBCR2_SEP_SHIFT 15
262 #define TTBCR2_SEP_UPSTREAM (0x7 << TTBCR2_SEP_SHIFT)
263
264 #define TTBRn_ASID_SHIFT 48
265
266 #define FSR_MULTI (1 << 31)
267 #define FSR_SS (1 << 30)
268 #define FSR_UUT (1 << 8)
269 #define FSR_ASF (1 << 7)
270 #define FSR_TLBLKF (1 << 6)
271 #define FSR_TLBMCF (1 << 5)
272 #define FSR_EF (1 << 4)
273 #define FSR_PF (1 << 3)
274 #define FSR_AFF (1 << 2)
275 #define FSR_TF (1 << 1)
276
277 #define FSR_IGN (FSR_AFF | FSR_ASF | \
278 FSR_TLBMCF | FSR_TLBLKF)
279 #define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
280 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
281
282 #define FSYNR0_WNR (1 << 4)
283
284 #define MSI_IOVA_BASE 0x8000000
285 #define MSI_IOVA_LENGTH 0x100000
286
287 static int force_stage;
288 module_param(force_stage, int, S_IRUGO);
289 MODULE_PARM_DESC(force_stage,
290 "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
291 static bool disable_bypass;
292 module_param(disable_bypass, bool, S_IRUGO);
293 MODULE_PARM_DESC(disable_bypass,
294 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
295
296 enum arm_smmu_arch_version {
297 ARM_SMMU_V1,
298 ARM_SMMU_V1_64K,
299 ARM_SMMU_V2,
300 };
301
302 enum arm_smmu_implementation {
303 GENERIC_SMMU,
304 ARM_MMU500,
305 CAVIUM_SMMUV2,
306 };
307
308 struct arm_smmu_s2cr {
309 struct iommu_group *group;
310 int count;
311 enum arm_smmu_s2cr_type type;
312 enum arm_smmu_s2cr_privcfg privcfg;
313 u8 cbndx;
314 };
315
316 #define s2cr_init_val (struct arm_smmu_s2cr){ \
317 .type = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS, \
318 }
319
320 struct arm_smmu_smr {
321 u16 mask;
322 u16 id;
323 bool valid;
324 };
325
326 struct arm_smmu_master_cfg {
327 struct arm_smmu_device *smmu;
328 s16 smendx[];
329 };
330 #define INVALID_SMENDX -1
331 #define __fwspec_cfg(fw) ((struct arm_smmu_master_cfg *)fw->iommu_priv)
332 #define fwspec_smmu(fw) (__fwspec_cfg(fw)->smmu)
333 #define fwspec_smendx(fw, i) \
334 (i >= fw->num_ids ? INVALID_SMENDX : __fwspec_cfg(fw)->smendx[i])
335 #define for_each_cfg_sme(fw, i, idx) \
336 for (i = 0; idx = fwspec_smendx(fw, i), i < fw->num_ids; ++i)
337
338 struct arm_smmu_device {
339 struct device *dev;
340
341 void __iomem *base;
342 unsigned long size;
343 unsigned long pgshift;
344
345 #define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
346 #define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
347 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
348 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
349 #define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
350 #define ARM_SMMU_FEAT_TRANS_OPS (1 << 5)
351 #define ARM_SMMU_FEAT_VMID16 (1 << 6)
352 #define ARM_SMMU_FEAT_FMT_AARCH64_4K (1 << 7)
353 #define ARM_SMMU_FEAT_FMT_AARCH64_16K (1 << 8)
354 #define ARM_SMMU_FEAT_FMT_AARCH64_64K (1 << 9)
355 #define ARM_SMMU_FEAT_FMT_AARCH32_L (1 << 10)
356 #define ARM_SMMU_FEAT_FMT_AARCH32_S (1 << 11)
357 u32 features;
358
359 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
360 u32 options;
361 enum arm_smmu_arch_version version;
362 enum arm_smmu_implementation model;
363
364 u32 num_context_banks;
365 u32 num_s2_context_banks;
366 DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
367 atomic_t irptndx;
368
369 u32 num_mapping_groups;
370 u16 streamid_mask;
371 u16 smr_mask_mask;
372 struct arm_smmu_smr *smrs;
373 struct arm_smmu_s2cr *s2crs;
374 struct mutex stream_map_mutex;
375
376 unsigned long va_size;
377 unsigned long ipa_size;
378 unsigned long pa_size;
379 unsigned long pgsize_bitmap;
380
381 u32 num_global_irqs;
382 u32 num_context_irqs;
383 unsigned int *irqs;
384
385 u32 cavium_id_base; /* Specific to Cavium */
386 };
387
388 enum arm_smmu_context_fmt {
389 ARM_SMMU_CTX_FMT_NONE,
390 ARM_SMMU_CTX_FMT_AARCH64,
391 ARM_SMMU_CTX_FMT_AARCH32_L,
392 ARM_SMMU_CTX_FMT_AARCH32_S,
393 };
394
395 struct arm_smmu_cfg {
396 u8 cbndx;
397 u8 irptndx;
398 u32 cbar;
399 enum arm_smmu_context_fmt fmt;
400 };
401 #define INVALID_IRPTNDX 0xff
402
403 #define ARM_SMMU_CB_ASID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx)
404 #define ARM_SMMU_CB_VMID(smmu, cfg) ((u16)(smmu)->cavium_id_base + (cfg)->cbndx + 1)
405
406 enum arm_smmu_domain_stage {
407 ARM_SMMU_DOMAIN_S1 = 0,
408 ARM_SMMU_DOMAIN_S2,
409 ARM_SMMU_DOMAIN_NESTED,
410 };
411
412 struct arm_smmu_domain {
413 struct arm_smmu_device *smmu;
414 struct io_pgtable_ops *pgtbl_ops;
415 spinlock_t pgtbl_lock;
416 struct arm_smmu_cfg cfg;
417 enum arm_smmu_domain_stage stage;
418 struct mutex init_mutex; /* Protects smmu pointer */
419 struct iommu_domain domain;
420 };
421
422 struct arm_smmu_option_prop {
423 u32 opt;
424 const char *prop;
425 };
426
427 static atomic_t cavium_smmu_context_count = ATOMIC_INIT(0);
428
429 static bool using_legacy_binding, using_generic_binding;
430
431 static struct arm_smmu_option_prop arm_smmu_options[] = {
432 { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
433 { 0, NULL},
434 };
435
436 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
437 {
438 return container_of(dom, struct arm_smmu_domain, domain);
439 }
440
441 static void parse_driver_options(struct arm_smmu_device *smmu)
442 {
443 int i = 0;
444
445 do {
446 if (of_property_read_bool(smmu->dev->of_node,
447 arm_smmu_options[i].prop)) {
448 smmu->options |= arm_smmu_options[i].opt;
449 dev_notice(smmu->dev, "option %s\n",
450 arm_smmu_options[i].prop);
451 }
452 } while (arm_smmu_options[++i].opt);
453 }
454
455 static struct device_node *dev_get_dev_node(struct device *dev)
456 {
457 if (dev_is_pci(dev)) {
458 struct pci_bus *bus = to_pci_dev(dev)->bus;
459
460 while (!pci_is_root_bus(bus))
461 bus = bus->parent;
462 return of_node_get(bus->bridge->parent->of_node);
463 }
464
465 return of_node_get(dev->of_node);
466 }
467
468 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
469 {
470 *((__be32 *)data) = cpu_to_be32(alias);
471 return 0; /* Continue walking */
472 }
473
474 static int __find_legacy_master_phandle(struct device *dev, void *data)
475 {
476 struct of_phandle_iterator *it = *(void **)data;
477 struct device_node *np = it->node;
478 int err;
479
480 of_for_each_phandle(it, err, dev->of_node, "mmu-masters",
481 "#stream-id-cells", 0)
482 if (it->node == np) {
483 *(void **)data = dev;
484 return 1;
485 }
486 it->node = np;
487 return err == -ENOENT ? 0 : err;
488 }
489
490 static struct platform_driver arm_smmu_driver;
491 static struct iommu_ops arm_smmu_ops;
492
493 static int arm_smmu_register_legacy_master(struct device *dev,
494 struct arm_smmu_device **smmu)
495 {
496 struct device *smmu_dev;
497 struct device_node *np;
498 struct of_phandle_iterator it;
499 void *data = &it;
500 u32 *sids;
501 __be32 pci_sid;
502 int err;
503
504 np = dev_get_dev_node(dev);
505 if (!np || !of_find_property(np, "#stream-id-cells", NULL)) {
506 of_node_put(np);
507 return -ENODEV;
508 }
509
510 it.node = np;
511 err = driver_for_each_device(&arm_smmu_driver.driver, NULL, &data,
