]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/sfc/nic.h
sfc: handle TX timestamps in the normal data path
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / sfc / nic.h
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #ifndef EFX_NIC_H
12 #define EFX_NIC_H
13
14 #include <linux/net_tstamp.h>
15 #include <linux/i2c-algo-bit.h>
16 #include "net_driver.h"
17 #include "efx.h"
18 #include "mcdi.h"
19
20 enum {
21 /* Revisions 0-2 were Falcon A0, A1 and B0 respectively.
22 * They are not supported by this driver but these revision numbers
23 * form part of the ethtool API for register dumping.
24 */
25 EFX_REV_SIENA_A0 = 3,
26 EFX_REV_HUNT_A0 = 4,
27 };
28
29 static inline int efx_nic_rev(struct efx_nic *efx)
30 {
31 return efx->type->revision;
32 }
33
34 u32 efx_farch_fpga_ver(struct efx_nic *efx);
35
36 /* Read the current event from the event queue */
37 static inline efx_qword_t *efx_event(struct efx_channel *channel,
38 unsigned int index)
39 {
40 return ((efx_qword_t *) (channel->eventq.buf.addr)) +
41 (index & channel->eventq_mask);
42 }
43
44 /* See if an event is present
45 *
46 * We check both the high and low dword of the event for all ones. We
47 * wrote all ones when we cleared the event, and no valid event can
48 * have all ones in either its high or low dwords. This approach is
49 * robust against reordering.
50 *
51 * Note that using a single 64-bit comparison is incorrect; even
52 * though the CPU read will be atomic, the DMA write may not be.
53 */
54 static inline int efx_event_present(efx_qword_t *event)
55 {
56 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
57 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
58 }
59
60 /* Returns a pointer to the specified transmit descriptor in the TX
61 * descriptor queue belonging to the specified channel.
62 */
63 static inline efx_qword_t *
64 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
65 {
66 return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
67 }
68
69 /* Get partner of a TX queue, seen as part of the same net core queue */
70 static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
71 {
72 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
73 return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
74 else
75 return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
76 }
77
78 /* Report whether this TX queue would be empty for the given write_count.
79 * May return false negative.
80 */
81 static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
82 unsigned int write_count)
83 {
84 unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count);
85
86 if (empty_read_count == 0)
87 return false;
88
89 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
90 }
91
92 /* Report whether the NIC considers this TX queue empty, using
93 * packet_write_count (the write count recorded for the last completable
94 * doorbell push). May return false negative. EF10 only, which is OK
95 * because only EF10 supports PIO.
96 */
97 static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue)
98 {
99 EFX_WARN_ON_ONCE_PARANOID(!tx_queue->efx->type->option_descriptors);
100 return __efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count);
101 }
102
103 /* Decide whether we can use TX PIO, ie. write packet data directly into
104 * a buffer on the device. This can reduce latency at the expense of
105 * throughput, so we only do this if both hardware and software TX rings
106 * are empty. This also ensures that only one packet at a time can be
107 * using the PIO buffer.
108 */
109 static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue)
110 {
111 struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue);
112
113 return tx_queue->piobuf && efx_nic_tx_is_empty(tx_queue) &&
114 efx_nic_tx_is_empty(partner);
115 }
116
117 /* Decide whether to push a TX descriptor to the NIC vs merely writing
118 * the doorbell. This can reduce latency when we are adding a single
119 * descriptor to an empty queue, but is otherwise pointless. Further,
120 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
121 * triggered if we don't check this.
122 * We use the write_count used for the last doorbell push, to get the
123 * NIC's view of the tx queue.
