]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/isdn/hardware/mISDN/hfcmulti.c
treewide: setup_timer() -> timer_setup()
[mirror_ubuntu-bionic-kernel.git] / drivers / isdn / hardware / mISDN / hfcmulti.c
1 /*
2 * hfcmulti.c low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
3 *
4 * Author Andreas Eversberg (jolly@eversberg.eu)
5 * ported to mqueue mechanism:
6 * Peter Sprenger (sprengermoving-bytes.de)
7 *
8 * inspired by existing hfc-pci driver:
9 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de)
10 * Copyright 2008 by Karsten Keil (kkeil@suse.de)
11 * Copyright 2008 by Andreas Eversberg (jolly@eversberg.eu)
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 *
28 * Thanks to Cologne Chip AG for this great controller!
29 */
30
31 /*
32 * module parameters:
33 * type:
34 * By default (0), the card is automatically detected.
35 * Or use the following combinations:
36 * Bit 0-7 = 0x00001 = HFC-E1 (1 port)
37 * or Bit 0-7 = 0x00004 = HFC-4S (4 ports)
38 * or Bit 0-7 = 0x00008 = HFC-8S (8 ports)
39 * Bit 8 = 0x00100 = uLaw (instead of aLaw)
40 * Bit 9 = 0x00200 = Disable DTMF detect on all B-channels via hardware
41 * Bit 10 = spare
42 * Bit 11 = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
43 * or Bit 12 = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
44 * Bit 13 = spare
45 * Bit 14 = 0x04000 = Use external ram (128K)
46 * Bit 15 = 0x08000 = Use external ram (512K)
47 * Bit 16 = 0x10000 = Use 64 timeslots instead of 32
48 * or Bit 17 = 0x20000 = Use 128 timeslots instead of anything else
49 * Bit 18 = spare
50 * Bit 19 = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
51 * (all other bits are reserved and shall be 0)
52 * example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
53 * bus (PCM master)
54 *
55 * port: (optional or required for all ports on all installed cards)
56 * HFC-4S/HFC-8S only bits:
57 * Bit 0 = 0x001 = Use master clock for this S/T interface
58 * (ony once per chip).
59 * Bit 1 = 0x002 = transmitter line setup (non capacitive mode)
60 * Don't use this unless you know what you are doing!
61 * Bit 2 = 0x004 = Disable E-channel. (No E-channel processing)
62 * example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
63 * received from port 1
64 *
65 * HFC-E1 only bits:
66 * Bit 0 = 0x0001 = interface: 0=copper, 1=optical
67 * Bit 1 = 0x0002 = reserved (later for 32 B-channels transparent mode)
68 * Bit 2 = 0x0004 = Report LOS
69 * Bit 3 = 0x0008 = Report AIS
70 * Bit 4 = 0x0010 = Report SLIP
71 * Bit 5 = 0x0020 = Report RDI
72 * Bit 8 = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
73 * mode instead.
74 * Bit 9 = 0x0200 = Force get clock from interface, even in NT mode.
75 * or Bit 10 = 0x0400 = Force put clock to interface, even in TE mode.
76 * Bit 11 = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
77 * (E1 only)
78 * Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
79 * for default.
80 * (all other bits are reserved and shall be 0)
81 *
82 * debug:
83 * NOTE: only one debug value must be given for all cards
84 * enable debugging (see hfc_multi.h for debug options)
85 *
86 * poll:
87 * NOTE: only one poll value must be given for all cards
88 * Give the number of samples for each fifo process.
89 * By default 128 is used. Decrease to reduce delay, increase to
90 * reduce cpu load. If unsure, don't mess with it!
91 * Valid is 8, 16, 32, 64, 128, 256.
92 *
93 * pcm:
94 * NOTE: only one pcm value must be given for every card.
95 * The PCM bus id tells the mISDNdsp module about the connected PCM bus.
96 * By default (0), the PCM bus id is 100 for the card that is PCM master.
97 * If multiple cards are PCM master (because they are not interconnected),
98 * each card with PCM master will have increasing PCM id.
99 * All PCM busses with the same ID are expected to be connected and have
100 * common time slots slots.
101 * Only one chip of the PCM bus must be master, the others slave.
102 * -1 means no support of PCM bus not even.
103 * Omit this value, if all cards are interconnected or none is connected.
104 * If unsure, don't give this parameter.
105 *
106 * dmask and bmask:
107 * NOTE: One dmask value must be given for every HFC-E1 card.
108 * If omitted, the E1 card has D-channel on time slot 16, which is default.
109 * dmask is a 32 bit mask. The bit must be set for an alternate time slot.
110 * If multiple bits are set, multiple virtual card fragments are created.
111 * For each bit set, a bmask value must be given. Each bit on the bmask
112 * value stands for a B-channel. The bmask may not overlap with dmask or
113 * with other bmask values for that card.
114 * Example: dmask=0x00020002 bmask=0x0000fffc,0xfffc0000
115 * This will create one fragment with D-channel on slot 1 with
116 * B-channels on slots 2..15, and a second fragment with D-channel
117 * on slot 17 with B-channels on slot 18..31. Slot 16 is unused.
118 * If bit 0 is set (dmask=0x00000001) the D-channel is on slot 0 and will
119 * not function.
120 * Example: dmask=0x00000001 bmask=0xfffffffe
121 * This will create a port with all 31 usable timeslots as
122 * B-channels.
123 * If no bits are set on bmask, no B-channel is created for that fragment.
124 * Example: dmask=0xfffffffe bmask=0,0,0,0.... (31 0-values for bmask)
125 * This will create 31 ports with one D-channel only.
126 * If you don't know how to use it, you don't need it!
127 *
128 * iomode:
129 * NOTE: only one mode value must be given for every card.
130 * -> See hfc_multi.h for HFC_IO_MODE_* values
131 * By default, the IO mode is pci memory IO (MEMIO).
132 * Some cards require specific IO mode, so it cannot be changed.
133 * It may be useful to set IO mode to register io (REGIO) to solve
134 * PCI bridge problems.
135 * If unsure, don't give this parameter.
136 *
137 * clockdelay_nt:
138 * NOTE: only one clockdelay_nt value must be given once for all cards.
139 * Give the value of the clock control register (A_ST_CLK_DLY)
140 * of the S/T interfaces in NT mode.
141 * This register is needed for the TBR3 certification, so don't change it.
142 *
143 * clockdelay_te:
144 * NOTE: only one clockdelay_te value must be given once
145 * Give the value of the clock control register (A_ST_CLK_DLY)
146 * of the S/T interfaces in TE mode.
147 * This register is needed for the TBR3 certification, so don't change it.
148 *
149 * clock:
150 * NOTE: only one clock value must be given once
151 * Selects interface with clock source for mISDN and applications.
152 * Set to card number starting with 1. Set to -1 to disable.
153 * By default, the first card is used as clock source.
154 *
155 * hwid:
156 * NOTE: only one hwid value must be given once
157 * Enable special embedded devices with XHFC controllers.
158 */
159
160 /*
161 * debug register access (never use this, it will flood your system log)
162 * #define HFC_REGISTER_DEBUG
163 */
164
165 #define HFC_MULTI_VERSION "2.03"
166
167 #include <linux/interrupt.h>
168 #include <linux/module.h>
169 #include <linux/slab.h>
170 #include <linux/pci.h>
171 #include <linux/delay.h>
172 #include <linux/mISDNhw.h>
173 #include <linux/mISDNdsp.h>
174
175 /*
176 #define IRQCOUNT_DEBUG
177 #define IRQ_DEBUG
178 */
179
180 #include "hfc_multi.h"
181 #ifdef ECHOPREP
182 #include "gaintab.h"
183 #endif
184
185 #define MAX_CARDS 8
186 #define MAX_PORTS (8 * MAX_CARDS)
187 #define MAX_FRAGS (32 * MAX_CARDS)
188
189 static LIST_HEAD(HFClist);
190 static spinlock_t HFClock; /* global hfc list lock */
191
192 static void ph_state_change(struct dchannel *);
193
194 static struct hfc_multi *syncmaster;
195 static int plxsd_master; /* if we have a master card (yet) */
196 static spinlock_t plx_lock; /* may not acquire other lock inside */
197
198 #define TYP_E1 1
199 #define TYP_4S 4
200 #define TYP_8S 8
201
202 static int poll_timer = 6; /* default = 128 samples = 16ms */
203 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
204 static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 };
205 #define CLKDEL_TE 0x0f /* CLKDEL in TE mode */
206 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode
207 (0x60 MUST be included!) */
208
209 #define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */
210 #define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */
211 #define DIP_E1 0x3 /* DIP Switches for Beronet E1 cards */
212
213 /*
214 * module stuff
215 */
216
217 static uint type[MAX_CARDS];
218 static int pcm[MAX_CARDS];
219 static uint dmask[MAX_CARDS];
220 static uint bmask[MAX_FRAGS];
221 static uint iomode[MAX_CARDS];
222 static uint port[MAX_PORTS];
223 static uint debug;
224 static uint poll;
225 static int clock;
226 static uint timer;
227 static uint clockdelay_te = CLKDEL_TE;
228 static uint clockdelay_nt = CLKDEL_NT;
229 #define HWID_NONE 0
230 #define HWID_MINIP4 1
231 #define HWID_MINIP8 2
232 #define HWID_MINIP16 3
233 static uint hwid = HWID_NONE;
234
235 static int HFC_cnt, E1_cnt, bmask_cnt, Port_cnt, PCM_cnt = 99;
236
237 MODULE_AUTHOR("Andreas Eversberg");
238 MODULE_LICENSE("GPL");
239 MODULE_VERSION(HFC_MULTI_VERSION);
240 module_param(debug, uint, S_IRUGO | S_IWUSR);
241 module_param(poll, uint, S_IRUGO | S_IWUSR);
242 module_param(clock, int, S_IRUGO | S_IWUSR);
243 module_param(timer, uint, S_IRUGO | S_IWUSR);
244 module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
245 module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
246 module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
247 module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
248 module_param_array(dmask, uint, NULL, S_IRUGO | S_IWUSR);
249 module_param_array(bmask, uint, NULL, S_IRUGO | S_IWUSR);
250 module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
251 module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
252 module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */
253
254 #ifdef HFC_REGISTER_DEBUG
255 #define HFC_outb(hc, reg, val) \
256 (hc->HFC_outb(hc, reg, val, __func__, __LINE__))
257 #define HFC_outb_nodebug(hc, reg, val) \
258 (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
259 #define HFC_inb(hc, reg) \
260 (hc->HFC_inb(hc, reg, __func__, __LINE__))
261 #define HFC_inb_nodebug(hc, reg) \
262 (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
263 #define HFC_inw(hc, reg) \
264 (hc->HFC_inw(hc, reg, __func__, __LINE__))
265 #define HFC_inw_nodebug(hc, reg) \
266 (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
267 #define HFC_wait(hc) \
268 (hc->HFC_wait(hc, __func__, __LINE__))
269 #define HFC_wait_nodebug(hc) \
270 (hc->HFC_wait_nodebug(hc, __func__, __LINE__))
271 #else
272 #define HFC_outb(hc, reg, val) (hc->HFC_outb(hc, reg, val))
273 #define HFC_outb_nodebug(hc, reg, val) (hc->HFC_outb_nodebug(hc, reg, val))
274 #define HFC_inb(hc, reg) (hc->HFC_inb(hc, reg))
275 #define HFC_inb_nodebug(hc, reg) (hc->HFC_inb_nodebug(hc, reg))
276 #define HFC_inw(hc, reg) (hc->HFC_inw(hc, reg))
277 #define HFC_inw_nodebug(hc, reg) (hc->HFC_inw_nodebug(hc, reg))
278 #define HFC_wait(hc) (hc->HFC_wait(hc))
279 #define HFC_wait_nodebug(hc) (hc->HFC_wait_nodebug(hc))
280 #endif
281
282 #ifdef CONFIG_MISDN_HFCMULTI_8xx
283 #include "hfc_multi_8xx.h"
284 #endif
285
286 /* HFC_IO_MODE_PCIMEM */
287 static void
288 #ifdef HFC_REGISTER_DEBUG
289 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
290 const char *function, int line)
291 #else
292 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
293 #endif
294 {
295 writeb(val, hc->pci_membase + reg);
296 }
297 static u_char
298 #ifdef HFC_REGISTER_DEBUG
299 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
300 #else
301 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
302 #endif
303 {
304 return readb(hc->pci_membase + reg);
305 }
306 static u_short
307 #ifdef HFC_REGISTER_DEBUG
308 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
309 #else
310 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
311 #endif
312 {
313 return readw(hc->pci_membase + reg);
314 }
315 static void
316 #ifdef HFC_REGISTER_DEBUG
317 HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
318 #else
319 HFC_wait_pcimem(struct hfc_multi *hc)
320 #endif
321 {
322 while (readb(hc->pci_membase + R_STATUS) & V_BUSY)
323 cpu_relax();
324 }
325
326 /* HFC_IO_MODE_REGIO */
327 static void
328 #ifdef HFC_REGISTER_DEBUG
329 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
330 const char *function, int line)
331 #else
332 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
333 #endif
334 {
335 outb(reg, hc->pci_iobase + 4);
336 outb(val, hc->pci_iobase);
337 }
338 static u_char
339 #ifdef HFC_REGISTER_DEBUG
340 HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
341 #else
342 HFC_inb_regio(struct hfc_multi *hc, u_char reg)
343 #endif
344 {
345 outb(reg, hc->pci_iobase + 4);
346 return inb(hc->pci_iobase);
347 }
348 static u_short
349 #ifdef HFC_REGISTER_DEBUG
350 HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
351 #else
352 HFC_inw_regio(struct hfc_multi *hc, u_char reg)
353 #endif
354 {
355 outb(reg, hc->pci_iobase + 4);
356 return inw(hc->pci_iobase);
357 }
358 static void
359 #ifdef HFC_REGISTER_DEBUG
360 HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
361 #else
362 HFC_wait_regio(struct hfc_multi *hc)
363 #endif
364 {
365 outb(R_STATUS, hc->pci_iobase + 4);
366 while (inb(hc->pci_iobase) & V_BUSY)
367 cpu_relax();
368 }
369
370 #ifdef HFC_REGISTER_DEBUG
371 static void
372 HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
373 const char *function, int line)
374 {
375 char regname[256] = "", bits[9] = "xxxxxxxx";
376 int i;
377
378 i = -1;
379 while (hfc_register_names[++i].name) {
380 if (hfc_register_names[i].reg == reg)
381 strcat(regname, hfc_register_names[i].name);
382 }
383 if (regname[0] == '\0')
384 strcpy(regname, "register");
385
386 bits[7] = '0' + (!!(val & 1));
387 bits[6] = '0' + (!!(val & 2));
388 bits[5] = '0' + (!!(val & 4));
389 bits[4] = '0' + (!!(val & 8));
390 bits[3] = '0' + (!!(val & 16));
391 bits[2] = '0' + (!!(val & 32));
392 bits[1] = '0' + (!!(val & 64));
393 bits[0] = '0' + (!!(val & 128));
394 printk(KERN_DEBUG
395 "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
396 hc->id, reg, regname, val, bits, function, line);
397 HFC_outb_nodebug(hc, reg, val);
398 }
399 static u_char
400 HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
401 {
402 char regname[256] = "", bits[9] = "xxxxxxxx";
403 u_char val = HFC_inb_nodebug(hc, reg);
404 int i;
405
406 i = 0;
407 while (hfc_register_names[i++].name)
408 ;
409 while (hfc_register_names[++i].name) {
410 if (hfc_register_names[i].reg == reg)
411 strcat(regname, hfc_register_names[i].name);
412 }
413 if (regname[0] == '\0')
414 strcpy(regname, "register");
415
416 bits[7] = '0' + (!!(val & 1));
417 bits[6] = '0' + (!!(val & 2));
418 bits[5] = '0' + (!!(val & 4));
419 bits[4] = '0' + (!!(val & 8));
420 bits[3] = '0' + (!!(val & 16));
421 bits[2] = '0' + (!!(val & 32));
422 bits[1] = '0' + (!!(val & 64));
423 bits[0] = '0' + (!!(val & 128));
424 printk(KERN_DEBUG
425 "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
426 hc->id, reg, regname, val, bits, function, line);
427 return val;
428 }
429 static u_short
430 HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
431 {
432 char regname[256] = "";
433 u_short val = HFC_inw_nodebug(hc, reg);
434 int i;
435
436 i = 0;
437 while (hfc_register_names[i++].name)
438 ;
439 while (hfc_register_names[++i].name) {
440 if (hfc_register_names[i].reg == reg)
441 strcat(regname, hfc_register_names[i].name);
442 }
443 if (regname[0] == '\0')
444 strcpy(regname, "register");
445
446 printk(KERN_DEBUG
447 "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
448 hc->id, reg, regname, val, function, line);
449 return val;
450 }
451 static void
452 HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
453 {
454 printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
455 hc->id, function, line);
456 HFC_wait_nodebug(hc);
457 }
458 #endif
459
460 /* write fifo data (REGIO) */
461 static void
462 write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
463 {
464 outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
465 while (len >> 2) {
466 outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
467 data += 4;
468 len -= 4;
469 }
470 while (len >> 1) {
471 outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
472 data += 2;
473 len -= 2;
474 }
475 while (len) {
476 outb(*data, hc->pci_iobase);
477 data++;
478 len--;
479 }
480 }
481 /* write fifo data (PCIMEM) */
482 static void
483 write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
484 {
485 while (len >> 2) {
486 writel(cpu_to_le32(*(u32 *)data),
487 hc->pci_membase + A_FIFO_DATA0);
488 data += 4;
489 len -= 4;
490 }
491 while (len >> 1) {
492 writew(cpu_to_le16(*(u16 *)data),
493 hc->pci_membase + A_FIFO_DATA0);
494 data += 2;
495 len -= 2;
496 }
497 while (len) {
498 writeb(*data, hc->pci_membase + A_FIFO_DATA0);
499 data++;
500 len--;
501 }
502 }
503
504 /* read fifo data (REGIO) */
505 static void
506 read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
507 {
508 outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
509 while (len >> 2) {
510 *(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
511 data += 4;
512 len -= 4;
513 }
514 while (len >> 1) {
515 *(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
516 data += 2;
517 len -= 2;
518 }
519 while (len) {
520 *data = inb(hc->pci_iobase);
521 data++;
522 len--;
523 }
524 }
525
526 /* read fifo data (PCIMEM) */
527 static void
528 read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
529 {
530 while (len >> 2) {
531 *(u32 *)data =
532 le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
533 data += 4;
534 len -= 4;
535 }
536 while (len >> 1) {
537 *(u16 *)data =
538 le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
539 data += 2;
540 len -= 2;
541 }
542 while (len) {
543 *data = readb(hc->pci_membase + A_FIFO_DATA0);
544 data++;
545 len--;
546 }
547 }
548
549 static void
550 enable_hwirq(struct hfc_multi *hc)
551 {
552 hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
553 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
554 }
555
556 static void
557 disable_hwirq(struct hfc_multi *hc)
558 {
559 hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
560 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
561 }
562
563 #define NUM_EC 2
564 #define MAX_TDM_CHAN 32
565
566
567 static inline void
568 enablepcibridge(struct hfc_multi *c)
569 {
570 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
571 }
572
573 static inline void
574 disablepcibridge(struct hfc_multi *c)
575 {
576 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
577 }
578
579 static inline unsigned char
580 readpcibridge(struct hfc_multi *hc, unsigned char address)
581 {
582 unsigned short cipv;
583 unsigned char data;
584
585 if (!hc->pci_iobase)
586 return 0;
587
588 /* slow down a PCI read access by 1 PCI clock cycle */
589 HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
590
591 if (address == 0)
592 cipv = 0x4000;
593 else
594 cipv = 0x5800;
595
596 /* select local bridge port address by writing to CIP port */
597 /* data = HFC_inb(c, cipv); * was _io before */
598 outw(cipv, hc->pci_iobase + 4);
599 data = inb(hc->pci_iobase);
600
601 /* restore R_CTRL for normal PCI read cycle speed */
602 HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
603
604 return data;
605 }
606
607 static inline void
608 writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
609 {
610 unsigned short cipv;
611 unsigned int datav;
612
613 if (!hc->pci_iobase)
614 return;
615
616 if (address == 0)
617 cipv = 0x4000;
618 else
619 cipv = 0x5800;
620
621 /* select local bridge port address by writing to CIP port */
622 outw(cipv, hc->pci_iobase + 4);
623 /* define a 32 bit dword with 4 identical bytes for write sequence */
624 datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
625 ((__u32) data << 24);
626
627 /*
628 * write this 32 bit dword to the bridge data port
629 * this will initiate a write sequence of up to 4 writes to the same
630 * address on the local bus interface the number of write accesses
631 * is undefined but >=1 and depends on the next PCI transaction
632 * during write sequence on the local bus
633 */
634 outl(datav, hc->pci_iobase);
635 }
636
637 static inline void
638 cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
639 {
640 /* Do data pin read low byte */
641 HFC_outb(hc, R_GPIO_OUT1, reg);
642 }
643
644 static inline void
645 cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
646 {
647 cpld_set_reg(hc, reg);
648
649 enablepcibridge(hc);
650 writepcibridge(hc, 1, val);
651 disablepcibridge(hc);
652
653 return;
654 }
655
656 static inline unsigned char
657 cpld_read_reg(struct hfc_multi *hc, unsigned char reg)
658 {
659 unsigned char bytein;
660
661 cpld_set_reg(hc, reg);
662
663 /* Do data pin read low byte */
664 HFC_outb(hc, R_GPIO_OUT1, reg);
665
666 enablepcibridge(hc);
667 bytein = readpcibridge(hc, 1);
668 disablepcibridge(hc);
669
670 return bytein;
671 }
672
673 static inline void
674 vpm_write_address(struct hfc_multi *hc, unsigned short addr)
675 {
676 cpld_write_reg(hc, 0, 0xff & addr);
677 cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
678 }
679
680 static inline unsigned short
681 vpm_read_address(struct hfc_multi *c)
682 {
683 unsigned short addr;
684 unsigned short highbit;
685
686 addr = cpld_read_reg(c, 0);
687 highbit = cpld_read_reg(c, 1);
688
689 addr = addr | (highbit << 8);
690
691 return addr & 0x1ff;
692 }
693
694 static inline unsigned char
695 vpm_in(struct hfc_multi *c, int which, unsigned short addr)
696 {
697 unsigned char res;
698
699 vpm_write_address(c, addr);
700
701 if (!which)
702 cpld_set_reg(c, 2);
703 else
704 cpld_set_reg(c, 3);
705
706 enablepcibridge(c);
707 res = readpcibridge(c, 1);
708 disablepcibridge(c);
709
710 cpld_set_reg(c, 0);
711
712 return res;
713 }
714
715 static inline void
716 vpm_out(struct hfc_multi *c, int which, unsigned short addr,
717 unsigned char data)
718 {
719 vpm_write_address(c, addr);
720
721 enablepcibridge(c);
722
723 if (!which)
724 cpld_set_reg(c, 2);
725 else
726 cpld_set_reg(c, 3);
727
728 writepcibridge(c, 1, data);
729
730 cpld_set_reg(c, 0);
731
732 disablepcibridge(c);
733
734 {
735 unsigned char regin;
736 regin = vpm_in(c, which, addr);
737 if (regin != data)
738 printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
739 "0x%x\n", data, addr, regin);
740 }
741
742 }
743
744
745 static void
746 vpm_init(struct hfc_multi *wc)
747 {
748 unsigned char reg;
749 unsigned int mask;
750 unsigned int i, x, y;
751 unsigned int ver;
752
753 for (x = 0; x < NUM_EC; x++) {
754 /* Setup GPIO's */
755 if (!x) {
756 ver = vpm_in(wc, x, 0x1a0);
757 printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
758 }
759
760 for (y = 0; y < 4; y++) {
761 vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
762 vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
763 vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
764 }
765
766 /* Setup TDM path - sets fsync and tdm_clk as inputs */
767 reg = vpm_in(wc, x, 0x1a3); /* misc_con */
768 vpm_out(wc, x, 0x1a3, reg & ~2);
769
770 /* Setup Echo length (256 taps) */
771 vpm_out(wc, x, 0x022, 1);
772 vpm_out(wc, x, 0x023, 0xff);
773
774 /* Setup timeslots */
775 vpm_out(wc, x, 0x02f, 0x00);
776 mask = 0x02020202 << (x * 4);
777
778 /* Setup the tdm channel masks for all chips */
779 for (i = 0; i < 4; i++)
780 vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
781
782 /* Setup convergence rate */
783 printk(KERN_DEBUG "VPM: A-law mode\n");
784 reg = 0x00 | 0x10 | 0x01;
785 vpm_out(wc, x, 0x20, reg);
786 printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
787 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
788
789 vpm_out(wc, x, 0x24, 0x02);
790 reg = vpm_in(wc, x, 0x24);
791 printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
792
793 /* Initialize echo cans */
794 for (i = 0; i < MAX_TDM_CHAN; i++) {
795 if (mask & (0x00000001 << i))
796 vpm_out(wc, x, i, 0x00);
797 }
798
799 /*
800 * ARM arch at least disallows a udelay of
801 * more than 2ms... it gives a fake "__bad_udelay"
802 * reference at link-time.