512 __find_legacy_master_phandle);
513 smmu_dev = data;
514 of_node_put(np);
515 if (err == 0)
516 return -ENODEV;
517 if (err < 0)
518 return err;
519
520 if (dev_is_pci(dev)) {
521 /* "mmu-masters" assumes Stream ID == Requester ID */
522 pci_for_each_dma_alias(to_pci_dev(dev), __arm_smmu_get_pci_sid,
523 &pci_sid);
524 it.cur = &pci_sid;
525 it.cur_count = 1;
526 }
527
528 err = iommu_fwspec_init(dev, &smmu_dev->of_node->fwnode,
529 &arm_smmu_ops);
530 if (err)
531 return err;
532
533 sids = kcalloc(it.cur_count, sizeof(*sids), GFP_KERNEL);
534 if (!sids)
535 return -ENOMEM;
536
537 *smmu = dev_get_drvdata(smmu_dev);
538 of_phandle_iterator_args(&it, sids, it.cur_count);
539 err = iommu_fwspec_add_ids(dev, sids, it.cur_count);
540 kfree(sids);
541 return err;
542 }
543
544 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
545 {
546 int idx;
547
548 do {
549 idx = find_next_zero_bit(map, end, start);
550 if (idx == end)
551 return -ENOSPC;
552 } while (test_and_set_bit(idx, map));
553
554 return idx;
555 }
556
557 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
558 {
559 clear_bit(idx, map);
560 }
561
562 /* Wait for any pending TLB invalidations to complete */
563 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
564 {
565 int count = 0;
566 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
567
568 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
569 while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
570 & sTLBGSTATUS_GSACTIVE) {
571 cpu_relax();
572 if (++count == TLB_LOOP_TIMEOUT) {
573 dev_err_ratelimited(smmu->dev,
574 "TLB sync timed out -- SMMU may be deadlocked\n");
575 return;
576 }
577 udelay(1);
578 }
579 }
580
581 static void arm_smmu_tlb_sync(void *cookie)
582 {
583 struct arm_smmu_domain *smmu_domain = cookie;
584 __arm_smmu_tlb_sync(smmu_domain->smmu);
585 }
586
587 static void arm_smmu_tlb_inv_context(void *cookie)
588 {
589 struct arm_smmu_domain *smmu_domain = cookie;
590 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
591 struct arm_smmu_device *smmu = smmu_domain->smmu;
592 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
593 void __iomem *base;
594
595 if (stage1) {
596 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
597 writel_relaxed(ARM_SMMU_CB_ASID(smmu, cfg),
598 base + ARM_SMMU_CB_S1_TLBIASID);
599 } else {
600 base = ARM_SMMU_GR0(smmu);
601 writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg),
602 base + ARM_SMMU_GR0_TLBIVMID);
603 }
604
605 __arm_smmu_tlb_sync(smmu);
606 }
607
608 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
609 size_t granule, bool leaf, void *cookie)
610 {
611 struct arm_smmu_domain *smmu_domain = cookie;
612 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
613 struct arm_smmu_device *smmu = smmu_domain->smmu;
614 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
615 void __iomem *reg;
616
617 if (stage1) {
618 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
619 reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
620
621 if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
622 iova &= ~12UL;
623 iova |= ARM_SMMU_CB_ASID(smmu, cfg);
624 do {
625 writel_relaxed(iova, reg);
626 iova += granule;
627 } while (size -= granule);
628 } else {
629 iova >>= 12;
630 iova |= (u64)ARM_SMMU_CB_ASID(smmu, cfg) << 48;
631 do {
632 writeq_relaxed(iova, reg);
633 iova += granule >> 12;
634 } while (size -= granule);
635 }
636 } else if (smmu->version == ARM_SMMU_V2) {
637 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
638 reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
639 ARM_SMMU_CB_S2_TLBIIPAS2;
640 iova >>= 12;
641 do {
642 smmu_write_atomic_lq(iova, reg);
643 iova += granule >> 12;
644 } while (size -= granule);
645 } else {
646 reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
647 writel_relaxed(ARM_SMMU_CB_VMID(smmu, cfg), reg);
648 }
649 }
650
651 static const struct iommu_gather_ops arm_smmu_gather_ops = {
652 .tlb_flush_all = arm_smmu_tlb_inv_context,
653 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
654 .tlb_sync = arm_smmu_tlb_sync,
655 };
656
657 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
658 {
659 u32 fsr, fsynr;
660 unsigned long iova;
661 struct iommu_domain *domain = dev;
662 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
663 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
664 struct arm_smmu_device *smmu = smmu_domain->smmu;
665 void __iomem *cb_base;
666
667 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
668 fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
669
670 if (!(fsr & FSR_FAULT))
671 return IRQ_NONE;
672
673 fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
674 iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR);
675
676 dev_err_ratelimited(smmu->dev,
677 "Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cb=%d\n",
678 fsr, iova, fsynr, cfg->cbndx);
679
680 writel(fsr, cb_base + ARM_SMMU_CB_FSR);
681 return IRQ_HANDLED;
682 }
683
684 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
685 {
686 u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
687 struct arm_smmu_device *smmu = dev;
688 void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
689
690 gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
691 gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
692 gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
693 gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
694
695 if (!gfsr)
696 return IRQ_NONE;
697
698 dev_err_ratelimited(smmu->dev,
699 "Unexpected global fault, this could be serious\n");
700 dev_err_ratelimited(smmu->dev,
701 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
702 gfsr, gfsynr0, gfsynr1, gfsynr2);
703
704 writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
705 return IRQ_HANDLED;
706 }
707
708 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
709 struct io_pgtable_cfg *pgtbl_cfg)
710 {
711 u32 reg, reg2;
712 u64 reg64;
713 bool stage1;
714 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
715 struct arm_smmu_device *smmu = smmu_domain->smmu;
716 void __iomem *cb_base, *gr1_base;
717
718 gr1_base = ARM_SMMU_GR1(smmu);
719 stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
720 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
721
722 if (smmu->version > ARM_SMMU_V1) {
723 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
724 reg = CBA2R_RW64_64BIT;
725 else
726 reg = CBA2R_RW64_32BIT;
727 /* 16-bit VMIDs live in CBA2R */
728 if (smmu->features & ARM_SMMU_FEAT_VMID16)
729 reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBA2R_VMID_SHIFT;
730
731 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
732 }
733
734 /* CBAR */
735 reg = cfg->cbar;
736 if (smmu->version < ARM_SMMU_V2)
737 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
738
739 /*
740 * Use the weakest shareability/memory types, so they are
741 * overridden by the ttbcr/pte.