124 */
125 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
126 unsigned int write_count)
127 {
128 bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
129
130 tx_queue->empty_read_count = 0;
131 return was_empty && tx_queue->write_count - write_count == 1;
132 }
133
134 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
135 static inline efx_qword_t *
136 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
137 {
138 return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
139 }
140
141 enum {
142 PHY_TYPE_NONE = 0,
143 PHY_TYPE_TXC43128 = 1,
144 PHY_TYPE_88E1111 = 2,
145 PHY_TYPE_SFX7101 = 3,
146 PHY_TYPE_QT2022C2 = 4,
147 PHY_TYPE_PM8358 = 6,
148 PHY_TYPE_SFT9001A = 8,
149 PHY_TYPE_QT2025C = 9,
150 PHY_TYPE_SFT9001B = 10,
151 };
152
153 /* Alignment of PCIe DMA boundaries (4KB) */
154 #define EFX_PAGE_SIZE 4096
155 /* Size and alignment of buffer table entries (same) */
156 #define EFX_BUF_SIZE EFX_PAGE_SIZE
157
158 /* NIC-generic software stats */
159 enum {
160 GENERIC_STAT_rx_noskb_drops,
161 GENERIC_STAT_rx_nodesc_trunc,
162 GENERIC_STAT_COUNT
163 };
164
165 enum {
166 SIENA_STAT_tx_bytes = GENERIC_STAT_COUNT,
167 SIENA_STAT_tx_good_bytes,
168 SIENA_STAT_tx_bad_bytes,
169 SIENA_STAT_tx_packets,
170 SIENA_STAT_tx_bad,
171 SIENA_STAT_tx_pause,
172 SIENA_STAT_tx_control,
173 SIENA_STAT_tx_unicast,
174 SIENA_STAT_tx_multicast,
175 SIENA_STAT_tx_broadcast,
176 SIENA_STAT_tx_lt64,
177 SIENA_STAT_tx_64,
178 SIENA_STAT_tx_65_to_127,
179 SIENA_STAT_tx_128_to_255,
180 SIENA_STAT_tx_256_to_511,
181 SIENA_STAT_tx_512_to_1023,
182 SIENA_STAT_tx_1024_to_15xx,
183 SIENA_STAT_tx_15xx_to_jumbo,
184 SIENA_STAT_tx_gtjumbo,
185 SIENA_STAT_tx_collision,
186 SIENA_STAT_tx_single_collision,
187 SIENA_STAT_tx_multiple_collision,
188 SIENA_STAT_tx_excessive_collision,
189 SIENA_STAT_tx_deferred,
190 SIENA_STAT_tx_late_collision,
191 SIENA_STAT_tx_excessive_deferred,
192 SIENA_STAT_tx_non_tcpudp,
193 SIENA_STAT_tx_mac_src_error,
194 SIENA_STAT_tx_ip_src_error,
195 SIENA_STAT_rx_bytes,
196 SIENA_STAT_rx_good_bytes,
197 SIENA_STAT_rx_bad_bytes,
198 SIENA_STAT_rx_packets,
199 SIENA_STAT_rx_good,
200 SIENA_STAT_rx_bad,
201 SIENA_STAT_rx_pause,
202 SIENA_STAT_rx_control,
203 SIENA_STAT_rx_unicast,
204 SIENA_STAT_rx_multicast,
205 SIENA_STAT_rx_broadcast,
206 SIENA_STAT_rx_lt64,
207 SIENA_STAT_rx_64,
208 SIENA_STAT_rx_65_to_127,
209 SIENA_STAT_rx_128_to_255,
210 SIENA_STAT_rx_256_to_511,
211 SIENA_STAT_rx_512_to_1023,
212 SIENA_STAT_rx_1024_to_15xx,
213 SIENA_STAT_rx_15xx_to_jumbo,
214 SIENA_STAT_rx_gtjumbo,
215 SIENA_STAT_rx_bad_gtjumbo,
216 SIENA_STAT_rx_overflow,
217 SIENA_STAT_rx_false_carrier,
218 SIENA_STAT_rx_symbol_error,
219 SIENA_STAT_rx_align_error,
220 SIENA_STAT_rx_length_error,
221 SIENA_STAT_rx_internal_error,
222 SIENA_STAT_rx_nodesc_drop_cnt,
223 SIENA_STAT_COUNT
224 };
225
226 /**
227 * struct siena_nic_data - Siena NIC state
228 * @efx: Pointer back to main interface structure
229 * @wol_filter_id: Wake-on-LAN packet filter id
230 * @stats: Hardware statistics
231 * @vf: Array of &struct siena_vf objects
232 * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
233 * @vfdi_status: Common VFDI status page to be dmad to VF address space.
