]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/spi/spi.c
spi: allow registering empty spi_board_info lists
[mirror_ubuntu-bionic-kernel.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/property.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <uapi/linux/sched/types.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/ioport.h>
41 #include <linux/acpi.h>
42 #include <linux/highmem.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/spi.h>
46
47 static void spidev_release(struct device *dev)
48 {
49 struct spi_device *spi = to_spi_device(dev);
50
51 /* spi masters may cleanup for released devices */
52 if (spi->master->cleanup)
53 spi->master->cleanup(spi);
54
55 spi_master_put(spi->master);
56 kfree(spi);
57 }
58
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 const struct spi_device *spi = to_spi_device(dev);
63 int len;
64
65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 if (len != -ENODEV)
67 return len;
68
69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72
73 #define SPI_STATISTICS_ATTRS(field, file) \
74 static ssize_t spi_master_##field##_show(struct device *dev, \
75 struct device_attribute *attr, \
76 char *buf) \
77 { \
78 struct spi_master *master = container_of(dev, \
79 struct spi_master, dev); \
80 return spi_statistics_##field##_show(&master->statistics, buf); \
81 } \
82 static struct device_attribute dev_attr_spi_master_##field = { \
83 .attr = { .name = file, .mode = S_IRUGO }, \
84 .show = spi_master_##field##_show, \
85 }; \
86 static ssize_t spi_device_##field##_show(struct device *dev, \
87 struct device_attribute *attr, \
88 char *buf) \
89 { \
90 struct spi_device *spi = to_spi_device(dev); \
91 return spi_statistics_##field##_show(&spi->statistics, buf); \
92 } \
93 static struct device_attribute dev_attr_spi_device_##field = { \
94 .attr = { .name = file, .mode = S_IRUGO }, \
95 .show = spi_device_##field##_show, \
96 }
97
98 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
99 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
100 char *buf) \
101 { \
102 unsigned long flags; \
103 ssize_t len; \
104 spin_lock_irqsave(&stat->lock, flags); \
105 len = sprintf(buf, format_string, stat->field); \
106 spin_unlock_irqrestore(&stat->lock, flags); \
107 return len; \
108 } \
109 SPI_STATISTICS_ATTRS(name, file)
110
111 #define SPI_STATISTICS_SHOW(field, format_string) \
112 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
113 field, format_string)
114
115 SPI_STATISTICS_SHOW(messages, "%lu");
116 SPI_STATISTICS_SHOW(transfers, "%lu");
117 SPI_STATISTICS_SHOW(errors, "%lu");
118 SPI_STATISTICS_SHOW(timedout, "%lu");
119
120 SPI_STATISTICS_SHOW(spi_sync, "%lu");
121 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
122 SPI_STATISTICS_SHOW(spi_async, "%lu");
123
124 SPI_STATISTICS_SHOW(bytes, "%llu");
125 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
126 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
127
128 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
129 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
130 "transfer_bytes_histo_" number, \
131 transfer_bytes_histo[index], "%lu")
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
147 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
148 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
149
150 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
151
152 static struct attribute *spi_dev_attrs[] = {
153 &dev_attr_modalias.attr,
154 NULL,
155 };
156
157 static const struct attribute_group spi_dev_group = {
158 .attrs = spi_dev_attrs,
159 };
160
161 static struct attribute *spi_device_statistics_attrs[] = {
162 &dev_attr_spi_device_messages.attr,
163 &dev_attr_spi_device_transfers.attr,
164 &dev_attr_spi_device_errors.attr,
165 &dev_attr_spi_device_timedout.attr,
166 &dev_attr_spi_device_spi_sync.attr,
167 &dev_attr_spi_device_spi_sync_immediate.attr,
168 &dev_attr_spi_device_spi_async.attr,
169 &dev_attr_spi_device_bytes.attr,
170 &dev_attr_spi_device_bytes_rx.attr,
171 &dev_attr_spi_device_bytes_tx.attr,
172 &dev_attr_spi_device_transfer_bytes_histo0.attr,
173 &dev_attr_spi_device_transfer_bytes_histo1.attr,
174 &dev_attr_spi_device_transfer_bytes_histo2.attr,
175 &dev_attr_spi_device_transfer_bytes_histo3.attr,
176 &dev_attr_spi_device_transfer_bytes_histo4.attr,
177 &dev_attr_spi_device_transfer_bytes_histo5.attr,
178 &dev_attr_spi_device_transfer_bytes_histo6.attr,
179 &dev_attr_spi_device_transfer_bytes_histo7.attr,
180 &dev_attr_spi_device_transfer_bytes_histo8.attr,
181 &dev_attr_spi_device_transfer_bytes_histo9.attr,
182 &dev_attr_spi_device_transfer_bytes_histo10.attr,
183 &dev_attr_spi_device_transfer_bytes_histo11.attr,
184 &dev_attr_spi_device_transfer_bytes_histo12.attr,
185 &dev_attr_spi_device_transfer_bytes_histo13.attr,
186 &dev_attr_spi_device_transfer_bytes_histo14.attr,
187 &dev_attr_spi_device_transfer_bytes_histo15.attr,
188 &dev_attr_spi_device_transfer_bytes_histo16.attr,
189 &dev_attr_spi_device_transfers_split_maxsize.attr,
190 NULL,
191 };
192
193 static const struct attribute_group spi_device_statistics_group = {
194 .name = "statistics",
195 .attrs = spi_device_statistics_attrs,
196 };
197
198 static const struct attribute_group *spi_dev_groups[] = {
199 &spi_dev_group,
200 &spi_device_statistics_group,
201 NULL,
202 };
203
204 static struct attribute *spi_master_statistics_attrs[] = {
205 &dev_attr_spi_master_messages.attr,
206 &dev_attr_spi_master_transfers.attr,
207 &dev_attr_spi_master_errors.attr,
208 &dev_attr_spi_master_timedout.attr,
209 &dev_attr_spi_master_spi_sync.attr,
210 &dev_attr_spi_master_spi_sync_immediate.attr,
211 &dev_attr_spi_master_spi_async.attr,
212 &dev_attr_spi_master_bytes.attr,
213 &dev_attr_spi_master_bytes_rx.attr,
214 &dev_attr_spi_master_bytes_tx.attr,
215 &dev_attr_spi_master_transfer_bytes_histo0.attr,
216 &dev_attr_spi_master_transfer_bytes_histo1.attr,
217 &dev_attr_spi_master_transfer_bytes_histo2.attr,
218 &dev_attr_spi_master_transfer_bytes_histo3.attr,
219 &dev_attr_spi_master_transfer_bytes_histo4.attr,
220 &dev_attr_spi_master_transfer_bytes_histo5.attr,
221 &dev_attr_spi_master_transfer_bytes_histo6.attr,
222 &dev_attr_spi_master_transfer_bytes_histo7.attr,
223 &dev_attr_spi_master_transfer_bytes_histo8.attr,
224 &dev_attr_spi_master_transfer_bytes_histo9.attr,
225 &dev_attr_spi_master_transfer_bytes_histo10.attr,
226 &dev_attr_spi_master_transfer_bytes_histo11.attr,
227 &dev_attr_spi_master_transfer_bytes_histo12.attr,
228 &dev_attr_spi_master_transfer_bytes_histo13.attr,
229 &dev_attr_spi_master_transfer_bytes_histo14.attr,
230 &dev_attr_spi_master_transfer_bytes_histo15.attr,
231 &dev_attr_spi_master_transfer_bytes_histo16.attr,
232 &dev_attr_spi_master_transfers_split_maxsize.attr,
233 NULL,
234 };
235
236 static const struct attribute_group spi_master_statistics_group = {
237 .name = "statistics",
238 .attrs = spi_master_statistics_attrs,
239 };
240
241 static const struct attribute_group *spi_master_groups[] = {
242 &spi_master_statistics_group,
243 NULL,
244 };
245
246 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
247 struct spi_transfer *xfer,
248 struct spi_master *master)
249 {
250 unsigned long flags;
251 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
252
253 if (l2len < 0)
254 l2len = 0;
255
256 spin_lock_irqsave(&stats->lock, flags);
257
258 stats->transfers++;
259 stats->transfer_bytes_histo[l2len]++;
260
261 stats->bytes += xfer->len;
262 if ((xfer->tx_buf) &&
263 (xfer->tx_buf != master->dummy_tx))
264 stats->bytes_tx += xfer->len;
265 if ((xfer->rx_buf) &&
266 (xfer->rx_buf != master->dummy_rx))
267 stats->bytes_rx += xfer->len;
268
269 spin_unlock_irqrestore(&stats->lock, flags);
270 }
271 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
272
273 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
274 * and the sysfs version makes coldplug work too.
