]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/iommu/exynos-iommu.c
iommu/amd: Fix error code path in early_amd_iommu_init()
[mirror_ubuntu-bionic-kernel.git] / drivers / iommu / exynos-iommu.c
1 /*
2 * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9
10 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
11 #define DEBUG
12 #endif
13
14 #include <linux/clk.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/io.h>
18 #include <linux/iommu.h>
19 #include <linux/interrupt.h>
20 #include <linux/list.h>
21 #include <linux/of.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/slab.h>
27 #include <linux/dma-iommu.h>
28
29 typedef u32 sysmmu_iova_t;
30 typedef u32 sysmmu_pte_t;
31
32 /* We do not consider super section mapping (16MB) */
33 #define SECT_ORDER 20
34 #define LPAGE_ORDER 16
35 #define SPAGE_ORDER 12
36
37 #define SECT_SIZE (1 << SECT_ORDER)
38 #define LPAGE_SIZE (1 << LPAGE_ORDER)
39 #define SPAGE_SIZE (1 << SPAGE_ORDER)
40
41 #define SECT_MASK (~(SECT_SIZE - 1))
42 #define LPAGE_MASK (~(LPAGE_SIZE - 1))
43 #define SPAGE_MASK (~(SPAGE_SIZE - 1))
44
45 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
46 ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
47 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
48 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
49 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
50 ((*(sent) & 3) == 1))
51 #define lv1ent_section(sent) ((*(sent) & 3) == 2)
52
53 #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
54 #define lv2ent_small(pent) ((*(pent) & 2) == 2)
55 #define lv2ent_large(pent) ((*(pent) & 3) == 1)
56
57 #ifdef CONFIG_BIG_ENDIAN
58 #warning "revisit driver if we can enable big-endian ptes"
59 #endif
60
61 /*
62 * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
63 * v5.0 introduced support for 36bit physical address space by shifting
64 * all page entry values by 4 bits.
65 * All SYSMMU controllers in the system support the address spaces of the same
66 * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
67 * value (0 or 4).
68 */
69 static short PG_ENT_SHIFT = -1;
70 #define SYSMMU_PG_ENT_SHIFT 0
71 #define SYSMMU_V5_PG_ENT_SHIFT 4
72
73 static const sysmmu_pte_t *LV1_PROT;
74 static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
75 ((0 << 15) | (0 << 10)), /* no access */
76 ((1 << 15) | (1 << 10)), /* IOMMU_READ only */
77 ((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
78 ((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
79 };
80 static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
81 (0 << 4), /* no access */
82 (1 << 4), /* IOMMU_READ only */
83 (2 << 4), /* IOMMU_WRITE only */
84 (3 << 4), /* IOMMU_READ | IOMMU_WRITE */
85 };
86
87 static const sysmmu_pte_t *LV2_PROT;
88 static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
89 ((0 << 9) | (0 << 4)), /* no access */
90 ((1 << 9) | (1 << 4)), /* IOMMU_READ only */
91 ((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
92 ((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
93 };
94 static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
95 (0 << 2), /* no access */
96 (1 << 2), /* IOMMU_READ only */
97 (2 << 2), /* IOMMU_WRITE only */
98 (3 << 2), /* IOMMU_READ | IOMMU_WRITE */
99 };
100
101 #define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
102
103 #define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
104 #define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
105 #define section_offs(iova) (iova & (SECT_SIZE - 1))
106 #define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
107 #define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
108 #define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
109 #define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
110
111 #define NUM_LV1ENTRIES 4096
112 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
113
114 static u32 lv1ent_offset(sysmmu_iova_t iova)
115 {
116 return iova >> SECT_ORDER;
117 }
118
119 static u32 lv2ent_offset(sysmmu_iova_t iova)
120 {
121 return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
122 }
123
124 #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
125 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
126
127 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
128 #define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
129
130 #define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
131 #define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
132 #define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
133 #define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
134
135 #define CTRL_ENABLE 0x5
136 #define CTRL_BLOCK 0x7
137 #define CTRL_DISABLE 0x0
138
139 #define CFG_LRU 0x1
140 #define CFG_EAP (1 << 2)
141 #define CFG_QOS(n) ((n & 0xF) << 7)
142 #define CFG_ACGEN (1 << 24) /* System MMU 3.3 only */
143 #define CFG_SYSSEL (1 << 22) /* System MMU 3.2 only */
144 #define CFG_FLPDCACHE (1 << 20) /* System MMU 3.2+ only */
145
146 /* common registers */
147 #define REG_MMU_CTRL 0x000
148 #define REG_MMU_CFG 0x004
149 #define REG_MMU_STATUS 0x008
150 #define REG_MMU_VERSION 0x034
151
152 #define MMU_MAJ_VER(val) ((val) >> 7)
153 #define MMU_MIN_VER(val) ((val) & 0x7F)
154 #define MMU_RAW_VER(reg) (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
155
156 #define MAKE_MMU_VER(maj, min) ((((maj) & 0xF) << 7) | ((min) & 0x7F))
157
158 /* v1.x - v3.x registers */
159 #define REG_MMU_FLUSH 0x00C
160 #define REG_MMU_FLUSH_ENTRY 0x010
161 #define REG_PT_BASE_ADDR 0x014
162 #define REG_INT_STATUS 0x018
163 #define REG_INT_CLEAR 0x01C
164
