]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/iommu/dmar.c
iommu: Remove iommu_register_instance interface
[mirror_ubuntu-bionic-kernel.git] / drivers / iommu / dmar.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 *
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
27 */
28
29 #define pr_fmt(fmt) "DMAR: " fmt
30
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/iova.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/timer.h>
36 #include <linux/irq.h>
37 #include <linux/interrupt.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/slab.h>
41 #include <linux/iommu.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/iommu_table.h>
44
45 #include "irq_remapping.h"
46
47 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
48 struct dmar_res_callback {
49 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
50 void *arg[ACPI_DMAR_TYPE_RESERVED];
51 bool ignore_unhandled;
52 bool print_entry;
53 };
54
55 /*
56 * Assumptions:
57 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
58 * before IO devices managed by that unit.
59 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
60 * after IO devices managed by that unit.
61 * 3) Hotplug events are rare.
62 *
63 * Locking rules for DMA and interrupt remapping related global data structures:
64 * 1) Use dmar_global_lock in process context
65 * 2) Use RCU in interrupt context
66 */
67 DECLARE_RWSEM(dmar_global_lock);
68 LIST_HEAD(dmar_drhd_units);
69
70 struct acpi_table_header * __initdata dmar_tbl;
71 static int dmar_dev_scope_status = 1;
72 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
73
74 static int alloc_iommu(struct dmar_drhd_unit *drhd);
75 static void free_iommu(struct intel_iommu *iommu);
76
77 extern const struct iommu_ops intel_iommu_ops;
78
79 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
80 {
81 /*
82 * add INCLUDE_ALL at the tail, so scan the list will find it at
83 * the very end.
84 */
85 if (drhd->include_all)
86 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
87 else
88 list_add_rcu(&drhd->list, &dmar_drhd_units);
89 }
90
91 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
92 {
93 struct acpi_dmar_device_scope *scope;
94
95 *cnt = 0;
96 while (start < end) {
97 scope = start;
98 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
99 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
100 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
101 (*cnt)++;
102 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
103 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
104 pr_warn("Unsupported device scope\n");
105 }
106 start += scope->length;
107 }
108 if (*cnt == 0)
109 return NULL;
110
111 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
112 }
113
114 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
115 {
116 int i;
117 struct device *tmp_dev;
118
119 if (*devices && *cnt) {
120 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
121 put_device(tmp_dev);
122 kfree(*devices);
123 }
124
125 *devices = NULL;
126 *cnt = 0;
127 }
128
129 /* Optimize out kzalloc()/kfree() for normal cases */
130 static char dmar_pci_notify_info_buf[64];
131
132 static struct dmar_pci_notify_info *
133 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
134 {
135 int level = 0;
136 size_t size;
137 struct pci_dev *tmp;
138 struct dmar_pci_notify_info *info;
139
140 BUG_ON(dev->is_virtfn);
141
142 /* Only generate path[] for device addition event */
143 if (event == BUS_NOTIFY_ADD_DEVICE)
144 for (tmp = dev; tmp; tmp = tmp->bus->self)
145 level++;
146
147 size = sizeof(*info) + level * sizeof(struct acpi_dmar_pci_path);
148 if (size <= sizeof(dmar_pci_notify_info_buf)) {
149 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
150 } else {
151 info = kzalloc(size, GFP_KERNEL);
152 if (!info) {
153 pr_warn("Out of memory when allocating notify_info "
154 "for %s.\n", pci_name(dev));
155 if (dmar_dev_scope_status == 0)
156 dmar_dev_scope_status = -ENOMEM;
157 return NULL;
158 }
159 }
160
161 info->event = event;
162 info->dev = dev;
163 info->seg = pci_domain_nr(dev->bus);
164 info->level = level;
165 if (event == BUS_NOTIFY_ADD_DEVICE) {
166 for (tmp = dev; tmp; tmp = tmp->bus->self) {
167 level--;
168 info->path[level].bus = tmp->bus->number;
169 info->path[level].device = PCI_SLOT(tmp->devfn);
170 info->path[level].function = PCI_FUNC(tmp->devfn);
171 if (pci_is_root_bus(tmp->bus))
172 info->bus = tmp->bus->number;
173 }
174 }
175
176 return info;
177 }
178
179 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
180 {
181 if ((void *)info != dmar_pci_notify_info_buf)
182 kfree(info);
183 }
184
185 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
186 struct acpi_dmar_pci_path *path, int count)
187 {
188 int i;
189
190 if (info->bus != bus)
191 goto fallback;
192 if (info->level != count)
193 goto fallback;
194
195 for (i = 0; i < count; i++) {
196 if (path[i].device != info->path[i].device ||
197 path[i].function != info->path[i].function)
198 goto fallback;
199 }
200
201 return true;
202
203 fallback:
204
205 if (count != 1)
206 return false;
207
208 i = info->level - 1;
209 if (bus == info->path[i].bus &&
210 path[0].device == info->path[i].device &&
211 path[0].function == info->path[i].function) {
212 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
213 bus, path[0].device, path[0].function);
214 return true;
215 }
216
217 return false;
218 }
219
220 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
221 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
222 void *start, void*end, u16 segment,
223 struct dmar_dev_scope *devices,
224 int devices_cnt)
225 {
226 int i, level;
227 struct device *tmp, *dev = &info->dev->dev;
228 struct acpi_dmar_device_scope *scope;
229 struct acpi_dmar_pci_path *path;
230
231 if (segment != info->seg)
232 return 0;
233
234 for (; start < end; start += scope->length) {
235 scope = start;
236 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
237 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
238 continue;
239
240 path = (struct acpi_dmar_pci_path *)(scope + 1);
241 level = (scope->length - sizeof(*scope)) / sizeof(*path);
242 if (!dmar_match_pci_path(info, scope->bus, path, level))
243 continue;
244
245 /*
246 * We expect devices with endpoint scope to have normal PCI
247 * headers, and devices with bridge scope to have bridge PCI
248 * headers. However PCI NTB devices may be listed in the
249 * DMAR table with bridge scope, even though they have a
250 * normal PCI header. NTB devices are identified by class
251 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
252 * for this special case.