275 */
276
277 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
278 const struct spi_device *sdev)
279 {
280 while (id->name[0]) {
281 if (!strcmp(sdev->modalias, id->name))
282 return id;
283 id++;
284 }
285 return NULL;
286 }
287
288 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
289 {
290 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
291
292 return spi_match_id(sdrv->id_table, sdev);
293 }
294 EXPORT_SYMBOL_GPL(spi_get_device_id);
295
296 static int spi_match_device(struct device *dev, struct device_driver *drv)
297 {
298 const struct spi_device *spi = to_spi_device(dev);
299 const struct spi_driver *sdrv = to_spi_driver(drv);
300
301 /* Attempt an OF style match */
302 if (of_driver_match_device(dev, drv))
303 return 1;
304
305 /* Then try ACPI */
306 if (acpi_driver_match_device(dev, drv))
307 return 1;
308
309 if (sdrv->id_table)
310 return !!spi_match_id(sdrv->id_table, spi);
311
312 return strcmp(spi->modalias, drv->name) == 0;
313 }
314
315 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
316 {
317 const struct spi_device *spi = to_spi_device(dev);
318 int rc;
319
320 rc = acpi_device_uevent_modalias(dev, env);
321 if (rc != -ENODEV)
322 return rc;
323
324 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
325 return 0;
326 }
327
328 struct bus_type spi_bus_type = {
329 .name = "spi",
330 .dev_groups = spi_dev_groups,
331 .match = spi_match_device,
332 .uevent = spi_uevent,
333 };
334 EXPORT_SYMBOL_GPL(spi_bus_type);
335
336
337 static int spi_drv_probe(struct device *dev)
338 {
339 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
340 struct spi_device *spi = to_spi_device(dev);
341 int ret;
342
343 ret = of_clk_set_defaults(dev->of_node, false);
344 if (ret)
345 return ret;
346
347 if (dev->of_node) {
348 spi->irq = of_irq_get(dev->of_node, 0);
349 if (spi->irq == -EPROBE_DEFER)
350 return -EPROBE_DEFER;
351 if (spi->irq < 0)
352 spi->irq = 0;
353 }
354
355 ret = dev_pm_domain_attach(dev, true);
356 if (ret != -EPROBE_DEFER) {
357 ret = sdrv->probe(spi);
358 if (ret)
359 dev_pm_domain_detach(dev, true);
360 }
361
362 return ret;
363 }
364
365 static int spi_drv_remove(struct device *dev)
366 {
367 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
368 int ret;
369
370 ret = sdrv->remove(to_spi_device(dev));
371 dev_pm_domain_detach(dev, true);
372
373 return ret;
374 }
375
376 static void spi_drv_shutdown(struct device *dev)
377 {
378 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
379
380 sdrv->shutdown(to_spi_device(dev));
381 }
382
383 /**
384 * __spi_register_driver - register a SPI driver
385 * @owner: owner module of the driver to register
386 * @sdrv: the driver to register
387 * Context: can sleep
388 *
389 * Return: zero on success, else a negative error code.
390 */
391 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
392 {
393 sdrv->driver.owner = owner;
394 sdrv->driver.bus = &spi_bus_type;
395 if (sdrv->probe)
396 sdrv->driver.probe = spi_drv_probe;
397 if (sdrv->remove)
398 sdrv->driver.remove = spi_drv_remove;
399 if (sdrv->shutdown)
400 sdrv->driver.shutdown = spi_drv_shutdown;
401 return driver_register(&sdrv->driver);
402 }
403 EXPORT_SYMBOL_GPL(__spi_register_driver);
404
405 /*-------------------------------------------------------------------------*/
406
407 /* SPI devices should normally not be created by SPI device drivers; that
408 * would make them board-specific. Similarly with SPI master drivers.
409 * Device registration normally goes into like arch/.../mach.../board-YYY.c
410 * with other readonly (flashable) information about mainboard devices.
411 */
412
413 struct boardinfo {
414 struct list_head list;
415 struct spi_board_info board_info;
416 };
417
418 static LIST_HEAD(board_list);
419 static LIST_HEAD(spi_master_list);
420
421 /*
422 * Used to protect add/del opertion for board_info list and
423 * spi_master list, and their matching process
424 */
425 static DEFINE_MUTEX(board_lock);
426
427 /**
428 * spi_alloc_device - Allocate a new SPI device
429 * @master: Controller to which device is connected
430 * Context: can sleep
431 *
432 * Allows a driver to allocate and initialize a spi_device without
433 * registering it immediately. This allows a driver to directly
434 * fill the spi_device with device parameters before calling
435 * spi_add_device() on it.
436 *
437 * Caller is responsible to call spi_add_device() on the returned
438 * spi_device structure to add it to the SPI master. If the caller
439 * needs to discard the spi_device without adding it, then it should
440 * call spi_dev_put() on it.
441 *
442 * Return: a pointer to the new device, or NULL.
443 */
444 struct spi_device *spi_alloc_device(struct spi_master *master)
445 {
446 struct spi_device *spi;
447
448 if (!spi_master_get(master))
449 return NULL;
450
451 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
452 if (!spi) {
453 spi_master_put(master);
454 return NULL;
455 }
456
457 spi->master = master;
458 spi->dev.parent = &master->dev;
459 spi->dev.bus = &spi_bus_type;
460 spi->dev.release = spidev_release;
461 spi->cs_gpio = -ENOENT;
462
463 spin_lock_init(&spi->statistics.lock);
464
465 device_initialize(&spi->dev);
466 return spi;
467 }
468 EXPORT_SYMBOL_GPL(spi_alloc_device);
469
470 static void spi_dev_set_name(struct spi_device *spi)
471 {
472 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
473
474 if (adev) {
475 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
476 return;
477 }
478
479 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
480 spi->chip_select);
481 }
482
483 static int spi_dev_check(struct device *dev, void *data)
484 {
485 struct spi_device *spi = to_spi_device(dev);
486 struct spi_device *new_spi = data;
487
488 if (spi->master == new_spi->master &&
489 spi->chip_select == new_spi->chip_select)
490 return -EBUSY;
491 return 0;
492 }
493
494 /**
495 * spi_add_device - Add spi_device allocated with spi_alloc_device
496 * @spi: spi_device to register
497 *
498 * Companion function to spi_alloc_device. Devices allocated with
499 * spi_alloc_device can be added onto the spi bus with this function.
500 *
501 * Return: 0 on success; negative errno on failure
502 */
503 int spi_add_device(struct spi_device *spi)
504 {
505 static DEFINE_MUTEX(spi_add_lock);
506 struct spi_master *master = spi->master;
507 struct device *dev = master->dev.parent;
508 int status;
509
510 /* Chipselects are numbered 0..max; validate. */
511 if (spi->chip_select >= master->num_chipselect) {
512 dev_err(dev, "cs%d >= max %d\n",
513 spi->chip_select,
514 master->num_chipselect);
515 return -EINVAL;
516 }
517
518 /* Set the bus ID string */
519 spi_dev_set_name(spi);
520
521 /* We need to make sure there's no other device with this
522 * chipselect **BEFORE** we call setup(), else we'll trash
523 * its configuration. Lock against concurrent add() calls.
524 */
525 mutex_lock(&spi_add_lock);
526
527 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
528 if (status) {
529 dev_err(dev, "chipselect %d already in use\n",
530 spi->chip_select);
531 goto done;
532 }
533
534 if (master->cs_gpios)
535 spi->cs_gpio = master->cs_gpios[spi->chip_select];
536
537 /* Drivers may modify this initial i/o setup, but will
538 * normally rely on the device being setup. Devices
539 * using SPI_CS_HIGH can't coexist well otherwise...
540 */
541 status = spi_setup(spi);
542 if (status < 0) {
543 dev_err(dev, "can't setup %s, status %d\n",
544 dev_name(&spi->dev), status);
545 goto done;
546 }
547
548 /* Device may be bound to an active driver when this returns */
549 status = device_add(&spi->dev);
550 if (status < 0)
551 dev_err(dev, "can't add %s, status %d\n",
552 dev_name(&spi->dev), status);
553 else
554 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
555
556 done:
557 mutex_unlock(&spi_add_lock);
558 return status;
559 }
560 EXPORT_SYMBOL_GPL(spi_add_device);
561
562 /**
563 * spi_new_device - instantiate one new SPI device
564 * @master: Controller to which device is connected
565 * @chip: Describes the SPI device
566 * Context: can sleep
567 *
568 * On typical mainboards, this is purely internal; and it's not needed
569 * after board init creates the hard-wired devices. Some development
570 * platforms may not be able to use spi_register_board_info though, and
571 * this is exported so that for example a USB or parport based adapter
572 * driver could add devices (which it would learn about out-of-band).
573 *
574 * Return: the new device, or NULL.
