]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/pci.c
Revert "UBUNTU: SAUCE: nvme: add quirk to not call disable function when suspending"
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/blk-mq-pci.h>
19 #include <linux/dmi.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/once.h>
27 #include <linux/pci.h>
28 #include <linux/t10-pi.h>
29 #include <linux/types.h>
30 #include <linux/io-64-nonatomic-lo-hi.h>
31 #include <linux/sed-opal.h>
32 #include <linux/suspend.h>
33
34 #include "nvme.h"
35
36 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
37 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
38
39 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
40
41 static int use_threaded_interrupts;
42 module_param(use_threaded_interrupts, int, 0);
43
44 static bool use_cmb_sqes = true;
45 module_param(use_cmb_sqes, bool, 0644);
46 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
47
48 static unsigned int max_host_mem_size_mb = 128;
49 module_param(max_host_mem_size_mb, uint, 0444);
50 MODULE_PARM_DESC(max_host_mem_size_mb,
51 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
52
53 static unsigned int sgl_threshold = SZ_32K;
54 module_param(sgl_threshold, uint, 0644);
55 MODULE_PARM_DESC(sgl_threshold,
56 "Use SGLs when average request segment size is larger or equal to "
57 "this size. Use 0 to disable SGLs.");
58
59 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
60 static const struct kernel_param_ops io_queue_depth_ops = {
61 .set = io_queue_depth_set,
62 .get = param_get_int,
63 };
64
65 static int io_queue_depth = 1024;
66 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
67 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static void nvme_process_cq(struct nvme_queue *nvmeq);
73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
74
75 /*
76 * Represents an NVM Express device. Each nvme_dev is a PCI function.
77 */
78 struct nvme_dev {
79 struct nvme_queue **queues;
80 struct blk_mq_tag_set tagset;
81 struct blk_mq_tag_set admin_tagset;
82 u32 __iomem *dbs;
83 struct device *dev;
84 struct dma_pool *prp_page_pool;
85 struct dma_pool *prp_small_pool;
86 unsigned online_queues;
87 unsigned max_qid;
88 int q_depth;
89 u32 db_stride;
90 void __iomem *bar;
91 unsigned long bar_mapped_size;
92 struct work_struct remove_work;
93 struct mutex shutdown_lock;
94 bool subsystem;
95 void __iomem *cmb;
96 pci_bus_addr_t cmb_bus_addr;
97 u64 cmb_size;
98 u32 cmbsz;
99 u32 cmbloc;
100 struct nvme_ctrl ctrl;
101 struct completion ioq_wait;
102
103 /* shadow doorbell buffer support: */
104 u32 *dbbuf_dbs;
105 dma_addr_t dbbuf_dbs_dma_addr;
106 u32 *dbbuf_eis;
107 dma_addr_t dbbuf_eis_dma_addr;
108
109 /* host memory buffer support: */
110 u64 host_mem_size;
111 u32 nr_host_mem_descs;
112 dma_addr_t host_mem_descs_dma;
113 struct nvme_host_mem_buf_desc *host_mem_descs;
114 void **host_mem_desc_bufs;
115 };
116
117 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
118 {
119 int n = 0, ret;
120
121 ret = kstrtoint(val, 10, &n);
122 if (ret != 0 || n < 2)
123 return -EINVAL;
124
125 return param_set_int(val, kp);
126 }
127
128 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
129 {
130 return qid * 2 * stride;
131 }
132
133 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
134 {
135 return (qid * 2 + 1) * stride;
136 }
137
138 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
139 {
140 return container_of(ctrl, struct nvme_dev, ctrl);
141 }
142
143 /*
144 * An NVM Express queue. Each device has at least two (one for admin
145 * commands and one for I/O commands).
146 */
147 struct nvme_queue {
148 struct device *q_dmadev;
149 struct nvme_dev *dev;
150 spinlock_t q_lock;
151 struct nvme_command *sq_cmds;
152 struct nvme_command __iomem *sq_cmds_io;
153 volatile struct nvme_completion *cqes;
154 struct blk_mq_tags **tags;
155 dma_addr_t sq_dma_addr;
156 dma_addr_t cq_dma_addr;
157 u32 __iomem *q_db;
158 u16 q_depth;
159 s16 cq_vector;
160 u16 sq_tail;
161 u16 cq_head;
162 u16 qid;
163 u8 cq_phase;
164 u8 cqe_seen;
165 u32 *dbbuf_sq_db;
166 u32 *dbbuf_cq_db;
167 u32 *dbbuf_sq_ei;
168 u32 *dbbuf_cq_ei;
169 };
170
171 /*
172 * The nvme_iod describes the data in an I/O, including the list of PRP
173 * entries. You can't see it in this data structure because C doesn't let
174 * me express that. Use nvme_init_iod to ensure there's enough space
175 * allocated to store the PRP list.
176 */
177 struct nvme_iod {
178 struct nvme_request req;
179 struct nvme_queue *nvmeq;
180 bool use_sgl;
181 int aborted;
182 int npages; /* In the PRP list. 0 means small pool in use */
183 int nents; /* Used in scatterlist */
184 int length; /* Of data, in bytes */
185 dma_addr_t first_dma;
186 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
187 struct scatterlist *sg;
188 struct scatterlist inline_sg[0];
189 };
190
191 /*
192 * Check we didin't inadvertently grow the command struct
193 */
194 static inline void _nvme_check_size(void)
195 {
196 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
197 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
198 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
199 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
200 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
201 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
202 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
203 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
204 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
205 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
206 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
207 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
208 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
209 }
210
211 static inline unsigned int nvme_dbbuf_size(u32 stride)
212 {
213 return ((num_possible_cpus() + 1) * 8 * stride);
214 }
215
216 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
217 {
218 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
219
220 if (dev->dbbuf_dbs)
221 return 0;
222
223 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
224 &dev->dbbuf_dbs_dma_addr,
225 GFP_KERNEL);
226 if (!dev->dbbuf_dbs)
227 return -ENOMEM;
228 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
229 &dev->dbbuf_eis_dma_addr,
230 GFP_KERNEL);
231 if (!dev->dbbuf_eis) {
232 dma_free_coherent(dev->dev, mem_size,
233 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
234 dev->dbbuf_dbs = NULL;
235 return -ENOMEM;
236 }
237
238 return 0;
239 }
240
241 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
242 {
243 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
244
245 if (dev->dbbuf_dbs) {
246 dma_free_coherent(dev->dev, mem_size,
247 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
248 dev->dbbuf_dbs = NULL;
249 }
250 if (dev->dbbuf_eis) {
251 dma_free_coherent(dev->dev, mem_size,
252 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
253 dev->dbbuf_eis = NULL;
254 }
255 }
256
257 static void nvme_dbbuf_init(struct nvme_dev *dev,
258 struct nvme_queue *nvmeq, int qid)
259 {
260 if (!dev->dbbuf_dbs || !qid)
261 return;
262
263 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
264 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
265 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
266 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
267 }
268
269 static void nvme_dbbuf_set(struct nvme_dev *dev)
270 {
271 struct nvme_command c;
272
273 if (!dev->dbbuf_dbs)
274 return;
275
276 memset(&c, 0, sizeof(c));
277 c.dbbuf.opcode = nvme_admin_dbbuf;
278 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
279 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
280
281 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
282 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
283 /* Free memory and continue on */
284 nvme_dbbuf_dma_free(dev);
285 }
286 }
287
288 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
289 {
290 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
291 }
292
293 /* Update dbbuf and return true if an MMIO is required */
294 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
295 volatile u32 *dbbuf_ei)
296 {
297 if (dbbuf_db) {
298 u16 old_value;
299
300 /*
301 * Ensure that the queue is written before updating
302 * the doorbell in memory
303 */
304 wmb();
305
306 old_value = *dbbuf_db;
307 *dbbuf_db = value;
308
309 /*
310 * Ensure that the doorbell is updated before reading the event
311 * index from memory. The controller needs to provide similar
312 * ordering to ensure the envent index is updated before reading
313 * the doorbell.
314 */
315 mb();
316
317 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
318 return false;
319 }
320
321 return true;
322 }
323
324 /*
325 * Max size of iod being embedded in the request payload
326 */
327 #define NVME_INT_PAGES 2
328 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
329
330 /*
331 * Will slightly overestimate the number of pages needed. This is OK
332 * as it only leads to a small amount of wasted memory for the lifetime of
333 * the I/O.
334 */
335 static int nvme_npages(unsigned size, struct nvme_dev *dev)
336 {
337 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
338 dev->ctrl.page_size);
339 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
340 }
341
342 /*
343 * Calculates the number of pages needed for the SGL segments. For example a 4k
344 * page can accommodate 256 SGL descriptors.