253 */
254 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
255 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
256 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
257 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
258 info->dev->class >> 8 != PCI_CLASS_BRIDGE_OTHER))) {
259 pr_warn("Device scope type does not match for %s\n",
260 pci_name(info->dev));
261 return -EINVAL;
262 }
263
264 for_each_dev_scope(devices, devices_cnt, i, tmp)
265 if (tmp == NULL) {
266 devices[i].bus = info->dev->bus->number;
267 devices[i].devfn = info->dev->devfn;
268 rcu_assign_pointer(devices[i].dev,
269 get_device(dev));
270 return 1;
271 }
272 BUG_ON(i >= devices_cnt);
273 }
274
275 return 0;
276 }
277
278 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
279 struct dmar_dev_scope *devices, int count)
280 {
281 int index;
282 struct device *tmp;
283
284 if (info->seg != segment)
285 return 0;
286
287 for_each_active_dev_scope(devices, count, index, tmp)
288 if (tmp == &info->dev->dev) {
289 RCU_INIT_POINTER(devices[index].dev, NULL);
290 synchronize_rcu();
291 put_device(tmp);
292 return 1;
293 }
294
295 return 0;
296 }
297
298 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
299 {
300 int ret = 0;
301 struct dmar_drhd_unit *dmaru;
302 struct acpi_dmar_hardware_unit *drhd;
303
304 for_each_drhd_unit(dmaru) {
305 if (dmaru->include_all)
306 continue;
307
308 drhd = container_of(dmaru->hdr,
309 struct acpi_dmar_hardware_unit, header);
310 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
311 ((void *)drhd) + drhd->header.length,
312 dmaru->segment,
313 dmaru->devices, dmaru->devices_cnt);
314 if (ret != 0)
315 break;
316 }
317 if (ret >= 0)
318 ret = dmar_iommu_notify_scope_dev(info);
319 if (ret < 0 && dmar_dev_scope_status == 0)
320 dmar_dev_scope_status = ret;
321
322 return ret;
323 }
324
325 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
326 {
327 struct dmar_drhd_unit *dmaru;
328
329 for_each_drhd_unit(dmaru)
330 if (dmar_remove_dev_scope(info, dmaru->segment,
331 dmaru->devices, dmaru->devices_cnt))
332 break;
333 dmar_iommu_notify_scope_dev(info);
334 }
335
336 static int dmar_pci_bus_notifier(struct notifier_block *nb,
337 unsigned long action, void *data)
338 {
339 struct pci_dev *pdev = to_pci_dev(data);
340 struct dmar_pci_notify_info *info;
341
342 /* Only care about add/remove events for physical functions.
343 * For VFs we actually do the lookup based on the corresponding
344 * PF in device_to_iommu() anyway. */
345 if (pdev->is_virtfn)
346 return NOTIFY_DONE;
347 if (action != BUS_NOTIFY_ADD_DEVICE &&
348 action != BUS_NOTIFY_REMOVED_DEVICE)
349 return NOTIFY_DONE;
350
351 info = dmar_alloc_pci_notify_info(pdev, action);
352 if (!info)
353 return NOTIFY_DONE;
354
355 down_write(&dmar_global_lock);
356 if (action == BUS_NOTIFY_ADD_DEVICE)
357 dmar_pci_bus_add_dev(info);
358 else if (action == BUS_NOTIFY_REMOVED_DEVICE)
359 dmar_pci_bus_del_dev(info);
360 up_write(&dmar_global_lock);
361
362 dmar_free_pci_notify_info(info);
363
364 return NOTIFY_OK;
365 }
366
367 static struct notifier_block dmar_pci_bus_nb = {
368 .notifier_call = dmar_pci_bus_notifier,
369 .priority = INT_MIN,
370 };
371
372 static struct dmar_drhd_unit *
373 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
374 {
375 struct dmar_drhd_unit *dmaru;
376
377 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list)
378 if (dmaru->segment == drhd->segment &&
379 dmaru->reg_base_addr == drhd->address)
380 return dmaru;
381
382 return NULL;
383 }
384
385 /**
386 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
387 * structure which uniquely represent one DMA remapping hardware unit
388 * present in the platform
389 */
390 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
391 {
392 struct acpi_dmar_hardware_unit *drhd;
393 struct dmar_drhd_unit *dmaru;
394 int ret = 0;
395
396 drhd = (struct acpi_dmar_hardware_unit *)header;
397 dmaru = dmar_find_dmaru(drhd);
398 if (dmaru)
399 goto out;
400
401 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
402 if (!dmaru)
403 return -ENOMEM;
404
405 /*
406 * If header is allocated from slab by ACPI _DSM method, we need to
407 * copy the content because the memory buffer will be freed on return.
408 */
409 dmaru->hdr = (void *)(dmaru + 1);
410 memcpy(dmaru->hdr, header, header->length);
411 dmaru->reg_base_addr = drhd->address;
412 dmaru->segment = drhd->segment;
413 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
414 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
415 ((void *)drhd) + drhd->header.length,
416 &dmaru->devices_cnt);
417 if (dmaru->devices_cnt && dmaru->devices == NULL) {
418 kfree(dmaru);
419 return -ENOMEM;
420 }
421
422 ret = alloc_iommu(dmaru);
423 if (ret) {
424 dmar_free_dev_scope(&dmaru->devices,
425 &dmaru->devices_cnt);
426 kfree(dmaru);
427 return ret;
428 }
429 dmar_register_drhd_unit(dmaru);
430
431 out:
432 if (arg)
433 (*(int *)arg)++;
434
435 return 0;
436 }
437
438 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
439 {
440 if (dmaru->devices && dmaru->devices_cnt)
441 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
442 if (dmaru->iommu)
443 free_iommu(dmaru->iommu);
444 kfree(dmaru);
445 }
446
447 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
448 void *arg)
449 {
450 struct acpi_dmar_andd *andd = (void *)header;
451
452 /* Check for NUL termination within the designated length */
453 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
454 WARN_TAINT(1, TAINT_FIRMWARE_WORKAROUND,
455 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
456 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
457 dmi_get_system_info(DMI_BIOS_VENDOR),
458 dmi_get_system_info(DMI_BIOS_VERSION),
459 dmi_get_system_info(DMI_PRODUCT_VERSION));
460 return -EINVAL;
461 }
462 pr_info("ANDD device: %x name: %s\n", andd->device_number,
463 andd->device_name);
464
465 return 0;
466 }
467
468 #ifdef CONFIG_ACPI_NUMA
469 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
470 {
471 struct acpi_dmar_rhsa *rhsa;
472 struct dmar_drhd_unit *drhd;
473
474 rhsa = (struct acpi_dmar_rhsa *)header;
475 for_each_drhd_unit(drhd) {
476 if (drhd->reg_base_addr == rhsa->base_address) {
477 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
478
479 if (!node_online(node))
480 node = -1;
481 drhd->iommu->node = node;
482 return 0;
483 }
484 }
485 WARN_TAINT(
486 1, TAINT_FIRMWARE_WORKAROUND,
487 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
488 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
489 drhd->reg_base_addr,
490 dmi_get_system_info(DMI_BIOS_VENDOR),
491 dmi_get_system_info(DMI_BIOS_VERSION),
492 dmi_get_system_info(DMI_PRODUCT_VERSION));
493
494 return 0;
495 }
496 #else
497 #define dmar_parse_one_rhsa dmar_res_noop
498 #endif
499
500 static void __init
501 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
502 {
503 struct acpi_dmar_hardware_unit *drhd;
504 struct acpi_dmar_reserved_memory *rmrr;
505 struct acpi_dmar_atsr *atsr;