742 */
743 if (stage1) {
744 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
745 (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
746 } else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
747 /* 8-bit VMIDs live in CBAR */
748 reg |= ARM_SMMU_CB_VMID(smmu, cfg) << CBAR_VMID_SHIFT;
749 }
750 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
751
752 /* TTBRs */
753 if (stage1) {
754 u16 asid = ARM_SMMU_CB_ASID(smmu, cfg);
755
756 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
757 reg = pgtbl_cfg->arm_v7s_cfg.ttbr[0];
758 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0);
759 reg = pgtbl_cfg->arm_v7s_cfg.ttbr[1];
760 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1);
761 writel_relaxed(asid, cb_base + ARM_SMMU_CB_CONTEXTIDR);
762 } else {
763 reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
764 reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
765 writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
766 reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
767 reg64 |= (u64)asid << TTBRn_ASID_SHIFT;
768 writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR1);
769 }
770 } else {
771 reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
772 writeq_relaxed(reg64, cb_base + ARM_SMMU_CB_TTBR0);
773 }
774
775 /* TTBCR */
776 if (stage1) {
777 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
778 reg = pgtbl_cfg->arm_v7s_cfg.tcr;
779 reg2 = 0;
780 } else {
781 reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
782 reg2 = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
783 reg2 |= TTBCR2_SEP_UPSTREAM;
784 }
785 if (smmu->version > ARM_SMMU_V1)
786 writel_relaxed(reg2, cb_base + ARM_SMMU_CB_TTBCR2);
787 } else {
788 reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
789 }
790 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
791
792 /* MAIRs (stage-1 only) */
793 if (stage1) {
794 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
795 reg = pgtbl_cfg->arm_v7s_cfg.prrr;
796 reg2 = pgtbl_cfg->arm_v7s_cfg.nmrr;
797 } else {
798 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
799 reg2 = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
800 }
801 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
802 writel_relaxed(reg2, cb_base + ARM_SMMU_CB_S1_MAIR1);
803 }
804
805 /* SCTLR */
806 reg = SCTLR_CFIE | SCTLR_CFRE | SCTLR_AFE | SCTLR_TRE | SCTLR_M;
807 if (stage1)
808 reg |= SCTLR_S1_ASIDPNE;
809 #ifdef __BIG_ENDIAN
810 reg |= SCTLR_E;
811 #endif
812 writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
813 }
814
815 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
816 struct arm_smmu_device *smmu)
817 {
818 int irq, start, ret = 0;
819 unsigned long ias, oas;
820 struct io_pgtable_ops *pgtbl_ops;
821 struct io_pgtable_cfg pgtbl_cfg;
822 enum io_pgtable_fmt fmt;
823 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
824 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
825
826 mutex_lock(&smmu_domain->init_mutex);
827 if (smmu_domain->smmu)
828 goto out_unlock;
829
830 /*
831 * Mapping the requested stage onto what we support is surprisingly
832 * complicated, mainly because the spec allows S1+S2 SMMUs without
833 * support for nested translation. That means we end up with the
834 * following table:
835 *
836 * Requested Supported Actual
837 * S1 N S1
838 * S1 S1+S2 S1
839 * S1 S2 S2
840 * S1 S1 S1
841 * N N N
842 * N S1+S2 S2
843 * N S2 S2
844 * N S1 S1
845 *
846 * Note that you can't actually request stage-2 mappings.
847 */
848 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
849 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
850 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
851 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
852
853 /*
854 * Choosing a suitable context format is even more fiddly. Until we
855 * grow some way for the caller to express a preference, and/or move
856 * the decision into the io-pgtable code where it arguably belongs,
857 * just aim for the closest thing to the rest of the system, and hope
858 * that the hardware isn't esoteric enough that we can't assume AArch64
859 * support to be a superset of AArch32 support...
860 */
861 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
862 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
863 if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) &&
864 !IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) &&
865 (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) &&
866 (smmu_domain->stage == ARM_SMMU_DOMAIN_S1))
867 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S;
868 if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
869 (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
870 ARM_SMMU_FEAT_FMT_AARCH64_16K |
871 ARM_SMMU_FEAT_FMT_AARCH64_4K)))
872 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;
873
874 if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
875 ret = -EINVAL;
876 goto out_unlock;
877 }
878
879 switch (smmu_domain->stage) {
880 case ARM_SMMU_DOMAIN_S1:
881 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
882 start = smmu->num_s2_context_banks;
883 ias = smmu->va_size;
884 oas = smmu->ipa_size;
885 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
886 fmt = ARM_64_LPAE_S1;
887 } else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) {
888 fmt = ARM_32_LPAE_S1;
889 ias = min(ias, 32UL);
890 oas = min(oas, 40UL);
891 } else {
892 fmt = ARM_V7S;
893 ias = min(ias, 32UL);
894 oas = min(oas, 32UL);
895 }
896 break;
897 case ARM_SMMU_DOMAIN_NESTED:
898 /*
899 * We will likely want to change this if/when KVM gets
900 * involved.
901 */
902 case ARM_SMMU_DOMAIN_S2:
903 cfg->cbar = CBAR_TYPE_S2_TRANS;
904 start = 0;
905 ias = smmu->ipa_size;
906 oas = smmu->pa_size;
907 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
908 fmt = ARM_64_LPAE_S2;
909 } else {
910 fmt = ARM_32_LPAE_S2;
911 ias = min(ias, 40UL);
912 oas = min(oas, 40UL);
913 }
914 break;
915 default:
916 ret = -EINVAL;
917 goto out_unlock;
918 }
919
920 ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
921 smmu->num_context_banks);
922 if (ret < 0)
923 goto out_unlock;
924
925 cfg->cbndx = ret;
926 if (smmu->version < ARM_SMMU_V2) {
927 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
928 cfg->irptndx %= smmu->num_context_irqs;
929 } else {
930 cfg->irptndx = cfg->cbndx;
931 }
932
933 pgtbl_cfg = (struct io_pgtable_cfg) {
934 .pgsize_bitmap = smmu->pgsize_bitmap,
935 .ias = ias,
936 .oas = oas,
937 .tlb = &arm_smmu_gather_ops,
938 .iommu_dev = smmu->dev,
939 };
940
941 smmu_domain->smmu = smmu;
942 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
943 if (!pgtbl_ops) {
944 ret = -ENOMEM;
945 goto out_clear_smmu;
946 }
947
948 /* Update the domain's page sizes to reflect the page table format */
949 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
950 domain->geometry.aperture_end = (1UL << ias) - 1;
951 domain->geometry.force_aperture = true;
952
953 /* Initialise the context bank with our page table cfg */
954 arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
955
956 /*
957 * Request context fault interrupt. Do this last to avoid the
958 * handler seeing a half-initialised domain state.
959 */
960 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
961 ret = devm_request_irq(smmu->dev, irq, arm_smmu_context_fault,
962 IRQF_SHARED, "arm-smmu-context-fault", domain);
963 if (ret < 0) {
964 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
965 cfg->irptndx, irq);
966 cfg->irptndx = INVALID_IRPTNDX;
967 }
968
969 mutex_unlock(&smmu_domain->init_mutex);
970
971 /* Publish page table ops for map/unmap */
972 smmu_domain->pgtbl_ops = pgtbl_ops;
973 return 0;
974
975 out_clear_smmu:
976 smmu_domain->smmu = NULL;
977 out_unlock:
978 mutex_unlock(&smmu_domain->init_mutex);
979 return ret;
980 }
981
982 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
983 {
984 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
985 struct arm_smmu_device *smmu = smmu_domain->smmu;
986 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
987 void __iomem *cb_base;
988 int irq;
989
990 if (!smmu)
991 return;
992
993 /*
994 * Disable the context bank and free the page tables before freeing
995 * it.
996 */
997 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
998 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
999
1000 if (cfg->irptndx != INVALID_IRPTNDX) {
1001 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
1002 devm_free_irq(smmu->dev, irq, domain);
1003 }
1004
1005 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1006 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
1007 }
1008
1009 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1010 {
1011 struct arm_smmu_domain *smmu_domain;
1012
1013 if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1014 return NULL;
1015 /*
1016 * Allocate the domain and initialise some of its data structures.