345 */
346 static int nvme_pci_npages_sgl(unsigned int num_seg)
347 {
348 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
349 }
350
351 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
352 unsigned int size, unsigned int nseg, bool use_sgl)
353 {
354 size_t alloc_size;
355
356 if (use_sgl)
357 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
358 else
359 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
360
361 return alloc_size + sizeof(struct scatterlist) * nseg;
362 }
363
364 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
365 {
366 unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
367 NVME_INT_BYTES(dev), NVME_INT_PAGES,
368 use_sgl);
369
370 return sizeof(struct nvme_iod) + alloc_size;
371 }
372
373 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
374 unsigned int hctx_idx)
375 {
376 struct nvme_dev *dev = data;
377 struct nvme_queue *nvmeq = dev->queues[0];
378
379 WARN_ON(hctx_idx != 0);
380 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
381 WARN_ON(nvmeq->tags);
382
383 hctx->driver_data = nvmeq;
384 nvmeq->tags = &dev->admin_tagset.tags[0];
385 return 0;
386 }
387
388 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
389 {
390 struct nvme_queue *nvmeq = hctx->driver_data;
391
392 nvmeq->tags = NULL;
393 }
394
395 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
396 unsigned int hctx_idx)
397 {
398 struct nvme_dev *dev = data;
399 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
400
401 if (!nvmeq->tags)
402 nvmeq->tags = &dev->tagset.tags[hctx_idx];
403
404 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
405 hctx->driver_data = nvmeq;
406 return 0;
407 }
408
409 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
410 unsigned int hctx_idx, unsigned int numa_node)
411 {
412 struct nvme_dev *dev = set->driver_data;
413 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
414 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
415 struct nvme_queue *nvmeq = dev->queues[queue_idx];
416
417 BUG_ON(!nvmeq);
418 iod->nvmeq = nvmeq;
419 return 0;
420 }
421
422 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
423 {
424 struct nvme_dev *dev = set->driver_data;
425
426 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
427 }
428
429 /**
430 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
431 * @nvmeq: The queue to use
432 * @cmd: The command to send
433 *
434 * Safe to use from interrupt context
435 */
436 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
437 struct nvme_command *cmd)
438 {
439 u16 tail = nvmeq->sq_tail;
440
441 if (nvmeq->sq_cmds_io)
442 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
443 else
444 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
445
446 if (++tail == nvmeq->q_depth)
447 tail = 0;
448 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
449 nvmeq->dbbuf_sq_ei))
450 writel(tail, nvmeq->q_db);
451 nvmeq->sq_tail = tail;
452 }
453
454 static void **nvme_pci_iod_list(struct request *req)
455 {
456 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
457 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
458 }
459
460 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
461 {
462 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
463 int nseg = blk_rq_nr_phys_segments(req);
464 unsigned int avg_seg_size;
465
466 if (nseg == 0)
467 return false;
468
469 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
470
471 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
472 return false;
473 if (!iod->nvmeq->qid)
474 return false;
475 if (!sgl_threshold || avg_seg_size < sgl_threshold)
476 return false;
477 return true;
478 }
479
480 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
481 {
482 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
483 int nseg = blk_rq_nr_phys_segments(rq);
484 unsigned int size = blk_rq_payload_bytes(rq);
485
486 iod->use_sgl = nvme_pci_use_sgls(dev, rq);
487
488 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
489 size_t alloc_size = nvme_pci_iod_alloc_size(dev, size, nseg,
490 iod->use_sgl);
491
492 iod->sg = kmalloc(alloc_size, GFP_ATOMIC);
493 if (!iod->sg)
494 return BLK_STS_RESOURCE;
495 } else {
496 iod->sg = iod->inline_sg;
497 }
498
499 iod->aborted = 0;
500 iod->npages = -1;
501 iod->nents = 0;
502 iod->length = size;
503
504 return BLK_STS_OK;
505 }
506
507 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
508 {
509 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
510 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
511 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
512
513 int i;
514
515 if (iod->npages == 0)
516 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
517 dma_addr);
518
519 for (i = 0; i < iod->npages; i++) {
520 void *addr = nvme_pci_iod_list(req)[i];
521
522 if (iod->use_sgl) {
523 struct nvme_sgl_desc *sg_list = addr;
524
525 next_dma_addr =
526 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
527 } else {
528 __le64 *prp_list = addr;
529
530 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
531 }
532
533 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
534 dma_addr = next_dma_addr;
535 }
536
537 if (iod->sg != iod->inline_sg)
538 kfree(iod->sg);
539 }
540
541 #ifdef CONFIG_BLK_DEV_INTEGRITY
542 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
543 {
544 if (be32_to_cpu(pi->ref_tag) == v)
545 pi->ref_tag = cpu_to_be32(p);
546 }
547
548 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
549 {
550 if (be32_to_cpu(pi->ref_tag) == p)
551 pi->ref_tag = cpu_to_be32(v);
552 }
553
554 /**
555 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
556 *
557 * The virtual start sector is the one that was originally submitted by the
558 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
559 * start sector may be different. Remap protection information to match the
560 * physical LBA on writes, and back to the original seed on reads.
561 *
562 * Type 0 and 3 do not have a ref tag, so no remapping required.
563 */
564 static void nvme_dif_remap(struct request *req,
565 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
566 {
567 struct nvme_ns *ns = req->rq_disk->private_data;
568 struct bio_integrity_payload *bip;
569 struct t10_pi_tuple *pi;
570 void *p, *pmap;
571 u32 i, nlb, ts, phys, virt;
572
573 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
574 return;
575
576 bip = bio_integrity(req->bio);
577 if (!bip)
578 return;
579
580 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
581
582 p = pmap;
583 virt = bip_get_seed(bip);
584 phys = nvme_block_nr(ns, blk_rq_pos(req));
585 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
586 ts = ns->disk->queue->integrity.tuple_size;
587
588 for (i = 0; i < nlb; i++, virt++, phys++) {
589 pi = (struct t10_pi_tuple *)p;
590 dif_swap(phys, virt, pi);
591 p += ts;
592 }
593 kunmap_atomic(pmap);
594 }
595 #else /* CONFIG_BLK_DEV_INTEGRITY */
596 static void nvme_dif_remap(struct request *req,
597 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
598 {
599 }
600 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
601 {
602 }
603 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
604 {
605 }
606 #endif
607
608 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
609 {
610 int i;
611 struct scatterlist *sg;
612
613 for_each_sg(sgl, sg, nents, i) {
614 dma_addr_t phys = sg_phys(sg);
615 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
616 "dma_address:%pad dma_length:%d\n",
617 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
618 sg_dma_len(sg));
619 }
620 }
621
622 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
623 struct request *req, struct nvme_rw_command *cmnd)
624 {
625 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
626 struct dma_pool *pool;
627 int length = blk_rq_payload_bytes(req);
628 struct scatterlist *sg = iod->sg;
629 int dma_len = sg_dma_len(sg);
630 u64 dma_addr = sg_dma_address(sg);
631 u32 page_size = dev->ctrl.page_size;
632 int offset = dma_addr & (page_size - 1);
633 __le64 *prp_list;
634 void **list = nvme_pci_iod_list(req);
635 dma_addr_t prp_dma;
636 int nprps, i;
637
638 length -= (page_size - offset);
639 if (length <= 0) {
640 iod->first_dma = 0;
641 goto done;
642 }
643
644 dma_len -= (page_size - offset);
645 if (dma_len) {
646 dma_addr += (page_size - offset);
647 } else {
648 sg = sg_next(sg);
649 dma_addr = sg_dma_address(sg);
650 dma_len = sg_dma_len(sg);
651 }
652
653 if (length <= page_size) {
654 iod->first_dma = dma_addr;
655 goto done;
656 }
657
658 nprps = DIV_ROUND_UP(length, page_size);
659 if (nprps <= (256 / 8)) {
660 pool = dev->prp_small_pool;
661 iod->npages = 0;
662 } else {
663 pool = dev->prp_page_pool;
664 iod->npages = 1;
665 }
666
667 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
668 if (!prp_list) {
669 iod->first_dma = dma_addr;
670 iod->npages = -1;
671 return BLK_STS_RESOURCE;
672 }
673 list[0] = prp_list;
674 iod->first_dma = prp_dma;
675 i = 0;
676 for (;;) {
677 if (i == page_size >> 3) {
678 __le64 *old_prp_list = prp_list;
679 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
680 if (!prp_list)
681 return BLK_STS_RESOURCE;
682 list[iod->npages++] = prp_list;
683 prp_list[0] = old_prp_list[i - 1];
684 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
685 i = 1;
686 }
687 prp_list[i++] = cpu_to_le64(dma_addr);
688 dma_len -= page_size;
689 dma_addr += page_size;
690 length -= page_size;
691 if (length <= 0)
692 break;
693 if (dma_len > 0)
694 continue;
695 if (unlikely(dma_len < 0))
696 goto bad_sgl;
697 sg = sg_next(sg);
698 dma_addr = sg_dma_address(sg);
699 dma_len = sg_dma_len(sg);
700 }
701
702 done:
703 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
704 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
705
706 return BLK_STS_OK;
707
708 bad_sgl:
709 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
710 "Invalid SGL for payload:%d nents:%d\n",
711 blk_rq_payload_bytes(req), iod->nents);
712 return BLK_STS_IOERR;
713 }
714
715 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
716 struct scatterlist *sg)
717 {
718 sge->addr = cpu_to_le64(sg_dma_address(sg));
719 sge->length = cpu_to_le32(sg_dma_len(sg));
720 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
721 }
722
723 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
724 dma_addr_t dma_addr, int entries)
725 {
726 sge->addr = cpu_to_le64(dma_addr);
727 if (entries < SGES_PER_PAGE) {
728 sge->length = cpu_to_le32(entries * sizeof(*sge));
729 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
730 } else {
731 sge->length = cpu_to_le32(PAGE_SIZE);
732 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
733 }
734 }
735
736 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
737 struct request *req, struct nvme_rw_command *cmd, int entries)
738 {
739 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
740 struct dma_pool *pool;
741 struct nvme_sgl_desc *sg_list;
742 struct scatterlist *sg = iod->sg;
743 dma_addr_t sgl_dma;
744 int i = 0;
745
746 /* setting the transfer type as SGL */
747 cmd->flags = NVME_CMD_SGL_METABUF;
748
749 if (entries == 1) {
750 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
751 return BLK_STS_OK;
752 }
753
754 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
755 pool = dev->prp_small_pool;
756 iod->npages = 0;
757 } else {
758 pool = dev->prp_page_pool;
759 iod->npages = 1;
760 }
761
762 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
763 if (!sg_list) {
764 iod->npages = -1;
765 return BLK_STS_RESOURCE;
766 }
767
768 nvme_pci_iod_list(req)[0] = sg_list;
769 iod->first_dma = sgl_dma;
770
771 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
772
773 do {
774 if (i == SGES_PER_PAGE) {
775 struct nvme_sgl_desc *old_sg_desc = sg_list;
776 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
777
778 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
779 if (!sg_list)
780 return BLK_STS_RESOURCE;
781
782 i = 0;
783 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
784 sg_list[i++] = *link;
785 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
786 }
787
788 nvme_pci_sgl_set_data(&sg_list[i++], sg);
789 sg = sg_next(sg);
790 } while (--entries > 0);
791
792 return BLK_STS_OK;
793 }
794
795 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
796 struct nvme_command *cmnd)
797 {
798 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
799 struct request_queue *q = req->q;
800 enum dma_data_direction dma_dir = rq_data_dir(req) ?
