]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/nvme/host/pci.c
UBUNTU: SAUCE: pci/nvme: prevent WDC PC SN720 NVMe from entering D3 and being disabled
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/blk-mq-pci.h>
19 #include <linux/dmi.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/once.h>
27 #include <linux/pci.h>
28 #include <linux/t10-pi.h>
29 #include <linux/types.h>
30 #include <linux/io-64-nonatomic-lo-hi.h>
31 #include <linux/sed-opal.h>
32 #include <linux/suspend.h>
33
34 #include "nvme.h"
35
36 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
37 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
38
39 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
40
41 static int use_threaded_interrupts;
42 module_param(use_threaded_interrupts, int, 0);
43
44 static bool use_cmb_sqes = true;
45 module_param(use_cmb_sqes, bool, 0644);
46 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
47
48 static unsigned int max_host_mem_size_mb = 128;
49 module_param(max_host_mem_size_mb, uint, 0444);
50 MODULE_PARM_DESC(max_host_mem_size_mb,
51 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
52
53 static unsigned int sgl_threshold = SZ_32K;
54 module_param(sgl_threshold, uint, 0644);
55 MODULE_PARM_DESC(sgl_threshold,
56 "Use SGLs when average request segment size is larger or equal to "
57 "this size. Use 0 to disable SGLs.");
58
59 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
60 static const struct kernel_param_ops io_queue_depth_ops = {
61 .set = io_queue_depth_set,
62 .get = param_get_int,
63 };
64
65 static int io_queue_depth = 1024;
66 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
67 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static void nvme_process_cq(struct nvme_queue *nvmeq);
73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
74
75 /*
76 * Represents an NVM Express device. Each nvme_dev is a PCI function.
77 */
78 struct nvme_dev {
79 struct nvme_queue **queues;
80 struct blk_mq_tag_set tagset;
81 struct blk_mq_tag_set admin_tagset;
82 u32 __iomem *dbs;
83 struct device *dev;
84 struct dma_pool *prp_page_pool;
85 struct dma_pool *prp_small_pool;
86 unsigned online_queues;
87 unsigned max_qid;
88 int q_depth;
89 u32 db_stride;
90 void __iomem *bar;
91 unsigned long bar_mapped_size;
92 struct work_struct remove_work;
93 struct mutex shutdown_lock;
94 bool subsystem;
95 void __iomem *cmb;
96 pci_bus_addr_t cmb_bus_addr;
97 u64 cmb_size;
98 u32 cmbsz;
99 u32 cmbloc;
100 struct nvme_ctrl ctrl;
101 struct completion ioq_wait;
102
103 /* shadow doorbell buffer support: */
104 u32 *dbbuf_dbs;
105 dma_addr_t dbbuf_dbs_dma_addr;
106 u32 *dbbuf_eis;
107 dma_addr_t dbbuf_eis_dma_addr;
108
109 /* host memory buffer support: */
110 u64 host_mem_size;
111 u32 nr_host_mem_descs;
112 dma_addr_t host_mem_descs_dma;
113 struct nvme_host_mem_buf_desc *host_mem_descs;
114 void **host_mem_desc_bufs;
115 };
116
117 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
118 {
119 int n = 0, ret;
120
121 ret = kstrtoint(val, 10, &n);
122 if (ret != 0 || n < 2)
123 return -EINVAL;
124
125 return param_set_int(val, kp);
126 }
127
128 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
129 {
130 return qid * 2 * stride;
131 }
132
133 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
134 {
135 return (qid * 2 + 1) * stride;
136 }
137
138 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
139 {
140 return container_of(ctrl, struct nvme_dev, ctrl);
141 }
142
143 /*
144 * An NVM Express queue. Each device has at least two (one for admin
145 * commands and one for I/O commands).
146 */
147 struct nvme_queue {
148 struct device *q_dmadev;
149 struct nvme_dev *dev;
150 spinlock_t q_lock;
151 struct nvme_command *sq_cmds;
152 struct nvme_command __iomem *sq_cmds_io;
153 volatile struct nvme_completion *cqes;
154 struct blk_mq_tags **tags;
155 dma_addr_t sq_dma_addr;
156 dma_addr_t cq_dma_addr;
157 u32 __iomem *q_db;
158 u16 q_depth;
159 s16 cq_vector;
160 u16 sq_tail;
161 u16 cq_head;
162 u16 qid;
163 u8 cq_phase;
164 u8 cqe_seen;
165 u32 *dbbuf_sq_db;
166 u32 *dbbuf_cq_db;
167 u32 *dbbuf_sq_ei;
168 u32 *dbbuf_cq_ei;
169 };
170
171 /*
172 * The nvme_iod describes the data in an I/O, including the list of PRP
173 * entries. You can't see it in this data structure because C doesn't let
174 * me express that. Use nvme_init_iod to ensure there's enough space
175 * allocated to store the PRP list.
176 */
177 struct nvme_iod {
178 struct nvme_request req;
179 struct nvme_queue *nvmeq;
180 bool use_sgl;
181 int aborted;
182 int npages; /* In the PRP list. 0 means small pool in use */
183 int nents; /* Used in scatterlist */
184 int length; /* Of data, in bytes */
185 dma_addr_t first_dma;
186 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
187 struct scatterlist *sg;
188 struct scatterlist inline_sg[0];
189 };
190
191 /*
192 * Check we didin't inadvertently grow the command struct
193 */
194 static inline void _nvme_check_size(void)
195 {
196 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
197 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
198 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
199 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
200 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
201 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
202 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
203 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
204 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
205 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
206 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
207 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
208 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
209 }
210
211 static inline unsigned int nvme_dbbuf_size(u32 stride)
212 {
213 return ((num_possible_cpus() + 1) * 8 * stride);
214 }
215
216 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
217 {
218 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
219
220 if (dev->dbbuf_dbs)
221 return 0;
222
223 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
224 &dev->dbbuf_dbs_dma_addr,
225 GFP_KERNEL);
226 if (!dev->dbbuf_dbs)
227 return -ENOMEM;
228 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
229 &dev->dbbuf_eis_dma_addr,
230 GFP_KERNEL);
231 if (!dev->dbbuf_eis) {
232 dma_free_coherent(dev->dev, mem_size,
233 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
234 dev->dbbuf_dbs = NULL;
235 return -ENOMEM;
236 }
237
238 return 0;
239 }
240
241 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
242 {
243 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
244
245 if (dev->dbbuf_dbs) {
246 dma_free_coherent(dev->dev, mem_size,
247 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
248 dev->dbbuf_dbs = NULL;
249 }
250 if (dev->dbbuf_eis) {
251 dma_free_coherent(dev->dev, mem_size,
252 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
253 dev->dbbuf_eis = NULL;
254 }
255 }
256
257 static void nvme_dbbuf_init(struct nvme_dev *dev,
258 struct nvme_queue *nvmeq, int qid)
259 {
260 if (!dev->dbbuf_dbs || !qid)
261 return;
262
263 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
264 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
265 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
266 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
267 }
268
269 static void nvme_dbbuf_set(struct nvme_dev *dev)
270 {
271 struct nvme_command c;
272
273 if (!dev->dbbuf_dbs)
274 return;
275
276 memset(&c, 0, sizeof(c));
277 c.dbbuf.opcode = nvme_admin_dbbuf;
278 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
279 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
280
281 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
282 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
283 /* Free memory and continue on */
284 nvme_dbbuf_dma_free(dev);
285 }
286 }
287
288 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
289 {
290 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
291 }
292
293 /* Update dbbuf and return true if an MMIO is required */
294 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
295 volatile u32 *dbbuf_ei)
296 {
297 if (dbbuf_db) {
298 u16 old_value;
299
300 /*
301 * Ensure that the queue is written before updating
302 * the doorbell in memory
303 */
304 wmb();
305
306 old_value = *dbbuf_db;
307 *dbbuf_db = value;
308
309 /*
310 * Ensure that the doorbell is updated before reading the event
311 * index from memory. The controller needs to provide similar
312 * ordering to ensure the envent index is updated before reading
313 * the doorbell.
314 */
315 mb();
316
317 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
318 return false;
319 }
320
321 return true;
322 }
323
324 /*
325 * Max size of iod being embedded in the request payload
326 */
327 #define NVME_INT_PAGES 2
328 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
329
330 /*
331 * Will slightly overestimate the number of pages needed. This is OK
332 * as it only leads to a small amount of wasted memory for the lifetime of
333 * the I/O.
334 */
335 static int nvme_npages(unsigned size, struct nvme_dev *dev)
336 {
337 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
338 dev->ctrl.page_size);
339 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
340 }
341
342 /*
343 * Calculates the number of pages needed for the SGL segments. For example a 4k
344 * page can accommodate 256 SGL descriptors.