575 */
576 struct spi_device *spi_new_device(struct spi_master *master,
577 struct spi_board_info *chip)
578 {
579 struct spi_device *proxy;
580 int status;
581
582 /* NOTE: caller did any chip->bus_num checks necessary.
583 *
584 * Also, unless we change the return value convention to use
585 * error-or-pointer (not NULL-or-pointer), troubleshootability
586 * suggests syslogged diagnostics are best here (ugh).
587 */
588
589 proxy = spi_alloc_device(master);
590 if (!proxy)
591 return NULL;
592
593 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
594
595 proxy->chip_select = chip->chip_select;
596 proxy->max_speed_hz = chip->max_speed_hz;
597 proxy->mode = chip->mode;
598 proxy->irq = chip->irq;
599 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
600 proxy->dev.platform_data = (void *) chip->platform_data;
601 proxy->controller_data = chip->controller_data;
602 proxy->controller_state = NULL;
603
604 if (chip->properties) {
605 status = device_add_properties(&proxy->dev, chip->properties);
606 if (status) {
607 dev_err(&master->dev,
608 "failed to add properties to '%s': %d\n",
609 chip->modalias, status);
610 goto err_dev_put;
611 }
612 }
613
614 status = spi_add_device(proxy);
615 if (status < 0)
616 goto err_remove_props;
617
618 return proxy;
619
620 err_remove_props:
621 if (chip->properties)
622 device_remove_properties(&proxy->dev);
623 err_dev_put:
624 spi_dev_put(proxy);
625 return NULL;
626 }
627 EXPORT_SYMBOL_GPL(spi_new_device);
628
629 /**
630 * spi_unregister_device - unregister a single SPI device
631 * @spi: spi_device to unregister
632 *
633 * Start making the passed SPI device vanish. Normally this would be handled
634 * by spi_unregister_master().
635 */
636 void spi_unregister_device(struct spi_device *spi)
637 {
638 if (!spi)
639 return;
640
641 if (spi->dev.of_node) {
642 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
643 of_node_put(spi->dev.of_node);
644 }
645 if (ACPI_COMPANION(&spi->dev))
646 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
647 device_unregister(&spi->dev);
648 }
649 EXPORT_SYMBOL_GPL(spi_unregister_device);
650
651 static void spi_match_master_to_boardinfo(struct spi_master *master,
652 struct spi_board_info *bi)
653 {
654 struct spi_device *dev;
655
656 if (master->bus_num != bi->bus_num)
657 return;
658
659 dev = spi_new_device(master, bi);
660 if (!dev)
661 dev_err(master->dev.parent, "can't create new device for %s\n",
662 bi->modalias);
663 }
664
665 /**
666 * spi_register_board_info - register SPI devices for a given board
667 * @info: array of chip descriptors
668 * @n: how many descriptors are provided
669 * Context: can sleep
670 *
671 * Board-specific early init code calls this (probably during arch_initcall)
672 * with segments of the SPI device table. Any device nodes are created later,
673 * after the relevant parent SPI controller (bus_num) is defined. We keep
674 * this table of devices forever, so that reloading a controller driver will
675 * not make Linux forget about these hard-wired devices.
676 *
677 * Other code can also call this, e.g. a particular add-on board might provide
678 * SPI devices through its expansion connector, so code initializing that board
679 * would naturally declare its SPI devices.
680 *
681 * The board info passed can safely be __initdata ... but be careful of
682 * any embedded pointers (platform_data, etc), they're copied as-is.
683 * Device properties are deep-copied though.
684 *
685 * Return: zero on success, else a negative error code.
686 */
687 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
688 {
689 struct boardinfo *bi;
690 int i;
691
692 if (!n)
693 return 0;
694
695 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
696 if (!bi)
697 return -ENOMEM;
698
699 for (i = 0; i < n; i++, bi++, info++) {
700 struct spi_master *master;
701
702 memcpy(&bi->board_info, info, sizeof(*info));
703 if (info->properties) {
704 bi->board_info.properties =
705 property_entries_dup(info->properties);
706 if (IS_ERR(bi->board_info.properties))
707 return PTR_ERR(bi->board_info.properties);
708 }
709
710 mutex_lock(&board_lock);
711 list_add_tail(&bi->list, &board_list);
712 list_for_each_entry(master, &spi_master_list, list)
713 spi_match_master_to_boardinfo(master, &bi->board_info);
714 mutex_unlock(&board_lock);
715 }
716
717 return 0;
718 }
719
720 /*-------------------------------------------------------------------------*/
721
722 static void spi_set_cs(struct spi_device *spi, bool enable)
723 {
724 if (spi->mode & SPI_CS_HIGH)
725 enable = !enable;
726
727 if (gpio_is_valid(spi->cs_gpio)) {
728 gpio_set_value(spi->cs_gpio, !enable);
729 /* Some SPI masters need both GPIO CS & slave_select */
730 if ((spi->master->flags & SPI_MASTER_GPIO_SS) &&
731 spi->master->set_cs)
732 spi->master->set_cs(spi, !enable);
733 } else if (spi->master->set_cs) {
734 spi->master->set_cs(spi, !enable);
735 }
736 }
737
738 #ifdef CONFIG_HAS_DMA
739 static int spi_map_buf(struct spi_master *master, struct device *dev,
740 struct sg_table *sgt, void *buf, size_t len,
741 enum dma_data_direction dir)
742 {
743 const bool vmalloced_buf = is_vmalloc_addr(buf);
744 unsigned int max_seg_size = dma_get_max_seg_size(dev);
745 #ifdef CONFIG_HIGHMEM
746 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
747 (unsigned long)buf < (PKMAP_BASE +
748 (LAST_PKMAP * PAGE_SIZE)));
749 #else
750 const bool kmap_buf = false;
751 #endif
752 int desc_len;
753 int sgs;
754 struct page *vm_page;
755 struct scatterlist *sg;
756 void *sg_buf;
757 size_t min;
758 int i, ret;
759
760 if (vmalloced_buf || kmap_buf) {
761 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
762 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
763 } else if (virt_addr_valid(buf)) {
764 desc_len = min_t(int, max_seg_size, master->max_dma_len);
765 sgs = DIV_ROUND_UP(len, desc_len);
766 } else {
767 return -EINVAL;
768 }
769
770 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
771 if (ret != 0)
772 return ret;
773
774 sg = &sgt->sgl[0];
775 for (i = 0; i < sgs; i++) {
776
777 if (vmalloced_buf || kmap_buf) {
778 min = min_t(size_t,
779 len, desc_len - offset_in_page(buf));
780 if (vmalloced_buf)
781 vm_page = vmalloc_to_page(buf);
782 else
783 vm_page = kmap_to_page(buf);
784 if (!vm_page) {
785 sg_free_table(sgt);
786 return -ENOMEM;
787 }
788 sg_set_page(sg, vm_page,
789 min, offset_in_page(buf));
790 } else {
791 min = min_t(size_t, len, desc_len);
792 sg_buf = buf;
793 sg_set_buf(sg, sg_buf, min);
794 }
795
796 buf += min;
797 len -= min;
798 sg = sg_next(sg);
799 }
800
801 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
802 if (!ret)
803 ret = -ENOMEM;
804 if (ret < 0) {
805 sg_free_table(sgt);
806 return ret;
807 }
808
809 sgt->nents = ret;
810
811 return 0;
812 }
813
814 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
815 struct sg_table *sgt, enum dma_data_direction dir)
816 {
817 if (sgt->orig_nents) {
818 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
819 sg_free_table(sgt);
820 }
821 }
822
823 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
824 {
825 struct device *tx_dev, *rx_dev;
826 struct spi_transfer *xfer;
827 int ret;
828
829 if (!master->can_dma)
830 return 0;
831
832 if (master->dma_tx)
833 tx_dev = master->dma_tx->device->dev;
834 else
835 tx_dev = master->dev.parent;
836
837 if (master->dma_rx)
838 rx_dev = master->dma_rx->device->dev;
839 else
840 rx_dev = master->dev.parent;
841
842 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
843 if (!master->can_dma(master, msg->spi, xfer))
844 continue;
845
846 if (xfer->tx_buf != NULL) {
847 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
848 (void *)xfer->tx_buf, xfer->len,
849 DMA_TO_DEVICE);
850 if (ret != 0)
851 return ret;
852 }
853
854 if (xfer->rx_buf != NULL) {
855 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
856 xfer->rx_buf, xfer->len,
857 DMA_FROM_DEVICE);
858 if (ret != 0) {
859 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
860 DMA_TO_DEVICE);
861 return ret;
862 }
863 }
864 }
865
866 master->cur_msg_mapped = true;
867
868 return 0;
869 }
870
871 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
872 {
873 struct spi_transfer *xfer;
874 struct device *tx_dev, *rx_dev;
875
876 if (!master->cur_msg_mapped || !master->can_dma)
877 return 0;
878
879 if (master->dma_tx)
880 tx_dev = master->dma_tx->device->dev;
881 else
882 tx_dev = master->dev.parent;
883
884 if (master->dma_rx)
885 rx_dev = master->dma_rx->device->dev;
886 else
887 rx_dev = master->dev.parent;
888
889 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
890 if (!master->can_dma(master, msg->spi, xfer))
891 continue;
892
893 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
894 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
895 }
896
897 return 0;
898 }
899 #else /* !CONFIG_HAS_DMA */
900 static inline int spi_map_buf(struct spi_master *master,
901 struct device *dev, struct sg_table *sgt,
902 void *buf, size_t len,
903 enum dma_data_direction dir)
904 {
905 return -EINVAL;
906 }
907
908 static inline void spi_unmap_buf(struct spi_master *master,
909 struct device *dev, struct sg_table *sgt,
910 enum dma_data_direction dir)
911 {
912 }
913
914 static inline int __spi_map_msg(struct spi_master *master,
915 struct spi_message *msg)
916 {
917 return 0;
918 }
919
920 static inline int __spi_unmap_msg(struct spi_master *master,
921 struct spi_message *msg)
922 {
923 return 0;
924 }
925 #endif /* !CONFIG_HAS_DMA */
926
927 static inline int spi_unmap_msg(struct spi_master *master,
928 struct spi_message *msg)
929 {
930 struct spi_transfer *xfer;
931
932 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
933 /*
934 * Restore the original value of tx_buf or rx_buf if they are
935 * NULL.
