]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/dec/tulip/de4x5.c
net: tulip: de4x5: Drop redundant MODULE_DEVICE_TABLE()
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / dec / tulip / de4x5.c
1 /* de4x5.c: A DIGITAL DC21x4x DECchip and DE425/DE434/DE435/DE450/DE500
2 ethernet driver for Linux.
3
4 Copyright 1994, 1995 Digital Equipment Corporation.
5
6 Testing resources for this driver have been made available
7 in part by NASA Ames Research Center (mjacob@nas.nasa.gov).
8
9 The author may be reached at davies@maniac.ultranet.com.
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation; either version 2 of the License, or (at your
14 option) any later version.
15
16 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27 You should have received a copy of the GNU General Public License along
28 with this program; if not, write to the Free Software Foundation, Inc.,
29 675 Mass Ave, Cambridge, MA 02139, USA.
30
31 Originally, this driver was written for the Digital Equipment
32 Corporation series of EtherWORKS ethernet cards:
33
34 DE425 TP/COAX EISA
35 DE434 TP PCI
36 DE435 TP/COAX/AUI PCI
37 DE450 TP/COAX/AUI PCI
38 DE500 10/100 PCI Fasternet
39
40 but it will now attempt to support all cards which conform to the
41 Digital Semiconductor SROM Specification. The driver currently
42 recognises the following chips:
43
44 DC21040 (no SROM)
45 DC21041[A]
46 DC21140[A]
47 DC21142
48 DC21143
49
50 So far the driver is known to work with the following cards:
51
52 KINGSTON
53 Linksys
54 ZNYX342
55 SMC8432
56 SMC9332 (w/new SROM)
57 ZNYX31[45]
58 ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
59
60 The driver has been tested on a relatively busy network using the DE425,
61 DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
62 16M of data to a DECstation 5000/200 as follows:
63
64 TCP UDP
65 TX RX TX RX
66 DE425 1030k 997k 1170k 1128k
67 DE434 1063k 995k 1170k 1125k
68 DE435 1063k 995k 1170k 1125k
69 DE500 1063k 998k 1170k 1125k in 10Mb/s mode
70
71 All values are typical (in kBytes/sec) from a sample of 4 for each
72 measurement. Their error is +/-20k on a quiet (private) network and also
73 depend on what load the CPU has.
74
75 =========================================================================
76 This driver has been written substantially from scratch, although its
77 inheritance of style and stack interface from 'ewrk3.c' and in turn from
78 Donald Becker's 'lance.c' should be obvious. With the module autoload of
79 every usable DECchip board, I pinched Donald's 'next_module' field to
80 link my modules together.
81
82 Up to 15 EISA cards can be supported under this driver, limited primarily
83 by the available IRQ lines. I have checked different configurations of
84 multiple depca, EtherWORKS 3 cards and de4x5 cards and have not found a
85 problem yet (provided you have at least depca.c v0.38) ...
86
87 PCI support has been added to allow the driver to work with the DE434,
88 DE435, DE450 and DE500 cards. The I/O accesses are a bit of a kludge due
89 to the differences in the EISA and PCI CSR address offsets from the base
90 address.
91
92 The ability to load this driver as a loadable module has been included
93 and used extensively during the driver development (to save those long
94 reboot sequences). Loadable module support under PCI and EISA has been
95 achieved by letting the driver autoprobe as if it were compiled into the
96 kernel. Do make sure you're not sharing interrupts with anything that
97 cannot accommodate interrupt sharing!
98
99 To utilise this ability, you have to do 8 things:
100
101 0) have a copy of the loadable modules code installed on your system.
102 1) copy de4x5.c from the /linux/drivers/net directory to your favourite
103 temporary directory.
104 2) for fixed autoprobes (not recommended), edit the source code near
105 line 5594 to reflect the I/O address you're using, or assign these when
106 loading by:
107
108 insmod de4x5 io=0xghh where g = bus number
109 hh = device number
110
111 NB: autoprobing for modules is now supported by default. You may just
112 use:
113
114 insmod de4x5
115
116 to load all available boards. For a specific board, still use
117 the 'io=?' above.
118 3) compile de4x5.c, but include -DMODULE in the command line to ensure
119 that the correct bits are compiled (see end of source code).
120 4) if you are wanting to add a new card, goto 5. Otherwise, recompile a
121 kernel with the de4x5 configuration turned off and reboot.
122 5) insmod de4x5 [io=0xghh]
123 6) run the net startup bits for your new eth?? interface(s) manually
124 (usually /etc/rc.inet[12] at boot time).
125 7) enjoy!
126
127 To unload a module, turn off the associated interface(s)
128 'ifconfig eth?? down' then 'rmmod de4x5'.
129
130 Automedia detection is included so that in principal you can disconnect
131 from, e.g. TP, reconnect to BNC and things will still work (after a
132 pause whilst the driver figures out where its media went). My tests
133 using ping showed that it appears to work....
134
135 By default, the driver will now autodetect any DECchip based card.
136 Should you have a need to restrict the driver to DIGITAL only cards, you
137 can compile with a DEC_ONLY define, or if loading as a module, use the
138 'dec_only=1' parameter.
139
140 I've changed the timing routines to use the kernel timer and scheduling
141 functions so that the hangs and other assorted problems that occurred
142 while autosensing the media should be gone. A bonus for the DC21040
143 auto media sense algorithm is that it can now use one that is more in
144 line with the rest (the DC21040 chip doesn't have a hardware timer).
145 The downside is the 1 'jiffies' (10ms) resolution.
146
147 IEEE 802.3u MII interface code has been added in anticipation that some
148 products may use it in the future.
149
150 The SMC9332 card has a non-compliant SROM which needs fixing - I have
151 patched this driver to detect it because the SROM format used complies
152 to a previous DEC-STD format.
153
154 I have removed the buffer copies needed for receive on Intels. I cannot
155 remove them for Alphas since the Tulip hardware only does longword
156 aligned DMA transfers and the Alphas get alignment traps with non
157 longword aligned data copies (which makes them really slow). No comment.
158
159 I have added SROM decoding routines to make this driver work with any
160 card that supports the Digital Semiconductor SROM spec. This will help
161 all cards running the dc2114x series chips in particular. Cards using
162 the dc2104x chips should run correctly with the basic driver. I'm in
163 debt to <mjacob@feral.com> for the testing and feedback that helped get
164 this feature working. So far we have tested KINGSTON, SMC8432, SMC9332
165 (with the latest SROM complying with the SROM spec V3: their first was
166 broken), ZNYX342 and LinkSys. ZYNX314 (dual 21041 MAC) and ZNYX 315
167 (quad 21041 MAC) cards also appear to work despite their incorrectly
168 wired IRQs.
169
170 I have added a temporary fix for interrupt problems when some SCSI cards
171 share the same interrupt as the DECchip based cards. The problem occurs
172 because the SCSI card wants to grab the interrupt as a fast interrupt
173 (runs the service routine with interrupts turned off) vs. this card
174 which really needs to run the service routine with interrupts turned on.
175 This driver will now add the interrupt service routine as a fast
176 interrupt if it is bounced from the slow interrupt. THIS IS NOT A
177 RECOMMENDED WAY TO RUN THE DRIVER and has been done for a limited time
178 until people sort out their compatibility issues and the kernel
179 interrupt service code is fixed. YOU SHOULD SEPARATE OUT THE FAST
180 INTERRUPT CARDS FROM THE SLOW INTERRUPT CARDS to ensure that they do not
181 run on the same interrupt. PCMCIA/CardBus is another can of worms...
182
183 Finally, I think I have really fixed the module loading problem with
184 more than one DECchip based card. As a side effect, I don't mess with
185 the device structure any more which means that if more than 1 card in
186 2.0.x is installed (4 in 2.1.x), the user will have to edit
187 linux/drivers/net/Space.c to make room for them. Hence, module loading
188 is the preferred way to use this driver, since it doesn't have this
189 limitation.
190
191 Where SROM media detection is used and full duplex is specified in the
192 SROM, the feature is ignored unless lp->params.fdx is set at compile
193 time OR during a module load (insmod de4x5 args='eth??:fdx' [see
194 below]). This is because there is no way to automatically detect full
195 duplex links except through autonegotiation. When I include the
196 autonegotiation feature in the SROM autoconf code, this detection will
197 occur automatically for that case.
198
199 Command line arguments are now allowed, similar to passing arguments
200 through LILO. This will allow a per adapter board set up of full duplex
201 and media. The only lexical constraints are: the board name (dev->name)
202 appears in the list before its parameters. The list of parameters ends
203 either at the end of the parameter list or with another board name. The
204 following parameters are allowed:
205
206 fdx for full duplex
207 autosense to set the media/speed; with the following
208 sub-parameters:
209 TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
210
211 Case sensitivity is important for the sub-parameters. They *must* be
212 upper case. Examples:
213
214 insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
215
216 For a compiled in driver, at or above line 548, place e.g.
217 #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
218
219 Yes, I know full duplex isn't permissible on BNC or AUI; they're just
220 examples. By default, full duplex is turned off and AUTO is the default
221 autosense setting. In reality, I expect only the full duplex option to
222 be used. Note the use of single quotes in the two examples above and the
223 lack of commas to separate items. ALSO, you must get the requested media
224 correct in relation to what the adapter SROM says it has. There's no way
225 to determine this in advance other than by trial and error and common
226 sense, e.g. call a BNC connectored port 'BNC', not '10Mb'.
227
228 Changed the bus probing. EISA used to be done first, followed by PCI.
229 Most people probably don't even know what a de425 is today and the EISA
230 probe has messed up some SCSI cards in the past, so now PCI is always
231 probed first followed by EISA if a) the architecture allows EISA and
232 either b) there have been no PCI cards detected or c) an EISA probe is
233 forced by the user. To force a probe include "force_eisa" in your
234 insmod "args" line; for built-in kernels either change the driver to do
235 this automatically or include #define DE4X5_FORCE_EISA on or before
236 line 1040 in the driver.
237
238 TO DO:
239 ------
240
241 Revision History
242 ----------------
243
244 Version Date Description
245
246 0.1 17-Nov-94 Initial writing. ALPHA code release.
247 0.2 13-Jan-95 Added PCI support for DE435's.
248 0.21 19-Jan-95 Added auto media detection.
249 0.22 10-Feb-95 Fix interrupt handler call <chris@cosy.sbg.ac.at>.
250 Fix recognition bug reported by <bkm@star.rl.ac.uk>.
251 Add request/release_region code.
252 Add loadable modules support for PCI.
253 Clean up loadable modules support.
254 0.23 28-Feb-95 Added DC21041 and DC21140 support.
255 Fix missed frame counter value and initialisation.
256 Fixed EISA probe.
257 0.24 11-Apr-95 Change delay routine to use <linux/udelay>.
258 Change TX_BUFFS_AVAIL macro.
259 Change media autodetection to allow manual setting.
260 Completed DE500 (DC21140) support.
261 0.241 18-Apr-95 Interim release without DE500 Autosense Algorithm.
262 0.242 10-May-95 Minor changes.
263 0.30 12-Jun-95 Timer fix for DC21140.
264 Portability changes.
265 Add ALPHA changes from <jestabro@ant.tay1.dec.com>.
266 Add DE500 semi automatic autosense.
267 Add Link Fail interrupt TP failure detection.
268 Add timer based link change detection.
269 Plugged a memory leak in de4x5_queue_pkt().
270 0.31 13-Jun-95 Fixed PCI stuff for 1.3.1.
271 0.32 26-Jun-95 Added verify_area() calls in de4x5_ioctl() from a
272 suggestion by <heiko@colossus.escape.de>.
273 0.33 8-Aug-95 Add shared interrupt support (not released yet).
274 0.331 21-Aug-95 Fix de4x5_open() with fast CPUs.
275 Fix de4x5_interrupt().
276 Fix dc21140_autoconf() mess.
277 No shared interrupt support.
278 0.332 11-Sep-95 Added MII management interface routines.
279 0.40 5-Mar-96 Fix setup frame timeout <maartenb@hpkuipc.cern.ch>.
280 Add kernel timer code (h/w is too flaky).
281 Add MII based PHY autosense.
282 Add new multicasting code.
283 Add new autosense algorithms for media/mode
284 selection using kernel scheduling/timing.
285 Re-formatted.
286 Made changes suggested by <jeff@router.patch.net>:
287 Change driver to detect all DECchip based cards
288 with DEC_ONLY restriction a special case.
289 Changed driver to autoprobe as a module. No irq
290 checking is done now - assume BIOS is good!
291 Added SMC9332 detection <manabe@Roy.dsl.tutics.ac.jp>
292 0.41 21-Mar-96 Don't check for get_hw_addr checksum unless DEC card
293 only <niles@axp745gsfc.nasa.gov>
294 Fix for multiple PCI cards reported by <jos@xos.nl>
295 Duh, put the IRQF_SHARED flag into request_interrupt().
296 Fix SMC ethernet address in enet_det[].
297 Print chip name instead of "UNKNOWN" during boot.
298 0.42 26-Apr-96 Fix MII write TA bit error.
299 Fix bug in dc21040 and dc21041 autosense code.
300 Remove buffer copies on receive for Intels.
301 Change sk_buff handling during media disconnects to
302 eliminate DUP packets.
303 Add dynamic TX thresholding.
304 Change all chips to use perfect multicast filtering.
305 Fix alloc_device() bug <jari@markkus2.fimr.fi>
306 0.43 21-Jun-96 Fix unconnected media TX retry bug.
307 Add Accton to the list of broken cards.
308 Fix TX under-run bug for non DC21140 chips.
309 Fix boot command probe bug in alloc_device() as
310 reported by <koen.gadeyne@barco.com> and
311 <orava@nether.tky.hut.fi>.
312 Add cache locks to prevent a race condition as
313 reported by <csd@microplex.com> and
314 <baba@beckman.uiuc.edu>.
315 Upgraded alloc_device() code.
316 0.431 28-Jun-96 Fix potential bug in queue_pkt() from discussion
317 with <csd@microplex.com>
318 0.44 13-Aug-96 Fix RX overflow bug in 2114[023] chips.
319 Fix EISA probe bugs reported by <os2@kpi.kharkov.ua>
320 and <michael@compurex.com>.
321 0.441 9-Sep-96 Change dc21041_autoconf() to probe quiet BNC media
322 with a loopback packet.
323 0.442 9-Sep-96 Include AUI in dc21041 media printout. Bug reported
324 by <bhat@mundook.cs.mu.OZ.AU>
325 0.45 8-Dec-96 Include endian functions for PPC use, from work
326 by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
327 0.451 28-Dec-96 Added fix to allow autoprobe for modules after
328 suggestion from <mjacob@feral.com>.
329 0.5 30-Jan-97 Added SROM decoding functions.
330 Updated debug flags.
331 Fix sleep/wakeup calls for PCI cards, bug reported
332 by <cross@gweep.lkg.dec.com>.
333 Added multi-MAC, one SROM feature from discussion
334 with <mjacob@feral.com>.
335 Added full module autoprobe capability.
336 Added attempt to use an SMC9332 with broken SROM.
337 Added fix for ZYNX multi-mac cards that didn't
338 get their IRQs wired correctly.
339 0.51 13-Feb-97 Added endian fixes for the SROM accesses from
340 <paubert@iram.es>
341 Fix init_connection() to remove extra device reset.
342 Fix MAC/PHY reset ordering in dc21140m_autoconf().
343 Fix initialisation problem with lp->timeout in
344 typeX_infoblock() from <paubert@iram.es>.
345 Fix MII PHY reset problem from work done by
346 <paubert@iram.es>.
347 0.52 26-Apr-97 Some changes may not credit the right people -
348 a disk crash meant I lost some mail.
349 Change RX interrupt routine to drop rather than
350 defer packets to avoid hang reported by
351 <g.thomas@opengroup.org>.
352 Fix srom_exec() to return for COMPACT and type 1
353 infoblocks.
354 Added DC21142 and DC21143 functions.
355 Added byte counters from <phil@tazenda.demon.co.uk>
356 Added IRQF_DISABLED temporary fix from
357 <mjacob@feral.com>.
358 0.53 12-Nov-97 Fix the *_probe() to include 'eth??' name during
359 module load: bug reported by
360 <Piete.Brooks@cl.cam.ac.uk>
361 Fix multi-MAC, one SROM, to work with 2114x chips:
362 bug reported by <cmetz@inner.net>.
363 Make above search independent of BIOS device scan
364 direction.
365 Completed DC2114[23] autosense functions.
366 0.531 21-Dec-97 Fix DE500-XA 100Mb/s bug reported by
367 <robin@intercore.com
368 Fix type1_infoblock() bug introduced in 0.53, from
369 problem reports by
370 <parmee@postecss.ncrfran.france.ncr.com> and
371 <jo@ice.dillingen.baynet.de>.
372 Added argument list to set up each board from either
373 a module's command line or a compiled in #define.
374 Added generic MII PHY functionality to deal with
375 newer PHY chips.
376 Fix the mess in 2.1.67.
377 0.532 5-Jan-98 Fix bug in mii_get_phy() reported by
378 <redhat@cococo.net>.
379 Fix bug in pci_probe() for 64 bit systems reported
380 by <belliott@accessone.com>.
381 0.533 9-Jan-98 Fix more 64 bit bugs reported by <jal@cs.brown.edu>.
382 0.534 24-Jan-98 Fix last (?) endian bug from <geert@linux-m68k.org>
383 0.535 21-Feb-98 Fix Ethernet Address PROM reset bug for DC21040.
384 0.536 21-Mar-98 Change pci_probe() to use the pci_dev structure.
385 **Incompatible with 2.0.x from here.**
386 0.540 5-Jul-98 Atomicize assertion of dev->interrupt for SMP
387 from <lma@varesearch.com>
388 Add TP, AUI and BNC cases to 21140m_autoconf() for
389 case where a 21140 under SROM control uses, e.g. AUI
390 from problem report by <delchini@lpnp09.in2p3.fr>
391 Add MII parallel detection to 2114x_autoconf() for
392 case where no autonegotiation partner exists from
393 problem report by <mlapsley@ndirect.co.uk>.
394 Add ability to force connection type directly even
395 when using SROM control from problem report by
396 <earl@exis.net>.
397 Updated the PCI interface to conform with the latest
398 version. I hope nothing is broken...
399 Add TX done interrupt modification from suggestion
400 by <Austin.Donnelly@cl.cam.ac.uk>.
401 Fix is_anc_capable() bug reported by
402 <Austin.Donnelly@cl.cam.ac.uk>.
403 Fix type[13]_infoblock() bug: during MII search, PHY
404 lp->rst not run because lp->ibn not initialised -
405 from report & fix by <paubert@iram.es>.
406 Fix probe bug with EISA & PCI cards present from
407 report by <eirik@netcom.com>.
408 0.541 24-Aug-98 Fix compiler problems associated with i386-string
409 ops from multiple bug reports and temporary fix
410 from <paubert@iram.es>.
411 Fix pci_probe() to correctly emulate the old
412 pcibios_find_class() function.
413 Add an_exception() for old ZYNX346 and fix compile
414 warning on PPC & SPARC, from <ecd@skynet.be>.
415 Fix lastPCI to correctly work with compiled in
416 kernels and modules from bug report by
417 <Zlatko.Calusic@CARNet.hr> et al.
418 0.542 15-Sep-98 Fix dc2114x_autoconf() to stop multiple messages
419 when media is unconnected.
420 Change dev->interrupt to lp->interrupt to ensure
421 alignment for Alpha's and avoid their unaligned
422 access traps. This flag is merely for log messages:
423 should do something more definitive though...
424 0.543 30-Dec-98 Add SMP spin locking.
425 0.544 8-May-99 Fix for buggy SROM in Motorola embedded boards using
426 a 21143 by <mmporter@home.com>.
427 Change PCI/EISA bus probing order.
428 0.545 28-Nov-99 Further Moto SROM bug fix from
429 <mporter@eng.mcd.mot.com>
430 Remove double checking for DEBUG_RX in de4x5_dbg_rx()
431 from report by <geert@linux-m68k.org>
432 0.546 22-Feb-01 Fixes Alpha XP1000 oops. The srom_search function
433 was causing a page fault when initializing the
434 variable 'pb', on a non de4x5 PCI device, in this
435 case a PCI bridge (DEC chip 21152). The value of
436 'pb' is now only initialized if a de4x5 chip is
437 present.
438 <france@handhelds.org>
439 0.547 08-Nov-01 Use library crc32 functions by <Matt_Domsch@dell.com>
440 0.548 30-Aug-03 Big 2.6 cleanup. Ported to PCI/EISA probing and
441 generic DMA APIs. Fixed DE425 support on Alpha.
442 <maz@wild-wind.fr.eu.org>
443 =========================================================================
444 */
445
446 #include <linux/module.h>
447 #include <linux/kernel.h>
448 #include <linux/string.h>
449 #include <linux/interrupt.h>
450 #include <linux/ptrace.h>
451 #include <linux/errno.h>
452 #include <linux/ioport.h>
453 #include <linux/pci.h>
454 #include <linux/eisa.h>
455 #include <linux/delay.h>
456 #include <linux/init.h>
457 #include <linux/spinlock.h>
458 #include <linux/crc32.h>
459 #include <linux/netdevice.h>
460 #include <linux/etherdevice.h>
461 #include <linux/skbuff.h>
462 #include <linux/time.h>
463 #include <linux/types.h>
464 #include <linux/unistd.h>
465 #include <linux/ctype.h>
466 #include <linux/dma-mapping.h>
467 #include <linux/moduleparam.h>
468 #include <linux/bitops.h>
469 #include <linux/gfp.h>
470
471 #include <asm/io.h>
472 #include <asm/dma.h>
473 #include <asm/byteorder.h>
474 #include <asm/unaligned.h>
475 #include <linux/uaccess.h>
476 #ifdef CONFIG_PPC_PMAC
477 #include <asm/machdep.h>
478 #endif /* CONFIG_PPC_PMAC */
479
480 #include "de4x5.h"
481
482 static const char version[] =
483 KERN_INFO "de4x5.c:V0.546 2001/02/22 davies@maniac.ultranet.com\n";
484
485 #define c_char const char
486
487 /*
488 ** MII Information
489 */
490 struct phy_table {
491 int reset; /* Hard reset required? */
492 int id; /* IEEE OUI */
493 int ta; /* One cycle TA time - 802.3u is confusing here */
494 struct { /* Non autonegotiation (parallel) speed det. */
495 int reg;
496 int mask;
497 int value;
498 } spd;
499 };
500
501 struct mii_phy {
502 int reset; /* Hard reset required? */
503 int id; /* IEEE OUI */
504 int ta; /* One cycle TA time */
505 struct { /* Non autonegotiation (parallel) speed det. */
506 int reg;
507 int mask;
508 int value;
509 } spd;
510 int addr; /* MII address for the PHY */
511 u_char *gep; /* Start of GEP sequence block in SROM */
512 u_char *rst; /* Start of reset sequence in SROM */
513 u_int mc; /* Media Capabilities */
514 u_int ana; /* NWay Advertisement */
515 u_int fdx; /* Full DupleX capabilities for each media */
516 u_int ttm; /* Transmit Threshold Mode for each media */
517 u_int mci; /* 21142 MII Connector Interrupt info */
518 };
519
520 #define DE4X5_MAX_PHY 8 /* Allow up to 8 attached PHY devices per board */
521
522 struct sia_phy {
523 u_char mc; /* Media Code */
524 u_char ext; /* csr13-15 valid when set */
525 int csr13; /* SIA Connectivity Register */
526 int csr14; /* SIA TX/RX Register */
527 int csr15; /* SIA General Register */
528 int gepc; /* SIA GEP Control Information */
529 int gep; /* SIA GEP Data */
530 };
531
532 /*
533 ** Define the know universe of PHY devices that can be
534 ** recognised by this driver.
535 */
536 static struct phy_table phy_info[] = {
537 {0, NATIONAL_TX, 1, {0x19, 0x40, 0x00}}, /* National TX */
538 {1, BROADCOM_T4, 1, {0x10, 0x02, 0x02}}, /* Broadcom T4 */
539 {0, SEEQ_T4 , 1, {0x12, 0x10, 0x10}}, /* SEEQ T4 */
540 {0, CYPRESS_T4 , 1, {0x05, 0x20, 0x20}}, /* Cypress T4 */
541 {0, 0x7810 , 1, {0x14, 0x0800, 0x0800}} /* Level One LTX970 */
542 };
543
544 /*
545 ** These GENERIC values assumes that the PHY devices follow 802.3u and
546 ** allow parallel detection to set the link partner ability register.
547 ** Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
548 */
549 #define GENERIC_REG 0x05 /* Autoneg. Link Partner Advertisement Reg. */
550 #define GENERIC_MASK MII_ANLPA_100M /* All 100Mb/s Technologies */
551 #define GENERIC_VALUE MII_ANLPA_100M /* 100B-TX, 100B-TX FDX, 100B-T4 */
552
553 /*
554 ** Define special SROM detection cases
555 */
556 static c_char enet_det[][ETH_ALEN] = {
557 {0x00, 0x00, 0xc0, 0x00, 0x00, 0x00},
558 {0x00, 0x00, 0xe8, 0x00, 0x00, 0x00}
559 };
560
561 #define SMC 1
562 #define ACCTON 2
563
564 /*
565 ** SROM Repair definitions. If a broken SROM is detected a card may
566 ** use this information to help figure out what to do. This is a
567 ** "stab in the dark" and so far for SMC9332's only.