165 #define REG_PAGE_FAULT_ADDR 0x024
166 #define REG_AW_FAULT_ADDR 0x028
167 #define REG_AR_FAULT_ADDR 0x02C
168 #define REG_DEFAULT_SLAVE_ADDR 0x030
169
170 /* v5.x registers */
171 #define REG_V5_PT_BASE_PFN 0x00C
172 #define REG_V5_MMU_FLUSH_ALL 0x010
173 #define REG_V5_MMU_FLUSH_ENTRY 0x014
174 #define REG_V5_INT_STATUS 0x060
175 #define REG_V5_INT_CLEAR 0x064
176 #define REG_V5_FAULT_AR_VA 0x070
177 #define REG_V5_FAULT_AW_VA 0x080
178
179 #define has_sysmmu(dev) (dev->archdata.iommu != NULL)
180
181 static struct device *dma_dev;
182 static struct kmem_cache *lv2table_kmem_cache;
183 static sysmmu_pte_t *zero_lv2_table;
184 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
185
186 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
187 {
188 return pgtable + lv1ent_offset(iova);
189 }
190
191 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
192 {
193 return (sysmmu_pte_t *)phys_to_virt(
194 lv2table_base(sent)) + lv2ent_offset(iova);
195 }
196
197 /*
198 * IOMMU fault information register
199 */
200 struct sysmmu_fault_info {
201 unsigned int bit; /* bit number in STATUS register */
202 unsigned short addr_reg; /* register to read VA fault address */
203 const char *name; /* human readable fault name */
204 unsigned int type; /* fault type for report_iommu_fault */
205 };
206
207 static const struct sysmmu_fault_info sysmmu_faults[] = {
208 { 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
209 { 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
210 { 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
211 { 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
212 { 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
213 { 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
214 { 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
215 { 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
216 };
217
218 static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
219 { 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
220 { 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
221 { 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
222 { 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
223 { 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
224 { 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
225 { 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
226 { 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
227 { 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
228 { 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
229 };
230
231 /*
232 * This structure is attached to dev.archdata.iommu of the master device
233 * on device add, contains a list of SYSMMU controllers defined by device tree,
234 * which are bound to given master device. It is usually referenced by 'owner'
235 * pointer.
236 */
237 struct exynos_iommu_owner {
238 struct list_head controllers; /* list of sysmmu_drvdata.owner_node */
239 struct iommu_domain *domain; /* domain this device is attached */
240 struct mutex rpm_lock; /* for runtime pm of all sysmmus */
241 };
242
243 /*
244 * This structure exynos specific generalization of struct iommu_domain.
245 * It contains list of SYSMMU controllers from all master devices, which has
246 * been attached to this domain and page tables of IO address space defined by
247 * it. It is usually referenced by 'domain' pointer.
248 */
249 struct exynos_iommu_domain {
250 struct list_head clients; /* list of sysmmu_drvdata.domain_node */
251 sysmmu_pte_t *pgtable; /* lv1 page table, 16KB */
252 short *lv2entcnt; /* free lv2 entry counter for each section */
253 spinlock_t lock; /* lock for modyfying list of clients */
254 spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
255 struct iommu_domain domain; /* generic domain data structure */
256 };
257
258 /*
259 * This structure hold all data of a single SYSMMU controller, this includes
260 * hw resources like registers and clocks, pointers and list nodes to connect
261 * it to all other structures, internal state and parameters read from device
262 * tree. It is usually referenced by 'data' pointer.
263 */
264 struct sysmmu_drvdata {
265 struct device *sysmmu; /* SYSMMU controller device */
266 struct device *master; /* master device (owner) */
267 void __iomem *sfrbase; /* our registers */
268 struct clk *clk; /* SYSMMU's clock */
269 struct clk *aclk; /* SYSMMU's aclk clock */
270 struct clk *pclk; /* SYSMMU's pclk clock */
271 struct clk *clk_master; /* master's device clock */
272 spinlock_t lock; /* lock for modyfying state */
273 bool active; /* current status */
274 struct exynos_iommu_domain *domain; /* domain we belong to */
275 struct list_head domain_node; /* node for domain clients list */
276 struct list_head owner_node; /* node for owner controllers list */
277 phys_addr_t pgtable; /* assigned page table structure */
278 unsigned int version; /* our version */
279 };
280
281 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
282 {
283 return container_of(dom, struct exynos_iommu_domain, domain);
284 }
285
286 static void sysmmu_unblock(struct sysmmu_drvdata *data)
287 {
288 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
289 }
290
291 static bool sysmmu_block(struct sysmmu_drvdata *data)
292 {
293 int i = 120;
294
295 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
296 while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
297 --i;
298
299 if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
300 sysmmu_unblock(data);
301 return false;
302 }
303
304 return true;
305 }
306
307 static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