801 DMA_TO_DEVICE : DMA_FROM_DEVICE;
802 blk_status_t ret = BLK_STS_IOERR;
803 int nr_mapped;
804
805 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
806 iod->nents = blk_rq_map_sg(q, req, iod->sg);
807 if (!iod->nents)
808 goto out;
809
810 ret = BLK_STS_RESOURCE;
811 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
812 DMA_ATTR_NO_WARN);
813 if (!nr_mapped)
814 goto out;
815
816 if (iod->use_sgl)
817 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
818 else
819 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
820
821 if (ret != BLK_STS_OK)
822 goto out_unmap;
823
824 ret = BLK_STS_IOERR;
825 if (blk_integrity_rq(req)) {
826 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
827 goto out_unmap;
828
829 sg_init_table(&iod->meta_sg, 1);
830 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
831 goto out_unmap;
832
833 if (req_op(req) == REQ_OP_WRITE)
834 nvme_dif_remap(req, nvme_dif_prep);
835
836 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
837 goto out_unmap;
838 }
839
840 if (blk_integrity_rq(req))
841 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
842 return BLK_STS_OK;
843
844 out_unmap:
845 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
846 out:
847 return ret;
848 }
849
850 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
851 {
852 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
853 enum dma_data_direction dma_dir = rq_data_dir(req) ?
854 DMA_TO_DEVICE : DMA_FROM_DEVICE;
855
856 if (iod->nents) {
857 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
858 if (blk_integrity_rq(req)) {
859 if (req_op(req) == REQ_OP_READ)
860 nvme_dif_remap(req, nvme_dif_complete);
861 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
862 }
863 }
864
865 nvme_cleanup_cmd(req);
866 nvme_free_iod(dev, req);
867 }
868
869 /*
870 * NOTE: ns is NULL when called on the admin queue.
871 */
872 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
873 const struct blk_mq_queue_data *bd)
874 {
875 struct nvme_ns *ns = hctx->queue->queuedata;
876 struct nvme_queue *nvmeq = hctx->driver_data;
877 struct nvme_dev *dev = nvmeq->dev;
878 struct request *req = bd->rq;
879 struct nvme_command cmnd;
880 blk_status_t ret;
881
882 ret = nvme_setup_cmd(ns, req, &cmnd);
883 if (ret)
884 return ret;
885
886 ret = nvme_init_iod(req, dev);
887 if (ret)
888 goto out_free_cmd;
889
890 if (blk_rq_nr_phys_segments(req)) {
891 ret = nvme_map_data(dev, req, &cmnd);
892 if (ret)
893 goto out_cleanup_iod;
894 }
895
896 blk_mq_start_request(req);
897
898 spin_lock_irq(&nvmeq->q_lock);
899 if (unlikely(nvmeq->cq_vector < 0)) {
900 ret = BLK_STS_IOERR;
901 spin_unlock_irq(&nvmeq->q_lock);
902 goto out_cleanup_iod;
903 }
904 __nvme_submit_cmd(nvmeq, &cmnd);
905 nvme_process_cq(nvmeq);
906 spin_unlock_irq(&nvmeq->q_lock);
907 return BLK_STS_OK;
908 out_cleanup_iod:
909 nvme_free_iod(dev, req);
910 out_free_cmd:
911 nvme_cleanup_cmd(req);
912 return ret;
913 }
914
915 static void nvme_pci_complete_rq(struct request *req)
916 {
917 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
918
919 nvme_unmap_data(iod->nvmeq->dev, req);
920 nvme_complete_rq(req);
921 }
922
923 /* We read the CQE phase first to check if the rest of the entry is valid */
924 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
925 u16 phase)
926 {
927 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
928 }
929
930 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
931 {
932 u16 head = nvmeq->cq_head;
933
934 if (likely(nvmeq->cq_vector >= 0)) {
935 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
936 nvmeq->dbbuf_cq_ei))
937 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
938 }
939 }
940
941 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
942 struct nvme_completion *cqe)
943 {
944 struct request *req;
945
946 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
947 dev_warn(nvmeq->dev->ctrl.device,
948 "invalid id %d completed on queue %d\n",
949 cqe->command_id, le16_to_cpu(cqe->sq_id));
950 return;
951 }
952
953 /*
954 * AEN requests are special as they don't time out and can
955 * survive any kind of queue freeze and often don't respond to
956 * aborts. We don't even bother to allocate a struct request
957 * for them but rather special case them here.
958 */
959 if (unlikely(nvmeq->qid == 0 &&
960 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
961 nvme_complete_async_event(&nvmeq->dev->ctrl,
962 cqe->status, &cqe->result);
963 return;
964 }
965
966 nvmeq->cqe_seen = 1;
967 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
968 nvme_end_request(req, cqe->status, cqe->result);
969 }
970
971 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
972 struct nvme_completion *cqe)
973 {
974 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
975 *cqe = nvmeq->cqes[nvmeq->cq_head];
976
977 if (nvmeq->cq_head == nvmeq->q_depth - 1) {
978 nvmeq->cq_head = 0;
979 nvmeq->cq_phase = !nvmeq->cq_phase;
980 } else {
981 nvmeq->cq_head++;
982 }
983 return true;
984 }
985 return false;
986 }
987
988 static void nvme_process_cq(struct nvme_queue *nvmeq)
989 {
990 struct nvme_completion cqe;
991 int consumed = 0;
992
993 while (nvme_read_cqe(nvmeq, &cqe)) {
994 nvme_handle_cqe(nvmeq, &cqe);
995 consumed++;
996 }
997
998 if (consumed)
999 nvme_ring_cq_doorbell(nvmeq);
1000 }
1001
1002 static irqreturn_t nvme_irq(int irq, void *data)
1003 {
1004 irqreturn_t result;
1005 struct nvme_queue *nvmeq = data;
1006 spin_lock(&nvmeq->q_lock);
1007 nvme_process_cq(nvmeq);
1008 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
1009 nvmeq->cqe_seen = 0;
1010 spin_unlock(&nvmeq->q_lock);
1011 return result;
1012 }
1013
1014 static irqreturn_t nvme_irq_check(int irq, void *data)
1015 {
1016 struct nvme_queue *nvmeq = data;
1017 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
1018 return IRQ_WAKE_THREAD;
1019 return IRQ_NONE;
1020 }
1021
1022 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
1023 {
1024 struct nvme_completion cqe;
1025 int found = 0, consumed = 0;
1026
1027 if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
1028 return 0;
1029
1030 spin_lock_irq(&nvmeq->q_lock);
1031 while (nvme_read_cqe(nvmeq, &cqe)) {
1032 nvme_handle_cqe(nvmeq, &cqe);
1033 consumed++;
1034
1035 if (tag == cqe.command_id) {
1036 found = 1;
1037 break;
1038 }
1039 }
1040
1041 if (consumed)
1042 nvme_ring_cq_doorbell(nvmeq);
1043 spin_unlock_irq(&nvmeq->q_lock);
1044
1045 return found;
1046 }
1047
1048 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1049 {
1050 struct nvme_queue *nvmeq = hctx->driver_data;
1051
1052 return __nvme_poll(nvmeq, tag);
1053 }
1054
1055 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1056 {
1057 struct nvme_dev *dev = to_nvme_dev(ctrl);
1058 struct nvme_queue *nvmeq = dev->queues[0];
1059 struct nvme_command c;
1060
1061 memset(&c, 0, sizeof(c));
1062 c.common.opcode = nvme_admin_async_event;
1063 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1064
1065 spin_lock_irq(&nvmeq->q_lock);
1066 __nvme_submit_cmd(nvmeq, &c);
1067 spin_unlock_irq(&nvmeq->q_lock);
1068 }
1069
1070 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1071 {
1072 struct nvme_command c;
1073
1074 memset(&c, 0, sizeof(c));
1075 c.delete_queue.opcode = opcode;
1076 c.delete_queue.qid = cpu_to_le16(id);
1077
1078 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1079 }
1080
1081 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1082 struct nvme_queue *nvmeq)
1083 {
1084 struct nvme_ctrl *ctrl = &dev->ctrl;
1085 struct nvme_command c;
1086 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1087
1088 /*
1089 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1090 * set. Since URGENT priority is zeroes, it makes all queues
1091 * URGENT.
1092 */
1093 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1094 flags |= NVME_SQ_PRIO_MEDIUM;
1095
1096 /*
1097 * Note: we (ab)use the fact that the prp fields survive if no data
1098 * is attached to the request.
1099 */
1100 memset(&c, 0, sizeof(c));
1101 c.create_cq.opcode = nvme_admin_create_cq;
1102 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1103 c.create_cq.cqid = cpu_to_le16(qid);
1104 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1105 c.create_cq.cq_flags = cpu_to_le16(flags);
1106 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1107
1108 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1109 }
1110
1111 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1112 struct nvme_queue *nvmeq)
1113 {
1114 struct nvme_command c;
1115 int flags = NVME_QUEUE_PHYS_CONTIG;
1116
1117 /*
1118 * Note: we (ab)use the fact that the prp fields survive if no data
1119 * is attached to the request.