936 */
937 if (xfer->tx_buf == master->dummy_tx)
938 xfer->tx_buf = NULL;
939 if (xfer->rx_buf == master->dummy_rx)
940 xfer->rx_buf = NULL;
941 }
942
943 return __spi_unmap_msg(master, msg);
944 }
945
946 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
947 {
948 struct spi_transfer *xfer;
949 void *tmp;
950 unsigned int max_tx, max_rx;
951
952 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
953 max_tx = 0;
954 max_rx = 0;
955
956 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
957 if ((master->flags & SPI_MASTER_MUST_TX) &&
958 !xfer->tx_buf)
959 max_tx = max(xfer->len, max_tx);
960 if ((master->flags & SPI_MASTER_MUST_RX) &&
961 !xfer->rx_buf)
962 max_rx = max(xfer->len, max_rx);
963 }
964
965 if (max_tx) {
966 tmp = krealloc(master->dummy_tx, max_tx,
967 GFP_KERNEL | GFP_DMA);
968 if (!tmp)
969 return -ENOMEM;
970 master->dummy_tx = tmp;
971 memset(tmp, 0, max_tx);
972 }
973
974 if (max_rx) {
975 tmp = krealloc(master->dummy_rx, max_rx,
976 GFP_KERNEL | GFP_DMA);
977 if (!tmp)
978 return -ENOMEM;
979 master->dummy_rx = tmp;
980 }
981
982 if (max_tx || max_rx) {
983 list_for_each_entry(xfer, &msg->transfers,
984 transfer_list) {
985 if (!xfer->tx_buf)
986 xfer->tx_buf = master->dummy_tx;
987 if (!xfer->rx_buf)
988 xfer->rx_buf = master->dummy_rx;
989 }
990 }
991 }
992
993 return __spi_map_msg(master, msg);
994 }
995
996 /*
997 * spi_transfer_one_message - Default implementation of transfer_one_message()
998 *
999 * This is a standard implementation of transfer_one_message() for
1000 * drivers which implement a transfer_one() operation. It provides
1001 * standard handling of delays and chip select management.
1002 */
1003 static int spi_transfer_one_message(struct spi_master *master,
1004 struct spi_message *msg)
1005 {
1006 struct spi_transfer *xfer;
1007 bool keep_cs = false;
1008 int ret = 0;
1009 unsigned long long ms = 1;
1010 struct spi_statistics *statm = &master->statistics;
1011 struct spi_statistics *stats = &msg->spi->statistics;
1012
1013 spi_set_cs(msg->spi, true);
1014
1015 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1016 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1017
1018 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1019 trace_spi_transfer_start(msg, xfer);
1020
1021 spi_statistics_add_transfer_stats(statm, xfer, master);
1022 spi_statistics_add_transfer_stats(stats, xfer, master);
1023
1024 if (xfer->tx_buf || xfer->rx_buf) {
1025 reinit_completion(&master->xfer_completion);
1026
1027 ret = master->transfer_one(master, msg->spi, xfer);
1028 if (ret < 0) {
1029 SPI_STATISTICS_INCREMENT_FIELD(statm,
1030 errors);
1031 SPI_STATISTICS_INCREMENT_FIELD(stats,
1032 errors);
1033 dev_err(&msg->spi->dev,
1034 "SPI transfer failed: %d\n", ret);
1035 goto out;
1036 }
1037
1038 if (ret > 0) {
1039 ret = 0;
1040 ms = 8LL * 1000LL * xfer->len;
1041 do_div(ms, xfer->speed_hz);
1042 ms += ms + 100; /* some tolerance */
1043
1044 if (ms > UINT_MAX)
1045 ms = UINT_MAX;
1046
1047 ms = wait_for_completion_timeout(&master->xfer_completion,
1048 msecs_to_jiffies(ms));
1049 }
1050
1051 if (ms == 0) {
1052 SPI_STATISTICS_INCREMENT_FIELD(statm,
1053 timedout);
1054 SPI_STATISTICS_INCREMENT_FIELD(stats,
1055 timedout);
1056 dev_err(&msg->spi->dev,
1057 "SPI transfer timed out\n");
1058 msg->status = -ETIMEDOUT;
1059 }
1060 } else {
1061 if (xfer->len)
1062 dev_err(&msg->spi->dev,
1063 "Bufferless transfer has length %u\n",
1064 xfer->len);
1065 }
1066
1067 trace_spi_transfer_stop(msg, xfer);
1068
1069 if (msg->status != -EINPROGRESS)
1070 goto out;
1071
1072 if (xfer->delay_usecs) {
1073 u16 us = xfer->delay_usecs;
1074
1075 if (us <= 10)
1076 udelay(us);
1077 else
1078 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1079 }
1080
1081 if (xfer->cs_change) {
1082 if (list_is_last(&xfer->transfer_list,
1083 &msg->transfers)) {
1084 keep_cs = true;
1085 } else {
1086 spi_set_cs(msg->spi, false);
1087 udelay(10);
1088 spi_set_cs(msg->spi, true);
1089 }
1090 }
1091
1092 msg->actual_length += xfer->len;
1093 }
1094
1095 out:
1096 if (ret != 0 || !keep_cs)
1097 spi_set_cs(msg->spi, false);
1098
1099 if (msg->status == -EINPROGRESS)
1100 msg->status = ret;
1101
1102 if (msg->status && master->handle_err)
1103 master->handle_err(master, msg);
1104
1105 spi_res_release(master, msg);
1106
1107 spi_finalize_current_message(master);
1108
1109 return ret;
1110 }
1111
1112 /**
1113 * spi_finalize_current_transfer - report completion of a transfer
1114 * @master: the master reporting completion
1115 *
1116 * Called by SPI drivers using the core transfer_one_message()
1117 * implementation to notify it that the current interrupt driven
1118 * transfer has finished and the next one may be scheduled.
1119 */
1120 void spi_finalize_current_transfer(struct spi_master *master)
1121 {
1122 complete(&master->xfer_completion);
1123 }
1124 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1125
1126 /**
1127 * __spi_pump_messages - function which processes spi message queue
1128 * @master: master to process queue for
1129 * @in_kthread: true if we are in the context of the message pump thread
1130 *
1131 * This function checks if there is any spi message in the queue that
1132 * needs processing and if so call out to the driver to initialize hardware
1133 * and transfer each message.
1134 *
1135 * Note that it is called both from the kthread itself and also from
1136 * inside spi_sync(); the queue extraction handling at the top of the
1137 * function should deal with this safely.