234 * @local_addr_list: List of local addresses. Protected by %local_lock.
235 * @local_page_list: List of DMA addressable pages used to broadcast
236 * %local_addr_list. Protected by %local_lock.
237 * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
238 * @peer_work: Work item to broadcast peer addresses to VMs.
239 */
240 struct siena_nic_data {
241 struct efx_nic *efx;
242 int wol_filter_id;
243 u64 stats[SIENA_STAT_COUNT];
244 #ifdef CONFIG_SFC_SRIOV
245 struct siena_vf *vf;
246 struct efx_channel *vfdi_channel;
247 unsigned vf_buftbl_base;
248 struct efx_buffer vfdi_status;
249 struct list_head local_addr_list;
250 struct list_head local_page_list;
251 struct mutex local_lock;
252 struct work_struct peer_work;
253 #endif
254 };
255
256 enum {
257 EF10_STAT_port_tx_bytes = GENERIC_STAT_COUNT,
258 EF10_STAT_port_tx_packets,
259 EF10_STAT_port_tx_pause,
260 EF10_STAT_port_tx_control,
261 EF10_STAT_port_tx_unicast,
262 EF10_STAT_port_tx_multicast,
263 EF10_STAT_port_tx_broadcast,
264 EF10_STAT_port_tx_lt64,
265 EF10_STAT_port_tx_64,
266 EF10_STAT_port_tx_65_to_127,
267 EF10_STAT_port_tx_128_to_255,
268 EF10_STAT_port_tx_256_to_511,
269 EF10_STAT_port_tx_512_to_1023,
270 EF10_STAT_port_tx_1024_to_15xx,
271 EF10_STAT_port_tx_15xx_to_jumbo,
272 EF10_STAT_port_rx_bytes,
273 EF10_STAT_port_rx_bytes_minus_good_bytes,
274 EF10_STAT_port_rx_good_bytes,
275 EF10_STAT_port_rx_bad_bytes,
276 EF10_STAT_port_rx_packets,
277 EF10_STAT_port_rx_good,
278 EF10_STAT_port_rx_bad,
279 EF10_STAT_port_rx_pause,
280 EF10_STAT_port_rx_control,
281 EF10_STAT_port_rx_unicast,
282 EF10_STAT_port_rx_multicast,
283 EF10_STAT_port_rx_broadcast,
284 EF10_STAT_port_rx_lt64,
285 EF10_STAT_port_rx_64,
286 EF10_STAT_port_rx_65_to_127,
287 EF10_STAT_port_rx_128_to_255,
288 EF10_STAT_port_rx_256_to_511,
289 EF10_STAT_port_rx_512_to_1023,
290 EF10_STAT_port_rx_1024_to_15xx,
291 EF10_STAT_port_rx_15xx_to_jumbo,
292 EF10_STAT_port_rx_gtjumbo,
293 EF10_STAT_port_rx_bad_gtjumbo,
294 EF10_STAT_port_rx_overflow,
295 EF10_STAT_port_rx_align_error,
296 EF10_STAT_port_rx_length_error,
297 EF10_STAT_port_rx_nodesc_drops,