308 {
309 if (MMU_MAJ_VER(data->version) < 5)
310 writel(0x1, data->sfrbase + REG_MMU_FLUSH);
311 else
312 writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL);
313 }
314
315 static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
316 sysmmu_iova_t iova, unsigned int num_inv)
317 {
318 unsigned int i;
319
320 for (i = 0; i < num_inv; i++) {
321 if (MMU_MAJ_VER(data->version) < 5)
322 writel((iova & SPAGE_MASK) | 1,
323 data->sfrbase + REG_MMU_FLUSH_ENTRY);
324 else
325 writel((iova & SPAGE_MASK) | 1,
326 data->sfrbase + REG_V5_MMU_FLUSH_ENTRY);
327 iova += SPAGE_SIZE;
328 }
329 }
330
331 static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
332 {
333 if (MMU_MAJ_VER(data->version) < 5)
334 writel(pgd, data->sfrbase + REG_PT_BASE_ADDR);
335 else
336 writel(pgd >> PAGE_SHIFT,
337 data->sfrbase + REG_V5_PT_BASE_PFN);
338
339 __sysmmu_tlb_invalidate(data);
340 }
341
342 static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
343 {
344 BUG_ON(clk_prepare_enable(data->clk_master));
345 BUG_ON(clk_prepare_enable(data->clk));
346 BUG_ON(clk_prepare_enable(data->pclk));
347 BUG_ON(clk_prepare_enable(data->aclk));
348 }
349
350 static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
351 {
352 clk_disable_unprepare(data->aclk);
353 clk_disable_unprepare(data->pclk);
354 clk_disable_unprepare(data->clk);
355 clk_disable_unprepare(data->clk_master);
356 }
357
358 static void __sysmmu_get_version(struct sysmmu_drvdata *data)
359 {
360 u32 ver;
361
362 __sysmmu_enable_clocks(data);
363
364 ver = readl(data->sfrbase + REG_MMU_VERSION);
365
366 /* controllers on some SoCs don't report proper version */
367 if (ver == 0x80000001u)
368 data->version = MAKE_MMU_VER(1, 0);
369 else
370 data->version = MMU_RAW_VER(ver);
371
372 dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
373 MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
374
375 __sysmmu_disable_clocks(data);
376 }
377
378 static void show_fault_information(struct sysmmu_drvdata *data,
379 const struct sysmmu_fault_info *finfo,
380 sysmmu_iova_t fault_addr)
381 {
382 sysmmu_pte_t *ent;
383
384 dev_err(data->sysmmu, "%s FAULT occurred at %#x (page table base: %pa)\n",
385 finfo->name, fault_addr, &data->pgtable);
386 ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
387 dev_err(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
388 if (lv1ent_page(ent)) {
389 ent = page_entry(ent, fault_addr);
390 dev_err(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
391 }
392 }
393
394 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
395 {
396 /* SYSMMU is in blocked state when interrupt occurred. */
397 struct sysmmu_drvdata *data = dev_id;
398 const struct sysmmu_fault_info *finfo;
399 unsigned int i, n, itype;
400 sysmmu_iova_t fault_addr = -1;
401 unsigned short reg_status, reg_clear;
402 int ret = -ENOSYS;
403
404 WARN_ON(!data->active);
405
406 if (MMU_MAJ_VER(data->version) < 5) {
407 reg_status = REG_INT_STATUS;
408 reg_clear = REG_INT_CLEAR;
409 finfo = sysmmu_faults;
410 n = ARRAY_SIZE(sysmmu_faults);
411 } else {
412 reg_status = REG_V5_INT_STATUS;
413 reg_clear = REG_V5_INT_CLEAR;
414 finfo = sysmmu_v5_faults;
415 n = ARRAY_SIZE(sysmmu_v5_faults);
416 }
417
418 spin_lock(&data->lock);
419
420 clk_enable(data->clk_master);
421
422 itype = __ffs(readl(data->sfrbase + reg_status));
423 for (i = 0; i < n; i++, finfo++)
424 if (finfo->bit == itype)
425 break;
426 /* unknown/unsupported fault */
427 BUG_ON(i == n);
428
429 /* print debug message */
430 fault_addr = readl(data->sfrbase + finfo->addr_reg);
431 show_fault_information(data, finfo, fault_addr);
432
433 if (data->domain)
434 ret = report_iommu_fault(&data->domain->domain,
435 data->master, fault_addr, finfo->type);
436 /* fault is not recovered by fault handler */
437 BUG_ON(ret != 0);
438
439 writel(1 << itype, data->sfrbase + reg_clear);
440
441 sysmmu_unblock(data);
442
443 clk_disable(data->clk_master);
444
445 spin_unlock(&data->lock);
446
447 return IRQ_HANDLED;
448 }
449
450 static void __sysmmu_disable(struct sysmmu_drvdata *data)
451 {
452 unsigned long flags;
453
454 clk_enable(data->clk_master);
455
456 spin_lock_irqsave(&data->lock, flags);
457 writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
458 writel(0, data->sfrbase + REG_MMU_CFG);
459 data->active = false;
460 spin_unlock_irqrestore(&data->lock, flags);
461
462 __sysmmu_disable_clocks(data);
463 }
464
465 static void __sysmmu_init_config(struct sysmmu_drvdata *data)
466 {
467 unsigned int cfg;
468
469 if (data->version <= MAKE_MMU_VER(3, 1))
470 cfg = CFG_LRU | CFG_QOS(15);
471 else if (data->version <= MAKE_MMU_VER(3, 2))
472 cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
473 else
474 cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
475
476 cfg |= CFG_EAP; /* enable access protection bits check */
477
478 writel(cfg, data->sfrbase + REG_MMU_CFG);
479 }
480
481 static void __sysmmu_enable(struct sysmmu_drvdata *data)
482 {
483 unsigned long flags;
484
485 __sysmmu_enable_clocks(data);
486
487 spin_lock_irqsave(&data->lock, flags);
488 writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
489 __sysmmu_init_config(data);
490 __sysmmu_set_ptbase(data, data->pgtable);
491 writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
492 data->active = true;
493 spin_unlock_irqrestore(&data->lock, flags);
494
495 /*
496 * SYSMMU driver keeps master's clock enabled only for the short
497 * time, while accessing the registers. For performing address
498 * translation during DMA transaction it relies on the client
499 * driver to enable it.