568 */
569 static c_char srom_repair_info[][100] = {
570 {0x00,0x1e,0x00,0x00,0x00,0x08, /* SMC9332 */
571 0x1f,0x01,0x8f,0x01,0x00,0x01,0x00,0x02,
572 0x01,0x00,0x00,0x78,0xe0,0x01,0x00,0x50,
573 0x00,0x18,}
574 };
575
576
577 #ifdef DE4X5_DEBUG
578 static int de4x5_debug = DE4X5_DEBUG;
579 #else
580 /*static int de4x5_debug = (DEBUG_MII | DEBUG_SROM | DEBUG_PCICFG | DEBUG_MEDIA | DEBUG_VERSION);*/
581 static int de4x5_debug = (DEBUG_MEDIA | DEBUG_VERSION);
582 #endif
583
584 /*
585 ** Allow per adapter set up. For modules this is simply a command line
586 ** parameter, e.g.:
587 ** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
588 **
589 ** For a compiled in driver, place e.g.
590 ** #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
591 ** here
592 */
593 #ifdef DE4X5_PARM
594 static char *args = DE4X5_PARM;
595 #else
596 static char *args;
597 #endif
598
599 struct parameters {
600 bool fdx;
601 int autosense;
602 };
603
604 #define DE4X5_AUTOSENSE_MS 250 /* msec autosense tick (DE500) */
605
606 #define DE4X5_NDA 0xffe0 /* No Device (I/O) Address */
607
608 /*
609 ** Ethernet PROM defines
610 */
611 #define PROBE_LENGTH 32
612 #define ETH_PROM_SIG 0xAA5500FFUL
613
614 /*
615 ** Ethernet Info
616 */
617 #define PKT_BUF_SZ 1536 /* Buffer size for each Tx/Rx buffer */
618 #define IEEE802_3_SZ 1518 /* Packet + CRC */
619 #define MAX_PKT_SZ 1514 /* Maximum ethernet packet length */
620 #define MAX_DAT_SZ 1500 /* Maximum ethernet data length */
621 #define MIN_DAT_SZ 1 /* Minimum ethernet data length */
622 #define PKT_HDR_LEN 14 /* Addresses and data length info */
623 #define FAKE_FRAME_LEN (MAX_PKT_SZ + 1)
624 #define QUEUE_PKT_TIMEOUT (3*HZ) /* 3 second timeout */
625
626
627 /*
628 ** EISA bus defines
629 */
630 #define DE4X5_EISA_IO_PORTS 0x0c00 /* I/O port base address, slot 0 */
631 #define DE4X5_EISA_TOTAL_SIZE 0x100 /* I/O address extent */
632
633 #define EISA_ALLOWED_IRQ_LIST {5, 9, 10, 11}
634
635 #define DE4X5_SIGNATURE {"DE425","DE434","DE435","DE450","DE500"}
636 #define DE4X5_NAME_LENGTH 8
637
638 static c_char *de4x5_signatures[] = DE4X5_SIGNATURE;
639
640 /*
641 ** Ethernet PROM defines for DC21040
642 */
643 #define PROBE_LENGTH 32
644 #define ETH_PROM_SIG 0xAA5500FFUL
645
646 /*
647 ** PCI Bus defines
648 */
649 #define PCI_MAX_BUS_NUM 8
650 #define DE4X5_PCI_TOTAL_SIZE 0x80 /* I/O address extent */
651 #define DE4X5_CLASS_CODE 0x00020000 /* Network controller, Ethernet */
652
653 /*
654 ** Memory Alignment. Each descriptor is 4 longwords long. To force a
655 ** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
656 ** DESC_ALIGN. ALIGN aligns the start address of the private memory area
657 ** and hence the RX descriptor ring's first entry.
658 */
659 #define DE4X5_ALIGN4 ((u_long)4 - 1) /* 1 longword align */
660 #define DE4X5_ALIGN8 ((u_long)8 - 1) /* 2 longword align */
661 #define DE4X5_ALIGN16 ((u_long)16 - 1) /* 4 longword align */
662 #define DE4X5_ALIGN32 ((u_long)32 - 1) /* 8 longword align */
663 #define DE4X5_ALIGN64 ((u_long)64 - 1) /* 16 longword align */
664 #define DE4X5_ALIGN128 ((u_long)128 - 1) /* 32 longword align */
665
666 #define DE4X5_ALIGN DE4X5_ALIGN32 /* Keep the DC21040 happy... */
667 #define DE4X5_CACHE_ALIGN CAL_16LONG
668 #define DESC_SKIP_LEN DSL_0 /* Must agree with DESC_ALIGN */
669 /*#define DESC_ALIGN u32 dummy[4]; / * Must agree with DESC_SKIP_LEN */
670 #define DESC_ALIGN
671
672 #ifndef DEC_ONLY /* See README.de4x5 for using this */
673 static int dec_only;
674 #else
675 static int dec_only = 1;
676 #endif
677
678 /*
679 ** DE4X5 IRQ ENABLE/DISABLE
680 */
681 #define ENABLE_IRQs { \
682 imr |= lp->irq_en;\
683 outl(imr, DE4X5_IMR); /* Enable the IRQs */\
684 }
685
686 #define DISABLE_IRQs {\
687 imr = inl(DE4X5_IMR);\
688 imr &= ~lp->irq_en;\
689 outl(imr, DE4X5_IMR); /* Disable the IRQs */\
690 }
691
692 #define UNMASK_IRQs {\
693 imr |= lp->irq_mask;\
694 outl(imr, DE4X5_IMR); /* Unmask the IRQs */\
695 }
696
697 #define MASK_IRQs {\
698 imr = inl(DE4X5_IMR);\
699 imr &= ~lp->irq_mask;\
700 outl(imr, DE4X5_IMR); /* Mask the IRQs */\
701 }
702
703 /*
704 ** DE4X5 START/STOP
705 */
706 #define START_DE4X5 {\
707 omr = inl(DE4X5_OMR);\
708 omr |= OMR_ST | OMR_SR;\
709 outl(omr, DE4X5_OMR); /* Enable the TX and/or RX */\
710 }
711
712 #define STOP_DE4X5 {\
713 omr = inl(DE4X5_OMR);\
714 omr &= ~(OMR_ST|OMR_SR);\
715 outl(omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
716 }
717
718 /*
719 ** DE4X5 SIA RESET
720 */
721 #define RESET_SIA outl(0, DE4X5_SICR); /* Reset SIA connectivity regs */
722
723 /*
724 ** DE500 AUTOSENSE TIMER INTERVAL (MILLISECS)
725 */
726 #define DE4X5_AUTOSENSE_MS 250
727
728 /*
729 ** SROM Structure
730 */
731 struct de4x5_srom {
732 char sub_vendor_id[2];
733 char sub_system_id[2];
734 char reserved[12];
735 char id_block_crc;
736 char reserved2;
737 char version;
738 char num_controllers;
739 char ieee_addr[6];
740 char info[100];
741 short chksum;
742 };
743 #define SUB_VENDOR_ID 0x500a
744
745 /*
746 ** DE4X5 Descriptors. Make sure that all the RX buffers are contiguous
747 ** and have sizes of both a power of 2 and a multiple of 4.
748 ** A size of 256 bytes for each buffer could be chosen because over 90% of
749 ** all packets in our network are <256 bytes long and 64 longword alignment
750 ** is possible. 1536 showed better 'ttcp' performance. Take your pick. 32 TX
751 ** descriptors are needed for machines with an ALPHA CPU.
752 */
753 #define NUM_RX_DESC 8 /* Number of RX descriptors */
754 #define NUM_TX_DESC 32 /* Number of TX descriptors */
755 #define RX_BUFF_SZ 1536 /* Power of 2 for kmalloc and */
756 /* Multiple of 4 for DC21040 */
757 /* Allows 512 byte alignment */
758 struct de4x5_desc {
759 volatile __le32 status;
760 __le32 des1;
761 __le32 buf;
762 __le32 next;
763 DESC_ALIGN
764 };
765
766 /*
767 ** The DE4X5 private structure
768 */
769 #define DE4X5_PKT_STAT_SZ 16
770 #define DE4X5_PKT_BIN_SZ 128 /* Should be >=100 unless you
771 increase DE4X5_PKT_STAT_SZ */
772
773 struct pkt_stats {
774 u_int bins[DE4X5_PKT_STAT_SZ]; /* Private stats counters */
775 u_int unicast;
776 u_int multicast;
777 u_int broadcast;
778 u_int excessive_collisions;
779 u_int tx_underruns;
780 u_int excessive_underruns;
781 u_int rx_runt_frames;
782 u_int rx_collision;
783 u_int rx_dribble;
784 u_int rx_overflow;
785 };
786
787 struct de4x5_private {
788 char adapter_name[80]; /* Adapter name */
789 u_long interrupt; /* Aligned ISR flag */
790 struct de4x5_desc *rx_ring; /* RX descriptor ring */
791 struct de4x5_desc *tx_ring; /* TX descriptor ring */
792 struct sk_buff *tx_skb[NUM_TX_DESC]; /* TX skb for freeing when sent */
793 struct sk_buff *rx_skb[NUM_RX_DESC]; /* RX skb's */
794 int rx_new, rx_old; /* RX descriptor ring pointers */
795 int tx_new, tx_old; /* TX descriptor ring pointers */
796 char setup_frame[SETUP_FRAME_LEN]; /* Holds MCA and PA info. */
797 char frame[64]; /* Min sized packet for loopback*/
798 spinlock_t lock; /* Adapter specific spinlock */
799 struct net_device_stats stats; /* Public stats */
800 struct pkt_stats pktStats; /* Private stats counters */
801 char rxRingSize;
802 char txRingSize;
803 int bus; /* EISA or PCI */
804 int bus_num; /* PCI Bus number */
805 int device; /* Device number on PCI bus */
806 int state; /* Adapter OPENED or CLOSED */
807 int chipset; /* DC21040, DC21041 or DC21140 */
808 s32 irq_mask; /* Interrupt Mask (Enable) bits */
809 s32 irq_en; /* Summary interrupt bits */
810 int media; /* Media (eg TP), mode (eg 100B)*/
811 int c_media; /* Remember the last media conn */
812 bool fdx; /* media full duplex flag */
813 int linkOK; /* Link is OK */
814 int autosense; /* Allow/disallow autosensing */
815 bool tx_enable; /* Enable descriptor polling */
816 int setup_f; /* Setup frame filtering type */
817 int local_state; /* State within a 'media' state */
818 struct mii_phy phy[DE4X5_MAX_PHY]; /* List of attached PHY devices */
819 struct sia_phy sia; /* SIA PHY Information */
820 int active; /* Index to active PHY device */
821 int mii_cnt; /* Number of attached PHY's */
822 int timeout; /* Scheduling counter */
823 struct timer_list timer; /* Timer info for kernel */
824 int tmp; /* Temporary global per card */
825 struct {
826 u_long lock; /* Lock the cache accesses */
827 s32 csr0; /* Saved Bus Mode Register */
828 s32 csr6; /* Saved Operating Mode Reg. */
829 s32 csr7; /* Saved IRQ Mask Register */
830 s32 gep; /* Saved General Purpose Reg. */
831 s32 gepc; /* Control info for GEP */
832 s32 csr13; /* Saved SIA Connectivity Reg. */
833 s32 csr14; /* Saved SIA TX/RX Register */
834 s32 csr15; /* Saved SIA General Register */
835 int save_cnt; /* Flag if state already saved */
836 struct sk_buff_head queue; /* Save the (re-ordered) skb's */
837 } cache;
838 struct de4x5_srom srom; /* A copy of the SROM */
839 int cfrv; /* Card CFRV copy */
840 int rx_ovf; /* Check for 'RX overflow' tag */
841 bool useSROM; /* For non-DEC card use SROM */
842 bool useMII; /* Infoblock using the MII */
843 int asBitValid; /* Autosense bits in GEP? */
844 int asPolarity; /* 0 => asserted high */
845 int asBit; /* Autosense bit number in GEP */
846 int defMedium; /* SROM default medium */
847 int tcount; /* Last infoblock number */
848 int infoblock_init; /* Initialised this infoblock? */
849 int infoleaf_offset; /* SROM infoleaf for controller */
850 s32 infoblock_csr6; /* csr6 value in SROM infoblock */
851 int infoblock_media; /* infoblock media */
852 int (*infoleaf_fn)(struct net_device *); /* Pointer to infoleaf function */
853 u_char *rst; /* Pointer to Type 5 reset info */
854 u_char ibn; /* Infoblock number */
855 struct parameters params; /* Command line/ #defined params */
856 struct device *gendev; /* Generic device */
857 dma_addr_t dma_rings; /* DMA handle for rings */
858 int dma_size; /* Size of the DMA area */
859 char *rx_bufs; /* rx bufs on alpha, sparc, ... */
860 };
861
862 /*
863 ** To get around certain poxy cards that don't provide an SROM
864 ** for the second and more DECchip, I have to key off the first
865 ** chip's address. I'll assume there's not a bad SROM iff:
866 **
867 ** o the chipset is the same
868 ** o the bus number is the same and > 0
869 ** o the sum of all the returned hw address bytes is 0 or 0x5fa
870 **
871 ** Also have to save the irq for those cards whose hardware designers
872 ** can't follow the PCI to PCI Bridge Architecture spec.
873 */
874 static struct {
875 int chipset;
876 int bus;
877 int irq;
878 u_char addr[ETH_ALEN];
879 } last = {0,};
880
881 /*
882 ** The transmit ring full condition is described by the tx_old and tx_new
883 ** pointers by:
884 ** tx_old = tx_new Empty ring
885 ** tx_old = tx_new+1 Full ring
886 ** tx_old+txRingSize = tx_new+1 Full ring (wrapped condition)
887 */
888 #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
889 lp->tx_old+lp->txRingSize-lp->tx_new-1:\
890 lp->tx_old -lp->tx_new-1)
891
892 #define TX_PKT_PENDING (lp->tx_old != lp->tx_new)
893
894 /*
895 ** Public Functions
896 */
897 static int de4x5_open(struct net_device *dev);
898 static netdev_tx_t de4x5_queue_pkt(struct sk_buff *skb,
899 struct net_device *dev);
900 static irqreturn_t de4x5_interrupt(int irq, void *dev_id);
901 static int de4x5_close(struct net_device *dev);
902 static struct net_device_stats *de4x5_get_stats(struct net_device *dev);
903 static void de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len);
904 static void set_multicast_list(struct net_device *dev);
905 static int de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
906
907 /*
908 ** Private functions
909 */
910 static int de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev);
911 static int de4x5_init(struct net_device *dev);
912 static int de4x5_sw_reset(struct net_device *dev);
913 static int de4x5_rx(struct net_device *dev);
914 static int de4x5_tx(struct net_device *dev);
915 static void de4x5_ast(struct timer_list *t);
916 static int de4x5_txur(struct net_device *dev);
917 static int de4x5_rx_ovfc(struct net_device *dev);
918
919 static int autoconf_media(struct net_device *dev);
920 static void create_packet(struct net_device *dev, char *frame, int len);
921 static void load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb);
922 static int dc21040_autoconf(struct net_device *dev);
923 static int dc21041_autoconf(struct net_device *dev);
924 static int dc21140m_autoconf(struct net_device *dev);
925 static int dc2114x_autoconf(struct net_device *dev);
926 static int srom_autoconf(struct net_device *dev);
927 static int de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state, int (*fn)(struct net_device *, int), int (*asfn)(struct net_device *));
928 static int dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout, int next_state, int suspect_state, int (*fn)(struct net_device *, int));
929 static int test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec);
930 static int test_for_100Mb(struct net_device *dev, int msec);
931 static int wait_for_link(struct net_device *dev);
932 static int test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec);
933 static int is_spd_100(struct net_device *dev);
934 static int is_100_up(struct net_device *dev);
935 static int is_10_up(struct net_device *dev);
936 static int is_anc_capable(struct net_device *dev);
937 static int ping_media(struct net_device *dev, int msec);
938 static struct sk_buff *de4x5_alloc_rx_buff(struct net_device *dev, int index, int len);
939 static void de4x5_free_rx_buffs(struct net_device *dev);
940 static void de4x5_free_tx_buffs(struct net_device *dev);
941 static void de4x5_save_skbs(struct net_device *dev);
942 static void de4x5_rst_desc_ring(struct net_device *dev);
943 static void de4x5_cache_state(struct net_device *dev, int flag);
944 static void de4x5_put_cache(struct net_device *dev, struct sk_buff *skb);
945 static void de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb);
946 static struct sk_buff *de4x5_get_cache(struct net_device *dev);
947 static void de4x5_setup_intr(struct net_device *dev);
948 static void de4x5_init_connection(struct net_device *dev);
949 static int de4x5_reset_phy(struct net_device *dev);
950 static void reset_init_sia(struct net_device *dev, s32 sicr, s32 strr, s32 sigr);
951 static int test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec);
952 static int test_tp(struct net_device *dev, s32 msec);
953 static int EISA_signature(char *name, struct device *device);
954 static int PCI_signature(char *name, struct de4x5_private *lp);
955 static void DevicePresent(struct net_device *dev, u_long iobase);
956 static void enet_addr_rst(u_long aprom_addr);
957 static int de4x5_bad_srom(struct de4x5_private *lp);
958 static short srom_rd(u_long address, u_char offset);
959 static void srom_latch(u_int command, u_long address);
960 static void srom_command(u_int command, u_long address);
961 static void srom_address(u_int command, u_long address, u_char offset);
962 static short srom_data(u_int command, u_long address);
963 /*static void srom_busy(u_int command, u_long address);*/
964 static void sendto_srom(u_int command, u_long addr);
965 static int getfrom_srom(u_long addr);
966 static int srom_map_media(struct net_device *dev);
967 static int srom_infoleaf_info(struct net_device *dev);
968 static void srom_init(struct net_device *dev);
969 static void srom_exec(struct net_device *dev, u_char *p);
970 static int mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr);
971 static void mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr);
972 static int mii_rdata(u_long ioaddr);
973 static void mii_wdata(int data, int len, u_long ioaddr);
974 static void mii_ta(u_long rw, u_long ioaddr);
975 static int mii_swap(int data, int len);
976 static void mii_address(u_char addr, u_long ioaddr);
977 static void sendto_mii(u32 command, int data, u_long ioaddr);
978 static int getfrom_mii(u32 command, u_long ioaddr);
979 static int mii_get_oui(u_char phyaddr, u_long ioaddr);
980 static int mii_get_phy(struct net_device *dev);
981 static void SetMulticastFilter(struct net_device *dev);
982 static int get_hw_addr(struct net_device *dev);
983 static void srom_repair(struct net_device *dev, int card);
984 static int test_bad_enet(struct net_device *dev, int status);
985 static int an_exception(struct de4x5_private *lp);
986 static char *build_setup_frame(struct net_device *dev, int mode);
987 static void disable_ast(struct net_device *dev);
988 static long de4x5_switch_mac_port(struct net_device *dev);
989 static int gep_rd(struct net_device *dev);
990 static void gep_wr(s32 data, struct net_device *dev);
991 static void yawn(struct net_device *dev, int state);
992 static void de4x5_parse_params(struct net_device *dev);
993 static void de4x5_dbg_open(struct net_device *dev);
994 static void de4x5_dbg_mii(struct net_device *dev, int k);
995 static void de4x5_dbg_media(struct net_device *dev);
996 static void de4x5_dbg_srom(struct de4x5_srom *p);
997 static void de4x5_dbg_rx(struct sk_buff *skb, int len);
998 static int dc21041_infoleaf(struct net_device *dev);
999 static int dc21140_infoleaf(struct net_device *dev);
1000 static int dc21142_infoleaf(struct net_device *dev);
1001 static int dc21143_infoleaf(struct net_device *dev);
1002 static int type0_infoblock(struct net_device *dev, u_char count, u_char *p);
1003 static int type1_infoblock(struct net_device *dev, u_char count, u_char *p);
1004 static int type2_infoblock(struct net_device *dev, u_char count, u_char *p);
1005 static int type3_infoblock(struct net_device *dev, u_char count, u_char *p);
1006 static int type4_infoblock(struct net_device *dev, u_char count, u_char *p);
1007 static int type5_infoblock(struct net_device *dev, u_char count, u_char *p);
1008 static int compact_infoblock(struct net_device *dev, u_char count, u_char *p);
1009
1010 /*
1011 ** Note now that module autoprobing is allowed under EISA and PCI. The
1012 ** IRQ lines will not be auto-detected; instead I'll rely on the BIOSes
1013 ** to "do the right thing".
1014 */
1015
1016 static int io=0x0;/* EDIT THIS LINE FOR YOUR CONFIGURATION IF NEEDED */
1017
1018 module_param_hw(io, int, ioport, 0);
1019 module_param(de4x5_debug, int, 0);
1020 module_param(dec_only, int, 0);
1021 module_param(args, charp, 0);
1022
1023 MODULE_PARM_DESC(io, "de4x5 I/O base address");
1024 MODULE_PARM_DESC(de4x5_debug, "de4x5 debug mask");
1025 MODULE_PARM_DESC(dec_only, "de4x5 probe only for Digital boards (0-1)");
1026 MODULE_PARM_DESC(args, "de4x5 full duplex and media type settings; see de4x5.c for details");
1027 MODULE_LICENSE("GPL");
1028
1029 /*
1030 ** List the SROM infoleaf functions and chipsets
1031 */
1032 struct InfoLeaf {
1033 int chipset;
1034 int (*fn)(struct net_device *);
1035 };
1036 static struct InfoLeaf infoleaf_array[] = {
1037 {DC21041, dc21041_infoleaf},
1038 {DC21140, dc21140_infoleaf},
1039 {DC21142, dc21142_infoleaf},
1040 {DC21143, dc21143_infoleaf}
1041 };
1042 #define INFOLEAF_SIZE ARRAY_SIZE(infoleaf_array)
1043
1044 /*
1045 ** List the SROM info block functions
1046 */
1047 static int (*dc_infoblock[])(struct net_device *dev, u_char, u_char *) = {
1048 type0_infoblock,
1049 type1_infoblock,
1050 type2_infoblock,
1051 type3_infoblock,
1052 type4_infoblock,
1053 type5_infoblock,
1054 compact_infoblock
1055 };
1056
1057 #define COMPACT (ARRAY_SIZE(dc_infoblock) - 1)
1058
1059 /*
1060 ** Miscellaneous defines...
1061 */
1062 #define RESET_DE4X5 {\
1063 int i;\
1064 i=inl(DE4X5_BMR);\
1065 mdelay(1);\
1066 outl(i | BMR_SWR, DE4X5_BMR);\
1067 mdelay(1);\
1068 outl(i, DE4X5_BMR);\
1069 mdelay(1);\
1070 for (i=0;i<5;i++) {inl(DE4X5_BMR); mdelay(1);}\
1071 mdelay(1);\
1072 }
1073
1074 #define PHY_HARD_RESET {\
1075 outl(GEP_HRST, DE4X5_GEP); /* Hard RESET the PHY dev. */\
1076 mdelay(1); /* Assert for 1ms */\
1077 outl(0x00, DE4X5_GEP);\
1078 mdelay(2); /* Wait for 2ms */\
1079 }
1080
1081 static const struct net_device_ops de4x5_netdev_ops = {
1082 .ndo_open = de4x5_open,
1083 .ndo_stop = de4x5_close,
1084 .ndo_start_xmit = de4x5_queue_pkt,
1085 .ndo_get_stats = de4x5_get_stats,
1086 .ndo_set_rx_mode = set_multicast_list,
1087 .ndo_do_ioctl = de4x5_ioctl,
1088 .ndo_set_mac_address= eth_mac_addr,
1089 .ndo_validate_addr = eth_validate_addr,
1090 };
1091
1092
1093 static int
1094 de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1095 {
1096 char name[DE4X5_NAME_LENGTH + 1];
1097 struct de4x5_private *lp = netdev_priv(dev);
1098 struct pci_dev *pdev = NULL;
1099 int i, status=0;
1100
1101 dev_set_drvdata(gendev, dev);
1102
1103 /* Ensure we're not sleeping */
1104 if (lp->bus == EISA) {
1105 outb(WAKEUP, PCI_CFPM);
1106 } else {
1107 pdev = to_pci_dev (gendev);
1108 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
1109 }
1110 mdelay(10);
1111
1112 RESET_DE4X5;
1113
1114 if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
1115 return -ENXIO; /* Hardware could not reset */
1116 }
1117
1118 /*
1119 ** Now find out what kind of DC21040/DC21041/DC21140 board we have.