298 EF10_STAT_port_rx_pm_trunc_bb_overflow,
299 EF10_STAT_port_rx_pm_discard_bb_overflow,
300 EF10_STAT_port_rx_pm_trunc_vfifo_full,
301 EF10_STAT_port_rx_pm_discard_vfifo_full,
302 EF10_STAT_port_rx_pm_trunc_qbb,
303 EF10_STAT_port_rx_pm_discard_qbb,
304 EF10_STAT_port_rx_pm_discard_mapping,
305 EF10_STAT_port_rx_dp_q_disabled_packets,
306 EF10_STAT_port_rx_dp_di_dropped_packets,
307 EF10_STAT_port_rx_dp_streaming_packets,
308 EF10_STAT_port_rx_dp_hlb_fetch,
309 EF10_STAT_port_rx_dp_hlb_wait,
310 EF10_STAT_rx_unicast,
311 EF10_STAT_rx_unicast_bytes,
312 EF10_STAT_rx_multicast,
313 EF10_STAT_rx_multicast_bytes,
314 EF10_STAT_rx_broadcast,
315 EF10_STAT_rx_broadcast_bytes,
316 EF10_STAT_rx_bad,
317 EF10_STAT_rx_bad_bytes,
318 EF10_STAT_rx_overflow,
319 EF10_STAT_tx_unicast,
320 EF10_STAT_tx_unicast_bytes,
321 EF10_STAT_tx_multicast,
322 EF10_STAT_tx_multicast_bytes,
323 EF10_STAT_tx_broadcast,
324 EF10_STAT_tx_broadcast_bytes,
325 EF10_STAT_tx_bad,
326 EF10_STAT_tx_bad_bytes,
327 EF10_STAT_tx_overflow,
328 EF10_STAT_V1_COUNT,
329 EF10_STAT_fec_uncorrected_errors = EF10_STAT_V1_COUNT,
330 EF10_STAT_fec_corrected_errors,
331 EF10_STAT_fec_corrected_symbols_lane0,
332 EF10_STAT_fec_corrected_symbols_lane1,
333 EF10_STAT_fec_corrected_symbols_lane2,
334 EF10_STAT_fec_corrected_symbols_lane3,
335 EF10_STAT_ctpio_dmabuf_start,
336 EF10_STAT_ctpio_vi_busy_fallback,
337 EF10_STAT_ctpio_long_write_success,
338 EF10_STAT_ctpio_missing_dbell_fail,
339 EF10_STAT_ctpio_overflow_fail,
340 EF10_STAT_ctpio_underflow_fail,
341 EF10_STAT_ctpio_timeout_fail,
342 EF10_STAT_ctpio_noncontig_wr_fail,
343 EF10_STAT_ctpio_frm_clobber_fail,
344 EF10_STAT_ctpio_invalid_wr_fail,
345 EF10_STAT_ctpio_vi_clobber_fallback,
346 EF10_STAT_ctpio_unqualified_fallback,
347 EF10_STAT_ctpio_runt_fallback,
348 EF10_STAT_ctpio_success,
349 EF10_STAT_ctpio_fallback,
350 EF10_STAT_ctpio_poison,
351 EF10_STAT_ctpio_erase,
352 EF10_STAT_COUNT
353 };
354
355 /* Maximum number of TX PIO buffers we may allocate to a function.
356 * This matches the total number of buffers on each SFC9100-family
357 * controller.