500 */
501 clk_disable(data->clk_master);
502 }
503
504 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
505 sysmmu_iova_t iova)
506 {
507 unsigned long flags;
508
509 spin_lock_irqsave(&data->lock, flags);
510 if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
511 clk_enable(data->clk_master);
512 __sysmmu_tlb_invalidate_entry(data, iova, 1);
513 clk_disable(data->clk_master);
514 }
515 spin_unlock_irqrestore(&data->lock, flags);
516 }
517
518 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
519 sysmmu_iova_t iova, size_t size)
520 {
521 unsigned long flags;
522
523 spin_lock_irqsave(&data->lock, flags);
524 if (data->active) {
525 unsigned int num_inv = 1;
526
527 clk_enable(data->clk_master);
528
529 /*
530 * L2TLB invalidation required
531 * 4KB page: 1 invalidation
532 * 64KB page: 16 invalidations
533 * 1MB page: 64 invalidations
534 * because it is set-associative TLB
535 * with 8-way and 64 sets.
536 * 1MB page can be cached in one of all sets.
537 * 64KB page can be one of 16 consecutive sets.
538 */
539 if (MMU_MAJ_VER(data->version) == 2)
540 num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
541
542 if (sysmmu_block(data)) {
543 __sysmmu_tlb_invalidate_entry(data, iova, num_inv);
544 sysmmu_unblock(data);
545 }
546 clk_disable(data->clk_master);
547 }
548 spin_unlock_irqrestore(&data->lock, flags);
549 }
550
551 static struct iommu_ops exynos_iommu_ops;
552
553 static int __init exynos_sysmmu_probe(struct platform_device *pdev)
554 {
555 int irq, ret;
556 struct device *dev = &pdev->dev;
557 struct sysmmu_drvdata *data;
558 struct resource *res;
559
560 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
561 if (!data)
562 return -ENOMEM;
563
564 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
565 data->sfrbase = devm_ioremap_resource(dev, res);
566 if (IS_ERR(data->sfrbase))
567 return PTR_ERR(data->sfrbase);
568
569 irq = platform_get_irq(pdev, 0);
570 if (irq <= 0) {
571 dev_err(dev, "Unable to find IRQ resource\n");
572 return irq;
573 }
574
575 ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
576 dev_name(dev), data);
577 if (ret) {
578 dev_err(dev, "Unabled to register handler of irq %d\n", irq);
579 return ret;
580 }
581
582 data->clk = devm_clk_get(dev, "sysmmu");
583 if (PTR_ERR(data->clk) == -ENOENT)
584 data->clk = NULL;
585 else if (IS_ERR(data->clk))
586 return PTR_ERR(data->clk);
587
588 data->aclk = devm_clk_get(dev, "aclk");
589 if (PTR_ERR(data->aclk) == -ENOENT)
590 data->aclk = NULL;
591 else if (IS_ERR(data->aclk))
592 return PTR_ERR(data->aclk);
593
594 data->pclk = devm_clk_get(dev, "pclk");
595 if (PTR_ERR(data->pclk) == -ENOENT)
596 data->pclk = NULL;
597 else if (IS_ERR(data->pclk))
598 return PTR_ERR(data->pclk);
599
600 if (!data->clk && (!data->aclk || !data->pclk)) {
601 dev_err(dev, "Failed to get device clock(s)!\n");
602 return -ENOSYS;
603 }
604
605 data->clk_master = devm_clk_get(dev, "master");
606 if (PTR_ERR(data->clk_master) == -ENOENT)
607 data->clk_master = NULL;
608 else if (IS_ERR(data->clk_master))
609 return PTR_ERR(data->clk_master);
610
611 data->sysmmu = dev;
612 spin_lock_init(&data->lock);
613
614 platform_set_drvdata(pdev, data);
615
616 __sysmmu_get_version(data);
617 if (PG_ENT_SHIFT < 0) {
618 if (MMU_MAJ_VER(data->version) < 5) {
619 PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
620 LV1_PROT = SYSMMU_LV1_PROT;
621 LV2_PROT = SYSMMU_LV2_PROT;
622 } else {
623 PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
624 LV1_PROT = SYSMMU_V5_LV1_PROT;
625 LV2_PROT = SYSMMU_V5_LV2_PROT;
626 }
627 }
628
629 pm_runtime_enable(dev);
630
631 of_iommu_set_ops(dev->of_node, &exynos_iommu_ops);
632
633 return 0;
634 }
635
636 static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
637 {
638 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
639 struct device *master = data->master;
640
641 if (master) {
642 struct exynos_iommu_owner *owner = master->archdata.iommu;
643
644 mutex_lock(&owner->rpm_lock);
645 if (data->domain) {
646 dev_dbg(data->sysmmu, "saving state\n");
647 __sysmmu_disable(data);
648 }
649 mutex_unlock(&owner->rpm_lock);
650 }
651 return 0;
652 }
653
654 static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
655 {
656 struct sysmmu_drvdata *data = dev_get_drvdata(dev);
657 struct device *master = data->master;
658
659 if (master) {
660 struct exynos_iommu_owner *owner = master->archdata.iommu;
661
662 mutex_lock(&owner->rpm_lock);
663 if (data->domain) {
664 dev_dbg(data->sysmmu, "restoring state\n");
665 __sysmmu_enable(data);
666 }
667 mutex_unlock(&owner->rpm_lock);
668 }
669 return 0;
670 }
671
672 static const struct dev_pm_ops sysmmu_pm_ops = {
673 SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
674 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
675 pm_runtime_force_resume)
676 };
677
678 static const struct of_device_id sysmmu_of_match[] __initconst = {
679 { .compatible = "samsung,exynos-sysmmu", },
680 { },
681 };
682
683 static struct platform_driver exynos_sysmmu_driver __refdata = {