803 * long delays in kernel code are pretty sucky anyway
804 * for now work around it using 5 x 2ms instead of 1 x 10ms
805 */
806
807 udelay(2000);
808 udelay(2000);
809 udelay(2000);
810 udelay(2000);
811 udelay(2000);
812
813 /* Put in bypass mode */
814 for (i = 0; i < MAX_TDM_CHAN; i++) {
815 if (mask & (0x00000001 << i))
816 vpm_out(wc, x, i, 0x01);
817 }
818
819 /* Enable bypass */
820 for (i = 0; i < MAX_TDM_CHAN; i++) {
821 if (mask & (0x00000001 << i))
822 vpm_out(wc, x, 0x78 + i, 0x01);
823 }
824
825 }
826 }
827
828 #ifdef UNUSED
829 static void
830 vpm_check(struct hfc_multi *hctmp)
831 {
832 unsigned char gpi2;
833
834 gpi2 = HFC_inb(hctmp, R_GPI_IN2);
835
836 if ((gpi2 & 0x3) != 0x3)
837 printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
838 }
839 #endif /* UNUSED */
840
841
842 /*
843 * Interface to enable/disable the HW Echocan
844 *
845 * these functions are called within a spin_lock_irqsave on
846 * the channel instance lock, so we are not disturbed by irqs
847 *
848 * we can later easily change the interface to make other
849 * things configurable, for now we configure the taps
850 *
851 */
852
853 static void
854 vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
855 {
856 unsigned int timeslot;
857 unsigned int unit;
858 struct bchannel *bch = hc->chan[ch].bch;
859 #ifdef TXADJ
860 int txadj = -4;
861 struct sk_buff *skb;
862 #endif
863 if (hc->chan[ch].protocol != ISDN_P_B_RAW)
864 return;
865
866 if (!bch)
867 return;
868
869 #ifdef TXADJ
870 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
871 sizeof(int), &txadj, GFP_ATOMIC);
872 if (skb)
873 recv_Bchannel_skb(bch, skb);
874 #endif
875
876 timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
877 unit = ch % 4;
878
879 printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
880 taps, timeslot);
881
882 vpm_out(hc, unit, timeslot, 0x7e);
883 }
884
885 static void
886 vpm_echocan_off(struct hfc_multi *hc, int ch)
887 {
888 unsigned int timeslot;
889 unsigned int unit;
890 struct bchannel *bch = hc->chan[ch].bch;
891 #ifdef TXADJ
892 int txadj = 0;
893 struct sk_buff *skb;
894 #endif
895
896 if (hc->chan[ch].protocol != ISDN_P_B_RAW)
897 return;
898
899 if (!bch)
900 return;
901
902 #ifdef TXADJ
903 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
904 sizeof(int), &txadj, GFP_ATOMIC);
905 if (skb)
906 recv_Bchannel_skb(bch, skb);
907 #endif
908
909 timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
910 unit = ch % 4;
911
912 printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
913 timeslot);
914 /* FILLME */
915 vpm_out(hc, unit, timeslot, 0x01);
916 }
917
918
919 /*
920 * Speech Design resync feature
921 * NOTE: This is called sometimes outside interrupt handler.
922 * We must lock irqsave, so no other interrupt (other card) will occur!
923 * Also multiple interrupts may nest, so must lock each access (lists, card)!
924 */
925 static inline void
926 hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
927 {
928 struct hfc_multi *hc, *next, *pcmmaster = NULL;
929 void __iomem *plx_acc_32;
930 u_int pv;
931 u_long flags;
932
933 spin_lock_irqsave(&HFClock, flags);
934 spin_lock(&plx_lock); /* must be locked inside other locks */
935
936 if (debug & DEBUG_HFCMULTI_PLXSD)
937 printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
938 __func__, syncmaster);
939
940 /* select new master */
941 if (newmaster) {
942 if (debug & DEBUG_HFCMULTI_PLXSD)
943 printk(KERN_DEBUG "using provided controller\n");
944 } else {
945 list_for_each_entry_safe(hc, next, &HFClist, list) {
946 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
947 if (hc->syncronized) {
948 newmaster = hc;
949 break;
950 }
951 }
952 }
953 }
954
955 /* Disable sync of all cards */
956 list_for_each_entry_safe(hc, next, &HFClist, list) {
957 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
958 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
959 pv = readl(plx_acc_32);
960 pv &= ~PLX_SYNC_O_EN;
961 writel(pv, plx_acc_32);
962 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
963 pcmmaster = hc;
964 if (hc->ctype == HFC_TYPE_E1) {
965 if (debug & DEBUG_HFCMULTI_PLXSD)
966 printk(KERN_DEBUG
967 "Schedule SYNC_I\n");
968 hc->e1_resync |= 1; /* get SYNC_I */
969 }
970 }
971 }
972 }
973
974 if (newmaster) {
975 hc = newmaster;
976 if (debug & DEBUG_HFCMULTI_PLXSD)
977 printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
978 "interface.\n", hc->id, hc);
979 /* Enable new sync master */
980 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
981 pv = readl(plx_acc_32);
982 pv |= PLX_SYNC_O_EN;
983 writel(pv, plx_acc_32);
984 /* switch to jatt PLL, if not disabled by RX_SYNC */
985 if (hc->ctype == HFC_TYPE_E1
986 && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
987 if (debug & DEBUG_HFCMULTI_PLXSD)
988 printk(KERN_DEBUG "Schedule jatt PLL\n");
989 hc->e1_resync |= 2; /* switch to jatt */
990 }
991 } else {
992 if (pcmmaster) {
993 hc = pcmmaster;
994 if (debug & DEBUG_HFCMULTI_PLXSD)
995 printk(KERN_DEBUG
996 "id=%d (0x%p) = PCM master syncronized "
997 "with QUARTZ\n", hc->id, hc);
998 if (hc->ctype == HFC_TYPE_E1) {
999 /* Use the crystal clock for the PCM
1000 master card */
1001 if (debug & DEBUG_HFCMULTI_PLXSD)
1002 printk(KERN_DEBUG
1003 "Schedule QUARTZ for HFC-E1\n");
1004 hc->e1_resync |= 4; /* switch quartz */
1005 } else {
1006 if (debug & DEBUG_HFCMULTI_PLXSD)
1007 printk(KERN_DEBUG
1008 "QUARTZ is automatically "
1009 "enabled by HFC-%dS\n", hc->ctype);
1010 }
1011 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1012 pv = readl(plx_acc_32);
1013 pv |= PLX_SYNC_O_EN;
1014 writel(pv, plx_acc_32);
1015 } else
1016 if (!rm)
1017 printk(KERN_ERR "%s no pcm master, this MUST "
1018 "not happen!\n", __func__);
1019 }
1020 syncmaster = newmaster;
1021
1022 spin_unlock(&plx_lock);
1023 spin_unlock_irqrestore(&HFClock, flags);
1024 }
1025
1026 /* This must be called AND hc must be locked irqsave!!! */
1027 static inline void
1028 plxsd_checksync(struct hfc_multi *hc, int rm)
1029 {
1030 if (hc->syncronized) {
1031 if (syncmaster == NULL) {
1032 if (debug & DEBUG_HFCMULTI_PLXSD)
1033 printk(KERN_DEBUG "%s: GOT sync on card %d"
1034 " (id=%d)\n", __func__, hc->id + 1,
1035 hc->id);
1036 hfcmulti_resync(hc, hc, rm);
1037 }
1038 } else {
1039 if (syncmaster == hc) {
1040 if (debug & DEBUG_HFCMULTI_PLXSD)
1041 printk(KERN_DEBUG "%s: LOST sync on card %d"
1042 " (id=%d)\n", __func__, hc->id + 1,
1043 hc->id);
1044 hfcmulti_resync(hc, NULL, rm);
1045 }
1046 }
1047 }
1048
1049
1050 /*
1051 * free hardware resources used by driver
1052 */
1053 static void
1054 release_io_hfcmulti(struct hfc_multi *hc)
1055 {
1056 void __iomem *plx_acc_32;
1057 u_int pv;
1058 u_long plx_flags;
1059
1060 if (debug & DEBUG_HFCMULTI_INIT)
1061 printk(KERN_DEBUG "%s: entered\n", __func__);
1062
1063 /* soft reset also masks all interrupts */
1064 hc->hw.r_cirm |= V_SRES;
1065 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1066 udelay(1000);
1067 hc->hw.r_cirm &= ~V_SRES;
1068 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1069 udelay(1000); /* instead of 'wait' that may cause locking */
1070
1071 /* release Speech Design card, if PLX was initialized */
1072 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1073 if (debug & DEBUG_HFCMULTI_PLXSD)
1074 printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1075 __func__, hc->id + 1);
1076 spin_lock_irqsave(&plx_lock, plx_flags);
1077 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1078 writel(PLX_GPIOC_INIT, plx_acc_32);
1079 pv = readl(plx_acc_32);
1080 /* Termination off */
1081 pv &= ~PLX_TERM_ON;
1082 /* Disconnect the PCM */
1083 pv |= PLX_SLAVE_EN_N;
1084 pv &= ~PLX_MASTER_EN;
1085 pv &= ~PLX_SYNC_O_EN;
1086 /* Put the DSP in Reset */
1087 pv &= ~PLX_DSP_RES_N;
1088 writel(pv, plx_acc_32);
1089 if (debug & DEBUG_HFCMULTI_INIT)
1090 printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n",
1091 __func__, pv);
1092 spin_unlock_irqrestore(&plx_lock, plx_flags);
1093 }
1094
1095 /* disable memory mapped ports / io ports */
1096 test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1097 if (hc->pci_dev)
1098 pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1099 if (hc->pci_membase)
1100 iounmap(hc->pci_membase);
1101 if (hc->plx_membase)
1102 iounmap(hc->plx_membase);
1103 if (hc->pci_iobase)
1104 release_region(hc->pci_iobase, 8);
1105 if (hc->xhfc_membase)
1106 iounmap((void *)hc->xhfc_membase);
1107
1108 if (hc->pci_dev) {
1109 pci_disable_device(hc->pci_dev);
1110 pci_set_drvdata(hc->pci_dev, NULL);
1111 }
1112 if (debug & DEBUG_HFCMULTI_INIT)
1113 printk(KERN_DEBUG "%s: done\n", __func__);
1114 }
1115
1116 /*
1117 * function called to reset the HFC chip. A complete software reset of chip
1118 * and fifos is done. All configuration of the chip is done.
1119 */
1120
1121 static int
1122 init_chip(struct hfc_multi *hc)
1123 {
1124 u_long flags, val, val2 = 0, rev;
1125 int i, err = 0;
1126 u_char r_conf_en, rval;
1127 void __iomem *plx_acc_32;
1128 u_int pv;
1129 u_long plx_flags, hfc_flags;
1130 int plx_count;
1131 struct hfc_multi *pos, *next, *plx_last_hc;
1132
1133 spin_lock_irqsave(&hc->lock, flags);
1134 /* reset all registers */
1135 memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1136
1137 /* revision check */
1138 if (debug & DEBUG_HFCMULTI_INIT)
1139 printk(KERN_DEBUG "%s: entered\n", __func__);
1140 val = HFC_inb(hc, R_CHIP_ID);
1141 if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe &&
1142 (val >> 1) != 0x31) {
1143 printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1144 err = -EIO;
1145 goto out;
1146 }
1147 rev = HFC_inb(hc, R_CHIP_RV);
1148 printk(KERN_INFO
1149 "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1150 val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ?
1151 " (old FIFO handling)" : "");
1152 if (hc->ctype != HFC_TYPE_XHFC && rev == 0) {
1153 test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1154 printk(KERN_WARNING
1155 "HFC_multi: NOTE: Your chip is revision 0, "
1156 "ask Cologne Chip for update. Newer chips "
1157 "have a better FIFO handling. Old chips "
1158 "still work but may have slightly lower "
1159 "HDLC transmit performance.\n");
1160 }
1161 if (rev > 1) {
1162 printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1163 "consider chip revision = %ld. The chip / "
1164 "bridge may not work.\n", rev);
1165 }
1166
1167 /* set s-ram size */
1168 hc->Flen = 0x10;
1169 hc->Zmin = 0x80;
1170 hc->Zlen = 384;
1171 hc->DTMFbase = 0x1000;
1172 if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1173 if (debug & DEBUG_HFCMULTI_INIT)
1174 printk(KERN_DEBUG "%s: changing to 128K external RAM\n",
1175 __func__);
1176 hc->hw.r_ctrl |= V_EXT_RAM;
1177 hc->hw.r_ram_sz = 1;
1178 hc->Flen = 0x20;
1179 hc->Zmin = 0xc0;
1180 hc->Zlen = 1856;
1181 hc->DTMFbase = 0x2000;
1182 }
1183 if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1184 if (debug & DEBUG_HFCMULTI_INIT)
1185 printk(KERN_DEBUG "%s: changing to 512K external RAM\n",
1186 __func__);
1187 hc->hw.r_ctrl |= V_EXT_RAM;
1188 hc->hw.r_ram_sz = 2;
1189 hc->Flen = 0x20;
1190 hc->Zmin = 0xc0;
1191 hc->Zlen = 8000;
1192 hc->DTMFbase = 0x2000;
1193 }
1194 if (hc->ctype == HFC_TYPE_XHFC) {
1195 hc->Flen = 0x8;
1196 hc->Zmin = 0x0;
1197 hc->Zlen = 64;
1198 hc->DTMFbase = 0x0;
1199 }
1200 hc->max_trans = poll << 1;
1201 if (hc->max_trans > hc->Zlen)
1202 hc->max_trans = hc->Zlen;
1203
1204 /* Speech Design PLX bridge */
1205 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1206 if (debug & DEBUG_HFCMULTI_PLXSD)
1207 printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1208 __func__, hc->id + 1);
1209 spin_lock_irqsave(&plx_lock, plx_flags);
1210 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1211 writel(PLX_GPIOC_INIT, plx_acc_32);
1212 pv = readl(plx_acc_32);
1213 /* The first and the last cards are terminating the PCM bus */
1214 pv |= PLX_TERM_ON; /* hc is currently the last */
1215 /* Disconnect the PCM */
1216 pv |= PLX_SLAVE_EN_N;
1217 pv &= ~PLX_MASTER_EN;
1218 pv &= ~PLX_SYNC_O_EN;
1219 /* Put the DSP in Reset */
1220 pv &= ~PLX_DSP_RES_N;
1221 writel(pv, plx_acc_32);
1222 spin_unlock_irqrestore(&plx_lock, plx_flags);
1223 if (debug & DEBUG_HFCMULTI_INIT)
1224 printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n",
1225 __func__, pv);
1226 /*
1227 * If we are the 3rd PLXSD card or higher, we must turn
1228 * termination of last PLXSD card off.
1229 */
1230 spin_lock_irqsave(&HFClock, hfc_flags);
1231 plx_count = 0;
1232 plx_last_hc = NULL;
1233 list_for_each_entry_safe(pos, next, &HFClist, list) {
1234 if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1235 plx_count++;
1236 if (pos != hc)
1237 plx_last_hc = pos;
1238 }
1239 }
1240 if (plx_count >= 3) {
1241 if (debug & DEBUG_HFCMULTI_PLXSD)
1242 printk(KERN_DEBUG "%s: card %d is between, so "
1243 "we disable termination\n",
1244 __func__, plx_last_hc->id + 1);
1245 spin_lock_irqsave(&plx_lock, plx_flags);
1246 plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
1247 pv = readl(plx_acc_32);
1248 pv &= ~PLX_TERM_ON;
1249 writel(pv, plx_acc_32);
1250 spin_unlock_irqrestore(&plx_lock, plx_flags);
1251 if (debug & DEBUG_HFCMULTI_INIT)
1252 printk(KERN_DEBUG
1253 "%s: term off: PLX_GPIO=%x\n",
1254 __func__, pv);
1255 }
1256 spin_unlock_irqrestore(&HFClock, hfc_flags);
1257 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1258 }
1259
1260 if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1261 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1262
1263 /* we only want the real Z2 read-pointer for revision > 0 */
1264 if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1265 hc->hw.r_ram_sz |= V_FZ_MD;
1266
1267 /* select pcm mode */
1268 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1269 if (debug & DEBUG_HFCMULTI_INIT)
1270 printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1271 __func__);
1272 } else
1273 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1274 if (debug & DEBUG_HFCMULTI_INIT)
1275 printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1276 __func__);
1277 hc->hw.r_pcm_md0 |= V_PCM_MD;
1278 } else {
1279 if (debug & DEBUG_HFCMULTI_INIT)
1280 printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1281 __func__);
1282 }
1283
1284 /* soft reset */
1285 HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1286 if (hc->ctype == HFC_TYPE_XHFC)
1287 HFC_outb(hc, 0x0C /* R_FIFO_THRES */,
1288 0x11 /* 16 Bytes TX/RX */);
1289 else
1290 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1291 HFC_outb(hc, R_FIFO_MD, 0);
1292 if (hc->ctype == HFC_TYPE_XHFC)
1293 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES;
1294 else
1295 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES
1296 | V_RLD_EPR;
1297 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1298 udelay(100);
1299 hc->hw.r_cirm = 0;
1300 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1301 udelay(100);
1302 if (hc->ctype != HFC_TYPE_XHFC)
1303 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1304
1305 /* Speech Design PLX bridge pcm and sync mode */
1306 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1307 spin_lock_irqsave(&plx_lock, plx_flags);
1308 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1309 pv = readl(plx_acc_32);
1310 /* Connect PCM */
1311 if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1312 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1313 pv |= PLX_SYNC_O_EN;
1314 if (debug & DEBUG_HFCMULTI_INIT)
1315 printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n",
1316 __func__, pv);
1317 } else {
1318 pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1319 pv &= ~PLX_SYNC_O_EN;
1320 if (debug & DEBUG_HFCMULTI_INIT)
1321 printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n",
1322 __func__, pv);
1323 }
1324 writel(pv, plx_acc_32);
1325 spin_unlock_irqrestore(&plx_lock, plx_flags);
1326 }
1327
1328 /* PCM setup */
1329 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1330 if (hc->slots == 32)
1331 HFC_outb(hc, R_PCM_MD1, 0x00);
1332 if (hc->slots == 64)
1333 HFC_outb(hc, R_PCM_MD1, 0x10);
1334 if (hc->slots == 128)
1335 HFC_outb(hc, R_PCM_MD1, 0x20);
1336 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1337 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1338 HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1339 else if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1340 HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */
1341 else
1342 HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1343 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1344 for (i = 0; i < 256; i++) {
1345 HFC_outb_nodebug(hc, R_SLOT, i);
1346 HFC_outb_nodebug(hc, A_SL_CFG, 0);
1347 if (hc->ctype != HFC_TYPE_XHFC)
1348 HFC_outb_nodebug(hc, A_CONF, 0);
1349 hc->slot_owner[i] = -1;
1350 }
1351
1352 /* set clock speed */
1353 if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1354 if (debug & DEBUG_HFCMULTI_INIT)
1355 printk(KERN_DEBUG
1356 "%s: setting double clock\n", __func__);
1357 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1358 }
1359
1360 if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1361 HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
1362
1363 /* B410P GPIO */
1364 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1365 printk(KERN_NOTICE "Setting GPIOs\n");
1366 HFC_outb(hc, R_GPIO_SEL, 0x30);
1367 HFC_outb(hc, R_GPIO_EN1, 0x3);
1368 udelay(1000);
1369 printk(KERN_NOTICE "calling vpm_init\n");
1370 vpm_init(hc);
1371 }
1372
1373 /* check if R_F0_CNT counts (8 kHz frame count) */
1374 val = HFC_inb(hc, R_F0_CNTL);
1375 val += HFC_inb(hc, R_F0_CNTH) << 8;
1376 if (debug & DEBUG_HFCMULTI_INIT)
1377 printk(KERN_DEBUG
1378 "HFC_multi F0_CNT %ld after reset\n", val);
1379 spin_unlock_irqrestore(&hc->lock, flags);
1380 set_current_state(TASK_UNINTERRUPTIBLE);
1381 schedule_timeout((HZ / 100) ? : 1); /* Timeout minimum 10ms */
1382 spin_lock_irqsave(&hc->lock, flags);
1383 val2 = HFC_inb(hc, R_F0_CNTL);
1384 val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1385 if (debug & DEBUG_HFCMULTI_INIT)
1386 printk(KERN_DEBUG
1387 "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1388 val2);
1389 if (val2 >= val + 8) { /* 1 ms */
1390 /* it counts, so we keep the pcm mode */
1391 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1392 printk(KERN_INFO "controller is PCM bus MASTER\n");
1393 else
1394 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1395 printk(KERN_INFO "controller is PCM bus SLAVE\n");
1396 else {
1397 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1398 printk(KERN_INFO "controller is PCM bus SLAVE "
1399 "(auto detected)\n");
1400 }
1401 } else {
1402 /* does not count */
1403 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1404 controller_fail:
1405 printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1406 "pulse. Seems that controller fails.\n");
1407 err = -EIO;
1408 goto out;
1409 }
1410 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1411 printk(KERN_INFO "controller is PCM bus SLAVE "
1412 "(ignoring missing PCM clock)\n");
1413 } else {
1414 /* only one pcm master */
1415 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1416 && plxsd_master) {
1417 printk(KERN_ERR "HFC_multi ERROR, no clock "
1418 "on another Speech Design card found. "
1419 "Please be sure to connect PCM cable.\n");
1420 err = -EIO;
1421 goto out;
1422 }
1423 /* retry with master clock */
1424 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1425 spin_lock_irqsave(&plx_lock, plx_flags);
1426 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1427 pv = readl(plx_acc_32);
1428 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1429 pv |= PLX_SYNC_O_EN;
1430 writel(pv, plx_acc_32);
1431 spin_unlock_irqrestore(&plx_lock, plx_flags);
1432 if (debug & DEBUG_HFCMULTI_INIT)
1433 printk(KERN_DEBUG "%s: master: "
1434 "PLX_GPIO=%x\n", __func__, pv);
1435 }
1436 hc->hw.r_pcm_md0 |= V_PCM_MD;
1437 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1438 spin_unlock_irqrestore(&hc->lock, flags);
1439 set_current_state(TASK_UNINTERRUPTIBLE);
1440 schedule_timeout((HZ / 100) ?: 1); /* Timeout min. 10ms */
1441 spin_lock_irqsave(&hc->lock, flags);
1442 val2 = HFC_inb(hc, R_F0_CNTL);
1443 val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1444 if (debug & DEBUG_HFCMULTI_INIT)
1445 printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1446 "10 ms (2nd try)\n", val2);
1447 if (val2 >= val + 8) { /* 1 ms */
1448 test_and_set_bit(HFC_CHIP_PCM_MASTER,
1449 &hc->chip);
1450 printk(KERN_INFO "controller is PCM bus MASTER "
1451 "(auto detected)\n");
1452 } else
1453 goto controller_fail;
1454 }
1455 }
1456
1457 /* Release the DSP Reset */
1458 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1459 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1460 plxsd_master = 1;
1461 spin_lock_irqsave(&plx_lock, plx_flags);
1462 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1463 pv = readl(plx_acc_32);
1464 pv |= PLX_DSP_RES_N;
1465 writel(pv, plx_acc_32);
1466 spin_unlock_irqrestore(&plx_lock, plx_flags);