1138 */
1139 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1140 {
1141 unsigned long flags;
1142 bool was_busy = false;
1143 int ret;
1144
1145 /* Lock queue */
1146 spin_lock_irqsave(&master->queue_lock, flags);
1147
1148 /* Make sure we are not already running a message */
1149 if (master->cur_msg) {
1150 spin_unlock_irqrestore(&master->queue_lock, flags);
1151 return;
1152 }
1153
1154 /* If another context is idling the device then defer */
1155 if (master->idling) {
1156 kthread_queue_work(&master->kworker, &master->pump_messages);
1157 spin_unlock_irqrestore(&master->queue_lock, flags);
1158 return;
1159 }
1160
1161 /* Check if the queue is idle */
1162 if (list_empty(&master->queue) || !master->running) {
1163 if (!master->busy) {
1164 spin_unlock_irqrestore(&master->queue_lock, flags);
1165 return;
1166 }
1167
1168 /* Only do teardown in the thread */
1169 if (!in_kthread) {
1170 kthread_queue_work(&master->kworker,
1171 &master->pump_messages);
1172 spin_unlock_irqrestore(&master->queue_lock, flags);
1173 return;
1174 }
1175
1176 master->busy = false;
1177 master->idling = true;
1178 spin_unlock_irqrestore(&master->queue_lock, flags);
1179
1180 kfree(master->dummy_rx);
1181 master->dummy_rx = NULL;
1182 kfree(master->dummy_tx);
1183 master->dummy_tx = NULL;
1184 if (master->unprepare_transfer_hardware &&
1185 master->unprepare_transfer_hardware(master))
1186 dev_err(&master->dev,
1187 "failed to unprepare transfer hardware\n");
1188 if (master->auto_runtime_pm) {
1189 pm_runtime_mark_last_busy(master->dev.parent);
1190 pm_runtime_put_autosuspend(master->dev.parent);
1191 }
1192 trace_spi_master_idle(master);
1193
1194 spin_lock_irqsave(&master->queue_lock, flags);
1195 master->idling = false;
1196 spin_unlock_irqrestore(&master->queue_lock, flags);
1197 return;
1198 }
1199
1200 /* Extract head of queue */
1201 master->cur_msg =
1202 list_first_entry(&master->queue, struct spi_message, queue);
1203
1204 list_del_init(&master->cur_msg->queue);
1205 if (master->busy)
1206 was_busy = true;
1207 else
1208 master->busy = true;
1209 spin_unlock_irqrestore(&master->queue_lock, flags);
1210
1211 mutex_lock(&master->io_mutex);
1212
1213 if (!was_busy && master->auto_runtime_pm) {
1214 ret = pm_runtime_get_sync(master->dev.parent);
1215 if (ret < 0) {
1216 dev_err(&master->dev, "Failed to power device: %d\n",
1217 ret);
1218 mutex_unlock(&master->io_mutex);
1219 return;
1220 }
1221 }
1222
1223 if (!was_busy)
1224 trace_spi_master_busy(master);
1225
1226 if (!was_busy && master->prepare_transfer_hardware) {
1227 ret = master->prepare_transfer_hardware(master);
1228 if (ret) {
1229 dev_err(&master->dev,
1230 "failed to prepare transfer hardware\n");
1231
1232 if (master->auto_runtime_pm)
1233 pm_runtime_put(master->dev.parent);
1234 mutex_unlock(&master->io_mutex);
1235 return;
1236 }
1237 }
1238
1239 trace_spi_message_start(master->cur_msg);
1240
1241 if (master->prepare_message) {
1242 ret = master->prepare_message(master, master->cur_msg);
1243 if (ret) {
1244 dev_err(&master->dev,
1245 "failed to prepare message: %d\n", ret);
1246 master->cur_msg->status = ret;
1247 spi_finalize_current_message(master);
1248 goto out;
1249 }
1250 master->cur_msg_prepared = true;
1251 }
1252
1253 ret = spi_map_msg(master, master->cur_msg);
1254 if (ret) {
1255 master->cur_msg->status = ret;
1256 spi_finalize_current_message(master);
1257 goto out;
1258 }
1259
1260 ret = master->transfer_one_message(master, master->cur_msg);
1261 if (ret) {
1262 dev_err(&master->dev,
1263 "failed to transfer one message from queue\n");
1264 goto out;
1265 }
1266
1267 out:
1268 mutex_unlock(&master->io_mutex);
1269
1270 /* Prod the scheduler in case transfer_one() was busy waiting */
1271 if (!ret)
1272 cond_resched();
1273 }
1274
1275 /**
1276 * spi_pump_messages - kthread work function which processes spi message queue
1277 * @work: pointer to kthread work struct contained in the master struct
1278 */
1279 static void spi_pump_messages(struct kthread_work *work)
1280 {
1281 struct spi_master *master =
1282 container_of(work, struct spi_master, pump_messages);
1283
1284 __spi_pump_messages(master, true);
1285 }
1286
1287 static int spi_init_queue(struct spi_master *master)
1288 {
1289 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1290
1291 master->running = false;
1292 master->busy = false;
1293
1294 kthread_init_worker(&master->kworker);
1295 master->kworker_task = kthread_run(kthread_worker_fn,
1296 &master->kworker, "%s",
1297 dev_name(&master->dev));
1298 if (IS_ERR(master->kworker_task)) {
1299 dev_err(&master->dev, "failed to create message pump task\n");
1300 return PTR_ERR(master->kworker_task);
1301 }
1302 kthread_init_work(&master->pump_messages, spi_pump_messages);
1303
1304 /*
1305 * Master config will indicate if this controller should run the
1306 * message pump with high (realtime) priority to reduce the transfer
1307 * latency on the bus by minimising the delay between a transfer
1308 * request and the scheduling of the message pump thread. Without this
1309 * setting the message pump thread will remain at default priority.
1310 */
1311 if (master->rt) {
1312 dev_info(&master->dev,
1313 "will run message pump with realtime priority\n");
1314 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1315 }
1316
1317 return 0;
1318 }
1319
1320 /**
1321 * spi_get_next_queued_message() - called by driver to check for queued
1322 * messages
1323 * @master: the master to check for queued messages
1324 *
1325 * If there are more messages in the queue, the next message is returned from
1326 * this call.
1327 *
1328 * Return: the next message in the queue, else NULL if the queue is empty.
1329 */
1330 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1331 {
1332 struct spi_message *next;
1333 unsigned long flags;
1334
1335 /* get a pointer to the next message, if any */
1336 spin_lock_irqsave(&master->queue_lock, flags);
1337 next = list_first_entry_or_null(&master->queue, struct spi_message,
1338 queue);
1339 spin_unlock_irqrestore(&master->queue_lock, flags);
1340
1341 return next;
1342 }
1343 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1344
1345 /**
1346 * spi_finalize_current_message() - the current message is complete
1347 * @master: the master to return the message to
1348 *
1349 * Called by the driver to notify the core that the message in the front of the
1350 * queue is complete and can be removed from the queue.
1351 */
1352 void spi_finalize_current_message(struct spi_master *master)
1353 {
1354 struct spi_message *mesg;
1355 unsigned long flags;
1356 int ret;
1357
1358 spin_lock_irqsave(&master->queue_lock, flags);
1359 mesg = master->cur_msg;
1360 spin_unlock_irqrestore(&master->queue_lock, flags);
1361
1362 spi_unmap_msg(master, mesg);
1363
1364 if (master->cur_msg_prepared && master->unprepare_message) {
1365 ret = master->unprepare_message(master, mesg);
1366 if (ret) {
1367 dev_err(&master->dev,
1368 "failed to unprepare message: %d\n", ret);
1369 }
1370 }
1371
1372 spin_lock_irqsave(&master->queue_lock, flags);
1373 master->cur_msg = NULL;
1374 master->cur_msg_prepared = false;
1375 kthread_queue_work(&master->kworker, &master->pump_messages);
1376 spin_unlock_irqrestore(&master->queue_lock, flags);
1377
1378 trace_spi_message_done(mesg);
1379
1380 mesg->state = NULL;
1381 if (mesg->complete)
1382 mesg->complete(mesg->context);
1383 }
1384 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1385
1386 static int spi_start_queue(struct spi_master *master)
1387 {
1388 unsigned long flags;
1389
1390 spin_lock_irqsave(&master->queue_lock, flags);
1391
1392 if (master->running || master->busy) {
1393 spin_unlock_irqrestore(&master->queue_lock, flags);
1394 return -EBUSY;
1395 }
1396
1397 master->running = true;
1398 master->cur_msg = NULL;
1399 spin_unlock_irqrestore(&master->queue_lock, flags);
1400
1401 kthread_queue_work(&master->kworker, &master->pump_messages);
1402
1403 return 0;
1404 }
1405
1406 static int spi_stop_queue(struct spi_master *master)
1407 {
1408 unsigned long flags;
1409 unsigned limit = 500;
1410 int ret = 0;
1411
1412 spin_lock_irqsave(&master->queue_lock, flags);
1413
1414 /*
1415 * This is a bit lame, but is optimized for the common execution path.
1416 * A wait_queue on the master->busy could be used, but then the common
1417 * execution path (pump_messages) would be required to call wake_up or
1418 * friends on every SPI message. Do this instead.