684 .probe = exynos_sysmmu_probe,
685 .driver = {
686 .name = "exynos-sysmmu",
687 .of_match_table = sysmmu_of_match,
688 .pm = &sysmmu_pm_ops,
689 .suppress_bind_attrs = true,
690 }
691 };
692
693 static inline void update_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
694 {
695 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
696 DMA_TO_DEVICE);
697 *ent = cpu_to_le32(val);
698 dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
699 DMA_TO_DEVICE);
700 }
701
702 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
703 {
704 struct exynos_iommu_domain *domain;
705 dma_addr_t handle;
706 int i;
707
708 /* Check if correct PTE offsets are initialized */
709 BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
710
711 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
712 if (!domain)
713 return NULL;
714
715 if (type == IOMMU_DOMAIN_DMA) {
716 if (iommu_get_dma_cookie(&domain->domain) != 0)
717 goto err_pgtable;
718 } else if (type != IOMMU_DOMAIN_UNMANAGED) {
719 goto err_pgtable;
720 }
721
722 domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
723 if (!domain->pgtable)
724 goto err_dma_cookie;
725
726 domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
727 if (!domain->lv2entcnt)
728 goto err_counter;
729
730 /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
731 for (i = 0; i < NUM_LV1ENTRIES; i += 8) {
732 domain->pgtable[i + 0] = ZERO_LV2LINK;
733 domain->pgtable[i + 1] = ZERO_LV2LINK;
734 domain->pgtable[i + 2] = ZERO_LV2LINK;
735 domain->pgtable[i + 3] = ZERO_LV2LINK;
736 domain->pgtable[i + 4] = ZERO_LV2LINK;
737 domain->pgtable[i + 5] = ZERO_LV2LINK;
738 domain->pgtable[i + 6] = ZERO_LV2LINK;
739 domain->pgtable[i + 7] = ZERO_LV2LINK;
740 }
741
742 handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
743 DMA_TO_DEVICE);
744 /* For mapping page table entries we rely on dma == phys */
745 BUG_ON(handle != virt_to_phys(domain->pgtable));
746
747 spin_lock_init(&domain->lock);
748 spin_lock_init(&domain->pgtablelock);
749 INIT_LIST_HEAD(&domain->clients);
750
751 domain->domain.geometry.aperture_start = 0;
752 domain->domain.geometry.aperture_end = ~0UL;
753 domain->domain.geometry.force_aperture = true;
754
755 return &domain->domain;
756
757 err_counter:
758 free_pages((unsigned long)domain->pgtable, 2);
759 err_dma_cookie:
760 if (type == IOMMU_DOMAIN_DMA)
761 iommu_put_dma_cookie(&domain->domain);
762 err_pgtable:
763 kfree(domain);
764 return NULL;
765 }
766
767 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
768 {
769 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
770 struct sysmmu_drvdata *data, *next;
771 unsigned long flags;
772 int i;
773
774 WARN_ON(!list_empty(&domain->clients));
775
776 spin_lock_irqsave(&domain->lock, flags);
777
778 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
779 spin_lock(&data->lock);
780 __sysmmu_disable(data);
781 data->pgtable = 0;
782 data->domain = NULL;
783 list_del_init(&data->domain_node);
784 spin_unlock(&data->lock);
785 }
786
787 spin_unlock_irqrestore(&domain->lock, flags);
788
789 if (iommu_domain->type == IOMMU_DOMAIN_DMA)
790 iommu_put_dma_cookie(iommu_domain);
791
792 dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
793 DMA_TO_DEVICE);
794
795 for (i = 0; i < NUM_LV1ENTRIES; i++)
796 if (lv1ent_page(domain->pgtable + i)) {
797 phys_addr_t base = lv2table_base(domain->pgtable + i);
798
799 dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
800 DMA_TO_DEVICE);
801 kmem_cache_free(lv2table_kmem_cache,
802 phys_to_virt(base));
803 }
804
805 free_pages((unsigned long)domain->pgtable, 2);
806 free_pages((unsigned long)domain->lv2entcnt, 1);
807 kfree(domain);
808 }
809
810 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
811 struct device *dev)
812 {
813 struct exynos_iommu_owner *owner = dev->archdata.iommu;
814 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
815 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
816 struct sysmmu_drvdata *data, *next;
817 unsigned long flags;
818
819 if (!has_sysmmu(dev) || owner->domain != iommu_domain)
820 return;
821
822 mutex_lock(&owner->rpm_lock);
823
824 list_for_each_entry(data, &owner->controllers, owner_node) {
825 pm_runtime_get_noresume(data->sysmmu);
826 if (pm_runtime_active(data->sysmmu))
827 __sysmmu_disable(data);
828 pm_runtime_put(data->sysmmu);
829 }
830
831 spin_lock_irqsave(&domain->lock, flags);
832 list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
833 spin_lock(&data->lock);
834 data->pgtable = 0;
835 data->domain = NULL;
836 list_del_init(&data->domain_node);
837 spin_unlock(&data->lock);
838 }
839 owner->domain = NULL;
840 spin_unlock_irqrestore(&domain->lock, flags);
841
842 mutex_unlock(&owner->rpm_lock);
843
844 dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
845 &pagetable);
846 }
847
848 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
849 struct device *dev)
850 {
851 struct exynos_iommu_owner *owner = dev->archdata.iommu;
852 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