1120 */
1121 lp->useSROM = false;
1122 if (lp->bus == PCI) {
1123 PCI_signature(name, lp);
1124 } else {
1125 EISA_signature(name, gendev);
1126 }
1127
1128 if (*name == '\0') { /* Not found a board signature */
1129 return -ENXIO;
1130 }
1131
1132 dev->base_addr = iobase;
1133 printk ("%s: %s at 0x%04lx", dev_name(gendev), name, iobase);
1134
1135 status = get_hw_addr(dev);
1136 printk(", h/w address %pM\n", dev->dev_addr);
1137
1138 if (status != 0) {
1139 printk(" which has an Ethernet PROM CRC error.\n");
1140 return -ENXIO;
1141 } else {
1142 skb_queue_head_init(&lp->cache.queue);
1143 lp->cache.gepc = GEP_INIT;
1144 lp->asBit = GEP_SLNK;
1145 lp->asPolarity = GEP_SLNK;
1146 lp->asBitValid = ~0;
1147 lp->timeout = -1;
1148 lp->gendev = gendev;
1149 spin_lock_init(&lp->lock);
1150 timer_setup(&lp->timer, de4x5_ast, 0);
1151 de4x5_parse_params(dev);
1152
1153 /*
1154 ** Choose correct autosensing in case someone messed up
1155 */
1156 lp->autosense = lp->params.autosense;
1157 if (lp->chipset != DC21140) {
1158 if ((lp->chipset==DC21040) && (lp->params.autosense&TP_NW)) {
1159 lp->params.autosense = TP;
1160 }
1161 if ((lp->chipset==DC21041) && (lp->params.autosense&BNC_AUI)) {
1162 lp->params.autosense = BNC;
1163 }
1164 }
1165 lp->fdx = lp->params.fdx;
1166 sprintf(lp->adapter_name,"%s (%s)", name, dev_name(gendev));
1167
1168 lp->dma_size = (NUM_RX_DESC + NUM_TX_DESC) * sizeof(struct de4x5_desc);
1169 #if defined(__alpha__) || defined(__powerpc__) || defined(CONFIG_SPARC) || defined(DE4X5_DO_MEMCPY)
1170 lp->dma_size += RX_BUFF_SZ * NUM_RX_DESC + DE4X5_ALIGN;
1171 #endif
1172 lp->rx_ring = dma_alloc_coherent(gendev, lp->dma_size,
1173 &lp->dma_rings, GFP_ATOMIC);
1174 if (lp->rx_ring == NULL) {
1175 return -ENOMEM;
1176 }
1177
1178 lp->tx_ring = lp->rx_ring + NUM_RX_DESC;
1179
1180 /*
1181 ** Set up the RX descriptor ring (Intels)
1182 ** Allocate contiguous receive buffers, long word aligned (Alphas)
1183 */
1184 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
1185 for (i=0; i<NUM_RX_DESC; i++) {
1186 lp->rx_ring[i].status = 0;
1187 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1188 lp->rx_ring[i].buf = 0;
1189 lp->rx_ring[i].next = 0;
1190 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1191 }
1192
1193 #else
1194 {
1195 dma_addr_t dma_rx_bufs;
1196
1197 dma_rx_bufs = lp->dma_rings + (NUM_RX_DESC + NUM_TX_DESC)
1198 * sizeof(struct de4x5_desc);
1199 dma_rx_bufs = (dma_rx_bufs + DE4X5_ALIGN) & ~DE4X5_ALIGN;
1200 lp->rx_bufs = (char *)(((long)(lp->rx_ring + NUM_RX_DESC
1201 + NUM_TX_DESC) + DE4X5_ALIGN) & ~DE4X5_ALIGN);
1202 for (i=0; i<NUM_RX_DESC; i++) {
1203 lp->rx_ring[i].status = 0;
1204 lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1205 lp->rx_ring[i].buf =
1206 cpu_to_le32(dma_rx_bufs+i*RX_BUFF_SZ);
1207 lp->rx_ring[i].next = 0;
1208 lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1209 }
1210
1211 }
1212 #endif
1213
1214 barrier();
1215
1216 lp->rxRingSize = NUM_RX_DESC;
1217 lp->txRingSize = NUM_TX_DESC;
1218
1219 /* Write the end of list marker to the descriptor lists */
1220 lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
1221 lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
1222
1223 /* Tell the adapter where the TX/RX rings are located. */
1224 outl(lp->dma_rings, DE4X5_RRBA);
1225 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1226 DE4X5_TRBA);
1227
1228 /* Initialise the IRQ mask and Enable/Disable */
1229 lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM;
1230 lp->irq_en = IMR_NIM | IMR_AIM;
1231
1232 /* Create a loopback packet frame for later media probing */
1233 create_packet(dev, lp->frame, sizeof(lp->frame));
1234
1235 /* Check if the RX overflow bug needs testing for */
1236 i = lp->cfrv & 0x000000fe;
1237 if ((lp->chipset == DC21140) && (i == 0x20)) {
1238 lp->rx_ovf = 1;
1239 }
1240
1241 /* Initialise the SROM pointers if possible */
1242 if (lp->useSROM) {
1243 lp->state = INITIALISED;
1244 if (srom_infoleaf_info(dev)) {
1245 dma_free_coherent (gendev, lp->dma_size,
1246 lp->rx_ring, lp->dma_rings);
1247 return -ENXIO;
1248 }
1249 srom_init(dev);
1250 }
1251
1252 lp->state = CLOSED;
1253
1254 /*
1255 ** Check for an MII interface
1256 */
1257 if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) {
1258 mii_get_phy(dev);
1259 }
1260
1261 printk(" and requires IRQ%d (provided by %s).\n", dev->irq,
1262 ((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG"));
1263 }
1264
1265 if (de4x5_debug & DEBUG_VERSION) {
1266 printk(version);
1267 }
1268
1269 /* The DE4X5-specific entries in the device structure. */
1270 SET_NETDEV_DEV(dev, gendev);
1271 dev->netdev_ops = &de4x5_netdev_ops;
1272 dev->mem_start = 0;
1273
1274 /* Fill in the generic fields of the device structure. */
1275 if ((status = register_netdev (dev))) {
1276 dma_free_coherent (gendev, lp->dma_size,
1277 lp->rx_ring, lp->dma_rings);
1278 return status;
1279 }
1280
1281 /* Let the adapter sleep to save power */
1282 yawn(dev, SLEEP);
1283
1284 return status;
1285 }
1286
1287
1288 static int
1289 de4x5_open(struct net_device *dev)
1290 {
1291 struct de4x5_private *lp = netdev_priv(dev);
1292 u_long iobase = dev->base_addr;
1293 int i, status = 0;
1294 s32 omr;
1295
1296 /* Allocate the RX buffers */
1297 for (i=0; i<lp->rxRingSize; i++) {
1298 if (de4x5_alloc_rx_buff(dev, i, 0) == NULL) {
1299 de4x5_free_rx_buffs(dev);
1300 return -EAGAIN;
1301 }
1302 }
1303
1304 /*
1305 ** Wake up the adapter
1306 */
1307 yawn(dev, WAKEUP);
1308
1309 /*
1310 ** Re-initialize the DE4X5...
1311 */
1312 status = de4x5_init(dev);
1313 spin_lock_init(&lp->lock);
1314 lp->state = OPEN;
1315 de4x5_dbg_open(dev);
1316
1317 if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1318 lp->adapter_name, dev)) {
1319 printk("de4x5_open(): Requested IRQ%d is busy - attempting FAST/SHARE...", dev->irq);
1320 if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1321 lp->adapter_name, dev)) {
1322 printk("\n Cannot get IRQ- reconfigure your hardware.\n");
1323 disable_ast(dev);
1324 de4x5_free_rx_buffs(dev);
1325 de4x5_free_tx_buffs(dev);
1326 yawn(dev, SLEEP);
1327 lp->state = CLOSED;
1328 return -EAGAIN;
1329 } else {
1330 printk("\n Succeeded, but you should reconfigure your hardware to avoid this.\n");
1331 printk("WARNING: there may be IRQ related problems in heavily loaded systems.\n");
1332 }
1333 }
1334
1335 lp->interrupt = UNMASK_INTERRUPTS;
1336 netif_trans_update(dev); /* prevent tx timeout */
1337
1338 START_DE4X5;
1339
1340 de4x5_setup_intr(dev);
1341
1342 if (de4x5_debug & DEBUG_OPEN) {
1343 printk("\tsts: 0x%08x\n", inl(DE4X5_STS));
1344 printk("\tbmr: 0x%08x\n", inl(DE4X5_BMR));
1345 printk("\timr: 0x%08x\n", inl(DE4X5_IMR));
1346 printk("\tomr: 0x%08x\n", inl(DE4X5_OMR));
1347 printk("\tsisr: 0x%08x\n", inl(DE4X5_SISR));
1348 printk("\tsicr: 0x%08x\n", inl(DE4X5_SICR));
1349 printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR));
1350 printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR));
1351 }
1352
1353 return status;
1354 }
1355
1356 /*
1357 ** Initialize the DE4X5 operating conditions. NB: a chip problem with the
1358 ** DC21140 requires using perfect filtering mode for that chip. Since I can't
1359 ** see why I'd want > 14 multicast addresses, I have changed all chips to use
1360 ** the perfect filtering mode. Keep the DMA burst length at 8: there seems
1361 ** to be data corruption problems if it is larger (UDP errors seen from a
1362 ** ttcp source).
1363 */
1364 static int
1365 de4x5_init(struct net_device *dev)
1366 {
1367 /* Lock out other processes whilst setting up the hardware */
1368 netif_stop_queue(dev);
1369
1370 de4x5_sw_reset(dev);
1371
1372 /* Autoconfigure the connected port */
1373 autoconf_media(dev);
1374
1375 return 0;
1376 }
1377
1378 static int
1379 de4x5_sw_reset(struct net_device *dev)
1380 {
1381 struct de4x5_private *lp = netdev_priv(dev);
1382 u_long iobase = dev->base_addr;
1383 int i, j, status = 0;
1384 s32 bmr, omr;
1385
1386 /* Select the MII or SRL port now and RESET the MAC */
1387 if (!lp->useSROM) {
1388 if (lp->phy[lp->active].id != 0) {
1389 lp->infoblock_csr6 = OMR_SDP | OMR_PS | OMR_HBD;
1390 } else {
1391 lp->infoblock_csr6 = OMR_SDP | OMR_TTM;
1392 }
1393 de4x5_switch_mac_port(dev);
1394 }
1395
1396 /*
1397 ** Set the programmable burst length to 8 longwords for all the DC21140
1398 ** Fasternet chips and 4 longwords for all others: DMA errors result
1399 ** without these values. Cache align 16 long.
1400 */
1401 bmr = (lp->chipset==DC21140 ? PBL_8 : PBL_4) | DESC_SKIP_LEN | DE4X5_CACHE_ALIGN;
1402 bmr |= ((lp->chipset & ~0x00ff)==DC2114x ? BMR_RML : 0);
1403 outl(bmr, DE4X5_BMR);
1404
1405 omr = inl(DE4X5_OMR) & ~OMR_PR; /* Turn off promiscuous mode */
1406 if (lp->chipset == DC21140) {
1407 omr |= (OMR_SDP | OMR_SB);
1408 }
1409 lp->setup_f = PERFECT;
1410 outl(lp->dma_rings, DE4X5_RRBA);
1411 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1412 DE4X5_TRBA);
1413
1414 lp->rx_new = lp->rx_old = 0;
1415 lp->tx_new = lp->tx_old = 0;
1416
1417 for (i = 0; i < lp->rxRingSize; i++) {
1418 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
1419 }
1420
1421 for (i = 0; i < lp->txRingSize; i++) {
1422 lp->tx_ring[i].status = cpu_to_le32(0);
1423 }
1424
1425 barrier();
1426
1427 /* Build the setup frame depending on filtering mode */
1428 SetMulticastFilter(dev);
1429
1430 load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, (struct sk_buff *)1);
1431 outl(omr|OMR_ST, DE4X5_OMR);
1432
1433 /* Poll for setup frame completion (adapter interrupts are disabled now) */
1434
1435 for (j=0, i=0;(i<500) && (j==0);i++) { /* Up to 500ms delay */
1436 mdelay(1);
1437 if ((s32)le32_to_cpu(lp->tx_ring[lp->tx_new].status) >= 0) j=1;
1438 }
1439 outl(omr, DE4X5_OMR); /* Stop everything! */
1440
1441 if (j == 0) {
1442 printk("%s: Setup frame timed out, status %08x\n", dev->name,
1443 inl(DE4X5_STS));
1444 status = -EIO;
1445 }
1446
1447 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1448 lp->tx_old = lp->tx_new;
1449
1450 return status;
1451 }
1452
1453 /*
1454 ** Writes a socket buffer address to the next available transmit descriptor.
1455 */
1456 static netdev_tx_t
1457 de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1458 {
1459 struct de4x5_private *lp = netdev_priv(dev);
1460 u_long iobase = dev->base_addr;
1461 u_long flags = 0;
1462
1463 netif_stop_queue(dev);
1464 if (!lp->tx_enable) /* Cannot send for now */
1465 goto tx_err;
1466
1467 /*
1468 ** Clean out the TX ring asynchronously to interrupts - sometimes the
1469 ** interrupts are lost by delayed descriptor status updates relative to
1470 ** the irq assertion, especially with a busy PCI bus.
1471 */
1472 spin_lock_irqsave(&lp->lock, flags);
1473 de4x5_tx(dev);
1474 spin_unlock_irqrestore(&lp->lock, flags);
1475
1476 /* Test if cache is already locked - requeue skb if so */
1477 if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt)
1478 goto tx_err;
1479
1480 /* Transmit descriptor ring full or stale skb */
1481 if (netif_queue_stopped(dev) || (u_long) lp->tx_skb[lp->tx_new] > 1) {
1482 if (lp->interrupt) {
1483 de4x5_putb_cache(dev, skb); /* Requeue the buffer */
1484 } else {
1485 de4x5_put_cache(dev, skb);
1486 }
1487 if (de4x5_debug & DEBUG_TX) {
1488 printk("%s: transmit busy, lost media or stale skb found:\n STS:%08x\n tbusy:%d\n IMR:%08x\n OMR:%08x\n Stale skb: %s\n",dev->name, inl(DE4X5_STS), netif_queue_stopped(dev), inl(DE4X5_IMR), inl(DE4X5_OMR), ((u_long) lp->tx_skb[lp->tx_new] > 1) ? "YES" : "NO");
1489 }
1490 } else if (skb->len > 0) {
1491 /* If we already have stuff queued locally, use that first */
1492 if (!skb_queue_empty(&lp->cache.queue) && !lp->interrupt) {
1493 de4x5_put_cache(dev, skb);
1494 skb = de4x5_get_cache(dev);
1495 }
1496
1497 while (skb && !netif_queue_stopped(dev) &&
1498 (u_long) lp->tx_skb[lp->tx_new] <= 1) {
1499 spin_lock_irqsave(&lp->lock, flags);
1500 netif_stop_queue(dev);
1501 load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb);
1502 lp->stats.tx_bytes += skb->len;
1503 outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */
1504
1505 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1506
1507 if (TX_BUFFS_AVAIL) {
1508 netif_start_queue(dev); /* Another pkt may be queued */
1509 }
1510 skb = de4x5_get_cache(dev);
1511 spin_unlock_irqrestore(&lp->lock, flags);
1512 }
1513 if (skb) de4x5_putb_cache(dev, skb);
1514 }
1515
1516 lp->cache.lock = 0;
1517
1518 return NETDEV_TX_OK;
1519 tx_err:
1520 dev_kfree_skb_any(skb);
1521 return NETDEV_TX_OK;
1522 }
1523
1524 /*
1525 ** The DE4X5 interrupt handler.
1526 **
1527 ** I/O Read/Writes through intermediate PCI bridges are never 'posted',
1528 ** so that the asserted interrupt always has some real data to work with -
1529 ** if these I/O accesses are ever changed to memory accesses, ensure the
1530 ** STS write is read immediately to complete the transaction if the adapter
1531 ** is not on bus 0. Lost interrupts can still occur when the PCI bus load
1532 ** is high and descriptor status bits cannot be set before the associated
1533 ** interrupt is asserted and this routine entered.
1534 */
1535 static irqreturn_t
1536 de4x5_interrupt(int irq, void *dev_id)
1537 {
1538 struct net_device *dev = dev_id;
1539 struct de4x5_private *lp;
1540 s32 imr, omr, sts, limit;
1541 u_long iobase;
1542 unsigned int handled = 0;
1543
1544 lp = netdev_priv(dev);
1545 spin_lock(&lp->lock);
1546 iobase = dev->base_addr;
1547
1548 DISABLE_IRQs; /* Ensure non re-entrancy */
1549
1550 if (test_and_set_bit(MASK_INTERRUPTS, (void*) &lp->interrupt))
1551 printk("%s: Re-entering the interrupt handler.\n", dev->name);
1552
1553 synchronize_irq(dev->irq);
1554
1555 for (limit=0; limit<8; limit++) {
1556 sts = inl(DE4X5_STS); /* Read IRQ status */
1557 outl(sts, DE4X5_STS); /* Reset the board interrupts */
1558
1559 if (!(sts & lp->irq_mask)) break;/* All done */
1560 handled = 1;
1561
1562 if (sts & (STS_RI | STS_RU)) /* Rx interrupt (packet[s] arrived) */
1563 de4x5_rx(dev);
1564
1565 if (sts & (STS_TI | STS_TU)) /* Tx interrupt (packet sent) */
1566 de4x5_tx(dev);
1567
1568 if (sts & STS_LNF) { /* TP Link has failed */
1569 lp->irq_mask &= ~IMR_LFM;
1570 }
1571
1572 if (sts & STS_UNF) { /* Transmit underrun */
1573 de4x5_txur(dev);
1574 }
1575
1576 if (sts & STS_SE) { /* Bus Error */
1577 STOP_DE4X5;
1578 printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
1579 dev->name, sts);
1580 spin_unlock(&lp->lock);
1581 return IRQ_HANDLED;
1582 }
1583 }
1584
1585 /* Load the TX ring with any locally stored packets */
1586 if (!test_and_set_bit(0, (void *)&lp->cache.lock)) {
1587 while (!skb_queue_empty(&lp->cache.queue) && !netif_queue_stopped(dev) && lp->tx_enable) {
1588 de4x5_queue_pkt(de4x5_get_cache(dev), dev);
1589 }
1590 lp->cache.lock = 0;
1591 }
1592
1593 lp->interrupt = UNMASK_INTERRUPTS;
1594 ENABLE_IRQs;
1595 spin_unlock(&lp->lock);
1596
1597 return IRQ_RETVAL(handled);
1598 }
1599
1600 static int
1601 de4x5_rx(struct net_device *dev)
1602 {
1603 struct de4x5_private *lp = netdev_priv(dev);
1604 u_long iobase = dev->base_addr;
1605 int entry;
1606 s32 status;
1607
1608 for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0;
1609 entry=lp->rx_new) {
1610 status = (s32)le32_to_cpu(lp->rx_ring[entry].status);
1611
1612 if (lp->rx_ovf) {
1613 if (inl(DE4X5_MFC) & MFC_FOCM) {
1614 de4x5_rx_ovfc(dev);
1615 break;
1616 }
1617 }
1618
1619 if (status & RD_FS) { /* Remember the start of frame */
1620 lp->rx_old = entry;
1621 }
1622
1623 if (status & RD_LS) { /* Valid frame status */
1624 if (lp->tx_enable) lp->linkOK++;
1625 if (status & RD_ES) { /* There was an error. */
1626 lp->stats.rx_errors++; /* Update the error stats. */
1627 if (status & (RD_RF | RD_TL)) lp->stats.rx_frame_errors++;
1628 if (status & RD_CE) lp->stats.rx_crc_errors++;
1629 if (status & RD_OF) lp->stats.rx_fifo_errors++;
1630 if (status & RD_TL) lp->stats.rx_length_errors++;
1631 if (status & RD_RF) lp->pktStats.rx_runt_frames++;
1632 if (status & RD_CS) lp->pktStats.rx_collision++;
1633 if (status & RD_DB) lp->pktStats.rx_dribble++;
1634 if (status & RD_OF) lp->pktStats.rx_overflow++;
1635 } else { /* A valid frame received */
1636 struct sk_buff *skb;
1637 short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status)
1638 >> 16) - 4;
1639
1640 if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) {
1641 printk("%s: Insufficient memory; nuking packet.\n",
1642 dev->name);
1643 lp->stats.rx_dropped++;
1644 } else {
1645 de4x5_dbg_rx(skb, pkt_len);
1646
1647 /* Push up the protocol stack */
1648 skb->protocol=eth_type_trans(skb,dev);
1649 de4x5_local_stats(dev, skb->data, pkt_len);
1650 netif_rx(skb);
1651
1652 /* Update stats */
1653 lp->stats.rx_packets++;
1654 lp->stats.rx_bytes += pkt_len;
1655 }
1656 }
1657
1658 /* Change buffer ownership for this frame, back to the adapter */
1659 for (;lp->rx_old!=entry;lp->rx_old=(lp->rx_old + 1)%lp->rxRingSize) {
1660 lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN);
1661 barrier();
1662 }
1663 lp->rx_ring[entry].status = cpu_to_le32(R_OWN);
1664 barrier();
1665 }
1666
1667 /*
1668 ** Update entry information
1669 */
1670 lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1671 }
1672
1673 return 0;
1674 }
1675
1676 static inline void
1677 de4x5_free_tx_buff(struct de4x5_private *lp, int entry)
1678 {
1679 dma_unmap_single(lp->gendev, le32_to_cpu(lp->tx_ring[entry].buf),
1680 le32_to_cpu(lp->tx_ring[entry].des1) & TD_TBS1,
1681 DMA_TO_DEVICE);
1682 if ((u_long) lp->tx_skb[entry] > 1)
1683 dev_kfree_skb_irq(lp->tx_skb[entry]);
1684 lp->tx_skb[entry] = NULL;
1685 }
1686
1687 /*
1688 ** Buffer sent - check for TX buffer errors.
1689 */
1690 static int
1691 de4x5_tx(struct net_device *dev)
1692 {
1693 struct de4x5_private *lp = netdev_priv(dev);
1694 u_long iobase = dev->base_addr;
1695 int entry;
1696 s32 status;
1697
1698 for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) {
1699 status = (s32)le32_to_cpu(lp->tx_ring[entry].status);
1700 if (status < 0) { /* Buffer not sent yet */
1701 break;
1702 } else if (status != 0x7fffffff) { /* Not setup frame */
1703 if (status & TD_ES) { /* An error happened */
1704 lp->stats.tx_errors++;
1705 if (status & TD_NC) lp->stats.tx_carrier_errors++;
1706 if (status & TD_LC) lp->stats.tx_window_errors++;
1707 if (status & TD_UF) lp->stats.tx_fifo_errors++;
1708 if (status & TD_EC) lp->pktStats.excessive_collisions++;
1709 if (status & TD_DE) lp->stats.tx_aborted_errors++;
1710
1711 if (TX_PKT_PENDING) {
1712 outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */
1713 }
1714 } else { /* Packet sent */
1715 lp->stats.tx_packets++;
1716 if (lp->tx_enable) lp->linkOK++;
1717 }
1718 /* Update the collision counter */
1719 lp->stats.collisions += ((status & TD_EC) ? 16 :
1720 ((status & TD_CC) >> 3));
1721
1722 /* Free the buffer. */
1723 if (lp->tx_skb[entry] != NULL)
1724 de4x5_free_tx_buff(lp, entry);
1725 }
1726
1727 /* Update all the pointers */
1728 lp->tx_old = (lp->tx_old + 1) % lp->txRingSize;
1729 }
1730
1731 /* Any resources available? */
1732 if (TX_BUFFS_AVAIL && netif_queue_stopped(dev)) {
1733 if (lp->interrupt)
1734 netif_wake_queue(dev);
1735 else
1736 netif_start_queue(dev);
1737 }
1738
1739 return 0;
1740 }
1741
1742 static void
1743 de4x5_ast(struct timer_list *t)
1744 {
1745 struct de4x5_private *lp = from_timer(lp, t, timer);
1746 struct net_device *dev = dev_get_drvdata(lp->gendev);
1747 int next_tick = DE4X5_AUTOSENSE_MS;
1748 int dt;
1749
1750 if (lp->useSROM)
1751 next_tick = srom_autoconf(dev);
1752 else if (lp->chipset == DC21140)
1753 next_tick = dc21140m_autoconf(dev);
1754 else if (lp->chipset == DC21041)
1755 next_tick = dc21041_autoconf(dev);
1756 else if (lp->chipset == DC21040)
1757 next_tick = dc21040_autoconf(dev);
1758 lp->linkOK = 0;
1759
1760 dt = (next_tick * HZ) / 1000;
1761
1762 if (!dt)
1763 dt = 1;
1764
1765 mod_timer(&lp->timer, jiffies + dt);
1766 }
1767
1768 static int
1769 de4x5_txur(struct net_device *dev)
1770 {
1771 struct de4x5_private *lp = netdev_priv(dev);
1772 u_long iobase = dev->base_addr;
1773 int omr;
1774
1775 omr = inl(DE4X5_OMR);
1776 if (!(omr & OMR_SF) || (lp->chipset==DC21041) || (lp->chipset==DC21040)) {
1777 omr &= ~(OMR_ST|OMR_SR);
1778 outl(omr, DE4X5_OMR);
1779 while (inl(DE4X5_STS) & STS_TS);
1780 if ((omr & OMR_TR) < OMR_TR) {
1781 omr += 0x4000;
1782 } else {
1783 omr |= OMR_SF;
1784 }
1785 outl(omr | OMR_ST | OMR_SR, DE4X5_OMR);
1786 }
1787
1788 return 0;
1789 }
1790
1791 static int
1792 de4x5_rx_ovfc(struct net_device *dev)
1793 {
1794 struct de4x5_private *lp = netdev_priv(dev);
1795 u_long iobase = dev->base_addr;
1796 int omr;
1797
1798 omr = inl(DE4X5_OMR);
1799 outl(omr & ~OMR_SR, DE4X5_OMR);
1800 while (inl(DE4X5_STS) & STS_RS);
1801
1802 for (; (s32)le32_to_cpu(lp->rx_ring[lp->rx_new].status)>=0;) {
1803 lp->rx_ring[lp->rx_new].status = cpu_to_le32(R_OWN);
1804 lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1805 }
1806
1807 outl(omr, DE4X5_OMR);
1808
1809 return 0;
1810 }
1811
1812 static int
1813 de4x5_close(struct net_device *dev)
1814 {
1815 struct de4x5_private *lp = netdev_priv(dev);
1816 u_long iobase = dev->base_addr;
1817 s32 imr, omr;
1818
1819 disable_ast(dev);
1820
1821 netif_stop_queue(dev);
1822
1823 if (de4x5_debug & DEBUG_CLOSE) {
1824 printk("%s: Shutting down ethercard, status was %8.8x.\n",
1825 dev->name, inl(DE4X5_STS));
1826 }
1827
1828 /*
1829 ** We stop the DE4X5 here... mask interrupts and stop TX & RX
1830 */
1831 DISABLE_IRQs;
1832 STOP_DE4X5;
1833
1834 /* Free the associated irq */
1835 free_irq(dev->irq, dev);
1836 lp->state = CLOSED;
1837
1838 /* Free any socket buffers */
1839 de4x5_free_rx_buffs(dev);
1840 de4x5_free_tx_buffs(dev);
1841
1842 /* Put the adapter to sleep to save power */
1843 yawn(dev, SLEEP);
1844
1845 return 0;
1846 }
1847
1848 static struct net_device_stats *
1849 de4x5_get_stats(struct net_device *dev)
1850 {
1851 struct de4x5_private *lp = netdev_priv(dev);
1852 u_long iobase = dev->base_addr;
1853
1854 lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR));
1855
1856 return &lp->stats;
1857 }
1858
1859 static void
1860 de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len)
1861 {
1862 struct de4x5_private *lp = netdev_priv(dev);
1863 int i;
1864
1865 for (i=1; i<DE4X5_PKT_STAT_SZ-1; i++) {
1866 if (pkt_len < (i*DE4X5_PKT_BIN_SZ)) {
1867 lp->pktStats.bins[i]++;
1868 i = DE4X5_PKT_STAT_SZ;
1869 }
1870 }
1871 if (is_multicast_ether_addr(buf)) {
1872 if (is_broadcast_ether_addr(buf)) {
1873 lp->pktStats.broadcast++;
1874 } else {
1875 lp->pktStats.multicast++;
1876 }
1877 } else if (ether_addr_equal(buf, dev->dev_addr)) {
1878 lp->pktStats.unicast++;
1879 }
1880
1881 lp->pktStats.bins[0]++; /* Duplicates stats.rx_packets */
1882 if (lp->pktStats.bins[0] == 0) { /* Reset counters */
1883 memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats));
1884 }
1885 }
1886
1887 /*
1888 ** Removes the TD_IC flag from previous descriptor to improve TX performance.