1467 if (debug & DEBUG_HFCMULTI_INIT)
1468 printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n",
1469 __func__, pv);
1470 }
1471
1472 /* pcm id */
1473 if (hc->pcm)
1474 printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1475 hc->pcm);
1476 else {
1477 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1478 || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1479 PCM_cnt++; /* SD has proprietary bridging */
1480 }
1481 hc->pcm = PCM_cnt;
1482 printk(KERN_INFO "controller has PCM BUS ID %d "
1483 "(auto selected)\n", hc->pcm);
1484 }
1485
1486 /* set up timer */
1487 HFC_outb(hc, R_TI_WD, poll_timer);
1488 hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1489
1490 /* set E1 state machine IRQ */
1491 if (hc->ctype == HFC_TYPE_E1)
1492 hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1493
1494 /* set DTMF detection */
1495 if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1496 if (debug & DEBUG_HFCMULTI_INIT)
1497 printk(KERN_DEBUG "%s: enabling DTMF detection "
1498 "for all B-channel\n", __func__);
1499 hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1500 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1501 hc->hw.r_dtmf |= V_ULAW_SEL;
1502 HFC_outb(hc, R_DTMF_N, 102 - 1);
1503 hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1504 }
1505
1506 /* conference engine */
1507 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1508 r_conf_en = V_CONF_EN | V_ULAW;
1509 else
1510 r_conf_en = V_CONF_EN;
1511 if (hc->ctype != HFC_TYPE_XHFC)
1512 HFC_outb(hc, R_CONF_EN, r_conf_en);
1513
1514 /* setting leds */
1515 switch (hc->leds) {
1516 case 1: /* HFC-E1 OEM */
1517 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1518 HFC_outb(hc, R_GPIO_SEL, 0x32);
1519 else
1520 HFC_outb(hc, R_GPIO_SEL, 0x30);
1521
1522 HFC_outb(hc, R_GPIO_EN1, 0x0f);
1523 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1524
1525 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1526 break;
1527
1528 case 2: /* HFC-4S OEM */
1529 case 3:
1530 HFC_outb(hc, R_GPIO_SEL, 0xf0);
1531 HFC_outb(hc, R_GPIO_EN1, 0xff);
1532 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1533 break;
1534 }
1535
1536 if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) {
1537 hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */
1538 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1539 }
1540
1541 /* set master clock */
1542 if (hc->masterclk >= 0) {
1543 if (debug & DEBUG_HFCMULTI_INIT)
1544 printk(KERN_DEBUG "%s: setting ST master clock "
1545 "to port %d (0..%d)\n",
1546 __func__, hc->masterclk, hc->ports - 1);
1547 hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC);
1548 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1549 }
1550
1551
1552
1553 /* setting misc irq */
1554 HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1555 if (debug & DEBUG_HFCMULTI_INIT)
1556 printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1557 hc->hw.r_irqmsk_misc);
1558
1559 /* RAM access test */
1560 HFC_outb(hc, R_RAM_ADDR0, 0);
1561 HFC_outb(hc, R_RAM_ADDR1, 0);
1562 HFC_outb(hc, R_RAM_ADDR2, 0);
1563 for (i = 0; i < 256; i++) {
1564 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1565 HFC_outb_nodebug(hc, R_RAM_DATA, ((i * 3) & 0xff));
1566 }
1567 for (i = 0; i < 256; i++) {
1568 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1569 HFC_inb_nodebug(hc, R_RAM_DATA);
1570 rval = HFC_inb_nodebug(hc, R_INT_DATA);
1571 if (rval != ((i * 3) & 0xff)) {
1572 printk(KERN_DEBUG
1573 "addr:%x val:%x should:%x\n", i, rval,
1574 (i * 3) & 0xff);
1575 err++;
1576 }
1577 }
1578 if (err) {
1579 printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1580 err = -EIO;
1581 goto out;
1582 }
1583
1584 if (debug & DEBUG_HFCMULTI_INIT)
1585 printk(KERN_DEBUG "%s: done\n", __func__);
1586 out:
1587 spin_unlock_irqrestore(&hc->lock, flags);
1588 return err;
1589 }
1590
1591
1592 /*
1593 * control the watchdog
1594 */
1595 static void
1596 hfcmulti_watchdog(struct hfc_multi *hc)
1597 {
1598 hc->wdcount++;
1599
1600 if (hc->wdcount > 10) {
1601 hc->wdcount = 0;
1602 hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1603 V_GPIO_OUT3 : V_GPIO_OUT2;
1604
1605 /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1606 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1607 HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1608 }
1609 }
1610
1611
1612
1613 /*
1614 * output leds
1615 */
1616 static void
1617 hfcmulti_leds(struct hfc_multi *hc)
1618 {
1619 unsigned long lled;
1620 unsigned long leddw;
1621 int i, state, active, leds;
1622 struct dchannel *dch;
1623 int led[4];
1624
1625 switch (hc->leds) {
1626 case 1: /* HFC-E1 OEM */
1627 /* 2 red steady: LOS
1628 * 1 red steady: L1 not active
1629 * 2 green steady: L1 active
1630 * 1st green flashing: activity on TX
1631 * 2nd green flashing: activity on RX
1632 */
1633 led[0] = 0;
1634 led[1] = 0;
1635 led[2] = 0;
1636 led[3] = 0;
1637 dch = hc->chan[hc->dnum[0]].dch;
1638 if (dch) {
1639 if (hc->chan[hc->dnum[0]].los)
1640 led[1] = 1;
1641 if (hc->e1_state != 1) {
1642 led[0] = 1;
1643 hc->flash[2] = 0;
1644 hc->flash[3] = 0;
1645 } else {
1646 led[2] = 1;
1647 led[3] = 1;
1648 if (!hc->flash[2] && hc->activity_tx)
1649 hc->flash[2] = poll;
1650 if (!hc->flash[3] && hc->activity_rx)
1651 hc->flash[3] = poll;
1652 if (hc->flash[2] && hc->flash[2] < 1024)
1653 led[2] = 0;
1654 if (hc->flash[3] && hc->flash[3] < 1024)
1655 led[3] = 0;
1656 if (hc->flash[2] >= 2048)
1657 hc->flash[2] = 0;
1658 if (hc->flash[3] >= 2048)
1659 hc->flash[3] = 0;
1660 if (hc->flash[2])
1661 hc->flash[2] += poll;
1662 if (hc->flash[3])
1663 hc->flash[3] += poll;
1664 }
1665 }
1666 leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1667 /* leds are inverted */
1668 if (leds != (int)hc->ledstate) {
1669 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1670 hc->ledstate = leds;
1671 }
1672 break;
1673
1674 case 2: /* HFC-4S OEM */
1675 /* red steady: PH_DEACTIVATE
1676 * green steady: PH_ACTIVATE
1677 * green flashing: activity on TX
1678 */
1679 for (i = 0; i < 4; i++) {
1680 state = 0;
1681 active = -1;
1682 dch = hc->chan[(i << 2) | 2].dch;
1683 if (dch) {
1684 state = dch->state;
1685 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1686 active = 3;
1687 else
1688 active = 7;
1689 }
1690 if (state) {
1691 if (state == active) {
1692 led[i] = 1; /* led green */
1693 hc->activity_tx |= hc->activity_rx;
1694 if (!hc->flash[i] &&
1695 (hc->activity_tx & (1 << i)))
1696 hc->flash[i] = poll;
1697 if (hc->flash[i] && hc->flash[i] < 1024)
1698 led[i] = 0; /* led off */
1699 if (hc->flash[i] >= 2048)
1700 hc->flash[i] = 0;
1701 if (hc->flash[i])
1702 hc->flash[i] += poll;
1703 } else {
1704 led[i] = 2; /* led red */
1705 hc->flash[i] = 0;
1706 }
1707 } else
1708 led[i] = 0; /* led off */
1709 }
1710 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1711 leds = 0;
1712 for (i = 0; i < 4; i++) {
1713 if (led[i] == 1) {
1714 /*green*/
1715 leds |= (0x2 << (i * 2));
1716 } else if (led[i] == 2) {
1717 /*red*/
1718 leds |= (0x1 << (i * 2));
1719 }
1720 }
1721 if (leds != (int)hc->ledstate) {
1722 vpm_out(hc, 0, 0x1a8 + 3, leds);
1723 hc->ledstate = leds;
1724 }
1725 } else {
1726 leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1727 ((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1728 ((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1729 ((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1730 if (leds != (int)hc->ledstate) {
1731 HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1732 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1733 hc->ledstate = leds;
1734 }
1735 }
1736 break;
1737
1738 case 3: /* HFC 1S/2S Beronet */
1739 /* red steady: PH_DEACTIVATE
1740 * green steady: PH_ACTIVATE
1741 * green flashing: activity on TX
1742 */
1743 for (i = 0; i < 2; i++) {
1744 state = 0;
1745 active = -1;
1746 dch = hc->chan[(i << 2) | 2].dch;
1747 if (dch) {
1748 state = dch->state;
1749 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1750 active = 3;
1751 else
1752 active = 7;
1753 }
1754 if (state) {
1755 if (state == active) {
1756 led[i] = 1; /* led green */
1757 hc->activity_tx |= hc->activity_rx;
1758 if (!hc->flash[i] &&
1759 (hc->activity_tx & (1 << i)))
1760 hc->flash[i] = poll;
1761 if (hc->flash[i] < 1024)
1762 led[i] = 0; /* led off */
1763 if (hc->flash[i] >= 2048)
1764 hc->flash[i] = 0;
1765 if (hc->flash[i])
1766 hc->flash[i] += poll;
1767 } else {
1768 led[i] = 2; /* led red */
1769 hc->flash[i] = 0;
1770 }
1771 } else
1772 led[i] = 0; /* led off */
1773 }
1774 leds = (led[0] > 0) | ((led[1] > 0) << 1) | ((led[0]&1) << 2)
1775 | ((led[1]&1) << 3);
1776 if (leds != (int)hc->ledstate) {
1777 HFC_outb_nodebug(hc, R_GPIO_EN1,
1778 ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1779 HFC_outb_nodebug(hc, R_GPIO_OUT1,
1780 ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1781 hc->ledstate = leds;
1782 }
1783 break;
1784 case 8: /* HFC 8S+ Beronet */
1785 /* off: PH_DEACTIVATE
1786 * steady: PH_ACTIVATE
1787 * flashing: activity on TX
1788 */
1789 lled = 0xff; /* leds off */
1790 for (i = 0; i < 8; i++) {
1791 state = 0;
1792 active = -1;
1793 dch = hc->chan[(i << 2) | 2].dch;
1794 if (dch) {
1795 state = dch->state;
1796 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1797 active = 3;
1798 else
1799 active = 7;
1800 }
1801 if (state) {
1802 if (state == active) {
1803 lled &= ~(1 << i); /* led on */
1804 hc->activity_tx |= hc->activity_rx;
1805 if (!hc->flash[i] &&
1806 (hc->activity_tx & (1 << i)))
1807 hc->flash[i] = poll;
1808 if (hc->flash[i] < 1024)
1809 lled |= 1 << i; /* led off */
1810 if (hc->flash[i] >= 2048)
1811 hc->flash[i] = 0;
1812 if (hc->flash[i])
1813 hc->flash[i] += poll;
1814 } else
1815 hc->flash[i] = 0;
1816 }
1817 }
1818 leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1819 if (leddw != hc->ledstate) {
1820 /* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1821 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1822 /* was _io before */
1823 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1824 outw(0x4000, hc->pci_iobase + 4);
1825 outl(leddw, hc->pci_iobase);
1826 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1827 hc->ledstate = leddw;
1828 }
1829 break;
1830 }
1831 hc->activity_tx = 0;
1832 hc->activity_rx = 0;
1833 }
1834 /*
1835 * read dtmf coefficients
1836 */
1837
1838 static void
1839 hfcmulti_dtmf(struct hfc_multi *hc)
1840 {
1841 s32 *coeff;
1842 u_int mantissa;
1843 int co, ch;
1844 struct bchannel *bch = NULL;
1845 u8 exponent;
1846 int dtmf = 0;
1847 int addr;
1848 u16 w_float;
1849 struct sk_buff *skb;
1850 struct mISDNhead *hh;
1851
1852 if (debug & DEBUG_HFCMULTI_DTMF)
1853 printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1854 for (ch = 0; ch <= 31; ch++) {
1855 /* only process enabled B-channels */
1856 bch = hc->chan[ch].bch;
1857 if (!bch)
1858 continue;
1859 if (!hc->created[hc->chan[ch].port])
1860 continue;
1861 if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1862 continue;
1863 if (debug & DEBUG_HFCMULTI_DTMF)
1864 printk(KERN_DEBUG "%s: dtmf channel %d:",
1865 __func__, ch);
1866 coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1867 dtmf = 1;
1868 for (co = 0; co < 8; co++) {
1869 /* read W(n-1) coefficient */
1870 addr = hc->DTMFbase + ((co << 7) | (ch << 2));
1871 HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1872 HFC_outb_nodebug(hc, R_RAM_ADDR1, addr >> 8);
1873 HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr >> 16)
1874 | V_ADDR_INC);
1875 w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1876 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1877 if (debug & DEBUG_HFCMULTI_DTMF)
1878 printk(" %04x", w_float);
1879
1880 /* decode float (see chip doc) */
1881 mantissa = w_float & 0x0fff;
1882 if (w_float & 0x8000)
1883 mantissa |= 0xfffff000;
1884 exponent = (w_float >> 12) & 0x7;
1885 if (exponent) {
1886 mantissa ^= 0x1000;
1887 mantissa <<= (exponent - 1);
1888 }
1889
1890 /* store coefficient */
1891 coeff[co << 1] = mantissa;
1892
1893 /* read W(n) coefficient */
1894 w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1895 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1896 if (debug & DEBUG_HFCMULTI_DTMF)
1897 printk(" %04x", w_float);
1898
1899 /* decode float (see chip doc) */
1900 mantissa = w_float & 0x0fff;
1901 if (w_float & 0x8000)
1902 mantissa |= 0xfffff000;
1903 exponent = (w_float >> 12) & 0x7;
1904 if (exponent) {
1905 mantissa ^= 0x1000;
1906 mantissa <<= (exponent - 1);
1907 }
1908
1909 /* store coefficient */
1910 coeff[(co << 1) | 1] = mantissa;
1911 }
1912 if (debug & DEBUG_HFCMULTI_DTMF)
1913 printk(" DTMF ready %08x %08x %08x %08x "
1914 "%08x %08x %08x %08x\n",
1915 coeff[0], coeff[1], coeff[2], coeff[3],
1916 coeff[4], coeff[5], coeff[6], coeff[7]);
1917 hc->chan[ch].coeff_count++;
1918 if (hc->chan[ch].coeff_count == 8) {
1919 hc->chan[ch].coeff_count = 0;
1920 skb = mI_alloc_skb(512, GFP_ATOMIC);
1921 if (!skb) {
1922 printk(KERN_DEBUG "%s: No memory for skb\n",
1923 __func__);
1924 continue;
1925 }
1926 hh = mISDN_HEAD_P(skb);
1927 hh->prim = PH_CONTROL_IND;
1928 hh->id = DTMF_HFC_COEF;
1929 skb_put_data(skb, hc->chan[ch].coeff, 512);
1930 recv_Bchannel_skb(bch, skb);
1931 }
1932 }
1933
1934 /* restart DTMF processing */
1935 hc->dtmf = dtmf;
1936 if (dtmf)
1937 HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1938 }
1939
1940
1941 /*
1942 * fill fifo as much as possible
1943 */
1944
1945 static void
1946 hfcmulti_tx(struct hfc_multi *hc, int ch)
1947 {
1948 int i, ii, temp, len = 0;
1949 int Zspace, z1, z2; /* must be int for calculation */
1950 int Fspace, f1, f2;
1951 u_char *d;
1952 int *txpending, slot_tx;
1953 struct bchannel *bch;
1954 struct dchannel *dch;
1955 struct sk_buff **sp = NULL;
1956 int *idxp;
1957
1958 bch = hc->chan[ch].bch;
1959 dch = hc->chan[ch].dch;
1960 if ((!dch) && (!bch))
1961 return;
1962
1963 txpending = &hc->chan[ch].txpending;
1964 slot_tx = hc->chan[ch].slot_tx;
1965 if (dch) {
1966 if (!test_bit(FLG_ACTIVE, &dch->Flags))
1967 return;
1968 sp = &dch->tx_skb;
1969 idxp = &dch->tx_idx;
1970 } else {
1971 if (!test_bit(FLG_ACTIVE, &bch->Flags))
1972 return;
1973 sp = &bch->tx_skb;
1974 idxp = &bch->tx_idx;
1975 }
1976 if (*sp)
1977 len = (*sp)->len;
1978
1979 if ((!len) && *txpending != 1)
1980 return; /* no data */
1981
1982 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1983 (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1984 (hc->chan[ch].slot_rx < 0) &&
1985 (hc->chan[ch].slot_tx < 0))
1986 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1987 else
1988 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1989 HFC_wait_nodebug(hc);
1990
1991 if (*txpending == 2) {
1992 /* reset fifo */
1993 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1994 HFC_wait_nodebug(hc);
1995 HFC_outb(hc, A_SUBCH_CFG, 0);
1996 *txpending = 1;
1997 }
1998 next_frame:
1999 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2000 f1 = HFC_inb_nodebug(hc, A_F1);
2001 f2 = HFC_inb_nodebug(hc, A_F2);
2002 while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
2003 if (debug & DEBUG_HFCMULTI_FIFO)
2004 printk(KERN_DEBUG
2005 "%s(card %d): reread f2 because %d!=%d\n",
2006 __func__, hc->id + 1, temp, f2);
2007 f2 = temp; /* repeat until F2 is equal */
2008 }
2009 Fspace = f2 - f1 - 1;
2010 if (Fspace < 0)
2011 Fspace += hc->Flen;
2012 /*
2013 * Old FIFO handling doesn't give us the current Z2 read
2014 * pointer, so we cannot send the next frame before the fifo
2015 * is empty. It makes no difference except for a slightly
2016 * lower performance.
2017 */
2018 if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
2019 if (f1 != f2)
2020 Fspace = 0;
2021 else
2022 Fspace = 1;
2023 }
2024 /* one frame only for ST D-channels, to allow resending */
2025 if (hc->ctype != HFC_TYPE_E1 && dch) {
2026 if (f1 != f2)
2027 Fspace = 0;
2028 }
2029 /* F-counter full condition */
2030 if (Fspace == 0)
2031 return;
2032 }
2033 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2034 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2035 while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
2036 if (debug & DEBUG_HFCMULTI_FIFO)
2037 printk(KERN_DEBUG "%s(card %d): reread z2 because "
2038 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2039 z2 = temp; /* repeat unti Z2 is equal */
2040 }
2041 hc->chan[ch].Zfill = z1 - z2;
2042 if (hc->chan[ch].Zfill < 0)
2043 hc->chan[ch].Zfill += hc->Zlen;
2044 Zspace = z2 - z1;
2045 if (Zspace <= 0)
2046 Zspace += hc->Zlen;
2047 Zspace -= 4; /* keep not too full, so pointers will not overrun */
2048 /* fill transparent data only to maxinum transparent load (minus 4) */
2049 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2050 Zspace = Zspace - hc->Zlen + hc->max_trans;
2051 if (Zspace <= 0) /* no space of 4 bytes */
2052 return;
2053
2054 /* if no data */
2055 if (!len) {
2056 if (z1 == z2) { /* empty */
2057 /* if done with FIFO audio data during PCM connection */
2058 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
2059 *txpending && slot_tx >= 0) {
2060 if (debug & DEBUG_HFCMULTI_MODE)
2061 printk(KERN_DEBUG
2062 "%s: reconnecting PCM due to no "
2063 "more FIFO data: channel %d "
2064 "slot_tx %d\n",
2065 __func__, ch, slot_tx);
2066 /* connect slot */
2067 if (hc->ctype == HFC_TYPE_XHFC)
2068 HFC_outb(hc, A_CON_HDLC, 0xc0
2069 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2070 /* Enable FIFO, no interrupt */
2071 else
2072 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2073 V_HDLC_TRP | V_IFF);
2074 HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2075 HFC_wait_nodebug(hc);
2076 if (hc->ctype == HFC_TYPE_XHFC)
2077 HFC_outb(hc, A_CON_HDLC, 0xc0
2078 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2079 /* Enable FIFO, no interrupt */
2080 else
2081 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2082 V_HDLC_TRP | V_IFF);
2083 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2084 HFC_wait_nodebug(hc);
2085 }
2086 *txpending = 0;
2087 }
2088 return; /* no data */
2089 }
2090
2091 /* "fill fifo if empty" feature */
2092 if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
2093 && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
2094 if (debug & DEBUG_HFCMULTI_FILL)
2095 printk(KERN_DEBUG "%s: buffer empty, so we have "
2096 "underrun\n", __func__);
2097 /* fill buffer, to prevent future underrun */
2098 hc->write_fifo(hc, hc->silence_data, poll >> 1);
2099 Zspace -= (poll >> 1);
2100 }
2101
2102 /* if audio data and connected slot */
2103 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
2104 && slot_tx >= 0) {
2105 if (debug & DEBUG_HFCMULTI_MODE)
2106 printk(KERN_DEBUG "%s: disconnecting PCM due to "
2107 "FIFO data: channel %d slot_tx %d\n",
2108 __func__, ch, slot_tx);
2109 /* disconnect slot */
2110 if (hc->ctype == HFC_TYPE_XHFC)
2111 HFC_outb(hc, A_CON_HDLC, 0x80
2112 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2113 /* Enable FIFO, no interrupt */
2114 else
2115 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2116 V_HDLC_TRP | V_IFF);
2117 HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2118 HFC_wait_nodebug(hc);
2119 if (hc->ctype == HFC_TYPE_XHFC)
2120 HFC_outb(hc, A_CON_HDLC, 0x80
2121 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2122 /* Enable FIFO, no interrupt */
2123 else
2124 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2125 V_HDLC_TRP | V_IFF);
2126 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2127 HFC_wait_nodebug(hc);
2128 }
2129 *txpending = 1;
2130
2131 /* show activity */
2132 if (dch)
2133 hc->activity_tx |= 1 << hc->chan[ch].port;
2134
2135 /* fill fifo to what we have left */
2136 ii = len;
2137 if (dch || test_bit(FLG_HDLC, &bch->Flags))
2138 temp = 1;
2139 else
2140 temp = 0;
2141 i = *idxp;
2142 d = (*sp)->data + i;
2143 if (ii - i > Zspace)
2144 ii = Zspace + i;
2145 if (debug & DEBUG_HFCMULTI_FIFO)
2146 printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2147 "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2148 __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2149 temp ? "HDLC" : "TRANS");
2150
2151 /* Have to prep the audio data */
2152 hc->write_fifo(hc, d, ii - i);
2153 hc->chan[ch].Zfill += ii - i;
2154 *idxp = ii;
2155
2156 /* if not all data has been written */
2157 if (ii != len) {
2158 /* NOTE: fifo is started by the calling function */
2159 return;
2160 }
2161
2162 /* if all data has been written, terminate frame */
2163 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2164 /* increment f-counter */
2165 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2166 HFC_wait_nodebug(hc);
2167 }
2168
2169 dev_kfree_skb(*sp);
2170 /* check for next frame */
2171 if (bch && get_next_bframe(bch)) {
2172 len = (*sp)->len;
2173 goto next_frame;
2174 }
2175 if (dch && get_next_dframe(dch)) {
2176 len = (*sp)->len;
2177 goto next_frame;
2178 }
2179
2180 /*
2181 * now we have no more data, so in case of transparent,
2182 * we set the last byte in fifo to 'silence' in case we will get
2183 * no more data at all. this prevents sending an undefined value.