1120 */
1121 memset(&c, 0, sizeof(c));
1122 c.create_sq.opcode = nvme_admin_create_sq;
1123 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1124 c.create_sq.sqid = cpu_to_le16(qid);
1125 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1126 c.create_sq.sq_flags = cpu_to_le16(flags);
1127 c.create_sq.cqid = cpu_to_le16(qid);
1128
1129 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1130 }
1131
1132 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1133 {
1134 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1135 }
1136
1137 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1138 {
1139 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1140 }
1141
1142 static void abort_endio(struct request *req, blk_status_t error)
1143 {
1144 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1145 struct nvme_queue *nvmeq = iod->nvmeq;
1146
1147 dev_warn(nvmeq->dev->ctrl.device,
1148 "Abort status: 0x%x", nvme_req(req)->status);
1149 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1150 blk_mq_free_request(req);
1151 }
1152
1153 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1154 {
1155
1156 /* If true, indicates loss of adapter communication, possibly by a
1157 * NVMe Subsystem reset.
1158 */
1159 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1160
1161 /* If there is a reset ongoing, we shouldn't reset again. */
1162 if (dev->ctrl.state == NVME_CTRL_RESETTING)
1163 return false;
1164
1165 /* We shouldn't reset unless the controller is on fatal error state
1166 * _or_ if we lost the communication with it.
1167 */
1168 if (!(csts & NVME_CSTS_CFS) && !nssro)
1169 return false;
1170
1171 return true;
1172 }
1173
1174 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1175 {
1176 /* Read a config register to help see what died. */
1177 u16 pci_status;
1178 int result;
1179
1180 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1181 &pci_status);
1182 if (result == PCIBIOS_SUCCESSFUL)
1183 dev_warn(dev->ctrl.device,
1184 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1185 csts, pci_status);
1186 else
1187 dev_warn(dev->ctrl.device,
1188 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1189 csts, result);
1190 }
1191
1192 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1193 {
1194 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1195 struct nvme_queue *nvmeq = iod->nvmeq;
1196 struct nvme_dev *dev = nvmeq->dev;
1197 struct request *abort_req;
1198 struct nvme_command cmd;
1199 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1200
1201 /* If PCI error recovery process is happening, we cannot reset or
1202 * the recovery mechanism will surely fail.
1203 */
1204 mb();
1205 if (pci_channel_offline(to_pci_dev(dev->dev)))
1206 return BLK_EH_RESET_TIMER;
1207
1208 /*
1209 * Reset immediately if the controller is failed
1210 */
1211 if (nvme_should_reset(dev, csts)) {
1212 nvme_warn_reset(dev, csts);
1213 nvme_dev_disable(dev, false);
1214 nvme_reset_ctrl(&dev->ctrl);
1215 return BLK_EH_HANDLED;
1216 }
1217
1218 /*
1219 * Did we miss an interrupt?
1220 */
1221 if (__nvme_poll(nvmeq, req->tag)) {
1222 dev_warn(dev->ctrl.device,
1223 "I/O %d QID %d timeout, completion polled\n",
1224 req->tag, nvmeq->qid);
1225 return BLK_EH_HANDLED;
1226 }
1227
1228 /*
1229 * Shutdown immediately if controller times out while starting. The
1230 * reset work will see the pci device disabled when it gets the forced
1231 * cancellation error. All outstanding requests are completed on
1232 * shutdown, so we return BLK_EH_HANDLED.
1233 */
1234 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1235 dev_warn(dev->ctrl.device,
1236 "I/O %d QID %d timeout, disable controller\n",
1237 req->tag, nvmeq->qid);
1238 nvme_dev_disable(dev, false);
1239 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1240 return BLK_EH_HANDLED;
1241 }
1242
1243 /*
1244 * Shutdown the controller immediately and schedule a reset if the
1245 * command was already aborted once before and still hasn't been
1246 * returned to the driver, or if this is the admin queue.
1247 */
1248 if (!nvmeq->qid || iod->aborted) {
1249 dev_warn(dev->ctrl.device,
1250 "I/O %d QID %d timeout, reset controller\n",
1251 req->tag, nvmeq->qid);
1252 nvme_dev_disable(dev, false);
1253 nvme_reset_ctrl(&dev->ctrl);
1254
1255 /*
1256 * Mark the request as handled, since the inline shutdown
1257 * forces all outstanding requests to complete.
1258 */
1259 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1260 return BLK_EH_HANDLED;
1261 }
1262
1263 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1264 atomic_inc(&dev->ctrl.abort_limit);
1265 return BLK_EH_RESET_TIMER;
1266 }
1267 iod->aborted = 1;
1268
1269 memset(&cmd, 0, sizeof(cmd));
1270 cmd.abort.opcode = nvme_admin_abort_cmd;
1271 cmd.abort.cid = req->tag;
1272 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1273
1274 dev_warn(nvmeq->dev->ctrl.device,
1275 "I/O %d QID %d timeout, aborting\n",
1276 req->tag, nvmeq->qid);
1277
1278 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1279 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1280 if (IS_ERR(abort_req)) {
1281 atomic_inc(&dev->ctrl.abort_limit);
1282 return BLK_EH_RESET_TIMER;
1283 }
1284
1285 abort_req->timeout = ADMIN_TIMEOUT;
1286 abort_req->end_io_data = NULL;
1287 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1288
1289 /*
1290 * The aborted req will be completed on receiving the abort req.
1291 * We enable the timer again. If hit twice, it'll cause a device reset,
1292 * as the device then is in a faulty state.
1293 */
1294 return BLK_EH_RESET_TIMER;
1295 }
1296
1297 static void nvme_free_queue(struct nvme_queue *nvmeq)
1298 {
1299 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1300 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1301 if (nvmeq->sq_cmds)
1302 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1303 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1304 kfree(nvmeq);
1305 }
1306
1307 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1308 {
1309 int i;
1310
1311 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1312 struct nvme_queue *nvmeq = dev->queues[i];
1313 dev->ctrl.queue_count--;
1314 dev->queues[i] = NULL;
1315 nvme_free_queue(nvmeq);
1316 }
1317 }
1318
1319 /**
1320 * nvme_suspend_queue - put queue into suspended state
1321 * @nvmeq - queue to suspend
1322 */
1323 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1324 {
1325 int vector;
1326
1327 spin_lock_irq(&nvmeq->q_lock);
1328 if (nvmeq->cq_vector == -1) {
1329 spin_unlock_irq(&nvmeq->q_lock);
1330 return 1;
1331 }
1332 vector = nvmeq->cq_vector;
1333 nvmeq->dev->online_queues--;
1334 nvmeq->cq_vector = -1;
1335 spin_unlock_irq(&nvmeq->q_lock);
1336
1337 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1338 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1339
1340 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1341
1342 return 0;
1343 }
1344
1345 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1346 {
1347 struct nvme_queue *nvmeq = dev->queues[0];
1348
1349 if (!nvmeq)
1350 return;
1351 if (nvme_suspend_queue(nvmeq))
1352 return;
1353
1354 if (shutdown)
1355 nvme_shutdown_ctrl(&dev->ctrl);
1356 else
1357 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1358
1359 spin_lock_irq(&nvmeq->q_lock);
1360 nvme_process_cq(nvmeq);
1361 spin_unlock_irq(&nvmeq->q_lock);
1362 }
1363
1364 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1365 int entry_size)
1366 {
1367 int q_depth = dev->q_depth;
1368 unsigned q_size_aligned = roundup(q_depth * entry_size,
1369 dev->ctrl.page_size);
1370
1371 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1372 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1373 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1374 q_depth = div_u64(mem_per_q, entry_size);
1375
1376 /*
1377 * Ensure the reduced q_depth is above some threshold where it
1378 * would be better to map queues in system memory with the
1379 * original depth
1380 */
1381 if (q_depth < 64)
1382 return -ENOMEM;
1383 }
1384
1385 return q_depth;
1386 }
1387
1388 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1389 int qid, int depth)
1390 {
1391
1392 /* CMB SQEs will be mapped before creation */
1393 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz))
1394 return 0;
1395
1396 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1397 &nvmeq->sq_dma_addr, GFP_KERNEL);
1398 if (!nvmeq->sq_cmds)
1399 return -ENOMEM;
1400
1401 return 0;
1402 }
1403
1404 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1405 int depth, int node)
1406 {
1407 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1408 node);
1409 if (!nvmeq)
1410 return NULL;
1411
1412 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1413 &nvmeq->cq_dma_addr, GFP_KERNEL);
1414 if (!nvmeq->cqes)
1415 goto free_nvmeq;
1416
1417 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1418 goto free_cqdma;
1419
1420 nvmeq->q_dmadev = dev->dev;
1421 nvmeq->dev = dev;
1422 spin_lock_init(&nvmeq->q_lock);
1423 nvmeq->cq_head = 0;
1424 nvmeq->cq_phase = 1;
1425 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1426 nvmeq->q_depth = depth;
1427 nvmeq->qid = qid;
1428 nvmeq->cq_vector = -1;
1429 dev->queues[qid] = nvmeq;
1430 dev->ctrl.queue_count++;
1431
1432 return nvmeq;
1433
1434 free_cqdma:
1435 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1436 nvmeq->cq_dma_addr);
1437 free_nvmeq:
1438 kfree(nvmeq);
1439 return NULL;
1440 }
1441
1442 static int queue_request_irq(struct nvme_queue *nvmeq)
1443 {
1444 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1445 int nr = nvmeq->dev->ctrl.instance;
1446
1447 if (use_threaded_interrupts) {
1448 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1449 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1450 } else {
1451 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1452 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1453 }
1454 }
1455
1456 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1457 {
1458 struct nvme_dev *dev = nvmeq->dev;
1459
1460 spin_lock_irq(&nvmeq->q_lock);
1461 nvmeq->sq_tail = 0;
1462 nvmeq->cq_head = 0;
1463 nvmeq->cq_phase = 1;
1464 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1465 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1466 nvme_dbbuf_init(dev, nvmeq, qid);
1467 dev->online_queues++;
1468 spin_unlock_irq(&nvmeq->q_lock);
1469 }
1470
1471 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1472 {
1473 struct nvme_dev *dev = nvmeq->dev;
1474 int result;
1475
1476 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1477 unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth),
1478 dev->ctrl.page_size);
1479 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1480 nvmeq->sq_cmds_io = dev->cmb + offset;
1481 }
1482
1483 nvmeq->cq_vector = qid - 1;
1484 result = adapter_alloc_cq(dev, qid, nvmeq);
1485 if (result < 0)
1486 goto release_vector;
1487
1488 result = adapter_alloc_sq(dev, qid, nvmeq);
1489 if (result < 0)
1490 goto release_cq;
1491
1492 nvme_init_queue(nvmeq, qid);
1493 result = queue_request_irq(nvmeq);
1494 if (result < 0)
1495 goto release_sq;
1496
1497 return result;
1498
1499 release_sq:
1500 dev->online_queues--;
1501 adapter_delete_sq(dev, qid);
1502 release_cq:
1503 adapter_delete_cq(dev, qid);
1504 release_vector:
1505 nvmeq->cq_vector = -1;
1506 return result;
1507 }
1508
1509 static const struct blk_mq_ops nvme_mq_admin_ops = {
1510 .queue_rq = nvme_queue_rq,
1511 .complete = nvme_pci_complete_rq,
1512 .init_hctx = nvme_admin_init_hctx,
1513 .exit_hctx = nvme_admin_exit_hctx,
1514 .init_request = nvme_init_request,
1515 .timeout = nvme_timeout,
1516 };
1517
1518 static const struct blk_mq_ops nvme_mq_ops = {
1519 .queue_rq = nvme_queue_rq,
1520 .complete = nvme_pci_complete_rq,
1521 .init_hctx = nvme_init_hctx,
1522 .init_request = nvme_init_request,
1523 .map_queues = nvme_pci_map_queues,
1524 .timeout = nvme_timeout,
1525 .poll = nvme_poll,
1526 };
1527
1528 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1529 {
1530 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1531 /*
1532 * If the controller was reset during removal, it's possible
1533 * user requests may be waiting on a stopped queue. Start the
1534 * queue to flush these to completion.