1889 ** If the flag is changed on a descriptor that is being read by the hardware,
1890 ** I assume PCI transaction ordering will mean you are either successful or
1891 ** just miss asserting the change to the hardware. Anyway you're messing with
1892 ** a descriptor you don't own, but this shouldn't kill the chip provided
1893 ** the descriptor register is read only to the hardware.
1894 */
1895 static void
1896 load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb)
1897 {
1898 struct de4x5_private *lp = netdev_priv(dev);
1899 int entry = (lp->tx_new ? lp->tx_new-1 : lp->txRingSize-1);
1900 dma_addr_t buf_dma = dma_map_single(lp->gendev, buf, flags & TD_TBS1, DMA_TO_DEVICE);
1901
1902 lp->tx_ring[lp->tx_new].buf = cpu_to_le32(buf_dma);
1903 lp->tx_ring[lp->tx_new].des1 &= cpu_to_le32(TD_TER);
1904 lp->tx_ring[lp->tx_new].des1 |= cpu_to_le32(flags);
1905 lp->tx_skb[lp->tx_new] = skb;
1906 lp->tx_ring[entry].des1 &= cpu_to_le32(~TD_IC);
1907 barrier();
1908
1909 lp->tx_ring[lp->tx_new].status = cpu_to_le32(T_OWN);
1910 barrier();
1911 }
1912
1913 /*
1914 ** Set or clear the multicast filter for this adaptor.
1915 */
1916 static void
1917 set_multicast_list(struct net_device *dev)
1918 {
1919 struct de4x5_private *lp = netdev_priv(dev);
1920 u_long iobase = dev->base_addr;
1921
1922 /* First, double check that the adapter is open */
1923 if (lp->state == OPEN) {
1924 if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
1925 u32 omr;
1926 omr = inl(DE4X5_OMR);
1927 omr |= OMR_PR;
1928 outl(omr, DE4X5_OMR);
1929 } else {
1930 SetMulticastFilter(dev);
1931 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
1932 SETUP_FRAME_LEN, (struct sk_buff *)1);
1933
1934 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1935 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
1936 netif_trans_update(dev); /* prevent tx timeout */
1937 }
1938 }
1939 }
1940
1941 /*
1942 ** Calculate the hash code and update the logical address filter
1943 ** from a list of ethernet multicast addresses.
1944 ** Little endian crc one liner from Matt Thomas, DEC.
1945 */
1946 static void
1947 SetMulticastFilter(struct net_device *dev)
1948 {
1949 struct de4x5_private *lp = netdev_priv(dev);
1950 struct netdev_hw_addr *ha;
1951 u_long iobase = dev->base_addr;
1952 int i, bit, byte;
1953 u16 hashcode;
1954 u32 omr, crc;
1955 char *pa;
1956 unsigned char *addrs;
1957
1958 omr = inl(DE4X5_OMR);
1959 omr &= ~(OMR_PR | OMR_PM);
1960 pa = build_setup_frame(dev, ALL); /* Build the basic frame */
1961
1962 if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 14)) {
1963 omr |= OMR_PM; /* Pass all multicasts */
1964 } else if (lp->setup_f == HASH_PERF) { /* Hash Filtering */
1965 netdev_for_each_mc_addr(ha, dev) {
1966 crc = ether_crc_le(ETH_ALEN, ha->addr);
1967 hashcode = crc & DE4X5_HASH_BITS; /* hashcode is 9 LSb of CRC */
1968
1969 byte = hashcode >> 3; /* bit[3-8] -> byte in filter */
1970 bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */
1971
1972 byte <<= 1; /* calc offset into setup frame */
1973 if (byte & 0x02) {
1974 byte -= 1;
1975 }
1976 lp->setup_frame[byte] |= bit;
1977 }
1978 } else { /* Perfect filtering */
1979 netdev_for_each_mc_addr(ha, dev) {
1980 addrs = ha->addr;
1981 for (i=0; i<ETH_ALEN; i++) {
1982 *(pa + (i&1)) = *addrs++;
1983 if (i & 0x01) pa += 4;
1984 }
1985 }
1986 }
1987 outl(omr, DE4X5_OMR);
1988 }
1989
1990 #ifdef CONFIG_EISA
1991
1992 static u_char de4x5_irq[] = EISA_ALLOWED_IRQ_LIST;
1993
1994 static int de4x5_eisa_probe(struct device *gendev)
1995 {
1996 struct eisa_device *edev;
1997 u_long iobase;
1998 u_char irq, regval;
1999 u_short vendor;
2000 u32 cfid;
2001 int status, device;
2002 struct net_device *dev;
2003 struct de4x5_private *lp;
2004
2005 edev = to_eisa_device (gendev);
2006 iobase = edev->base_addr;
2007
2008 if (!request_region (iobase, DE4X5_EISA_TOTAL_SIZE, "de4x5"))
2009 return -EBUSY;
2010
2011 if (!request_region (iobase + DE4X5_EISA_IO_PORTS,
2012 DE4X5_EISA_TOTAL_SIZE, "de4x5")) {
2013 status = -EBUSY;
2014 goto release_reg_1;
2015 }
2016
2017 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2018 status = -ENOMEM;
2019 goto release_reg_2;
2020 }
2021 lp = netdev_priv(dev);
2022
2023 cfid = (u32) inl(PCI_CFID);
2024 lp->cfrv = (u_short) inl(PCI_CFRV);
2025 device = (cfid >> 8) & 0x00ffff00;
2026 vendor = (u_short) cfid;
2027
2028 /* Read the EISA Configuration Registers */
2029 regval = inb(EISA_REG0) & (ER0_INTL | ER0_INTT);
2030 #ifdef CONFIG_ALPHA
2031 /* Looks like the Jensen firmware (rev 2.2) doesn't really
2032 * care about the EISA configuration, and thus doesn't
2033 * configure the PLX bridge properly. Oh well... Simply mimic
2034 * the EISA config file to sort it out. */
2035
2036 /* EISA REG1: Assert DecChip 21040 HW Reset */
2037 outb (ER1_IAM | 1, EISA_REG1);
2038 mdelay (1);
2039
2040 /* EISA REG1: Deassert DecChip 21040 HW Reset */
2041 outb (ER1_IAM, EISA_REG1);
2042 mdelay (1);
2043
2044 /* EISA REG3: R/W Burst Transfer Enable */
2045 outb (ER3_BWE | ER3_BRE, EISA_REG3);
2046
2047 /* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
2048 outb (ER0_BSW | ER0_BMW | ER0_EPT | regval, EISA_REG0);
2049 #endif
2050 irq = de4x5_irq[(regval >> 1) & 0x03];
2051
2052 if (is_DC2114x) {
2053 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2054 }
2055 lp->chipset = device;
2056 lp->bus = EISA;
2057
2058 /* Write the PCI Configuration Registers */
2059 outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS);
2060 outl(0x00006000, PCI_CFLT);
2061 outl(iobase, PCI_CBIO);
2062
2063 DevicePresent(dev, EISA_APROM);
2064
2065 dev->irq = irq;
2066
2067 if (!(status = de4x5_hw_init (dev, iobase, gendev))) {
2068 return 0;
2069 }
2070
2071 free_netdev (dev);
2072 release_reg_2:
2073 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2074 release_reg_1:
2075 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2076
2077 return status;
2078 }
2079
2080 static int de4x5_eisa_remove(struct device *device)
2081 {
2082 struct net_device *dev;
2083 u_long iobase;
2084
2085 dev = dev_get_drvdata(device);
2086 iobase = dev->base_addr;
2087
2088 unregister_netdev (dev);
2089 free_netdev (dev);
2090 release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2091 release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2092
2093 return 0;
2094 }
2095
2096 static const struct eisa_device_id de4x5_eisa_ids[] = {
2097 { "DEC4250", 0 }, /* 0 is the board name index... */
2098 { "" }
2099 };
2100 MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2101
2102 static struct eisa_driver de4x5_eisa_driver = {
2103 .id_table = de4x5_eisa_ids,
2104 .driver = {
2105 .name = "de4x5",
2106 .probe = de4x5_eisa_probe,
2107 .remove = de4x5_eisa_remove,
2108 }
2109 };
2110 #endif
2111
2112 #ifdef CONFIG_PCI
2113
2114 /*
2115 ** This function searches the current bus (which is >0) for a DECchip with an
2116 ** SROM, so that in multiport cards that have one SROM shared between multiple
2117 ** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
2118 ** For single port cards this is a time waster...
2119 */
2120 static void
2121 srom_search(struct net_device *dev, struct pci_dev *pdev)
2122 {
2123 u_char pb;
2124 u_short vendor, status;
2125 u_int irq = 0, device;
2126 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2127 int i, j;
2128 struct de4x5_private *lp = netdev_priv(dev);
2129 struct pci_dev *this_dev;
2130
2131 list_for_each_entry(this_dev, &pdev->bus->devices, bus_list) {
2132 vendor = this_dev->vendor;
2133 device = this_dev->device << 8;
2134 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x)) continue;
2135
2136 /* Get the chip configuration revision register */
2137 pb = this_dev->bus->number;
2138
2139 /* Set the device number information */
2140 lp->device = PCI_SLOT(this_dev->devfn);
2141 lp->bus_num = pb;
2142
2143 /* Set the chipset information */
2144 if (is_DC2114x) {
2145 device = ((this_dev->revision & CFRV_RN) < DC2114x_BRK
2146 ? DC21142 : DC21143);
2147 }
2148 lp->chipset = device;
2149
2150 /* Get the board I/O address (64 bits on sparc64) */
2151 iobase = pci_resource_start(this_dev, 0);
2152
2153 /* Fetch the IRQ to be used */
2154 irq = this_dev->irq;
2155 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue;
2156
2157 /* Check if I/O accesses are enabled */
2158 pci_read_config_word(this_dev, PCI_COMMAND, &status);
2159 if (!(status & PCI_COMMAND_IO)) continue;
2160
2161 /* Search for a valid SROM attached to this DECchip */
2162 DevicePresent(dev, DE4X5_APROM);
2163 for (j=0, i=0; i<ETH_ALEN; i++) {
2164 j += (u_char) *((u_char *)&lp->srom + SROM_HWADD + i);
2165 }
2166 if (j != 0 && j != 6 * 0xff) {
2167 last.chipset = device;
2168 last.bus = pb;
2169 last.irq = irq;
2170 for (i=0; i<ETH_ALEN; i++) {
2171 last.addr[i] = (u_char)*((u_char *)&lp->srom + SROM_HWADD + i);
2172 }
2173 return;
2174 }
2175 }
2176 }
2177
2178 /*
2179 ** PCI bus I/O device probe
2180 ** NB: PCI I/O accesses and Bus Mastering are enabled by the PCI BIOS, not
2181 ** the driver. Some PCI BIOS's, pre V2.1, need the slot + features to be
2182 ** enabled by the user first in the set up utility. Hence we just check for
2183 ** enabled features and silently ignore the card if they're not.
2184 **
2185 ** STOP PRESS: Some BIOS's __require__ the driver to enable the bus mastering
2186 ** bit. Here, check for I/O accesses and then set BM. If you put the card in
2187 ** a non BM slot, you're on your own (and complain to the PC vendor that your
2188 ** PC doesn't conform to the PCI standard)!
2189 **
2190 ** This function is only compatible with the *latest* 2.1.x kernels. For 2.0.x
2191 ** kernels use the V0.535[n] drivers.
2192 */
2193
2194 static int de4x5_pci_probe(struct pci_dev *pdev,
2195 const struct pci_device_id *ent)
2196 {
2197 u_char pb, pbus = 0, dev_num, dnum = 0, timer;
2198 u_short vendor, status;
2199 u_int irq = 0, device;
2200 u_long iobase = 0; /* Clear upper 32 bits in Alphas */
2201 int error;
2202 struct net_device *dev;
2203 struct de4x5_private *lp;
2204
2205 dev_num = PCI_SLOT(pdev->devfn);
2206 pb = pdev->bus->number;
2207
2208 if (io) { /* probe a single PCI device */
2209 pbus = (u_short)(io >> 8);
2210 dnum = (u_short)(io & 0xff);
2211 if ((pbus != pb) || (dnum != dev_num))
2212 return -ENODEV;
2213 }
2214
2215 vendor = pdev->vendor;
2216 device = pdev->device << 8;
2217 if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x))
2218 return -ENODEV;
2219
2220 /* Ok, the device seems to be for us. */
2221 if ((error = pci_enable_device (pdev)))
2222 return error;
2223
2224 if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2225 error = -ENOMEM;
2226 goto disable_dev;
2227 }
2228
2229 lp = netdev_priv(dev);
2230 lp->bus = PCI;
2231 lp->bus_num = 0;
2232
2233 /* Search for an SROM on this bus */
2234 if (lp->bus_num != pb) {
2235 lp->bus_num = pb;
2236 srom_search(dev, pdev);
2237 }
2238
2239 /* Get the chip configuration revision register */
2240 lp->cfrv = pdev->revision;
2241
2242 /* Set the device number information */
2243 lp->device = dev_num;
2244 lp->bus_num = pb;
2245
2246 /* Set the chipset information */
2247 if (is_DC2114x) {
2248 device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2249 }
2250 lp->chipset = device;
2251
2252 /* Get the board I/O address (64 bits on sparc64) */
2253 iobase = pci_resource_start(pdev, 0);
2254
2255 /* Fetch the IRQ to be used */
2256 irq = pdev->irq;
2257 if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) {
2258 error = -ENODEV;
2259 goto free_dev;
2260 }
2261
2262 /* Check if I/O accesses and Bus Mastering are enabled */
2263 pci_read_config_word(pdev, PCI_COMMAND, &status);
2264 #ifdef __powerpc__
2265 if (!(status & PCI_COMMAND_IO)) {
2266 status |= PCI_COMMAND_IO;
2267 pci_write_config_word(pdev, PCI_COMMAND, status);
2268 pci_read_config_word(pdev, PCI_COMMAND, &status);
2269 }
2270 #endif /* __powerpc__ */
2271 if (!(status & PCI_COMMAND_IO)) {
2272 error = -ENODEV;
2273 goto free_dev;
2274 }
2275
2276 if (!(status & PCI_COMMAND_MASTER)) {
2277 status |= PCI_COMMAND_MASTER;
2278 pci_write_config_word(pdev, PCI_COMMAND, status);
2279 pci_read_config_word(pdev, PCI_COMMAND, &status);
2280 }
2281 if (!(status & PCI_COMMAND_MASTER)) {
2282 error = -ENODEV;
2283 goto free_dev;
2284 }
2285
2286 /* Check the latency timer for values >= 0x60 */
2287 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &timer);
2288 if (timer < 0x60) {
2289 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x60);
2290 }
2291
2292 DevicePresent(dev, DE4X5_APROM);
2293
2294 if (!request_region (iobase, DE4X5_PCI_TOTAL_SIZE, "de4x5")) {
2295 error = -EBUSY;
2296 goto free_dev;
2297 }
2298
2299 dev->irq = irq;
2300
2301 if ((error = de4x5_hw_init(dev, iobase, &pdev->dev))) {
2302 goto release;
2303 }
2304
2305 return 0;
2306
2307 release:
2308 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2309 free_dev:
2310 free_netdev (dev);
2311 disable_dev:
2312 pci_disable_device (pdev);
2313 return error;
2314 }
2315
2316 static void de4x5_pci_remove(struct pci_dev *pdev)
2317 {
2318 struct net_device *dev;
2319 u_long iobase;
2320
2321 dev = pci_get_drvdata(pdev);
2322 iobase = dev->base_addr;
2323
2324 unregister_netdev (dev);
2325 free_netdev (dev);
2326 release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2327 pci_disable_device (pdev);
2328 }
2329
2330 static const struct pci_device_id de4x5_pci_tbl[] = {
2331 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
2332 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
2333 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
2334 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
2335 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST,
2336 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
2337 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142,
2338 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3 },
2339 { },
2340 };
2341
2342 static struct pci_driver de4x5_pci_driver = {
2343 .name = "de4x5",
2344 .id_table = de4x5_pci_tbl,
2345 .probe = de4x5_pci_probe,
2346 .remove = de4x5_pci_remove,
2347 };
2348
2349 #endif
2350
2351 /*
2352 ** Auto configure the media here rather than setting the port at compile
2353 ** time. This routine is called by de4x5_init() and when a loss of media is
2354 ** detected (excessive collisions, loss of carrier, no carrier or link fail
2355 ** [TP] or no recent receive activity) to check whether the user has been
2356 ** sneaky and changed the port on us.
2357 */
2358 static int
2359 autoconf_media(struct net_device *dev)
2360 {
2361 struct de4x5_private *lp = netdev_priv(dev);
2362 u_long iobase = dev->base_addr;
2363
2364 disable_ast(dev);
2365
2366 lp->c_media = AUTO; /* Bogus last media */
2367 inl(DE4X5_MFC); /* Zero the lost frames counter */
2368 lp->media = INIT;
2369 lp->tcount = 0;
2370
2371 de4x5_ast(&lp->timer);
2372
2373 return lp->media;
2374 }
2375
2376 /*
2377 ** Autoconfigure the media when using the DC21040. AUI cannot be distinguished
2378 ** from BNC as the port has a jumper to set thick or thin wire. When set for
2379 ** BNC, the BNC port will indicate activity if it's not terminated correctly.
2380 ** The only way to test for that is to place a loopback packet onto the
2381 ** network and watch for errors. Since we're messing with the interrupt mask
2382 ** register, disable the board interrupts and do not allow any more packets to
2383 ** be queued to the hardware. Re-enable everything only when the media is
2384 ** found.
2385 ** I may have to "age out" locally queued packets so that the higher layer
2386 ** timeouts don't effectively duplicate packets on the network.
2387 */
2388 static int
2389 dc21040_autoconf(struct net_device *dev)
2390 {
2391 struct de4x5_private *lp = netdev_priv(dev);
2392 u_long iobase = dev->base_addr;
2393 int next_tick = DE4X5_AUTOSENSE_MS;
2394 s32 imr;
2395
2396 switch (lp->media) {
2397 case INIT:
2398 DISABLE_IRQs;
2399 lp->tx_enable = false;
2400 lp->timeout = -1;
2401 de4x5_save_skbs(dev);
2402 if ((lp->autosense == AUTO) || (lp->autosense == TP)) {
2403 lp->media = TP;
2404 } else if ((lp->autosense == BNC) || (lp->autosense == AUI) || (lp->autosense == BNC_AUI)) {
2405 lp->media = BNC_AUI;
2406 } else if (lp->autosense == EXT_SIA) {
2407 lp->media = EXT_SIA;
2408 } else {
2409 lp->media = NC;
2410 }
2411 lp->local_state = 0;
2412 next_tick = dc21040_autoconf(dev);
2413 break;
2414
2415 case TP:
2416 next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI,
2417 TP_SUSPECT, test_tp);
2418 break;
2419
2420 case TP_SUSPECT:
2421 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf);
2422 break;
2423
2424 case BNC:
2425 case AUI:
2426 case BNC_AUI:
2427 next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA,
2428 BNC_AUI_SUSPECT, ping_media);
2429 break;
2430
2431 case BNC_AUI_SUSPECT:
2432 next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf);
2433 break;
2434
2435 case EXT_SIA:
2436 next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000,
2437 NC, EXT_SIA_SUSPECT, ping_media);
2438 break;
2439
2440 case EXT_SIA_SUSPECT:
2441 next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf);
2442 break;
2443
2444 case NC:
2445 /* default to TP for all */
2446 reset_init_sia(dev, 0x8f01, 0xffff, 0x0000);
2447 if (lp->media != lp->c_media) {
2448 de4x5_dbg_media(dev);
2449 lp->c_media = lp->media;
2450 }
2451 lp->media = INIT;
2452 lp->tx_enable = false;
2453 break;
2454 }
2455
2456 return next_tick;
2457 }
2458
2459 static int
2460 dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout,
2461 int next_state, int suspect_state,
2462 int (*fn)(struct net_device *, int))
2463 {
2464 struct de4x5_private *lp = netdev_priv(dev);
2465 int next_tick = DE4X5_AUTOSENSE_MS;
2466 int linkBad;
2467
2468 switch (lp->local_state) {
2469 case 0:
2470 reset_init_sia(dev, csr13, csr14, csr15);
2471 lp->local_state++;
2472 next_tick = 500;
2473 break;
2474
2475 case 1:
2476 if (!lp->tx_enable) {
2477 linkBad = fn(dev, timeout);
2478 if (linkBad < 0) {
2479 next_tick = linkBad & ~TIMER_CB;
2480 } else {
2481 if (linkBad && (lp->autosense == AUTO)) {
2482 lp->local_state = 0;
2483 lp->media = next_state;
2484 } else {
2485 de4x5_init_connection(dev);
2486 }
2487 }
2488 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2489 lp->media = suspect_state;
2490 next_tick = 3000;
2491 }
2492 break;
2493 }
2494
2495 return next_tick;
2496 }
2497
2498 static int
2499 de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state,
2500 int (*fn)(struct net_device *, int),
2501 int (*asfn)(struct net_device *))
2502 {
2503 struct de4x5_private *lp = netdev_priv(dev);
2504 int next_tick = DE4X5_AUTOSENSE_MS;
2505 int linkBad;
2506
2507 switch (lp->local_state) {
2508 case 1:
2509 if (lp->linkOK) {
2510 lp->media = prev_state;
2511 } else {
2512 lp->local_state++;
2513 next_tick = asfn(dev);
2514 }
2515 break;
2516
2517 case 2:
2518 linkBad = fn(dev, timeout);
2519 if (linkBad < 0) {
2520 next_tick = linkBad & ~TIMER_CB;
2521 } else if (!linkBad) {
2522 lp->local_state--;
2523 lp->media = prev_state;
2524 } else {
2525 lp->media = INIT;
2526 lp->tcount++;
2527 }
2528 }
2529
2530 return next_tick;
2531 }
2532
2533 /*
2534 ** Autoconfigure the media when using the DC21041. AUI needs to be tested
2535 ** before BNC, because the BNC port will indicate activity if it's not
2536 ** terminated correctly. The only way to test for that is to place a loopback
2537 ** packet onto the network and watch for errors. Since we're messing with
2538 ** the interrupt mask register, disable the board interrupts and do not allow
2539 ** any more packets to be queued to the hardware. Re-enable everything only
2540 ** when the media is found.