1017 * We can't really do anything meaningful until we've added a
1018 * master.
1019 */
1020 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1021 if (!smmu_domain)
1022 return NULL;
1023
1024 if (type == IOMMU_DOMAIN_DMA && (using_legacy_binding ||
1025 iommu_get_dma_cookie(&smmu_domain->domain))) {
1026 kfree(smmu_domain);
1027 return NULL;
1028 }
1029
1030 mutex_init(&smmu_domain->init_mutex);
1031 spin_lock_init(&smmu_domain->pgtbl_lock);
1032
1033 return &smmu_domain->domain;
1034 }
1035
1036 static void arm_smmu_domain_free(struct iommu_domain *domain)
1037 {
1038 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1039
1040 /*
1041 * Free the domain resources. We assume that all devices have
1042 * already been detached.
1043 */
1044 iommu_put_dma_cookie(domain);
1045 arm_smmu_destroy_domain_context(domain);
1046 kfree(smmu_domain);
1047 }
1048
1049 static void arm_smmu_write_smr(struct arm_smmu_device *smmu, int idx)
1050 {
1051 struct arm_smmu_smr *smr = smmu->smrs + idx;
1052 u32 reg = smr->id << SMR_ID_SHIFT | smr->mask << SMR_MASK_SHIFT;
1053
1054 if (smr->valid)
1055 reg |= SMR_VALID;
1056 writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_SMR(idx));
1057 }
1058
1059 static void arm_smmu_write_s2cr(struct arm_smmu_device *smmu, int idx)
1060 {
1061 struct arm_smmu_s2cr *s2cr = smmu->s2crs + idx;
1062 u32 reg = (s2cr->type & S2CR_TYPE_MASK) << S2CR_TYPE_SHIFT |
1063 (s2cr->cbndx & S2CR_CBNDX_MASK) << S2CR_CBNDX_SHIFT |
1064 (s2cr->privcfg & S2CR_PRIVCFG_MASK) << S2CR_PRIVCFG_SHIFT;
1065
1066 writel_relaxed(reg, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_S2CR(idx));
1067 }
1068
1069 static void arm_smmu_write_sme(struct arm_smmu_device *smmu, int idx)
1070 {
1071 arm_smmu_write_s2cr(smmu, idx);
1072 if (smmu->smrs)
1073 arm_smmu_write_smr(smmu, idx);
1074 }
1075
1076 static int arm_smmu_find_sme(struct arm_smmu_device *smmu, u16 id, u16 mask)
1077 {
1078 struct arm_smmu_smr *smrs = smmu->smrs;
1079 int i, free_idx = -ENOSPC;
1080
1081 /* Stream indexing is blissfully easy */
1082 if (!smrs)
1083 return id;
1084
1085 /* Validating SMRs is... less so */
1086 for (i = 0; i < smmu->num_mapping_groups; ++i) {
1087 if (!smrs[i].valid) {
1088 /*
1089 * Note the first free entry we come across, which
1090 * we'll claim in the end if nothing else matches.
1091 */
1092 if (free_idx < 0)
1093 free_idx = i;
1094 continue;
1095 }
1096 /*
1097 * If the new entry is _entirely_ matched by an existing entry,
1098 * then reuse that, with the guarantee that there also cannot
1099 * be any subsequent conflicting entries. In normal use we'd
1100 * expect simply identical entries for this case, but there's
1101 * no harm in accommodating the generalisation.
1102 */
1103 if ((mask & smrs[i].mask) == mask &&
1104 !((id ^ smrs[i].id) & ~smrs[i].mask))
1105 return i;
1106 /*
1107 * If the new entry has any other overlap with an existing one,
1108 * though, then there always exists at least one stream ID
1109 * which would cause a conflict, and we can't allow that risk.
1110 */
1111 if (!((id ^ smrs[i].id) & ~(smrs[i].mask | mask)))
1112 return -EINVAL;
1113 }
1114
1115 return free_idx;
1116 }
1117
1118 static bool arm_smmu_free_sme(struct arm_smmu_device *smmu, int idx)
1119 {
1120 if (--smmu->s2crs[idx].count)
1121 return false;
1122
1123 smmu->s2crs[idx] = s2cr_init_val;
1124 if (smmu->smrs)
1125 smmu->smrs[idx].valid = false;
1126
1127 return true;
1128 }
1129
1130 static int arm_smmu_master_alloc_smes(struct device *dev)
1131 {
1132 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1133 struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1134 struct arm_smmu_device *smmu = cfg->smmu;
1135 struct arm_smmu_smr *smrs = smmu->smrs;
1136 struct iommu_group *group;
1137 int i, idx, ret;
1138
1139 mutex_lock(&smmu->stream_map_mutex);
1140 /* Figure out a viable stream map entry allocation */
1141 for_each_cfg_sme(fwspec, i, idx) {
1142 u16 sid = fwspec->ids[i];
1143 u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;
1144
1145 if (idx != INVALID_SMENDX) {
1146 ret = -EEXIST;
1147 goto out_err;
1148 }
1149
1150 ret = arm_smmu_find_sme(smmu, sid, mask);
1151 if (ret < 0)
1152 goto out_err;
1153
1154 idx = ret;
1155 if (smrs && smmu->s2crs[idx].count == 0) {
1156 smrs[idx].id = sid;
1157 smrs[idx].mask = mask;
1158 smrs[idx].valid = true;
1159 }
1160 smmu->s2crs[idx].count++;
1161 cfg->smendx[i] = (s16)idx;
1162 }
1163
1164 group = iommu_group_get_for_dev(dev);
1165 if (!group)
1166 group = ERR_PTR(-ENOMEM);
1167 if (IS_ERR(group)) {
1168 ret = PTR_ERR(group);
1169 goto out_err;
1170 }
1171 iommu_group_put(group);
1172
1173 /* It worked! Now, poke the actual hardware */
1174 for_each_cfg_sme(fwspec, i, idx) {
1175 arm_smmu_write_sme(smmu, idx);
1176 smmu->s2crs[idx].group = group;
1177 }
1178
1179 mutex_unlock(&smmu->stream_map_mutex);
1180 return 0;
1181
1182 out_err:
1183 while (i--) {
1184 arm_smmu_free_sme(smmu, cfg->smendx[i]);
1185 cfg->smendx[i] = INVALID_SMENDX;
1186 }
1187 mutex_unlock(&smmu->stream_map_mutex);
1188 return ret;
1189 }
1190
1191 static void arm_smmu_master_free_smes(struct iommu_fwspec *fwspec)
1192 {
1193 struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
1194 struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1195 int i, idx;
1196
1197 mutex_lock(&smmu->stream_map_mutex);
1198 for_each_cfg_sme(fwspec, i, idx) {
1199 if (arm_smmu_free_sme(smmu, idx))
1200 arm_smmu_write_sme(smmu, idx);
1201 cfg->smendx[i] = INVALID_SMENDX;
1202 }
1203 mutex_unlock(&smmu->stream_map_mutex);
1204 }
1205
1206 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1207 struct iommu_fwspec *fwspec)
1208 {
1209 struct arm_smmu_device *smmu = smmu_domain->smmu;
1210 struct arm_smmu_s2cr *s2cr = smmu->s2crs;
1211 enum arm_smmu_s2cr_type type = S2CR_TYPE_TRANS;
1212 u8 cbndx = smmu_domain->cfg.cbndx;
1213 int i, idx;
1214
1215 for_each_cfg_sme(fwspec, i, idx) {
1216 if (type == s2cr[idx].type && cbndx == s2cr[idx].cbndx)
1217 continue;
1218
1219 s2cr[idx].type = type;
1220 s2cr[idx].privcfg = S2CR_PRIVCFG_DEFAULT;
1221 s2cr[idx].cbndx = cbndx;
1222 arm_smmu_write_s2cr(smmu, idx);
1223 }
1224 return 0;
1225 }
1226
1227 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1228 {
1229 int ret;
1230 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1231 struct arm_smmu_device *smmu;
1232 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1233
1234 if (!fwspec || fwspec->ops != &arm_smmu_ops) {
1235 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1236 return -ENXIO;
1237 }
1238
1239 /*
1240 * FIXME: The arch/arm DMA API code tries to attach devices to its own
1241 * domains between of_xlate() and add_device() - we have no way to cope
1242 * with that, so until ARM gets converted to rely on groups and default
1243 * domains, just say no (but more politely than by dereferencing NULL).