358 */
359 #define EF10_TX_PIOBUF_COUNT 16
360
361 /**
362 * struct efx_ef10_nic_data - EF10 architecture NIC state
363 * @mcdi_buf: DMA buffer for MCDI
364 * @warm_boot_count: Last seen MC warm boot count
365 * @vi_base: Absolute index of first VI in this function
366 * @n_allocated_vis: Number of VIs allocated to this function
367 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
368 * @must_restore_filters: Flag: filters have yet to be restored after MC reboot
369 * @n_piobufs: Number of PIO buffers allocated to this function
370 * @wc_membase: Base address of write-combining mapping of the memory BAR
371 * @pio_write_base: Base address for writing PIO buffers
372 * @pio_write_vi_base: Relative VI number for @pio_write_base
373 * @piobuf_handle: Handle of each PIO buffer allocated
374 * @piobuf_size: size of a single PIO buffer
375 * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
376 * reboot
377 * @rx_rss_context: Firmware handle for our RSS context
378 * @rx_rss_context_exclusive: Whether our RSS context is exclusive or shared
379 * @stats: Hardware statistics
380 * @workaround_35388: Flag: firmware supports workaround for bug 35388
381 * @workaround_26807: Flag: firmware supports workaround for bug 26807
382 * @workaround_61265: Flag: firmware supports workaround for bug 61265
383 * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
384 * after MC reboot
385 * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
386 * %MC_CMD_GET_CAPABILITIES response)
387 * @datapath_caps2: Further Capabilities of datapath firmware (FLAGS2 field of
388 * %MC_CMD_GET_CAPABILITIES response)
389 * @rx_dpcpu_fw_id: Firmware ID of the RxDPCPU
390 * @tx_dpcpu_fw_id: Firmware ID of the TxDPCPU
391 * @vport_id: The function's vport ID, only relevant for PFs
392 * @must_probe_vswitching: Flag: vswitching has yet to be setup after MC reboot
393 * @pf_index: The number for this PF, or the parent PF if this is a VF
394 #ifdef CONFIG_SFC_SRIOV
395 * @vf: Pointer to VF data structure
396 #endif
397 * @vport_mac: The MAC address on the vport, only for PFs; VFs will be zero
398 * @vlan_list: List of VLANs added over the interface. Serialised by vlan_lock.
399 * @vlan_lock: Lock to serialize access to vlan_list.
400 * @udp_tunnels: UDP tunnel port numbers and types.
401 * @udp_tunnels_dirty: flag indicating a reboot occurred while pushing
402 * @udp_tunnels to hardware and thus the push must be re-done.
403 * @udp_tunnels_lock: Serialises writes to @udp_tunnels and @udp_tunnels_dirty.
404 */
405 struct efx_ef10_nic_data {
406 struct efx_buffer mcdi_buf;
407 u16 warm_boot_count;
408 unsigned int vi_base;
409 unsigned int n_allocated_vis;
410 bool must_realloc_vis;
411 bool must_restore_filters;
412 unsigned int n_piobufs;
413 void __iomem *wc_membase, *pio_write_base;
414 unsigned int pio_write_vi_base;
415 unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
416 u16 piobuf_size;
417 bool must_restore_piobufs;
418 u32 rx_rss_context;
419 bool rx_rss_context_exclusive;
420 u64 stats[EF10_STAT_COUNT];
421 bool workaround_35388;
422 bool workaround_26807;
423 bool workaround_61265;
424 bool must_check_datapath_caps;
425 u32 datapath_caps;
426 u32 datapath_caps2;
427 unsigned int rx_dpcpu_fw_id;
428 unsigned int tx_dpcpu_fw_id;
429 unsigned int vport_id;
430 bool must_probe_vswitching;
431 unsigned int pf_index;
432 u8 port_id[ETH_ALEN];
433 #ifdef CONFIG_SFC_SRIOV
434 unsigned int vf_index;
435 struct ef10_vf *vf;
436 #endif
437 u8 vport_mac[ETH_ALEN];
438 struct list_head vlan_list;
439 struct mutex vlan_lock;
440 struct efx_udp_tunnel udp_tunnels[16];
441 bool udp_tunnels_dirty;
442 struct mutex udp_tunnels_lock;
443 };
444
445 int efx_init_sriov(void);
446 void efx_fini_sriov(void);
447
448 struct ethtool_ts_info;
449 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel);
450 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx);
451 void efx_ptp_remove(struct efx_nic *efx);
452 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr);
453 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr);
454 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
455 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
456 int efx_ptp_get_mode(struct efx_nic *efx);
457 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
458 unsigned int new_mode);
459 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
460 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
461 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings);
462 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats);
463 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev);
464 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
465 struct sk_buff *skb);
466 static inline void efx_rx_skb_attach_timestamp(struct efx_channel *channel,
467 struct sk_buff *skb)
468 {
469 if (channel->sync_events_state == SYNC_EVENTS_VALID)
470 __efx_rx_skb_attach_timestamp(channel, skb);
471 }
472 void efx_ptp_start_datapath(struct efx_nic *efx);
473 void efx_ptp_stop_datapath(struct efx_nic *efx);
474 ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue);
475
476 extern const struct efx_nic_type falcon_a1_nic_type;
477 extern const struct efx_nic_type falcon_b0_nic_type;
478 extern const struct efx_nic_type siena_a0_nic_type;
479 extern const struct efx_nic_type efx_hunt_a0_nic_type;