1535 */
1536 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1537 blk_cleanup_queue(dev->ctrl.admin_q);
1538 blk_mq_free_tag_set(&dev->admin_tagset);
1539 }
1540 }
1541
1542 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1543 {
1544 if (!dev->ctrl.admin_q) {
1545 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1546 dev->admin_tagset.nr_hw_queues = 1;
1547
1548 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1549 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1550 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1551 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1552 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1553 dev->admin_tagset.driver_data = dev;
1554
1555 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1556 return -ENOMEM;
1557 dev->ctrl.admin_tagset = &dev->admin_tagset;
1558
1559 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1560 if (IS_ERR(dev->ctrl.admin_q)) {
1561 blk_mq_free_tag_set(&dev->admin_tagset);
1562 return -ENOMEM;
1563 }
1564 if (!blk_get_queue(dev->ctrl.admin_q)) {
1565 nvme_dev_remove_admin(dev);
1566 dev->ctrl.admin_q = NULL;
1567 return -ENODEV;
1568 }
1569 } else
1570 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1571
1572 return 0;
1573 }
1574
1575 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1576 {
1577 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1578 }
1579
1580 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1581 {
1582 struct pci_dev *pdev = to_pci_dev(dev->dev);
1583
1584 if (size <= dev->bar_mapped_size)
1585 return 0;
1586 if (size > pci_resource_len(pdev, 0))
1587 return -ENOMEM;
1588 if (dev->bar)
1589 iounmap(dev->bar);
1590 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1591 if (!dev->bar) {
1592 dev->bar_mapped_size = 0;
1593 return -ENOMEM;
1594 }
1595 dev->bar_mapped_size = size;
1596 dev->dbs = dev->bar + NVME_REG_DBS;
1597
1598 return 0;
1599 }
1600
1601 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1602 {
1603 int result;
1604 u32 aqa;
1605 struct nvme_queue *nvmeq;
1606
1607 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1608 if (result < 0)
1609 return result;
1610
1611 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1612 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1613
1614 if (dev->subsystem &&
1615 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1616 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1617
1618 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1619 if (result < 0)
1620 return result;
1621
1622 nvmeq = dev->queues[0];
1623 if (!nvmeq) {
1624 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1625 dev_to_node(dev->dev));
1626 if (!nvmeq)
1627 return -ENOMEM;
1628 }
1629
1630 aqa = nvmeq->q_depth - 1;
1631 aqa |= aqa << 16;
1632
1633 writel(aqa, dev->bar + NVME_REG_AQA);
1634 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1635 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1636
1637 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1638 if (result)
1639 return result;
1640
1641 nvmeq->cq_vector = 0;
1642 nvme_init_queue(nvmeq, 0);
1643 result = queue_request_irq(nvmeq);
1644 if (result) {
1645 nvmeq->cq_vector = -1;
1646 return result;
1647 }
1648
1649 return result;
1650 }
1651
1652 static int nvme_create_io_queues(struct nvme_dev *dev)
1653 {
1654 unsigned i, max;
1655 int ret = 0;
1656
1657 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1658 /* vector == qid - 1, match nvme_create_queue */
1659 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1660 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1661 ret = -ENOMEM;
1662 break;
1663 }
1664 }
1665
1666 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1667 for (i = dev->online_queues; i <= max; i++) {
1668 ret = nvme_create_queue(dev->queues[i], i);
1669 if (ret)
1670 break;
1671 }
1672
1673 /*
1674 * Ignore failing Create SQ/CQ commands, we can continue with less
1675 * than the desired aount of queues, and even a controller without
1676 * I/O queues an still be used to issue admin commands. This might
1677 * be useful to upgrade a buggy firmware for example.
1678 */
1679 return ret >= 0 ? 0 : ret;
1680 }
1681
1682 static ssize_t nvme_cmb_show(struct device *dev,
1683 struct device_attribute *attr,
1684 char *buf)
1685 {
1686 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1687
1688 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1689 ndev->cmbloc, ndev->cmbsz);
1690 }
1691 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1692
1693 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1694 {
1695 u64 szu, size, offset;
1696 resource_size_t bar_size;
1697 struct pci_dev *pdev = to_pci_dev(dev->dev);
1698 void __iomem *cmb;
1699 int bar;
1700
1701 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1702 if (!(NVME_CMB_SZ(dev->cmbsz)))
1703 return NULL;
1704 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1705
1706 if (!use_cmb_sqes)
1707 return NULL;
1708
1709 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1710 size = szu * NVME_CMB_SZ(dev->cmbsz);
1711 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1712 bar = NVME_CMB_BIR(dev->cmbloc);
1713 bar_size = pci_resource_len(pdev, bar);
1714
1715 if (offset > bar_size)
1716 return NULL;
1717
1718 /*
1719 * Controllers may support a CMB size larger than their BAR,
1720 * for example, due to being behind a bridge. Reduce the CMB to
1721 * the reported size of the BAR
1722 */
1723 if (size > bar_size - offset)
1724 size = bar_size - offset;
1725
1726 cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1727 if (!cmb)
1728 return NULL;
1729
1730 dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1731 dev->cmb_size = size;
1732 return cmb;
1733 }
1734
1735 static inline void nvme_release_cmb(struct nvme_dev *dev)
1736 {
1737 if (dev->cmb) {
1738 iounmap(dev->cmb);
1739 dev->cmb = NULL;
1740 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1741 &dev_attr_cmb.attr, NULL);
1742 dev->cmbsz = 0;
1743 }
1744 }
1745
1746 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1747 {
1748 u64 dma_addr = dev->host_mem_descs_dma;
1749 struct nvme_command c;
1750 int ret;
1751
1752 memset(&c, 0, sizeof(c));
1753 c.features.opcode = nvme_admin_set_features;
1754 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1755 c.features.dword11 = cpu_to_le32(bits);
1756 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1757 ilog2(dev->ctrl.page_size));
1758 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1759 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1760 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1761
1762 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1763 if (ret) {
1764 dev_warn(dev->ctrl.device,
1765 "failed to set host mem (err %d, flags %#x).\n",
1766 ret, bits);
1767 }
1768 return ret;
1769 }
1770
1771 static void nvme_free_host_mem(struct nvme_dev *dev)
1772 {
1773 int i;
1774
1775 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1776 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1777 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1778
1779 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1780 le64_to_cpu(desc->addr));
1781 }
1782
1783 kfree(dev->host_mem_desc_bufs);
1784 dev->host_mem_desc_bufs = NULL;
1785 dma_free_coherent(dev->dev,
1786 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1787 dev->host_mem_descs, dev->host_mem_descs_dma);
1788 dev->host_mem_descs = NULL;
1789 dev->nr_host_mem_descs = 0;
1790 }
1791
1792 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1793 u32 chunk_size)
1794 {
1795 struct nvme_host_mem_buf_desc *descs;
1796 u32 max_entries, len;
1797 dma_addr_t descs_dma;
1798 int i = 0;
1799 void **bufs;
1800 u64 size = 0, tmp;
1801
1802 tmp = (preferred + chunk_size - 1);
1803 do_div(tmp, chunk_size);
1804 max_entries = tmp;
1805
1806 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1807 max_entries = dev->ctrl.hmmaxd;
1808
1809 descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1810 &descs_dma, GFP_KERNEL);
1811 if (!descs)
1812 goto out;
1813
1814 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1815 if (!bufs)
1816 goto out_free_descs;
1817
1818 for (size = 0; size < preferred && i < max_entries; size += len) {
1819 dma_addr_t dma_addr;
1820
1821 len = min_t(u64, chunk_size, preferred - size);
1822 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1823 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1824 if (!bufs[i])
1825 break;
1826
1827 descs[i].addr = cpu_to_le64(dma_addr);
1828 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1829 i++;
1830 }
1831
1832 if (!size)
1833 goto out_free_bufs;
1834
1835 dev->nr_host_mem_descs = i;
1836 dev->host_mem_size = size;
1837 dev->host_mem_descs = descs;
1838 dev->host_mem_descs_dma = descs_dma;
1839 dev->host_mem_desc_bufs = bufs;
1840 return 0;
1841
1842 out_free_bufs:
1843 while (--i >= 0) {
1844 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1845
1846 dma_free_coherent(dev->dev, size, bufs[i],
1847 le64_to_cpu(descs[i].addr));
1848 }
1849
1850 kfree(bufs);
1851 out_free_descs:
1852 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1853 descs_dma);
1854 out:
1855 dev->host_mem_descs = NULL;
1856 return -ENOMEM;
1857 }
1858
1859 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1860 {
1861 u32 chunk_size;
1862
1863 /* start big and work our way down */
1864 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1865 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1866 chunk_size /= 2) {
1867 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1868 if (!min || dev->host_mem_size >= min)
1869 return 0;
1870 nvme_free_host_mem(dev);
1871 }
1872 }
1873
1874 return -ENOMEM;
1875 }
1876
1877 static int nvme_setup_host_mem(struct nvme_dev *dev)
1878 {
1879 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1880 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1881 u64 min = (u64)dev->ctrl.hmmin * 4096;
1882 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1883 int ret = 0;
1884
1885 preferred = min(preferred, max);
1886 if (min > max) {
1887 dev_warn(dev->ctrl.device,
1888 "min host memory (%lld MiB) above limit (%d MiB).\n",
1889 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1890 nvme_free_host_mem(dev);
1891 return 0;
1892 }
1893
1894 /*
1895 * If we already have a buffer allocated check if we can reuse it.