2184 */
2185 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2186 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2187 }
2188
2189
2190 /* NOTE: only called if E1 card is in active state */
2191 static void
2192 hfcmulti_rx(struct hfc_multi *hc, int ch)
2193 {
2194 int temp;
2195 int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2196 int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2197 int again = 0;
2198 struct bchannel *bch;
2199 struct dchannel *dch = NULL;
2200 struct sk_buff *skb, **sp = NULL;
2201 int maxlen;
2202
2203 bch = hc->chan[ch].bch;
2204 if (bch) {
2205 if (!test_bit(FLG_ACTIVE, &bch->Flags))
2206 return;
2207 } else if (hc->chan[ch].dch) {
2208 dch = hc->chan[ch].dch;
2209 if (!test_bit(FLG_ACTIVE, &dch->Flags))
2210 return;
2211 } else {
2212 return;
2213 }
2214 next_frame:
2215 /* on first AND before getting next valid frame, R_FIFO must be written
2216 to. */
2217 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2218 (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2219 (hc->chan[ch].slot_rx < 0) &&
2220 (hc->chan[ch].slot_tx < 0))
2221 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1) | 1);
2222 else
2223 HFC_outb_nodebug(hc, R_FIFO, (ch << 1) | 1);
2224 HFC_wait_nodebug(hc);
2225
2226 /* ignore if rx is off BUT change fifo (above) to start pending TX */
2227 if (hc->chan[ch].rx_off) {
2228 if (bch)
2229 bch->dropcnt += poll; /* not exact but fair enough */
2230 return;
2231 }
2232
2233 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2234 f1 = HFC_inb_nodebug(hc, A_F1);
2235 while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2236 if (debug & DEBUG_HFCMULTI_FIFO)
2237 printk(KERN_DEBUG
2238 "%s(card %d): reread f1 because %d!=%d\n",
2239 __func__, hc->id + 1, temp, f1);
2240 f1 = temp; /* repeat until F1 is equal */
2241 }
2242 f2 = HFC_inb_nodebug(hc, A_F2);
2243 }
2244 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2245 while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2246 if (debug & DEBUG_HFCMULTI_FIFO)
2247 printk(KERN_DEBUG "%s(card %d): reread z2 because "
2248 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2249 z1 = temp; /* repeat until Z1 is equal */
2250 }
2251 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2252 Zsize = z1 - z2;
2253 if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2254 /* complete hdlc frame */
2255 Zsize++;
2256 if (Zsize < 0)
2257 Zsize += hc->Zlen;
2258 /* if buffer is empty */
2259 if (Zsize <= 0)
2260 return;
2261
2262 if (bch) {
2263 maxlen = bchannel_get_rxbuf(bch, Zsize);
2264 if (maxlen < 0) {
2265 pr_warning("card%d.B%d: No bufferspace for %d bytes\n",
2266 hc->id + 1, bch->nr, Zsize);
2267 return;
2268 }
2269 sp = &bch->rx_skb;
2270 maxlen = bch->maxlen;
2271 } else { /* Dchannel */
2272 sp = &dch->rx_skb;
2273 maxlen = dch->maxlen + 3;
2274 if (*sp == NULL) {
2275 *sp = mI_alloc_skb(maxlen, GFP_ATOMIC);
2276 if (*sp == NULL) {
2277 pr_warning("card%d: No mem for dch rx_skb\n",
2278 hc->id + 1);
2279 return;
2280 }
2281 }
2282 }
2283 /* show activity */
2284 if (dch)
2285 hc->activity_rx |= 1 << hc->chan[ch].port;
2286
2287 /* empty fifo with what we have */
2288 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2289 if (debug & DEBUG_HFCMULTI_FIFO)
2290 printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2291 "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2292 "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2293 Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2294 f1, f2, Zsize + (*sp)->len, again);
2295 /* HDLC */
2296 if ((Zsize + (*sp)->len) > maxlen) {
2297 if (debug & DEBUG_HFCMULTI_FIFO)
2298 printk(KERN_DEBUG
2299 "%s(card %d): hdlc-frame too large.\n",
2300 __func__, hc->id + 1);
2301 skb_trim(*sp, 0);
2302 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2303 HFC_wait_nodebug(hc);
2304 return;
2305 }
2306
2307 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2308
2309 if (f1 != f2) {
2310 /* increment Z2,F2-counter */
2311 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2312 HFC_wait_nodebug(hc);
2313 /* check size */
2314 if ((*sp)->len < 4) {
2315 if (debug & DEBUG_HFCMULTI_FIFO)
2316 printk(KERN_DEBUG
2317 "%s(card %d): Frame below minimum "
2318 "size\n", __func__, hc->id + 1);
2319 skb_trim(*sp, 0);
2320 goto next_frame;
2321 }
2322 /* there is at least one complete frame, check crc */
2323 if ((*sp)->data[(*sp)->len - 1]) {
2324 if (debug & DEBUG_HFCMULTI_CRC)
2325 printk(KERN_DEBUG
2326 "%s: CRC-error\n", __func__);
2327 skb_trim(*sp, 0);
2328 goto next_frame;
2329 }
2330 skb_trim(*sp, (*sp)->len - 3);
2331 if ((*sp)->len < MISDN_COPY_SIZE) {
2332 skb = *sp;
2333 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2334 if (*sp) {
2335 skb_put_data(*sp, skb->data, skb->len);
2336 skb_trim(skb, 0);
2337 } else {
2338 printk(KERN_DEBUG "%s: No mem\n",
2339 __func__);
2340 *sp = skb;
2341 skb = NULL;
2342 }
2343 } else {
2344 skb = NULL;
2345 }
2346 if (debug & DEBUG_HFCMULTI_FIFO) {
2347 printk(KERN_DEBUG "%s(card %d):",
2348 __func__, hc->id + 1);
2349 temp = 0;
2350 while (temp < (*sp)->len)
2351 printk(" %02x", (*sp)->data[temp++]);
2352 printk("\n");
2353 }
2354 if (dch)
2355 recv_Dchannel(dch);
2356 else
2357 recv_Bchannel(bch, MISDN_ID_ANY, false);
2358 *sp = skb;
2359 again++;
2360 goto next_frame;
2361 }
2362 /* there is an incomplete frame */
2363 } else {
2364 /* transparent */
2365 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2366 if (debug & DEBUG_HFCMULTI_FIFO)
2367 printk(KERN_DEBUG
2368 "%s(card %d): fifo(%d) reading %d bytes "
2369 "(z1=%04x, z2=%04x) TRANS\n",
2370 __func__, hc->id + 1, ch, Zsize, z1, z2);
2371 /* only bch is transparent */
2372 recv_Bchannel(bch, hc->chan[ch].Zfill, false);
2373 }
2374 }
2375
2376
2377 /*
2378 * Interrupt handler
2379 */
2380 static void
2381 signal_state_up(struct dchannel *dch, int info, char *msg)
2382 {
2383 struct sk_buff *skb;
2384 int id, data = info;
2385
2386 if (debug & DEBUG_HFCMULTI_STATE)
2387 printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2388
2389 id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2390
2391 skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2392 GFP_ATOMIC);
2393 if (!skb)
2394 return;
2395 recv_Dchannel_skb(dch, skb);
2396 }
2397
2398 static inline void
2399 handle_timer_irq(struct hfc_multi *hc)
2400 {
2401 int ch, temp;
2402 struct dchannel *dch;
2403 u_long flags;
2404
2405 /* process queued resync jobs */
2406 if (hc->e1_resync) {
2407 /* lock, so e1_resync gets not changed */
2408 spin_lock_irqsave(&HFClock, flags);
2409 if (hc->e1_resync & 1) {
2410 if (debug & DEBUG_HFCMULTI_PLXSD)
2411 printk(KERN_DEBUG "Enable SYNC_I\n");
2412 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2413 /* disable JATT, if RX_SYNC is set */
2414 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2415 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2416 }
2417 if (hc->e1_resync & 2) {
2418 if (debug & DEBUG_HFCMULTI_PLXSD)
2419 printk(KERN_DEBUG "Enable jatt PLL\n");
2420 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2421 }
2422 if (hc->e1_resync & 4) {
2423 if (debug & DEBUG_HFCMULTI_PLXSD)
2424 printk(KERN_DEBUG
2425 "Enable QUARTZ for HFC-E1\n");
2426 /* set jatt to quartz */
2427 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2428 | V_JATT_OFF);
2429 /* switch to JATT, in case it is not already */
2430 HFC_outb(hc, R_SYNC_OUT, 0);
2431 }
2432 hc->e1_resync = 0;
2433 spin_unlock_irqrestore(&HFClock, flags);
2434 }
2435
2436 if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1)
2437 for (ch = 0; ch <= 31; ch++) {
2438 if (hc->created[hc->chan[ch].port]) {
2439 hfcmulti_tx(hc, ch);
2440 /* fifo is started when switching to rx-fifo */
2441 hfcmulti_rx(hc, ch);
2442 if (hc->chan[ch].dch &&
2443 hc->chan[ch].nt_timer > -1) {
2444 dch = hc->chan[ch].dch;
2445 if (!(--hc->chan[ch].nt_timer)) {
2446 schedule_event(dch,
2447 FLG_PHCHANGE);
2448 if (debug &
2449 DEBUG_HFCMULTI_STATE)
2450 printk(KERN_DEBUG
2451 "%s: nt_timer at "
2452 "state %x\n",
2453 __func__,
2454 dch->state);
2455 }
2456 }
2457 }
2458 }
2459 if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) {
2460 dch = hc->chan[hc->dnum[0]].dch;
2461 /* LOS */
2462 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2463 hc->chan[hc->dnum[0]].los = temp;
2464 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
2465 if (!temp && hc->chan[hc->dnum[0]].los)
2466 signal_state_up(dch, L1_SIGNAL_LOS_ON,
2467 "LOS detected");
2468 if (temp && !hc->chan[hc->dnum[0]].los)
2469 signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2470 "LOS gone");
2471 }
2472 if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dnum[0]].cfg)) {
2473 /* AIS */
2474 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2475 if (!temp && hc->chan[hc->dnum[0]].ais)
2476 signal_state_up(dch, L1_SIGNAL_AIS_ON,
2477 "AIS detected");
2478 if (temp && !hc->chan[hc->dnum[0]].ais)
2479 signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2480 "AIS gone");
2481 hc->chan[hc->dnum[0]].ais = temp;
2482 }
2483 if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dnum[0]].cfg)) {
2484 /* SLIP */
2485 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2486 if (!temp && hc->chan[hc->dnum[0]].slip_rx)
2487 signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2488 " bit SLIP detected RX");
2489 hc->chan[hc->dnum[0]].slip_rx = temp;
2490 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2491 if (!temp && hc->chan[hc->dnum[0]].slip_tx)
2492 signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2493 " bit SLIP detected TX");
2494 hc->chan[hc->dnum[0]].slip_tx = temp;
2495 }
2496 if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dnum[0]].cfg)) {
2497 /* RDI */
2498 temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2499 if (!temp && hc->chan[hc->dnum[0]].rdi)
2500 signal_state_up(dch, L1_SIGNAL_RDI_ON,
2501 "RDI detected");
2502 if (temp && !hc->chan[hc->dnum[0]].rdi)
2503 signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2504 "RDI gone");
2505 hc->chan[hc->dnum[0]].rdi = temp;
2506 }
2507 temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2508 switch (hc->chan[hc->dnum[0]].sync) {
2509 case 0:
2510 if ((temp & 0x60) == 0x60) {
2511 if (debug & DEBUG_HFCMULTI_SYNC)
2512 printk(KERN_DEBUG
2513 "%s: (id=%d) E1 now "
2514 "in clock sync\n",
2515 __func__, hc->id);
2516 HFC_outb(hc, R_RX_OFF,
2517 hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2518 HFC_outb(hc, R_TX_OFF,
2519 hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2520 hc->chan[hc->dnum[0]].sync = 1;
2521 goto check_framesync;
2522 }
2523 break;
2524 case 1:
2525 if ((temp & 0x60) != 0x60) {
2526 if (debug & DEBUG_HFCMULTI_SYNC)
2527 printk(KERN_DEBUG
2528 "%s: (id=%d) E1 "
2529 "lost clock sync\n",
2530 __func__, hc->id);
2531 hc->chan[hc->dnum[0]].sync = 0;
2532 break;
2533 }
2534 check_framesync:
2535 temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2536 if (temp == 0x27) {
2537 if (debug & DEBUG_HFCMULTI_SYNC)
2538 printk(KERN_DEBUG
2539 "%s: (id=%d) E1 "
2540 "now in frame sync\n",
2541 __func__, hc->id);
2542 hc->chan[hc->dnum[0]].sync = 2;
2543 }
2544 break;
2545 case 2:
2546 if ((temp & 0x60) != 0x60) {
2547 if (debug & DEBUG_HFCMULTI_SYNC)
2548 printk(KERN_DEBUG
2549 "%s: (id=%d) E1 lost "
2550 "clock & frame sync\n",
2551 __func__, hc->id);
2552 hc->chan[hc->dnum[0]].sync = 0;
2553 break;
2554 }
2555 temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2556 if (temp != 0x27) {
2557 if (debug & DEBUG_HFCMULTI_SYNC)
2558 printk(KERN_DEBUG
2559 "%s: (id=%d) E1 "
2560 "lost frame sync\n",
2561 __func__, hc->id);
2562 hc->chan[hc->dnum[0]].sync = 1;
2563 }
2564 break;
2565 }
2566 }
2567
2568 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2569 hfcmulti_watchdog(hc);
2570
2571 if (hc->leds)
2572 hfcmulti_leds(hc);
2573 }
2574
2575 static void
2576 ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2577 {
2578 struct dchannel *dch;
2579 int ch;
2580 int active;
2581 u_char st_status, temp;
2582
2583 /* state machine */
2584 for (ch = 0; ch <= 31; ch++) {
2585 if (hc->chan[ch].dch) {
2586 dch = hc->chan[ch].dch;
2587 if (r_irq_statech & 1) {
2588 HFC_outb_nodebug(hc, R_ST_SEL,
2589 hc->chan[ch].port);
2590 /* undocumented: delay after R_ST_SEL */
2591 udelay(1);
2592 /* undocumented: status changes during read */
2593 st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2594 while (st_status != (temp =
2595 HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2596 if (debug & DEBUG_HFCMULTI_STATE)
2597 printk(KERN_DEBUG "%s: reread "
2598 "STATE because %d!=%d\n",
2599 __func__, temp,
2600 st_status);
2601 st_status = temp; /* repeat */
2602 }
2603
2604 /* Speech Design TE-sync indication */
2605 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2606 dch->dev.D.protocol == ISDN_P_TE_S0) {
2607 if (st_status & V_FR_SYNC_ST)
2608 hc->syncronized |=
2609 (1 << hc->chan[ch].port);
2610 else
2611 hc->syncronized &=
2612 ~(1 << hc->chan[ch].port);
2613 }
2614 dch->state = st_status & 0x0f;
2615 if (dch->dev.D.protocol == ISDN_P_NT_S0)
2616 active = 3;
2617 else
2618 active = 7;
2619 if (dch->state == active) {
2620 HFC_outb_nodebug(hc, R_FIFO,
2621 (ch << 1) | 1);
2622 HFC_wait_nodebug(hc);
2623 HFC_outb_nodebug(hc,
2624 R_INC_RES_FIFO, V_RES_F);
2625 HFC_wait_nodebug(hc);
2626 dch->tx_idx = 0;
2627 }
2628 schedule_event(dch, FLG_PHCHANGE);
2629 if (debug & DEBUG_HFCMULTI_STATE)
2630 printk(KERN_DEBUG
2631 "%s: S/T newstate %x port %d\n",
2632 __func__, dch->state,
2633 hc->chan[ch].port);
2634 }
2635 r_irq_statech >>= 1;
2636 }
2637 }
2638 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2639 plxsd_checksync(hc, 0);
2640 }
2641
2642 static void
2643 fifo_irq(struct hfc_multi *hc, int block)
2644 {
2645 int ch, j;
2646 struct dchannel *dch;
2647 struct bchannel *bch;
2648 u_char r_irq_fifo_bl;
2649
2650 r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2651 j = 0;
2652 while (j < 8) {
2653 ch = (block << 2) + (j >> 1);
2654 dch = hc->chan[ch].dch;
2655 bch = hc->chan[ch].bch;
2656 if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2657 j += 2;
2658 continue;
2659 }
2660 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2661 test_bit(FLG_ACTIVE, &dch->Flags)) {
2662 hfcmulti_tx(hc, ch);
2663 /* start fifo */
2664 HFC_outb_nodebug(hc, R_FIFO, 0);
2665 HFC_wait_nodebug(hc);
2666 }
2667 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2668 test_bit(FLG_ACTIVE, &bch->Flags)) {
2669 hfcmulti_tx(hc, ch);
2670 /* start fifo */
2671 HFC_outb_nodebug(hc, R_FIFO, 0);
2672 HFC_wait_nodebug(hc);
2673 }
2674 j++;
2675 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2676 test_bit(FLG_ACTIVE, &dch->Flags)) {
2677 hfcmulti_rx(hc, ch);
2678 }
2679 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2680 test_bit(FLG_ACTIVE, &bch->Flags)) {
2681 hfcmulti_rx(hc, ch);
2682 }
2683 j++;
2684 }
2685 }
2686
2687 #ifdef IRQ_DEBUG
2688 int irqsem;
2689 #endif
2690 static irqreturn_t
2691 hfcmulti_interrupt(int intno, void *dev_id)
2692 {
2693 #ifdef IRQCOUNT_DEBUG
2694 static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2695 iq5 = 0, iq6 = 0, iqcnt = 0;
2696 #endif
2697 struct hfc_multi *hc = dev_id;
2698 struct dchannel *dch;
2699 u_char r_irq_statech, status, r_irq_misc, r_irq_oview;
2700 int i;
2701 void __iomem *plx_acc;
2702 u_short wval;
2703 u_char e1_syncsta, temp, temp2;
2704 u_long flags;
2705
2706 if (!hc) {
2707 printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2708 return IRQ_NONE;
2709 }
2710
2711 spin_lock(&hc->lock);
2712
2713 #ifdef IRQ_DEBUG
2714 if (irqsem)
2715 printk(KERN_ERR "irq for card %d during irq from "
2716 "card %d, this is no bug.\n", hc->id + 1, irqsem);
2717 irqsem = hc->id + 1;
2718 #endif
2719 #ifdef CONFIG_MISDN_HFCMULTI_8xx
2720 if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk)
2721 goto irq_notforus;
2722 #endif
2723 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2724 spin_lock_irqsave(&plx_lock, flags);
2725 plx_acc = hc->plx_membase + PLX_INTCSR;
2726 wval = readw(plx_acc);
2727 spin_unlock_irqrestore(&plx_lock, flags);
2728 if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2729 goto irq_notforus;
2730 }
2731
2732 status = HFC_inb_nodebug(hc, R_STATUS);
2733 r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2734 #ifdef IRQCOUNT_DEBUG
2735 if (r_irq_statech)
2736 iq1++;
2737 if (status & V_DTMF_STA)
2738 iq2++;
2739 if (status & V_LOST_STA)
2740 iq3++;
2741 if (status & V_EXT_IRQSTA)
2742 iq4++;
2743 if (status & V_MISC_IRQSTA)
2744 iq5++;
2745 if (status & V_FR_IRQSTA)
2746 iq6++;
2747 if (iqcnt++ > 5000) {
2748 printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2749 iq1, iq2, iq3, iq4, iq5, iq6);
2750 iqcnt = 0;
2751 }
2752 #endif
2753
2754 if (!r_irq_statech &&
2755 !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2756 V_MISC_IRQSTA | V_FR_IRQSTA))) {
2757 /* irq is not for us */
2758 goto irq_notforus;
2759 }
2760 hc->irqcnt++;
2761 if (r_irq_statech) {
2762 if (hc->ctype != HFC_TYPE_E1)
2763 ph_state_irq(hc, r_irq_statech);
2764 }
2765 if (status & V_EXT_IRQSTA)
2766 ; /* external IRQ */
2767 if (status & V_LOST_STA) {
2768 /* LOST IRQ */
2769 HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2770 }
2771 if (status & V_MISC_IRQSTA) {
2772 /* misc IRQ */
2773 r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2774 r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
2775 if (r_irq_misc & V_STA_IRQ) {
2776 if (hc->ctype == HFC_TYPE_E1) {
2777 /* state machine */
2778 dch = hc->chan[hc->dnum[0]].dch;
2779 e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2780 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2781 && hc->e1_getclock) {
2782 if (e1_syncsta & V_FR_SYNC_E1)
2783 hc->syncronized = 1;
2784 else
2785 hc->syncronized = 0;
2786 }
2787 /* undocumented: status changes during read */
2788 temp = HFC_inb_nodebug(hc, R_E1_RD_STA);
2789 while (temp != (temp2 =
2790 HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2791 if (debug & DEBUG_HFCMULTI_STATE)
2792 printk(KERN_DEBUG "%s: reread "
2793 "STATE because %d!=%d\n",
2794 __func__, temp, temp2);
2795 temp = temp2; /* repeat */
2796 }
2797 /* broadcast state change to all fragments */
2798 if (debug & DEBUG_HFCMULTI_STATE)
2799 printk(KERN_DEBUG
2800 "%s: E1 (id=%d) newstate %x\n",
2801 __func__, hc->id, temp & 0x7);
2802 for (i = 0; i < hc->ports; i++) {
2803 dch = hc->chan[hc->dnum[i]].dch;
2804 dch->state = temp & 0x7;
2805 schedule_event(dch, FLG_PHCHANGE);
2806 }
2807
2808 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2809 plxsd_checksync(hc, 0);
2810 }
2811 }
2812 if (r_irq_misc & V_TI_IRQ) {
2813 if (hc->iclock_on)
2814 mISDN_clock_update(hc->iclock, poll, NULL);
2815 handle_timer_irq(hc);
2816 }
2817
2818 if (r_irq_misc & V_DTMF_IRQ)
2819 hfcmulti_dtmf(hc);
2820
2821 if (r_irq_misc & V_IRQ_PROC) {
2822 static int irq_proc_cnt;
2823 if (!irq_proc_cnt++)
2824 printk(KERN_DEBUG "%s: got V_IRQ_PROC -"
2825 " this should not happen\n", __func__);
2826 }
2827
2828 }
2829 if (status & V_FR_IRQSTA) {
2830 /* FIFO IRQ */
2831 r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2832 for (i = 0; i < 8; i++) {
2833 if (r_irq_oview & (1 << i))
2834 fifo_irq(hc, i);
2835 }
2836 }
2837
2838 #ifdef IRQ_DEBUG
2839 irqsem = 0;
2840 #endif
2841 spin_unlock(&hc->lock);
2842 return IRQ_HANDLED;
2843
2844 irq_notforus:
2845 #ifdef IRQ_DEBUG
2846 irqsem = 0;
2847 #endif
2848 spin_unlock(&hc->lock);
2849 return IRQ_NONE;
2850 }
2851
2852
2853 /*
2854 * timer callback for D-chan busy resolution. Currently no function
2855 */
2856
2857 static void
2858 hfcmulti_dbusy_timer(struct timer_list *t)
2859 {
2860 }
2861
2862
2863 /*
2864 * activate/deactivate hardware for selected channels and mode
2865 *
2866 * configure B-channel with the given protocol
2867 * ch eqals to the HFC-channel (0-31)
2868 * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2869 * for S/T, 1-31 for E1)
2870 * the hdlc interrupts will be set/unset
2871 */
2872 static int
2873 mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2874 int bank_tx, int slot_rx, int bank_rx)
2875 {
2876 int flow_tx = 0, flow_rx = 0, routing = 0;
2877 int oslot_tx, oslot_rx;
2878 int conf;
2879
2880 if (ch < 0 || ch > 31)
2881 return -EINVAL;
2882 oslot_tx = hc->chan[ch].slot_tx;
2883 oslot_rx = hc->chan[ch].slot_rx;
2884 conf = hc->chan[ch].conf;
2885
2886 if (debug & DEBUG_HFCMULTI_MODE)
2887 printk(KERN_DEBUG
2888 "%s: card %d channel %d protocol %x slot old=%d new=%d "
2889 "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2890 __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2891 bank_tx, oslot_rx, slot_rx, bank_rx);
2892
2893 if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2894 /* remove from slot */
2895 if (debug & DEBUG_HFCMULTI_MODE)
2896 printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2897 __func__, oslot_tx);
2898 if (hc->slot_owner[oslot_tx << 1] == ch) {
2899 HFC_outb(hc, R_SLOT, oslot_tx << 1);
2900 HFC_outb(hc, A_SL_CFG, 0);
2901 if (hc->ctype != HFC_TYPE_XHFC)
2902 HFC_outb(hc, A_CONF, 0);
2903 hc->slot_owner[oslot_tx << 1] = -1;
2904 } else {