1244 * This should be at least a WARN_ON once that's sorted.
1245 */
1246 if (!fwspec->iommu_priv)
1247 return -ENODEV;
1248
1249 smmu = fwspec_smmu(fwspec);
1250 /* Ensure that the domain is finalised */
1251 ret = arm_smmu_init_domain_context(domain, smmu);
1252 if (ret < 0)
1253 return ret;
1254
1255 /*
1256 * Sanity check the domain. We don't support domains across
1257 * different SMMUs.
1258 */
1259 if (smmu_domain->smmu != smmu) {
1260 dev_err(dev,
1261 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1262 dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1263 return -EINVAL;
1264 }
1265
1266 /* Looks ok, so add the device to the domain */
1267 return arm_smmu_domain_add_master(smmu_domain, fwspec);
1268 }
1269
1270 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1271 phys_addr_t paddr, size_t size, int prot)
1272 {
1273 int ret;
1274 unsigned long flags;
1275 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1276 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1277
1278 if (!ops)
1279 return -ENODEV;
1280
1281 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1282 ret = ops->map(ops, iova, paddr, size, prot);
1283 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1284 return ret;
1285 }
1286
1287 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1288 size_t size)
1289 {
1290 size_t ret;
1291 unsigned long flags;
1292 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1293 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1294
1295 if (!ops)
1296 return 0;
1297
1298 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1299 ret = ops->unmap(ops, iova, size);
1300 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1301 return ret;
1302 }
1303
1304 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
1305 dma_addr_t iova)
1306 {
1307 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1308 struct arm_smmu_device *smmu = smmu_domain->smmu;
1309 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1310 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1311 struct device *dev = smmu->dev;
1312 void __iomem *cb_base;
1313 u32 tmp;
1314 u64 phys;
1315 unsigned long va;
1316
1317 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1318
1319 /* ATS1 registers can only be written atomically */
1320 va = iova & ~0xfffUL;
1321 if (smmu->version == ARM_SMMU_V2)
1322 smmu_write_atomic_lq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1323 else /* Register is only 32-bit in v1 */
1324 writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1325
1326 if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
1327 !(tmp & ATSR_ACTIVE), 5, 50)) {
1328 dev_err(dev,
1329 "iova to phys timed out on %pad. Falling back to software table walk.\n",
1330 &iova);
1331 return ops->iova_to_phys(ops, iova);
1332 }
1333
1334 phys = readq_relaxed(cb_base + ARM_SMMU_CB_PAR);
1335 if (phys & CB_PAR_F) {
1336 dev_err(dev, "translation fault!\n");
1337 dev_err(dev, "PAR = 0x%llx\n", phys);
1338 return 0;
1339 }
1340
1341 return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
1342 }
1343
1344 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1345 dma_addr_t iova)
1346 {
1347 phys_addr_t ret;
1348 unsigned long flags;
1349 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1350 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1351
1352 if (!ops)
1353 return 0;
1354
1355 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1356 if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1357 smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1358 ret = arm_smmu_iova_to_phys_hard(domain, iova);
1359 } else {
1360 ret = ops->iova_to_phys(ops, iova);
1361 }
1362
1363 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1364
1365 return ret;
1366 }
1367
1368 static bool arm_smmu_capable(enum iommu_cap cap)
1369 {
1370 switch (cap) {
1371 case IOMMU_CAP_CACHE_COHERENCY:
1372 /*
1373 * Return true here as the SMMU can always send out coherent
1374 * requests.
1375 */
1376 return true;
1377 case IOMMU_CAP_NOEXEC:
1378 return true;
1379 default:
1380 return false;
1381 }
1382 }
1383
1384 static int arm_smmu_match_node(struct device *dev, void *data)
1385 {
1386 return dev->fwnode == data;
1387 }
1388
1389 static
1390 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1391 {
1392 struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1393 fwnode, arm_smmu_match_node);
1394 put_device(dev);
1395 return dev ? dev_get_drvdata(dev) : NULL;
1396 }
1397
1398 static int arm_smmu_add_device(struct device *dev)
1399 {
1400 struct arm_smmu_device *smmu;
1401 struct arm_smmu_master_cfg *cfg;
1402 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1403 int i, ret;
1404
1405 if (using_legacy_binding) {
1406 ret = arm_smmu_register_legacy_master(dev, &smmu);
1407 fwspec = dev->iommu_fwspec;
1408 if (ret)
1409 goto out_free;
1410 } else if (fwspec && fwspec->ops == &arm_smmu_ops) {
1411 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1412 } else {
1413 return -ENODEV;
1414 }
1415
1416 ret = -EINVAL;
1417 for (i = 0; i < fwspec->num_ids; i++) {
1418 u16 sid = fwspec->ids[i];
1419 u16 mask = fwspec->ids[i] >> SMR_MASK_SHIFT;
1420
1421 if (sid & ~smmu->streamid_mask) {
1422 dev_err(dev, "stream ID 0x%x out of range for SMMU (0x%x)\n",
1423 sid, smmu->streamid_mask);
1424 goto out_free;
1425 }
1426 if (mask & ~smmu->smr_mask_mask) {
1427 dev_err(dev, "SMR mask 0x%x out of range for SMMU (0x%x)\n",
1428 sid, smmu->smr_mask_mask);
1429 goto out_free;
1430 }
1431 }
1432
1433 ret = -ENOMEM;
1434 cfg = kzalloc(offsetof(struct arm_smmu_master_cfg, smendx[i]),
1435 GFP_KERNEL);
1436 if (!cfg)
1437 goto out_free;
1438
1439 cfg->smmu = smmu;
1440 fwspec->iommu_priv = cfg;
1441 while (i--)
1442 cfg->smendx[i] = INVALID_SMENDX;
1443
1444 ret = arm_smmu_master_alloc_smes(dev);
1445 if (ret)
1446 goto out_free;
1447
1448 return 0;
1449
1450 out_free:
1451 if (fwspec)
1452 kfree(fwspec->iommu_priv);
1453 iommu_fwspec_free(dev);
1454 return ret;
1455 }
1456
1457 static void arm_smmu_remove_device(struct device *dev)
1458 {
1459 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1460
1461 if (!fwspec || fwspec->ops != &arm_smmu_ops)
1462 return;
1463
1464 arm_smmu_master_free_smes(fwspec);
1465 iommu_group_remove_device(dev);
1466 kfree(fwspec->iommu_priv);
1467 iommu_fwspec_free(dev);
1468 }
1469
1470 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1471 {
1472 struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1473 struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
1474 struct iommu_group *group = NULL;
1475 int i, idx;
1476
1477 for_each_cfg_sme(fwspec, i, idx) {
1478 if (group && smmu->s2crs[idx].group &&
1479 group != smmu->s2crs[idx].group)
1480 return ERR_PTR(-EINVAL);
1481
1482 group = smmu->s2crs[idx].group;
1483 }
1484
1485 if (group)
1486 return iommu_group_ref_get(group);
1487
1488 if (dev_is_pci(dev))
1489 group = pci_device_group(dev);
1490 else
1491 group = generic_device_group(dev);
1492
1493 return group;
1494 }
1495
1496 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1497 enum iommu_attr attr, void *data)
1498 {
1499 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1500
1501 switch (attr) {
1502 case DOMAIN_ATTR_NESTING:
1503 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1504 return 0;
1505 default:
1506 return -ENODEV;
1507 }
1508 }
1509
1510 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1511 enum iommu_attr attr, void *data)
1512 {
1513 int ret = 0;
1514 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1515
1516 mutex_lock(&smmu_domain->init_mutex);
1517
1518 switch (attr) {
1519 case DOMAIN_ATTR_NESTING:
1520 if (smmu_domain->smmu) {
1521 ret = -EPERM;
1522 goto out_unlock;
1523 }
1524
1525 if (*(int *)data)
1526 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1527 else
1528 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1529
1530 break;
1531 default:
1532 ret = -ENODEV;
1533 }
1534
1535 out_unlock:
1536 mutex_unlock(&smmu_domain->init_mutex);
1537 return ret;
1538 }
1539
1540 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1541 {
1542 u32 fwid = 0;
1543
1544 if (args->args_count > 0)
1545 fwid |= (u16)args->args[0];
1546
1547 if (args->args_count > 1)
1548 fwid |= (u16)args->args[1] << SMR_MASK_SHIFT;
1549
1550 return iommu_fwspec_add_ids(dev, &fwid, 1);
1551 }
1552
1553 static void arm_smmu_get_resv_regions(struct device *dev,
1554 struct list_head *head)
1555 {
1556 struct iommu_resv_region *region;
1557 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1558
1559 region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1560 prot, IOMMU_RESV_MSI);
1561 if (!region)
1562 return;
1563
1564 list_add_tail(&region->list, head);
1565 }
1566
1567 static void arm_smmu_put_resv_regions(struct device *dev,
1568 struct list_head *head)
1569 {
1570 struct iommu_resv_region *entry, *next;
1571
1572 list_for_each_entry_safe(entry, next, head, list)
1573 kfree(entry);
1574 }
1575
1576 static struct iommu_ops arm_smmu_ops = {
1577 .capable = arm_smmu_capable,
1578 .domain_alloc = arm_smmu_domain_alloc,
1579 .domain_free = arm_smmu_domain_free,
1580 .attach_dev = arm_smmu_attach_dev,
1581 .map = arm_smmu_map,
1582 .unmap = arm_smmu_unmap,
1583 .map_sg = default_iommu_map_sg,
1584 .iova_to_phys = arm_smmu_iova_to_phys,
1585 .add_device = arm_smmu_add_device,
1586 .remove_device = arm_smmu_remove_device,
1587 .device_group = arm_smmu_device_group,
1588 .domain_get_attr = arm_smmu_domain_get_attr,
1589 .domain_set_attr = arm_smmu_domain_set_attr,
1590 .of_xlate = arm_smmu_of_xlate,
1591 .get_resv_regions = arm_smmu_get_resv_regions,
1592 .put_resv_regions = arm_smmu_put_resv_regions,
1593 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1594 };
1595
1596 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1597 {
1598 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1599 void __iomem *cb_base;
1600 int i;
1601 u32 reg, major;
1602
1603 /* clear global FSR */
1604 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1605 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1606
1607 /*
1608 * Reset stream mapping groups: Initial values mark all SMRn as
1609 * invalid and all S2CRn as bypass unless overridden.
1610 */
1611 for (i = 0; i < smmu->num_mapping_groups; ++i)
1612 arm_smmu_write_sme(smmu, i);
1613
1614 if (smmu->model == ARM_MMU500) {
1615 /*
1616 * Before clearing ARM_MMU500_ACTLR_CPRE, need to
1617 * clear CACHE_LOCK bit of ACR first. And, CACHE_LOCK
1618 * bit is only present in MMU-500r2 onwards.
1619 */
1620 reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID7);
1621 major = (reg >> ID7_MAJOR_SHIFT) & ID7_MAJOR_MASK;
1622 reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sACR);
1623 if (major >= 2)
1624 reg &= ~ARM_MMU500_ACR_CACHE_LOCK;
1625 /*
1626 * Allow unmatched Stream IDs to allocate bypass
1627 * TLB entries for reduced latency.
1628 */
1629 reg |= ARM_MMU500_ACR_SMTNMB_TLBEN;
1630 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sACR);
1631 }
1632
1633 /* Make sure all context banks are disabled and clear CB_FSR */
1634 for (i = 0; i < smmu->num_context_banks; ++i) {
1635 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1636 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1637 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1638 /*
1639 * Disable MMU-500's not-particularly-beneficial next-page
1640 * prefetcher for the sake of errata #841119 and #826419.
1641 */
1642 if (smmu->model == ARM_MMU500) {
1643 reg = readl_relaxed(cb_base + ARM_SMMU_CB_ACTLR);
1644 reg &= ~ARM_MMU500_ACTLR_CPRE;
1645 writel_relaxed(reg, cb_base + ARM_SMMU_CB_ACTLR);
1646 }
1647 }
1648
1649 /* Invalidate the TLB, just in case */
1650 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1651 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1652
1653 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1654
1655 /* Enable fault reporting */
1656 reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1657
1658 /* Disable TLB broadcasting. */
1659 reg |= (sCR0_VMIDPNE | sCR0_PTM);
1660
1661 /* Enable client access, handling unmatched streams as appropriate */
1662 reg &= ~sCR0_CLIENTPD;
1663 if (disable_bypass)
1664 reg |= sCR0_USFCFG;
1665 else
1666 reg &= ~sCR0_USFCFG;
1667
1668 /* Disable forced broadcasting */
1669 reg &= ~sCR0_FB;
1670
1671 /* Don't upgrade barriers */
1672 reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1673
1674 if (smmu->features & ARM_SMMU_FEAT_VMID16)
1675 reg |= sCR0_VMID16EN;
1676
1677 /* Push the button */
1678 __arm_smmu_tlb_sync(smmu);
1679 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1680 }
1681
1682 static int arm_smmu_id_size_to_bits(int size)
1683 {
1684 switch (size) {
1685 case 0:
1686 return 32;
1687 case 1:
1688 return 36;
1689 case 2:
1690 return 40;
1691 case 3:
1692 return 42;
1693 case 4:
1694 return 44;
1695 case 5:
1696 default:
1697 return 48;
1698 }
1699 }
1700
1701 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1702 {
1703 unsigned long size;
1704 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1705 u32 id;
1706 bool cttw_reg, cttw_fw = smmu->features & ARM_SMMU_FEAT_COHERENT_WALK;
1707 int i;
1708
1709 dev_notice(smmu->dev, "probing hardware configuration...\n");
1710 dev_notice(smmu->dev, "SMMUv%d with:\n",
1711 smmu->version == ARM_SMMU_V2 ? 2 : 1);
1712
1713 /* ID0 */
1714 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1715
1716 /* Restrict available stages based on module parameter */
1717 if (force_stage == 1)
1718 id &= ~(ID0_S2TS | ID0_NTS);
1719 else if (force_stage == 2)
1720 id &= ~(ID0_S1TS | ID0_NTS);
1721
1722 if (id & ID0_S1TS) {
1723 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1724 dev_notice(smmu->dev, "\tstage 1 translation\n");
1725 }
1726
1727 if (id & ID0_S2TS) {
1728 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1729 dev_notice(smmu->dev, "\tstage 2 translation\n");
1730 }
1731
1732 if (id & ID0_NTS) {
1733 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1734 dev_notice(smmu->dev, "\tnested translation\n");
1735 }
1736
1737 if (!(smmu->features &
1738 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1739 dev_err(smmu->dev, "\tno translation support!\n");
1740 return -ENODEV;
1741 }
1742
1743 if ((id & ID0_S1TS) &&
1744 ((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1745 smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
1746 dev_notice(smmu->dev, "\taddress translation ops\n");
1747 }
1748
1749 /*
1750 * In order for DMA API calls to work properly, we must defer to what
1751 * the FW says about coherency, regardless of what the hardware claims.