1896 */
1897 if (dev->host_mem_descs) {
1898 if (dev->host_mem_size >= min)
1899 enable_bits |= NVME_HOST_MEM_RETURN;
1900 else
1901 nvme_free_host_mem(dev);
1902 }
1903
1904 if (!dev->host_mem_descs) {
1905 if (nvme_alloc_host_mem(dev, min, preferred)) {
1906 dev_warn(dev->ctrl.device,
1907 "failed to allocate host memory buffer.\n");
1908 return 0; /* controller must work without HMB */
1909 }
1910
1911 dev_info(dev->ctrl.device,
1912 "allocated %lld MiB host memory buffer.\n",
1913 dev->host_mem_size >> ilog2(SZ_1M));
1914 }
1915
1916 ret = nvme_set_host_mem(dev, enable_bits);
1917 if (ret)
1918 nvme_free_host_mem(dev);
1919 return ret;
1920 }
1921
1922 static int nvme_setup_io_queues(struct nvme_dev *dev)
1923 {
1924 struct nvme_queue *adminq = dev->queues[0];
1925 struct pci_dev *pdev = to_pci_dev(dev->dev);
1926 int result, nr_io_queues;
1927 unsigned long size;
1928
1929 nr_io_queues = num_possible_cpus();
1930 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1931 if (result < 0)
1932 return result;
1933
1934 if (nr_io_queues == 0)
1935 return 0;
1936
1937 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1938 result = nvme_cmb_qdepth(dev, nr_io_queues,
1939 sizeof(struct nvme_command));
1940 if (result > 0)
1941 dev->q_depth = result;
1942 else
1943 nvme_release_cmb(dev);
1944 }
1945
1946 do {
1947 size = db_bar_size(dev, nr_io_queues);
1948 result = nvme_remap_bar(dev, size);
1949 if (!result)
1950 break;
1951 if (!--nr_io_queues)
1952 return -ENOMEM;
1953 } while (1);
1954 adminq->q_db = dev->dbs;
1955
1956 /* Deregister the admin queue's interrupt */
1957 pci_free_irq(pdev, 0, adminq);
1958
1959 /*
1960 * If we enable msix early due to not intx, disable it again before
1961 * setting up the full range we need.
1962 */
1963 pci_free_irq_vectors(pdev);
1964 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1965 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1966 if (nr_io_queues <= 0)
1967 return -EIO;
1968 dev->max_qid = nr_io_queues;
1969
1970 /*
1971 * Should investigate if there's a performance win from allocating
1972 * more queues than interrupt vectors; it might allow the submission
1973 * path to scale better, even if the receive path is limited by the
1974 * number of interrupts.
1975 */
1976
1977 result = queue_request_irq(adminq);
1978 if (result) {
1979 adminq->cq_vector = -1;
1980 return result;
1981 }
1982 return nvme_create_io_queues(dev);
1983 }
1984
1985 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1986 {
1987 struct nvme_queue *nvmeq = req->end_io_data;
1988
1989 blk_mq_free_request(req);
1990 complete(&nvmeq->dev->ioq_wait);
1991 }
1992
1993 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1994 {
1995 struct nvme_queue *nvmeq = req->end_io_data;
1996
1997 if (!error) {
1998 unsigned long flags;
1999
2000 /*
2001 * We might be called with the AQ q_lock held
2002 * and the I/O queue q_lock should always
2003 * nest inside the AQ one.
2004 */
2005 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
2006 SINGLE_DEPTH_NESTING);
2007 nvme_process_cq(nvmeq);
2008 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
2009 }
2010
2011 nvme_del_queue_end(req, error);
2012 }
2013
2014 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2015 {
2016 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2017 struct request *req;
2018 struct nvme_command cmd;
2019
2020 memset(&cmd, 0, sizeof(cmd));
2021 cmd.delete_queue.opcode = opcode;
2022 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2023
2024 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2025 if (IS_ERR(req))
2026 return PTR_ERR(req);
2027
2028 req->timeout = ADMIN_TIMEOUT;
2029 req->end_io_data = nvmeq;
2030
2031 blk_execute_rq_nowait(q, NULL, req, false,
2032 opcode == nvme_admin_delete_cq ?
2033 nvme_del_cq_end : nvme_del_queue_end);
2034 return 0;
2035 }
2036
2037 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
2038 {
2039 int pass;
2040 unsigned long timeout;
2041 u8 opcode = nvme_admin_delete_sq;
2042
2043 for (pass = 0; pass < 2; pass++) {
2044 int sent = 0, i = queues;
2045
2046 reinit_completion(&dev->ioq_wait);
2047 retry:
2048 timeout = ADMIN_TIMEOUT;
2049 for (; i > 0; i--, sent++)
2050 if (nvme_delete_queue(dev->queues[i], opcode))
2051 break;
2052
2053 while (sent--) {
2054 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2055 if (timeout == 0)
2056 return;
2057 if (i)
2058 goto retry;
2059 }
2060 opcode = nvme_admin_delete_cq;
2061 }
2062 }
2063
2064 /*
2065 * Return: error value if an error occurred setting up the queues or calling
2066 * Identify Device. 0 if these succeeded, even if adding some of the
2067 * namespaces failed. At the moment, these failures are silent. TBD which
2068 * failures should be reported.
2069 */
2070 static int nvme_dev_add(struct nvme_dev *dev)
2071 {
2072 if (!dev->ctrl.tagset) {
2073 dev->tagset.ops = &nvme_mq_ops;
2074 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2075 dev->tagset.timeout = NVME_IO_TIMEOUT;
2076 dev->tagset.numa_node = dev_to_node(dev->dev);
2077 dev->tagset.queue_depth =
2078 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2079 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2080 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2081 dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2082 nvme_pci_cmd_size(dev, true));
2083 }
2084 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2085 dev->tagset.driver_data = dev;
2086
2087 if (blk_mq_alloc_tag_set(&dev->tagset))
2088 return 0;
2089 dev->ctrl.tagset = &dev->tagset;
2090
2091 nvme_dbbuf_set(dev);
2092 } else {
2093 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2094
2095 /* Free previously allocated queues that are no longer usable */
2096 nvme_free_queues(dev, dev->online_queues);
2097 }
2098
2099 return 0;
2100 }
2101
2102 static int nvme_pci_enable(struct nvme_dev *dev)
2103 {
2104 int result = -ENOMEM;
2105 struct pci_dev *pdev = to_pci_dev(dev->dev);
2106
2107 if (pci_enable_device_mem(pdev))
2108 return result;
2109
2110 pci_set_master(pdev);
2111
2112 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2113 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2114 goto disable;
2115
2116 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2117 result = -ENODEV;
2118 goto disable;
2119 }
2120
2121 /*
2122 * Some devices and/or platforms don't advertise or work with INTx
2123 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2124 * adjust this later.
2125 */
2126 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2127 if (result < 0)
2128 return result;
2129
2130 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2131
2132 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2133 io_queue_depth);
2134 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2135 dev->dbs = dev->bar + 4096;
2136
2137 /*
2138 * Temporary fix for the Apple controller found in the MacBook8,1 and
2139 * some MacBook7,1 to avoid controller resets and data loss.