2905 if (debug & DEBUG_HFCMULTI_MODE)
2906 printk(KERN_DEBUG
2907 "%s: we are not owner of this tx slot "
2908 "anymore, channel %d is.\n",
2909 __func__, hc->slot_owner[oslot_tx << 1]);
2910 }
2911 }
2912
2913 if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2914 /* remove from slot */
2915 if (debug & DEBUG_HFCMULTI_MODE)
2916 printk(KERN_DEBUG
2917 "%s: remove from slot %d (RX)\n",
2918 __func__, oslot_rx);
2919 if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2920 HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2921 HFC_outb(hc, A_SL_CFG, 0);
2922 hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2923 } else {
2924 if (debug & DEBUG_HFCMULTI_MODE)
2925 printk(KERN_DEBUG
2926 "%s: we are not owner of this rx slot "
2927 "anymore, channel %d is.\n",
2928 __func__,
2929 hc->slot_owner[(oslot_rx << 1) | 1]);
2930 }
2931 }
2932
2933 if (slot_tx < 0) {
2934 flow_tx = 0x80; /* FIFO->ST */
2935 /* disable pcm slot */
2936 hc->chan[ch].slot_tx = -1;
2937 hc->chan[ch].bank_tx = 0;
2938 } else {
2939 /* set pcm slot */
2940 if (hc->chan[ch].txpending)
2941 flow_tx = 0x80; /* FIFO->ST */
2942 else
2943 flow_tx = 0xc0; /* PCM->ST */
2944 /* put on slot */
2945 routing = bank_tx ? 0xc0 : 0x80;
2946 if (conf >= 0 || bank_tx > 1)
2947 routing = 0x40; /* loop */
2948 if (debug & DEBUG_HFCMULTI_MODE)
2949 printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2950 " %d flow %02x routing %02x conf %d (TX)\n",
2951 __func__, ch, slot_tx, bank_tx,
2952 flow_tx, routing, conf);
2953 HFC_outb(hc, R_SLOT, slot_tx << 1);
2954 HFC_outb(hc, A_SL_CFG, (ch << 1) | routing);
2955 if (hc->ctype != HFC_TYPE_XHFC)
2956 HFC_outb(hc, A_CONF,
2957 (conf < 0) ? 0 : (conf | V_CONF_SL));
2958 hc->slot_owner[slot_tx << 1] = ch;
2959 hc->chan[ch].slot_tx = slot_tx;
2960 hc->chan[ch].bank_tx = bank_tx;
2961 }
2962 if (slot_rx < 0) {
2963 /* disable pcm slot */
2964 flow_rx = 0x80; /* ST->FIFO */
2965 hc->chan[ch].slot_rx = -1;
2966 hc->chan[ch].bank_rx = 0;
2967 } else {
2968 /* set pcm slot */
2969 if (hc->chan[ch].txpending)
2970 flow_rx = 0x80; /* ST->FIFO */
2971 else
2972 flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2973 /* put on slot */
2974 routing = bank_rx ? 0x80 : 0xc0; /* reversed */
2975 if (conf >= 0 || bank_rx > 1)
2976 routing = 0x40; /* loop */
2977 if (debug & DEBUG_HFCMULTI_MODE)
2978 printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2979 " %d flow %02x routing %02x conf %d (RX)\n",
2980 __func__, ch, slot_rx, bank_rx,
2981 flow_rx, routing, conf);
2982 HFC_outb(hc, R_SLOT, (slot_rx << 1) | V_SL_DIR);
2983 HFC_outb(hc, A_SL_CFG, (ch << 1) | V_CH_DIR | routing);
2984 hc->slot_owner[(slot_rx << 1) | 1] = ch;
2985 hc->chan[ch].slot_rx = slot_rx;
2986 hc->chan[ch].bank_rx = bank_rx;
2987 }
2988
2989 switch (protocol) {
2990 case (ISDN_P_NONE):
2991 /* disable TX fifo */
2992 HFC_outb(hc, R_FIFO, ch << 1);
2993 HFC_wait(hc);
2994 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2995 HFC_outb(hc, A_SUBCH_CFG, 0);
2996 HFC_outb(hc, A_IRQ_MSK, 0);
2997 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2998 HFC_wait(hc);
2999 /* disable RX fifo */
3000 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3001 HFC_wait(hc);
3002 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
3003 HFC_outb(hc, A_SUBCH_CFG, 0);
3004 HFC_outb(hc, A_IRQ_MSK, 0);
3005 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3006 HFC_wait(hc);
3007 if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) {
3008 hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
3009 ((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN;
3010 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3011 /* undocumented: delay after R_ST_SEL */
3012 udelay(1);
3013 HFC_outb(hc, A_ST_CTRL0,
3014 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3015 }
3016 if (hc->chan[ch].bch) {
3017 test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3018 test_and_clear_bit(FLG_TRANSPARENT,
3019 &hc->chan[ch].bch->Flags);
3020 }
3021 break;
3022 case (ISDN_P_B_RAW): /* B-channel */
3023
3024 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
3025 (hc->chan[ch].slot_rx < 0) &&
3026 (hc->chan[ch].slot_tx < 0)) {
3027
3028 printk(KERN_DEBUG
3029 "Setting B-channel %d to echo cancelable "
3030 "state on PCM slot %d\n", ch,
3031 ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
3032 printk(KERN_DEBUG
3033 "Enabling pass through for channel\n");
3034 vpm_out(hc, ch, ((ch / 4) * 8) +
3035 ((ch % 4) * 4) + 1, 0x01);
3036 /* rx path */
3037 /* S/T -> PCM */
3038 HFC_outb(hc, R_FIFO, (ch << 1));
3039 HFC_wait(hc);
3040 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3041 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3042 ((ch % 4) * 4) + 1) << 1);
3043 HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
3044
3045 /* PCM -> FIFO */
3046 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
3047 HFC_wait(hc);
3048 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3049 HFC_outb(hc, A_SUBCH_CFG, 0);
3050 HFC_outb(hc, A_IRQ_MSK, 0);
3051 if (hc->chan[ch].protocol != protocol) {
3052 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3053 HFC_wait(hc);
3054 }
3055 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3056 ((ch % 4) * 4) + 1) << 1) | 1);
3057 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
3058
3059 /* tx path */
3060 /* PCM -> S/T */
3061 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3062 HFC_wait(hc);
3063 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3064 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3065 ((ch % 4) * 4)) << 1) | 1);
3066 HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
3067
3068 /* FIFO -> PCM */
3069 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
3070 HFC_wait(hc);
3071 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3072 HFC_outb(hc, A_SUBCH_CFG, 0);
3073 HFC_outb(hc, A_IRQ_MSK, 0);
3074 if (hc->chan[ch].protocol != protocol) {
3075 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3076 HFC_wait(hc);
3077 }
3078 /* tx silence */
3079 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3080 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3081 ((ch % 4) * 4)) << 1);
3082 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
3083 } else {
3084 /* enable TX fifo */
3085 HFC_outb(hc, R_FIFO, ch << 1);
3086 HFC_wait(hc);
3087 if (hc->ctype == HFC_TYPE_XHFC)
3088 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 |
3089 V_HDLC_TRP | V_IFF);
3090 /* Enable FIFO, no interrupt */
3091 else
3092 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
3093 V_HDLC_TRP | V_IFF);
3094 HFC_outb(hc, A_SUBCH_CFG, 0);
3095 HFC_outb(hc, A_IRQ_MSK, 0);
3096 if (hc->chan[ch].protocol != protocol) {
3097 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3098 HFC_wait(hc);
3099 }
3100 /* tx silence */
3101 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3102 /* enable RX fifo */
3103 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3104 HFC_wait(hc);
3105 if (hc->ctype == HFC_TYPE_XHFC)
3106 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 |
3107 V_HDLC_TRP);
3108 /* Enable FIFO, no interrupt*/
3109 else
3110 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 |
3111 V_HDLC_TRP);
3112 HFC_outb(hc, A_SUBCH_CFG, 0);
3113 HFC_outb(hc, A_IRQ_MSK, 0);
3114 if (hc->chan[ch].protocol != protocol) {
3115 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3116 HFC_wait(hc);
3117 }
3118 }
3119 if (hc->ctype != HFC_TYPE_E1) {
3120 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3121 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3122 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3123 /* undocumented: delay after R_ST_SEL */
3124 udelay(1);
3125 HFC_outb(hc, A_ST_CTRL0,
3126 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3127 }
3128 if (hc->chan[ch].bch)
3129 test_and_set_bit(FLG_TRANSPARENT,
3130 &hc->chan[ch].bch->Flags);
3131 break;
3132 case (ISDN_P_B_HDLC): /* B-channel */
3133 case (ISDN_P_TE_S0): /* D-channel */
3134 case (ISDN_P_NT_S0):
3135 case (ISDN_P_TE_E1):
3136 case (ISDN_P_NT_E1):
3137 /* enable TX fifo */
3138 HFC_outb(hc, R_FIFO, ch << 1);
3139 HFC_wait(hc);
3140 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) {
3141 /* E1 or B-channel */
3142 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3143 HFC_outb(hc, A_SUBCH_CFG, 0);
3144 } else {
3145 /* D-Channel without HDLC fill flags */
3146 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3147 HFC_outb(hc, A_SUBCH_CFG, 2);
3148 }
3149 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3150 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3151 HFC_wait(hc);
3152 /* enable RX fifo */
3153 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3154 HFC_wait(hc);
3155 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3156 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch)
3157 HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3158 else
3159 HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3160 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3161 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3162 HFC_wait(hc);
3163 if (hc->chan[ch].bch) {
3164 test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3165 if (hc->ctype != HFC_TYPE_E1) {
3166 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3167 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3168 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3169 /* undocumented: delay after R_ST_SEL */
3170 udelay(1);
3171 HFC_outb(hc, A_ST_CTRL0,
3172 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3173 }
3174 }
3175 break;
3176 default:
3177 printk(KERN_DEBUG "%s: protocol not known %x\n",
3178 __func__, protocol);
3179 hc->chan[ch].protocol = ISDN_P_NONE;
3180 return -ENOPROTOOPT;
3181 }
3182 hc->chan[ch].protocol = protocol;
3183 return 0;
3184 }
3185
3186
3187 /*
3188 * connect/disconnect PCM
3189 */
3190
3191 static void
3192 hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3193 int slot_rx, int bank_rx)
3194 {
3195 if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3196 /* disable PCM */
3197 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3198 return;
3199 }
3200
3201 /* enable pcm */
3202 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3203 slot_rx, bank_rx);
3204 }
3205
3206 /*
3207 * set/disable conference
3208 */
3209
3210 static void
3211 hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3212 {
3213 if (num >= 0 && num <= 7)
3214 hc->chan[ch].conf = num;
3215 else
3216 hc->chan[ch].conf = -1;
3217 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3218 hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3219 hc->chan[ch].bank_rx);
3220 }
3221
3222
3223 /*
3224 * set/disable sample loop
3225 */
3226
3227 /* NOTE: this function is experimental and therefore disabled */
3228
3229 /*
3230 * Layer 1 callback function
3231 */
3232 static int
3233 hfcm_l1callback(struct dchannel *dch, u_int cmd)
3234 {
3235 struct hfc_multi *hc = dch->hw;
3236 u_long flags;
3237
3238 switch (cmd) {
3239 case INFO3_P8:
3240 case INFO3_P10:
3241 break;
3242 case HW_RESET_REQ:
3243 /* start activation */
3244 spin_lock_irqsave(&hc->lock, flags);
3245 if (hc->ctype == HFC_TYPE_E1) {
3246 if (debug & DEBUG_HFCMULTI_MSG)
3247 printk(KERN_DEBUG
3248 "%s: HW_RESET_REQ no BRI\n",
3249 __func__);
3250 } else {
3251 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3252 /* undocumented: delay after R_ST_SEL */
3253 udelay(1);
3254 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3255 udelay(6); /* wait at least 5,21us */
3256 HFC_outb(hc, A_ST_WR_STATE, 3);
3257 HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT * 3));
3258 /* activate */
3259 }
3260 spin_unlock_irqrestore(&hc->lock, flags);
3261 l1_event(dch->l1, HW_POWERUP_IND);
3262 break;
3263 case HW_DEACT_REQ:
3264 /* start deactivation */
3265 spin_lock_irqsave(&hc->lock, flags);
3266 if (hc->ctype == HFC_TYPE_E1) {
3267 if (debug & DEBUG_HFCMULTI_MSG)
3268 printk(KERN_DEBUG
3269 "%s: HW_DEACT_REQ no BRI\n",
3270 __func__);
3271 } else {
3272 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3273 /* undocumented: delay after R_ST_SEL */
3274 udelay(1);
3275 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3276 /* deactivate */
3277 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3278 hc->syncronized &=
3279 ~(1 << hc->chan[dch->slot].port);
3280 plxsd_checksync(hc, 0);
3281 }
3282 }
3283 skb_queue_purge(&dch->squeue);
3284 if (dch->tx_skb) {
3285 dev_kfree_skb(dch->tx_skb);
3286 dch->tx_skb = NULL;
3287 }
3288 dch->tx_idx = 0;
3289 if (dch->rx_skb) {
3290 dev_kfree_skb(dch->rx_skb);
3291 dch->rx_skb = NULL;
3292 }
3293 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3294 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3295 del_timer(&dch->timer);
3296 spin_unlock_irqrestore(&hc->lock, flags);
3297 break;
3298 case HW_POWERUP_REQ:
3299 spin_lock_irqsave(&hc->lock, flags);
3300 if (hc->ctype == HFC_TYPE_E1) {
3301 if (debug & DEBUG_HFCMULTI_MSG)
3302 printk(KERN_DEBUG
3303 "%s: HW_POWERUP_REQ no BRI\n",
3304 __func__);
3305 } else {
3306 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3307 /* undocumented: delay after R_ST_SEL */
3308 udelay(1);
3309 HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3310 udelay(6); /* wait at least 5,21us */
3311 HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3312 }
3313 spin_unlock_irqrestore(&hc->lock, flags);
3314 break;
3315 case PH_ACTIVATE_IND:
3316 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3317 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3318 GFP_ATOMIC);
3319 break;
3320 case PH_DEACTIVATE_IND:
3321 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3322 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3323 GFP_ATOMIC);
3324 break;
3325 default:
3326 if (dch->debug & DEBUG_HW)
3327 printk(KERN_DEBUG "%s: unknown command %x\n",
3328 __func__, cmd);
3329 return -1;
3330 }
3331 return 0;
3332 }
3333
3334 /*
3335 * Layer2 -> Layer 1 Transfer
3336 */
3337
3338 static int
3339 handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3340 {
3341 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
3342 struct dchannel *dch = container_of(dev, struct dchannel, dev);
3343 struct hfc_multi *hc = dch->hw;
3344 struct mISDNhead *hh = mISDN_HEAD_P(skb);
3345 int ret = -EINVAL;
3346 unsigned int id;
3347 u_long flags;
3348
3349 switch (hh->prim) {
3350 case PH_DATA_REQ:
3351 if (skb->len < 1)
3352 break;
3353 spin_lock_irqsave(&hc->lock, flags);
3354 ret = dchannel_senddata(dch, skb);
3355 if (ret > 0) { /* direct TX */
3356 id = hh->id; /* skb can be freed */
3357 hfcmulti_tx(hc, dch->slot);
3358 ret = 0;
3359 /* start fifo */
3360 HFC_outb(hc, R_FIFO, 0);
3361 HFC_wait(hc);
3362 spin_unlock_irqrestore(&hc->lock, flags);
3363 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3364 } else
3365 spin_unlock_irqrestore(&hc->lock, flags);
3366 return ret;
3367 case PH_ACTIVATE_REQ:
3368 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3369 spin_lock_irqsave(&hc->lock, flags);
3370 ret = 0;
3371 if (debug & DEBUG_HFCMULTI_MSG)
3372 printk(KERN_DEBUG
3373 "%s: PH_ACTIVATE port %d (0..%d)\n",
3374 __func__, hc->chan[dch->slot].port,
3375 hc->ports - 1);
3376 /* start activation */
3377 if (hc->ctype == HFC_TYPE_E1) {
3378 ph_state_change(dch);
3379 if (debug & DEBUG_HFCMULTI_STATE)
3380 printk(KERN_DEBUG
3381 "%s: E1 report state %x \n",
3382 __func__, dch->state);
3383 } else {
3384 HFC_outb(hc, R_ST_SEL,
3385 hc->chan[dch->slot].port);
3386 /* undocumented: delay after R_ST_SEL */
3387 udelay(1);
3388 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3389 /* G1 */
3390 udelay(6); /* wait at least 5,21us */
3391 HFC_outb(hc, A_ST_WR_STATE, 1);
3392 HFC_outb(hc, A_ST_WR_STATE, 1 |
3393 (V_ST_ACT * 3)); /* activate */
3394 dch->state = 1;
3395 }
3396 spin_unlock_irqrestore(&hc->lock, flags);
3397 } else
3398 ret = l1_event(dch->l1, hh->prim);
3399 break;
3400 case PH_DEACTIVATE_REQ:
3401 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3402 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3403 spin_lock_irqsave(&hc->lock, flags);
3404 if (debug & DEBUG_HFCMULTI_MSG)
3405 printk(KERN_DEBUG
3406 "%s: PH_DEACTIVATE port %d (0..%d)\n",
3407 __func__, hc->chan[dch->slot].port,
3408 hc->ports - 1);
3409 /* start deactivation */
3410 if (hc->ctype == HFC_TYPE_E1) {
3411 if (debug & DEBUG_HFCMULTI_MSG)
3412 printk(KERN_DEBUG
3413 "%s: PH_DEACTIVATE no BRI\n",
3414 __func__);
3415 } else {
3416 HFC_outb(hc, R_ST_SEL,
3417 hc->chan[dch->slot].port);
3418 /* undocumented: delay after R_ST_SEL */
3419 udelay(1);
3420 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3421 /* deactivate */
3422 dch->state = 1;
3423 }
3424 skb_queue_purge(&dch->squeue);
3425 if (dch->tx_skb) {
3426 dev_kfree_skb(dch->tx_skb);
3427 dch->tx_skb = NULL;
3428 }
3429 dch->tx_idx = 0;
3430 if (dch->rx_skb) {
3431 dev_kfree_skb(dch->rx_skb);
3432 dch->rx_skb = NULL;
3433 }
3434 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3435 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3436 del_timer(&dch->timer);
3437 #ifdef FIXME
3438 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3439 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3440 #endif
3441 ret = 0;
3442 spin_unlock_irqrestore(&hc->lock, flags);
3443 } else
3444 ret = l1_event(dch->l1, hh->prim);
3445 break;
3446 }
3447 if (!ret)
3448 dev_kfree_skb(skb);
3449 return ret;
3450 }
3451
3452 static void
3453 deactivate_bchannel(struct bchannel *bch)
3454 {
3455 struct hfc_multi *hc = bch->hw;
3456 u_long flags;
3457
3458 spin_lock_irqsave(&hc->lock, flags);
3459 mISDN_clear_bchannel(bch);
3460 hc->chan[bch->slot].coeff_count = 0;
3461 hc->chan[bch->slot].rx_off = 0;
3462 hc->chan[bch->slot].conf = -1;
3463 mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3464 spin_unlock_irqrestore(&hc->lock, flags);
3465 }
3466
3467 static int
3468 handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3469 {
3470 struct bchannel *bch = container_of(ch, struct bchannel, ch);
3471 struct hfc_multi *hc = bch->hw;
3472 int ret = -EINVAL;
3473 struct mISDNhead *hh = mISDN_HEAD_P(skb);
3474 unsigned long flags;
3475
3476 switch (hh->prim) {
3477 case PH_DATA_REQ:
3478 if (!skb->len)
3479 break;
3480 spin_lock_irqsave(&hc->lock, flags);
3481 ret = bchannel_senddata(bch, skb);
3482 if (ret > 0) { /* direct TX */
3483 hfcmulti_tx(hc, bch->slot);
3484 ret = 0;
3485 /* start fifo */
3486 HFC_outb_nodebug(hc, R_FIFO, 0);
3487 HFC_wait_nodebug(hc);
3488 }
3489 spin_unlock_irqrestore(&hc->lock, flags);
3490 return ret;
3491 case PH_ACTIVATE_REQ:
3492 if (debug & DEBUG_HFCMULTI_MSG)
3493 printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3494 __func__, bch->slot);
3495 spin_lock_irqsave(&hc->lock, flags);
3496 /* activate B-channel if not already activated */
3497 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3498 hc->chan[bch->slot].txpending = 0;
3499 ret = mode_hfcmulti(hc, bch->slot,
3500 ch->protocol,
3501 hc->chan[bch->slot].slot_tx,
3502 hc->chan[bch->slot].bank_tx,
3503 hc->chan[bch->slot].slot_rx,
3504 hc->chan[bch->slot].bank_rx);
3505 if (!ret) {
3506 if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3507 && test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3508 /* start decoder */
3509 hc->dtmf = 1;
3510 if (debug & DEBUG_HFCMULTI_DTMF)
3511 printk(KERN_DEBUG
3512 "%s: start dtmf decoder\n",
3513 __func__);
3514 HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3515 V_RST_DTMF);
3516 }
3517 }
3518 } else
3519 ret = 0;
3520 spin_unlock_irqrestore(&hc->lock, flags);
3521 if (!ret)
3522 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3523 GFP_KERNEL);
3524 break;
3525 case PH_CONTROL_REQ:
3526 spin_lock_irqsave(&hc->lock, flags);
3527 switch (hh->id) {
3528 case HFC_SPL_LOOP_ON: /* set sample loop */
3529 if (debug & DEBUG_HFCMULTI_MSG)
3530 printk(KERN_DEBUG
3531 "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3532 __func__, skb->len);
3533 ret = 0;
3534 break;
3535 case HFC_SPL_LOOP_OFF: /* set silence */
3536 if (debug & DEBUG_HFCMULTI_MSG)
3537 printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3538 __func__);
3539 ret = 0;
3540 break;
3541 default:
3542 printk(KERN_ERR
3543 "%s: unknown PH_CONTROL_REQ info %x\n",
3544 __func__, hh->id);
3545 ret = -EINVAL;
3546 }
3547 spin_unlock_irqrestore(&hc->lock, flags);
3548 break;
3549 case PH_DEACTIVATE_REQ:
3550 deactivate_bchannel(bch); /* locked there */
3551 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3552 GFP_KERNEL);
3553 ret = 0;
3554 break;
3555 }
3556 if (!ret)
3557 dev_kfree_skb(skb);
3558 return ret;
3559 }
3560
3561 /*
3562 * bchannel control function
3563 */
3564 static int
3565 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3566 {
3567 int ret = 0;
3568 struct dsp_features *features =
3569 (struct dsp_features *)(*((u_long *)&cq->p1));
3570 struct hfc_multi *hc = bch->hw;
3571 int slot_tx;
3572 int bank_tx;
3573 int slot_rx;
3574 int bank_rx;
3575 int num;
3576
3577 switch (cq->op) {
3578 case MISDN_CTRL_GETOP:
3579 ret = mISDN_ctrl_bchannel(bch, cq);
3580 cq->op |= MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP;