2541 */
2542 static int
2543 dc21041_autoconf(struct net_device *dev)
2544 {
2545 struct de4x5_private *lp = netdev_priv(dev);
2546 u_long iobase = dev->base_addr;
2547 s32 sts, irqs, irq_mask, imr, omr;
2548 int next_tick = DE4X5_AUTOSENSE_MS;
2549
2550 switch (lp->media) {
2551 case INIT:
2552 DISABLE_IRQs;
2553 lp->tx_enable = false;
2554 lp->timeout = -1;
2555 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2556 if ((lp->autosense == AUTO) || (lp->autosense == TP_NW)) {
2557 lp->media = TP; /* On chip auto negotiation is broken */
2558 } else if (lp->autosense == TP) {
2559 lp->media = TP;
2560 } else if (lp->autosense == BNC) {
2561 lp->media = BNC;
2562 } else if (lp->autosense == AUI) {
2563 lp->media = AUI;
2564 } else {
2565 lp->media = NC;
2566 }
2567 lp->local_state = 0;
2568 next_tick = dc21041_autoconf(dev);
2569 break;
2570
2571 case TP_NW:
2572 if (lp->timeout < 0) {
2573 omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */
2574 outl(omr | OMR_FDX, DE4X5_OMR);
2575 }
2576 irqs = STS_LNF | STS_LNP;
2577 irq_mask = IMR_LFM | IMR_LPM;
2578 sts = test_media(dev, irqs, irq_mask, 0xef01, 0xffff, 0x0008, 2400);
2579 if (sts < 0) {
2580 next_tick = sts & ~TIMER_CB;
2581 } else {
2582 if (sts & STS_LNP) {
2583 lp->media = ANS;
2584 } else {
2585 lp->media = AUI;
2586 }
2587 next_tick = dc21041_autoconf(dev);
2588 }
2589 break;
2590
2591 case ANS:
2592 if (!lp->tx_enable) {
2593 irqs = STS_LNP;
2594 irq_mask = IMR_LPM;
2595 sts = test_ans(dev, irqs, irq_mask, 3000);
2596 if (sts < 0) {
2597 next_tick = sts & ~TIMER_CB;
2598 } else {
2599 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2600 lp->media = TP;
2601 next_tick = dc21041_autoconf(dev);
2602 } else {
2603 lp->local_state = 1;
2604 de4x5_init_connection(dev);
2605 }
2606 }
2607 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2608 lp->media = ANS_SUSPECT;
2609 next_tick = 3000;
2610 }
2611 break;
2612
2613 case ANS_SUSPECT:
2614 next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf);
2615 break;
2616
2617 case TP:
2618 if (!lp->tx_enable) {
2619 if (lp->timeout < 0) {
2620 omr = inl(DE4X5_OMR); /* Set up half duplex for TP */
2621 outl(omr & ~OMR_FDX, DE4X5_OMR);
2622 }
2623 irqs = STS_LNF | STS_LNP;
2624 irq_mask = IMR_LFM | IMR_LPM;
2625 sts = test_media(dev,irqs, irq_mask, 0xef01, 0xff3f, 0x0008, 2400);
2626 if (sts < 0) {
2627 next_tick = sts & ~TIMER_CB;
2628 } else {
2629 if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2630 if (inl(DE4X5_SISR) & SISR_NRA) {
2631 lp->media = AUI; /* Non selected port activity */
2632 } else {
2633 lp->media = BNC;
2634 }
2635 next_tick = dc21041_autoconf(dev);
2636 } else {
2637 lp->local_state = 1;
2638 de4x5_init_connection(dev);
2639 }
2640 }
2641 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2642 lp->media = TP_SUSPECT;
2643 next_tick = 3000;
2644 }
2645 break;
2646
2647 case TP_SUSPECT:
2648 next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf);
2649 break;
2650
2651 case AUI:
2652 if (!lp->tx_enable) {
2653 if (lp->timeout < 0) {
2654 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
2655 outl(omr & ~OMR_FDX, DE4X5_OMR);
2656 }
2657 irqs = 0;
2658 irq_mask = 0;
2659 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x000e, 1000);
2660 if (sts < 0) {
2661 next_tick = sts & ~TIMER_CB;
2662 } else {
2663 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
2664 lp->media = BNC;
2665 next_tick = dc21041_autoconf(dev);
2666 } else {
2667 lp->local_state = 1;
2668 de4x5_init_connection(dev);
2669 }
2670 }
2671 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2672 lp->media = AUI_SUSPECT;
2673 next_tick = 3000;
2674 }
2675 break;
2676
2677 case AUI_SUSPECT:
2678 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf);
2679 break;
2680
2681 case BNC:
2682 switch (lp->local_state) {
2683 case 0:
2684 if (lp->timeout < 0) {
2685 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
2686 outl(omr & ~OMR_FDX, DE4X5_OMR);
2687 }
2688 irqs = 0;
2689 irq_mask = 0;
2690 sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x0006, 1000);
2691 if (sts < 0) {
2692 next_tick = sts & ~TIMER_CB;
2693 } else {
2694 lp->local_state++; /* Ensure media connected */
2695 next_tick = dc21041_autoconf(dev);
2696 }
2697 break;
2698
2699 case 1:
2700 if (!lp->tx_enable) {
2701 if ((sts = ping_media(dev, 3000)) < 0) {
2702 next_tick = sts & ~TIMER_CB;
2703 } else {
2704 if (sts) {
2705 lp->local_state = 0;
2706 lp->media = NC;
2707 } else {
2708 de4x5_init_connection(dev);
2709 }
2710 }
2711 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2712 lp->media = BNC_SUSPECT;
2713 next_tick = 3000;
2714 }
2715 break;
2716 }
2717 break;
2718
2719 case BNC_SUSPECT:
2720 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf);
2721 break;
2722
2723 case NC:
2724 omr = inl(DE4X5_OMR); /* Set up full duplex for the autonegotiate */
2725 outl(omr | OMR_FDX, DE4X5_OMR);
2726 reset_init_sia(dev, 0xef01, 0xffff, 0x0008);/* Initialise the SIA */
2727 if (lp->media != lp->c_media) {
2728 de4x5_dbg_media(dev);
2729 lp->c_media = lp->media;
2730 }
2731 lp->media = INIT;
2732 lp->tx_enable = false;
2733 break;
2734 }
2735
2736 return next_tick;
2737 }
2738
2739 /*
2740 ** Some autonegotiation chips are broken in that they do not return the
2741 ** acknowledge bit (anlpa & MII_ANLPA_ACK) in the link partner advertisement
2742 ** register, except at the first power up negotiation.
2743 */
2744 static int
2745 dc21140m_autoconf(struct net_device *dev)
2746 {
2747 struct de4x5_private *lp = netdev_priv(dev);
2748 int ana, anlpa, cap, cr, slnk, sr;
2749 int next_tick = DE4X5_AUTOSENSE_MS;
2750 u_long imr, omr, iobase = dev->base_addr;
2751
2752 switch(lp->media) {
2753 case INIT:
2754 if (lp->timeout < 0) {
2755 DISABLE_IRQs;
2756 lp->tx_enable = false;
2757 lp->linkOK = 0;
2758 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2759 }
2760 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2761 next_tick &= ~TIMER_CB;
2762 } else {
2763 if (lp->useSROM) {
2764 if (srom_map_media(dev) < 0) {
2765 lp->tcount++;
2766 return next_tick;
2767 }
2768 srom_exec(dev, lp->phy[lp->active].gep);
2769 if (lp->infoblock_media == ANS) {
2770 ana = lp->phy[lp->active].ana | MII_ANA_CSMA;
2771 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2772 }
2773 } else {
2774 lp->tmp = MII_SR_ASSC; /* Fake out the MII speed set */
2775 SET_10Mb;
2776 if (lp->autosense == _100Mb) {
2777 lp->media = _100Mb;
2778 } else if (lp->autosense == _10Mb) {
2779 lp->media = _10Mb;
2780 } else if ((lp->autosense == AUTO) &&
2781 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2782 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2783 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2784 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2785 lp->media = ANS;
2786 } else if (lp->autosense == AUTO) {
2787 lp->media = SPD_DET;
2788 } else if (is_spd_100(dev) && is_100_up(dev)) {
2789 lp->media = _100Mb;
2790 } else {
2791 lp->media = NC;
2792 }
2793 }
2794 lp->local_state = 0;
2795 next_tick = dc21140m_autoconf(dev);
2796 }
2797 break;
2798
2799 case ANS:
2800 switch (lp->local_state) {
2801 case 0:
2802 if (lp->timeout < 0) {
2803 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2804 }
2805 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2806 if (cr < 0) {
2807 next_tick = cr & ~TIMER_CB;
2808 } else {
2809 if (cr) {
2810 lp->local_state = 0;
2811 lp->media = SPD_DET;
2812 } else {
2813 lp->local_state++;
2814 }
2815 next_tick = dc21140m_autoconf(dev);
2816 }
2817 break;
2818
2819 case 1:
2820 if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000)) < 0) {
2821 next_tick = sr & ~TIMER_CB;
2822 } else {
2823 lp->media = SPD_DET;
2824 lp->local_state = 0;
2825 if (sr) { /* Success! */
2826 lp->tmp = MII_SR_ASSC;
2827 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
2828 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2829 if (!(anlpa & MII_ANLPA_RF) &&
2830 (cap = anlpa & MII_ANLPA_TAF & ana)) {
2831 if (cap & MII_ANA_100M) {
2832 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
2833 lp->media = _100Mb;
2834 } else if (cap & MII_ANA_10M) {
2835 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
2836
2837 lp->media = _10Mb;
2838 }
2839 }
2840 } /* Auto Negotiation failed to finish */
2841 next_tick = dc21140m_autoconf(dev);
2842 } /* Auto Negotiation failed to start */
2843 break;
2844 }
2845 break;
2846
2847 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
2848 if (lp->timeout < 0) {
2849 lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS :
2850 (~gep_rd(dev) & GEP_LNP));
2851 SET_100Mb_PDET;
2852 }
2853 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
2854 next_tick = slnk & ~TIMER_CB;
2855 } else {
2856 if (is_spd_100(dev) && is_100_up(dev)) {
2857 lp->media = _100Mb;
2858 } else if ((!is_spd_100(dev) && (is_10_up(dev) & lp->tmp))) {
2859 lp->media = _10Mb;
2860 } else {
2861 lp->media = NC;
2862 }
2863 next_tick = dc21140m_autoconf(dev);
2864 }
2865 break;
2866
2867 case _100Mb: /* Set 100Mb/s */
2868 next_tick = 3000;
2869 if (!lp->tx_enable) {
2870 SET_100Mb;
2871 de4x5_init_connection(dev);
2872 } else {
2873 if (!lp->linkOK && (lp->autosense == AUTO)) {
2874 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
2875 lp->media = INIT;
2876 lp->tcount++;
2877 next_tick = DE4X5_AUTOSENSE_MS;
2878 }
2879 }
2880 }
2881 break;
2882
2883 case BNC:
2884 case AUI:
2885 case _10Mb: /* Set 10Mb/s */
2886 next_tick = 3000;
2887 if (!lp->tx_enable) {
2888 SET_10Mb;
2889 de4x5_init_connection(dev);
2890 } else {
2891 if (!lp->linkOK && (lp->autosense == AUTO)) {
2892 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
2893 lp->media = INIT;
2894 lp->tcount++;
2895 next_tick = DE4X5_AUTOSENSE_MS;
2896 }
2897 }
2898 }
2899 break;
2900
2901 case NC:
2902 if (lp->media != lp->c_media) {
2903 de4x5_dbg_media(dev);
2904 lp->c_media = lp->media;
2905 }
2906 lp->media = INIT;
2907 lp->tx_enable = false;
2908 break;
2909 }
2910
2911 return next_tick;
2912 }
2913
2914 /*
2915 ** This routine may be merged into dc21140m_autoconf() sometime as I'm
2916 ** changing how I figure out the media - but trying to keep it backwards
2917 ** compatible with the de500-xa and de500-aa.
2918 ** Whether it's BNC, AUI, SYM or MII is sorted out in the infoblock
2919 ** functions and set during de4x5_mac_port() and/or de4x5_reset_phy().
2920 ** This routine just has to figure out whether 10Mb/s or 100Mb/s is
2921 ** active.
2922 ** When autonegotiation is working, the ANS part searches the SROM for
2923 ** the highest common speed (TP) link that both can run and if that can
2924 ** be full duplex. That infoblock is executed and then the link speed set.
2925 **
2926 ** Only _10Mb and _100Mb are tested here.
2927 */
2928 static int
2929 dc2114x_autoconf(struct net_device *dev)
2930 {
2931 struct de4x5_private *lp = netdev_priv(dev);
2932 u_long iobase = dev->base_addr;
2933 s32 cr, anlpa, ana, cap, irqs, irq_mask, imr, omr, slnk, sr, sts;
2934 int next_tick = DE4X5_AUTOSENSE_MS;
2935
2936 switch (lp->media) {
2937 case INIT:
2938 if (lp->timeout < 0) {
2939 DISABLE_IRQs;
2940 lp->tx_enable = false;
2941 lp->linkOK = 0;
2942 lp->timeout = -1;
2943 de4x5_save_skbs(dev); /* Save non transmitted skb's */
2944 if (lp->params.autosense & ~AUTO) {
2945 srom_map_media(dev); /* Fixed media requested */
2946 if (lp->media != lp->params.autosense) {
2947 lp->tcount++;
2948 lp->media = INIT;
2949 return next_tick;
2950 }
2951 lp->media = INIT;
2952 }
2953 }
2954 if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2955 next_tick &= ~TIMER_CB;
2956 } else {
2957 if (lp->autosense == _100Mb) {
2958 lp->media = _100Mb;
2959 } else if (lp->autosense == _10Mb) {
2960 lp->media = _10Mb;
2961 } else if (lp->autosense == TP) {
2962 lp->media = TP;
2963 } else if (lp->autosense == BNC) {
2964 lp->media = BNC;
2965 } else if (lp->autosense == AUI) {
2966 lp->media = AUI;
2967 } else {
2968 lp->media = SPD_DET;
2969 if ((lp->infoblock_media == ANS) &&
2970 ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2971 ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2972 ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2973 mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2974 lp->media = ANS;
2975 }
2976 }
2977 lp->local_state = 0;
2978 next_tick = dc2114x_autoconf(dev);
2979 }
2980 break;
2981
2982 case ANS:
2983 switch (lp->local_state) {
2984 case 0:
2985 if (lp->timeout < 0) {
2986 mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2987 }
2988 cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2989 if (cr < 0) {
2990 next_tick = cr & ~TIMER_CB;
2991 } else {
2992 if (cr) {
2993 lp->local_state = 0;
2994 lp->media = SPD_DET;
2995 } else {
2996 lp->local_state++;
2997 }
2998 next_tick = dc2114x_autoconf(dev);
2999 }
3000 break;
3001
3002 case 1:
3003 sr = test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000);
3004 if (sr < 0) {
3005 next_tick = sr & ~TIMER_CB;
3006 } else {
3007 lp->media = SPD_DET;
3008 lp->local_state = 0;
3009 if (sr) { /* Success! */
3010 lp->tmp = MII_SR_ASSC;
3011 anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
3012 ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
3013 if (!(anlpa & MII_ANLPA_RF) &&
3014 (cap = anlpa & MII_ANLPA_TAF & ana)) {
3015 if (cap & MII_ANA_100M) {
3016 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
3017 lp->media = _100Mb;
3018 } else if (cap & MII_ANA_10M) {
3019 lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
3020 lp->media = _10Mb;
3021 }
3022 }
3023 } /* Auto Negotiation failed to finish */
3024 next_tick = dc2114x_autoconf(dev);
3025 } /* Auto Negotiation failed to start */
3026 break;
3027 }
3028 break;
3029
3030 case AUI:
3031 if (!lp->tx_enable) {
3032 if (lp->timeout < 0) {
3033 omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */
3034 outl(omr & ~OMR_FDX, DE4X5_OMR);
3035 }
3036 irqs = 0;
3037 irq_mask = 0;
3038 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3039 if (sts < 0) {
3040 next_tick = sts & ~TIMER_CB;
3041 } else {
3042 if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
3043 lp->media = BNC;
3044 next_tick = dc2114x_autoconf(dev);
3045 } else {
3046 lp->local_state = 1;
3047 de4x5_init_connection(dev);
3048 }
3049 }
3050 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3051 lp->media = AUI_SUSPECT;
3052 next_tick = 3000;
3053 }
3054 break;
3055
3056 case AUI_SUSPECT:
3057 next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf);
3058 break;
3059
3060 case BNC:
3061 switch (lp->local_state) {
3062 case 0:
3063 if (lp->timeout < 0) {
3064 omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */
3065 outl(omr & ~OMR_FDX, DE4X5_OMR);
3066 }
3067 irqs = 0;
3068 irq_mask = 0;
3069 sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3070 if (sts < 0) {
3071 next_tick = sts & ~TIMER_CB;
3072 } else {
3073 lp->local_state++; /* Ensure media connected */
3074 next_tick = dc2114x_autoconf(dev);
3075 }
3076 break;
3077
3078 case 1:
3079 if (!lp->tx_enable) {
3080 if ((sts = ping_media(dev, 3000)) < 0) {
3081 next_tick = sts & ~TIMER_CB;
3082 } else {
3083 if (sts) {
3084 lp->local_state = 0;
3085 lp->tcount++;
3086 lp->media = INIT;
3087 } else {
3088 de4x5_init_connection(dev);
3089 }
3090 }
3091 } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3092 lp->media = BNC_SUSPECT;
3093 next_tick = 3000;
3094 }
3095 break;
3096 }
3097 break;
3098
3099 case BNC_SUSPECT:
3100 next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf);
3101 break;
3102
3103 case SPD_DET: /* Choose 10Mb/s or 100Mb/s */
3104 if (srom_map_media(dev) < 0) {
3105 lp->tcount++;
3106 lp->media = INIT;
3107 return next_tick;
3108 }
3109 if (lp->media == _100Mb) {
3110 if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
3111 lp->media = SPD_DET;
3112 return slnk & ~TIMER_CB;
3113 }
3114 } else {
3115 if (wait_for_link(dev) < 0) {
3116 lp->media = SPD_DET;
3117 return PDET_LINK_WAIT;
3118 }
3119 }
3120 if (lp->media == ANS) { /* Do MII parallel detection */
3121 if (is_spd_100(dev)) {
3122 lp->media = _100Mb;
3123 } else {
3124 lp->media = _10Mb;
3125 }
3126 next_tick = dc2114x_autoconf(dev);
3127 } else if (((lp->media == _100Mb) && is_100_up(dev)) ||
3128 (((lp->media == _10Mb) || (lp->media == TP) ||
3129 (lp->media == BNC) || (lp->media == AUI)) &&
3130 is_10_up(dev))) {
3131 next_tick = dc2114x_autoconf(dev);
3132 } else {
3133 lp->tcount++;
3134 lp->media = INIT;
3135 }
3136 break;
3137
3138 case _10Mb:
3139 next_tick = 3000;
3140 if (!lp->tx_enable) {
3141 SET_10Mb;
3142 de4x5_init_connection(dev);
3143 } else {
3144 if (!lp->linkOK && (lp->autosense == AUTO)) {
3145 if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
3146 lp->media = INIT;
3147 lp->tcount++;
3148 next_tick = DE4X5_AUTOSENSE_MS;
3149 }
3150 }
3151 }
3152 break;
3153
3154 case _100Mb:
3155 next_tick = 3000;
3156 if (!lp->tx_enable) {
3157 SET_100Mb;
3158 de4x5_init_connection(dev);
3159 } else {
3160 if (!lp->linkOK && (lp->autosense == AUTO)) {
3161 if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
3162 lp->media = INIT;
3163 lp->tcount++;
3164 next_tick = DE4X5_AUTOSENSE_MS;
3165 }
3166 }
3167 }
3168 break;
3169
3170 default:
3171 lp->tcount++;
3172 printk("Huh?: media:%02x\n", lp->media);
3173 lp->media = INIT;
3174 break;
3175 }
3176
3177 return next_tick;
3178 }
3179
3180 static int
3181 srom_autoconf(struct net_device *dev)
3182 {
3183 struct de4x5_private *lp = netdev_priv(dev);
3184
3185 return lp->infoleaf_fn(dev);
3186 }
3187
3188 /*
3189 ** This mapping keeps the original media codes and FDX flag unchanged.
3190 ** While it isn't strictly necessary, it helps me for the moment...
3191 ** The early return avoids a media state / SROM media space clash.
3192 */
3193 static int
3194 srom_map_media(struct net_device *dev)
3195 {
3196 struct de4x5_private *lp = netdev_priv(dev);
3197
3198 lp->fdx = false;
3199 if (lp->infoblock_media == lp->media)
3200 return 0;
3201
3202 switch(lp->infoblock_media) {
3203 case SROM_10BASETF:
3204 if (!lp->params.fdx) return -1;
3205 lp->fdx = true;
3206 case SROM_10BASET:
3207 if (lp->params.fdx && !lp->fdx) return -1;
3208 if ((lp->chipset == DC21140) || ((lp->chipset & ~0x00ff) == DC2114x)) {
3209 lp->media = _10Mb;
3210 } else {
3211 lp->media = TP;
3212 }
3213 break;
3214
3215 case SROM_10BASE2:
3216 lp->media = BNC;
3217 break;
3218
3219 case SROM_10BASE5:
3220 lp->media = AUI;
3221 break;
3222
3223 case SROM_100BASETF:
3224 if (!lp->params.fdx) return -1;
3225 lp->fdx = true;
3226 case SROM_100BASET:
3227 if (lp->params.fdx && !lp->fdx) return -1;
3228 lp->media = _100Mb;
3229 break;
3230
3231 case SROM_100BASET4:
3232 lp->media = _100Mb;
3233 break;
3234
3235 case SROM_100BASEFF:
3236 if (!lp->params.fdx) return -1;
3237 lp->fdx = true;
3238 case SROM_100BASEF:
3239 if (lp->params.fdx && !lp->fdx) return -1;
3240 lp->media = _100Mb;
3241 break;
3242
3243 case ANS:
3244 lp->media = ANS;
3245 lp->fdx = lp->params.fdx;
3246 break;
3247
3248 default:
3249 printk("%s: Bad media code [%d] detected in SROM!\n", dev->name,
3250 lp->infoblock_media);
3251 return -1;
3252 }
3253
3254 return 0;
3255 }
3256
3257 static void
3258 de4x5_init_connection(struct net_device *dev)
3259 {
3260 struct de4x5_private *lp = netdev_priv(dev);
3261 u_long iobase = dev->base_addr;
3262 u_long flags = 0;
3263
3264 if (lp->media != lp->c_media) {
3265 de4x5_dbg_media(dev);
3266 lp->c_media = lp->media; /* Stop scrolling media messages */
3267 }
3268
3269 spin_lock_irqsave(&lp->lock, flags);
3270 de4x5_rst_desc_ring(dev);
3271 de4x5_setup_intr(dev);
3272 lp->tx_enable = true;
3273 spin_unlock_irqrestore(&lp->lock, flags);
3274 outl(POLL_DEMAND, DE4X5_TPD);
3275
3276 netif_wake_queue(dev);
3277 }
3278
3279 /*
3280 ** General PHY reset function. Some MII devices don't reset correctly
3281 ** since their MII address pins can float at voltages that are dependent
3282 ** on the signal pin use. Do a double reset to ensure a reset.
3283 */
3284 static int
3285 de4x5_reset_phy(struct net_device *dev)
3286 {
3287 struct de4x5_private *lp = netdev_priv(dev);
3288 u_long iobase = dev->base_addr;
3289 int next_tick = 0;
3290
3291 if ((lp->useSROM) || (lp->phy[lp->active].id)) {
3292 if (lp->timeout < 0) {
3293 if (lp->useSROM) {
3294 if (lp->phy[lp->active].rst) {
3295 srom_exec(dev, lp->phy[lp->active].rst);
3296 srom_exec(dev, lp->phy[lp->active].rst);
3297 } else if (lp->rst) { /* Type 5 infoblock reset */
3298 srom_exec(dev, lp->rst);
3299 srom_exec(dev, lp->rst);
3300 }
3301 } else {
3302 PHY_HARD_RESET;
3303 }
3304 if (lp->useMII) {
3305 mii_wr(MII_CR_RST, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3306 }
3307 }
3308 if (lp->useMII) {
3309 next_tick = test_mii_reg(dev, MII_CR, MII_CR_RST, false, 500);
3310 }
3311 } else if (lp->chipset == DC21140) {
3312 PHY_HARD_RESET;
3313 }
3314
3315 return next_tick;
3316 }
3317
3318 static int
3319 test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec)
3320 {
3321 struct de4x5_private *lp = netdev_priv(dev);
3322 u_long iobase = dev->base_addr;
3323 s32 sts, csr12;
3324
3325 if (lp->timeout < 0) {
3326 lp->timeout = msec/100;
3327 if (!lp->useSROM) { /* Already done if by SROM, else dc2104[01] */
3328 reset_init_sia(dev, csr13, csr14, csr15);
3329 }
3330
3331 /* set up the interrupt mask */
3332 outl(irq_mask, DE4X5_IMR);
3333
3334 /* clear all pending interrupts */
3335 sts = inl(DE4X5_STS);
3336 outl(sts, DE4X5_STS);
3337
3338 /* clear csr12 NRA and SRA bits */
3339 if ((lp->chipset == DC21041) || lp->useSROM) {
3340 csr12 = inl(DE4X5_SISR);
3341 outl(csr12, DE4X5_SISR);
3342 }
3343 }
3344
3345 sts = inl(DE4X5_STS) & ~TIMER_CB;
3346
3347 if (!(sts & irqs) && --lp->timeout) {
3348 sts = 100 | TIMER_CB;
3349 } else {
3350 lp->timeout = -1;
3351 }
3352
3353 return sts;
3354 }
3355
3356 static int
3357 test_tp(struct net_device *dev, s32 msec)
3358 {
3359 struct de4x5_private *lp = netdev_priv(dev);
3360 u_long iobase = dev->base_addr;
3361 int sisr;
3362
3363 if (lp->timeout < 0) {
3364 lp->timeout = msec/100;
3365 }
3366
3367 sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR);
3368
3369 if (sisr && --lp->timeout) {
3370 sisr = 100 | TIMER_CB;
3371 } else {
3372 lp->timeout = -1;
3373 }
3374
3375 return sisr;
3376 }
3377
3378 /*
3379 ** Samples the 100Mb Link State Signal. The sample interval is important
3380 ** because too fast a rate can give erroneous results and confuse the
3381 ** speed sense algorithm.