506 struct acpi_dmar_rhsa *rhsa;
507
508 switch (header->type) {
509 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
510 drhd = container_of(header, struct acpi_dmar_hardware_unit,
511 header);
512 pr_info("DRHD base: %#016Lx flags: %#x\n",
513 (unsigned long long)drhd->address, drhd->flags);
514 break;
515 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
516 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
517 header);
518 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
519 (unsigned long long)rmrr->base_address,
520 (unsigned long long)rmrr->end_address);
521 break;
522 case ACPI_DMAR_TYPE_ROOT_ATS:
523 atsr = container_of(header, struct acpi_dmar_atsr, header);
524 pr_info("ATSR flags: %#x\n", atsr->flags);
525 break;
526 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
527 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
528 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
529 (unsigned long long)rhsa->base_address,
530 rhsa->proximity_domain);
531 break;
532 case ACPI_DMAR_TYPE_NAMESPACE:
533 /* We don't print this here because we need to sanity-check
534 it first. So print it in dmar_parse_one_andd() instead. */
535 break;
536 }
537 }
538
539 /**
540 * dmar_table_detect - checks to see if the platform supports DMAR devices
541 */
542 static int __init dmar_table_detect(void)
543 {
544 acpi_status status = AE_OK;
545
546 /* if we could find DMAR table, then there are DMAR devices */
547 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
548
549 if (ACPI_SUCCESS(status) && !dmar_tbl) {
550 pr_warn("Unable to map DMAR\n");
551 status = AE_NOT_FOUND;
552 }
553
554 return (ACPI_SUCCESS(status) ? 1 : 0);
555 }
556
557 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
558 size_t len, struct dmar_res_callback *cb)
559 {
560 int ret = 0;
561 struct acpi_dmar_header *iter, *next;
562 struct acpi_dmar_header *end = ((void *)start) + len;
563
564 for (iter = start; iter < end && ret == 0; iter = next) {
565 next = (void *)iter + iter->length;
566 if (iter->length == 0) {
567 /* Avoid looping forever on bad ACPI tables */
568 pr_debug(FW_BUG "Invalid 0-length structure\n");
569 break;
570 } else if (next > end) {
571 /* Avoid passing table end */
572 pr_warn(FW_BUG "Record passes table end\n");
573 ret = -EINVAL;
574 break;
575 }
576
577 if (cb->print_entry)
578 dmar_table_print_dmar_entry(iter);
579
580 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
581 /* continue for forward compatibility */
582 pr_debug("Unknown DMAR structure type %d\n",
583 iter->type);
584 } else if (cb->cb[iter->type]) {
585 ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
586 } else if (!cb->ignore_unhandled) {
587 pr_warn("No handler for DMAR structure type %d\n",
588 iter->type);
589 ret = -EINVAL;
590 }
591 }
592
593 return ret;
594 }
595
596 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
597 struct dmar_res_callback *cb)
598 {
599 return dmar_walk_remapping_entries((void *)(dmar + 1),
600 dmar->header.length - sizeof(*dmar), cb);
601 }
602
603 /**
604 * parse_dmar_table - parses the DMA reporting table
605 */
606 static int __init
607 parse_dmar_table(void)
608 {
609 struct acpi_table_dmar *dmar;
610 int ret = 0;
611 int drhd_count = 0;
612 struct dmar_res_callback cb = {
613 .print_entry = true,
614 .ignore_unhandled = true,
615 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
616 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
617 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
618 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
619 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
620 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
621 };
622
623 /*
624 * Do it again, earlier dmar_tbl mapping could be mapped with
625 * fixed map.
626 */
627 dmar_table_detect();
628
629 /*
630 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
631 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
632 */
633 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
634
635 dmar = (struct acpi_table_dmar *)dmar_tbl;
636 if (!dmar)
637 return -ENODEV;
638
639 if (dmar->width < PAGE_SHIFT - 1) {
640 pr_warn("Invalid DMAR haw\n");
641 return -EINVAL;
642 }
643
644 pr_info("Host address width %d\n", dmar->width + 1);
645 ret = dmar_walk_dmar_table(dmar, &cb);
646 if (ret == 0 && drhd_count == 0)
647 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
648
649 return ret;
650 }
651
652 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
653 int cnt, struct pci_dev *dev)
654 {
655 int index;
656 struct device *tmp;
657
658 while (dev) {
659 for_each_active_dev_scope(devices, cnt, index, tmp)
660 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
661 return 1;
662
663 /* Check our parent */
664 dev = dev->bus->self;
665 }
666
667 return 0;
668 }
669
670 struct dmar_drhd_unit *
671 dmar_find_matched_drhd_unit(struct pci_dev *dev)
672 {
673 struct dmar_drhd_unit *dmaru;
674 struct acpi_dmar_hardware_unit *drhd;
675
676 dev = pci_physfn(dev);
677
678 rcu_read_lock();
679 for_each_drhd_unit(dmaru) {
680 drhd = container_of(dmaru->hdr,
681 struct acpi_dmar_hardware_unit,
682 header);
683
684 if (dmaru->include_all &&
685 drhd->segment == pci_domain_nr(dev->bus))
686 goto out;
687
688 if (dmar_pci_device_match(dmaru->devices,
689 dmaru->devices_cnt, dev))
690 goto out;
691 }
692 dmaru = NULL;
693 out:
694 rcu_read_unlock();
695
696 return dmaru;
697 }
698
699 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
700 struct acpi_device *adev)
701 {
702 struct dmar_drhd_unit *dmaru;
703 struct acpi_dmar_hardware_unit *drhd;
704 struct acpi_dmar_device_scope *scope;
705 struct device *tmp;
706 int i;
707 struct acpi_dmar_pci_path *path;
708
709 for_each_drhd_unit(dmaru) {
710 drhd = container_of(dmaru->hdr,
711 struct acpi_dmar_hardware_unit,
712 header);
713
714 for (scope = (void *)(drhd + 1);
715 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
716 scope = ((void *)scope) + scope->length) {
717 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
718 continue;
719 if (scope->enumeration_id != device_number)
720 continue;
721
722 path = (void *)(scope + 1);
723 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
724 dev_name(&adev->dev), dmaru->reg_base_addr,
725 scope->bus, path->device, path->function);
726 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
727 if (tmp == NULL) {
728 dmaru->devices[i].bus = scope->bus;
729 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
730 path->function);
731 rcu_assign_pointer(dmaru->devices[i].dev,
732 get_device(&adev->dev));
733 return;
734 }
735 BUG_ON(i >= dmaru->devices_cnt);
736 }
737 }
738 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
739 device_number, dev_name(&adev->dev));
740 }
741
742 static int __init dmar_acpi_dev_scope_init(void)
743 {
744 struct acpi_dmar_andd *andd;
745
746 if (dmar_tbl == NULL)
747 return -ENODEV;
748
749 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
750 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