1419 */
1420 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1421 spin_unlock_irqrestore(&master->queue_lock, flags);
1422 usleep_range(10000, 11000);
1423 spin_lock_irqsave(&master->queue_lock, flags);
1424 }
1425
1426 if (!list_empty(&master->queue) || master->busy)
1427 ret = -EBUSY;
1428 else
1429 master->running = false;
1430
1431 spin_unlock_irqrestore(&master->queue_lock, flags);
1432
1433 if (ret) {
1434 dev_warn(&master->dev,
1435 "could not stop message queue\n");
1436 return ret;
1437 }
1438 return ret;
1439 }
1440
1441 static int spi_destroy_queue(struct spi_master *master)
1442 {
1443 int ret;
1444
1445 ret = spi_stop_queue(master);
1446
1447 /*
1448 * kthread_flush_worker will block until all work is done.
1449 * If the reason that stop_queue timed out is that the work will never
1450 * finish, then it does no good to call flush/stop thread, so
1451 * return anyway.
1452 */
1453 if (ret) {
1454 dev_err(&master->dev, "problem destroying queue\n");
1455 return ret;
1456 }
1457
1458 kthread_flush_worker(&master->kworker);
1459 kthread_stop(master->kworker_task);
1460
1461 return 0;
1462 }
1463
1464 static int __spi_queued_transfer(struct spi_device *spi,
1465 struct spi_message *msg,
1466 bool need_pump)
1467 {
1468 struct spi_master *master = spi->master;
1469 unsigned long flags;
1470
1471 spin_lock_irqsave(&master->queue_lock, flags);
1472
1473 if (!master->running) {
1474 spin_unlock_irqrestore(&master->queue_lock, flags);
1475 return -ESHUTDOWN;
1476 }
1477 msg->actual_length = 0;
1478 msg->status = -EINPROGRESS;
1479
1480 list_add_tail(&msg->queue, &master->queue);
1481 if (!master->busy && need_pump)
1482 kthread_queue_work(&master->kworker, &master->pump_messages);
1483
1484 spin_unlock_irqrestore(&master->queue_lock, flags);
1485 return 0;
1486 }
1487
1488 /**
1489 * spi_queued_transfer - transfer function for queued transfers
1490 * @spi: spi device which is requesting transfer
1491 * @msg: spi message which is to handled is queued to driver queue
1492 *
1493 * Return: zero on success, else a negative error code.
1494 */
1495 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1496 {
1497 return __spi_queued_transfer(spi, msg, true);
1498 }
1499
1500 static int spi_master_initialize_queue(struct spi_master *master)
1501 {
1502 int ret;
1503
1504 master->transfer = spi_queued_transfer;
1505 if (!master->transfer_one_message)
1506 master->transfer_one_message = spi_transfer_one_message;
1507
1508 /* Initialize and start queue */
1509 ret = spi_init_queue(master);
1510 if (ret) {
1511 dev_err(&master->dev, "problem initializing queue\n");
1512 goto err_init_queue;
1513 }
1514 master->queued = true;
1515 ret = spi_start_queue(master);
1516 if (ret) {
1517 dev_err(&master->dev, "problem starting queue\n");
1518 goto err_start_queue;
1519 }
1520
1521 return 0;
1522
1523 err_start_queue:
1524 spi_destroy_queue(master);
1525 err_init_queue:
1526 return ret;
1527 }
1528
1529 /*-------------------------------------------------------------------------*/
1530
1531 #if defined(CONFIG_OF)
1532 static int of_spi_parse_dt(struct spi_master *master, struct spi_device *spi,
1533 struct device_node *nc)
1534 {
1535 u32 value;
1536 int rc;
1537
1538 /* Device address */
1539 rc = of_property_read_u32(nc, "reg", &value);
1540 if (rc) {
1541 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1542 nc->full_name, rc);
1543 return rc;
1544 }
1545 spi->chip_select = value;
1546
1547 /* Mode (clock phase/polarity/etc.) */
1548 if (of_find_property(nc, "spi-cpha", NULL))
1549 spi->mode |= SPI_CPHA;
1550 if (of_find_property(nc, "spi-cpol", NULL))
1551 spi->mode |= SPI_CPOL;
1552 if (of_find_property(nc, "spi-cs-high", NULL))
1553 spi->mode |= SPI_CS_HIGH;
1554 if (of_find_property(nc, "spi-3wire", NULL))
1555 spi->mode |= SPI_3WIRE;
1556 if (of_find_property(nc, "spi-lsb-first", NULL))
1557 spi->mode |= SPI_LSB_FIRST;
1558
1559 /* Device DUAL/QUAD mode */
1560 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1561 switch (value) {
1562 case 1:
1563 break;
1564 case 2:
1565 spi->mode |= SPI_TX_DUAL;
1566 break;
1567 case 4:
1568 spi->mode |= SPI_TX_QUAD;
1569 break;
1570 default:
1571 dev_warn(&master->dev,
1572 "spi-tx-bus-width %d not supported\n",
1573 value);
1574 break;
1575 }
1576 }
1577
1578 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1579 switch (value) {
1580 case 1:
1581 break;
1582 case 2:
1583 spi->mode |= SPI_RX_DUAL;
1584 break;
1585 case 4:
1586 spi->mode |= SPI_RX_QUAD;
1587 break;
1588 default:
1589 dev_warn(&master->dev,
1590 "spi-rx-bus-width %d not supported\n",
1591 value);
1592 break;
1593 }
1594 }
1595
1596 /* Device speed */
1597 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1598 if (rc) {
1599 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1600 nc->full_name, rc);
1601 return rc;
1602 }
1603 spi->max_speed_hz = value;
1604
1605 return 0;
1606 }
1607
1608 static struct spi_device *
1609 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1610 {
1611 struct spi_device *spi;
1612 int rc;
1613
1614 /* Alloc an spi_device */
1615 spi = spi_alloc_device(master);
1616 if (!spi) {
1617 dev_err(&master->dev, "spi_device alloc error for %s\n",
1618 nc->full_name);
1619 rc = -ENOMEM;
1620 goto err_out;
1621 }
1622
1623 /* Select device driver */
1624 rc = of_modalias_node(nc, spi->modalias,
1625 sizeof(spi->modalias));
1626 if (rc < 0) {
1627 dev_err(&master->dev, "cannot find modalias for %s\n",
1628 nc->full_name);
1629 goto err_out;
1630 }
1631
1632 rc = of_spi_parse_dt(master, spi, nc);
1633 if (rc)
1634 goto err_out;
1635
1636 /* Store a pointer to the node in the device structure */
1637 of_node_get(nc);
1638 spi->dev.of_node = nc;
1639
1640 /* Register the new device */
1641 rc = spi_add_device(spi);
1642 if (rc) {
1643 dev_err(&master->dev, "spi_device register error %s\n",
1644 nc->full_name);
1645 goto err_of_node_put;
1646 }
1647
1648 return spi;
1649
1650 err_of_node_put:
1651 of_node_put(nc);
1652 err_out:
1653 spi_dev_put(spi);
1654 return ERR_PTR(rc);
1655 }
1656
1657 /**
1658 * of_register_spi_devices() - Register child devices onto the SPI bus
1659 * @master: Pointer to spi_master device
1660 *
1661 * Registers an spi_device for each child node of master node which has a 'reg'
1662 * property.
1663 */
1664 static void of_register_spi_devices(struct spi_master *master)
1665 {
1666 struct spi_device *spi;
1667 struct device_node *nc;
1668
1669 if (!master->dev.of_node)
1670 return;
1671
1672 for_each_available_child_of_node(master->dev.of_node, nc) {
1673 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1674 continue;
1675 spi = of_register_spi_device(master, nc);
1676 if (IS_ERR(spi)) {
1677 dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1678 nc->full_name);
1679 of_node_clear_flag(nc, OF_POPULATED);
1680 }
1681 }
1682 }
1683 #else
1684 static void of_register_spi_devices(struct spi_master *master) { }
1685 #endif
1686
1687 #ifdef CONFIG_ACPI
1688 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1689 {
1690 struct spi_device *spi = data;
1691 struct spi_master *master = spi->master;
1692
1693 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1694 struct acpi_resource_spi_serialbus *sb;
1695
1696 sb = &ares->data.spi_serial_bus;
1697 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1698 /*
1699 * ACPI DeviceSelection numbering is handled by the
1700 * host controller driver in Windows and can vary
1701 * from driver to driver. In Linux we always expect
1702 * 0 .. max - 1 so we need to ask the driver to
1703 * translate between the two schemes.