1752 * Fortunately, this also opens up a workaround for systems where the
1753 * ID register value has ended up configured incorrectly.
1754 */
1755 cttw_reg = !!(id & ID0_CTTW);
1756 if (cttw_fw || cttw_reg)
1757 dev_notice(smmu->dev, "\t%scoherent table walk\n",
1758 cttw_fw ? "" : "non-");
1759 if (cttw_fw != cttw_reg)
1760 dev_notice(smmu->dev,
1761 "\t(IDR0.CTTW overridden by FW configuration)\n");
1762
1763 /* Max. number of entries we have for stream matching/indexing */
1764 size = 1 << ((id >> ID0_NUMSIDB_SHIFT) & ID0_NUMSIDB_MASK);
1765 smmu->streamid_mask = size - 1;
1766 if (id & ID0_SMS) {
1767 u32 smr;
1768
1769 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1770 size = (id >> ID0_NUMSMRG_SHIFT) & ID0_NUMSMRG_MASK;
1771 if (size == 0) {
1772 dev_err(smmu->dev,
1773 "stream-matching supported, but no SMRs present!\n");
1774 return -ENODEV;
1775 }
1776
1777 /*
1778 * SMR.ID bits may not be preserved if the corresponding MASK
1779 * bits are set, so check each one separately. We can reject
1780 * masters later if they try to claim IDs outside these masks.
1781 */
1782 smr = smmu->streamid_mask << SMR_ID_SHIFT;
1783 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1784 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1785 smmu->streamid_mask = smr >> SMR_ID_SHIFT;
1786
1787 smr = smmu->streamid_mask << SMR_MASK_SHIFT;
1788 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1789 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1790 smmu->smr_mask_mask = smr >> SMR_MASK_SHIFT;
1791
1792 /* Zero-initialised to mark as invalid */
1793 smmu->smrs = devm_kcalloc(smmu->dev, size, sizeof(*smmu->smrs),
1794 GFP_KERNEL);
1795 if (!smmu->smrs)
1796 return -ENOMEM;
1797
1798 dev_notice(smmu->dev,
1799 "\tstream matching with %lu register groups, mask 0x%x",
1800 size, smmu->smr_mask_mask);
1801 }
1802 /* s2cr->type == 0 means translation, so initialise explicitly */
1803 smmu->s2crs = devm_kmalloc_array(smmu->dev, size, sizeof(*smmu->s2crs),
1804 GFP_KERNEL);
1805 if (!smmu->s2crs)
1806 return -ENOMEM;
1807 for (i = 0; i < size; i++)
1808 smmu->s2crs[i] = s2cr_init_val;
1809
1810 smmu->num_mapping_groups = size;
1811 mutex_init(&smmu->stream_map_mutex);
1812
1813 if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
1814 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
1815 if (!(id & ID0_PTFS_NO_AARCH32S))
1816 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
1817 }
1818
1819 /* ID1 */
1820 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1821 smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1822
1823 /* Check for size mismatch of SMMU address space from mapped region */
1824 size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1825 size *= 2 << smmu->pgshift;
1826 if (smmu->size != size)
1827 dev_warn(smmu->dev,
1828 "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1829 size, smmu->size);
1830
1831 smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1832 smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1833 if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1834 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1835 return -ENODEV;
1836 }
1837 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1838 smmu->num_context_banks, smmu->num_s2_context_banks);
1839 /*
1840 * Cavium CN88xx erratum #27704.
1841 * Ensure ASID and VMID allocation is unique across all SMMUs in
1842 * the system.
1843 */
1844 if (smmu->model == CAVIUM_SMMUV2) {
1845 smmu->cavium_id_base =
1846 atomic_add_return(smmu->num_context_banks,
1847 &cavium_smmu_context_count);
1848 smmu->cavium_id_base -= smmu->num_context_banks;
1849 }
1850
1851 /* ID2 */
1852 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1853 size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1854 smmu->ipa_size = size;
1855
1856 /* The output mask is also applied for bypass */
1857 size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1858 smmu->pa_size = size;
1859
1860 if (id & ID2_VMID16)
1861 smmu->features |= ARM_SMMU_FEAT_VMID16;
1862
1863 /*
1864 * What the page table walker can address actually depends on which
1865 * descriptor format is in use, but since a) we don't know that yet,
1866 * and b) it can vary per context bank, this will have to do...
1867 */
1868 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
1869 dev_warn(smmu->dev,
1870 "failed to set DMA mask for table walker\n");
1871
1872 if (smmu->version < ARM_SMMU_V2) {
1873 smmu->va_size = smmu->ipa_size;
1874 if (smmu->version == ARM_SMMU_V1_64K)
1875 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1876 } else {
1877 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1878 smmu->va_size = arm_smmu_id_size_to_bits(size);
1879 if (id & ID2_PTFS_4K)
1880 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
1881 if (id & ID2_PTFS_16K)
1882 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
1883 if (id & ID2_PTFS_64K)
1884 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1885 }
1886
1887 /* Now we've corralled the various formats, what'll it do? */
1888 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
1889 smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
1890 if (smmu->features &
1891 (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
1892 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
1893 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
1894 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
1895 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
1896 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
1897
1898 if (arm_smmu_ops.pgsize_bitmap == -1UL)
1899 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
1900 else
1901 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
1902 dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
1903 smmu->pgsize_bitmap);
1904
1905
1906 if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1907 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1908 smmu->va_size, smmu->ipa_size);
1909
1910 if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1911 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1912 smmu->ipa_size, smmu->pa_size);
1913
1914 return 0;
1915 }
1916
1917 struct arm_smmu_match_data {
1918 enum arm_smmu_arch_version version;
1919 enum arm_smmu_implementation model;
1920 };
1921
1922 #define ARM_SMMU_MATCH_DATA(name, ver, imp) \
1923 static struct arm_smmu_match_data name = { .version = ver, .model = imp }
1924
1925 ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
1926 ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
1927 ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
1928 ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
1929 ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
1930
1931 static const struct of_device_id arm_smmu_of_match[] = {
1932 { .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
1933 { .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
1934 { .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
1935 { .compatible = "arm,mmu-401", .data = &arm_mmu401 },
1936 { .compatible = "arm,mmu-500", .data = &arm_mmu500 },
1937 { .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
1938 { },
1939 };
1940 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1941
1942 #ifdef CONFIG_ACPI
1943 static int acpi_smmu_get_data(u32 model, struct arm_smmu_device *smmu)
1944 {
1945 int ret = 0;
1946
1947 switch (model) {
1948 case ACPI_IORT_SMMU_V1:
1949 case ACPI_IORT_SMMU_CORELINK_MMU400:
1950 smmu->version = ARM_SMMU_V1;