853 struct sysmmu_drvdata *data;
854 phys_addr_t pagetable = virt_to_phys(domain->pgtable);
855 unsigned long flags;
856
857 if (!has_sysmmu(dev))
858 return -ENODEV;
859
860 if (owner->domain)
861 exynos_iommu_detach_device(owner->domain, dev);
862
863 mutex_lock(&owner->rpm_lock);
864
865 spin_lock_irqsave(&domain->lock, flags);
866 list_for_each_entry(data, &owner->controllers, owner_node) {
867 spin_lock(&data->lock);
868 data->pgtable = pagetable;
869 data->domain = domain;
870 list_add_tail(&data->domain_node, &domain->clients);
871 spin_unlock(&data->lock);
872 }
873 owner->domain = iommu_domain;
874 spin_unlock_irqrestore(&domain->lock, flags);
875
876 list_for_each_entry(data, &owner->controllers, owner_node) {
877 pm_runtime_get_noresume(data->sysmmu);
878 if (pm_runtime_active(data->sysmmu))
879 __sysmmu_enable(data);
880 pm_runtime_put(data->sysmmu);
881 }
882
883 mutex_unlock(&owner->rpm_lock);
884
885 dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
886 &pagetable);
887
888 return 0;
889 }
890
891 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
892 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
893 {
894 if (lv1ent_section(sent)) {
895 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
896 return ERR_PTR(-EADDRINUSE);
897 }
898
899 if (lv1ent_fault(sent)) {
900 sysmmu_pte_t *pent;
901 bool need_flush_flpd_cache = lv1ent_zero(sent);
902
903 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
904 BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
905 if (!pent)
906 return ERR_PTR(-ENOMEM);
907
908 update_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
909 kmemleak_ignore(pent);
910 *pgcounter = NUM_LV2ENTRIES;
911 dma_map_single(dma_dev, pent, LV2TABLE_SIZE, DMA_TO_DEVICE);
912
913 /*
914 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
915 * FLPD cache may cache the address of zero_l2_table. This
916 * function replaces the zero_l2_table with new L2 page table
917 * to write valid mappings.
918 * Accessing the valid area may cause page fault since FLPD
919 * cache may still cache zero_l2_table for the valid area
920 * instead of new L2 page table that has the mapping
921 * information of the valid area.
922 * Thus any replacement of zero_l2_table with other valid L2
923 * page table must involve FLPD cache invalidation for System
924 * MMU v3.3.
925 * FLPD cache invalidation is performed with TLB invalidation
926 * by VPN without blocking. It is safe to invalidate TLB without
927 * blocking because the target address of TLB invalidation is
928 * not currently mapped.
929 */
930 if (need_flush_flpd_cache) {
931 struct sysmmu_drvdata *data;
932
933 spin_lock(&domain->lock);
934 list_for_each_entry(data, &domain->clients, domain_node)
935 sysmmu_tlb_invalidate_flpdcache(data, iova);
936 spin_unlock(&domain->lock);
937 }
938 }
939
940 return page_entry(sent, iova);
941 }
942
943 static int lv1set_section(struct exynos_iommu_domain *domain,
944 sysmmu_pte_t *sent, sysmmu_iova_t iova,
945 phys_addr_t paddr, int prot, short *pgcnt)
946 {
947 if (lv1ent_section(sent)) {
948 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
949 iova);
950 return -EADDRINUSE;
951 }
952
953 if (lv1ent_page(sent)) {
954 if (*pgcnt != NUM_LV2ENTRIES) {
955 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
956 iova);
957 return -EADDRINUSE;
958 }
959
960 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
961 *pgcnt = 0;
962 }
963
964 update_pte(sent, mk_lv1ent_sect(paddr, prot));
965
966 spin_lock(&domain->lock);
967 if (lv1ent_page_zero(sent)) {
968 struct sysmmu_drvdata *data;
969 /*
970 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
971 * entry by speculative prefetch of SLPD which has no mapping.
972 */
973 list_for_each_entry(data, &domain->clients, domain_node)
974 sysmmu_tlb_invalidate_flpdcache(data, iova);
975 }
976 spin_unlock(&domain->lock);
977
978 return 0;
979 }
980
981 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
982 int prot, short *pgcnt)
983 {
984 if (size == SPAGE_SIZE) {
985 if (WARN_ON(!lv2ent_fault(pent)))
986 return -EADDRINUSE;
987
988 update_pte(pent, mk_lv2ent_spage(paddr, prot));
989 *pgcnt -= 1;
990 } else { /* size == LPAGE_SIZE */
991 int i;
992 dma_addr_t pent_base = virt_to_phys(pent);
993
994 dma_sync_single_for_cpu(dma_dev, pent_base,
995 sizeof(*pent) * SPAGES_PER_LPAGE,
996 DMA_TO_DEVICE);
997 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
998 if (WARN_ON(!lv2ent_fault(pent))) {
999 if (i > 0)
1000 memset(pent - i, 0, sizeof(*pent) * i);
1001 return -EADDRINUSE;
1002 }
1003
1004 *pent = mk_lv2ent_lpage(paddr, prot);
1005 }
1006 dma_sync_single_for_device(dma_dev, pent_base,
1007 sizeof(*pent) * SPAGES_PER_LPAGE,
1008 DMA_TO_DEVICE);
1009 *pgcnt -= SPAGES_PER_LPAGE;
1010 }
1011
1012 return 0;
1013 }
1014
1015 /*
1016 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1017 *
1018 * System MMU v3.x has advanced logic to improve address translation
1019 * performance with caching more page table entries by a page table walk.