1704 */
1705 if (master->fw_translate_cs) {
1706 int cs = master->fw_translate_cs(master,
1707 sb->device_selection);
1708 if (cs < 0)
1709 return cs;
1710 spi->chip_select = cs;
1711 } else {
1712 spi->chip_select = sb->device_selection;
1713 }
1714
1715 spi->max_speed_hz = sb->connection_speed;
1716
1717 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1718 spi->mode |= SPI_CPHA;
1719 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1720 spi->mode |= SPI_CPOL;
1721 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1722 spi->mode |= SPI_CS_HIGH;
1723 }
1724 } else if (spi->irq < 0) {
1725 struct resource r;
1726
1727 if (acpi_dev_resource_interrupt(ares, 0, &r))
1728 spi->irq = r.start;
1729 }
1730
1731 /* Always tell the ACPI core to skip this resource */
1732 return 1;
1733 }
1734
1735 static acpi_status acpi_register_spi_device(struct spi_master *master,
1736 struct acpi_device *adev)
1737 {
1738 struct list_head resource_list;
1739 struct spi_device *spi;
1740 int ret;
1741
1742 if (acpi_bus_get_status(adev) || !adev->status.present ||
1743 acpi_device_enumerated(adev))
1744 return AE_OK;
1745
1746 spi = spi_alloc_device(master);
1747 if (!spi) {
1748 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1749 dev_name(&adev->dev));
1750 return AE_NO_MEMORY;
1751 }
1752
1753 ACPI_COMPANION_SET(&spi->dev, adev);
1754 spi->irq = -1;
1755
1756 INIT_LIST_HEAD(&resource_list);
1757 ret = acpi_dev_get_resources(adev, &resource_list,
1758 acpi_spi_add_resource, spi);
1759 acpi_dev_free_resource_list(&resource_list);
1760
1761 if (ret < 0 || !spi->max_speed_hz) {
1762 spi_dev_put(spi);
1763 return AE_OK;
1764 }
1765
1766 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1767 sizeof(spi->modalias));
1768
1769 if (spi->irq < 0)
1770 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1771
1772 acpi_device_set_enumerated(adev);
1773
1774 adev->power.flags.ignore_parent = true;
1775 if (spi_add_device(spi)) {
1776 adev->power.flags.ignore_parent = false;
1777 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1778 dev_name(&adev->dev));
1779 spi_dev_put(spi);
1780 }
1781
1782 return AE_OK;
1783 }
1784
1785 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1786 void *data, void **return_value)
1787 {
1788 struct spi_master *master = data;
1789 struct acpi_device *adev;
1790
1791 if (acpi_bus_get_device(handle, &adev))
1792 return AE_OK;
1793
1794 return acpi_register_spi_device(master, adev);
1795 }
1796
1797 static void acpi_register_spi_devices(struct spi_master *master)
1798 {
1799 acpi_status status;
1800 acpi_handle handle;
1801
1802 handle = ACPI_HANDLE(master->dev.parent);
1803 if (!handle)
1804 return;
1805
1806 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1807 acpi_spi_add_device, NULL,
1808 master, NULL);
1809 if (ACPI_FAILURE(status))
1810 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1811 }
1812 #else
1813 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1814 #endif /* CONFIG_ACPI */
1815
1816 static void spi_master_release(struct device *dev)
1817 {
1818 struct spi_master *master;
1819
1820 master = container_of(dev, struct spi_master, dev);
1821 kfree(master);
1822 }
1823
1824 static struct class spi_master_class = {
1825 .name = "spi_master",
1826 .owner = THIS_MODULE,
1827 .dev_release = spi_master_release,
1828 .dev_groups = spi_master_groups,
1829 };
1830
1831
1832 /**
1833 * spi_alloc_master - allocate SPI master controller
1834 * @dev: the controller, possibly using the platform_bus
1835 * @size: how much zeroed driver-private data to allocate; the pointer to this
1836 * memory is in the driver_data field of the returned device,
1837 * accessible with spi_master_get_devdata().
1838 * Context: can sleep
1839 *
1840 * This call is used only by SPI master controller drivers, which are the
1841 * only ones directly touching chip registers. It's how they allocate
1842 * an spi_master structure, prior to calling spi_register_master().
1843 *
1844 * This must be called from context that can sleep.
1845 *
1846 * The caller is responsible for assigning the bus number and initializing
1847 * the master's methods before calling spi_register_master(); and (after errors
1848 * adding the device) calling spi_master_put() to prevent a memory leak.
1849 *
1850 * Return: the SPI master structure on success, else NULL.
1851 */
1852 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1853 {
1854 struct spi_master *master;
1855
1856 if (!dev)
1857 return NULL;
1858
1859 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1860 if (!master)
1861 return NULL;
1862
1863 device_initialize(&master->dev);
1864 master->bus_num = -1;
1865 master->num_chipselect = 1;
1866 master->dev.class = &spi_master_class;
1867 master->dev.parent = dev;
1868 pm_suspend_ignore_children(&master->dev, true);
1869 spi_master_set_devdata(master, &master[1]);
1870
1871 return master;
1872 }
1873 EXPORT_SYMBOL_GPL(spi_alloc_master);
1874
1875 #ifdef CONFIG_OF
1876 static int of_spi_register_master(struct spi_master *master)
1877 {
1878 int nb, i, *cs;
1879 struct device_node *np = master->dev.of_node;
1880
1881 if (!np)
1882 return 0;
1883
1884 nb = of_gpio_named_count(np, "cs-gpios");
1885 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1886
1887 /* Return error only for an incorrectly formed cs-gpios property */
1888 if (nb == 0 || nb == -ENOENT)
1889 return 0;
1890 else if (nb < 0)
1891 return nb;
1892
1893 cs = devm_kzalloc(&master->dev,
1894 sizeof(int) * master->num_chipselect,
1895 GFP_KERNEL);
1896 master->cs_gpios = cs;
1897
1898 if (!master->cs_gpios)
1899 return -ENOMEM;
1900
1901 for (i = 0; i < master->num_chipselect; i++)
1902 cs[i] = -ENOENT;
1903
1904 for (i = 0; i < nb; i++)
1905 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1906
1907 return 0;
1908 }
1909 #else
1910 static int of_spi_register_master(struct spi_master *master)
1911 {
1912 return 0;
1913 }
1914 #endif
1915
1916 /**
1917 * spi_register_master - register SPI master controller
1918 * @master: initialized master, originally from spi_alloc_master()
1919 * Context: can sleep
1920 *
1921 * SPI master controllers connect to their drivers using some non-SPI bus,
1922 * such as the platform bus. The final stage of probe() in that code
1923 * includes calling spi_register_master() to hook up to this SPI bus glue.
1924 *
1925 * SPI controllers use board specific (often SOC specific) bus numbers,
1926 * and board-specific addressing for SPI devices combines those numbers
1927 * with chip select numbers. Since SPI does not directly support dynamic
1928 * device identification, boards need configuration tables telling which
1929 * chip is at which address.
1930 *
1931 * This must be called from context that can sleep. It returns zero on
1932 * success, else a negative error code (dropping the master's refcount).
1933 * After a successful return, the caller is responsible for calling
1934 * spi_unregister_master().
1935 *
1936 * Return: zero on success, else a negative error code.
1937 */
1938 int spi_register_master(struct spi_master *master)
1939 {
1940 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1941 struct device *dev = master->dev.parent;
1942 struct boardinfo *bi;
1943 int status = -ENODEV;
1944 int dynamic = 0;
1945
1946 if (!dev)
1947 return -ENODEV;
1948
1949 status = of_spi_register_master(master);
1950 if (status)
1951 return status;
1952
1953 /* even if it's just one always-selected device, there must
1954 * be at least one chipselect
1955 */
1956 if (master->num_chipselect == 0)
1957 return -EINVAL;
1958
1959 if ((master->bus_num < 0) && master->dev.of_node)
1960 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1961
1962 /* convention: dynamically assigned bus IDs count down from the max */
1963 if (master->bus_num < 0) {
1964 /* FIXME switch to an IDR based scheme, something like
1965 * I2C now uses, so we can't run out of "dynamic" IDs
1966 */
1967 master->bus_num = atomic_dec_return(&dyn_bus_id);
1968 dynamic = 1;
1969 }
1970
1971 INIT_LIST_HEAD(&master->queue);
1972 spin_lock_init(&master->queue_lock);
1973 spin_lock_init(&master->bus_lock_spinlock);
1974 mutex_init(&master->bus_lock_mutex);
1975 mutex_init(&master->io_mutex);
1976 master->bus_lock_flag = 0;
1977 init_completion(&master->xfer_completion);
1978 if (!master->max_dma_len)
1979 master->max_dma_len = INT_MAX;
1980
1981 /* register the device, then userspace will see it.
1982 * registration fails if the bus ID is in use.