480 extern const struct efx_nic_type efx_hunt_a0_vf_nic_type;
481
482 /**************************************************************************
483 *
484 * Externs
485 *
486 **************************************************************************
487 */
488
489 int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
490
491 /* TX data path */
492 static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
493 {
494 return tx_queue->efx->type->tx_probe(tx_queue);
495 }
496 static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
497 {
498 tx_queue->efx->type->tx_init(tx_queue);
499 }
500 static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
501 {
502 tx_queue->efx->type->tx_remove(tx_queue);
503 }
504 static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
505 {
506 tx_queue->efx->type->tx_write(tx_queue);
507 }
508
509 /* RX data path */
510 static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
511 {
512 return rx_queue->efx->type->rx_probe(rx_queue);
513 }
514 static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
515 {
516 rx_queue->efx->type->rx_init(rx_queue);
517 }
518 static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
519 {
520 rx_queue->efx->type->rx_remove(rx_queue);
521 }
522 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
523 {
524 rx_queue->efx->type->rx_write(rx_queue);
525 }
526 static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
527 {
528 rx_queue->efx->type->rx_defer_refill(rx_queue);
529 }
530
531 /* Event data path */
532 static inline int efx_nic_probe_eventq(struct efx_channel *channel)
533 {
534 return channel->efx->type->ev_probe(channel);
535 }
536 static inline int efx_nic_init_eventq(struct efx_channel *channel)
537 {
538 return channel->efx->type->ev_init(channel);
539 }
540 static inline void efx_nic_fini_eventq(struct efx_channel *channel)
541 {
542 channel->efx->type->ev_fini(channel);
543 }
544 static inline void efx_nic_remove_eventq(struct efx_channel *channel)
545 {
546 channel->efx->type->ev_remove(channel);
547 }
548 static inline int
549 efx_nic_process_eventq(struct efx_channel *channel, int quota)
550 {
551 return channel->efx->type->ev_process(channel, quota);
552 }
553 static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
554 {
555 channel->efx->type->ev_read_ack(channel);
556 }
557 void efx_nic_event_test_start(struct efx_channel *channel);
558
559 /* Falcon/Siena queue operations */
560 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
561 void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
562 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
563 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
564 void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
565 unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
566 dma_addr_t dma_addr, unsigned int len);
567 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
568 void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
569 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
570 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
571 void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
572 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
573 int efx_farch_ev_probe(struct efx_channel *channel);
574 int efx_farch_ev_init(struct efx_channel *channel);
575 void efx_farch_ev_fini(struct efx_channel *channel);
576 void efx_farch_ev_remove(struct efx_channel *channel);
577 int efx_farch_ev_process(struct efx_channel *channel, int quota);
578 void efx_farch_ev_read_ack(struct efx_channel *channel);
579 void efx_farch_ev_test_generate(struct efx_channel *channel);
580
581 /* Falcon/Siena filter operations */
582 int efx_farch_filter_table_probe(struct efx_nic *efx);
583 void efx_farch_filter_table_restore(struct efx_nic *efx);
584 void efx_farch_filter_table_remove(struct efx_nic *efx);
585 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
586 s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec,
587 bool replace);
588 int efx_farch_filter_remove_safe(struct efx_nic *efx,
589 enum efx_filter_priority priority,
590 u32 filter_id);
591 int efx_farch_filter_get_safe(struct efx_nic *efx,
592 enum efx_filter_priority priority, u32 filter_id,
593 struct efx_filter_spec *);
594 int efx_farch_filter_clear_rx(struct efx_nic *efx,
595 enum efx_filter_priority priority);
596 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
597 enum efx_filter_priority priority);
598 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
599 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
600 enum efx_filter_priority priority, u32 *buf,
601 u32 size);
602 #ifdef CONFIG_RFS_ACCEL
603 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
604 struct efx_filter_spec *spec);
605 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
606 unsigned int index);
607 #endif
608 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
609
610 bool efx_nic_event_present(struct efx_channel *channel);
611
612 /* Some statistics are computed as A - B where A and B each increase
613 * linearly with some hardware counter(s) and the counters are read
614 * asynchronously. If the counters contributing to B are always read
615 * after those contributing to A, the computed value may be lower than
616 * the true value by some variable amount, and may decrease between
617 * subsequent computations.