1020 * However, the logic has a bug that while caching faulty page table entries,
1021 * System MMU reports page fault if the cached fault entry is hit even though
1022 * the fault entry is updated to a valid entry after the entry is cached.
1023 * To prevent caching faulty page table entries which may be updated to valid
1024 * entries later, the virtual memory manager should care about the workaround
1025 * for the problem. The following describes the workaround.
1026 *
1027 * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1028 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1029 *
1030 * Precisely, any start address of I/O virtual region must be aligned with
1031 * the following sizes for System MMU v3.1 and v3.2.
1032 * System MMU v3.1: 128KiB
1033 * System MMU v3.2: 256KiB
1034 *
1035 * Because System MMU v3.3 caches page table entries more aggressively, it needs
1036 * more workarounds.
1037 * - Any two consecutive I/O virtual regions must have a hole of size larger
1038 * than or equal to 128KiB.
1039 * - Start address of an I/O virtual region must be aligned by 128KiB.
1040 */
1041 static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1042 unsigned long l_iova, phys_addr_t paddr, size_t size,
1043 int prot)
1044 {
1045 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1046 sysmmu_pte_t *entry;
1047 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1048 unsigned long flags;
1049 int ret = -ENOMEM;
1050
1051 BUG_ON(domain->pgtable == NULL);
1052 prot &= SYSMMU_SUPPORTED_PROT_BITS;
1053
1054 spin_lock_irqsave(&domain->pgtablelock, flags);
1055
1056 entry = section_entry(domain->pgtable, iova);
1057
1058 if (size == SECT_SIZE) {
1059 ret = lv1set_section(domain, entry, iova, paddr, prot,
1060 &domain->lv2entcnt[lv1ent_offset(iova)]);
1061 } else {
1062 sysmmu_pte_t *pent;
1063
1064 pent = alloc_lv2entry(domain, entry, iova,
1065 &domain->lv2entcnt[lv1ent_offset(iova)]);
1066
1067 if (IS_ERR(pent))
1068 ret = PTR_ERR(pent);
1069 else
1070 ret = lv2set_page(pent, paddr, size, prot,
1071 &domain->lv2entcnt[lv1ent_offset(iova)]);
1072 }
1073
1074 if (ret)
1075 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1076 __func__, ret, size, iova);
1077
1078 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1079
1080 return ret;
1081 }
1082
1083 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1084 sysmmu_iova_t iova, size_t size)
1085 {
1086 struct sysmmu_drvdata *data;
1087 unsigned long flags;
1088
1089 spin_lock_irqsave(&domain->lock, flags);
1090
1091 list_for_each_entry(data, &domain->clients, domain_node)
1092 sysmmu_tlb_invalidate_entry(data, iova, size);
1093
1094 spin_unlock_irqrestore(&domain->lock, flags);
1095 }
1096
1097 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1098 unsigned long l_iova, size_t size)
1099 {
1100 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1101 sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1102 sysmmu_pte_t *ent;
1103 size_t err_pgsize;
1104 unsigned long flags;
1105
1106 BUG_ON(domain->pgtable == NULL);
1107
1108 spin_lock_irqsave(&domain->pgtablelock, flags);
1109
1110 ent = section_entry(domain->pgtable, iova);
1111
1112 if (lv1ent_section(ent)) {
1113 if (WARN_ON(size < SECT_SIZE)) {
1114 err_pgsize = SECT_SIZE;
1115 goto err;
1116 }
1117
1118 /* workaround for h/w bug in System MMU v3.3 */
1119 update_pte(ent, ZERO_LV2LINK);
1120 size = SECT_SIZE;
1121 goto done;
1122 }
1123
1124 if (unlikely(lv1ent_fault(ent))) {
1125 if (size > SECT_SIZE)
1126 size = SECT_SIZE;
1127 goto done;
1128 }
1129
1130 /* lv1ent_page(sent) == true here */
1131
1132 ent = page_entry(ent, iova);
1133
1134 if (unlikely(lv2ent_fault(ent))) {
1135 size = SPAGE_SIZE;
1136 goto done;
1137 }
1138
1139 if (lv2ent_small(ent)) {
1140 update_pte(ent, 0);
1141 size = SPAGE_SIZE;
1142 domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1143 goto done;
1144 }
1145
1146 /* lv1ent_large(ent) == true here */
1147 if (WARN_ON(size < LPAGE_SIZE)) {
1148 err_pgsize = LPAGE_SIZE;
1149 goto err;
1150 }
1151
1152 dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1153 sizeof(*ent) * SPAGES_PER_LPAGE,
1154 DMA_TO_DEVICE);
1155 memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1156 dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1157 sizeof(*ent) * SPAGES_PER_LPAGE,
1158 DMA_TO_DEVICE);
1159 size = LPAGE_SIZE;
1160 domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1161 done:
1162 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1163
1164 exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1165
1166 return size;
1167 err:
1168 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1169
1170 pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1171 __func__, size, iova, err_pgsize);
1172
1173 return 0;
1174 }
1175
1176 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1177 dma_addr_t iova)
1178 {