3382 */
3383 #define SAMPLE_INTERVAL 500 /* ms */
3384 #define SAMPLE_DELAY 2000 /* ms */
3385 static int
3386 test_for_100Mb(struct net_device *dev, int msec)
3387 {
3388 struct de4x5_private *lp = netdev_priv(dev);
3389 int gep = 0, ret = ((lp->chipset & ~0x00ff)==DC2114x? -1 :GEP_SLNK);
3390
3391 if (lp->timeout < 0) {
3392 if ((msec/SAMPLE_INTERVAL) <= 0) return 0;
3393 if (msec > SAMPLE_DELAY) {
3394 lp->timeout = (msec - SAMPLE_DELAY)/SAMPLE_INTERVAL;
3395 gep = SAMPLE_DELAY | TIMER_CB;
3396 return gep;
3397 } else {
3398 lp->timeout = msec/SAMPLE_INTERVAL;
3399 }
3400 }
3401
3402 if (lp->phy[lp->active].id || lp->useSROM) {
3403 gep = is_100_up(dev) | is_spd_100(dev);
3404 } else {
3405 gep = (~gep_rd(dev) & (GEP_SLNK | GEP_LNP));
3406 }
3407 if (!(gep & ret) && --lp->timeout) {
3408 gep = SAMPLE_INTERVAL | TIMER_CB;
3409 } else {
3410 lp->timeout = -1;
3411 }
3412
3413 return gep;
3414 }
3415
3416 static int
3417 wait_for_link(struct net_device *dev)
3418 {
3419 struct de4x5_private *lp = netdev_priv(dev);
3420
3421 if (lp->timeout < 0) {
3422 lp->timeout = 1;
3423 }
3424
3425 if (lp->timeout--) {
3426 return TIMER_CB;
3427 } else {
3428 lp->timeout = -1;
3429 }
3430
3431 return 0;
3432 }
3433
3434 /*
3435 **
3436 **
3437 */
3438 static int
3439 test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec)
3440 {
3441 struct de4x5_private *lp = netdev_priv(dev);
3442 int test;
3443 u_long iobase = dev->base_addr;
3444
3445 if (lp->timeout < 0) {
3446 lp->timeout = msec/100;
3447 }
3448
3449 reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask;
3450 test = (reg ^ (pol ? ~0 : 0)) & mask;
3451
3452 if (test && --lp->timeout) {
3453 reg = 100 | TIMER_CB;
3454 } else {
3455 lp->timeout = -1;
3456 }
3457
3458 return reg;
3459 }
3460
3461 static int
3462 is_spd_100(struct net_device *dev)
3463 {
3464 struct de4x5_private *lp = netdev_priv(dev);
3465 u_long iobase = dev->base_addr;
3466 int spd;
3467
3468 if (lp->useMII) {
3469 spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII);
3470 spd = ~(spd ^ lp->phy[lp->active].spd.value);
3471 spd &= lp->phy[lp->active].spd.mask;
3472 } else if (!lp->useSROM) { /* de500-xa */
3473 spd = ((~gep_rd(dev)) & GEP_SLNK);
3474 } else {
3475 if ((lp->ibn == 2) || !lp->asBitValid)
3476 return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3477
3478 spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) |
3479 (lp->linkOK & ~lp->asBitValid);
3480 }
3481
3482 return spd;
3483 }
3484
3485 static int
3486 is_100_up(struct net_device *dev)
3487 {
3488 struct de4x5_private *lp = netdev_priv(dev);
3489 u_long iobase = dev->base_addr;
3490
3491 if (lp->useMII) {
3492 /* Double read for sticky bits & temporary drops */
3493 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3494 return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3495 } else if (!lp->useSROM) { /* de500-xa */
3496 return (~gep_rd(dev)) & GEP_SLNK;
3497 } else {
3498 if ((lp->ibn == 2) || !lp->asBitValid)
3499 return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3500
3501 return (lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3502 (lp->linkOK & ~lp->asBitValid);
3503 }
3504 }
3505
3506 static int
3507 is_10_up(struct net_device *dev)
3508 {
3509 struct de4x5_private *lp = netdev_priv(dev);
3510 u_long iobase = dev->base_addr;
3511
3512 if (lp->useMII) {
3513 /* Double read for sticky bits & temporary drops */
3514 mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3515 return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3516 } else if (!lp->useSROM) { /* de500-xa */
3517 return (~gep_rd(dev)) & GEP_LNP;
3518 } else {
3519 if ((lp->ibn == 2) || !lp->asBitValid)
3520 return ((lp->chipset & ~0x00ff) == DC2114x) ?
3521 (~inl(DE4X5_SISR)&SISR_LS10):
3522 0;
3523
3524 return (lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3525 (lp->linkOK & ~lp->asBitValid);
3526 }
3527 }
3528
3529 static int
3530 is_anc_capable(struct net_device *dev)
3531 {
3532 struct de4x5_private *lp = netdev_priv(dev);
3533 u_long iobase = dev->base_addr;
3534
3535 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
3536 return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3537 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3538 return (inl(DE4X5_SISR) & SISR_LPN) >> 12;
3539 } else {
3540 return 0;
3541 }
3542 }
3543
3544 /*
3545 ** Send a packet onto the media and watch for send errors that indicate the
3546 ** media is bad or unconnected.
3547 */
3548 static int
3549 ping_media(struct net_device *dev, int msec)
3550 {
3551 struct de4x5_private *lp = netdev_priv(dev);
3552 u_long iobase = dev->base_addr;
3553 int sisr;
3554
3555 if (lp->timeout < 0) {
3556 lp->timeout = msec/100;
3557
3558 lp->tmp = lp->tx_new; /* Remember the ring position */
3559 load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), (struct sk_buff *)1);
3560 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
3561 outl(POLL_DEMAND, DE4X5_TPD);
3562 }
3563
3564 sisr = inl(DE4X5_SISR);
3565
3566 if ((!(sisr & SISR_NCR)) &&
3567 ((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) &&
3568 (--lp->timeout)) {
3569 sisr = 100 | TIMER_CB;
3570 } else {
3571 if ((!(sisr & SISR_NCR)) &&
3572 !(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) &&
3573 lp->timeout) {
3574 sisr = 0;
3575 } else {
3576 sisr = 1;
3577 }
3578 lp->timeout = -1;
3579 }
3580
3581 return sisr;
3582 }
3583
3584 /*
3585 ** This function does 2 things: on Intels it kmalloc's another buffer to
3586 ** replace the one about to be passed up. On Alpha's it kmallocs a buffer
3587 ** into which the packet is copied.
3588 */
3589 static struct sk_buff *
3590 de4x5_alloc_rx_buff(struct net_device *dev, int index, int len)
3591 {
3592 struct de4x5_private *lp = netdev_priv(dev);
3593 struct sk_buff *p;
3594
3595 #if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
3596 struct sk_buff *ret;
3597 u_long i=0, tmp;
3598
3599 p = netdev_alloc_skb(dev, IEEE802_3_SZ + DE4X5_ALIGN + 2);
3600 if (!p) return NULL;
3601
3602 tmp = virt_to_bus(p->data);
3603 i = ((tmp + DE4X5_ALIGN) & ~DE4X5_ALIGN) - tmp;
3604 skb_reserve(p, i);
3605 lp->rx_ring[index].buf = cpu_to_le32(tmp + i);
3606
3607 ret = lp->rx_skb[index];
3608 lp->rx_skb[index] = p;
3609
3610 if ((u_long) ret > 1) {
3611 skb_put(ret, len);
3612 }
3613
3614 return ret;
3615
3616 #else
3617 if (lp->state != OPEN) return (struct sk_buff *)1; /* Fake out the open */
3618
3619 p = netdev_alloc_skb(dev, len + 2);
3620 if (!p) return NULL;
3621
3622 skb_reserve(p, 2); /* Align */
3623 if (index < lp->rx_old) { /* Wrapped buffer */
3624 short tlen = (lp->rxRingSize - lp->rx_old) * RX_BUFF_SZ;
3625 skb_put_data(p, lp->rx_bufs + lp->rx_old * RX_BUFF_SZ, tlen);
3626 skb_put_data(p, lp->rx_bufs, len - tlen);
3627 } else { /* Linear buffer */
3628 skb_put_data(p, lp->rx_bufs + lp->rx_old * RX_BUFF_SZ, len);
3629 }
3630
3631 return p;
3632 #endif
3633 }
3634
3635 static void
3636 de4x5_free_rx_buffs(struct net_device *dev)
3637 {
3638 struct de4x5_private *lp = netdev_priv(dev);
3639 int i;
3640
3641 for (i=0; i<lp->rxRingSize; i++) {
3642 if ((u_long) lp->rx_skb[i] > 1) {
3643 dev_kfree_skb(lp->rx_skb[i]);
3644 }
3645 lp->rx_ring[i].status = 0;
3646 lp->rx_skb[i] = (struct sk_buff *)1; /* Dummy entry */
3647 }
3648 }
3649
3650 static void
3651 de4x5_free_tx_buffs(struct net_device *dev)
3652 {
3653 struct de4x5_private *lp = netdev_priv(dev);
3654 int i;
3655
3656 for (i=0; i<lp->txRingSize; i++) {
3657 if (lp->tx_skb[i])
3658 de4x5_free_tx_buff(lp, i);
3659 lp->tx_ring[i].status = 0;
3660 }
3661
3662 /* Unload the locally queued packets */
3663 __skb_queue_purge(&lp->cache.queue);
3664 }
3665
3666 /*
3667 ** When a user pulls a connection, the DECchip can end up in a
3668 ** 'running - waiting for end of transmission' state. This means that we
3669 ** have to perform a chip soft reset to ensure that we can synchronize
3670 ** the hardware and software and make any media probes using a loopback
3671 ** packet meaningful.
3672 */
3673 static void
3674 de4x5_save_skbs(struct net_device *dev)
3675 {
3676 struct de4x5_private *lp = netdev_priv(dev);
3677 u_long iobase = dev->base_addr;
3678 s32 omr;
3679
3680 if (!lp->cache.save_cnt) {
3681 STOP_DE4X5;
3682 de4x5_tx(dev); /* Flush any sent skb's */
3683 de4x5_free_tx_buffs(dev);
3684 de4x5_cache_state(dev, DE4X5_SAVE_STATE);
3685 de4x5_sw_reset(dev);
3686 de4x5_cache_state(dev, DE4X5_RESTORE_STATE);
3687 lp->cache.save_cnt++;
3688 START_DE4X5;
3689 }
3690 }
3691
3692 static void
3693 de4x5_rst_desc_ring(struct net_device *dev)
3694 {
3695 struct de4x5_private *lp = netdev_priv(dev);
3696 u_long iobase = dev->base_addr;
3697 int i;
3698 s32 omr;
3699
3700 if (lp->cache.save_cnt) {
3701 STOP_DE4X5;
3702 outl(lp->dma_rings, DE4X5_RRBA);
3703 outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
3704 DE4X5_TRBA);
3705
3706 lp->rx_new = lp->rx_old = 0;
3707 lp->tx_new = lp->tx_old = 0;
3708
3709 for (i = 0; i < lp->rxRingSize; i++) {
3710 lp->rx_ring[i].status = cpu_to_le32(R_OWN);
3711 }
3712
3713 for (i = 0; i < lp->txRingSize; i++) {
3714 lp->tx_ring[i].status = cpu_to_le32(0);
3715 }
3716
3717 barrier();
3718 lp->cache.save_cnt--;
3719 START_DE4X5;
3720 }
3721 }
3722
3723 static void
3724 de4x5_cache_state(struct net_device *dev, int flag)
3725 {
3726 struct de4x5_private *lp = netdev_priv(dev);
3727 u_long iobase = dev->base_addr;
3728
3729 switch(flag) {
3730 case DE4X5_SAVE_STATE:
3731 lp->cache.csr0 = inl(DE4X5_BMR);
3732 lp->cache.csr6 = (inl(DE4X5_OMR) & ~(OMR_ST | OMR_SR));
3733 lp->cache.csr7 = inl(DE4X5_IMR);
3734 break;
3735
3736 case DE4X5_RESTORE_STATE:
3737 outl(lp->cache.csr0, DE4X5_BMR);
3738 outl(lp->cache.csr6, DE4X5_OMR);
3739 outl(lp->cache.csr7, DE4X5_IMR);
3740 if (lp->chipset == DC21140) {
3741 gep_wr(lp->cache.gepc, dev);
3742 gep_wr(lp->cache.gep, dev);
3743 } else {
3744 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14,
3745 lp->cache.csr15);
3746 }
3747 break;
3748 }
3749 }
3750
3751 static void
3752 de4x5_put_cache(struct net_device *dev, struct sk_buff *skb)
3753 {
3754 struct de4x5_private *lp = netdev_priv(dev);
3755
3756 __skb_queue_tail(&lp->cache.queue, skb);
3757 }
3758
3759 static void
3760 de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb)
3761 {
3762 struct de4x5_private *lp = netdev_priv(dev);
3763
3764 __skb_queue_head(&lp->cache.queue, skb);
3765 }
3766
3767 static struct sk_buff *
3768 de4x5_get_cache(struct net_device *dev)
3769 {
3770 struct de4x5_private *lp = netdev_priv(dev);
3771
3772 return __skb_dequeue(&lp->cache.queue);
3773 }
3774
3775 /*
3776 ** Check the Auto Negotiation State. Return OK when a link pass interrupt
3777 ** is received and the auto-negotiation status is NWAY OK.
3778 */
3779 static int
3780 test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec)
3781 {
3782 struct de4x5_private *lp = netdev_priv(dev);
3783 u_long iobase = dev->base_addr;
3784 s32 sts, ans;
3785
3786 if (lp->timeout < 0) {
3787 lp->timeout = msec/100;
3788 outl(irq_mask, DE4X5_IMR);
3789
3790 /* clear all pending interrupts */
3791 sts = inl(DE4X5_STS);
3792 outl(sts, DE4X5_STS);
3793 }
3794
3795 ans = inl(DE4X5_SISR) & SISR_ANS;
3796 sts = inl(DE4X5_STS) & ~TIMER_CB;
3797
3798 if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) {
3799 sts = 100 | TIMER_CB;
3800 } else {
3801 lp->timeout = -1;
3802 }
3803
3804 return sts;
3805 }
3806
3807 static void
3808 de4x5_setup_intr(struct net_device *dev)
3809 {
3810 struct de4x5_private *lp = netdev_priv(dev);
3811 u_long iobase = dev->base_addr;
3812 s32 imr, sts;
3813
3814 if (inl(DE4X5_OMR) & OMR_SR) { /* Only unmask if TX/RX is enabled */
3815 imr = 0;
3816 UNMASK_IRQs;
3817 sts = inl(DE4X5_STS); /* Reset any pending (stale) interrupts */
3818 outl(sts, DE4X5_STS);
3819 ENABLE_IRQs;
3820 }
3821 }
3822
3823 /*
3824 **
3825 */
3826 static void
3827 reset_init_sia(struct net_device *dev, s32 csr13, s32 csr14, s32 csr15)
3828 {
3829 struct de4x5_private *lp = netdev_priv(dev);
3830 u_long iobase = dev->base_addr;
3831
3832 RESET_SIA;
3833 if (lp->useSROM) {
3834 if (lp->ibn == 3) {
3835 srom_exec(dev, lp->phy[lp->active].rst);
3836 srom_exec(dev, lp->phy[lp->active].gep);
3837 outl(1, DE4X5_SICR);
3838 return;
3839 } else {
3840 csr15 = lp->cache.csr15;
3841 csr14 = lp->cache.csr14;
3842 csr13 = lp->cache.csr13;
3843 outl(csr15 | lp->cache.gepc, DE4X5_SIGR);
3844 outl(csr15 | lp->cache.gep, DE4X5_SIGR);
3845 }
3846 } else {
3847 outl(csr15, DE4X5_SIGR);
3848 }
3849 outl(csr14, DE4X5_STRR);
3850 outl(csr13, DE4X5_SICR);
3851
3852 mdelay(10);
3853 }
3854
3855 /*
3856 ** Create a loopback ethernet packet
3857 */
3858 static void
3859 create_packet(struct net_device *dev, char *frame, int len)
3860 {
3861 int i;
3862 char *buf = frame;
3863
3864 for (i=0; i<ETH_ALEN; i++) { /* Use this source address */
3865 *buf++ = dev->dev_addr[i];
3866 }
3867 for (i=0; i<ETH_ALEN; i++) { /* Use this destination address */
3868 *buf++ = dev->dev_addr[i];
3869 }
3870
3871 *buf++ = 0; /* Packet length (2 bytes) */
3872 *buf++ = 1;
3873 }
3874
3875 /*
3876 ** Look for a particular board name in the EISA configuration space
3877 */
3878 static int
3879 EISA_signature(char *name, struct device *device)
3880 {
3881 int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3882 struct eisa_device *edev;
3883
3884 *name = '\0';
3885 edev = to_eisa_device (device);
3886 i = edev->id.driver_data;
3887
3888 if (i >= 0 && i < siglen) {
3889 strcpy (name, de4x5_signatures[i]);
3890 status = 1;
3891 }
3892
3893 return status; /* return the device name string */
3894 }
3895
3896 /*
3897 ** Look for a particular board name in the PCI configuration space
3898 */
3899 static int
3900 PCI_signature(char *name, struct de4x5_private *lp)
3901 {
3902 int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3903
3904 if (lp->chipset == DC21040) {
3905 strcpy(name, "DE434/5");
3906 return status;
3907 } else { /* Search for a DEC name in the SROM */
3908 int tmp = *((char *)&lp->srom + 19) * 3;
3909 strncpy(name, (char *)&lp->srom + 26 + tmp, 8);
3910 }
3911 name[8] = '\0';
3912 for (i=0; i<siglen; i++) {
3913 if (strstr(name,de4x5_signatures[i])!=NULL) break;
3914 }
3915 if (i == siglen) {
3916 if (dec_only) {
3917 *name = '\0';
3918 } else { /* Use chip name to avoid confusion */
3919 strcpy(name, (((lp->chipset == DC21040) ? "DC21040" :
3920 ((lp->chipset == DC21041) ? "DC21041" :
3921 ((lp->chipset == DC21140) ? "DC21140" :
3922 ((lp->chipset == DC21142) ? "DC21142" :
3923 ((lp->chipset == DC21143) ? "DC21143" : "UNKNOWN"
3924 )))))));
3925 }
3926 if (lp->chipset != DC21041) {
3927 lp->useSROM = true; /* card is not recognisably DEC */
3928 }
3929 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3930 lp->useSROM = true;
3931 }
3932
3933 return status;
3934 }
3935
3936 /*
3937 ** Set up the Ethernet PROM counter to the start of the Ethernet address on
3938 ** the DC21040, else read the SROM for the other chips.
3939 ** The SROM may not be present in a multi-MAC card, so first read the
3940 ** MAC address and check for a bad address. If there is a bad one then exit
3941 ** immediately with the prior srom contents intact (the h/w address will
3942 ** be fixed up later).
3943 */
3944 static void
3945 DevicePresent(struct net_device *dev, u_long aprom_addr)
3946 {
3947 int i, j=0;
3948 struct de4x5_private *lp = netdev_priv(dev);
3949
3950 if (lp->chipset == DC21040) {
3951 if (lp->bus == EISA) {
3952 enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */
3953 } else {
3954 outl(0, aprom_addr); /* Reset Ethernet Address ROM Pointer */
3955 }
3956 } else { /* Read new srom */
3957 u_short tmp;
3958 __le16 *p = (__le16 *)((char *)&lp->srom + SROM_HWADD);
3959 for (i=0; i<(ETH_ALEN>>1); i++) {
3960 tmp = srom_rd(aprom_addr, (SROM_HWADD>>1) + i);
3961 j += tmp; /* for check for 0:0:0:0:0:0 or ff:ff:ff:ff:ff:ff */
3962 *p = cpu_to_le16(tmp);
3963 }
3964 if (j == 0 || j == 3 * 0xffff) {
3965 /* could get 0 only from all-0 and 3 * 0xffff only from all-1 */
3966 return;
3967 }
3968
3969 p = (__le16 *)&lp->srom;
3970 for (i=0; i<(sizeof(struct de4x5_srom)>>1); i++) {
3971 tmp = srom_rd(aprom_addr, i);
3972 *p++ = cpu_to_le16(tmp);
3973 }
3974 de4x5_dbg_srom(&lp->srom);
3975 }
3976 }
3977
3978 /*
3979 ** Since the write on the Enet PROM register doesn't seem to reset the PROM
3980 ** pointer correctly (at least on my DE425 EISA card), this routine should do
3981 ** it...from depca.c.
3982 */
3983 static void
3984 enet_addr_rst(u_long aprom_addr)
3985 {
3986 union {
3987 struct {
3988 u32 a;
3989 u32 b;
3990 } llsig;
3991 char Sig[sizeof(u32) << 1];
3992 } dev;
3993 short sigLength=0;
3994 s8 data;
3995 int i, j;
3996
3997 dev.llsig.a = ETH_PROM_SIG;
3998 dev.llsig.b = ETH_PROM_SIG;
3999 sigLength = sizeof(u32) << 1;
4000
4001 for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) {
4002 data = inb(aprom_addr);
4003 if (dev.Sig[j] == data) { /* track signature */
4004 j++;
4005 } else { /* lost signature; begin search again */
4006 if (data == dev.Sig[0]) { /* rare case.... */
4007 j=1;
4008 } else {
4009 j=0;
4010 }
4011 }
4012 }
4013 }
4014
4015 /*
4016 ** For the bad status case and no SROM, then add one to the previous
4017 ** address. However, need to add one backwards in case we have 0xff
4018 ** as one or more of the bytes. Only the last 3 bytes should be checked
4019 ** as the first three are invariant - assigned to an organisation.
4020 */
4021 static int
4022 get_hw_addr(struct net_device *dev)
4023 {
4024 u_long iobase = dev->base_addr;
4025 int broken, i, k, tmp, status = 0;
4026 u_short j,chksum;
4027 struct de4x5_private *lp = netdev_priv(dev);
4028
4029 broken = de4x5_bad_srom(lp);
4030
4031 for (i=0,k=0,j=0;j<3;j++) {
4032 k <<= 1;
4033 if (k > 0xffff) k-=0xffff;
4034
4035 if (lp->bus == PCI) {
4036 if (lp->chipset == DC21040) {
4037 while ((tmp = inl(DE4X5_APROM)) < 0);
4038 k += (u_char) tmp;
4039 dev->dev_addr[i++] = (u_char) tmp;
4040 while ((tmp = inl(DE4X5_APROM)) < 0);
4041 k += (u_short) (tmp << 8);
4042 dev->dev_addr[i++] = (u_char) tmp;
4043 } else if (!broken) {
4044 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4045 dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4046 } else if ((broken == SMC) || (broken == ACCTON)) {
4047 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4048 dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4049 }
4050 } else {
4051 k += (u_char) (tmp = inb(EISA_APROM));
4052 dev->dev_addr[i++] = (u_char) tmp;
4053 k += (u_short) ((tmp = inb(EISA_APROM)) << 8);
4054 dev->dev_addr[i++] = (u_char) tmp;
4055 }
4056
4057 if (k > 0xffff) k-=0xffff;
4058 }
4059 if (k == 0xffff) k=0;
4060
4061 if (lp->bus == PCI) {
4062 if (lp->chipset == DC21040) {
4063 while ((tmp = inl(DE4X5_APROM)) < 0);
4064 chksum = (u_char) tmp;
4065 while ((tmp = inl(DE4X5_APROM)) < 0);
4066 chksum |= (u_short) (tmp << 8);
4067 if ((k != chksum) && (dec_only)) status = -1;
4068 }
4069 } else {
4070 chksum = (u_char) inb(EISA_APROM);
4071 chksum |= (u_short) (inb(EISA_APROM) << 8);
4072 if ((k != chksum) && (dec_only)) status = -1;
4073 }
4074
4075 /* If possible, try to fix a broken card - SMC only so far */
4076 srom_repair(dev, broken);
4077
4078 #ifdef CONFIG_PPC_PMAC
4079 /*
4080 ** If the address starts with 00 a0, we have to bit-reverse
4081 ** each byte of the address.
4082 */
4083 if ( machine_is(powermac) &&
4084 (dev->dev_addr[0] == 0) &&
4085 (dev->dev_addr[1] == 0xa0) )
4086 {
4087 for (i = 0; i < ETH_ALEN; ++i)
4088 {
4089 int x = dev->dev_addr[i];
4090 x = ((x & 0xf) << 4) + ((x & 0xf0) >> 4);
4091 x = ((x & 0x33) << 2) + ((x & 0xcc) >> 2);
4092 dev->dev_addr[i] = ((x & 0x55) << 1) + ((x & 0xaa) >> 1);
4093 }
4094 }
4095 #endif /* CONFIG_PPC_PMAC */
4096
4097 /* Test for a bad enet address */
4098 status = test_bad_enet(dev, status);
4099
4100 return status;
4101 }
4102
4103 /*
4104 ** Test for enet addresses in the first 32 bytes.