2140 */
2141 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2142 dev->q_depth = 2;
2143 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2144 "set queue depth=%u to work around controller resets\n",
2145 dev->q_depth);
2146 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2147 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2148 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2149 dev->q_depth = 64;
2150 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2151 "set queue depth=%u\n", dev->q_depth);
2152 }
2153
2154 /*
2155 * CMBs can currently only exist on >=1.2 PCIe devices. We only
2156 * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
2157 * has no name we can pass NULL as final argument to
2158 * sysfs_add_file_to_group.
2159 */
2160
2161 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
2162 dev->cmb = nvme_map_cmb(dev);
2163 if (dev->cmb) {
2164 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
2165 &dev_attr_cmb.attr, NULL))
2166 dev_warn(dev->ctrl.device,
2167 "failed to add sysfs attribute for CMB\n");
2168 }
2169 }
2170
2171 pci_enable_pcie_error_reporting(pdev);
2172 pci_save_state(pdev);
2173 return 0;
2174
2175 disable:
2176 pci_disable_device(pdev);
2177 return result;
2178 }
2179
2180 static void nvme_dev_unmap(struct nvme_dev *dev)
2181 {
2182 if (dev->bar)
2183 iounmap(dev->bar);
2184 pci_release_mem_regions(to_pci_dev(dev->dev));
2185 }
2186
2187 static void nvme_pci_disable(struct nvme_dev *dev)
2188 {
2189 struct pci_dev *pdev = to_pci_dev(dev->dev);
2190
2191 nvme_release_cmb(dev);
2192 pci_free_irq_vectors(pdev);
2193
2194 if (pci_is_enabled(pdev)) {
2195 pci_disable_pcie_error_reporting(pdev);
2196 pci_disable_device(pdev);
2197 }
2198 }
2199
2200 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2201 {
2202 int i, queues;
2203 bool dead = true;
2204 struct pci_dev *pdev = to_pci_dev(dev->dev);
2205
2206 mutex_lock(&dev->shutdown_lock);
2207 if (pci_is_enabled(pdev)) {
2208 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2209
2210 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2211 dev->ctrl.state == NVME_CTRL_RESETTING)
2212 nvme_start_freeze(&dev->ctrl);
2213 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2214 pdev->error_state != pci_channel_io_normal);
2215 }
2216
2217 /*
2218 * Give the controller a chance to complete all entered requests if
2219 * doing a safe shutdown.
2220 */
2221 if (!dead) {
2222 if (shutdown)
2223 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2224
2225 /*
2226 * If the controller is still alive tell it to stop using the
2227 * host memory buffer. In theory the shutdown / reset should
2228 * make sure that it doesn't access the host memoery anymore,
2229 * but I'd rather be safe than sorry..
2230 */
2231 if (dev->host_mem_descs)
2232 nvme_set_host_mem(dev, 0);
2233
2234 }
2235 nvme_stop_queues(&dev->ctrl);
2236
2237 queues = dev->online_queues - 1;
2238 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
2239 nvme_suspend_queue(dev->queues[i]);
2240
2241 if (dead) {
2242 /* A device might become IO incapable very soon during
2243 * probe, before the admin queue is configured. Thus,
2244 * queue_count can be 0 here.
2245 */
2246 if (dev->ctrl.queue_count)
2247 nvme_suspend_queue(dev->queues[0]);
2248 } else {
2249 nvme_disable_io_queues(dev, queues);
2250 nvme_disable_admin_queue(dev, shutdown);
2251 }
2252 nvme_pci_disable(dev);
2253
2254 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2255 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2256
2257 /*
2258 * The driver will not be starting up queues again if shutting down so
2259 * must flush all entered requests to their failed completion to avoid
2260 * deadlocking blk-mq hot-cpu notifier.
2261 */
2262 if (shutdown)
2263 nvme_start_queues(&dev->ctrl);
2264 mutex_unlock(&dev->shutdown_lock);
2265 }
2266
2267 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2268 {
2269 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2270 PAGE_SIZE, PAGE_SIZE, 0);
2271 if (!dev->prp_page_pool)
2272 return -ENOMEM;
2273
2274 /* Optimisation for I/Os between 4k and 128k */
2275 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2276 256, 256, 0);
2277 if (!dev->prp_small_pool) {
2278 dma_pool_destroy(dev->prp_page_pool);
2279 return -ENOMEM;
2280 }
2281 return 0;
2282 }
2283
2284 static void nvme_release_prp_pools(struct nvme_dev *dev)
2285 {
2286 dma_pool_destroy(dev->prp_page_pool);
2287 dma_pool_destroy(dev->prp_small_pool);
2288 }
2289
2290 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2291 {
2292 struct nvme_dev *dev = to_nvme_dev(ctrl);
2293
2294 nvme_dbbuf_dma_free(dev);
2295 put_device(dev->dev);
2296 if (dev->tagset.tags)
2297 blk_mq_free_tag_set(&dev->tagset);
2298 if (dev->ctrl.admin_q)
2299 blk_put_queue(dev->ctrl.admin_q);
2300 kfree(dev->queues);
2301 free_opal_dev(dev->ctrl.opal_dev);
2302 kfree(dev);
2303 }
2304
2305 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2306 {
2307 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2308
2309 nvme_get_ctrl(&dev->ctrl);
2310 nvme_dev_disable(dev, false);
2311 if (!queue_work(nvme_wq, &dev->remove_work))
2312 nvme_put_ctrl(&dev->ctrl);
2313 }
2314
2315 static void nvme_reset_work(struct work_struct *work)
2316 {
2317 struct nvme_dev *dev =
2318 container_of(work, struct nvme_dev, ctrl.reset_work);
2319 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2320 int result = -ENODEV;
2321
2322 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2323 goto out;
2324
2325 /*
2326 * If we're called to reset a live controller first shut it down before
2327 * moving on.
2328 */
2329 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2330 nvme_dev_disable(dev, false);
2331
2332 result = nvme_pci_enable(dev);
2333 if (result)
2334 goto out;
2335
2336 result = nvme_pci_configure_admin_queue(dev);
2337 if (result)
2338 goto out;
2339
2340 result = nvme_alloc_admin_tags(dev);
2341 if (result)
2342 goto out;
2343
2344 result = nvme_init_identify(&dev->ctrl);
2345 if (result)
2346 goto out;
2347
2348 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2349 if (!dev->ctrl.opal_dev)
2350 dev->ctrl.opal_dev =
2351 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2352 else if (was_suspend)
2353 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2354 } else {
2355 free_opal_dev(dev->ctrl.opal_dev);
2356 dev->ctrl.opal_dev = NULL;
2357 }
2358
2359 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2360 result = nvme_dbbuf_dma_alloc(dev);
2361 if (result)
2362 dev_warn(dev->dev,
2363 "unable to allocate dma for dbbuf\n");
2364 }
2365
2366 if (dev->ctrl.hmpre) {
2367 result = nvme_setup_host_mem(dev);
2368 if (result < 0)
2369 goto out;
2370 }
2371
2372 result = nvme_setup_io_queues(dev);
2373 if (result)
2374 goto out;
2375
2376 /*
2377 * Keep the controller around but remove all namespaces if we don't have
2378 * any working I/O queue.
2379 */
2380 if (dev->online_queues < 2) {
2381 dev_warn(dev->ctrl.device, "IO queues not created\n");
2382 nvme_kill_queues(&dev->ctrl);
2383 nvme_remove_namespaces(&dev->ctrl);
2384 } else {
2385 nvme_start_queues(&dev->ctrl);
2386 nvme_wait_freeze(&dev->ctrl);
2387 nvme_dev_add(dev);
2388 nvme_unfreeze(&dev->ctrl);
2389 }
2390
2391 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2392 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2393 goto out;
2394 }
2395
2396 nvme_start_ctrl(&dev->ctrl);
2397 return;
2398
2399 out:
2400 nvme_remove_dead_ctrl(dev, result);
2401 }
2402
2403 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2404 {
2405 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2406 struct pci_dev *pdev = to_pci_dev(dev->dev);
2407
2408 nvme_kill_queues(&dev->ctrl);
2409 if (pci_get_drvdata(pdev))
2410 device_release_driver(&pdev->dev);
2411 nvme_put_ctrl(&dev->ctrl);
2412 }
2413
2414 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2415 {
2416 *val = readl(to_nvme_dev(ctrl)->bar + off);
2417 return 0;
2418 }
2419
2420 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2421 {
2422 writel(val, to_nvme_dev(ctrl)->bar + off);
2423 return 0;
2424 }
2425
2426 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2427 {
2428 *val = readq(to_nvme_dev(ctrl)->bar + off);
2429 return 0;
2430 }
2431
2432 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2433 .name = "pcie",
2434 .module = THIS_MODULE,
2435 .flags = NVME_F_METADATA_SUPPORTED,
2436 .reg_read32 = nvme_pci_reg_read32,
2437 .reg_write32 = nvme_pci_reg_write32,
2438 .reg_read64 = nvme_pci_reg_read64,
2439 .free_ctrl = nvme_pci_free_ctrl,
2440 .submit_async_event = nvme_pci_submit_async_event,
2441 };
2442
2443 static int nvme_dev_map(struct nvme_dev *dev)
2444 {
2445 struct pci_dev *pdev = to_pci_dev(dev->dev);
2446
2447 if (pci_request_mem_regions(pdev, "nvme"))
2448 return -ENODEV;
2449
2450 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2451 goto release;
2452
2453 return 0;
2454 release:
2455 pci_release_mem_regions(pdev);
2456 return -ENODEV;
2457 }
2458
2459 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2460 {
2461 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2462 /*
2463 * Several Samsung devices seem to drop off the PCIe bus
2464 * randomly when APST is on and uses the deepest sleep state.
2465 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2466 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2467 * 950 PRO 256GB", but it seems to be restricted to two Dell
2468 * laptops.