1179 struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1180 sysmmu_pte_t *entry;
1181 unsigned long flags;
1182 phys_addr_t phys = 0;
1183
1184 spin_lock_irqsave(&domain->pgtablelock, flags);
1185
1186 entry = section_entry(domain->pgtable, iova);
1187
1188 if (lv1ent_section(entry)) {
1189 phys = section_phys(entry) + section_offs(iova);
1190 } else if (lv1ent_page(entry)) {
1191 entry = page_entry(entry, iova);
1192
1193 if (lv2ent_large(entry))
1194 phys = lpage_phys(entry) + lpage_offs(iova);
1195 else if (lv2ent_small(entry))
1196 phys = spage_phys(entry) + spage_offs(iova);
1197 }
1198
1199 spin_unlock_irqrestore(&domain->pgtablelock, flags);
1200
1201 return phys;
1202 }
1203
1204 static struct iommu_group *get_device_iommu_group(struct device *dev)
1205 {
1206 struct iommu_group *group;
1207
1208 group = iommu_group_get(dev);
1209 if (!group)
1210 group = iommu_group_alloc();
1211
1212 return group;
1213 }
1214
1215 static int exynos_iommu_add_device(struct device *dev)
1216 {
1217 struct iommu_group *group;
1218
1219 if (!has_sysmmu(dev))
1220 return -ENODEV;
1221
1222 group = iommu_group_get_for_dev(dev);
1223
1224 if (IS_ERR(group))
1225 return PTR_ERR(group);
1226
1227 iommu_group_put(group);
1228
1229 return 0;
1230 }
1231
1232 static void exynos_iommu_remove_device(struct device *dev)
1233 {
1234 if (!has_sysmmu(dev))
1235 return;
1236
1237 iommu_group_remove_device(dev);
1238 }
1239
1240 static int exynos_iommu_of_xlate(struct device *dev,
1241 struct of_phandle_args *spec)
1242 {
1243 struct exynos_iommu_owner *owner = dev->archdata.iommu;
1244 struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1245 struct sysmmu_drvdata *data;
1246
1247 if (!sysmmu)
1248 return -ENODEV;
1249
1250 data = platform_get_drvdata(sysmmu);
1251 if (!data)
1252 return -ENODEV;
1253
1254 if (!owner) {
1255 owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1256 if (!owner)
1257 return -ENOMEM;
1258
1259 INIT_LIST_HEAD(&owner->controllers);
1260 mutex_init(&owner->rpm_lock);
1261 dev->archdata.iommu = owner;
1262 }
1263
1264 list_add_tail(&data->owner_node, &owner->controllers);
1265 data->master = dev;
1266
1267 /*
1268 * SYSMMU will be runtime activated via device link (dependency) to its
1269 * master device, so there are no direct calls to pm_runtime_get/put
1270 * in this driver.
1271 */
1272 device_link_add(dev, data->sysmmu, DL_FLAG_PM_RUNTIME);
1273
1274 return 0;
1275 }
1276
1277 static struct iommu_ops exynos_iommu_ops = {
1278 .domain_alloc = exynos_iommu_domain_alloc,
1279 .domain_free = exynos_iommu_domain_free,
1280 .attach_dev = exynos_iommu_attach_device,
1281 .detach_dev = exynos_iommu_detach_device,
1282 .map = exynos_iommu_map,
1283 .unmap = exynos_iommu_unmap,
1284 .map_sg = default_iommu_map_sg,
1285 .iova_to_phys = exynos_iommu_iova_to_phys,
1286 .device_group = get_device_iommu_group,
1287 .add_device = exynos_iommu_add_device,
1288 .remove_device = exynos_iommu_remove_device,
1289 .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1290 .of_xlate = exynos_iommu_of_xlate,
1291 };
1292
1293 static bool init_done;
1294
1295 static int __init exynos_iommu_init(void)
1296 {
1297 int ret;
1298
1299 lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1300 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1301 if (!lv2table_kmem_cache) {
1302 pr_err("%s: Failed to create kmem cache\n", __func__);
1303 return -ENOMEM;
1304 }
1305
1306 ret = platform_driver_register(&exynos_sysmmu_driver);
1307 if (ret) {
1308 pr_err("%s: Failed to register driver\n", __func__);
1309 goto err_reg_driver;
1310 }
1311
1312 zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1313 if (zero_lv2_table == NULL) {
1314 pr_err("%s: Failed to allocate zero level2 page table\n",
1315 __func__);
1316 ret = -ENOMEM;
1317 goto err_zero_lv2;
1318 }
1319
1320 ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
1321 if (ret) {
1322 pr_err("%s: Failed to register exynos-iommu driver.\n",
1323 __func__);
1324 goto err_set_iommu;
1325 }
1326
1327 init_done = true;
1328
1329 return 0;
1330 err_set_iommu:
1331 kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1332 err_zero_lv2:
1333 platform_driver_unregister(&exynos_sysmmu_driver);
1334 err_reg_driver:
1335 kmem_cache_destroy(lv2table_kmem_cache);
1336 return ret;
1337 }
1338
1339 static int __init exynos_iommu_of_setup(struct device_node *np)
1340 {
1341 struct platform_device *pdev;
1342
1343 if (!init_done)
1344 exynos_iommu_init();
1345
1346 pdev = of_platform_device_create(np, NULL, platform_bus_type.dev_root);
1347 if (!pdev)
1348 return -ENODEV;
1349
1350 /*
1351 * use the first registered sysmmu device for performing
1352 * dma mapping operations on iommu page tables (cpu cache flush)
1353 */
1354 if (!dma_dev)
1355 dma_dev = &pdev->dev;
1356
1357 return 0;
1358 }
1359
1360 IOMMU_OF_DECLARE(exynos_iommu_of, "samsung,exynos-sysmmu",
1361 exynos_iommu_of_setup);