751 andd = ((void *)andd) + andd->header.length) {
752 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
753 acpi_handle h;
754 struct acpi_device *adev;
755
756 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
757 andd->device_name,
758 &h))) {
759 pr_err("Failed to find handle for ACPI object %s\n",
760 andd->device_name);
761 continue;
762 }
763 if (acpi_bus_get_device(h, &adev)) {
764 pr_err("Failed to get device for ACPI object %s\n",
765 andd->device_name);
766 continue;
767 }
768 dmar_acpi_insert_dev_scope(andd->device_number, adev);
769 }
770 }
771 return 0;
772 }
773
774 int __init dmar_dev_scope_init(void)
775 {
776 struct pci_dev *dev = NULL;
777 struct dmar_pci_notify_info *info;
778
779 if (dmar_dev_scope_status != 1)
780 return dmar_dev_scope_status;
781
782 if (list_empty(&dmar_drhd_units)) {
783 dmar_dev_scope_status = -ENODEV;
784 } else {
785 dmar_dev_scope_status = 0;
786
787 dmar_acpi_dev_scope_init();
788
789 for_each_pci_dev(dev) {
790 if (dev->is_virtfn)
791 continue;
792
793 info = dmar_alloc_pci_notify_info(dev,
794 BUS_NOTIFY_ADD_DEVICE);
795 if (!info) {
796 return dmar_dev_scope_status;
797 } else {
798 dmar_pci_bus_add_dev(info);
799 dmar_free_pci_notify_info(info);
800 }
801 }
802
803 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
804 }
805
806 return dmar_dev_scope_status;
807 }
808
809
810 int __init dmar_table_init(void)
811 {
812 static int dmar_table_initialized;
813 int ret;
814
815 if (dmar_table_initialized == 0) {
816 ret = parse_dmar_table();
817 if (ret < 0) {
818 if (ret != -ENODEV)
819 pr_info("Parse DMAR table failure.\n");
820 } else if (list_empty(&dmar_drhd_units)) {
821 pr_info("No DMAR devices found\n");
822 ret = -ENODEV;
823 }
824
825 if (ret < 0)
826 dmar_table_initialized = ret;
827 else
828 dmar_table_initialized = 1;
829 }
830
831 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
832 }
833
834 static void warn_invalid_dmar(u64 addr, const char *message)
835 {
836 WARN_TAINT_ONCE(
837 1, TAINT_FIRMWARE_WORKAROUND,
838 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
839 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
840 addr, message,
841 dmi_get_system_info(DMI_BIOS_VENDOR),
842 dmi_get_system_info(DMI_BIOS_VERSION),
843 dmi_get_system_info(DMI_PRODUCT_VERSION));
844 }
845
846 static int __ref
847 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
848 {
849 struct acpi_dmar_hardware_unit *drhd;
850 void __iomem *addr;
851 u64 cap, ecap;
852
853 drhd = (void *)entry;
854 if (!drhd->address) {
855 warn_invalid_dmar(0, "");
856 return -EINVAL;
857 }
858
859 if (arg)
860 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
861 else
862 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
863 if (!addr) {
864 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
865 return -EINVAL;
866 }
867
868 cap = dmar_readq(addr + DMAR_CAP_REG);
869 ecap = dmar_readq(addr + DMAR_ECAP_REG);
870
871 if (arg)
872 iounmap(addr);
873 else
874 early_iounmap(addr, VTD_PAGE_SIZE);
875
876 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
877 warn_invalid_dmar(drhd->address, " returns all ones");
878 return -EINVAL;
879 }
880
881 return 0;
882 }
883
884 int __init detect_intel_iommu(void)
885 {
886 int ret;
887 struct dmar_res_callback validate_drhd_cb = {
888 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
889 .ignore_unhandled = true,
890 };
891
892 down_write(&dmar_global_lock);
893 ret = dmar_table_detect();
894 if (ret)
895 ret = !dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
896 &validate_drhd_cb);
897 if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
898 iommu_detected = 1;
899 /* Make sure ACS will be enabled */
900 pci_request_acs();
901 }
902
903 #ifdef CONFIG_X86
904 if (ret)
905 x86_init.iommu.iommu_init = intel_iommu_init;
906 #endif
907
908 acpi_put_table(dmar_tbl);
909 dmar_tbl = NULL;
910 up_write(&dmar_global_lock);
911
912 return ret ? 1 : -ENODEV;
913 }
914
915
916 static void unmap_iommu(struct intel_iommu *iommu)
917 {
918 iounmap(iommu->reg);
919 release_mem_region(iommu->reg_phys, iommu->reg_size);
920 }
921
922 /**
923 * map_iommu: map the iommu's registers
924 * @iommu: the iommu to map
925 * @phys_addr: the physical address of the base resgister
926 *
927 * Memory map the iommu's registers. Start w/ a single page, and
928 * possibly expand if that turns out to be insufficent.
929 */
930 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
931 {
932 int map_size, err=0;
933
934 iommu->reg_phys = phys_addr;
935 iommu->reg_size = VTD_PAGE_SIZE;
936
937 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
938 pr_err("Can't reserve memory\n");
939 err = -EBUSY;
940 goto out;
941 }
942
943 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
944 if (!iommu->reg) {
945 pr_err("Can't map the region\n");
946 err = -ENOMEM;
947 goto release;
948 }
949
950 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
951 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
952
953 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
954 err = -EINVAL;
955 warn_invalid_dmar(phys_addr, " returns all ones");
956 goto unmap;
957 }
958
959 /* the registers might be more than one page */
960 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
961 cap_max_fault_reg_offset(iommu->cap));
962 map_size = VTD_PAGE_ALIGN(map_size);
963 if (map_size > iommu->reg_size) {
964 iounmap(iommu->reg);
965 release_mem_region(iommu->reg_phys, iommu->reg_size);
966 iommu->reg_size = map_size;
967 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
968 iommu->name)) {
969 pr_err("Can't reserve memory\n");
970 err = -EBUSY;
971 goto out;
972 }
973 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
974 if (!iommu->reg) {
975 pr_err("Can't map the region\n");
976 err = -ENOMEM;
977 goto release;
978 }
979 }
980 err = 0;
981 goto out;
982
983 unmap:
984 iounmap(iommu->reg);
985 release:
986 release_mem_region(iommu->reg_phys, iommu->reg_size);
987 out:
988 return err;
989 }
990
991 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
992 {
993 iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
994 DMAR_UNITS_SUPPORTED);
995 if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
996 iommu->seq_id = -1;
997 } else {
998 set_bit(iommu->seq_id, dmar_seq_ids);
999 sprintf(iommu->name, "dmar%d", iommu->seq_id);
1000 }
1001
1002 return iommu->seq_id;
1003 }
1004
1005 static void dmar_free_seq_id(struct intel_iommu *iommu)
1006 {
1007 if (iommu->seq_id >= 0) {
1008 clear_bit(iommu->seq_id, dmar_seq_ids);
1009 iommu->seq_id = -1;
1010 }
1011 }
1012
1013 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1014 {
1015 struct intel_iommu *iommu;
1016 u32 ver, sts;
1017 int agaw = 0;
1018 int msagaw = 0;
1019 int err;
1020
1021 if (!drhd->reg_base_addr) {
1022 warn_invalid_dmar(0, "");
1023 return -EINVAL;
1024 }
1025
1026 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1027 if (!iommu)
1028 return -ENOMEM;
1029