345 */
346 static int nvme_pci_npages_sgl(unsigned int num_seg)
347 {
348 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
349 }
350
351 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
352 unsigned int size, unsigned int nseg, bool use_sgl)
353 {
354 size_t alloc_size;
355
356 if (use_sgl)
357 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
358 else
359 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
360
361 return alloc_size + sizeof(struct scatterlist) * nseg;
362 }
363
364 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
365 {
366 unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
367 NVME_INT_BYTES(dev), NVME_INT_PAGES,
368 use_sgl);
369
370 return sizeof(struct nvme_iod) + alloc_size;
371 }
372
373 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
374 unsigned int hctx_idx)
375 {
376 struct nvme_dev *dev = data;
377 struct nvme_queue *nvmeq = dev->queues[0];
378
379 WARN_ON(hctx_idx != 0);
380 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
381 WARN_ON(nvmeq->tags);
382
383 hctx->driver_data = nvmeq;
384 nvmeq->tags = &dev->admin_tagset.tags[0];
385 return 0;
386 }
387
388 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
389 {
390 struct nvme_queue *nvmeq = hctx->driver_data;
391
392 nvmeq->tags = NULL;
393 }
394
395 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
396 unsigned int hctx_idx)
397 {
398 struct nvme_dev *dev = data;
399 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
400
401 if (!nvmeq->tags)
402 nvmeq->tags = &dev->tagset.tags[hctx_idx];
403
404 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
405 hctx->driver_data = nvmeq;
406 return 0;
407 }
408
409 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
410 unsigned int hctx_idx, unsigned int numa_node)
411 {
412 struct nvme_dev *dev = set->driver_data;
413 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
414 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
415 struct nvme_queue *nvmeq = dev->queues[queue_idx];
416
417 BUG_ON(!nvmeq);
418 iod->nvmeq = nvmeq;
419 return 0;
420 }
421
422 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
423 {
424 struct nvme_dev *dev = set->driver_data;
425
426 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
427 }
428
429 /**
430 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
431 * @nvmeq: The queue to use
432 * @cmd: The command to send
433 *
434 * Safe to use from interrupt context
435 */
436 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
437 struct nvme_command *cmd)
438 {
439 u16 tail = nvmeq->sq_tail;
440
441 if (nvmeq->sq_cmds_io)
442 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
443 else
444 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
445
446 if (++tail == nvmeq->q_depth)
447 tail = 0;
448 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
449 nvmeq->dbbuf_sq_ei))
450 writel(tail, nvmeq->q_db);
451 nvmeq->sq_tail = tail;
452 }
453
454 static void **nvme_pci_iod_list(struct request *req)
455 {
456 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
457 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
458 }
459
460 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
461 {
462 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
463 int nseg = blk_rq_nr_phys_segments(req);
464 unsigned int avg_seg_size;
465
466 if (nseg == 0)
467 return false;
468
469 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
470
471 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
472 return false;
473 if (!iod->nvmeq->qid)
474 return false;
475 if (!sgl_threshold || avg_seg_size < sgl_threshold)
476 return false;
477 return true;
478 }
479
480 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
481 {
482 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
483 int nseg = blk_rq_nr_phys_segments(rq);
484 unsigned int size = blk_rq_payload_bytes(rq);
485
486 iod->use_sgl = nvme_pci_use_sgls(dev, rq);
487
488 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
489 size_t alloc_size = nvme_pci_iod_alloc_size(dev, size, nseg,
490 iod->use_sgl);
491
492 iod->sg = kmalloc(alloc_size, GFP_ATOMIC);
493 if (!iod->sg)
494 return BLK_STS_RESOURCE;
495 } else {
496 iod->sg = iod->inline_sg;
497 }
498
499 iod->aborted = 0;
500 iod->npages = -1;
501 iod->nents = 0;
502 iod->length = size;
503
504 return BLK_STS_OK;
505 }
506
507 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
508 {
509 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
510 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
511 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
512
513 int i;
514
515 if (iod->npages == 0)
516 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
517 dma_addr);
518
519 for (i = 0; i < iod->npages; i++) {
520 void *addr = nvme_pci_iod_list(req)[i];
521
522 if (iod->use_sgl) {
523 struct nvme_sgl_desc *sg_list = addr;
524
525 next_dma_addr =
526 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
527 } else {
528 __le64 *prp_list = addr;
529
530 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
531 }
532
533 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
534 dma_addr = next_dma_addr;
535 }
536
537 if (iod->sg != iod->inline_sg)
538 kfree(iod->sg);
539 }
540
541 #ifdef CONFIG_BLK_DEV_INTEGRITY
542 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
543 {
544 if (be32_to_cpu(pi->ref_tag) == v)
545 pi->ref_tag = cpu_to_be32(p);
546 }
547
548 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
549 {
550 if (be32_to_cpu(pi->ref_tag) == p)
551 pi->ref_tag = cpu_to_be32(v);
552 }
553
554 /**
555 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
556 *
557 * The virtual start sector is the one that was originally submitted by the
558 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
559 * start sector may be different. Remap protection information to match the
560 * physical LBA on writes, and back to the original seed on reads.
561 *
562 * Type 0 and 3 do not have a ref tag, so no remapping required.
563 */
564 static void nvme_dif_remap(struct request *req,
565 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
566 {
567 struct nvme_ns *ns = req->rq_disk->private_data;
568 struct bio_integrity_payload *bip;
569 struct t10_pi_tuple *pi;
570 void *p, *pmap;
571 u32 i, nlb, ts, phys, virt;
572
573 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
574 return;
575
576 bip = bio_integrity(req->bio);
577 if (!bip)
578 return;
579
580 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
581
582 p = pmap;
583 virt = bip_get_seed(bip);
584 phys = nvme_block_nr(ns, blk_rq_pos(req));
585 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
586 ts = ns->disk->queue->integrity.tuple_size;
587
588 for (i = 0; i < nlb; i++, virt++, phys++) {
589 pi = (struct t10_pi_tuple *)p;
590 dif_swap(phys, virt, pi);
591 p += ts;
592 }
593 kunmap_atomic(pmap);
594 }
595 #else /* CONFIG_BLK_DEV_INTEGRITY */
596 static void nvme_dif_remap(struct request *req,
597 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
598 {
599 }
600 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
601 {
602 }
603 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
604 {
605 }
606 #endif
607
608 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
609 {
610 int i;
611 struct scatterlist *sg;
612
613 for_each_sg(sgl, sg, nents, i) {
614 dma_addr_t phys = sg_phys(sg);
615 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
616 "dma_address:%pad dma_length:%d\n",
617 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
618 sg_dma_len(sg));
619 }
620 }
621
622 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
623 struct request *req, struct nvme_rw_command *cmnd)
624 {
625 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
626 struct dma_pool *pool;
627 int length = blk_rq_payload_bytes(req);
628 struct scatterlist *sg = iod->sg;
629 int dma_len = sg_dma_len(sg);
630 u64 dma_addr = sg_dma_address(sg);
631 u32 page_size = dev->ctrl.page_size;
632 int offset = dma_addr & (page_size - 1);
633 __le64 *prp_list;
634 void **list = nvme_pci_iod_list(req);
635 dma_addr_t prp_dma;
636 int nprps, i;
637
638 length -= (page_size - offset);
639 if (length <= 0) {
640 iod->first_dma = 0;
641 goto done;
642 }
643
644 dma_len -= (page_size - offset);
645 if (dma_len) {
646 dma_addr += (page_size - offset);
647 } else {
648 sg = sg_next(sg);
649 dma_addr = sg_dma_address(sg);
650 dma_len = sg_dma_len(sg);
651 }
652
653 if (length <= page_size) {
654 iod->first_dma = dma_addr;
655 goto done;
656 }
657
658 nprps = DIV_ROUND_UP(length, page_size);
659 if (nprps <= (256 / 8)) {
660 pool = dev->prp_small_pool;
661 iod->npages = 0;
662 } else {
663 pool = dev->prp_page_pool;
664 iod->npages = 1;
665 }
666
667 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
668 if (!prp_list) {
669 iod->first_dma = dma_addr;
670 iod->npages = -1;
671 return BLK_STS_RESOURCE;
672 }
673 list[0] = prp_list;
674 iod->first_dma = prp_dma;
675 i = 0;
676 for (;;) {
677 if (i == page_size >> 3) {
678 __le64 *old_prp_list = prp_list;
679 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
680 if (!prp_list)
681 return BLK_STS_RESOURCE;
682 list[iod->npages++] = prp_list;
683 prp_list[0] = old_prp_list[i - 1];
684 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
685 i = 1;
686 }
687 prp_list[i++] = cpu_to_le64(dma_addr);
688 dma_len -= page_size;
689 dma_addr += page_size;
690 length -= page_size;
691 if (length <= 0)
692 break;
693 if (dma_len > 0)
694 continue;
695 if (unlikely(dma_len < 0))
696 goto bad_sgl;
697 sg = sg_next(sg);
698 dma_addr = sg_dma_address(sg);
699 dma_len = sg_dma_len(sg);
700 }
701
702 done:
703 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
704 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
705
706 return BLK_STS_OK;
707
708 bad_sgl:
709 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
710 "Invalid SGL for payload:%d nents:%d\n",
711 blk_rq_payload_bytes(req), iod->nents);
712 return BLK_STS_IOERR;
713 }
714
715 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
716 struct scatterlist *sg)
717 {
718 sge->addr = cpu_to_le64(sg_dma_address(sg));
719 sge->length = cpu_to_le32(sg_dma_len(sg));
720 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
721 }
722
723 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
724 dma_addr_t dma_addr, int entries)
725 {
726 sge->addr = cpu_to_le64(dma_addr);
727 if (entries < SGES_PER_PAGE) {
728 sge->length = cpu_to_le32(entries * sizeof(*sge));
729 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
730 } else {
731 sge->length = cpu_to_le32(PAGE_SIZE);
732 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
733 }
734 }
735
736 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
737 struct request *req, struct nvme_rw_command *cmd, int entries)
738 {
739 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
740 struct dma_pool *pool;
741 struct nvme_sgl_desc *sg_list;
742 struct scatterlist *sg = iod->sg;
743 dma_addr_t sgl_dma;
744 int i = 0;
745
746 /* setting the transfer type as SGL */
747 cmd->flags = NVME_CMD_SGL_METABUF;
748
749 if (entries == 1) {
750 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
751 return BLK_STS_OK;
752 }
753
754 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
755 pool = dev->prp_small_pool;
756 iod->npages = 0;
757 } else {
758 pool = dev->prp_page_pool;
759 iod->npages = 1;
760 }
761
762 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
763 if (!sg_list) {
764 iod->npages = -1;
765 return BLK_STS_RESOURCE;
766 }
767
768 nvme_pci_iod_list(req)[0] = sg_list;
769 iod->first_dma = sgl_dma;
770
771 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
772
773 do {
774 if (i == SGES_PER_PAGE) {
775 struct nvme_sgl_desc *old_sg_desc = sg_list;
776 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
777
778 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
779 if (!sg_list)
780 return BLK_STS_RESOURCE;
781
782 i = 0;
783 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
784 sg_list[i++] = *link;
785 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
786 }
787
788 nvme_pci_sgl_set_data(&sg_list[i++], sg);
789 sg = sg_next(sg);
790 } while (--entries > 0);
791
792 return BLK_STS_OK;
793 }
794
795 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
796 struct nvme_command *cmnd)
797 {
798 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
799 struct request_queue *q = req->q;
800 enum dma_data_direction dma_dir = rq_data_dir(req) ?