3581 break;
3582 case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3583 ret = mISDN_ctrl_bchannel(bch, cq);
3584 hc->chan[bch->slot].rx_off = !!cq->p1;
3585 if (!hc->chan[bch->slot].rx_off) {
3586 /* reset fifo on rx on */
3587 HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3588 HFC_wait_nodebug(hc);
3589 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3590 HFC_wait_nodebug(hc);
3591 }
3592 if (debug & DEBUG_HFCMULTI_MSG)
3593 printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3594 __func__, bch->nr, hc->chan[bch->slot].rx_off);
3595 break;
3596 case MISDN_CTRL_FILL_EMPTY:
3597 ret = mISDN_ctrl_bchannel(bch, cq);
3598 hc->silence = bch->fill[0];
3599 memset(hc->silence_data, hc->silence, sizeof(hc->silence_data));
3600 break;
3601 case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3602 if (debug & DEBUG_HFCMULTI_MSG)
3603 printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3604 __func__);
3605 /* create confirm */
3606 features->hfc_id = hc->id;
3607 if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3608 features->hfc_dtmf = 1;
3609 if (test_bit(HFC_CHIP_CONF, &hc->chip))
3610 features->hfc_conf = 1;
3611 features->hfc_loops = 0;
3612 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3613 features->hfc_echocanhw = 1;
3614 } else {
3615 features->pcm_id = hc->pcm;
3616 features->pcm_slots = hc->slots;
3617 features->pcm_banks = 2;
3618 }
3619 break;
3620 case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3621 slot_tx = cq->p1 & 0xff;
3622 bank_tx = cq->p1 >> 8;
3623 slot_rx = cq->p2 & 0xff;
3624 bank_rx = cq->p2 >> 8;
3625 if (debug & DEBUG_HFCMULTI_MSG)
3626 printk(KERN_DEBUG
3627 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3628 "slot %d bank %d (RX)\n",
3629 __func__, slot_tx, bank_tx,
3630 slot_rx, bank_rx);
3631 if (slot_tx < hc->slots && bank_tx <= 2 &&
3632 slot_rx < hc->slots && bank_rx <= 2)
3633 hfcmulti_pcm(hc, bch->slot,
3634 slot_tx, bank_tx, slot_rx, bank_rx);
3635 else {
3636 printk(KERN_WARNING
3637 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3638 "slot %d bank %d (RX) out of range\n",
3639 __func__, slot_tx, bank_tx,
3640 slot_rx, bank_rx);
3641 ret = -EINVAL;
3642 }
3643 break;
3644 case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3645 if (debug & DEBUG_HFCMULTI_MSG)
3646 printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3647 __func__);
3648 hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3649 break;
3650 case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3651 num = cq->p1 & 0xff;
3652 if (debug & DEBUG_HFCMULTI_MSG)
3653 printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3654 __func__, num);
3655 if (num <= 7)
3656 hfcmulti_conf(hc, bch->slot, num);
3657 else {
3658 printk(KERN_WARNING
3659 "%s: HW_CONF_JOIN conf %d out of range\n",
3660 __func__, num);
3661 ret = -EINVAL;
3662 }
3663 break;
3664 case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3665 if (debug & DEBUG_HFCMULTI_MSG)
3666 printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3667 hfcmulti_conf(hc, bch->slot, -1);
3668 break;
3669 case MISDN_CTRL_HFC_ECHOCAN_ON:
3670 if (debug & DEBUG_HFCMULTI_MSG)
3671 printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3672 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3673 vpm_echocan_on(hc, bch->slot, cq->p1);
3674 else
3675 ret = -EINVAL;
3676 break;
3677
3678 case MISDN_CTRL_HFC_ECHOCAN_OFF:
3679 if (debug & DEBUG_HFCMULTI_MSG)
3680 printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3681 __func__);
3682 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3683 vpm_echocan_off(hc, bch->slot);
3684 else
3685 ret = -EINVAL;
3686 break;
3687 default:
3688 ret = mISDN_ctrl_bchannel(bch, cq);
3689 break;
3690 }
3691 return ret;
3692 }
3693
3694 static int
3695 hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3696 {
3697 struct bchannel *bch = container_of(ch, struct bchannel, ch);
3698 struct hfc_multi *hc = bch->hw;
3699 int err = -EINVAL;
3700 u_long flags;
3701
3702 if (bch->debug & DEBUG_HW)
3703 printk(KERN_DEBUG "%s: cmd:%x %p\n",
3704 __func__, cmd, arg);
3705 switch (cmd) {
3706 case CLOSE_CHANNEL:
3707 test_and_clear_bit(FLG_OPEN, &bch->Flags);
3708 deactivate_bchannel(bch); /* locked there */
3709 ch->protocol = ISDN_P_NONE;
3710 ch->peer = NULL;
3711 module_put(THIS_MODULE);
3712 err = 0;
3713 break;
3714 case CONTROL_CHANNEL:
3715 spin_lock_irqsave(&hc->lock, flags);
3716 err = channel_bctrl(bch, arg);
3717 spin_unlock_irqrestore(&hc->lock, flags);
3718 break;
3719 default:
3720 printk(KERN_WARNING "%s: unknown prim(%x)\n",
3721 __func__, cmd);
3722 }
3723 return err;
3724 }
3725
3726 /*
3727 * handle D-channel events
3728 *
3729 * handle state change event
3730 */
3731 static void
3732 ph_state_change(struct dchannel *dch)
3733 {
3734 struct hfc_multi *hc;
3735 int ch, i;
3736
3737 if (!dch) {
3738 printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__);
3739 return;
3740 }
3741 hc = dch->hw;
3742 ch = dch->slot;
3743
3744 if (hc->ctype == HFC_TYPE_E1) {
3745 if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3746 if (debug & DEBUG_HFCMULTI_STATE)
3747 printk(KERN_DEBUG
3748 "%s: E1 TE (id=%d) newstate %x\n",
3749 __func__, hc->id, dch->state);
3750 } else {
3751 if (debug & DEBUG_HFCMULTI_STATE)
3752 printk(KERN_DEBUG
3753 "%s: E1 NT (id=%d) newstate %x\n",
3754 __func__, hc->id, dch->state);
3755 }
3756 switch (dch->state) {
3757 case (1):
3758 if (hc->e1_state != 1) {
3759 for (i = 1; i <= 31; i++) {
3760 /* reset fifos on e1 activation */
3761 HFC_outb_nodebug(hc, R_FIFO,
3762 (i << 1) | 1);
3763 HFC_wait_nodebug(hc);
3764 HFC_outb_nodebug(hc, R_INC_RES_FIFO,
3765 V_RES_F);
3766 HFC_wait_nodebug(hc);
3767 }
3768 }
3769 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3770 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3771 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3772 break;
3773
3774 default:
3775 if (hc->e1_state != 1)
3776 return;
3777 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3778 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3779 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3780 }
3781 hc->e1_state = dch->state;
3782 } else {
3783 if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3784 if (debug & DEBUG_HFCMULTI_STATE)
3785 printk(KERN_DEBUG
3786 "%s: S/T TE newstate %x\n",
3787 __func__, dch->state);
3788 switch (dch->state) {
3789 case (0):
3790 l1_event(dch->l1, HW_RESET_IND);
3791 break;
3792 case (3):
3793 l1_event(dch->l1, HW_DEACT_IND);
3794 break;
3795 case (5):
3796 case (8):
3797 l1_event(dch->l1, ANYSIGNAL);
3798 break;
3799 case (6):
3800 l1_event(dch->l1, INFO2);
3801 break;
3802 case (7):
3803 l1_event(dch->l1, INFO4_P8);
3804 break;
3805 }
3806 } else {
3807 if (debug & DEBUG_HFCMULTI_STATE)
3808 printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3809 __func__, dch->state);
3810 switch (dch->state) {
3811 case (2):
3812 if (hc->chan[ch].nt_timer == 0) {
3813 hc->chan[ch].nt_timer = -1;
3814 HFC_outb(hc, R_ST_SEL,
3815 hc->chan[ch].port);
3816 /* undocumented: delay after R_ST_SEL */
3817 udelay(1);
3818 HFC_outb(hc, A_ST_WR_STATE, 4 |
3819 V_ST_LD_STA); /* G4 */
3820 udelay(6); /* wait at least 5,21us */
3821 HFC_outb(hc, A_ST_WR_STATE, 4);
3822 dch->state = 4;
3823 } else {
3824 /* one extra count for the next event */
3825 hc->chan[ch].nt_timer =
3826 nt_t1_count[poll_timer] + 1;
3827 HFC_outb(hc, R_ST_SEL,
3828 hc->chan[ch].port);
3829 /* undocumented: delay after R_ST_SEL */
3830 udelay(1);
3831 /* allow G2 -> G3 transition */
3832 HFC_outb(hc, A_ST_WR_STATE, 2 |
3833 V_SET_G2_G3);
3834 }
3835 break;
3836 case (1):
3837 hc->chan[ch].nt_timer = -1;
3838 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3839 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3840 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3841 break;
3842 case (4):
3843 hc->chan[ch].nt_timer = -1;
3844 break;
3845 case (3):
3846 hc->chan[ch].nt_timer = -1;
3847 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3848 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3849 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3850 break;
3851 }
3852 }
3853 }
3854 }
3855
3856 /*
3857 * called for card mode init message
3858 */
3859
3860 static void
3861 hfcmulti_initmode(struct dchannel *dch)
3862 {
3863 struct hfc_multi *hc = dch->hw;
3864 u_char a_st_wr_state, r_e1_wr_sta;
3865 int i, pt;
3866
3867 if (debug & DEBUG_HFCMULTI_INIT)
3868 printk(KERN_DEBUG "%s: entered\n", __func__);
3869
3870 i = dch->slot;
3871 pt = hc->chan[i].port;
3872 if (hc->ctype == HFC_TYPE_E1) {
3873 /* E1 */
3874 hc->chan[hc->dnum[pt]].slot_tx = -1;
3875 hc->chan[hc->dnum[pt]].slot_rx = -1;
3876 hc->chan[hc->dnum[pt]].conf = -1;
3877 if (hc->dnum[pt]) {
3878 mode_hfcmulti(hc, dch->slot, dch->dev.D.protocol,
3879 -1, 0, -1, 0);
3880 timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0);
3881 }
3882 for (i = 1; i <= 31; i++) {
3883 if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
3884 continue;
3885 hc->chan[i].slot_tx = -1;
3886 hc->chan[i].slot_rx = -1;
3887 hc->chan[i].conf = -1;
3888 mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3889 }
3890 }
3891 if (hc->ctype == HFC_TYPE_E1 && pt == 0) {
3892 /* E1, port 0 */
3893 dch = hc->chan[hc->dnum[0]].dch;
3894 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
3895 HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3896 HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3897 }
3898 if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dnum[0]].cfg)) {
3899 HFC_outb(hc, R_RX0, 0);
3900 hc->hw.r_tx0 = 0 | V_OUT_EN;
3901 } else {
3902 HFC_outb(hc, R_RX0, 1);
3903 hc->hw.r_tx0 = 1 | V_OUT_EN;
3904 }
3905 hc->hw.r_tx1 = V_ATX | V_NTRI;
3906 HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3907 HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3908 HFC_outb(hc, R_TX_FR0, 0x00);
3909 HFC_outb(hc, R_TX_FR1, 0xf8);
3910
3911 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3912 HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3913
3914 HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3915
3916 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3917 HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3918
3919 if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3920 if (debug & DEBUG_HFCMULTI_INIT)
3921 printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3922 __func__);
3923 r_e1_wr_sta = 0; /* G0 */
3924 hc->e1_getclock = 0;
3925 } else {
3926 if (debug & DEBUG_HFCMULTI_INIT)
3927 printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3928 __func__);
3929 r_e1_wr_sta = 0; /* F0 */
3930 hc->e1_getclock = 1;
3931 }
3932 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3933 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3934 else
3935 HFC_outb(hc, R_SYNC_OUT, 0);
3936 if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3937 hc->e1_getclock = 1;
3938 if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3939 hc->e1_getclock = 0;
3940 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3941 /* SLAVE (clock master) */
3942 if (debug & DEBUG_HFCMULTI_INIT)
3943 printk(KERN_DEBUG
3944 "%s: E1 port is clock master "
3945 "(clock from PCM)\n", __func__);
3946 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3947 } else {
3948 if (hc->e1_getclock) {
3949 /* MASTER (clock slave) */
3950 if (debug & DEBUG_HFCMULTI_INIT)
3951 printk(KERN_DEBUG
3952 "%s: E1 port is clock slave "
3953 "(clock to PCM)\n", __func__);
3954 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3955 } else {
3956 /* MASTER (clock master) */
3957 if (debug & DEBUG_HFCMULTI_INIT)
3958 printk(KERN_DEBUG "%s: E1 port is "
3959 "clock master "
3960 "(clock from QUARTZ)\n",
3961 __func__);
3962 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3963 V_PCM_SYNC | V_JATT_OFF);
3964 HFC_outb(hc, R_SYNC_OUT, 0);
3965 }
3966 }
3967 HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3968 HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3969 HFC_outb(hc, R_PWM0, 0x50);
3970 HFC_outb(hc, R_PWM1, 0xff);
3971 /* state machine setup */
3972 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3973 udelay(6); /* wait at least 5,21us */
3974 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3975 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3976 hc->syncronized = 0;
3977 plxsd_checksync(hc, 0);
3978 }
3979 }
3980 if (hc->ctype != HFC_TYPE_E1) {
3981 /* ST */
3982 hc->chan[i].slot_tx = -1;
3983 hc->chan[i].slot_rx = -1;
3984 hc->chan[i].conf = -1;
3985 mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3986 timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0);
3987 hc->chan[i - 2].slot_tx = -1;
3988 hc->chan[i - 2].slot_rx = -1;
3989 hc->chan[i - 2].conf = -1;
3990 mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3991 hc->chan[i - 1].slot_tx = -1;
3992 hc->chan[i - 1].slot_rx = -1;
3993 hc->chan[i - 1].conf = -1;
3994 mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
3995 /* select interface */
3996 HFC_outb(hc, R_ST_SEL, pt);
3997 /* undocumented: delay after R_ST_SEL */
3998 udelay(1);
3999 if (dch->dev.D.protocol == ISDN_P_NT_S0) {
4000 if (debug & DEBUG_HFCMULTI_INIT)
4001 printk(KERN_DEBUG
4002 "%s: ST port %d is NT-mode\n",
4003 __func__, pt);
4004 /* clock delay */
4005 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
4006 a_st_wr_state = 1; /* G1 */
4007 hc->hw.a_st_ctrl0[pt] = V_ST_MD;
4008 } else {
4009 if (debug & DEBUG_HFCMULTI_INIT)
4010 printk(KERN_DEBUG
4011 "%s: ST port %d is TE-mode\n",
4012 __func__, pt);
4013 /* clock delay */
4014 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
4015 a_st_wr_state = 2; /* F2 */
4016 hc->hw.a_st_ctrl0[pt] = 0;
4017 }
4018 if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
4019 hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
4020 if (hc->ctype == HFC_TYPE_XHFC) {
4021 hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */;
4022 HFC_outb(hc, 0x35 /* A_ST_CTRL3 */,
4023 0x7c << 1 /* V_ST_PULSE */);
4024 }
4025 /* line setup */
4026 HFC_outb(hc, A_ST_CTRL0, hc->hw.a_st_ctrl0[pt]);
4027 /* disable E-channel */
4028 if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
4029 test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
4030 HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
4031 else
4032 HFC_outb(hc, A_ST_CTRL1, 0);
4033 /* enable B-channel receive */
4034 HFC_outb(hc, A_ST_CTRL2, V_B1_RX_EN | V_B2_RX_EN);
4035 /* state machine setup */
4036 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
4037 udelay(6); /* wait at least 5,21us */
4038 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
4039 hc->hw.r_sci_msk |= 1 << pt;
4040 /* state machine interrupts */
4041 HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
4042 /* unset sync on port */
4043 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4044 hc->syncronized &=
4045 ~(1 << hc->chan[dch->slot].port);
4046 plxsd_checksync(hc, 0);
4047 }
4048 }
4049 if (debug & DEBUG_HFCMULTI_INIT)
4050 printk("%s: done\n", __func__);
4051 }
4052
4053
4054 static int
4055 open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
4056 struct channel_req *rq)
4057 {
4058 int err = 0;
4059 u_long flags;
4060
4061 if (debug & DEBUG_HW_OPEN)
4062 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
4063 dch->dev.id, __builtin_return_address(0));
4064 if (rq->protocol == ISDN_P_NONE)
4065 return -EINVAL;
4066 if ((dch->dev.D.protocol != ISDN_P_NONE) &&
4067 (dch->dev.D.protocol != rq->protocol)) {
4068 if (debug & DEBUG_HFCMULTI_MODE)
4069 printk(KERN_DEBUG "%s: change protocol %x to %x\n",
4070 __func__, dch->dev.D.protocol, rq->protocol);
4071 }
4072 if ((dch->dev.D.protocol == ISDN_P_TE_S0) &&
4073 (rq->protocol != ISDN_P_TE_S0))
4074 l1_event(dch->l1, CLOSE_CHANNEL);
4075 if (dch->dev.D.protocol != rq->protocol) {
4076 if (rq->protocol == ISDN_P_TE_S0) {
4077 err = create_l1(dch, hfcm_l1callback);
4078 if (err)
4079 return err;
4080 }
4081 dch->dev.D.protocol = rq->protocol;
4082 spin_lock_irqsave(&hc->lock, flags);
4083 hfcmulti_initmode(dch);
4084 spin_unlock_irqrestore(&hc->lock, flags);
4085 }
4086 if (test_bit(FLG_ACTIVE, &dch->Flags))
4087 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
4088 0, NULL, GFP_KERNEL);
4089 rq->ch = &dch->dev.D;
4090 if (!try_module_get(THIS_MODULE))
4091 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4092 return 0;
4093 }
4094
4095 static int
4096 open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
4097 struct channel_req *rq)
4098 {
4099 struct bchannel *bch;
4100 int ch;
4101
4102 if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
4103 return -EINVAL;
4104 if (rq->protocol == ISDN_P_NONE)
4105 return -EINVAL;
4106 if (hc->ctype == HFC_TYPE_E1)
4107 ch = rq->adr.channel;
4108 else
4109 ch = (rq->adr.channel - 1) + (dch->slot - 2);
4110 bch = hc->chan[ch].bch;
4111 if (!bch) {
4112 printk(KERN_ERR "%s:internal error ch %d has no bch\n",
4113 __func__, ch);
4114 return -EINVAL;
4115 }
4116 if (test_and_set_bit(FLG_OPEN, &bch->Flags))
4117 return -EBUSY; /* b-channel can be only open once */
4118 bch->ch.protocol = rq->protocol;
4119 hc->chan[ch].rx_off = 0;
4120 rq->ch = &bch->ch;
4121 if (!try_module_get(THIS_MODULE))
4122 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4123 return 0;
4124 }
4125
4126 /*
4127 * device control function
4128 */
4129 static int
4130 channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4131 {
4132 struct hfc_multi *hc = dch->hw;
4133 int ret = 0;
4134 int wd_mode, wd_cnt;
4135
4136 switch (cq->op) {
4137 case MISDN_CTRL_GETOP:
4138 cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_L1_TIMER3;
4139 break;
4140 case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */
4141 wd_cnt = cq->p1 & 0xf;
4142 wd_mode = !!(cq->p1 >> 4);
4143 if (debug & DEBUG_HFCMULTI_MSG)
4144 printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s"
4145 ", counter 0x%x\n", __func__,
4146 wd_mode ? "AUTO" : "MANUAL", wd_cnt);
4147 /* set the watchdog timer */
4148 HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4));
4149 hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0);
4150 if (hc->ctype == HFC_TYPE_XHFC)
4151 hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */;
4152 /* init the watchdog register and reset the counter */
4153 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4154 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4155 /* enable the watchdog output for Speech-Design */
4156 HFC_outb(hc, R_GPIO_SEL, V_GPIO_SEL7);
4157 HFC_outb(hc, R_GPIO_EN1, V_GPIO_EN15);
4158 HFC_outb(hc, R_GPIO_OUT1, 0);
4159 HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15);
4160 }
4161 break;
4162 case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */
4163 if (debug & DEBUG_HFCMULTI_MSG)
4164 printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n",
4165 __func__);
4166 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4167 break;
4168 case MISDN_CTRL_L1_TIMER3:
4169 ret = l1_event(dch->l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
4170 break;
4171 default:
4172 printk(KERN_WARNING "%s: unknown Op %x\n",
4173 __func__, cq->op);
4174 ret = -EINVAL;
4175 break;
4176 }
4177 return ret;
4178 }
4179
4180 static int
4181 hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4182 {
4183 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
4184 struct dchannel *dch = container_of(dev, struct dchannel, dev);
4185 struct hfc_multi *hc = dch->hw;
4186 struct channel_req *rq;
4187 int err = 0;
4188 u_long flags;
4189
4190 if (dch->debug & DEBUG_HW)
4191 printk(KERN_DEBUG "%s: cmd:%x %p\n",
4192 __func__, cmd, arg);
4193 switch (cmd) {
4194 case OPEN_CHANNEL:
4195 rq = arg;
4196 switch (rq->protocol) {
4197 case ISDN_P_TE_S0:
4198 case ISDN_P_NT_S0:
4199 if (hc->ctype == HFC_TYPE_E1) {
4200 err = -EINVAL;
4201 break;
4202 }
4203 err = open_dchannel(hc, dch, rq); /* locked there */
4204 break;
4205 case ISDN_P_TE_E1:
4206 case ISDN_P_NT_E1:
4207 if (hc->ctype != HFC_TYPE_E1) {
4208 err = -EINVAL;
4209 break;
4210 }
4211 err = open_dchannel(hc, dch, rq); /* locked there */
4212 break;
4213 default:
4214 spin_lock_irqsave(&hc->lock, flags);
4215 err = open_bchannel(hc, dch, rq);
4216 spin_unlock_irqrestore(&hc->lock, flags);
4217 }
4218 break;
4219 case CLOSE_CHANNEL:
4220 if (debug & DEBUG_HW_OPEN)
4221 printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4222 __func__, dch->dev.id,
4223 __builtin_return_address(0));
4224 module_put(THIS_MODULE);
4225 break;
4226 case CONTROL_CHANNEL:
4227 spin_lock_irqsave(&hc->lock, flags);
4228 err = channel_dctrl(dch, arg);
4229 spin_unlock_irqrestore(&hc->lock, flags);
4230 break;
4231 default:
4232 if (dch->debug & DEBUG_HW)
4233 printk(KERN_DEBUG "%s: unknown command %x\n",
4234 __func__, cmd);
4235 err = -EINVAL;
4236 }
4237 return err;
4238 }
4239
4240 static int
4241 clockctl(void *priv, int enable)
4242 {
4243 struct hfc_multi *hc = priv;
4244
4245 hc->iclock_on = enable;
4246 return 0;
4247 }
4248
4249 /*
4250 * initialize the card
4251 */
4252
4253 /*
4254 * start timer irq, wait some time and check if we have interrupts.