1030 if (dmar_alloc_seq_id(iommu) < 0) {
1031 pr_err("Failed to allocate seq_id\n");
1032 err = -ENOSPC;
1033 goto error;
1034 }
1035
1036 err = map_iommu(iommu, drhd->reg_base_addr);
1037 if (err) {
1038 pr_err("Failed to map %s\n", iommu->name);
1039 goto error_free_seq_id;
1040 }
1041
1042 err = -EINVAL;
1043 agaw = iommu_calculate_agaw(iommu);
1044 if (agaw < 0) {
1045 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1046 iommu->seq_id);
1047 goto err_unmap;
1048 }
1049 msagaw = iommu_calculate_max_sagaw(iommu);
1050 if (msagaw < 0) {
1051 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1052 iommu->seq_id);
1053 goto err_unmap;
1054 }
1055 iommu->agaw = agaw;
1056 iommu->msagaw = msagaw;
1057 iommu->segment = drhd->segment;
1058
1059 iommu->node = -1;
1060
1061 ver = readl(iommu->reg + DMAR_VER_REG);
1062 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1063 iommu->name,
1064 (unsigned long long)drhd->reg_base_addr,
1065 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1066 (unsigned long long)iommu->cap,
1067 (unsigned long long)iommu->ecap);
1068
1069 /* Reflect status in gcmd */
1070 sts = readl(iommu->reg + DMAR_GSTS_REG);
1071 if (sts & DMA_GSTS_IRES)
1072 iommu->gcmd |= DMA_GCMD_IRE;
1073 if (sts & DMA_GSTS_TES)
1074 iommu->gcmd |= DMA_GCMD_TE;
1075 if (sts & DMA_GSTS_QIES)
1076 iommu->gcmd |= DMA_GCMD_QIE;
1077
1078 raw_spin_lock_init(&iommu->register_lock);
1079
1080 if (intel_iommu_enabled) {
1081 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1082 intel_iommu_groups,
1083 "%s", iommu->name);
1084 if (err)
1085 goto err_unmap;
1086
1087 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
1088
1089 err = iommu_device_register(&iommu->iommu);
1090 if (err)
1091 goto err_unmap;
1092 }
1093
1094 drhd->iommu = iommu;
1095
1096 return 0;
1097
1098 err_unmap:
1099 unmap_iommu(iommu);
1100 error_free_seq_id:
1101 dmar_free_seq_id(iommu);
1102 error:
1103 kfree(iommu);
1104 return err;
1105 }
1106
1107 static void free_iommu(struct intel_iommu *iommu)
1108 {
1109 iommu_device_sysfs_remove(&iommu->iommu);
1110 iommu_device_unregister(&iommu->iommu);
1111
1112 if (iommu->irq) {
1113 if (iommu->pr_irq) {
1114 free_irq(iommu->pr_irq, iommu);
1115 dmar_free_hwirq(iommu->pr_irq);
1116 iommu->pr_irq = 0;
1117 }
1118 free_irq(iommu->irq, iommu);
1119 dmar_free_hwirq(iommu->irq);
1120 iommu->irq = 0;
1121 }
1122
1123 if (iommu->qi) {
1124 free_page((unsigned long)iommu->qi->desc);
1125 kfree(iommu->qi->desc_status);
1126 kfree(iommu->qi);
1127 }
1128
1129 if (iommu->reg)
1130 unmap_iommu(iommu);
1131
1132 dmar_free_seq_id(iommu);
1133 kfree(iommu);
1134 }
1135
1136 /*
1137 * Reclaim all the submitted descriptors which have completed its work.
1138 */
1139 static inline void reclaim_free_desc(struct q_inval *qi)
1140 {
1141 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1142 qi->desc_status[qi->free_tail] == QI_ABORT) {
1143 qi->desc_status[qi->free_tail] = QI_FREE;
1144 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1145 qi->free_cnt++;
1146 }
1147 }
1148
1149 static int qi_check_fault(struct intel_iommu *iommu, int index)
1150 {
1151 u32 fault;
1152 int head, tail;
1153 struct q_inval *qi = iommu->qi;
1154 int wait_index = (index + 1) % QI_LENGTH;
1155
1156 if (qi->desc_status[wait_index] == QI_ABORT)
1157 return -EAGAIN;
1158
1159 fault = readl(iommu->reg + DMAR_FSTS_REG);
1160
1161 /*
1162 * If IQE happens, the head points to the descriptor associated
1163 * with the error. No new descriptors are fetched until the IQE
1164 * is cleared.
1165 */
1166 if (fault & DMA_FSTS_IQE) {
1167 head = readl(iommu->reg + DMAR_IQH_REG);
1168 if ((head >> DMAR_IQ_SHIFT) == index) {
1169 pr_err("VT-d detected invalid descriptor: "
1170 "low=%llx, high=%llx\n",
1171 (unsigned long long)qi->desc[index].low,
1172 (unsigned long long)qi->desc[index].high);
1173 memcpy(&qi->desc[index], &qi->desc[wait_index],
1174 sizeof(struct qi_desc));
1175 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1176 return -EINVAL;
1177 }
1178 }
1179
1180 /*
1181 * If ITE happens, all pending wait_desc commands are aborted.
1182 * No new descriptors are fetched until the ITE is cleared.
1183 */
1184 if (fault & DMA_FSTS_ITE) {
1185 head = readl(iommu->reg + DMAR_IQH_REG);
1186 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1187 head |= 1;
1188 tail = readl(iommu->reg + DMAR_IQT_REG);
1189 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
1190
1191 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1192
1193 do {
1194 if (qi->desc_status[head] == QI_IN_USE)
1195 qi->desc_status[head] = QI_ABORT;
1196 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1197 } while (head != tail);
1198
1199 if (qi->desc_status[wait_index] == QI_ABORT)
1200 return -EAGAIN;
1201 }
1202
1203 if (fault & DMA_FSTS_ICE)
1204 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1205
1206 return 0;
1207 }
1208
1209 /*
1210 * Submit the queued invalidation descriptor to the remapping
1211 * hardware unit and wait for its completion.
1212 */
1213 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
1214 {
1215 int rc;
1216 struct q_inval *qi = iommu->qi;
1217 struct qi_desc *hw, wait_desc;
1218 int wait_index, index;
1219 unsigned long flags;
1220
1221 if (!qi)
1222 return 0;
1223
1224 hw = qi->desc;
1225
1226 restart:
1227 rc = 0;
1228
1229 raw_spin_lock_irqsave(&qi->q_lock, flags);
1230 while (qi->free_cnt < 3) {
1231 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1232 cpu_relax();
1233 raw_spin_lock_irqsave(&qi->q_lock, flags);
1234 }
1235
1236 index = qi->free_head;
1237 wait_index = (index + 1) % QI_LENGTH;
1238
1239 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
1240
1241 hw[index] = *desc;
1242
1243 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
1244 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1245 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
1246
1247 hw[wait_index] = wait_desc;
1248
1249 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
1250 qi->free_cnt -= 2;
1251
1252 /*
1253 * update the HW tail register indicating the presence of
1254 * new descriptors.
1255 */
1256 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
1257
1258 while (qi->desc_status[wait_index] != QI_DONE) {
1259 /*
1260 * We will leave the interrupts disabled, to prevent interrupt
1261 * context to queue another cmd while a cmd is already submitted
1262 * and waiting for completion on this cpu. This is to avoid
1263 * a deadlock where the interrupt context can wait indefinitely
1264 * for free slots in the queue.
1265 */
1266 rc = qi_check_fault(iommu, index);
1267 if (rc)
1268 break;
1269
1270 raw_spin_unlock(&qi->q_lock);
1271 cpu_relax();
1272 raw_spin_lock(&qi->q_lock);
1273 }
1274
1275 qi->desc_status[index] = QI_DONE;
1276
1277 reclaim_free_desc(qi);
1278 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1279
1280 if (rc == -EAGAIN)
1281 goto restart;
1282
1283 return rc;
1284 }
1285
1286 /*
1287 * Flush the global interrupt entry cache.