801 DMA_TO_DEVICE : DMA_FROM_DEVICE;
802 blk_status_t ret = BLK_STS_IOERR;
803 int nr_mapped;
804
805 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
806 iod->nents = blk_rq_map_sg(q, req, iod->sg);
807 if (!iod->nents)
808 goto out;
809
810 ret = BLK_STS_RESOURCE;
811 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
812 DMA_ATTR_NO_WARN);
813 if (!nr_mapped)
814 goto out;
815
816 if (iod->use_sgl)
817 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
818 else
819 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
820
821 if (ret != BLK_STS_OK)
822 goto out_unmap;
823
824 ret = BLK_STS_IOERR;
825 if (blk_integrity_rq(req)) {
826 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
827 goto out_unmap;
828
829 sg_init_table(&iod->meta_sg, 1);
830 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
831 goto out_unmap;
832
833 if (req_op(req) == REQ_OP_WRITE)
834 nvme_dif_remap(req, nvme_dif_prep);
835
836 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
837 goto out_unmap;
838 }
839
840 if (blk_integrity_rq(req))
841 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
842 return BLK_STS_OK;
843
844 out_unmap:
845 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
846 out:
847 return ret;
848 }
849
850 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
851 {
852 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
853 enum dma_data_direction dma_dir = rq_data_dir(req) ?
854 DMA_TO_DEVICE : DMA_FROM_DEVICE;
855
856 if (iod->nents) {
857 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
858 if (blk_integrity_rq(req)) {
859 if (req_op(req) == REQ_OP_READ)
860 nvme_dif_remap(req, nvme_dif_complete);
861 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
862 }
863 }
864
865 nvme_cleanup_cmd(req);
866 nvme_free_iod(dev, req);
867 }
868
869 /*
870 * NOTE: ns is NULL when called on the admin queue.
871 */
872 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
873 const struct blk_mq_queue_data *bd)
874 {
875 struct nvme_ns *ns = hctx->queue->queuedata;
876 struct nvme_queue *nvmeq = hctx->driver_data;
877 struct nvme_dev *dev = nvmeq->dev;
878 struct request *req = bd->rq;
879 struct nvme_command cmnd;
880 blk_status_t ret;
881
882 ret = nvme_setup_cmd(ns, req, &cmnd);
883 if (ret)
884 return ret;
885
886 ret = nvme_init_iod(req, dev);
887 if (ret)
888 goto out_free_cmd;
889
890 if (blk_rq_nr_phys_segments(req)) {
891 ret = nvme_map_data(dev, req, &cmnd);
892 if (ret)
893 goto out_cleanup_iod;
894 }
895
896 blk_mq_start_request(req);
897
898 spin_lock_irq(&nvmeq->q_lock);
899 if (unlikely(nvmeq->cq_vector < 0)) {
900 ret = BLK_STS_IOERR;
901 spin_unlock_irq(&nvmeq->q_lock);
902 goto out_cleanup_iod;
903 }
904 __nvme_submit_cmd(nvmeq, &cmnd);
905 nvme_process_cq(nvmeq);
906 spin_unlock_irq(&nvmeq->q_lock);
907 return BLK_STS_OK;
908 out_cleanup_iod:
909 nvme_free_iod(dev, req);
910 out_free_cmd:
911 nvme_cleanup_cmd(req);
912 return ret;
913 }
914
915 static void nvme_pci_complete_rq(struct request *req)
916 {
917 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
918
919 nvme_unmap_data(iod->nvmeq->dev, req);
920 nvme_complete_rq(req);
921 }
922
923 /* We read the CQE phase first to check if the rest of the entry is valid */
924 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
925 u16 phase)
926 {
927 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
928 }
929
930 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
931 {
932 u16 head = nvmeq->cq_head;
933
934 if (likely(nvmeq->cq_vector >= 0)) {
935 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
936 nvmeq->dbbuf_cq_ei))
937 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
938 }
939 }
940
941 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
942 struct nvme_completion *cqe)
943 {
944 struct request *req;
945
946 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
947 dev_warn(nvmeq->dev->ctrl.device,
948 "invalid id %d completed on queue %d\n",
949 cqe->command_id, le16_to_cpu(cqe->sq_id));
950 return;
951 }
952
953 /*
954 * AEN requests are special as they don't time out and can
955 * survive any kind of queue freeze and often don't respond to
956 * aborts. We don't even bother to allocate a struct request
957 * for them but rather special case them here.
958 */
959 if (unlikely(nvmeq->qid == 0 &&
960 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
961 nvme_complete_async_event(&nvmeq->dev->ctrl,
962 cqe->status, &cqe->result);
963 return;
964 }
965
966 nvmeq->cqe_seen = 1;
967 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
968 nvme_end_request(req, cqe->status, cqe->result);
969 }
970
971 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
972 struct nvme_completion *cqe)
973 {
974 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
975 *cqe = nvmeq->cqes[nvmeq->cq_head];
976
977 if (++nvmeq->cq_head == nvmeq->q_depth) {
978 nvmeq->cq_head = 0;
979 nvmeq->cq_phase = !nvmeq->cq_phase;
980 }
981 return true;
982 }
983 return false;
984 }
985
986 static void nvme_process_cq(struct nvme_queue *nvmeq)
987 {
988 struct nvme_completion cqe;
989 int consumed = 0;
990
991 while (nvme_read_cqe(nvmeq, &cqe)) {
992 nvme_handle_cqe(nvmeq, &cqe);
993 consumed++;
994 }
995
996 if (consumed)
997 nvme_ring_cq_doorbell(nvmeq);
998 }
999
1000 static irqreturn_t nvme_irq(int irq, void *data)
1001 {
1002 irqreturn_t result;
1003 struct nvme_queue *nvmeq = data;
1004 spin_lock(&nvmeq->q_lock);
1005 nvme_process_cq(nvmeq);
1006 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
1007 nvmeq->cqe_seen = 0;
1008 spin_unlock(&nvmeq->q_lock);
1009 return result;
1010 }
1011
1012 static irqreturn_t nvme_irq_check(int irq, void *data)
1013 {
1014 struct nvme_queue *nvmeq = data;
1015 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
1016 return IRQ_WAKE_THREAD;
1017 return IRQ_NONE;
1018 }
1019
1020 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
1021 {
1022 struct nvme_completion cqe;
1023 int found = 0, consumed = 0;
1024
1025 if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
1026 return 0;
1027
1028 spin_lock_irq(&nvmeq->q_lock);
1029 while (nvme_read_cqe(nvmeq, &cqe)) {
1030 nvme_handle_cqe(nvmeq, &cqe);
1031 consumed++;
1032
1033 if (tag == cqe.command_id) {
1034 found = 1;
1035 break;
1036 }
1037 }
1038
1039 if (consumed)
1040 nvme_ring_cq_doorbell(nvmeq);
1041 spin_unlock_irq(&nvmeq->q_lock);
1042
1043 return found;
1044 }
1045
1046 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1047 {
1048 struct nvme_queue *nvmeq = hctx->driver_data;
1049
1050 return __nvme_poll(nvmeq, tag);
1051 }
1052
1053 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1054 {
1055 struct nvme_dev *dev = to_nvme_dev(ctrl);
1056 struct nvme_queue *nvmeq = dev->queues[0];
1057 struct nvme_command c;
1058
1059 memset(&c, 0, sizeof(c));
1060 c.common.opcode = nvme_admin_async_event;
1061 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1062
1063 spin_lock_irq(&nvmeq->q_lock);
1064 __nvme_submit_cmd(nvmeq, &c);
1065 spin_unlock_irq(&nvmeq->q_lock);
1066 }
1067
1068 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1069 {
1070 struct nvme_command c;
1071
1072 memset(&c, 0, sizeof(c));
1073 c.delete_queue.opcode = opcode;
1074 c.delete_queue.qid = cpu_to_le16(id);
1075
1076 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1077 }
1078
1079 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1080 struct nvme_queue *nvmeq)
1081 {
1082 struct nvme_ctrl *ctrl = &dev->ctrl;
1083 struct nvme_command c;
1084 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1085
1086 /*
1087 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1088 * set. Since URGENT priority is zeroes, it makes all queues
1089 * URGENT.
1090 */
1091 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1092 flags |= NVME_SQ_PRIO_MEDIUM;
1093
1094 /*
1095 * Note: we (ab)use the fact that the prp fields survive if no data
1096 * is attached to the request.
1097 */
1098 memset(&c, 0, sizeof(c));
1099 c.create_cq.opcode = nvme_admin_create_cq;
1100 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1101 c.create_cq.cqid = cpu_to_le16(qid);
1102 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1103 c.create_cq.cq_flags = cpu_to_le16(flags);
1104 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1105
1106 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1107 }
1108
1109 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1110 struct nvme_queue *nvmeq)
1111 {
1112 struct nvme_command c;
1113 int flags = NVME_QUEUE_PHYS_CONTIG;
1114
1115 /*
1116 * Note: we (ab)use the fact that the prp fields survive if no data
1117 * is attached to the request.