4255 * if not, reset chip and try again.
4256 */
4257 static int
4258 init_card(struct hfc_multi *hc)
4259 {
4260 int err = -EIO;
4261 u_long flags;
4262 void __iomem *plx_acc;
4263 u_long plx_flags;
4264
4265 if (debug & DEBUG_HFCMULTI_INIT)
4266 printk(KERN_DEBUG "%s: entered\n", __func__);
4267
4268 spin_lock_irqsave(&hc->lock, flags);
4269 /* set interrupts but leave global interrupt disabled */
4270 hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4271 disable_hwirq(hc);
4272 spin_unlock_irqrestore(&hc->lock, flags);
4273
4274 if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED,
4275 "HFC-multi", hc)) {
4276 printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4277 hc->irq);
4278 hc->irq = 0;
4279 return -EIO;
4280 }
4281
4282 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4283 spin_lock_irqsave(&plx_lock, plx_flags);
4284 plx_acc = hc->plx_membase + PLX_INTCSR;
4285 writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4286 plx_acc); /* enable PCI & LINT1 irq */
4287 spin_unlock_irqrestore(&plx_lock, plx_flags);
4288 }
4289
4290 if (debug & DEBUG_HFCMULTI_INIT)
4291 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4292 __func__, hc->irq, hc->irqcnt);
4293 err = init_chip(hc);
4294 if (err)
4295 goto error;
4296 /*
4297 * Finally enable IRQ output
4298 * this is only allowed, if an IRQ routine is already
4299 * established for this HFC, so don't do that earlier
4300 */
4301 spin_lock_irqsave(&hc->lock, flags);
4302 enable_hwirq(hc);
4303 spin_unlock_irqrestore(&hc->lock, flags);
4304 /* printk(KERN_DEBUG "no master irq set!!!\n"); */
4305 set_current_state(TASK_UNINTERRUPTIBLE);
4306 schedule_timeout((100 * HZ) / 1000); /* Timeout 100ms */
4307 /* turn IRQ off until chip is completely initialized */
4308 spin_lock_irqsave(&hc->lock, flags);
4309 disable_hwirq(hc);
4310 spin_unlock_irqrestore(&hc->lock, flags);
4311 if (debug & DEBUG_HFCMULTI_INIT)
4312 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4313 __func__, hc->irq, hc->irqcnt);
4314 if (hc->irqcnt) {
4315 if (debug & DEBUG_HFCMULTI_INIT)
4316 printk(KERN_DEBUG "%s: done\n", __func__);
4317
4318 return 0;
4319 }
4320 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4321 printk(KERN_INFO "ignoring missing interrupts\n");
4322 return 0;
4323 }
4324
4325 printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4326 hc->irq);
4327
4328 err = -EIO;
4329
4330 error:
4331 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4332 spin_lock_irqsave(&plx_lock, plx_flags);
4333 plx_acc = hc->plx_membase + PLX_INTCSR;
4334 writew(0x00, plx_acc); /*disable IRQs*/
4335 spin_unlock_irqrestore(&plx_lock, plx_flags);
4336 }
4337
4338 if (debug & DEBUG_HFCMULTI_INIT)
4339 printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq);
4340 if (hc->irq) {
4341 free_irq(hc->irq, hc);
4342 hc->irq = 0;
4343 }
4344
4345 if (debug & DEBUG_HFCMULTI_INIT)
4346 printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4347 return err;
4348 }
4349
4350 /*
4351 * find pci device and set it up
4352 */
4353
4354 static int
4355 setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4356 const struct pci_device_id *ent)
4357 {
4358 struct hm_map *m = (struct hm_map *)ent->driver_data;
4359
4360 printk(KERN_INFO
4361 "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4362 m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4363
4364 hc->pci_dev = pdev;
4365 if (m->clock2)
4366 test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4367
4368 if (ent->device == 0xB410) {
4369 test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4370 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4371 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4372 hc->slots = 32;
4373 }
4374
4375 if (hc->pci_dev->irq <= 0) {
4376 printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4377 return -EIO;
4378 }
4379 if (pci_enable_device(hc->pci_dev)) {
4380 printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4381 return -EIO;
4382 }
4383 hc->leds = m->leds;
4384 hc->ledstate = 0xAFFEAFFE;
4385 hc->opticalsupport = m->opticalsupport;
4386
4387 hc->pci_iobase = 0;
4388 hc->pci_membase = NULL;
4389 hc->plx_membase = NULL;
4390
4391 /* set memory access methods */
4392 if (m->io_mode) /* use mode from card config */
4393 hc->io_mode = m->io_mode;
4394 switch (hc->io_mode) {
4395 case HFC_IO_MODE_PLXSD:
4396 test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4397 hc->slots = 128; /* required */
4398 hc->HFC_outb = HFC_outb_pcimem;
4399 hc->HFC_inb = HFC_inb_pcimem;
4400 hc->HFC_inw = HFC_inw_pcimem;
4401 hc->HFC_wait = HFC_wait_pcimem;
4402 hc->read_fifo = read_fifo_pcimem;
4403 hc->write_fifo = write_fifo_pcimem;
4404 hc->plx_origmembase = hc->pci_dev->resource[0].start;
4405 /* MEMBASE 1 is PLX PCI Bridge */
4406
4407 if (!hc->plx_origmembase) {
4408 printk(KERN_WARNING
4409 "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4410 pci_disable_device(hc->pci_dev);
4411 return -EIO;
4412 }
4413
4414 hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4415 if (!hc->plx_membase) {
4416 printk(KERN_WARNING
4417 "HFC-multi: failed to remap plx address space. "
4418 "(internal error)\n");
4419 pci_disable_device(hc->pci_dev);
4420 return -EIO;
4421 }
4422 printk(KERN_INFO
4423 "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4424 (u_long)hc->plx_membase, hc->plx_origmembase);
4425
4426 hc->pci_origmembase = hc->pci_dev->resource[2].start;
4427 /* MEMBASE 1 is PLX PCI Bridge */
4428 if (!hc->pci_origmembase) {
4429 printk(KERN_WARNING
4430 "HFC-multi: No IO-Memory for PCI card found\n");
4431 pci_disable_device(hc->pci_dev);
4432 return -EIO;
4433 }
4434
4435 hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4436 if (!hc->pci_membase) {
4437 printk(KERN_WARNING "HFC-multi: failed to remap io "
4438 "address space. (internal error)\n");
4439 pci_disable_device(hc->pci_dev);
4440 return -EIO;
4441 }
4442
4443 printk(KERN_INFO
4444 "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4445 "leds-type %d\n",
4446 hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4447 hc->pci_dev->irq, HZ, hc->leds);
4448 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4449 break;
4450 case HFC_IO_MODE_PCIMEM:
4451 hc->HFC_outb = HFC_outb_pcimem;
4452 hc->HFC_inb = HFC_inb_pcimem;
4453 hc->HFC_inw = HFC_inw_pcimem;
4454 hc->HFC_wait = HFC_wait_pcimem;
4455 hc->read_fifo = read_fifo_pcimem;
4456 hc->write_fifo = write_fifo_pcimem;
4457 hc->pci_origmembase = hc->pci_dev->resource[1].start;
4458 if (!hc->pci_origmembase) {
4459 printk(KERN_WARNING
4460 "HFC-multi: No IO-Memory for PCI card found\n");
4461 pci_disable_device(hc->pci_dev);
4462 return -EIO;
4463 }
4464
4465 hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4466 if (!hc->pci_membase) {
4467 printk(KERN_WARNING
4468 "HFC-multi: failed to remap io address space. "
4469 "(internal error)\n");
4470 pci_disable_device(hc->pci_dev);
4471 return -EIO;
4472 }
4473 printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ "
4474 "%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4475 hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4476 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4477 break;
4478 case HFC_IO_MODE_REGIO:
4479 hc->HFC_outb = HFC_outb_regio;
4480 hc->HFC_inb = HFC_inb_regio;
4481 hc->HFC_inw = HFC_inw_regio;
4482 hc->HFC_wait = HFC_wait_regio;
4483 hc->read_fifo = read_fifo_regio;
4484 hc->write_fifo = write_fifo_regio;
4485 hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4486 if (!hc->pci_iobase) {
4487 printk(KERN_WARNING
4488 "HFC-multi: No IO for PCI card found\n");
4489 pci_disable_device(hc->pci_dev);
4490 return -EIO;
4491 }
4492
4493 if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4494 printk(KERN_WARNING "HFC-multi: failed to request "
4495 "address space at 0x%08lx (internal error)\n",
4496 hc->pci_iobase);
4497 pci_disable_device(hc->pci_dev);
4498 return -EIO;
4499 }
4500
4501 printk(KERN_INFO
4502 "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4503 m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4504 hc->pci_dev->irq, HZ, hc->leds);
4505 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4506 break;
4507 default:
4508 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4509 pci_disable_device(hc->pci_dev);
4510 return -EIO;
4511 }
4512
4513 pci_set_drvdata(hc->pci_dev, hc);
4514
4515 /* At this point the needed PCI config is done */
4516 /* fifos are still not enabled */
4517 return 0;
4518 }
4519
4520
4521 /*
4522 * remove port
4523 */
4524
4525 static void
4526 release_port(struct hfc_multi *hc, struct dchannel *dch)
4527 {
4528 int pt, ci, i = 0;
4529 u_long flags;
4530 struct bchannel *pb;
4531
4532 ci = dch->slot;
4533 pt = hc->chan[ci].port;
4534
4535 if (debug & DEBUG_HFCMULTI_INIT)
4536 printk(KERN_DEBUG "%s: entered for port %d\n",
4537 __func__, pt + 1);
4538
4539 if (pt >= hc->ports) {
4540 printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4541 __func__, pt + 1);
4542 return;
4543 }
4544
4545 if (debug & DEBUG_HFCMULTI_INIT)
4546 printk(KERN_DEBUG "%s: releasing port=%d\n",
4547 __func__, pt + 1);
4548
4549 if (dch->dev.D.protocol == ISDN_P_TE_S0)
4550 l1_event(dch->l1, CLOSE_CHANNEL);
4551
4552 hc->chan[ci].dch = NULL;
4553
4554 if (hc->created[pt]) {
4555 hc->created[pt] = 0;
4556 mISDN_unregister_device(&dch->dev);
4557 }
4558
4559 spin_lock_irqsave(&hc->lock, flags);
4560
4561 if (dch->timer.function) {
4562 del_timer(&dch->timer);
4563 dch->timer.function = NULL;
4564 }
4565
4566 if (hc->ctype == HFC_TYPE_E1) { /* E1 */
4567 /* remove sync */
4568 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4569 hc->syncronized = 0;
4570 plxsd_checksync(hc, 1);
4571 }
4572 /* free channels */
4573 for (i = 0; i <= 31; i++) {
4574 if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
4575 continue;
4576 if (hc->chan[i].bch) {
4577 if (debug & DEBUG_HFCMULTI_INIT)
4578 printk(KERN_DEBUG
4579 "%s: free port %d channel %d\n",
4580 __func__, hc->chan[i].port + 1, i);
4581 pb = hc->chan[i].bch;
4582 hc->chan[i].bch = NULL;
4583 spin_unlock_irqrestore(&hc->lock, flags);
4584 mISDN_freebchannel(pb);
4585 kfree(pb);
4586 kfree(hc->chan[i].coeff);
4587 spin_lock_irqsave(&hc->lock, flags);
4588 }
4589 }
4590 } else {
4591 /* remove sync */
4592 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4593 hc->syncronized &=
4594 ~(1 << hc->chan[ci].port);
4595 plxsd_checksync(hc, 1);
4596 }
4597 /* free channels */
4598 if (hc->chan[ci - 2].bch) {
4599 if (debug & DEBUG_HFCMULTI_INIT)
4600 printk(KERN_DEBUG
4601 "%s: free port %d channel %d\n",
4602 __func__, hc->chan[ci - 2].port + 1,
4603 ci - 2);
4604 pb = hc->chan[ci - 2].bch;
4605 hc->chan[ci - 2].bch = NULL;
4606 spin_unlock_irqrestore(&hc->lock, flags);
4607 mISDN_freebchannel(pb);
4608 kfree(pb);
4609 kfree(hc->chan[ci - 2].coeff);
4610 spin_lock_irqsave(&hc->lock, flags);
4611 }
4612 if (hc->chan[ci - 1].bch) {
4613 if (debug & DEBUG_HFCMULTI_INIT)
4614 printk(KERN_DEBUG
4615 "%s: free port %d channel %d\n",
4616 __func__, hc->chan[ci - 1].port + 1,
4617 ci - 1);
4618 pb = hc->chan[ci - 1].bch;
4619 hc->chan[ci - 1].bch = NULL;
4620 spin_unlock_irqrestore(&hc->lock, flags);
4621 mISDN_freebchannel(pb);
4622 kfree(pb);
4623 kfree(hc->chan[ci - 1].coeff);
4624 spin_lock_irqsave(&hc->lock, flags);
4625 }
4626 }
4627
4628 spin_unlock_irqrestore(&hc->lock, flags);
4629
4630 if (debug & DEBUG_HFCMULTI_INIT)
4631 printk(KERN_DEBUG "%s: free port %d channel D(%d)\n", __func__,
4632 pt+1, ci);
4633 mISDN_freedchannel(dch);
4634 kfree(dch);
4635
4636 if (debug & DEBUG_HFCMULTI_INIT)
4637 printk(KERN_DEBUG "%s: done!\n", __func__);
4638 }
4639
4640 static void
4641 release_card(struct hfc_multi *hc)
4642 {
4643 u_long flags;
4644 int ch;
4645
4646 if (debug & DEBUG_HFCMULTI_INIT)
4647 printk(KERN_DEBUG "%s: release card (%d) entered\n",
4648 __func__, hc->id);
4649
4650 /* unregister clock source */
4651 if (hc->iclock)
4652 mISDN_unregister_clock(hc->iclock);
4653
4654 /* disable and free irq */
4655 spin_lock_irqsave(&hc->lock, flags);
4656 disable_hwirq(hc);
4657 spin_unlock_irqrestore(&hc->lock, flags);
4658 udelay(1000);
4659 if (hc->irq) {
4660 if (debug & DEBUG_HFCMULTI_INIT)
4661 printk(KERN_DEBUG "%s: free irq %d (hc=%p)\n",
4662 __func__, hc->irq, hc);
4663 free_irq(hc->irq, hc);
4664 hc->irq = 0;
4665
4666 }
4667
4668 /* disable D-channels & B-channels */
4669 if (debug & DEBUG_HFCMULTI_INIT)
4670 printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4671 __func__);
4672 for (ch = 0; ch <= 31; ch++) {
4673 if (hc->chan[ch].dch)
4674 release_port(hc, hc->chan[ch].dch);
4675 }
4676
4677 /* dimm leds */
4678 if (hc->leds)
4679 hfcmulti_leds(hc);
4680
4681 /* release hardware */
4682 release_io_hfcmulti(hc);
4683
4684 if (debug & DEBUG_HFCMULTI_INIT)
4685 printk(KERN_DEBUG "%s: remove instance from list\n",
4686 __func__);
4687 list_del(&hc->list);
4688
4689 if (debug & DEBUG_HFCMULTI_INIT)
4690 printk(KERN_DEBUG "%s: delete instance\n", __func__);
4691 if (hc == syncmaster)
4692 syncmaster = NULL;
4693 kfree(hc);
4694 if (debug & DEBUG_HFCMULTI_INIT)
4695 printk(KERN_DEBUG "%s: card successfully removed\n",
4696 __func__);
4697 }
4698
4699 static void
4700 init_e1_port_hw(struct hfc_multi *hc, struct hm_map *m)
4701 {
4702 /* set optical line type */
4703 if (port[Port_cnt] & 0x001) {
4704 if (!m->opticalsupport) {
4705 printk(KERN_INFO
4706 "This board has no optical "
4707 "support\n");
4708 } else {
4709 if (debug & DEBUG_HFCMULTI_INIT)
4710 printk(KERN_DEBUG
4711 "%s: PORT set optical "
4712 "interfacs: card(%d) "
4713 "port(%d)\n",
4714 __func__,
4715 HFC_cnt + 1, 1);
4716 test_and_set_bit(HFC_CFG_OPTICAL,
4717 &hc->chan[hc->dnum[0]].cfg);
4718 }
4719 }
4720 /* set LOS report */
4721 if (port[Port_cnt] & 0x004) {
4722 if (debug & DEBUG_HFCMULTI_INIT)
4723 printk(KERN_DEBUG "%s: PORT set "
4724 "LOS report: card(%d) port(%d)\n",
4725 __func__, HFC_cnt + 1, 1);
4726 test_and_set_bit(HFC_CFG_REPORT_LOS,
4727 &hc->chan[hc->dnum[0]].cfg);
4728 }
4729 /* set AIS report */
4730 if (port[Port_cnt] & 0x008) {
4731 if (debug & DEBUG_HFCMULTI_INIT)
4732 printk(KERN_DEBUG "%s: PORT set "
4733 "AIS report: card(%d) port(%d)\n",
4734 __func__, HFC_cnt + 1, 1);
4735 test_and_set_bit(HFC_CFG_REPORT_AIS,
4736 &hc->chan[hc->dnum[0]].cfg);
4737 }
4738 /* set SLIP report */
4739 if (port[Port_cnt] & 0x010) {
4740 if (debug & DEBUG_HFCMULTI_INIT)
4741 printk(KERN_DEBUG
4742 "%s: PORT set SLIP report: "
4743 "card(%d) port(%d)\n",
4744 __func__, HFC_cnt + 1, 1);
4745 test_and_set_bit(HFC_CFG_REPORT_SLIP,
4746 &hc->chan[hc->dnum[0]].cfg);
4747 }
4748 /* set RDI report */
4749 if (port[Port_cnt] & 0x020) {
4750 if (debug & DEBUG_HFCMULTI_INIT)
4751 printk(KERN_DEBUG
4752 "%s: PORT set RDI report: "
4753 "card(%d) port(%d)\n",
4754 __func__, HFC_cnt + 1, 1);
4755 test_and_set_bit(HFC_CFG_REPORT_RDI,
4756 &hc->chan[hc->dnum[0]].cfg);
4757 }
4758 /* set CRC-4 Mode */
4759 if (!(port[Port_cnt] & 0x100)) {
4760 if (debug & DEBUG_HFCMULTI_INIT)
4761 printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4762 " card(%d) port(%d)\n",
4763 __func__, HFC_cnt + 1, 1);
4764 test_and_set_bit(HFC_CFG_CRC4,
4765 &hc->chan[hc->dnum[0]].cfg);
4766 } else {
4767 if (debug & DEBUG_HFCMULTI_INIT)
4768 printk(KERN_DEBUG "%s: PORT turn off CRC4"
4769 " report: card(%d) port(%d)\n",
4770 __func__, HFC_cnt + 1, 1);
4771 }
4772 /* set forced clock */
4773 if (port[Port_cnt] & 0x0200) {
4774 if (debug & DEBUG_HFCMULTI_INIT)
4775 printk(KERN_DEBUG "%s: PORT force getting clock from "
4776 "E1: card(%d) port(%d)\n",
4777 __func__, HFC_cnt + 1, 1);
4778 test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4779 } else
4780 if (port[Port_cnt] & 0x0400) {
4781 if (debug & DEBUG_HFCMULTI_INIT)
4782 printk(KERN_DEBUG "%s: PORT force putting clock to "
4783 "E1: card(%d) port(%d)\n",
4784 __func__, HFC_cnt + 1, 1);
4785 test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4786 }
4787 /* set JATT PLL */
4788 if (port[Port_cnt] & 0x0800) {
4789 if (debug & DEBUG_HFCMULTI_INIT)
4790 printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4791 "E1: card(%d) port(%d)\n",
4792 __func__, HFC_cnt + 1, 1);
4793 test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4794 }
4795 /* set elastic jitter buffer */
4796 if (port[Port_cnt] & 0x3000) {
4797 hc->chan[hc->dnum[0]].jitter = (port[Port_cnt]>>12) & 0x3;
4798 if (debug & DEBUG_HFCMULTI_INIT)
4799 printk(KERN_DEBUG
4800 "%s: PORT set elastic "
4801 "buffer to %d: card(%d) port(%d)\n",
4802 __func__, hc->chan[hc->dnum[0]].jitter,
4803 HFC_cnt + 1, 1);
4804 } else
4805 hc->chan[hc->dnum[0]].jitter = 2; /* default */
4806 }
4807
4808 static int
4809 init_e1_port(struct hfc_multi *hc, struct hm_map *m, int pt)
4810 {
4811 struct dchannel *dch;
4812 struct bchannel *bch;
4813 int ch, ret = 0;
4814 char name[MISDN_MAX_IDLEN];
4815 int bcount = 0;
4816
4817 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4818 if (!dch)
4819 return -ENOMEM;
4820 dch->debug = debug;
4821 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4822 dch->hw = hc;
4823 dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4824 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4825 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4826 dch->dev.D.send = handle_dmsg;
4827 dch->dev.D.ctrl = hfcm_dctrl;
4828 dch->slot = hc->dnum[pt];
4829 hc->chan[hc->dnum[pt]].dch = dch;
4830 hc->chan[hc->dnum[pt]].port = pt;
4831 hc->chan[hc->dnum[pt]].nt_timer = -1;
4832 for (ch = 1; ch <= 31; ch++) {
4833 if (!((1 << ch) & hc->bmask[pt])) /* skip unused channel */
4834 continue;
4835 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4836 if (!bch) {
4837 printk(KERN_ERR "%s: no memory for bchannel\n",
4838 __func__);
4839 ret = -ENOMEM;
4840 goto free_chan;
4841 }
4842 hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4843 if (!hc->chan[ch].coeff) {
4844 printk(KERN_ERR "%s: no memory for coeffs\n",
4845 __func__);
4846 ret = -ENOMEM;
4847 kfree(bch);
4848 goto free_chan;
4849 }
4850 bch->nr = ch;
4851 bch->slot = ch;
4852 bch->debug = debug;
4853 mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4854 bch->hw = hc;
4855 bch->ch.send = handle_bmsg;
4856 bch->ch.ctrl = hfcm_bctrl;
4857 bch->ch.nr = ch;
4858 list_add(&bch->ch.list, &dch->dev.bchannels);
4859 hc->chan[ch].bch = bch;
4860 hc->chan[ch].port = pt;
4861 set_channelmap(bch->nr, dch->dev.channelmap);
4862 bcount++;
4863 }
4864 dch->dev.nrbchan = bcount;
4865 if (pt == 0)
4866 init_e1_port_hw(hc, m);
4867 if (hc->ports > 1)
4868 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d-%d",
4869 HFC_cnt + 1, pt+1);
4870 else
4871 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4872 ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4873 if (ret)
4874 goto free_chan;
4875 hc->created[pt] = 1;
4876 return ret;
4877 free_chan:
4878 release_port(hc, dch);
4879 return ret;
4880 }
4881
4882 static int
4883 init_multi_port(struct hfc_multi *hc, int pt)
4884 {
4885 struct dchannel *dch;
4886 struct bchannel *bch;
4887 int ch, i, ret = 0;
4888 char name[MISDN_MAX_IDLEN];
4889
4890 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4891 if (!dch)
4892 return -ENOMEM;
4893 dch->debug = debug;
4894 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4895 dch->hw = hc;
4896 dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4897 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4898 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4899 dch->dev.D.send = handle_dmsg;
4900 dch->dev.D.ctrl = hfcm_dctrl;
4901 dch->dev.nrbchan = 2;
4902 i = pt << 2;
4903 dch->slot = i + 2;
4904 hc->chan[i + 2].dch = dch;
4905 hc->chan[i + 2].port = pt;
4906 hc->chan[i + 2].nt_timer = -1;
4907 for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4908 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4909 if (!bch) {
4910 printk(KERN_ERR "%s: no memory for bchannel\n",
4911 __func__);
4912 ret = -ENOMEM;
4913 goto free_chan;
4914 }
4915 hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4916 if (!hc->chan[i + ch].coeff) {
4917 printk(KERN_ERR "%s: no memory for coeffs\n",
4918 __func__);
4919 ret = -ENOMEM;
4920 kfree(bch);
4921 goto free_chan;
4922 }
4923 bch->nr = ch + 1;
4924 bch->slot = i + ch;
4925 bch->debug = debug;
4926 mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4927 bch->hw = hc;
4928 bch->ch.send = handle_bmsg;
4929 bch->ch.ctrl = hfcm_bctrl;
4930 bch->ch.nr = ch + 1;
4931 list_add(&bch->ch.list, &dch->dev.bchannels);
4932 hc->chan[i + ch].bch = bch;
4933 hc->chan[i + ch].port = pt;
4934 set_channelmap(bch->nr, dch->dev.channelmap);
4935 }
4936 /* set master clock */
4937 if (port[Port_cnt] & 0x001) {
4938 if (debug & DEBUG_HFCMULTI_INIT)
4939 printk(KERN_DEBUG
4940 "%s: PROTOCOL set master clock: "
4941 "card(%d) port(%d)\n",
4942 __func__, HFC_cnt + 1, pt + 1);
4943 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4944 printk(KERN_ERR "Error: Master clock "
4945 "for port(%d) of card(%d) is only"
4946 " possible with TE-mode\n",
4947 pt + 1, HFC_cnt + 1);
4948 ret = -EINVAL;
4949 goto free_chan;