1288 */
1289 void qi_global_iec(struct intel_iommu *iommu)
1290 {
1291 struct qi_desc desc;
1292
1293 desc.low = QI_IEC_TYPE;
1294 desc.high = 0;
1295
1296 /* should never fail */
1297 qi_submit_sync(&desc, iommu);
1298 }
1299
1300 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1301 u64 type)
1302 {
1303 struct qi_desc desc;
1304
1305 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1306 | QI_CC_GRAN(type) | QI_CC_TYPE;
1307 desc.high = 0;
1308
1309 qi_submit_sync(&desc, iommu);
1310 }
1311
1312 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1313 unsigned int size_order, u64 type)
1314 {
1315 u8 dw = 0, dr = 0;
1316
1317 struct qi_desc desc;
1318 int ih = 0;
1319
1320 if (cap_write_drain(iommu->cap))
1321 dw = 1;
1322
1323 if (cap_read_drain(iommu->cap))
1324 dr = 1;
1325
1326 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1327 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1328 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1329 | QI_IOTLB_AM(size_order);
1330
1331 qi_submit_sync(&desc, iommu);
1332 }
1333
1334 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
1335 u64 addr, unsigned mask)
1336 {
1337 struct qi_desc desc;
1338
1339 if (mask) {
1340 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
1341 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1342 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1343 } else
1344 desc.high = QI_DEV_IOTLB_ADDR(addr);
1345
1346 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1347 qdep = 0;
1348
1349 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1350 QI_DIOTLB_TYPE;
1351
1352 qi_submit_sync(&desc, iommu);
1353 }
1354
1355 /*
1356 * Disable Queued Invalidation interface.
1357 */
1358 void dmar_disable_qi(struct intel_iommu *iommu)
1359 {
1360 unsigned long flags;
1361 u32 sts;
1362 cycles_t start_time = get_cycles();
1363
1364 if (!ecap_qis(iommu->ecap))
1365 return;
1366
1367 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1368
1369 sts = readl(iommu->reg + DMAR_GSTS_REG);
1370 if (!(sts & DMA_GSTS_QIES))
1371 goto end;
1372
1373 /*
1374 * Give a chance to HW to complete the pending invalidation requests.
1375 */
1376 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1377 readl(iommu->reg + DMAR_IQH_REG)) &&
1378 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1379 cpu_relax();
1380
1381 iommu->gcmd &= ~DMA_GCMD_QIE;
1382 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1383
1384 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1385 !(sts & DMA_GSTS_QIES), sts);
1386 end:
1387 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1388 }
1389
1390 /*
1391 * Enable queued invalidation.
1392 */
1393 static void __dmar_enable_qi(struct intel_iommu *iommu)
1394 {
1395 u32 sts;
1396 unsigned long flags;
1397 struct q_inval *qi = iommu->qi;
1398
1399 qi->free_head = qi->free_tail = 0;
1400 qi->free_cnt = QI_LENGTH;
1401
1402 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1403
1404 /* write zero to the tail reg */
1405 writel(0, iommu->reg + DMAR_IQT_REG);
1406
1407 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1408
1409 iommu->gcmd |= DMA_GCMD_QIE;
1410 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1411
1412 /* Make sure hardware complete it */
1413 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1414
1415 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1416 }
1417
1418 /*
1419 * Enable Queued Invalidation interface. This is a must to support
1420 * interrupt-remapping. Also used by DMA-remapping, which replaces
1421 * register based IOTLB invalidation.
1422 */
1423 int dmar_enable_qi(struct intel_iommu *iommu)
1424 {
1425 struct q_inval *qi;
1426 struct page *desc_page;
1427
1428 if (!ecap_qis(iommu->ecap))
1429 return -ENOENT;
1430
1431 /*
1432 * queued invalidation is already setup and enabled.
1433 */
1434 if (iommu->qi)
1435 return 0;
1436
1437 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1438 if (!iommu->qi)
1439 return -ENOMEM;
1440
1441 qi = iommu->qi;
1442
1443
1444 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1445 if (!desc_page) {
1446 kfree(qi);
1447 iommu->qi = NULL;
1448 return -ENOMEM;
1449 }
1450
1451 qi->desc = page_address(desc_page);
1452
1453 qi->desc_status = kzalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1454 if (!qi->desc_status) {
1455 free_page((unsigned long) qi->desc);
1456 kfree(qi);
1457 iommu->qi = NULL;
1458 return -ENOMEM;
1459 }
1460
1461 raw_spin_lock_init(&qi->q_lock);
1462
1463 __dmar_enable_qi(iommu);
1464
1465 return 0;
1466 }
1467
1468 /* iommu interrupt handling. Most stuff are MSI-like. */
1469
1470 enum faulttype {
1471 DMA_REMAP,
1472 INTR_REMAP,
1473 UNKNOWN,
1474 };
1475
1476 static const char *dma_remap_fault_reasons[] =
1477 {
1478 "Software",
1479 "Present bit in root entry is clear",
1480 "Present bit in context entry is clear",
1481 "Invalid context entry",
1482 "Access beyond MGAW",
1483 "PTE Write access is not set",
1484 "PTE Read access is not set",
1485 "Next page table ptr is invalid",
1486 "Root table address invalid",
1487 "Context table ptr is invalid",
1488 "non-zero reserved fields in RTP",
1489 "non-zero reserved fields in CTP",
1490 "non-zero reserved fields in PTE",
1491 "PCE for translation request specifies blocking",
1492 };
1493
1494 static const char *irq_remap_fault_reasons[] =
1495 {
1496 "Detected reserved fields in the decoded interrupt-remapped request",
1497 "Interrupt index exceeded the interrupt-remapping table size",
1498 "Present field in the IRTE entry is clear",
1499 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1500 "Detected reserved fields in the IRTE entry",
1501 "Blocked a compatibility format interrupt request",
1502 "Blocked an interrupt request due to source-id verification failure",
1503 };
1504
1505 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1506 {
1507 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1508 ARRAY_SIZE(irq_remap_fault_reasons))) {
1509 *fault_type = INTR_REMAP;
1510 return irq_remap_fault_reasons[fault_reason - 0x20];
1511 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1512 *fault_type = DMA_REMAP;
1513 return dma_remap_fault_reasons[fault_reason];
1514 } else {
1515 *fault_type = UNKNOWN;
1516 return "Unknown";
1517 }
1518 }
1519
1520
1521 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1522 {
1523 if (iommu->irq == irq)
1524 return DMAR_FECTL_REG;
1525 else if (iommu->pr_irq == irq)
1526 return DMAR_PECTL_REG;
1527 else
1528 BUG();
1529 }
1530
1531 void dmar_msi_unmask(struct irq_data *data)
1532 {
1533 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1534 int reg = dmar_msi_reg(iommu, data->irq);