1118 */
1119 memset(&c, 0, sizeof(c));
1120 c.create_sq.opcode = nvme_admin_create_sq;
1121 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1122 c.create_sq.sqid = cpu_to_le16(qid);
1123 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1124 c.create_sq.sq_flags = cpu_to_le16(flags);
1125 c.create_sq.cqid = cpu_to_le16(qid);
1126
1127 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1128 }
1129
1130 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1131 {
1132 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1133 }
1134
1135 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1136 {
1137 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1138 }
1139
1140 static void abort_endio(struct request *req, blk_status_t error)
1141 {
1142 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1143 struct nvme_queue *nvmeq = iod->nvmeq;
1144
1145 dev_warn(nvmeq->dev->ctrl.device,
1146 "Abort status: 0x%x", nvme_req(req)->status);
1147 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1148 blk_mq_free_request(req);
1149 }
1150
1151 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1152 {
1153
1154 /* If true, indicates loss of adapter communication, possibly by a
1155 * NVMe Subsystem reset.
1156 */
1157 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1158
1159 /* If there is a reset ongoing, we shouldn't reset again. */
1160 if (dev->ctrl.state == NVME_CTRL_RESETTING)
1161 return false;
1162
1163 /* We shouldn't reset unless the controller is on fatal error state
1164 * _or_ if we lost the communication with it.
1165 */
1166 if (!(csts & NVME_CSTS_CFS) && !nssro)
1167 return false;
1168
1169 return true;
1170 }
1171
1172 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1173 {
1174 /* Read a config register to help see what died. */
1175 u16 pci_status;
1176 int result;
1177
1178 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1179 &pci_status);
1180 if (result == PCIBIOS_SUCCESSFUL)
1181 dev_warn(dev->ctrl.device,
1182 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1183 csts, pci_status);
1184 else
1185 dev_warn(dev->ctrl.device,
1186 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1187 csts, result);
1188 }
1189
1190 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1191 {
1192 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1193 struct nvme_queue *nvmeq = iod->nvmeq;
1194 struct nvme_dev *dev = nvmeq->dev;
1195 struct request *abort_req;
1196 struct nvme_command cmd;
1197 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1198
1199 /* If PCI error recovery process is happening, we cannot reset or
1200 * the recovery mechanism will surely fail.
1201 */
1202 mb();
1203 if (pci_channel_offline(to_pci_dev(dev->dev)))
1204 return BLK_EH_RESET_TIMER;
1205
1206 /*
1207 * Reset immediately if the controller is failed
1208 */
1209 if (nvme_should_reset(dev, csts)) {
1210 nvme_warn_reset(dev, csts);
1211 nvme_dev_disable(dev, false);
1212 nvme_reset_ctrl(&dev->ctrl);
1213 return BLK_EH_HANDLED;
1214 }
1215
1216 /*
1217 * Did we miss an interrupt?
1218 */
1219 if (__nvme_poll(nvmeq, req->tag)) {
1220 dev_warn(dev->ctrl.device,
1221 "I/O %d QID %d timeout, completion polled\n",
1222 req->tag, nvmeq->qid);
1223 return BLK_EH_HANDLED;
1224 }
1225
1226 /*
1227 * Shutdown immediately if controller times out while starting. The
1228 * reset work will see the pci device disabled when it gets the forced
1229 * cancellation error. All outstanding requests are completed on
1230 * shutdown, so we return BLK_EH_HANDLED.
1231 */
1232 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1233 dev_warn(dev->ctrl.device,
1234 "I/O %d QID %d timeout, disable controller\n",
1235 req->tag, nvmeq->qid);
1236 nvme_dev_disable(dev, false);
1237 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1238 return BLK_EH_HANDLED;
1239 }
1240
1241 /*
1242 * Shutdown the controller immediately and schedule a reset if the
1243 * command was already aborted once before and still hasn't been
1244 * returned to the driver, or if this is the admin queue.
1245 */
1246 if (!nvmeq->qid || iod->aborted) {
1247 dev_warn(dev->ctrl.device,
1248 "I/O %d QID %d timeout, reset controller\n",
1249 req->tag, nvmeq->qid);
1250 nvme_dev_disable(dev, false);
1251 nvme_reset_ctrl(&dev->ctrl);
1252
1253 /*
1254 * Mark the request as handled, since the inline shutdown
1255 * forces all outstanding requests to complete.
1256 */
1257 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1258 return BLK_EH_HANDLED;
1259 }
1260
1261 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1262 atomic_inc(&dev->ctrl.abort_limit);
1263 return BLK_EH_RESET_TIMER;
1264 }
1265 iod->aborted = 1;
1266
1267 memset(&cmd, 0, sizeof(cmd));
1268 cmd.abort.opcode = nvme_admin_abort_cmd;
1269 cmd.abort.cid = req->tag;
1270 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1271
1272 dev_warn(nvmeq->dev->ctrl.device,
1273 "I/O %d QID %d timeout, aborting\n",
1274 req->tag, nvmeq->qid);
1275
1276 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1277 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1278 if (IS_ERR(abort_req)) {
1279 atomic_inc(&dev->ctrl.abort_limit);
1280 return BLK_EH_RESET_TIMER;
1281 }
1282
1283 abort_req->timeout = ADMIN_TIMEOUT;
1284 abort_req->end_io_data = NULL;
1285 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1286
1287 /*
1288 * The aborted req will be completed on receiving the abort req.
1289 * We enable the timer again. If hit twice, it'll cause a device reset,
1290 * as the device then is in a faulty state.
1291 */
1292 return BLK_EH_RESET_TIMER;
1293 }
1294
1295 static void nvme_free_queue(struct nvme_queue *nvmeq)
1296 {
1297 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1298 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1299 if (nvmeq->sq_cmds)
1300 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1301 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1302 kfree(nvmeq);
1303 }
1304
1305 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1306 {
1307 int i;
1308
1309 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1310 struct nvme_queue *nvmeq = dev->queues[i];
1311 dev->ctrl.queue_count--;
1312 dev->queues[i] = NULL;
1313 nvme_free_queue(nvmeq);
1314 }
1315 }
1316
1317 /**
1318 * nvme_suspend_queue - put queue into suspended state
1319 * @nvmeq - queue to suspend
1320 */
1321 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1322 {
1323 int vector;
1324
1325 spin_lock_irq(&nvmeq->q_lock);
1326 if (nvmeq->cq_vector == -1) {
1327 spin_unlock_irq(&nvmeq->q_lock);
1328 return 1;
1329 }
1330 vector = nvmeq->cq_vector;
1331 nvmeq->dev->online_queues--;
1332 nvmeq->cq_vector = -1;
1333 spin_unlock_irq(&nvmeq->q_lock);
1334
1335 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1336 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1337
1338 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1339
1340 return 0;
1341 }
1342
1343 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1344 {
1345 struct nvme_queue *nvmeq = dev->queues[0];
1346
1347 if (!nvmeq)
1348 return;
1349 if (nvme_suspend_queue(nvmeq))
1350 return;
1351
1352 if (shutdown)
1353 nvme_shutdown_ctrl(&dev->ctrl);
1354 else
1355 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1356
1357 spin_lock_irq(&nvmeq->q_lock);
1358 nvme_process_cq(nvmeq);
1359 spin_unlock_irq(&nvmeq->q_lock);
1360 }
1361
1362 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1363 int entry_size)
1364 {
1365 int q_depth = dev->q_depth;
1366 unsigned q_size_aligned = roundup(q_depth * entry_size,
1367 dev->ctrl.page_size);
1368
1369 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1370 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1371 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1372 q_depth = div_u64(mem_per_q, entry_size);
1373
1374 /*
1375 * Ensure the reduced q_depth is above some threshold where it
1376 * would be better to map queues in system memory with the
1377 * original depth
1378 */
1379 if (q_depth < 64)
1380 return -ENOMEM;
1381 }
1382
1383 return q_depth;
1384 }
1385
1386 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1387 int qid, int depth)
1388 {
1389 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1390 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1391 dev->ctrl.page_size);
1392 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1393 nvmeq->sq_cmds_io = dev->cmb + offset;
1394 } else {
1395 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1396 &nvmeq->sq_dma_addr, GFP_KERNEL);
1397 if (!nvmeq->sq_cmds)
1398 return -ENOMEM;
1399 }
1400
1401 return 0;
1402 }
1403
1404 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1405 int depth, int node)
1406 {
1407 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1408 node);
1409 if (!nvmeq)
1410 return NULL;
1411
1412 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1413 &nvmeq->cq_dma_addr, GFP_KERNEL);
1414 if (!nvmeq->cqes)
1415 goto free_nvmeq;
1416
1417 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1418 goto free_cqdma;
1419
1420 nvmeq->q_dmadev = dev->dev;
1421 nvmeq->dev = dev;
1422 spin_lock_init(&nvmeq->q_lock);
1423 nvmeq->cq_head = 0;
1424 nvmeq->cq_phase = 1;
1425 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1426 nvmeq->q_depth = depth;
1427 nvmeq->qid = qid;
1428 nvmeq->cq_vector = -1;
1429 dev->queues[qid] = nvmeq;
1430 dev->ctrl.queue_count++;
1431
1432 return nvmeq;
1433
1434 free_cqdma:
1435 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1436 nvmeq->cq_dma_addr);
1437 free_nvmeq:
1438 kfree(nvmeq);
1439 return NULL;
1440 }
1441
1442 static int queue_request_irq(struct nvme_queue *nvmeq)
1443 {
1444 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1445 int nr = nvmeq->dev->ctrl.instance;
1446
1447 if (use_threaded_interrupts) {
1448 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1449 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1450 } else {
1451 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1452 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1453 }
1454 }
1455
1456 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1457 {
1458 struct nvme_dev *dev = nvmeq->dev;
1459
1460 spin_lock_irq(&nvmeq->q_lock);
1461 nvmeq->sq_tail = 0;
1462 nvmeq->cq_head = 0;
1463 nvmeq->cq_phase = 1;
1464 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1465 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1466 nvme_dbbuf_init(dev, nvmeq, qid);
1467 dev->online_queues++;
1468 spin_unlock_irq(&nvmeq->q_lock);
1469 }
1470
1471 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1472 {
1473 struct nvme_dev *dev = nvmeq->dev;
1474 int result;
1475
1476 nvmeq->cq_vector = qid - 1;
1477 result = adapter_alloc_cq(dev, qid, nvmeq);
1478 if (result < 0)
1479 goto release_vector;
1480
1481 result = adapter_alloc_sq(dev, qid, nvmeq);
1482 if (result < 0)
1483 goto release_cq;
1484
1485 nvme_init_queue(nvmeq, qid);
1486 result = queue_request_irq(nvmeq);
1487 if (result < 0)
1488 goto release_sq;
1489
1490 return result;
1491
1492 release_sq:
1493 dev->online_queues--;
1494 adapter_delete_sq(dev, qid);
1495 release_cq:
1496 adapter_delete_cq(dev, qid);
1497 release_vector:
1498 nvmeq->cq_vector = -1;
1499 return result;
1500 }
1501
1502 static const struct blk_mq_ops nvme_mq_admin_ops = {
1503 .queue_rq = nvme_queue_rq,
1504 .complete = nvme_pci_complete_rq,
1505 .init_hctx = nvme_admin_init_hctx,
1506 .exit_hctx = nvme_admin_exit_hctx,
1507 .init_request = nvme_init_request,
1508 .timeout = nvme_timeout,
1509 };
1510
1511 static const struct blk_mq_ops nvme_mq_ops = {
1512 .queue_rq = nvme_queue_rq,
1513 .complete = nvme_pci_complete_rq,
1514 .init_hctx = nvme_init_hctx,
1515 .init_request = nvme_init_request,
1516 .map_queues = nvme_pci_map_queues,
1517 .timeout = nvme_timeout,
1518 .poll = nvme_poll,
1519 };
1520
1521 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1522 {
1523 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1524 /*
1525 * If the controller was reset during removal, it's possible
1526 * user requests may be waiting on a stopped queue. Start the
1527 * queue to flush these to completion.