4105 */
4106 static int
4107 de4x5_bad_srom(struct de4x5_private *lp)
4108 {
4109 int i, status = 0;
4110
4111 for (i = 0; i < ARRAY_SIZE(enet_det); i++) {
4112 if (!memcmp(&lp->srom, &enet_det[i], 3) &&
4113 !memcmp((char *)&lp->srom+0x10, &enet_det[i], 3)) {
4114 if (i == 0) {
4115 status = SMC;
4116 } else if (i == 1) {
4117 status = ACCTON;
4118 }
4119 break;
4120 }
4121 }
4122
4123 return status;
4124 }
4125
4126 static void
4127 srom_repair(struct net_device *dev, int card)
4128 {
4129 struct de4x5_private *lp = netdev_priv(dev);
4130
4131 switch(card) {
4132 case SMC:
4133 memset((char *)&lp->srom, 0, sizeof(struct de4x5_srom));
4134 memcpy(lp->srom.ieee_addr, (char *)dev->dev_addr, ETH_ALEN);
4135 memcpy(lp->srom.info, (char *)&srom_repair_info[SMC-1], 100);
4136 lp->useSROM = true;
4137 break;
4138 }
4139 }
4140
4141 /*
4142 ** Assume that the irq's do not follow the PCI spec - this is seems
4143 ** to be true so far (2 for 2).
4144 */
4145 static int
4146 test_bad_enet(struct net_device *dev, int status)
4147 {
4148 struct de4x5_private *lp = netdev_priv(dev);
4149 int i, tmp;
4150
4151 for (tmp=0,i=0; i<ETH_ALEN; i++) tmp += (u_char)dev->dev_addr[i];
4152 if ((tmp == 0) || (tmp == 0x5fa)) {
4153 if ((lp->chipset == last.chipset) &&
4154 (lp->bus_num == last.bus) && (lp->bus_num > 0)) {
4155 for (i=0; i<ETH_ALEN; i++) dev->dev_addr[i] = last.addr[i];
4156 for (i=ETH_ALEN-1; i>2; --i) {
4157 dev->dev_addr[i] += 1;
4158 if (dev->dev_addr[i] != 0) break;
4159 }
4160 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4161 if (!an_exception(lp)) {
4162 dev->irq = last.irq;
4163 }
4164
4165 status = 0;
4166 }
4167 } else if (!status) {
4168 last.chipset = lp->chipset;
4169 last.bus = lp->bus_num;
4170 last.irq = dev->irq;
4171 for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4172 }
4173
4174 return status;
4175 }
4176
4177 /*
4178 ** List of board exceptions with correctly wired IRQs
4179 */
4180 static int
4181 an_exception(struct de4x5_private *lp)
4182 {
4183 if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) &&
4184 (*(u_short *)lp->srom.sub_system_id == 0x95e0)) {
4185 return -1;
4186 }
4187
4188 return 0;
4189 }
4190
4191 /*
4192 ** SROM Read
4193 */
4194 static short
4195 srom_rd(u_long addr, u_char offset)
4196 {
4197 sendto_srom(SROM_RD | SROM_SR, addr);
4198
4199 srom_latch(SROM_RD | SROM_SR | DT_CS, addr);
4200 srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr);
4201 srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset);
4202
4203 return srom_data(SROM_RD | SROM_SR | DT_CS, addr);
4204 }
4205
4206 static void
4207 srom_latch(u_int command, u_long addr)
4208 {
4209 sendto_srom(command, addr);
4210 sendto_srom(command | DT_CLK, addr);
4211 sendto_srom(command, addr);
4212 }
4213
4214 static void
4215 srom_command(u_int command, u_long addr)
4216 {
4217 srom_latch(command, addr);
4218 srom_latch(command, addr);
4219 srom_latch((command & 0x0000ff00) | DT_CS, addr);
4220 }
4221
4222 static void
4223 srom_address(u_int command, u_long addr, u_char offset)
4224 {
4225 int i, a;
4226
4227 a = offset << 2;
4228 for (i=0; i<6; i++, a <<= 1) {
4229 srom_latch(command | ((a & 0x80) ? DT_IN : 0), addr);
4230 }
4231 udelay(1);
4232
4233 i = (getfrom_srom(addr) >> 3) & 0x01;
4234 }
4235
4236 static short
4237 srom_data(u_int command, u_long addr)
4238 {
4239 int i;
4240 short word = 0;
4241 s32 tmp;
4242
4243 for (i=0; i<16; i++) {
4244 sendto_srom(command | DT_CLK, addr);
4245 tmp = getfrom_srom(addr);
4246 sendto_srom(command, addr);
4247
4248 word = (word << 1) | ((tmp >> 3) & 0x01);
4249 }
4250
4251 sendto_srom(command & 0x0000ff00, addr);
4252
4253 return word;
4254 }
4255
4256 /*
4257 static void
4258 srom_busy(u_int command, u_long addr)
4259 {
4260 sendto_srom((command & 0x0000ff00) | DT_CS, addr);
4261
4262 while (!((getfrom_srom(addr) >> 3) & 0x01)) {
4263 mdelay(1);
4264 }
4265
4266 sendto_srom(command & 0x0000ff00, addr);
4267 }
4268 */
4269
4270 static void
4271 sendto_srom(u_int command, u_long addr)
4272 {
4273 outl(command, addr);
4274 udelay(1);
4275 }
4276
4277 static int
4278 getfrom_srom(u_long addr)
4279 {
4280 s32 tmp;
4281
4282 tmp = inl(addr);
4283 udelay(1);
4284
4285 return tmp;
4286 }
4287
4288 static int
4289 srom_infoleaf_info(struct net_device *dev)
4290 {
4291 struct de4x5_private *lp = netdev_priv(dev);
4292 int i, count;
4293 u_char *p;
4294
4295 /* Find the infoleaf decoder function that matches this chipset */
4296 for (i=0; i<INFOLEAF_SIZE; i++) {
4297 if (lp->chipset == infoleaf_array[i].chipset) break;
4298 }
4299 if (i == INFOLEAF_SIZE) {
4300 lp->useSROM = false;
4301 printk("%s: Cannot find correct chipset for SROM decoding!\n",
4302 dev->name);
4303 return -ENXIO;
4304 }
4305
4306 lp->infoleaf_fn = infoleaf_array[i].fn;
4307
4308 /* Find the information offset that this function should use */
4309 count = *((u_char *)&lp->srom + 19);
4310 p = (u_char *)&lp->srom + 26;
4311
4312 if (count > 1) {
4313 for (i=count; i; --i, p+=3) {
4314 if (lp->device == *p) break;
4315 }
4316 if (i == 0) {
4317 lp->useSROM = false;
4318 printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
4319 dev->name, lp->device);
4320 return -ENXIO;
4321 }
4322 }
4323
4324 lp->infoleaf_offset = get_unaligned_le16(p + 1);
4325
4326 return 0;
4327 }
4328
4329 /*
4330 ** This routine loads any type 1 or 3 MII info into the mii device
4331 ** struct and executes any type 5 code to reset PHY devices for this
4332 ** controller.
4333 ** The info for the MII devices will be valid since the index used
4334 ** will follow the discovery process from MII address 1-31 then 0.
4335 */
4336 static void
4337 srom_init(struct net_device *dev)
4338 {
4339 struct de4x5_private *lp = netdev_priv(dev);
4340 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4341 u_char count;
4342
4343 p+=2;
4344 if (lp->chipset == DC21140) {
4345 lp->cache.gepc = (*p++ | GEP_CTRL);
4346 gep_wr(lp->cache.gepc, dev);
4347 }
4348
4349 /* Block count */
4350 count = *p++;
4351
4352 /* Jump the infoblocks to find types */
4353 for (;count; --count) {
4354 if (*p < 128) {
4355 p += COMPACT_LEN;
4356 } else if (*(p+1) == 5) {
4357 type5_infoblock(dev, 1, p);
4358 p += ((*p & BLOCK_LEN) + 1);
4359 } else if (*(p+1) == 4) {
4360 p += ((*p & BLOCK_LEN) + 1);
4361 } else if (*(p+1) == 3) {
4362 type3_infoblock(dev, 1, p);
4363 p += ((*p & BLOCK_LEN) + 1);
4364 } else if (*(p+1) == 2) {
4365 p += ((*p & BLOCK_LEN) + 1);
4366 } else if (*(p+1) == 1) {
4367 type1_infoblock(dev, 1, p);
4368 p += ((*p & BLOCK_LEN) + 1);
4369 } else {
4370 p += ((*p & BLOCK_LEN) + 1);
4371 }
4372 }
4373 }
4374
4375 /*
4376 ** A generic routine that writes GEP control, data and reset information
4377 ** to the GEP register (21140) or csr15 GEP portion (2114[23]).
4378 */
4379 static void
4380 srom_exec(struct net_device *dev, u_char *p)
4381 {
4382 struct de4x5_private *lp = netdev_priv(dev);
4383 u_long iobase = dev->base_addr;
4384 u_char count = (p ? *p++ : 0);
4385 u_short *w = (u_short *)p;
4386
4387 if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return;
4388
4389 if (lp->chipset != DC21140) RESET_SIA;
4390
4391 while (count--) {
4392 gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ?
4393 *p++ : get_unaligned_le16(w++)), dev);
4394 mdelay(2); /* 2ms per action */
4395 }
4396
4397 if (lp->chipset != DC21140) {
4398 outl(lp->cache.csr14, DE4X5_STRR);
4399 outl(lp->cache.csr13, DE4X5_SICR);
4400 }
4401 }
4402
4403 /*
4404 ** Basically this function is a NOP since it will never be called,
4405 ** unless I implement the DC21041 SROM functions. There's no need
4406 ** since the existing code will be satisfactory for all boards.
4407 */
4408 static int
4409 dc21041_infoleaf(struct net_device *dev)
4410 {
4411 return DE4X5_AUTOSENSE_MS;
4412 }
4413
4414 static int
4415 dc21140_infoleaf(struct net_device *dev)
4416 {
4417 struct de4x5_private *lp = netdev_priv(dev);
4418 u_char count = 0;
4419 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4420 int next_tick = DE4X5_AUTOSENSE_MS;
4421
4422 /* Read the connection type */
4423 p+=2;
4424
4425 /* GEP control */
4426 lp->cache.gepc = (*p++ | GEP_CTRL);
4427
4428 /* Block count */
4429 count = *p++;
4430
4431 /* Recursively figure out the info blocks */
4432 if (*p < 128) {
4433 next_tick = dc_infoblock[COMPACT](dev, count, p);
4434 } else {
4435 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4436 }
4437
4438 if (lp->tcount == count) {
4439 lp->media = NC;
4440 if (lp->media != lp->c_media) {
4441 de4x5_dbg_media(dev);
4442 lp->c_media = lp->media;
4443 }
4444 lp->media = INIT;
4445 lp->tcount = 0;
4446 lp->tx_enable = false;
4447 }
4448
4449 return next_tick & ~TIMER_CB;
4450 }
4451
4452 static int
4453 dc21142_infoleaf(struct net_device *dev)
4454 {
4455 struct de4x5_private *lp = netdev_priv(dev);
4456 u_char count = 0;
4457 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4458 int next_tick = DE4X5_AUTOSENSE_MS;
4459
4460 /* Read the connection type */
4461 p+=2;
4462
4463 /* Block count */
4464 count = *p++;
4465
4466 /* Recursively figure out the info blocks */
4467 if (*p < 128) {
4468 next_tick = dc_infoblock[COMPACT](dev, count, p);
4469 } else {
4470 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4471 }
4472
4473 if (lp->tcount == count) {
4474 lp->media = NC;
4475 if (lp->media != lp->c_media) {
4476 de4x5_dbg_media(dev);
4477 lp->c_media = lp->media;
4478 }
4479 lp->media = INIT;
4480 lp->tcount = 0;
4481 lp->tx_enable = false;
4482 }
4483
4484 return next_tick & ~TIMER_CB;
4485 }
4486
4487 static int
4488 dc21143_infoleaf(struct net_device *dev)
4489 {
4490 struct de4x5_private *lp = netdev_priv(dev);
4491 u_char count = 0;
4492 u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4493 int next_tick = DE4X5_AUTOSENSE_MS;
4494
4495 /* Read the connection type */
4496 p+=2;
4497
4498 /* Block count */
4499 count = *p++;
4500
4501 /* Recursively figure out the info blocks */
4502 if (*p < 128) {
4503 next_tick = dc_infoblock[COMPACT](dev, count, p);
4504 } else {
4505 next_tick = dc_infoblock[*(p+1)](dev, count, p);
4506 }
4507 if (lp->tcount == count) {
4508 lp->media = NC;
4509 if (lp->media != lp->c_media) {
4510 de4x5_dbg_media(dev);
4511 lp->c_media = lp->media;
4512 }
4513 lp->media = INIT;
4514 lp->tcount = 0;
4515 lp->tx_enable = false;
4516 }
4517
4518 return next_tick & ~TIMER_CB;
4519 }
4520
4521 /*
4522 ** The compact infoblock is only designed for DC21140[A] chips, so
4523 ** we'll reuse the dc21140m_autoconf function. Non MII media only.
4524 */
4525 static int
4526 compact_infoblock(struct net_device *dev, u_char count, u_char *p)
4527 {
4528 struct de4x5_private *lp = netdev_priv(dev);
4529 u_char flags, csr6;
4530
4531 /* Recursively figure out the info blocks */
4532 if (--count > lp->tcount) {
4533 if (*(p+COMPACT_LEN) < 128) {
4534 return dc_infoblock[COMPACT](dev, count, p+COMPACT_LEN);
4535 } else {
4536 return dc_infoblock[*(p+COMPACT_LEN+1)](dev, count, p+COMPACT_LEN);
4537 }
4538 }
4539
4540 if ((lp->media == INIT) && (lp->timeout < 0)) {
4541 lp->ibn = COMPACT;
4542 lp->active = 0;
4543 gep_wr(lp->cache.gepc, dev);
4544 lp->infoblock_media = (*p++) & COMPACT_MC;
4545 lp->cache.gep = *p++;
4546 csr6 = *p++;
4547 flags = *p++;
4548
4549 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4550 lp->defMedium = (flags & 0x40) ? -1 : 0;
4551 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4552 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4553 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4554 lp->useMII = false;
4555
4556 de4x5_switch_mac_port(dev);
4557 }
4558
4559 return dc21140m_autoconf(dev);
4560 }
4561
4562 /*
4563 ** This block describes non MII media for the DC21140[A] only.
4564 */
4565 static int
4566 type0_infoblock(struct net_device *dev, u_char count, u_char *p)
4567 {
4568 struct de4x5_private *lp = netdev_priv(dev);
4569 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4570
4571 /* Recursively figure out the info blocks */
4572 if (--count > lp->tcount) {
4573 if (*(p+len) < 128) {
4574 return dc_infoblock[COMPACT](dev, count, p+len);
4575 } else {
4576 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4577 }
4578 }
4579
4580 if ((lp->media == INIT) && (lp->timeout < 0)) {
4581 lp->ibn = 0;
4582 lp->active = 0;
4583 gep_wr(lp->cache.gepc, dev);
4584 p+=2;
4585 lp->infoblock_media = (*p++) & BLOCK0_MC;
4586 lp->cache.gep = *p++;
4587 csr6 = *p++;
4588 flags = *p++;
4589
4590 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4591 lp->defMedium = (flags & 0x40) ? -1 : 0;
4592 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4593 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4594 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4595 lp->useMII = false;
4596
4597 de4x5_switch_mac_port(dev);
4598 }
4599
4600 return dc21140m_autoconf(dev);
4601 }
4602
4603 /* These functions are under construction! */
4604
4605 static int
4606 type1_infoblock(struct net_device *dev, u_char count, u_char *p)
4607 {
4608 struct de4x5_private *lp = netdev_priv(dev);
4609 u_char len = (*p & BLOCK_LEN)+1;
4610
4611 /* Recursively figure out the info blocks */
4612 if (--count > lp->tcount) {
4613 if (*(p+len) < 128) {
4614 return dc_infoblock[COMPACT](dev, count, p+len);
4615 } else {
4616 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4617 }
4618 }
4619
4620 p += 2;
4621 if (lp->state == INITIALISED) {
4622 lp->ibn = 1;
4623 lp->active = *p++;
4624 lp->phy[lp->active].gep = (*p ? p : NULL); p += (*p + 1);
4625 lp->phy[lp->active].rst = (*p ? p : NULL); p += (*p + 1);
4626 lp->phy[lp->active].mc = get_unaligned_le16(p); p += 2;
4627 lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4628 lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4629 lp->phy[lp->active].ttm = get_unaligned_le16(p);
4630 return 0;
4631 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4632 lp->ibn = 1;
4633 lp->active = *p;
4634 lp->infoblock_csr6 = OMR_MII_100;
4635 lp->useMII = true;
4636 lp->infoblock_media = ANS;
4637
4638 de4x5_switch_mac_port(dev);
4639 }
4640
4641 return dc21140m_autoconf(dev);
4642 }
4643
4644 static int
4645 type2_infoblock(struct net_device *dev, u_char count, u_char *p)
4646 {
4647 struct de4x5_private *lp = netdev_priv(dev);
4648 u_char len = (*p & BLOCK_LEN)+1;
4649
4650 /* Recursively figure out the info blocks */
4651 if (--count > lp->tcount) {
4652 if (*(p+len) < 128) {
4653 return dc_infoblock[COMPACT](dev, count, p+len);
4654 } else {
4655 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4656 }
4657 }
4658
4659 if ((lp->media == INIT) && (lp->timeout < 0)) {
4660 lp->ibn = 2;
4661 lp->active = 0;
4662 p += 2;
4663 lp->infoblock_media = (*p) & MEDIA_CODE;
4664
4665 if ((*p++) & EXT_FIELD) {
4666 lp->cache.csr13 = get_unaligned_le16(p); p += 2;
4667 lp->cache.csr14 = get_unaligned_le16(p); p += 2;
4668 lp->cache.csr15 = get_unaligned_le16(p); p += 2;
4669 } else {
4670 lp->cache.csr13 = CSR13;
4671 lp->cache.csr14 = CSR14;
4672 lp->cache.csr15 = CSR15;
4673 }
4674 lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4675 lp->cache.gep = ((s32)(get_unaligned_le16(p)) << 16);
4676 lp->infoblock_csr6 = OMR_SIA;
4677 lp->useMII = false;
4678
4679 de4x5_switch_mac_port(dev);
4680 }
4681
4682 return dc2114x_autoconf(dev);
4683 }
4684
4685 static int
4686 type3_infoblock(struct net_device *dev, u_char count, u_char *p)
4687 {
4688 struct de4x5_private *lp = netdev_priv(dev);
4689 u_char len = (*p & BLOCK_LEN)+1;
4690
4691 /* Recursively figure out the info blocks */
4692 if (--count > lp->tcount) {
4693 if (*(p+len) < 128) {
4694 return dc_infoblock[COMPACT](dev, count, p+len);
4695 } else {
4696 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4697 }
4698 }
4699
4700 p += 2;
4701 if (lp->state == INITIALISED) {
4702 lp->ibn = 3;
4703 lp->active = *p++;
4704 if (MOTO_SROM_BUG) lp->active = 0;
4705 lp->phy[lp->active].gep = (*p ? p : NULL); p += (2 * (*p) + 1);
4706 lp->phy[lp->active].rst = (*p ? p : NULL); p += (2 * (*p) + 1);
4707 lp->phy[lp->active].mc = get_unaligned_le16(p); p += 2;
4708 lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4709 lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4710 lp->phy[lp->active].ttm = get_unaligned_le16(p); p += 2;
4711 lp->phy[lp->active].mci = *p;
4712 return 0;
4713 } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4714 lp->ibn = 3;
4715 lp->active = *p;
4716 if (MOTO_SROM_BUG) lp->active = 0;
4717 lp->infoblock_csr6 = OMR_MII_100;
4718 lp->useMII = true;
4719 lp->infoblock_media = ANS;
4720
4721 de4x5_switch_mac_port(dev);
4722 }
4723
4724 return dc2114x_autoconf(dev);
4725 }
4726
4727 static int
4728 type4_infoblock(struct net_device *dev, u_char count, u_char *p)
4729 {
4730 struct de4x5_private *lp = netdev_priv(dev);
4731 u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4732
4733 /* Recursively figure out the info blocks */
4734 if (--count > lp->tcount) {
4735 if (*(p+len) < 128) {
4736 return dc_infoblock[COMPACT](dev, count, p+len);
4737 } else {
4738 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4739 }
4740 }
4741
4742 if ((lp->media == INIT) && (lp->timeout < 0)) {
4743 lp->ibn = 4;
4744 lp->active = 0;
4745 p+=2;
4746 lp->infoblock_media = (*p++) & MEDIA_CODE;
4747 lp->cache.csr13 = CSR13; /* Hard coded defaults */
4748 lp->cache.csr14 = CSR14;
4749 lp->cache.csr15 = CSR15;
4750 lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4751 lp->cache.gep = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4752 csr6 = *p++;
4753 flags = *p++;
4754
4755 lp->asBitValid = (flags & 0x80) ? 0 : -1;
4756 lp->defMedium = (flags & 0x40) ? -1 : 0;
4757 lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4758 lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4759 lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4760 lp->useMII = false;
4761
4762 de4x5_switch_mac_port(dev);
4763 }
4764
4765 return dc2114x_autoconf(dev);
4766 }
4767
4768 /*
4769 ** This block type provides information for resetting external devices
4770 ** (chips) through the General Purpose Register.
4771 */
4772 static int
4773 type5_infoblock(struct net_device *dev, u_char count, u_char *p)
4774 {
4775 struct de4x5_private *lp = netdev_priv(dev);
4776 u_char len = (*p & BLOCK_LEN)+1;
4777
4778 /* Recursively figure out the info blocks */
4779 if (--count > lp->tcount) {
4780 if (*(p+len) < 128) {
4781 return dc_infoblock[COMPACT](dev, count, p+len);
4782 } else {
4783 return dc_infoblock[*(p+len+1)](dev, count, p+len);
4784 }
4785 }
4786
4787 /* Must be initializing to run this code */
4788 if ((lp->state == INITIALISED) || (lp->media == INIT)) {
4789 p+=2;
4790 lp->rst = p;
4791 srom_exec(dev, lp->rst);
4792 }
4793
4794 return DE4X5_AUTOSENSE_MS;
4795 }
4796
4797 /*
4798 ** MII Read/Write
4799 */
4800
4801 static int
4802 mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr)
4803 {
4804 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4805 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4806 mii_wdata(MII_STRD, 4, ioaddr); /* SFD and Read operation */
4807 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4808 mii_address(phyreg, ioaddr); /* PHY Register to read */
4809 mii_ta(MII_STRD, ioaddr); /* Turn around time - 2 MDC */
4810
4811 return mii_rdata(ioaddr); /* Read data */
4812 }
4813
4814 static void
4815 mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr)
4816 {
4817 mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */
4818 mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */
4819 mii_wdata(MII_STWR, 4, ioaddr); /* SFD and Write operation */
4820 mii_address(phyaddr, ioaddr); /* PHY address to be accessed */
4821 mii_address(phyreg, ioaddr); /* PHY Register to write */
4822 mii_ta(MII_STWR, ioaddr); /* Turn around time - 2 MDC */
4823 data = mii_swap(data, 16); /* Swap data bit ordering */
4824 mii_wdata(data, 16, ioaddr); /* Write data */
4825 }
4826
4827 static int
4828 mii_rdata(u_long ioaddr)
4829 {
4830 int i;
4831 s32 tmp = 0;
4832
4833 for (i=0; i<16; i++) {
4834 tmp <<= 1;
4835 tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr);
4836 }
4837
4838 return tmp;
4839 }
4840
4841 static void
4842 mii_wdata(int data, int len, u_long ioaddr)
4843 {
4844 int i;
4845
4846 for (i=0; i<len; i++) {
4847 sendto_mii(MII_MWR | MII_WR, data, ioaddr);
4848 data >>= 1;
4849 }
4850 }
4851
4852 static void
4853 mii_address(u_char addr, u_long ioaddr)
4854 {
4855 int i;
4856
4857 addr = mii_swap(addr, 5);
4858 for (i=0; i<5; i++) {
4859 sendto_mii(MII_MWR | MII_WR, addr, ioaddr);
4860 addr >>= 1;
4861 }
4862 }
4863
4864 static void
4865 mii_ta(u_long rw, u_long ioaddr)
4866 {
4867 if (rw == MII_STWR) {
4868 sendto_mii(MII_MWR | MII_WR, 1, ioaddr);
4869 sendto_mii(MII_MWR | MII_WR, 0, ioaddr);
4870 } else {
4871 getfrom_mii(MII_MRD | MII_RD, ioaddr); /* Tri-state MDIO */
4872 }
4873 }
4874
4875 static int
4876 mii_swap(int data, int len)
4877 {
4878 int i, tmp = 0;
4879
4880 for (i=0; i<len; i++) {
4881 tmp <<= 1;
4882 tmp |= (data & 1);
4883 data >>= 1;
4884 }
4885
4886 return tmp;
4887 }
4888
4889 static void
4890 sendto_mii(u32 command, int data, u_long ioaddr)
4891 {
4892 u32 j;
4893
4894 j = (data & 1) << 17;
4895 outl(command | j, ioaddr);
4896 udelay(1);
4897 outl(command | MII_MDC | j, ioaddr);
4898 udelay(1);
4899 }
4900
4901 static int
4902 getfrom_mii(u32 command, u_long ioaddr)
4903 {
4904 outl(command, ioaddr);
4905 udelay(1);
4906 outl(command | MII_MDC, ioaddr);
4907 udelay(1);
4908
4909 return (inl(ioaddr) >> 19) & 1;
4910 }
4911
4912 /*
4913 ** Here's 3 ways to calculate the OUI from the ID registers.