1535 unsigned long flag;
1536
1537 /* unmask it */
1538 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1539 writel(0, iommu->reg + reg);
1540 /* Read a reg to force flush the post write */
1541 readl(iommu->reg + reg);
1542 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1543 }
1544
1545 void dmar_msi_mask(struct irq_data *data)
1546 {
1547 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1548 int reg = dmar_msi_reg(iommu, data->irq);
1549 unsigned long flag;
1550
1551 /* mask it */
1552 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1553 writel(DMA_FECTL_IM, iommu->reg + reg);
1554 /* Read a reg to force flush the post write */
1555 readl(iommu->reg + reg);
1556 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1557 }
1558
1559 void dmar_msi_write(int irq, struct msi_msg *msg)
1560 {
1561 struct intel_iommu *iommu = irq_get_handler_data(irq);
1562 int reg = dmar_msi_reg(iommu, irq);
1563 unsigned long flag;
1564
1565 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1566 writel(msg->data, iommu->reg + reg + 4);
1567 writel(msg->address_lo, iommu->reg + reg + 8);
1568 writel(msg->address_hi, iommu->reg + reg + 12);
1569 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1570 }
1571
1572 void dmar_msi_read(int irq, struct msi_msg *msg)
1573 {
1574 struct intel_iommu *iommu = irq_get_handler_data(irq);
1575 int reg = dmar_msi_reg(iommu, irq);
1576 unsigned long flag;
1577
1578 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1579 msg->data = readl(iommu->reg + reg + 4);
1580 msg->address_lo = readl(iommu->reg + reg + 8);
1581 msg->address_hi = readl(iommu->reg + reg + 12);
1582 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1583 }
1584
1585 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1586 u8 fault_reason, u16 source_id, unsigned long long addr)
1587 {
1588 const char *reason;
1589 int fault_type;
1590
1591 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1592
1593 if (fault_type == INTR_REMAP)
1594 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1595 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1596 PCI_FUNC(source_id & 0xFF), addr >> 48,
1597 fault_reason, reason);
1598 else
1599 pr_err("[%s] Request device [%02x:%02x.%d] fault addr %llx [fault reason %02d] %s\n",
1600 type ? "DMA Read" : "DMA Write",
1601 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1602 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1603 return 0;
1604 }
1605
1606 #define PRIMARY_FAULT_REG_LEN (16)
1607 irqreturn_t dmar_fault(int irq, void *dev_id)
1608 {
1609 struct intel_iommu *iommu = dev_id;
1610 int reg, fault_index;
1611 u32 fault_status;
1612 unsigned long flag;
1613 bool ratelimited;
1614 static DEFINE_RATELIMIT_STATE(rs,
1615 DEFAULT_RATELIMIT_INTERVAL,
1616 DEFAULT_RATELIMIT_BURST);
1617
1618 /* Disable printing, simply clear the fault when ratelimited */
1619 ratelimited = !__ratelimit(&rs);
1620
1621 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1622 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1623 if (fault_status && !ratelimited)
1624 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1625
1626 /* TBD: ignore advanced fault log currently */
1627 if (!(fault_status & DMA_FSTS_PPF))
1628 goto unlock_exit;
1629
1630 fault_index = dma_fsts_fault_record_index(fault_status);
1631 reg = cap_fault_reg_offset(iommu->cap);
1632 while (1) {
1633 u8 fault_reason;
1634 u16 source_id;
1635 u64 guest_addr;
1636 int type;
1637 u32 data;
1638
1639 /* highest 32 bits */
1640 data = readl(iommu->reg + reg +
1641 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1642 if (!(data & DMA_FRCD_F))
1643 break;
1644
1645 if (!ratelimited) {
1646 fault_reason = dma_frcd_fault_reason(data);
1647 type = dma_frcd_type(data);
1648
1649 data = readl(iommu->reg + reg +
1650 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1651 source_id = dma_frcd_source_id(data);
1652
1653 guest_addr = dmar_readq(iommu->reg + reg +
1654 fault_index * PRIMARY_FAULT_REG_LEN);
1655 guest_addr = dma_frcd_page_addr(guest_addr);
1656 }
1657
1658 /* clear the fault */
1659 writel(DMA_FRCD_F, iommu->reg + reg +
1660 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1661
1662 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1663
1664 if (!ratelimited)
1665 dmar_fault_do_one(iommu, type, fault_reason,
1666 source_id, guest_addr);
1667
1668 fault_index++;
1669 if (fault_index >= cap_num_fault_regs(iommu->cap))
1670 fault_index = 0;
1671 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1672 }
1673
1674 writel(DMA_FSTS_PFO | DMA_FSTS_PPF, iommu->reg + DMAR_FSTS_REG);
1675
1676 unlock_exit:
1677 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1678 return IRQ_HANDLED;
1679 }
1680
1681 int dmar_set_interrupt(struct intel_iommu *iommu)
1682 {
1683 int irq, ret;
1684
1685 /*
1686 * Check if the fault interrupt is already initialized.
1687 */
1688 if (iommu->irq)
1689 return 0;
1690
1691 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1692 if (irq > 0) {
1693 iommu->irq = irq;
1694 } else {
1695 pr_err("No free IRQ vectors\n");
1696 return -EINVAL;
1697 }
1698
1699 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1700 if (ret)
1701 pr_err("Can't request irq\n");
1702 return ret;
1703 }
1704
1705 int __init enable_drhd_fault_handling(void)
1706 {
1707 struct dmar_drhd_unit *drhd;
1708 struct intel_iommu *iommu;
1709
1710 /*
1711 * Enable fault control interrupt.
1712 */
1713 for_each_iommu(iommu, drhd) {
1714 u32 fault_status;
1715 int ret = dmar_set_interrupt(iommu);
1716
1717 if (ret) {
1718 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1719 (unsigned long long)drhd->reg_base_addr, ret);
1720 return -1;
1721 }
1722
1723 /*
1724 * Clear any previous faults.
1725 */
1726 dmar_fault(iommu->irq, iommu);
1727 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1728 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1729 }
1730
1731 return 0;
1732 }
1733
1734 /*
1735 * Re-enable Queued Invalidation interface.
1736 */
1737 int dmar_reenable_qi(struct intel_iommu *iommu)
1738 {
1739 if (!ecap_qis(iommu->ecap))
1740 return -ENOENT;
1741
1742 if (!iommu->qi)
1743 return -ENOENT;
1744
1745 /*
1746 * First disable queued invalidation.
1747 */
1748 dmar_disable_qi(iommu);
1749 /*
1750 * Then enable queued invalidation again. Since there is no pending
1751 * invalidation requests now, it's safe to re-enable queued
1752 * invalidation.
1753 */
1754 __dmar_enable_qi(iommu);
1755
1756 return 0;
1757 }
1758
1759 /*
1760 * Check interrupt remapping support in DMAR table description.