1528 */
1529 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1530 blk_cleanup_queue(dev->ctrl.admin_q);
1531 blk_mq_free_tag_set(&dev->admin_tagset);
1532 }
1533 }
1534
1535 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1536 {
1537 if (!dev->ctrl.admin_q) {
1538 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1539 dev->admin_tagset.nr_hw_queues = 1;
1540
1541 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1542 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1543 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1544 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1545 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1546 dev->admin_tagset.driver_data = dev;
1547
1548 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1549 return -ENOMEM;
1550 dev->ctrl.admin_tagset = &dev->admin_tagset;
1551
1552 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1553 if (IS_ERR(dev->ctrl.admin_q)) {
1554 blk_mq_free_tag_set(&dev->admin_tagset);
1555 return -ENOMEM;
1556 }
1557 if (!blk_get_queue(dev->ctrl.admin_q)) {
1558 nvme_dev_remove_admin(dev);
1559 dev->ctrl.admin_q = NULL;
1560 return -ENODEV;
1561 }
1562 } else
1563 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1564
1565 return 0;
1566 }
1567
1568 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1569 {
1570 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1571 }
1572
1573 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1574 {
1575 struct pci_dev *pdev = to_pci_dev(dev->dev);
1576
1577 if (size <= dev->bar_mapped_size)
1578 return 0;
1579 if (size > pci_resource_len(pdev, 0))
1580 return -ENOMEM;
1581 if (dev->bar)
1582 iounmap(dev->bar);
1583 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1584 if (!dev->bar) {
1585 dev->bar_mapped_size = 0;
1586 return -ENOMEM;
1587 }
1588 dev->bar_mapped_size = size;
1589 dev->dbs = dev->bar + NVME_REG_DBS;
1590
1591 return 0;
1592 }
1593
1594 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1595 {
1596 int result;
1597 u32 aqa;
1598 struct nvme_queue *nvmeq;
1599
1600 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1601 if (result < 0)
1602 return result;
1603
1604 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1605 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1606
1607 if (dev->subsystem &&
1608 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1609 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1610
1611 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1612 if (result < 0)
1613 return result;
1614
1615 nvmeq = dev->queues[0];
1616 if (!nvmeq) {
1617 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1618 dev_to_node(dev->dev));
1619 if (!nvmeq)
1620 return -ENOMEM;
1621 }
1622
1623 aqa = nvmeq->q_depth - 1;
1624 aqa |= aqa << 16;
1625
1626 writel(aqa, dev->bar + NVME_REG_AQA);
1627 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1628 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1629
1630 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1631 if (result)
1632 return result;
1633
1634 nvmeq->cq_vector = 0;
1635 nvme_init_queue(nvmeq, 0);
1636 result = queue_request_irq(nvmeq);
1637 if (result) {
1638 nvmeq->cq_vector = -1;
1639 return result;
1640 }
1641
1642 return result;
1643 }
1644
1645 static int nvme_create_io_queues(struct nvme_dev *dev)
1646 {
1647 unsigned i, max;
1648 int ret = 0;
1649
1650 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1651 /* vector == qid - 1, match nvme_create_queue */
1652 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1653 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1654 ret = -ENOMEM;
1655 break;
1656 }
1657 }
1658
1659 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1660 for (i = dev->online_queues; i <= max; i++) {
1661 ret = nvme_create_queue(dev->queues[i], i);
1662 if (ret)
1663 break;
1664 }
1665
1666 /*
1667 * Ignore failing Create SQ/CQ commands, we can continue with less
1668 * than the desired aount of queues, and even a controller without
1669 * I/O queues an still be used to issue admin commands. This might
1670 * be useful to upgrade a buggy firmware for example.
1671 */
1672 return ret >= 0 ? 0 : ret;
1673 }
1674
1675 static ssize_t nvme_cmb_show(struct device *dev,
1676 struct device_attribute *attr,
1677 char *buf)
1678 {
1679 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1680
1681 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1682 ndev->cmbloc, ndev->cmbsz);
1683 }
1684 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1685
1686 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1687 {
1688 u64 szu, size, offset;
1689 resource_size_t bar_size;
1690 struct pci_dev *pdev = to_pci_dev(dev->dev);
1691 void __iomem *cmb;
1692 int bar;
1693
1694 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1695 if (!(NVME_CMB_SZ(dev->cmbsz)))
1696 return NULL;
1697 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1698
1699 if (!use_cmb_sqes)
1700 return NULL;
1701
1702 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1703 size = szu * NVME_CMB_SZ(dev->cmbsz);
1704 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1705 bar = NVME_CMB_BIR(dev->cmbloc);
1706 bar_size = pci_resource_len(pdev, bar);
1707
1708 if (offset > bar_size)
1709 return NULL;
1710
1711 /*
1712 * Controllers may support a CMB size larger than their BAR,
1713 * for example, due to being behind a bridge. Reduce the CMB to
1714 * the reported size of the BAR
1715 */
1716 if (size > bar_size - offset)
1717 size = bar_size - offset;
1718
1719 cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1720 if (!cmb)
1721 return NULL;
1722
1723 dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1724 dev->cmb_size = size;
1725 return cmb;
1726 }
1727
1728 static inline void nvme_release_cmb(struct nvme_dev *dev)
1729 {
1730 if (dev->cmb) {
1731 iounmap(dev->cmb);
1732 dev->cmb = NULL;
1733 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1734 &dev_attr_cmb.attr, NULL);
1735 dev->cmbsz = 0;
1736 }
1737 }
1738
1739 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1740 {
1741 u64 dma_addr = dev->host_mem_descs_dma;
1742 struct nvme_command c;
1743 int ret;
1744
1745 memset(&c, 0, sizeof(c));
1746 c.features.opcode = nvme_admin_set_features;
1747 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1748 c.features.dword11 = cpu_to_le32(bits);
1749 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1750 ilog2(dev->ctrl.page_size));
1751 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1752 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1753 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1754
1755 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1756 if (ret) {
1757 dev_warn(dev->ctrl.device,
1758 "failed to set host mem (err %d, flags %#x).\n",
1759 ret, bits);
1760 }
1761 return ret;
1762 }
1763
1764 static void nvme_free_host_mem(struct nvme_dev *dev)
1765 {
1766 int i;
1767
1768 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1769 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1770 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1771
1772 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1773 le64_to_cpu(desc->addr));
1774 }
1775
1776 kfree(dev->host_mem_desc_bufs);
1777 dev->host_mem_desc_bufs = NULL;
1778 dma_free_coherent(dev->dev,
1779 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1780 dev->host_mem_descs, dev->host_mem_descs_dma);
1781 dev->host_mem_descs = NULL;
1782 dev->nr_host_mem_descs = 0;
1783 }
1784
1785 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1786 u32 chunk_size)
1787 {
1788 struct nvme_host_mem_buf_desc *descs;
1789 u32 max_entries, len;
1790 dma_addr_t descs_dma;
1791 int i = 0;
1792 void **bufs;
1793 u64 size = 0, tmp;
1794
1795 tmp = (preferred + chunk_size - 1);
1796 do_div(tmp, chunk_size);
1797 max_entries = tmp;
1798
1799 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1800 max_entries = dev->ctrl.hmmaxd;
1801
1802 descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1803 &descs_dma, GFP_KERNEL);
1804 if (!descs)
1805 goto out;
1806
1807 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1808 if (!bufs)
1809 goto out_free_descs;
1810
1811 for (size = 0; size < preferred && i < max_entries; size += len) {
1812 dma_addr_t dma_addr;
1813
1814 len = min_t(u64, chunk_size, preferred - size);
1815 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1816 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1817 if (!bufs[i])
1818 break;
1819
1820 descs[i].addr = cpu_to_le64(dma_addr);
1821 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1822 i++;
1823 }
1824
1825 if (!size)
1826 goto out_free_bufs;
1827
1828 dev->nr_host_mem_descs = i;
1829 dev->host_mem_size = size;
1830 dev->host_mem_descs = descs;
1831 dev->host_mem_descs_dma = descs_dma;
1832 dev->host_mem_desc_bufs = bufs;
1833 return 0;
1834
1835 out_free_bufs:
1836 while (--i >= 0) {
1837 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1838
1839 dma_free_coherent(dev->dev, size, bufs[i],
1840 le64_to_cpu(descs[i].addr));
1841 }
1842
1843 kfree(bufs);
1844 out_free_descs:
1845 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1846 descs_dma);
1847 out:
1848 dev->host_mem_descs = NULL;
1849 return -ENOMEM;
1850 }
1851
1852 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1853 {
1854 u32 chunk_size;
1855
1856 /* start big and work our way down */
1857 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1858 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1859 chunk_size /= 2) {
1860 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1861 if (!min || dev->host_mem_size >= min)
1862 return 0;
1863 nvme_free_host_mem(dev);
1864 }
1865 }
1866
1867 return -ENOMEM;
1868 }
1869
1870 static int nvme_setup_host_mem(struct nvme_dev *dev)
1871 {
1872 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1873 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1874 u64 min = (u64)dev->ctrl.hmmin * 4096;
1875 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1876 int ret = 0;
1877
1878 preferred = min(preferred, max);
1879 if (min > max) {
1880 dev_warn(dev->ctrl.device,
1881 "min host memory (%lld MiB) above limit (%d MiB).\n",
1882 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1883 nvme_free_host_mem(dev);
1884 return 0;
1885 }
1886
1887 /*
1888 * If we already have a buffer allocated check if we can reuse it.