2469 */
2470 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2471 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2472 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2473 return NVME_QUIRK_NO_DEEPEST_PS;
2474 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2475 /*
2476 * Samsung SSD 960 EVO drops off the PCIe bus after system
2477 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2478 * within few minutes after bootup on a Coffee Lake board -
2479 * ASUS PRIME Z370-A
2480 */
2481 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2482 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2483 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2484 return NVME_QUIRK_NO_APST;
2485 }
2486
2487 return 0;
2488 }
2489
2490 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2491 {
2492 int node, result = -ENOMEM;
2493 struct nvme_dev *dev;
2494 unsigned long quirks = id->driver_data;
2495
2496 node = dev_to_node(&pdev->dev);
2497 if (node == NUMA_NO_NODE)
2498 set_dev_node(&pdev->dev, first_memory_node);
2499
2500 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2501 if (!dev)
2502 return -ENOMEM;
2503 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2504 GFP_KERNEL, node);
2505 if (!dev->queues)
2506 goto free;
2507
2508 dev->dev = get_device(&pdev->dev);
2509 pci_set_drvdata(pdev, dev);
2510
2511 result = nvme_dev_map(dev);
2512 if (result)
2513 goto put_pci;
2514
2515 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2516 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2517 mutex_init(&dev->shutdown_lock);
2518 init_completion(&dev->ioq_wait);
2519
2520 result = nvme_setup_prp_pools(dev);
2521 if (result)
2522 goto unmap;
2523
2524 quirks |= check_vendor_combination_bug(pdev);
2525
2526 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2527 quirks);
2528 if (result)
2529 goto release_pools;
2530
2531 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2532 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2533
2534 queue_work(nvme_wq, &dev->ctrl.reset_work);
2535 return 0;
2536
2537 release_pools:
2538 nvme_release_prp_pools(dev);
2539 unmap:
2540 nvme_dev_unmap(dev);
2541 put_pci:
2542 put_device(dev->dev);
2543 free:
2544 kfree(dev->queues);
2545 kfree(dev);
2546 return result;
2547 }
2548
2549 static void nvme_reset_prepare(struct pci_dev *pdev)
2550 {
2551 struct nvme_dev *dev = pci_get_drvdata(pdev);
2552 nvme_dev_disable(dev, false);
2553 }
2554
2555 static void nvme_reset_done(struct pci_dev *pdev)
2556 {
2557 struct nvme_dev *dev = pci_get_drvdata(pdev);
2558 nvme_reset_ctrl(&dev->ctrl);
2559 }
2560
2561 static void nvme_shutdown(struct pci_dev *pdev)
2562 {
2563 struct nvme_dev *dev = pci_get_drvdata(pdev);
2564 nvme_dev_disable(dev, true);
2565 }
2566
2567 /*
2568 * The driver's remove may be called on a device in a partially initialized
2569 * state. This function must not have any dependencies on the device state in
2570 * order to proceed.
2571 */
2572 static void nvme_remove(struct pci_dev *pdev)
2573 {
2574 struct nvme_dev *dev = pci_get_drvdata(pdev);
2575
2576 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2577
2578 cancel_work_sync(&dev->ctrl.reset_work);
2579 pci_set_drvdata(pdev, NULL);
2580
2581 if (!pci_device_is_present(pdev)) {
2582 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2583 nvme_dev_disable(dev, false);
2584 }
2585
2586 flush_work(&dev->ctrl.reset_work);
2587 nvme_stop_ctrl(&dev->ctrl);
2588 nvme_remove_namespaces(&dev->ctrl);
2589 nvme_dev_disable(dev, true);
2590 nvme_free_host_mem(dev);
2591 nvme_dev_remove_admin(dev);
2592 nvme_free_queues(dev, 0);
2593 nvme_uninit_ctrl(&dev->ctrl);
2594 nvme_release_prp_pools(dev);
2595 nvme_dev_unmap(dev);
2596 nvme_put_ctrl(&dev->ctrl);
2597 }
2598
2599 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2600 {
2601 int ret = 0;
2602
2603 if (numvfs == 0) {
2604 if (pci_vfs_assigned(pdev)) {
2605 dev_warn(&pdev->dev,
2606 "Cannot disable SR-IOV VFs while assigned\n");
2607 return -EPERM;
2608 }
2609 pci_disable_sriov(pdev);
2610 return 0;
2611 }
2612
2613 ret = pci_enable_sriov(pdev, numvfs);
2614 return ret ? ret : numvfs;
2615 }
2616
2617 #ifdef CONFIG_PM_SLEEP
2618 static int nvme_suspend(struct device *dev)
2619 {
2620 struct pci_dev *pdev = to_pci_dev(dev);
2621 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2622 struct nvme_ctrl *ctrl = &ndev->ctrl;
2623
2624 if (!(pm_suspend_via_s2idle() && (ctrl->quirks & NVME_QUIRK_NO_DISABLE)))
2625 nvme_dev_disable(ndev, true);
2626
2627 return 0;
2628 }
2629
2630 static int nvme_resume(struct device *dev)
2631 {
2632 struct pci_dev *pdev = to_pci_dev(dev);
2633 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2634
2635 nvme_reset_ctrl(&ndev->ctrl);
2636 return 0;
2637 }
2638 #endif
2639
2640 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2641
2642 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2643 pci_channel_state_t state)
2644 {
2645 struct nvme_dev *dev = pci_get_drvdata(pdev);
2646
2647 /*
2648 * A frozen channel requires a reset. When detected, this method will
2649 * shutdown the controller to quiesce. The controller will be restarted
2650 * after the slot reset through driver's slot_reset callback.
2651 */
2652 switch (state) {
2653 case pci_channel_io_normal:
2654 return PCI_ERS_RESULT_CAN_RECOVER;
2655 case pci_channel_io_frozen:
2656 dev_warn(dev->ctrl.device,
2657 "frozen state error detected, reset controller\n");
2658 nvme_dev_disable(dev, false);
2659 return PCI_ERS_RESULT_NEED_RESET;
2660 case pci_channel_io_perm_failure:
2661 dev_warn(dev->ctrl.device,
2662 "failure state error detected, request disconnect\n");
2663 return PCI_ERS_RESULT_DISCONNECT;
2664 }
2665 return PCI_ERS_RESULT_NEED_RESET;
2666 }
2667
2668 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2669 {
2670 struct nvme_dev *dev = pci_get_drvdata(pdev);
2671
2672 dev_info(dev->ctrl.device, "restart after slot reset\n");
2673 pci_restore_state(pdev);
2674 nvme_reset_ctrl(&dev->ctrl);
2675 return PCI_ERS_RESULT_RECOVERED;
2676 }
2677
2678 static void nvme_error_resume(struct pci_dev *pdev)
2679 {
2680 struct nvme_dev *dev = pci_get_drvdata(pdev);
2681
2682 flush_work(&dev->ctrl.reset_work);
2683 pci_cleanup_aer_uncorrect_error_status(pdev);
2684 }
2685
2686 static const struct pci_error_handlers nvme_err_handler = {
2687 .error_detected = nvme_error_detected,
2688 .slot_reset = nvme_slot_reset,
2689 .resume = nvme_error_resume,
2690 .reset_prepare = nvme_reset_prepare,
2691 .reset_done = nvme_reset_done,
2692 };
2693
2694 static const struct pci_device_id nvme_id_table[] = {
2695 { PCI_VDEVICE(INTEL, 0x0953),
2696 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2697 NVME_QUIRK_DEALLOCATE_ZEROES, },
2698 { PCI_VDEVICE(INTEL, 0x0a53),
2699 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2700 NVME_QUIRK_DEALLOCATE_ZEROES, },
2701 { PCI_VDEVICE(INTEL, 0x0a54),
2702 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2703 NVME_QUIRK_DEALLOCATE_ZEROES, },
2704 { PCI_VDEVICE(INTEL, 0x0a55),
2705 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2706 NVME_QUIRK_DEALLOCATE_ZEROES, },
2707 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2708 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2709 NVME_QUIRK_MEDIUM_PRIO_SQ },
2710 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
2711 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
2712 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2713 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2714 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2715 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2716 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
2717 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2718 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2719 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2720 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2721 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2722 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2723 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2724 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
2725 .driver_data = NVME_QUIRK_LIGHTNVM, },
2726 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
2727 .driver_data = NVME_QUIRK_LIGHTNVM, },
2728 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
2729 .driver_data = NVME_QUIRK_LIGHTNVM, },
2730 { PCI_VDEVICE(SK_HYNIX, 0x1527), /* Sk Hynix */
2731 .driver_data = NVME_QUIRK_NO_DISABLE, },
2732 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2733 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2734 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2735 { 0, }
2736 };
2737 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2738
2739 static struct pci_driver nvme_driver = {
2740 .name = "nvme",
2741 .id_table = nvme_id_table,
2742 .probe = nvme_probe,
2743 .remove = nvme_remove,
2744 .shutdown = nvme_shutdown,
2745 .driver = {
2746 .pm = &nvme_dev_pm_ops,
2747 },
2748 .sriov_configure = nvme_pci_sriov_configure,
2749 .err_handler = &nvme_err_handler,
2750 };
2751
2752 static int __init nvme_init(void)
2753 {
2754 return pci_register_driver(&nvme_driver);
2755 }
2756
2757 static void __exit nvme_exit(void)
2758 {
2759 pci_unregister_driver(&nvme_driver);
2760 flush_workqueue(nvme_wq);
2761 _nvme_check_size();
2762 }
2763
2764 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2765 MODULE_LICENSE("GPL");
2766 MODULE_VERSION("1.0");
2767 module_init(nvme_init);
2768 module_exit(nvme_exit);