4914 */
4915 static int
4916 mii_get_oui(u_char phyaddr, u_long ioaddr)
4917 {
4918 /*
4919 union {
4920 u_short reg;
4921 u_char breg[2];
4922 } a;
4923 int i, r2, r3, ret=0;*/
4924 int r2, r3;
4925
4926 /* Read r2 and r3 */
4927 r2 = mii_rd(MII_ID0, phyaddr, ioaddr);
4928 r3 = mii_rd(MII_ID1, phyaddr, ioaddr);
4929 /* SEEQ and Cypress way * /
4930 / * Shuffle r2 and r3 * /
4931 a.reg=0;
4932 r3 = ((r3>>10)|(r2<<6))&0x0ff;
4933 r2 = ((r2>>2)&0x3fff);
4934
4935 / * Bit reverse r3 * /
4936 for (i=0;i<8;i++) {
4937 ret<<=1;
4938 ret |= (r3&1);
4939 r3>>=1;
4940 }
4941
4942 / * Bit reverse r2 * /
4943 for (i=0;i<16;i++) {
4944 a.reg<<=1;
4945 a.reg |= (r2&1);
4946 r2>>=1;
4947 }
4948
4949 / * Swap r2 bytes * /
4950 i=a.breg[0];
4951 a.breg[0]=a.breg[1];
4952 a.breg[1]=i;
4953
4954 return (a.reg<<8)|ret; */ /* SEEQ and Cypress way */
4955 /* return (r2<<6)|(u_int)(r3>>10); */ /* NATIONAL and BROADCOM way */
4956 return r2; /* (I did it) My way */
4957 }
4958
4959 /*
4960 ** The SROM spec forces us to search addresses [1-31 0]. Bummer.
4961 */
4962 static int
4963 mii_get_phy(struct net_device *dev)
4964 {
4965 struct de4x5_private *lp = netdev_priv(dev);
4966 u_long iobase = dev->base_addr;
4967 int i, j, k, n, limit=ARRAY_SIZE(phy_info);
4968 int id;
4969
4970 lp->active = 0;
4971 lp->useMII = true;
4972
4973 /* Search the MII address space for possible PHY devices */
4974 for (n=0, lp->mii_cnt=0, i=1; !((i==1) && (n==1)); i=(i+1)%DE4X5_MAX_MII) {
4975 lp->phy[lp->active].addr = i;
4976 if (i==0) n++; /* Count cycles */
4977 while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */
4978 id = mii_get_oui(i, DE4X5_MII);
4979 if ((id == 0) || (id == 65535)) continue; /* Valid ID? */
4980 for (j=0; j<limit; j++) { /* Search PHY table */
4981 if (id != phy_info[j].id) continue; /* ID match? */
4982 for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
4983 if (k < DE4X5_MAX_PHY) {
4984 memcpy((char *)&lp->phy[k],
4985 (char *)&phy_info[j], sizeof(struct phy_table));
4986 lp->phy[k].addr = i;
4987 lp->mii_cnt++;
4988 lp->active++;
4989 } else {
4990 goto purgatory; /* Stop the search */
4991 }
4992 break;
4993 }
4994 if ((j == limit) && (i < DE4X5_MAX_MII)) {
4995 for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
4996 lp->phy[k].addr = i;
4997 lp->phy[k].id = id;
4998 lp->phy[k].spd.reg = GENERIC_REG; /* ANLPA register */
4999 lp->phy[k].spd.mask = GENERIC_MASK; /* 100Mb/s technologies */
5000 lp->phy[k].spd.value = GENERIC_VALUE; /* TX & T4, H/F Duplex */
5001 lp->mii_cnt++;
5002 lp->active++;
5003 printk("%s: Using generic MII device control. If the board doesn't operate,\nplease mail the following dump to the author:\n", dev->name);
5004 j = de4x5_debug;
5005 de4x5_debug |= DEBUG_MII;
5006 de4x5_dbg_mii(dev, k);
5007 de4x5_debug = j;
5008 printk("\n");
5009 }
5010 }
5011 purgatory:
5012 lp->active = 0;
5013 if (lp->phy[0].id) { /* Reset the PHY devices */
5014 for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++) { /*For each PHY*/
5015 mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII);
5016 while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST);
5017
5018 de4x5_dbg_mii(dev, k);
5019 }
5020 }
5021 if (!lp->mii_cnt) lp->useMII = false;
5022
5023 return lp->mii_cnt;
5024 }
5025
5026 static char *
5027 build_setup_frame(struct net_device *dev, int mode)
5028 {
5029 struct de4x5_private *lp = netdev_priv(dev);
5030 int i;
5031 char *pa = lp->setup_frame;
5032
5033 /* Initialise the setup frame */
5034 if (mode == ALL) {
5035 memset(lp->setup_frame, 0, SETUP_FRAME_LEN);
5036 }
5037
5038 if (lp->setup_f == HASH_PERF) {
5039 for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; i<ETH_ALEN; i++) {
5040 *(pa + i) = dev->dev_addr[i]; /* Host address */
5041 if (i & 0x01) pa += 2;
5042 }
5043 *(lp->setup_frame + (DE4X5_HASH_TABLE_LEN >> 3) - 3) = 0x80;
5044 } else {
5045 for (i=0; i<ETH_ALEN; i++) { /* Host address */
5046 *(pa + (i&1)) = dev->dev_addr[i];
5047 if (i & 0x01) pa += 4;
5048 }
5049 for (i=0; i<ETH_ALEN; i++) { /* Broadcast address */
5050 *(pa + (i&1)) = (char) 0xff;
5051 if (i & 0x01) pa += 4;
5052 }
5053 }
5054
5055 return pa; /* Points to the next entry */
5056 }
5057
5058 static void
5059 disable_ast(struct net_device *dev)
5060 {
5061 struct de4x5_private *lp = netdev_priv(dev);
5062 del_timer_sync(&lp->timer);
5063 }
5064
5065 static long
5066 de4x5_switch_mac_port(struct net_device *dev)
5067 {
5068 struct de4x5_private *lp = netdev_priv(dev);
5069 u_long iobase = dev->base_addr;
5070 s32 omr;
5071
5072 STOP_DE4X5;
5073
5074 /* Assert the OMR_PS bit in CSR6 */
5075 omr = (inl(DE4X5_OMR) & ~(OMR_PS | OMR_HBD | OMR_TTM | OMR_PCS | OMR_SCR |
5076 OMR_FDX));
5077 omr |= lp->infoblock_csr6;
5078 if (omr & OMR_PS) omr |= OMR_HBD;
5079 outl(omr, DE4X5_OMR);
5080
5081 /* Soft Reset */
5082 RESET_DE4X5;
5083
5084 /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
5085 if (lp->chipset == DC21140) {
5086 gep_wr(lp->cache.gepc, dev);
5087 gep_wr(lp->cache.gep, dev);
5088 } else if ((lp->chipset & ~0x0ff) == DC2114x) {
5089 reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14, lp->cache.csr15);
5090 }
5091
5092 /* Restore CSR6 */
5093 outl(omr, DE4X5_OMR);
5094
5095 /* Reset CSR8 */
5096 inl(DE4X5_MFC);
5097
5098 return omr;
5099 }
5100
5101 static void
5102 gep_wr(s32 data, struct net_device *dev)
5103 {
5104 struct de4x5_private *lp = netdev_priv(dev);
5105 u_long iobase = dev->base_addr;
5106
5107 if (lp->chipset == DC21140) {
5108 outl(data, DE4X5_GEP);
5109 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5110 outl((data<<16) | lp->cache.csr15, DE4X5_SIGR);
5111 }
5112 }
5113
5114 static int
5115 gep_rd(struct net_device *dev)
5116 {
5117 struct de4x5_private *lp = netdev_priv(dev);
5118 u_long iobase = dev->base_addr;
5119
5120 if (lp->chipset == DC21140) {
5121 return inl(DE4X5_GEP);
5122 } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5123 return inl(DE4X5_SIGR) & 0x000fffff;
5124 }
5125
5126 return 0;
5127 }
5128
5129 static void
5130 yawn(struct net_device *dev, int state)
5131 {
5132 struct de4x5_private *lp = netdev_priv(dev);
5133 u_long iobase = dev->base_addr;
5134
5135 if ((lp->chipset == DC21040) || (lp->chipset == DC21140)) return;
5136
5137 if(lp->bus == EISA) {
5138 switch(state) {
5139 case WAKEUP:
5140 outb(WAKEUP, PCI_CFPM);
5141 mdelay(10);
5142 break;
5143
5144 case SNOOZE:
5145 outb(SNOOZE, PCI_CFPM);
5146 break;
5147
5148 case SLEEP:
5149 outl(0, DE4X5_SICR);
5150 outb(SLEEP, PCI_CFPM);
5151 break;
5152 }
5153 } else {
5154 struct pci_dev *pdev = to_pci_dev (lp->gendev);
5155 switch(state) {
5156 case WAKEUP:
5157 pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
5158 mdelay(10);
5159 break;
5160
5161 case SNOOZE:
5162 pci_write_config_byte(pdev, PCI_CFDA_PSM, SNOOZE);
5163 break;
5164
5165 case SLEEP:
5166 outl(0, DE4X5_SICR);
5167 pci_write_config_byte(pdev, PCI_CFDA_PSM, SLEEP);
5168 break;
5169 }
5170 }
5171 }
5172
5173 static void
5174 de4x5_parse_params(struct net_device *dev)
5175 {
5176 struct de4x5_private *lp = netdev_priv(dev);
5177 char *p, *q, t;
5178
5179 lp->params.fdx = false;
5180 lp->params.autosense = AUTO;
5181
5182 if (args == NULL) return;
5183
5184 if ((p = strstr(args, dev->name))) {
5185 if (!(q = strstr(p+strlen(dev->name), "eth"))) q = p + strlen(p);
5186 t = *q;
5187 *q = '\0';
5188
5189 if (strstr(p, "fdx") || strstr(p, "FDX")) lp->params.fdx = true;
5190
5191 if (strstr(p, "autosense") || strstr(p, "AUTOSENSE")) {
5192 if (strstr(p, "TP_NW")) {
5193 lp->params.autosense = TP_NW;
5194 } else if (strstr(p, "TP")) {
5195 lp->params.autosense = TP;
5196 } else if (strstr(p, "BNC_AUI")) {
5197 lp->params.autosense = BNC;
5198 } else if (strstr(p, "BNC")) {
5199 lp->params.autosense = BNC;
5200 } else if (strstr(p, "AUI")) {
5201 lp->params.autosense = AUI;
5202 } else if (strstr(p, "10Mb")) {
5203 lp->params.autosense = _10Mb;
5204 } else if (strstr(p, "100Mb")) {
5205 lp->params.autosense = _100Mb;
5206 } else if (strstr(p, "AUTO")) {
5207 lp->params.autosense = AUTO;
5208 }
5209 }
5210 *q = t;
5211 }
5212 }
5213
5214 static void
5215 de4x5_dbg_open(struct net_device *dev)
5216 {
5217 struct de4x5_private *lp = netdev_priv(dev);
5218 int i;
5219
5220 if (de4x5_debug & DEBUG_OPEN) {
5221 printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq);
5222 printk("\tphysical address: %pM\n", dev->dev_addr);
5223 printk("Descriptor head addresses:\n");
5224 printk("\t0x%8.8lx 0x%8.8lx\n",(u_long)lp->rx_ring,(u_long)lp->tx_ring);
5225 printk("Descriptor addresses:\nRX: ");
5226 for (i=0;i<lp->rxRingSize-1;i++){
5227 if (i < 3) {
5228 printk("0x%8.8lx ",(u_long)&lp->rx_ring[i].status);
5229 }
5230 }
5231 printk("...0x%8.8lx\n",(u_long)&lp->rx_ring[i].status);
5232 printk("TX: ");
5233 for (i=0;i<lp->txRingSize-1;i++){
5234 if (i < 3) {
5235 printk("0x%8.8lx ", (u_long)&lp->tx_ring[i].status);
5236 }
5237 }
5238 printk("...0x%8.8lx\n", (u_long)&lp->tx_ring[i].status);
5239 printk("Descriptor buffers:\nRX: ");
5240 for (i=0;i<lp->rxRingSize-1;i++){
5241 if (i < 3) {
5242 printk("0x%8.8x ",le32_to_cpu(lp->rx_ring[i].buf));
5243 }
5244 }
5245 printk("...0x%8.8x\n",le32_to_cpu(lp->rx_ring[i].buf));
5246 printk("TX: ");
5247 for (i=0;i<lp->txRingSize-1;i++){
5248 if (i < 3) {
5249 printk("0x%8.8x ", le32_to_cpu(lp->tx_ring[i].buf));
5250 }
5251 }
5252 printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf));
5253 printk("Ring size:\nRX: %d\nTX: %d\n",
5254 (short)lp->rxRingSize,
5255 (short)lp->txRingSize);
5256 }
5257 }
5258
5259 static void
5260 de4x5_dbg_mii(struct net_device *dev, int k)
5261 {
5262 struct de4x5_private *lp = netdev_priv(dev);
5263 u_long iobase = dev->base_addr;
5264
5265 if (de4x5_debug & DEBUG_MII) {
5266 printk("\nMII device address: %d\n", lp->phy[k].addr);
5267 printk("MII CR: %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII));
5268 printk("MII SR: %x\n",mii_rd(MII_SR,lp->phy[k].addr,DE4X5_MII));
5269 printk("MII ID0: %x\n",mii_rd(MII_ID0,lp->phy[k].addr,DE4X5_MII));
5270 printk("MII ID1: %x\n",mii_rd(MII_ID1,lp->phy[k].addr,DE4X5_MII));
5271 if (lp->phy[k].id != BROADCOM_T4) {
5272 printk("MII ANA: %x\n",mii_rd(0x04,lp->phy[k].addr,DE4X5_MII));
5273 printk("MII ANC: %x\n",mii_rd(0x05,lp->phy[k].addr,DE4X5_MII));
5274 }
5275 printk("MII 16: %x\n",mii_rd(0x10,lp->phy[k].addr,DE4X5_MII));
5276 if (lp->phy[k].id != BROADCOM_T4) {
5277 printk("MII 17: %x\n",mii_rd(0x11,lp->phy[k].addr,DE4X5_MII));
5278 printk("MII 18: %x\n",mii_rd(0x12,lp->phy[k].addr,DE4X5_MII));
5279 } else {
5280 printk("MII 20: %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII));
5281 }
5282 }
5283 }
5284
5285 static void
5286 de4x5_dbg_media(struct net_device *dev)
5287 {
5288 struct de4x5_private *lp = netdev_priv(dev);
5289
5290 if (lp->media != lp->c_media) {
5291 if (de4x5_debug & DEBUG_MEDIA) {
5292 printk("%s: media is %s%s\n", dev->name,
5293 (lp->media == NC ? "unconnected, link down or incompatible connection" :
5294 (lp->media == TP ? "TP" :
5295 (lp->media == ANS ? "TP/Nway" :
5296 (lp->media == BNC ? "BNC" :
5297 (lp->media == AUI ? "AUI" :
5298 (lp->media == BNC_AUI ? "BNC/AUI" :
5299 (lp->media == EXT_SIA ? "EXT SIA" :
5300 (lp->media == _100Mb ? "100Mb/s" :
5301 (lp->media == _10Mb ? "10Mb/s" :
5302 "???"
5303 ))))))))), (lp->fdx?" full duplex.":"."));
5304 }
5305 lp->c_media = lp->media;
5306 }
5307 }
5308
5309 static void
5310 de4x5_dbg_srom(struct de4x5_srom *p)
5311 {
5312 int i;
5313
5314 if (de4x5_debug & DEBUG_SROM) {
5315 printk("Sub-system Vendor ID: %04x\n", *((u_short *)p->sub_vendor_id));
5316 printk("Sub-system ID: %04x\n", *((u_short *)p->sub_system_id));
5317 printk("ID Block CRC: %02x\n", (u_char)(p->id_block_crc));
5318 printk("SROM version: %02x\n", (u_char)(p->version));
5319 printk("# controllers: %02x\n", (u_char)(p->num_controllers));
5320
5321 printk("Hardware Address: %pM\n", p->ieee_addr);
5322 printk("CRC checksum: %04x\n", (u_short)(p->chksum));
5323 for (i=0; i<64; i++) {
5324 printk("%3d %04x\n", i<<1, (u_short)*((u_short *)p+i));
5325 }
5326 }
5327 }
5328
5329 static void
5330 de4x5_dbg_rx(struct sk_buff *skb, int len)
5331 {
5332 int i, j;
5333
5334 if (de4x5_debug & DEBUG_RX) {
5335 printk("R: %pM <- %pM len/SAP:%02x%02x [%d]\n",
5336 skb->data, &skb->data[6],
5337 (u_char)skb->data[12],
5338 (u_char)skb->data[13],
5339 len);
5340 for (j=0; len>0;j+=16, len-=16) {
5341 printk(" %03x: ",j);
5342 for (i=0; i<16 && i<len; i++) {
5343 printk("%02x ",(u_char)skb->data[i+j]);
5344 }
5345 printk("\n");
5346 }
5347 }
5348 }
5349
5350 /*
5351 ** Perform IOCTL call functions here. Some are privileged operations and the
5352 ** effective uid is checked in those cases. In the normal course of events
5353 ** this function is only used for my testing.
5354 */
5355 static int
5356 de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5357 {
5358 struct de4x5_private *lp = netdev_priv(dev);
5359 struct de4x5_ioctl *ioc = (struct de4x5_ioctl *) &rq->ifr_ifru;
5360 u_long iobase = dev->base_addr;
5361 int i, j, status = 0;
5362 s32 omr;
5363 union {
5364 u8 addr[144];
5365 u16 sval[72];
5366 u32 lval[36];
5367 } tmp;
5368 u_long flags = 0;
5369
5370 switch(ioc->cmd) {
5371 case DE4X5_GET_HWADDR: /* Get the hardware address */
5372 ioc->len = ETH_ALEN;
5373 for (i=0; i<ETH_ALEN; i++) {
5374 tmp.addr[i] = dev->dev_addr[i];
5375 }
5376 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5377 break;
5378
5379 case DE4X5_SET_HWADDR: /* Set the hardware address */
5380 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5381 if (copy_from_user(tmp.addr, ioc->data, ETH_ALEN)) return -EFAULT;
5382 if (netif_queue_stopped(dev))
5383 return -EBUSY;
5384 netif_stop_queue(dev);
5385 for (i=0; i<ETH_ALEN; i++) {
5386 dev->dev_addr[i] = tmp.addr[i];
5387 }
5388 build_setup_frame(dev, PHYS_ADDR_ONLY);
5389 /* Set up the descriptor and give ownership to the card */
5390 load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
5391 SETUP_FRAME_LEN, (struct sk_buff *)1);
5392 lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
5393 outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */
5394 netif_wake_queue(dev); /* Unlock the TX ring */
5395 break;
5396
5397 case DE4X5_SAY_BOO: /* Say "Boo!" to the kernel log file */
5398 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5399 printk("%s: Boo!\n", dev->name);
5400 break;
5401
5402 case DE4X5_MCA_EN: /* Enable pass all multicast addressing */
5403 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5404 omr = inl(DE4X5_OMR);
5405 omr |= OMR_PM;
5406 outl(omr, DE4X5_OMR);
5407 break;
5408
5409 case DE4X5_GET_STATS: /* Get the driver statistics */
5410 {
5411 struct pkt_stats statbuf;
5412 ioc->len = sizeof(statbuf);
5413 spin_lock_irqsave(&lp->lock, flags);
5414 memcpy(&statbuf, &lp->pktStats, ioc->len);
5415 spin_unlock_irqrestore(&lp->lock, flags);
5416 if (copy_to_user(ioc->data, &statbuf, ioc->len))
5417 return -EFAULT;
5418 break;
5419 }
5420 case DE4X5_CLR_STATS: /* Zero out the driver statistics */
5421 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5422 spin_lock_irqsave(&lp->lock, flags);
5423 memset(&lp->pktStats, 0, sizeof(lp->pktStats));
5424 spin_unlock_irqrestore(&lp->lock, flags);
5425 break;
5426
5427 case DE4X5_GET_OMR: /* Get the OMR Register contents */
5428 tmp.addr[0] = inl(DE4X5_OMR);
5429 if (copy_to_user(ioc->data, tmp.addr, 1)) return -EFAULT;
5430 break;
5431
5432 case DE4X5_SET_OMR: /* Set the OMR Register contents */
5433 if (!capable(CAP_NET_ADMIN)) return -EPERM;
5434 if (copy_from_user(tmp.addr, ioc->data, 1)) return -EFAULT;
5435 outl(tmp.addr[0], DE4X5_OMR);
5436 break;
5437
5438 case DE4X5_GET_REG: /* Get the DE4X5 Registers */
5439 j = 0;
5440 tmp.lval[0] = inl(DE4X5_STS); j+=4;
5441 tmp.lval[1] = inl(DE4X5_BMR); j+=4;
5442 tmp.lval[2] = inl(DE4X5_IMR); j+=4;
5443 tmp.lval[3] = inl(DE4X5_OMR); j+=4;
5444 tmp.lval[4] = inl(DE4X5_SISR); j+=4;
5445 tmp.lval[5] = inl(DE4X5_SICR); j+=4;
5446 tmp.lval[6] = inl(DE4X5_STRR); j+=4;
5447 tmp.lval[7] = inl(DE4X5_SIGR); j+=4;
5448 ioc->len = j;
5449 if (copy_to_user(ioc->data, tmp.lval, ioc->len))
5450 return -EFAULT;
5451 break;
5452
5453 #define DE4X5_DUMP 0x0f /* Dump the DE4X5 Status */
5454 /*
5455 case DE4X5_DUMP:
5456 j = 0;
5457 tmp.addr[j++] = dev->irq;
5458 for (i=0; i<ETH_ALEN; i++) {
5459 tmp.addr[j++] = dev->dev_addr[i];
5460 }
5461 tmp.addr[j++] = lp->rxRingSize;
5462 tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
5463 tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
5464
5465 for (i=0;i<lp->rxRingSize-1;i++){
5466 if (i < 3) {
5467 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5468 }
5469 }
5470 tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5471 for (i=0;i<lp->txRingSize-1;i++){
5472 if (i < 3) {
5473 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5474 }
5475 }
5476 tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5477
5478 for (i=0;i<lp->rxRingSize-1;i++){
5479 if (i < 3) {
5480 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5481 }
5482 }
5483 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5484 for (i=0;i<lp->txRingSize-1;i++){
5485 if (i < 3) {
5486 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5487 }
5488 }
5489 tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5490
5491 for (i=0;i<lp->rxRingSize;i++){
5492 tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
5493 }
5494 for (i=0;i<lp->txRingSize;i++){
5495 tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
5496 }
5497
5498 tmp.lval[j>>2] = inl(DE4X5_BMR); j+=4;
5499 tmp.lval[j>>2] = inl(DE4X5_TPD); j+=4;
5500 tmp.lval[j>>2] = inl(DE4X5_RPD); j+=4;
5501 tmp.lval[j>>2] = inl(DE4X5_RRBA); j+=4;
5502 tmp.lval[j>>2] = inl(DE4X5_TRBA); j+=4;
5503 tmp.lval[j>>2] = inl(DE4X5_STS); j+=4;
5504 tmp.lval[j>>2] = inl(DE4X5_OMR); j+=4;
5505 tmp.lval[j>>2] = inl(DE4X5_IMR); j+=4;
5506 tmp.lval[j>>2] = lp->chipset; j+=4;
5507 if (lp->chipset == DC21140) {
5508 tmp.lval[j>>2] = gep_rd(dev); j+=4;
5509 } else {
5510 tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
5511 tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
5512 tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
5513 tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
5514 }
5515 tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
5516 if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
5517 tmp.lval[j>>2] = lp->active; j+=4;
5518 tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5519 tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5520 tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5521 tmp.lval[j>>2]=mii_rd(MII_ID1,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5522 if (lp->phy[lp->active].id != BROADCOM_T4) {
5523 tmp.lval[j>>2]=mii_rd(MII_ANA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5524 tmp.lval[j>>2]=mii_rd(MII_ANLPA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5525 }
5526 tmp.lval[j>>2]=mii_rd(0x10,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5527 if (lp->phy[lp->active].id != BROADCOM_T4) {
5528 tmp.lval[j>>2]=mii_rd(0x11,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5529 tmp.lval[j>>2]=mii_rd(0x12,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5530 } else {
5531 tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5532 }
5533 }
5534
5535 tmp.addr[j++] = lp->txRingSize;
5536 tmp.addr[j++] = netif_queue_stopped(dev);
5537
5538 ioc->len = j;
5539 if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5540 break;
5541
5542 */
5543 default:
5544 return -EOPNOTSUPP;
5545 }
5546
5547 return status;
5548 }
5549
5550 static int __init de4x5_module_init (void)
5551 {
5552 int err = 0;
5553
5554 #ifdef CONFIG_PCI
5555 err = pci_register_driver(&de4x5_pci_driver);
5556 #endif
5557 #ifdef CONFIG_EISA
5558 err |= eisa_driver_register (&de4x5_eisa_driver);
5559 #endif
5560
5561 return err;
5562 }
5563
5564 static void __exit de4x5_module_exit (void)
5565 {
5566 #ifdef CONFIG_PCI
5567 pci_unregister_driver (&de4x5_pci_driver);
5568 #endif
5569 #ifdef CONFIG_EISA
5570 eisa_driver_unregister (&de4x5_eisa_driver);
5571 #endif
5572 }
5573
5574 module_init (de4x5_module_init);
5575 module_exit (de4x5_module_exit);