1951 smmu->model = GENERIC_SMMU;
1952 break;
1953 case ACPI_IORT_SMMU_V2:
1954 smmu->version = ARM_SMMU_V2;
1955 smmu->model = GENERIC_SMMU;
1956 break;
1957 case ACPI_IORT_SMMU_CORELINK_MMU500:
1958 smmu->version = ARM_SMMU_V2;
1959 smmu->model = ARM_MMU500;
1960 break;
1961 default:
1962 ret = -ENODEV;
1963 }
1964
1965 return ret;
1966 }
1967
1968 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
1969 struct arm_smmu_device *smmu)
1970 {
1971 struct device *dev = smmu->dev;
1972 struct acpi_iort_node *node =
1973 *(struct acpi_iort_node **)dev_get_platdata(dev);
1974 struct acpi_iort_smmu *iort_smmu;
1975 int ret;
1976
1977 /* Retrieve SMMU1/2 specific data */
1978 iort_smmu = (struct acpi_iort_smmu *)node->node_data;
1979
1980 ret = acpi_smmu_get_data(iort_smmu->model, smmu);
1981 if (ret < 0)
1982 return ret;
1983
1984 /* Ignore the configuration access interrupt */
1985 smmu->num_global_irqs = 1;
1986
1987 if (iort_smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK)
1988 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1989
1990 return 0;
1991 }
1992 #else
1993 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
1994 struct arm_smmu_device *smmu)
1995 {
1996 return -ENODEV;
1997 }
1998 #endif
1999
2000 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2001 struct arm_smmu_device *smmu)
2002 {
2003 const struct arm_smmu_match_data *data;
2004 struct device *dev = &pdev->dev;
2005 bool legacy_binding;
2006
2007 if (of_property_read_u32(dev->of_node, "#global-interrupts",
2008 &smmu->num_global_irqs)) {
2009 dev_err(dev, "missing #global-interrupts property\n");
2010 return -ENODEV;
2011 }
2012
2013 data = of_device_get_match_data(dev);
2014 smmu->version = data->version;
2015 smmu->model = data->model;
2016
2017 parse_driver_options(smmu);
2018
2019 legacy_binding = of_find_property(dev->of_node, "mmu-masters", NULL);
2020 if (legacy_binding && !using_generic_binding) {
2021 if (!using_legacy_binding)
2022 pr_notice("deprecated \"mmu-masters\" DT property in use; DMA API support unavailable\n");
2023 using_legacy_binding = true;
2024 } else if (!legacy_binding && !using_legacy_binding) {
2025 using_generic_binding = true;
2026 } else {
2027 dev_err(dev, "not probing due to mismatched DT properties\n");
2028 return -ENODEV;
2029 }
2030
2031 if (of_dma_is_coherent(dev->of_node))
2032 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
2033
2034 return 0;
2035 }
2036
2037 static int arm_smmu_device_probe(struct platform_device *pdev)
2038 {
2039 struct resource *res;
2040 struct arm_smmu_device *smmu;
2041 struct device *dev = &pdev->dev;
2042 int num_irqs, i, err;
2043
2044 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2045 if (!smmu) {
2046 dev_err(dev, "failed to allocate arm_smmu_device\n");
2047 return -ENOMEM;
2048 }
2049 smmu->dev = dev;
2050
2051 if (dev->of_node)
2052 err = arm_smmu_device_dt_probe(pdev, smmu);
2053 else
2054 err = arm_smmu_device_acpi_probe(pdev, smmu);
2055
2056 if (err)
2057 return err;
2058
2059 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2060 smmu->base = devm_ioremap_resource(dev, res);
2061 if (IS_ERR(smmu->base))
2062 return PTR_ERR(smmu->base);
2063 smmu->size = resource_size(res);
2064
2065 num_irqs = 0;
2066 while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
2067 num_irqs++;
2068 if (num_irqs > smmu->num_global_irqs)
2069 smmu->num_context_irqs++;
2070 }
2071
2072 if (!smmu->num_context_irqs) {
2073 dev_err(dev, "found %d interrupts but expected at least %d\n",
2074 num_irqs, smmu->num_global_irqs + 1);
2075 return -ENODEV;
2076 }
2077
2078 smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
2079 GFP_KERNEL);
2080 if (!smmu->irqs) {
2081 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
2082 return -ENOMEM;
2083 }
2084
2085 for (i = 0; i < num_irqs; ++i) {
2086 int irq = platform_get_irq(pdev, i);
2087
2088 if (irq < 0) {
2089 dev_err(dev, "failed to get irq index %d\n", i);
2090 return -ENODEV;
2091 }
2092 smmu->irqs[i] = irq;
2093 }
2094
2095 err = arm_smmu_device_cfg_probe(smmu);
2096 if (err)
2097 return err;
2098
2099 if (smmu->version == ARM_SMMU_V2 &&
2100 smmu->num_context_banks != smmu->num_context_irqs) {
2101 dev_err(dev,
2102 "found only %d context interrupt(s) but %d required\n",
2103 smmu->num_context_irqs, smmu->num_context_banks);
2104 return -ENODEV;
2105 }
2106
2107 for (i = 0; i < smmu->num_global_irqs; ++i) {
2108 err = devm_request_irq(smmu->dev, smmu->irqs[i],
2109 arm_smmu_global_fault,
2110 IRQF_SHARED,
2111 "arm-smmu global fault",
2112 smmu);
2113 if (err) {
2114 dev_err(dev, "failed to request global IRQ %d (%u)\n",
2115 i, smmu->irqs[i]);
2116 return err;
2117 }
2118 }
2119
2120 iommu_register_instance(dev->fwnode, &arm_smmu_ops);
2121 platform_set_drvdata(pdev, smmu);
2122 arm_smmu_device_reset(smmu);
2123
2124 /* Oh, for a proper bus abstraction */
2125 if (!iommu_present(&platform_bus_type))
2126 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2127 #ifdef CONFIG_ARM_AMBA
2128 if (!iommu_present(&amba_bustype))
2129 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2130 #endif
2131 #ifdef CONFIG_PCI
2132 if (!iommu_present(&pci_bus_type)) {
2133 pci_request_acs();
2134 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2135 }
2136 #endif
2137 return 0;
2138 }
2139
2140 static int arm_smmu_device_remove(struct platform_device *pdev)
2141 {
2142 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2143
2144 if (!smmu)
2145 return -ENODEV;
2146
2147 if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2148 dev_err(&pdev->dev, "removing device with active domains!\n");
2149
2150 /* Turn the thing off */
2151 writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2152 return 0;
2153 }
2154
2155 static struct platform_driver arm_smmu_driver = {
2156 .driver = {
2157 .name = "arm-smmu",
2158 .of_match_table = of_match_ptr(arm_smmu_of_match),
2159 },
2160 .probe = arm_smmu_device_probe,
2161 .remove = arm_smmu_device_remove,
2162 };
2163
2164 static int __init arm_smmu_init(void)
2165 {
2166 static bool registered;
2167 int ret = 0;
2168
2169 if (!registered) {
2170 ret = platform_driver_register(&arm_smmu_driver);
2171 registered = !ret;
2172 }
2173 return ret;
2174 }
2175
2176 static void __exit arm_smmu_exit(void)
2177 {
2178 return platform_driver_unregister(&arm_smmu_driver);
2179 }
2180
2181 subsys_initcall(arm_smmu_init);
2182 module_exit(arm_smmu_exit);
2183
2184 static int __init arm_smmu_of_init(struct device_node *np)
2185 {
2186 int ret = arm_smmu_init();
2187
2188 if (ret)
2189 return ret;
2190
2191 if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
2192 return -ENODEV;
2193
2194 return 0;
2195 }
2196 IOMMU_OF_DECLARE(arm_smmuv1, "arm,smmu-v1", arm_smmu_of_init);
2197 IOMMU_OF_DECLARE(arm_smmuv2, "arm,smmu-v2", arm_smmu_of_init);
2198 IOMMU_OF_DECLARE(arm_mmu400, "arm,mmu-400", arm_smmu_of_init);
2199 IOMMU_OF_DECLARE(arm_mmu401, "arm,mmu-401", arm_smmu_of_init);
2200 IOMMU_OF_DECLARE(arm_mmu500, "arm,mmu-500", arm_smmu_of_init);
2201 IOMMU_OF_DECLARE(cavium_smmuv2, "cavium,smmu-v2", arm_smmu_of_init);
2202
2203 #ifdef CONFIG_ACPI
2204 static int __init arm_smmu_acpi_init(struct acpi_table_header *table)
2205 {
2206 if (iort_node_match(ACPI_IORT_NODE_SMMU))
2207 return arm_smmu_init();
2208
2209 return 0;
2210 }
2211 IORT_ACPI_DECLARE(arm_smmu, ACPI_SIG_IORT, arm_smmu_acpi_init);
2212 #endif
2213
2214 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
2215 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2216 MODULE_LICENSE("GPL v2");