1761 */
1762 int __init dmar_ir_support(void)
1763 {
1764 struct acpi_table_dmar *dmar;
1765 dmar = (struct acpi_table_dmar *)dmar_tbl;
1766 if (!dmar)
1767 return 0;
1768 return dmar->flags & 0x1;
1769 }
1770
1771 /* Check whether DMAR units are in use */
1772 static inline bool dmar_in_use(void)
1773 {
1774 return irq_remapping_enabled || intel_iommu_enabled;
1775 }
1776
1777 static int __init dmar_free_unused_resources(void)
1778 {
1779 struct dmar_drhd_unit *dmaru, *dmaru_n;
1780
1781 if (dmar_in_use())
1782 return 0;
1783
1784 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
1785 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1786
1787 down_write(&dmar_global_lock);
1788 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
1789 list_del(&dmaru->list);
1790 dmar_free_drhd(dmaru);
1791 }
1792 up_write(&dmar_global_lock);
1793
1794 return 0;
1795 }
1796
1797 late_initcall(dmar_free_unused_resources);
1798 IOMMU_INIT_POST(detect_intel_iommu);
1799
1800 /*
1801 * DMAR Hotplug Support
1802 * For more details, please refer to Intel(R) Virtualization Technology
1803 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
1804 * "Remapping Hardware Unit Hot Plug".
1805 */
1806 static u8 dmar_hp_uuid[] = {
1807 /* 0000 */ 0xA6, 0xA3, 0xC1, 0xD8, 0x9B, 0xBE, 0x9B, 0x4C,
1808 /* 0008 */ 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF
1809 };
1810
1811 /*
1812 * Currently there's only one revision and BIOS will not check the revision id,
1813 * so use 0 for safety.
1814 */
1815 #define DMAR_DSM_REV_ID 0
1816 #define DMAR_DSM_FUNC_DRHD 1
1817 #define DMAR_DSM_FUNC_ATSR 2
1818 #define DMAR_DSM_FUNC_RHSA 3
1819
1820 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
1821 {
1822 return acpi_check_dsm(handle, dmar_hp_uuid, DMAR_DSM_REV_ID, 1 << func);
1823 }
1824
1825 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
1826 dmar_res_handler_t handler, void *arg)
1827 {
1828 int ret = -ENODEV;
1829 union acpi_object *obj;
1830 struct acpi_dmar_header *start;
1831 struct dmar_res_callback callback;
1832 static int res_type[] = {
1833 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
1834 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
1835 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
1836 };
1837
1838 if (!dmar_detect_dsm(handle, func))
1839 return 0;
1840
1841 obj = acpi_evaluate_dsm_typed(handle, dmar_hp_uuid, DMAR_DSM_REV_ID,
1842 func, NULL, ACPI_TYPE_BUFFER);
1843 if (!obj)
1844 return -ENODEV;
1845
1846 memset(&callback, 0, sizeof(callback));
1847 callback.cb[res_type[func]] = handler;
1848 callback.arg[res_type[func]] = arg;
1849 start = (struct acpi_dmar_header *)obj->buffer.pointer;
1850 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
1851
1852 ACPI_FREE(obj);
1853
1854 return ret;
1855 }
1856
1857 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
1858 {
1859 int ret;
1860 struct dmar_drhd_unit *dmaru;
1861
1862 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1863 if (!dmaru)
1864 return -ENODEV;
1865
1866 ret = dmar_ir_hotplug(dmaru, true);
1867 if (ret == 0)
1868 ret = dmar_iommu_hotplug(dmaru, true);
1869
1870 return ret;
1871 }
1872
1873 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
1874 {
1875 int i, ret;
1876 struct device *dev;
1877 struct dmar_drhd_unit *dmaru;
1878
1879 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1880 if (!dmaru)
1881 return 0;
1882
1883 /*
1884 * All PCI devices managed by this unit should have been destroyed.
1885 */
1886 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
1887 for_each_active_dev_scope(dmaru->devices,
1888 dmaru->devices_cnt, i, dev)
1889 return -EBUSY;
1890 }
1891
1892 ret = dmar_ir_hotplug(dmaru, false);
1893 if (ret == 0)
1894 ret = dmar_iommu_hotplug(dmaru, false);
1895
1896 return ret;
1897 }
1898
1899 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
1900 {
1901 struct dmar_drhd_unit *dmaru;
1902
1903 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1904 if (dmaru) {
1905 list_del_rcu(&dmaru->list);
1906 synchronize_rcu();
1907 dmar_free_drhd(dmaru);
1908 }
1909
1910 return 0;
1911 }
1912
1913 static int dmar_hotplug_insert(acpi_handle handle)
1914 {
1915 int ret;
1916 int drhd_count = 0;
1917
1918 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1919 &dmar_validate_one_drhd, (void *)1);
1920 if (ret)
1921 goto out;
1922
1923 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1924 &dmar_parse_one_drhd, (void *)&drhd_count);
1925 if (ret == 0 && drhd_count == 0) {
1926 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
1927 goto out;
1928 } else if (ret) {
1929 goto release_drhd;
1930 }
1931
1932 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
1933 &dmar_parse_one_rhsa, NULL);
1934 if (ret)
1935 goto release_drhd;
1936
1937 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1938 &dmar_parse_one_atsr, NULL);
1939 if (ret)
1940 goto release_atsr;
1941
1942 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1943 &dmar_hp_add_drhd, NULL);
1944 if (!ret)
1945 return 0;
1946
1947 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1948 &dmar_hp_remove_drhd, NULL);
1949 release_atsr:
1950 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1951 &dmar_release_one_atsr, NULL);
1952 release_drhd:
1953 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1954 &dmar_hp_release_drhd, NULL);
1955 out:
1956 return ret;
1957 }
1958
1959 static int dmar_hotplug_remove(acpi_handle handle)
1960 {
1961 int ret;
1962
1963 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1964 &dmar_check_one_atsr, NULL);
1965 if (ret)
1966 return ret;
1967
1968 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1969 &dmar_hp_remove_drhd, NULL);
1970 if (ret == 0) {
1971 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1972 &dmar_release_one_atsr, NULL));
1973 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1974 &dmar_hp_release_drhd, NULL));
1975 } else {
1976 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1977 &dmar_hp_add_drhd, NULL);
1978 }
1979
1980 return ret;
1981 }
1982
1983 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
1984 void *context, void **retval)
1985 {
1986 acpi_handle *phdl = retval;
1987
1988 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
1989 *phdl = handle;
1990 return AE_CTRL_TERMINATE;
1991 }
1992
1993 return AE_OK;
1994 }
1995
1996 static int dmar_device_hotplug(acpi_handle handle, bool insert)
1997 {
1998 int ret;
1999 acpi_handle tmp = NULL;
2000 acpi_status status;
2001
2002 if (!dmar_in_use())
2003 return 0;
2004
2005 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2006 tmp = handle;
2007 } else {
2008 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2009 ACPI_UINT32_MAX,
2010 dmar_get_dsm_handle,
2011 NULL, NULL, &tmp);
2012 if (ACPI_FAILURE(status)) {
2013 pr_warn("Failed to locate _DSM method.\n");
2014 return -ENXIO;
2015 }
2016 }
2017 if (tmp == NULL)
2018 return 0;
2019
2020 down_write(&dmar_global_lock);
2021 if (insert)
2022 ret = dmar_hotplug_insert(tmp);
2023 else
2024 ret = dmar_hotplug_remove(tmp);
2025 up_write(&dmar_global_lock);
2026
2027 return ret;
2028 }
2029
2030 int dmar_device_add(acpi_handle handle)
2031 {
2032 return dmar_device_hotplug(handle, true);
2033 }
2034
2035 int dmar_device_remove(acpi_handle handle)
2036 {
2037 return dmar_device_hotplug(handle, false);
2038 }