1889 */
1890 if (dev->host_mem_descs) {
1891 if (dev->host_mem_size >= min)
1892 enable_bits |= NVME_HOST_MEM_RETURN;
1893 else
1894 nvme_free_host_mem(dev);
1895 }
1896
1897 if (!dev->host_mem_descs) {
1898 if (nvme_alloc_host_mem(dev, min, preferred)) {
1899 dev_warn(dev->ctrl.device,
1900 "failed to allocate host memory buffer.\n");
1901 return 0; /* controller must work without HMB */
1902 }
1903
1904 dev_info(dev->ctrl.device,
1905 "allocated %lld MiB host memory buffer.\n",
1906 dev->host_mem_size >> ilog2(SZ_1M));
1907 }
1908
1909 ret = nvme_set_host_mem(dev, enable_bits);
1910 if (ret)
1911 nvme_free_host_mem(dev);
1912 return ret;
1913 }
1914
1915 static int nvme_setup_io_queues(struct nvme_dev *dev)
1916 {
1917 struct nvme_queue *adminq = dev->queues[0];
1918 struct pci_dev *pdev = to_pci_dev(dev->dev);
1919 int result, nr_io_queues;
1920 unsigned long size;
1921
1922 nr_io_queues = num_possible_cpus();
1923 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1924 if (result < 0)
1925 return result;
1926
1927 if (nr_io_queues == 0)
1928 return 0;
1929
1930 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1931 result = nvme_cmb_qdepth(dev, nr_io_queues,
1932 sizeof(struct nvme_command));
1933 if (result > 0)
1934 dev->q_depth = result;
1935 else
1936 nvme_release_cmb(dev);
1937 }
1938
1939 do {
1940 size = db_bar_size(dev, nr_io_queues);
1941 result = nvme_remap_bar(dev, size);
1942 if (!result)
1943 break;
1944 if (!--nr_io_queues)
1945 return -ENOMEM;
1946 } while (1);
1947 adminq->q_db = dev->dbs;
1948
1949 /* Deregister the admin queue's interrupt */
1950 pci_free_irq(pdev, 0, adminq);
1951
1952 /*
1953 * If we enable msix early due to not intx, disable it again before
1954 * setting up the full range we need.
1955 */
1956 pci_free_irq_vectors(pdev);
1957 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1958 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1959 if (nr_io_queues <= 0)
1960 return -EIO;
1961 dev->max_qid = nr_io_queues;
1962
1963 /*
1964 * Should investigate if there's a performance win from allocating
1965 * more queues than interrupt vectors; it might allow the submission
1966 * path to scale better, even if the receive path is limited by the
1967 * number of interrupts.
1968 */
1969
1970 result = queue_request_irq(adminq);
1971 if (result) {
1972 adminq->cq_vector = -1;
1973 return result;
1974 }
1975 return nvme_create_io_queues(dev);
1976 }
1977
1978 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1979 {
1980 struct nvme_queue *nvmeq = req->end_io_data;
1981
1982 blk_mq_free_request(req);
1983 complete(&nvmeq->dev->ioq_wait);
1984 }
1985
1986 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1987 {
1988 struct nvme_queue *nvmeq = req->end_io_data;
1989
1990 if (!error) {
1991 unsigned long flags;
1992
1993 /*
1994 * We might be called with the AQ q_lock held
1995 * and the I/O queue q_lock should always
1996 * nest inside the AQ one.
1997 */
1998 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1999 SINGLE_DEPTH_NESTING);
2000 nvme_process_cq(nvmeq);
2001 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
2002 }
2003
2004 nvme_del_queue_end(req, error);
2005 }
2006
2007 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2008 {
2009 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2010 struct request *req;
2011 struct nvme_command cmd;
2012
2013 memset(&cmd, 0, sizeof(cmd));
2014 cmd.delete_queue.opcode = opcode;
2015 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2016
2017 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2018 if (IS_ERR(req))
2019 return PTR_ERR(req);
2020
2021 req->timeout = ADMIN_TIMEOUT;
2022 req->end_io_data = nvmeq;
2023
2024 blk_execute_rq_nowait(q, NULL, req, false,
2025 opcode == nvme_admin_delete_cq ?
2026 nvme_del_cq_end : nvme_del_queue_end);
2027 return 0;
2028 }
2029
2030 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
2031 {
2032 int pass;
2033 unsigned long timeout;
2034 u8 opcode = nvme_admin_delete_sq;
2035
2036 for (pass = 0; pass < 2; pass++) {
2037 int sent = 0, i = queues;
2038
2039 reinit_completion(&dev->ioq_wait);
2040 retry:
2041 timeout = ADMIN_TIMEOUT;
2042 for (; i > 0; i--, sent++)
2043 if (nvme_delete_queue(dev->queues[i], opcode))
2044 break;
2045
2046 while (sent--) {
2047 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2048 if (timeout == 0)
2049 return;
2050 if (i)
2051 goto retry;
2052 }
2053 opcode = nvme_admin_delete_cq;
2054 }
2055 }
2056
2057 /*
2058 * Return: error value if an error occurred setting up the queues or calling
2059 * Identify Device. 0 if these succeeded, even if adding some of the
2060 * namespaces failed. At the moment, these failures are silent. TBD which
2061 * failures should be reported.
2062 */
2063 static int nvme_dev_add(struct nvme_dev *dev)
2064 {
2065 if (!dev->ctrl.tagset) {
2066 dev->tagset.ops = &nvme_mq_ops;
2067 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2068 dev->tagset.timeout = NVME_IO_TIMEOUT;
2069 dev->tagset.numa_node = dev_to_node(dev->dev);
2070 dev->tagset.queue_depth =
2071 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2072 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2073 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2074 dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2075 nvme_pci_cmd_size(dev, true));
2076 }
2077 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2078 dev->tagset.driver_data = dev;
2079
2080 if (blk_mq_alloc_tag_set(&dev->tagset))
2081 return 0;
2082 dev->ctrl.tagset = &dev->tagset;
2083
2084 nvme_dbbuf_set(dev);
2085 } else {
2086 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2087
2088 /* Free previously allocated queues that are no longer usable */
2089 nvme_free_queues(dev, dev->online_queues);
2090 }
2091
2092 return 0;
2093 }
2094
2095 static int nvme_pci_enable(struct nvme_dev *dev)
2096 {
2097 int result = -ENOMEM;
2098 struct pci_dev *pdev = to_pci_dev(dev->dev);
2099
2100 if (pci_enable_device_mem(pdev))
2101 return result;
2102
2103 pci_set_master(pdev);
2104
2105 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2106 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2107 goto disable;
2108
2109 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2110 result = -ENODEV;
2111 goto disable;
2112 }
2113
2114 /*
2115 * Some devices and/or platforms don't advertise or work with INTx
2116 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2117 * adjust this later.
2118 */
2119 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2120 if (result < 0)
2121 return result;
2122
2123 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2124
2125 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2126 io_queue_depth);
2127 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2128 dev->dbs = dev->bar + 4096;
2129
2130 /*
2131 * Temporary fix for the Apple controller found in the MacBook8,1 and
2132 * some MacBook7,1 to avoid controller resets and data loss.