4950 }
4951 if (hc->masterclk >= 0) {
4952 printk(KERN_ERR "Error: Master clock "
4953 "for port(%d) of card(%d) already "
4954 "defined for port(%d)\n",
4955 pt + 1, HFC_cnt + 1, hc->masterclk + 1);
4956 ret = -EINVAL;
4957 goto free_chan;
4958 }
4959 hc->masterclk = pt;
4960 }
4961 /* set transmitter line to non capacitive */
4962 if (port[Port_cnt] & 0x002) {
4963 if (debug & DEBUG_HFCMULTI_INIT)
4964 printk(KERN_DEBUG
4965 "%s: PROTOCOL set non capacitive "
4966 "transmitter: card(%d) port(%d)\n",
4967 __func__, HFC_cnt + 1, pt + 1);
4968 test_and_set_bit(HFC_CFG_NONCAP_TX,
4969 &hc->chan[i + 2].cfg);
4970 }
4971 /* disable E-channel */
4972 if (port[Port_cnt] & 0x004) {
4973 if (debug & DEBUG_HFCMULTI_INIT)
4974 printk(KERN_DEBUG
4975 "%s: PROTOCOL disable E-channel: "
4976 "card(%d) port(%d)\n",
4977 __func__, HFC_cnt + 1, pt + 1);
4978 test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4979 &hc->chan[i + 2].cfg);
4980 }
4981 if (hc->ctype == HFC_TYPE_XHFC) {
4982 snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d",
4983 HFC_cnt + 1, pt + 1);
4984 ret = mISDN_register_device(&dch->dev, NULL, name);
4985 } else {
4986 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
4987 hc->ctype, HFC_cnt + 1, pt + 1);
4988 ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4989 }
4990 if (ret)
4991 goto free_chan;
4992 hc->created[pt] = 1;
4993 return ret;
4994 free_chan:
4995 release_port(hc, dch);
4996 return ret;
4997 }
4998
4999 static int
5000 hfcmulti_init(struct hm_map *m, struct pci_dev *pdev,
5001 const struct pci_device_id *ent)
5002 {
5003 int ret_err = 0;
5004 int pt;
5005 struct hfc_multi *hc;
5006 u_long flags;
5007 u_char dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
5008 int i, ch;
5009 u_int maskcheck;
5010
5011 if (HFC_cnt >= MAX_CARDS) {
5012 printk(KERN_ERR "too many cards (max=%d).\n",
5013 MAX_CARDS);
5014 return -EINVAL;
5015 }
5016 if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
5017 printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
5018 "type[%d] %d was supplied as module parameter\n",
5019 m->vendor_name, m->card_name, m->type, HFC_cnt,
5020 type[HFC_cnt] & 0xff);
5021 printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
5022 "first, to see cards and their types.");
5023 return -EINVAL;
5024 }
5025 if (debug & DEBUG_HFCMULTI_INIT)
5026 printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
5027 __func__, m->vendor_name, m->card_name, m->type,
5028 type[HFC_cnt]);
5029
5030 /* allocate card+fifo structure */
5031 hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
5032 if (!hc) {
5033 printk(KERN_ERR "No kmem for HFC-Multi card\n");
5034 return -ENOMEM;
5035 }
5036 spin_lock_init(&hc->lock);
5037 hc->mtyp = m;
5038 hc->ctype = m->type;
5039 hc->ports = m->ports;
5040 hc->id = HFC_cnt;
5041 hc->pcm = pcm[HFC_cnt];
5042 hc->io_mode = iomode[HFC_cnt];
5043 if (hc->ctype == HFC_TYPE_E1 && dmask[E1_cnt]) {
5044 /* fragment card */
5045 pt = 0;
5046 maskcheck = 0;
5047 for (ch = 0; ch <= 31; ch++) {
5048 if (!((1 << ch) & dmask[E1_cnt]))
5049 continue;
5050 hc->dnum[pt] = ch;
5051 hc->bmask[pt] = bmask[bmask_cnt++];
5052 if ((maskcheck & hc->bmask[pt])
5053 || (dmask[E1_cnt] & hc->bmask[pt])) {
5054 printk(KERN_INFO
5055 "HFC-E1 #%d has overlapping B-channels on fragment #%d\n",
5056 E1_cnt + 1, pt);
5057 kfree(hc);
5058 return -EINVAL;
5059 }
5060 maskcheck |= hc->bmask[pt];
5061 printk(KERN_INFO
5062 "HFC-E1 #%d uses D-channel on slot %d and a B-channel map of 0x%08x\n",
5063 E1_cnt + 1, ch, hc->bmask[pt]);
5064 pt++;
5065 }
5066 hc->ports = pt;
5067 }
5068 if (hc->ctype == HFC_TYPE_E1 && !dmask[E1_cnt]) {
5069 /* default card layout */
5070 hc->dnum[0] = 16;
5071 hc->bmask[0] = 0xfffefffe;
5072 hc->ports = 1;
5073 }
5074
5075 /* set chip specific features */
5076 hc->masterclk = -1;
5077 if (type[HFC_cnt] & 0x100) {
5078 test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
5079 hc->silence = 0xff; /* ulaw silence */
5080 } else
5081 hc->silence = 0x2a; /* alaw silence */
5082 if ((poll >> 1) > sizeof(hc->silence_data)) {
5083 printk(KERN_ERR "HFCMULTI error: silence_data too small, "
5084 "please fix\n");
5085 kfree(hc);
5086 return -EINVAL;
5087 }
5088 for (i = 0; i < (poll >> 1); i++)
5089 hc->silence_data[i] = hc->silence;
5090
5091 if (hc->ctype != HFC_TYPE_XHFC) {
5092 if (!(type[HFC_cnt] & 0x200))
5093 test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
5094 test_and_set_bit(HFC_CHIP_CONF, &hc->chip);
5095 }
5096
5097 if (type[HFC_cnt] & 0x800)
5098 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5099 if (type[HFC_cnt] & 0x1000) {
5100 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
5101 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5102 }
5103 if (type[HFC_cnt] & 0x4000)
5104 test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
5105 if (type[HFC_cnt] & 0x8000)
5106 test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
5107 hc->slots = 32;
5108 if (type[HFC_cnt] & 0x10000)
5109 hc->slots = 64;
5110 if (type[HFC_cnt] & 0x20000)
5111 hc->slots = 128;
5112 if (type[HFC_cnt] & 0x80000) {
5113 test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
5114 hc->wdcount = 0;
5115 hc->wdbyte = V_GPIO_OUT2;
5116 printk(KERN_NOTICE "Watchdog enabled\n");
5117 }
5118
5119 if (pdev && ent)
5120 /* setup pci, hc->slots may change due to PLXSD */
5121 ret_err = setup_pci(hc, pdev, ent);
5122 else
5123 #ifdef CONFIG_MISDN_HFCMULTI_8xx
5124 ret_err = setup_embedded(hc, m);
5125 #else
5126 {
5127 printk(KERN_WARNING "Embedded IO Mode not selected\n");
5128 ret_err = -EIO;
5129 }
5130 #endif
5131 if (ret_err) {
5132 if (hc == syncmaster)
5133 syncmaster = NULL;
5134 kfree(hc);
5135 return ret_err;
5136 }
5137
5138 hc->HFC_outb_nodebug = hc->HFC_outb;
5139 hc->HFC_inb_nodebug = hc->HFC_inb;
5140 hc->HFC_inw_nodebug = hc->HFC_inw;
5141 hc->HFC_wait_nodebug = hc->HFC_wait;
5142 #ifdef HFC_REGISTER_DEBUG
5143 hc->HFC_outb = HFC_outb_debug;
5144 hc->HFC_inb = HFC_inb_debug;
5145 hc->HFC_inw = HFC_inw_debug;
5146 hc->HFC_wait = HFC_wait_debug;
5147 #endif
5148 /* create channels */
5149 for (pt = 0; pt < hc->ports; pt++) {
5150 if (Port_cnt >= MAX_PORTS) {
5151 printk(KERN_ERR "too many ports (max=%d).\n",
5152 MAX_PORTS);
5153 ret_err = -EINVAL;
5154 goto free_card;
5155 }
5156 if (hc->ctype == HFC_TYPE_E1)
5157 ret_err = init_e1_port(hc, m, pt);
5158 else
5159 ret_err = init_multi_port(hc, pt);
5160 if (debug & DEBUG_HFCMULTI_INIT)
5161 printk(KERN_DEBUG
5162 "%s: Registering D-channel, card(%d) port(%d) "
5163 "result %d\n",
5164 __func__, HFC_cnt + 1, pt + 1, ret_err);
5165
5166 if (ret_err) {
5167 while (pt) { /* release already registered ports */
5168 pt--;
5169 if (hc->ctype == HFC_TYPE_E1)
5170 release_port(hc,
5171 hc->chan[hc->dnum[pt]].dch);
5172 else
5173 release_port(hc,
5174 hc->chan[(pt << 2) + 2].dch);
5175 }
5176 goto free_card;
5177 }
5178 if (hc->ctype != HFC_TYPE_E1)
5179 Port_cnt++; /* for each S0 port */
5180 }
5181 if (hc->ctype == HFC_TYPE_E1) {
5182 Port_cnt++; /* for each E1 port */
5183 E1_cnt++;
5184 }
5185
5186 /* disp switches */
5187 switch (m->dip_type) {
5188 case DIP_4S:
5189 /*
5190 * Get DIP setting for beroNet 1S/2S/4S cards
5191 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5192 * GPI 19/23 (R_GPI_IN2))
5193 */
5194 dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
5195 ((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
5196 (~HFC_inb(hc, R_GPI_IN2) & 0x08);
5197
5198 /* Port mode (TE/NT) jumpers */
5199 pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4) & 0xf);
5200
5201 if (test_bit(HFC_CHIP_B410P, &hc->chip))
5202 pmj = ~pmj & 0xf;
5203
5204 printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5205 m->vendor_name, m->card_name, dips, pmj);
5206 break;
5207 case DIP_8S:
5208 /*
5209 * Get DIP Setting for beroNet 8S0+ cards
5210 * Enable PCI auxbridge function
5211 */
5212 HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
5213 /* prepare access to auxport */
5214 outw(0x4000, hc->pci_iobase + 4);
5215 /*
5216 * some dummy reads are required to
5217 * read valid DIP switch data
5218 */
5219 dips = inb(hc->pci_iobase);
5220 dips = inb(hc->pci_iobase);
5221 dips = inb(hc->pci_iobase);
5222 dips = ~inb(hc->pci_iobase) & 0x3F;
5223 outw(0x0, hc->pci_iobase + 4);
5224 /* disable PCI auxbridge function */
5225 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
5226 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5227 m->vendor_name, m->card_name, dips);
5228 break;
5229 case DIP_E1:
5230 /*
5231 * get DIP Setting for beroNet E1 cards
5232 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5233 */
5234 dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0) >> 4;
5235 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5236 m->vendor_name, m->card_name, dips);
5237 break;
5238 }
5239
5240 /* add to list */
5241 spin_lock_irqsave(&HFClock, flags);
5242 list_add_tail(&hc->list, &HFClist);
5243 spin_unlock_irqrestore(&HFClock, flags);
5244
5245 /* use as clock source */
5246 if (clock == HFC_cnt + 1)
5247 hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
5248
5249 /* initialize hardware */
5250 hc->irq = (m->irq) ? : hc->pci_dev->irq;
5251 ret_err = init_card(hc);
5252 if (ret_err) {
5253 printk(KERN_ERR "init card returns %d\n", ret_err);
5254 release_card(hc);
5255 return ret_err;
5256 }
5257
5258 /* start IRQ and return */
5259 spin_lock_irqsave(&hc->lock, flags);
5260 enable_hwirq(hc);
5261 spin_unlock_irqrestore(&hc->lock, flags);
5262 return 0;
5263
5264 free_card:
5265 release_io_hfcmulti(hc);
5266 if (hc == syncmaster)
5267 syncmaster = NULL;
5268 kfree(hc);
5269 return ret_err;
5270 }
5271
5272 static void hfc_remove_pci(struct pci_dev *pdev)
5273 {
5274 struct hfc_multi *card = pci_get_drvdata(pdev);
5275 u_long flags;
5276
5277 if (debug)
5278 printk(KERN_INFO "removing hfc_multi card vendor:%x "
5279 "device:%x subvendor:%x subdevice:%x\n",
5280 pdev->vendor, pdev->device,
5281 pdev->subsystem_vendor, pdev->subsystem_device);
5282
5283 if (card) {
5284 spin_lock_irqsave(&HFClock, flags);
5285 release_card(card);
5286 spin_unlock_irqrestore(&HFClock, flags);
5287 } else {
5288 if (debug)
5289 printk(KERN_DEBUG "%s: drvdata already removed\n",
5290 __func__);
5291 }
5292 }
5293
5294 #define VENDOR_CCD "Cologne Chip AG"
5295 #define VENDOR_BN "beroNet GmbH"
5296 #define VENDOR_DIG "Digium Inc."
5297 #define VENDOR_JH "Junghanns.NET GmbH"
5298 #define VENDOR_PRIM "PrimuX"
5299
5300 static const struct hm_map hfcm_map[] = {
5301 /*0*/ {VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0},
5302 /*1*/ {VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5303 /*2*/ {VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5304 /*3*/ {VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5305 /*4*/ {VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
5306 /*5*/ {VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
5307 /*6*/ {VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5308 /*7*/ {VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
5309 /*8*/ {VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0},
5310 /*9*/ {VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
5311 /*10*/ {VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
5312 /*11*/ {VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
5313
5314 /*12*/ {VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
5315 /*13*/ {VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5316 HFC_IO_MODE_REGIO, 0},
5317 /*14*/ {VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
5318 /*15*/ {VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
5319
5320 /*16*/ {VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
5321 /*17*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5322 /*18*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5323
5324 /*19*/ {VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5325 /*20*/ {VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
5326 /*21*/ {VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5327 /*22*/ {VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5328
5329 /*23*/ {VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
5330 /*24*/ {VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
5331 /*25*/ {VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
5332
5333 /*26*/ {VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5334 HFC_IO_MODE_PLXSD, 0},
5335 /*27*/ {VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5336 HFC_IO_MODE_PLXSD, 0},
5337 /*28*/ {VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
5338 /*29*/ {VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
5339 /*30*/ {VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
5340 /*31*/ {VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
5341 HFC_IO_MODE_EMBSD, XHFC_IRQ},
5342 /*32*/ {VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
5343 /*33*/ {VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5344 /*34*/ {VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5345 };
5346
5347 #undef H
5348 #define H(x) ((unsigned long)&hfcm_map[x])
5349 static const struct pci_device_id hfmultipci_ids[] = {
5350
5351 /* Cards with HFC-4S Chip */
5352 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5353 PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5354 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5355 PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5356 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5357 PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5358 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5359 PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5360 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5361 PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5362 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5363 PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5364 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5365 PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5366 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5367 PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5368 { PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5369 PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5370 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5371 PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5372 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5373 PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5374 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5375 PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5376 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5377 PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5378 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5379 PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5380 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5381 0xb761, 0, 0, H(33)}, /* BN2S PCIe */
5382 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5383 0xb762, 0, 0, H(34)}, /* BN4S PCIe */
5384
5385 /* Cards with HFC-8S Chip */
5386 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5387 PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5388 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5389 PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5390 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5391 PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5392 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5393 PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
5394 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5395 PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST */
5396 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5397 PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST */
5398 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5399 PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5400 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5401 PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5402 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5403 PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S */
5404
5405
5406 /* Cards with HFC-E1 Chip */
5407 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5408 PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5409 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5410 PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5411 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5412 PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5413 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5414 PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5415
5416 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5417 PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5418 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5419 PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5420 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5421 PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5422
5423 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5424 PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5425 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5426 PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5427
5428 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5429 PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */
5430
5431 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 },
5432 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 },
5433 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 },
5434 {0, }
5435 };
5436 #undef H
5437
5438 MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5439
5440 static int
5441 hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5442 {
5443 struct hm_map *m = (struct hm_map *)ent->driver_data;
5444 int ret;
5445
5446 if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
5447 ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5448 ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5449 ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
5450 printk(KERN_ERR
5451 "Unknown HFC multiport controller (vendor:%04x device:%04x "
5452 "subvendor:%04x subdevice:%04x)\n", pdev->vendor,
5453 pdev->device, pdev->subsystem_vendor,
5454 pdev->subsystem_device);
5455 printk(KERN_ERR
5456 "Please contact the driver maintainer for support.\n");
5457 return -ENODEV;
5458 }
5459 ret = hfcmulti_init(m, pdev, ent);
5460 if (ret)
5461 return ret;
5462 HFC_cnt++;
5463 printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5464 return 0;
5465 }
5466
5467 static struct pci_driver hfcmultipci_driver = {
5468 .name = "hfc_multi",
5469 .probe = hfcmulti_probe,
5470 .remove = hfc_remove_pci,
5471 .id_table = hfmultipci_ids,
5472 };
5473
5474 static void __exit
5475 HFCmulti_cleanup(void)
5476 {
5477 struct hfc_multi *card, *next;
5478
5479 /* get rid of all devices of this driver */
5480 list_for_each_entry_safe(card, next, &HFClist, list)
5481 release_card(card);
5482 pci_unregister_driver(&hfcmultipci_driver);
5483 }
5484
5485 static int __init
5486 HFCmulti_init(void)
5487 {
5488 int err;
5489 int i, xhfc = 0;
5490 struct hm_map m;
5491
5492 printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
5493
5494 #ifdef IRQ_DEBUG
5495 printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5496 #endif
5497
5498 spin_lock_init(&HFClock);
5499 spin_lock_init(&plx_lock);
5500
5501 if (debug & DEBUG_HFCMULTI_INIT)
5502 printk(KERN_DEBUG "%s: init entered\n", __func__);
5503
5504 switch (poll) {
5505 case 0:
5506 poll_timer = 6;
5507 poll = 128;
5508 break;
5509 case 8:
5510 poll_timer = 2;
5511 break;
5512 case 16:
5513 poll_timer = 3;
5514 break;
5515 case 32:
5516 poll_timer = 4;
5517 break;
5518 case 64:
5519 poll_timer = 5;
5520 break;
5521 case 128:
5522 poll_timer = 6;
5523 break;
5524 case 256:
5525 poll_timer = 7;
5526 break;
5527 default:
5528 printk(KERN_ERR
5529 "%s: Wrong poll value (%d).\n", __func__, poll);
5530 err = -EINVAL;
5531 return err;
5532
5533 }
5534
5535 if (!clock)
5536 clock = 1;
5537
5538 /* Register the embedded devices.
5539 * This should be done before the PCI cards registration */
5540 switch (hwid) {
5541 case HWID_MINIP4:
5542 xhfc = 1;
5543 m = hfcm_map[31];
5544 break;
5545 case HWID_MINIP8:
5546 xhfc = 2;
5547 m = hfcm_map[31];
5548 break;
5549 case HWID_MINIP16:
5550 xhfc = 4;
5551 m = hfcm_map[31];
5552 break;
5553 default:
5554 xhfc = 0;
5555 }
5556
5557 for (i = 0; i < xhfc; ++i) {
5558 err = hfcmulti_init(&m, NULL, NULL);
5559 if (err) {
5560 printk(KERN_ERR "error registering embedded driver: "
5561 "%x\n", err);
5562 return err;
5563 }
5564 HFC_cnt++;
5565 printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5566 }
5567
5568 /* Register the PCI cards */
5569 err = pci_register_driver(&hfcmultipci_driver);
5570 if (err < 0) {
5571 printk(KERN_ERR "error registering pci driver: %x\n", err);
5572 return err;
5573 }
5574
5575 return 0;
5576 }
5577
5578
5579 module_init(HFCmulti_init);
5580 module_exit(HFCmulti_cleanup);