618 *
619 * We should never allow statistics to decrease or to exceed the true
620 * value. Since the computed value will never be greater than the
621 * true value, we can achieve this by only storing the computed value
622 * when it increases.
623 */
624 static inline void efx_update_diff_stat(u64 *stat, u64 diff)
625 {
626 if ((s64)(diff - *stat) > 0)
627 *stat = diff;
628 }
629
630 /* Interrupts */
631 int efx_nic_init_interrupt(struct efx_nic *efx);
632 int efx_nic_irq_test_start(struct efx_nic *efx);
633 void efx_nic_fini_interrupt(struct efx_nic *efx);
634
635 /* Falcon/Siena interrupts */
636 void efx_farch_irq_enable_master(struct efx_nic *efx);
637 int efx_farch_irq_test_generate(struct efx_nic *efx);
638 void efx_farch_irq_disable_master(struct efx_nic *efx);
639 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
640 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
641 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
642
643 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
644 {
645 return READ_ONCE(channel->event_test_cpu);
646 }
647 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
648 {
649 return READ_ONCE(efx->last_irq_cpu);
650 }
651
652 /* Global Resources */
653 int efx_nic_flush_queues(struct efx_nic *efx);
654 void siena_prepare_flush(struct efx_nic *efx);
655 int efx_farch_fini_dmaq(struct efx_nic *efx);
656 void efx_farch_finish_flr(struct efx_nic *efx);
657 void siena_finish_flush(struct efx_nic *efx);
658 void falcon_start_nic_stats(struct efx_nic *efx);
659 void falcon_stop_nic_stats(struct efx_nic *efx);
660 int falcon_reset_xaui(struct efx_nic *efx);
661 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
662 void efx_farch_init_common(struct efx_nic *efx);
663 void efx_ef10_handle_drain_event(struct efx_nic *efx);
664 void efx_farch_rx_push_indir_table(struct efx_nic *efx);
665 void efx_farch_rx_pull_indir_table(struct efx_nic *efx);
666
667 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
668 unsigned int len, gfp_t gfp_flags);
669 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
670
671 /* Tests */
672 struct efx_farch_register_test {
673 unsigned address;
674 efx_oword_t mask;
675 };
676 int efx_farch_test_registers(struct efx_nic *efx,
677 const struct efx_farch_register_test *regs,
678 size_t n_regs);
679
680 size_t efx_nic_get_regs_len(struct efx_nic *efx);
681 void efx_nic_get_regs(struct efx_nic *efx, void *buf);
682
683 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
684 const unsigned long *mask, u8 *names);
685 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
686 const unsigned long *mask, u64 *stats,
687 const void *dma_buf, bool accumulate);
688 void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
689
690 #define EFX_MAX_FLUSH_TIME 5000
691
692 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
693 efx_qword_t *event);
694
695 #endif /* EFX_NIC_H */