2133 */
2134 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2135 dev->q_depth = 2;
2136 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2137 "set queue depth=%u to work around controller resets\n",
2138 dev->q_depth);
2139 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2140 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2141 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2142 dev->q_depth = 64;
2143 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2144 "set queue depth=%u\n", dev->q_depth);
2145 }
2146
2147 /*
2148 * CMBs can currently only exist on >=1.2 PCIe devices. We only
2149 * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
2150 * has no name we can pass NULL as final argument to
2151 * sysfs_add_file_to_group.
2152 */
2153
2154 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
2155 dev->cmb = nvme_map_cmb(dev);
2156 if (dev->cmb) {
2157 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
2158 &dev_attr_cmb.attr, NULL))
2159 dev_warn(dev->ctrl.device,
2160 "failed to add sysfs attribute for CMB\n");
2161 }
2162 }
2163
2164 pci_enable_pcie_error_reporting(pdev);
2165 pci_save_state(pdev);
2166 return 0;
2167
2168 disable:
2169 pci_disable_device(pdev);
2170 return result;
2171 }
2172
2173 static void nvme_dev_unmap(struct nvme_dev *dev)
2174 {
2175 if (dev->bar)
2176 iounmap(dev->bar);
2177 pci_release_mem_regions(to_pci_dev(dev->dev));
2178 }
2179
2180 static void nvme_pci_disable(struct nvme_dev *dev)
2181 {
2182 struct pci_dev *pdev = to_pci_dev(dev->dev);
2183
2184 nvme_release_cmb(dev);
2185 pci_free_irq_vectors(pdev);
2186
2187 if (pci_is_enabled(pdev)) {
2188 pci_disable_pcie_error_reporting(pdev);
2189 pci_disable_device(pdev);
2190 }
2191 }
2192
2193 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2194 {
2195 int i, queues;
2196 bool dead = true;
2197 struct pci_dev *pdev = to_pci_dev(dev->dev);
2198
2199 mutex_lock(&dev->shutdown_lock);
2200 if (pci_is_enabled(pdev)) {
2201 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2202
2203 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2204 dev->ctrl.state == NVME_CTRL_RESETTING)
2205 nvme_start_freeze(&dev->ctrl);
2206 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2207 pdev->error_state != pci_channel_io_normal);
2208 }
2209
2210 /*
2211 * Give the controller a chance to complete all entered requests if
2212 * doing a safe shutdown.
2213 */
2214 if (!dead) {
2215 if (shutdown)
2216 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2217
2218 /*
2219 * If the controller is still alive tell it to stop using the
2220 * host memory buffer. In theory the shutdown / reset should
2221 * make sure that it doesn't access the host memoery anymore,
2222 * but I'd rather be safe than sorry..
2223 */
2224 if (dev->host_mem_descs)
2225 nvme_set_host_mem(dev, 0);
2226
2227 }
2228 nvme_stop_queues(&dev->ctrl);
2229
2230 queues = dev->online_queues - 1;
2231 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
2232 nvme_suspend_queue(dev->queues[i]);
2233
2234 if (dead) {
2235 /* A device might become IO incapable very soon during
2236 * probe, before the admin queue is configured. Thus,
2237 * queue_count can be 0 here.
2238 */
2239 if (dev->ctrl.queue_count)
2240 nvme_suspend_queue(dev->queues[0]);
2241 } else {
2242 nvme_disable_io_queues(dev, queues);
2243 nvme_disable_admin_queue(dev, shutdown);
2244 }
2245 nvme_pci_disable(dev);
2246
2247 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2248 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2249
2250 /*
2251 * The driver will not be starting up queues again if shutting down so
2252 * must flush all entered requests to their failed completion to avoid
2253 * deadlocking blk-mq hot-cpu notifier.
2254 */
2255 if (shutdown)
2256 nvme_start_queues(&dev->ctrl);
2257 mutex_unlock(&dev->shutdown_lock);
2258 }
2259
2260 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2261 {
2262 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2263 PAGE_SIZE, PAGE_SIZE, 0);
2264 if (!dev->prp_page_pool)
2265 return -ENOMEM;
2266
2267 /* Optimisation for I/Os between 4k and 128k */
2268 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2269 256, 256, 0);
2270 if (!dev->prp_small_pool) {
2271 dma_pool_destroy(dev->prp_page_pool);
2272 return -ENOMEM;
2273 }
2274 return 0;
2275 }
2276
2277 static void nvme_release_prp_pools(struct nvme_dev *dev)
2278 {
2279 dma_pool_destroy(dev->prp_page_pool);
2280 dma_pool_destroy(dev->prp_small_pool);
2281 }
2282
2283 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2284 {
2285 struct nvme_dev *dev = to_nvme_dev(ctrl);
2286
2287 nvme_dbbuf_dma_free(dev);
2288 put_device(dev->dev);
2289 if (dev->tagset.tags)
2290 blk_mq_free_tag_set(&dev->tagset);
2291 if (dev->ctrl.admin_q)
2292 blk_put_queue(dev->ctrl.admin_q);
2293 kfree(dev->queues);
2294 free_opal_dev(dev->ctrl.opal_dev);
2295 kfree(dev);
2296 }
2297
2298 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2299 {
2300 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2301
2302 nvme_get_ctrl(&dev->ctrl);
2303 nvme_dev_disable(dev, false);
2304 if (!queue_work(nvme_wq, &dev->remove_work))
2305 nvme_put_ctrl(&dev->ctrl);
2306 }
2307
2308 static void nvme_reset_work(struct work_struct *work)
2309 {
2310 struct nvme_dev *dev =
2311 container_of(work, struct nvme_dev, ctrl.reset_work);
2312 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2313 int result = -ENODEV;
2314
2315 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2316 goto out;
2317
2318 /*
2319 * If we're called to reset a live controller first shut it down before
2320 * moving on.
2321 */
2322 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2323 nvme_dev_disable(dev, false);
2324
2325 result = nvme_pci_enable(dev);
2326 if (result)
2327 goto out;
2328
2329 result = nvme_pci_configure_admin_queue(dev);
2330 if (result)
2331 goto out;
2332
2333 result = nvme_alloc_admin_tags(dev);
2334 if (result)
2335 goto out;
2336
2337 result = nvme_init_identify(&dev->ctrl);
2338 if (result)
2339 goto out;
2340
2341 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2342 if (!dev->ctrl.opal_dev)
2343 dev->ctrl.opal_dev =
2344 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2345 else if (was_suspend)
2346 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2347 } else {
2348 free_opal_dev(dev->ctrl.opal_dev);
2349 dev->ctrl.opal_dev = NULL;
2350 }
2351
2352 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2353 result = nvme_dbbuf_dma_alloc(dev);
2354 if (result)
2355 dev_warn(dev->dev,
2356 "unable to allocate dma for dbbuf\n");
2357 }
2358
2359 if (dev->ctrl.hmpre) {
2360 result = nvme_setup_host_mem(dev);
2361 if (result < 0)
2362 goto out;
2363 }
2364
2365 result = nvme_setup_io_queues(dev);
2366 if (result)
2367 goto out;
2368
2369 /*
2370 * Keep the controller around but remove all namespaces if we don't have
2371 * any working I/O queue.
2372 */
2373 if (dev->online_queues < 2) {
2374 dev_warn(dev->ctrl.device, "IO queues not created\n");
2375 nvme_kill_queues(&dev->ctrl);
2376 nvme_remove_namespaces(&dev->ctrl);
2377 } else {
2378 nvme_start_queues(&dev->ctrl);
2379 nvme_wait_freeze(&dev->ctrl);
2380 nvme_dev_add(dev);
2381 nvme_unfreeze(&dev->ctrl);
2382 }
2383
2384 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2385 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2386 goto out;
2387 }
2388
2389 nvme_start_ctrl(&dev->ctrl);
2390 return;
2391
2392 out:
2393 nvme_remove_dead_ctrl(dev, result);
2394 }
2395
2396 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2397 {
2398 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2399 struct pci_dev *pdev = to_pci_dev(dev->dev);
2400
2401 nvme_kill_queues(&dev->ctrl);
2402 if (pci_get_drvdata(pdev))
2403 device_release_driver(&pdev->dev);
2404 nvme_put_ctrl(&dev->ctrl);
2405 }
2406
2407 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2408 {
2409 *val = readl(to_nvme_dev(ctrl)->bar + off);
2410 return 0;
2411 }
2412
2413 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2414 {
2415 writel(val, to_nvme_dev(ctrl)->bar + off);
2416 return 0;
2417 }
2418
2419 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2420 {
2421 *val = readq(to_nvme_dev(ctrl)->bar + off);
2422 return 0;
2423 }
2424
2425 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2426 .name = "pcie",
2427 .module = THIS_MODULE,
2428 .flags = NVME_F_METADATA_SUPPORTED,
2429 .reg_read32 = nvme_pci_reg_read32,
2430 .reg_write32 = nvme_pci_reg_write32,
2431 .reg_read64 = nvme_pci_reg_read64,
2432 .free_ctrl = nvme_pci_free_ctrl,
2433 .submit_async_event = nvme_pci_submit_async_event,
2434 };
2435
2436 static int nvme_dev_map(struct nvme_dev *dev)
2437 {
2438 struct pci_dev *pdev = to_pci_dev(dev->dev);
2439
2440 if (pci_request_mem_regions(pdev, "nvme"))
2441 return -ENODEV;
2442
2443 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2444 goto release;
2445
2446 return 0;
2447 release:
2448 pci_release_mem_regions(pdev);
2449 return -ENODEV;
2450 }
2451
2452 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2453 {
2454 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2455 /*
2456 * Several Samsung devices seem to drop off the PCIe bus
2457 * randomly when APST is on and uses the deepest sleep state.
2458 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2459 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2460 * 950 PRO 256GB", but it seems to be restricted to two Dell
2461 * laptops.
2462 */
2463 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2464 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2465 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2466 return NVME_QUIRK_NO_DEEPEST_PS;
2467 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2468 /*
2469 * Samsung SSD 960 EVO drops off the PCIe bus after system
2470 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2471 * within few minutes after bootup on a Coffee Lake board -
2472 * ASUS PRIME Z370-A
2473 */
2474 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2475 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2476 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2477 return NVME_QUIRK_NO_APST;
2478 }
2479
2480 return 0;
2481 }
2482
2483 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2484 {
2485 int node, result = -ENOMEM;
2486 struct nvme_dev *dev;
2487 unsigned long quirks = id->driver_data;
2488
2489 node = dev_to_node(&pdev->dev);
2490 if (node == NUMA_NO_NODE)
2491 set_dev_node(&pdev->dev, first_memory_node);
2492
2493 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2494 if (!dev)
2495 return -ENOMEM;
2496 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2497 GFP_KERNEL, node);
2498 if (!dev->queues)
2499 goto free;
2500
2501 dev->dev = get_device(&pdev->dev);
2502 pci_set_drvdata(pdev, dev);
2503
2504 result = nvme_dev_map(dev);
2505 if (result)
2506 goto put_pci;
2507
2508 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2509 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2510 mutex_init(&dev->shutdown_lock);
2511 init_completion(&dev->ioq_wait);
2512
2513 result = nvme_setup_prp_pools(dev);
2514 if (result)
2515 goto unmap;
2516
2517 quirks |= check_vendor_combination_bug(pdev);
2518
2519 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2520 quirks);
2521 if (result)
2522 goto release_pools;
2523
2524 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2525 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2526
2527 queue_work(nvme_wq, &dev->ctrl.reset_work);
2528 return 0;
2529
2530 release_pools:
2531 nvme_release_prp_pools(dev);
2532 unmap:
2533 nvme_dev_unmap(dev);
2534 put_pci:
2535 put_device(dev->dev);
2536 free:
2537 kfree(dev->queues);
2538 kfree(dev);
2539 return result;
2540 }
2541
2542 static void nvme_reset_prepare(struct pci_dev *pdev)
2543 {
2544 struct nvme_dev *dev = pci_get_drvdata(pdev);
2545 nvme_dev_disable(dev, false);
2546 }
2547
2548 static void nvme_reset_done(struct pci_dev *pdev)
2549 {
2550 struct nvme_dev *dev = pci_get_drvdata(pdev);
2551 nvme_reset_ctrl(&dev->ctrl);
2552 }
2553
2554 static void nvme_shutdown(struct pci_dev *pdev)
2555 {
2556 struct nvme_dev *dev = pci_get_drvdata(pdev);
2557 nvme_dev_disable(dev, true);
2558 }
2559
2560 /*
2561 * The driver's remove may be called on a device in a partially initialized
2562 * state. This function must not have any dependencies on the device state in
2563 * order to proceed.
2564 */
2565 static void nvme_remove(struct pci_dev *pdev)
2566 {
2567 struct nvme_dev *dev = pci_get_drvdata(pdev);
2568
2569 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2570
2571 cancel_work_sync(&dev->ctrl.reset_work);
2572 pci_set_drvdata(pdev, NULL);
2573
2574 if (!pci_device_is_present(pdev)) {
2575 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2576 nvme_dev_disable(dev, false);
2577 }
2578
2579 flush_work(&dev->ctrl.reset_work);
2580 nvme_stop_ctrl(&dev->ctrl);
2581 nvme_remove_namespaces(&dev->ctrl);
2582 nvme_dev_disable(dev, true);
2583 nvme_free_host_mem(dev);
2584 nvme_dev_remove_admin(dev);
2585 nvme_free_queues(dev, 0);
2586 nvme_uninit_ctrl(&dev->ctrl);
2587 nvme_release_prp_pools(dev);
2588 nvme_dev_unmap(dev);
2589 nvme_put_ctrl(&dev->ctrl);
2590 }
2591
2592 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2593 {
2594 int ret = 0;
2595
2596 if (numvfs == 0) {
2597 if (pci_vfs_assigned(pdev)) {
2598 dev_warn(&pdev->dev,
2599 "Cannot disable SR-IOV VFs while assigned\n");
2600 return -EPERM;
2601 }
2602 pci_disable_sriov(pdev);
2603 return 0;
2604 }
2605
2606 ret = pci_enable_sriov(pdev, numvfs);
2607 return ret ? ret : numvfs;
2608 }
2609
2610 #ifdef CONFIG_PM_SLEEP
2611 static int nvme_suspend(struct device *dev)
2612 {
2613 struct pci_dev *pdev = to_pci_dev(dev);
2614 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2615 struct nvme_ctrl *ctrl = &ndev->ctrl;
2616
2617 if (!(pm_suspend_via_s2idle() && (ctrl->quirks & NVME_QUIRK_NO_DISABLE)))
2618 nvme_dev_disable(ndev, true);
2619
2620 return 0;
2621 }
2622
2623 static int nvme_resume(struct device *dev)
2624 {
2625 struct pci_dev *pdev = to_pci_dev(dev);
2626 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2627
2628 nvme_reset_ctrl(&ndev->ctrl);
2629 return 0;
2630 }
2631 #endif
2632
2633 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2634
2635 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2636 pci_channel_state_t state)
2637 {
2638 struct nvme_dev *dev = pci_get_drvdata(pdev);
2639
2640 /*
2641 * A frozen channel requires a reset. When detected, this method will
2642 * shutdown the controller to quiesce. The controller will be restarted
2643 * after the slot reset through driver's slot_reset callback.
2644 */
2645 switch (state) {
2646 case pci_channel_io_normal:
2647 return PCI_ERS_RESULT_CAN_RECOVER;
2648 case pci_channel_io_frozen:
2649 dev_warn(dev->ctrl.device,
2650 "frozen state error detected, reset controller\n");
2651 nvme_dev_disable(dev, false);
2652 return PCI_ERS_RESULT_NEED_RESET;
2653 case pci_channel_io_perm_failure:
2654 dev_warn(dev->ctrl.device,
2655 "failure state error detected, request disconnect\n");
2656 return PCI_ERS_RESULT_DISCONNECT;
2657 }
2658 return PCI_ERS_RESULT_NEED_RESET;
2659 }
2660
2661 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2662 {
2663 struct nvme_dev *dev = pci_get_drvdata(pdev);
2664
2665 dev_info(dev->ctrl.device, "restart after slot reset\n");
2666 pci_restore_state(pdev);
2667 nvme_reset_ctrl(&dev->ctrl);
2668 return PCI_ERS_RESULT_RECOVERED;
2669 }
2670
2671 static void nvme_error_resume(struct pci_dev *pdev)
2672 {
2673 pci_cleanup_aer_uncorrect_error_status(pdev);
2674 }
2675
2676 static const struct pci_error_handlers nvme_err_handler = {
2677 .error_detected = nvme_error_detected,
2678 .slot_reset = nvme_slot_reset,
2679 .resume = nvme_error_resume,
2680 .reset_prepare = nvme_reset_prepare,
2681 .reset_done = nvme_reset_done,
2682 };
2683
2684 static const struct pci_device_id nvme_id_table[] = {
2685 { PCI_VDEVICE(INTEL, 0x0953),
2686 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2687 NVME_QUIRK_DEALLOCATE_ZEROES, },
2688 { PCI_VDEVICE(INTEL, 0x0a53),
2689 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2690 NVME_QUIRK_DEALLOCATE_ZEROES, },
2691 { PCI_VDEVICE(INTEL, 0x0a54),
2692 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2693 NVME_QUIRK_DEALLOCATE_ZEROES, },
2694 { PCI_VDEVICE(INTEL, 0x0a55),
2695 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2696 NVME_QUIRK_DEALLOCATE_ZEROES, },
2697 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
2698 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2699 NVME_QUIRK_MEDIUM_PRIO_SQ },
2700 { PCI_VDEVICE(INTEL, 0xf1a6),
2701 .driver_data = NVME_QUIRK_NO_DISABLE, },
2702 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2703 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2704 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2705 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2706 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
2707 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2708 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2709 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2710 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
2711 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2712 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
2713 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2714 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
2715 .driver_data = NVME_QUIRK_LIGHTNVM, },
2716 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
2717 .driver_data = NVME_QUIRK_LIGHTNVM, },
2718 { PCI_VDEVICE(SK_HYNIX, 0x1527), /* Sk Hynix */
2719 .driver_data = NVME_QUIRK_NO_DISABLE, },
2720 { PCI_DEVICE(0x15b7, 0x5002), /* Sandisk */
2721 .driver_data = NVME_QUIRK_NO_DISABLE, },
2722 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2723 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2724 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2725 { 0, }
2726 };
2727 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2728
2729 static struct pci_driver nvme_driver = {
2730 .name = "nvme",
2731 .id_table = nvme_id_table,
2732 .probe = nvme_probe,
2733 .remove = nvme_remove,
2734 .shutdown = nvme_shutdown,
2735 .driver = {
2736 .pm = &nvme_dev_pm_ops,
2737 },
2738 .sriov_configure = nvme_pci_sriov_configure,
2739 .err_handler = &nvme_err_handler,
2740 };
2741
2742 static int __init nvme_init(void)
2743 {
2744 return pci_register_driver(&nvme_driver);
2745 }
2746
2747 static void __exit nvme_exit(void)
2748 {
2749 pci_unregister_driver(&nvme_driver);
2750 flush_workqueue(nvme_wq);
2751 _nvme_check_size();
2752 }
2753
2754 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2755 MODULE_LICENSE("GPL");
2756 MODULE_VERSION("1.0");
2757 module_init(nvme_init);
2758 module_exit(nvme_exit);