1983 */
1984 dev_set_name(&master->dev, "spi%u", master->bus_num);
1985 status = device_add(&master->dev);
1986 if (status < 0)
1987 goto done;
1988 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1989 dynamic ? " (dynamic)" : "");
1990
1991 /* If we're using a queued driver, start the queue */
1992 if (master->transfer)
1993 dev_info(dev, "master is unqueued, this is deprecated\n");
1994 else {
1995 status = spi_master_initialize_queue(master);
1996 if (status) {
1997 device_del(&master->dev);
1998 goto done;
1999 }
2000 }
2001 /* add statistics */
2002 spin_lock_init(&master->statistics.lock);
2003
2004 mutex_lock(&board_lock);
2005 list_add_tail(&master->list, &spi_master_list);
2006 list_for_each_entry(bi, &board_list, list)
2007 spi_match_master_to_boardinfo(master, &bi->board_info);
2008 mutex_unlock(&board_lock);
2009
2010 /* Register devices from the device tree and ACPI */
2011 of_register_spi_devices(master);
2012 acpi_register_spi_devices(master);
2013 done:
2014 return status;
2015 }
2016 EXPORT_SYMBOL_GPL(spi_register_master);
2017
2018 static void devm_spi_unregister(struct device *dev, void *res)
2019 {
2020 spi_unregister_master(*(struct spi_master **)res);
2021 }
2022
2023 /**
2024 * dev_spi_register_master - register managed SPI master controller
2025 * @dev: device managing SPI master
2026 * @master: initialized master, originally from spi_alloc_master()
2027 * Context: can sleep
2028 *
2029 * Register a SPI device as with spi_register_master() which will
2030 * automatically be unregister
2031 *
2032 * Return: zero on success, else a negative error code.
2033 */
2034 int devm_spi_register_master(struct device *dev, struct spi_master *master)
2035 {
2036 struct spi_master **ptr;
2037 int ret;
2038
2039 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2040 if (!ptr)
2041 return -ENOMEM;
2042
2043 ret = spi_register_master(master);
2044 if (!ret) {
2045 *ptr = master;
2046 devres_add(dev, ptr);
2047 } else {
2048 devres_free(ptr);
2049 }
2050
2051 return ret;
2052 }
2053 EXPORT_SYMBOL_GPL(devm_spi_register_master);
2054
2055 static int __unregister(struct device *dev, void *null)
2056 {
2057 spi_unregister_device(to_spi_device(dev));
2058 return 0;
2059 }
2060
2061 /**
2062 * spi_unregister_master - unregister SPI master controller
2063 * @master: the master being unregistered
2064 * Context: can sleep
2065 *
2066 * This call is used only by SPI master controller drivers, which are the
2067 * only ones directly touching chip registers.
2068 *
2069 * This must be called from context that can sleep.
2070 */
2071 void spi_unregister_master(struct spi_master *master)
2072 {
2073 int dummy;
2074
2075 if (master->queued) {
2076 if (spi_destroy_queue(master))
2077 dev_err(&master->dev, "queue remove failed\n");
2078 }
2079
2080 mutex_lock(&board_lock);
2081 list_del(&master->list);
2082 mutex_unlock(&board_lock);
2083
2084 dummy = device_for_each_child(&master->dev, NULL, __unregister);
2085 device_unregister(&master->dev);
2086 }
2087 EXPORT_SYMBOL_GPL(spi_unregister_master);
2088
2089 int spi_master_suspend(struct spi_master *master)
2090 {
2091 int ret;
2092
2093 /* Basically no-ops for non-queued masters */
2094 if (!master->queued)
2095 return 0;
2096
2097 ret = spi_stop_queue(master);
2098 if (ret)
2099 dev_err(&master->dev, "queue stop failed\n");
2100
2101 return ret;
2102 }
2103 EXPORT_SYMBOL_GPL(spi_master_suspend);
2104
2105 int spi_master_resume(struct spi_master *master)
2106 {
2107 int ret;
2108
2109 if (!master->queued)
2110 return 0;
2111
2112 ret = spi_start_queue(master);
2113 if (ret)
2114 dev_err(&master->dev, "queue restart failed\n");
2115
2116 return ret;
2117 }
2118 EXPORT_SYMBOL_GPL(spi_master_resume);
2119
2120 static int __spi_master_match(struct device *dev, const void *data)
2121 {
2122 struct spi_master *m;
2123 const u16 *bus_num = data;
2124
2125 m = container_of(dev, struct spi_master, dev);
2126 return m->bus_num == *bus_num;
2127 }
2128
2129 /**
2130 * spi_busnum_to_master - look up master associated with bus_num
2131 * @bus_num: the master's bus number
2132 * Context: can sleep
2133 *
2134 * This call may be used with devices that are registered after
2135 * arch init time. It returns a refcounted pointer to the relevant
2136 * spi_master (which the caller must release), or NULL if there is
2137 * no such master registered.
2138 *
2139 * Return: the SPI master structure on success, else NULL.
2140 */
2141 struct spi_master *spi_busnum_to_master(u16 bus_num)
2142 {
2143 struct device *dev;
2144 struct spi_master *master = NULL;
2145
2146 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2147 __spi_master_match);
2148 if (dev)
2149 master = container_of(dev, struct spi_master, dev);
2150 /* reference got in class_find_device */
2151 return master;
2152 }
2153 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2154
2155 /*-------------------------------------------------------------------------*/
2156
2157 /* Core methods for SPI resource management */
2158
2159 /**
2160 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2161 * during the processing of a spi_message while using
2162 * spi_transfer_one
2163 * @spi: the spi device for which we allocate memory
2164 * @release: the release code to execute for this resource
2165 * @size: size to alloc and return
2166 * @gfp: GFP allocation flags
2167 *
2168 * Return: the pointer to the allocated data
2169 *
2170 * This may get enhanced in the future to allocate from a memory pool
2171 * of the @spi_device or @spi_master to avoid repeated allocations.
2172 */
2173 void *spi_res_alloc(struct spi_device *spi,
2174 spi_res_release_t release,
2175 size_t size, gfp_t gfp)
2176 {
2177 struct spi_res *sres;
2178
2179 sres = kzalloc(sizeof(*sres) + size, gfp);
2180 if (!sres)
2181 return NULL;
2182
2183 INIT_LIST_HEAD(&sres->entry);
2184 sres->release = release;
2185
2186 return sres->data;
2187 }
2188 EXPORT_SYMBOL_GPL(spi_res_alloc);
2189
2190 /**
2191 * spi_res_free - free an spi resource
2192 * @res: pointer to the custom data of a resource
2193 *
2194 */
2195 void spi_res_free(void *res)
2196 {
2197 struct spi_res *sres = container_of(res, struct spi_res, data);
2198
2199 if (!res)
2200 return;
2201
2202 WARN_ON(!list_empty(&sres->entry));
2203 kfree(sres);
2204 }
2205 EXPORT_SYMBOL_GPL(spi_res_free);
2206
2207 /**
2208 * spi_res_add - add a spi_res to the spi_message
2209 * @message: the spi message
2210 * @res: the spi_resource
2211 */
2212 void spi_res_add(struct spi_message *message, void *res)
2213 {
2214 struct spi_res *sres = container_of(res, struct spi_res, data);
2215
2216 WARN_ON(!list_empty(&sres->entry));
2217 list_add_tail(&sres->entry, &message->resources);
2218 }
2219 EXPORT_SYMBOL_GPL(spi_res_add);
2220
2221 /**
2222 * spi_res_release - release all spi resources for this message
2223 * @master: the @spi_master
2224 * @message: the @spi_message
2225 */
2226 void spi_res_release(struct spi_master *master,
2227 struct spi_message *message)
2228 {
2229 struct spi_res *res;
2230
2231 while (!list_empty(&message->resources)) {
2232 res = list_last_entry(&message->resources,
2233 struct spi_res, entry);
2234
2235 if (res->release)
2236 res->release(master, message, res->data);
2237
2238 list_del(&res->entry);
2239
2240 kfree(res);
2241 }
2242 }
2243 EXPORT_SYMBOL_GPL(spi_res_release);
2244
2245 /*-------------------------------------------------------------------------*/
2246
2247 /* Core methods for spi_message alterations */
2248
2249 static void __spi_replace_transfers_release(struct spi_master *master,
2250 struct spi_message *msg,
2251 void *res)
2252 {
2253 struct spi_replaced_transfers *rxfer = res;
2254 size_t i;
2255
2256 /* call extra callback if requested */
2257 if (rxfer->release)
2258 rxfer->release(master, msg, res);
2259
2260 /* insert replaced transfers back into the message */
2261 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2262
2263 /* remove the formerly inserted entries */
2264 for (i = 0; i < rxfer->inserted; i++)
2265 list_del(&rxfer->inserted_transfers[i].transfer_list);
2266 }
2267
2268 /**
2269 * spi_replace_transfers - replace transfers with several transfers
2270 * and register change with spi_message.resources
2271 * @msg: the spi_message we work upon
2272 * @xfer_first: the first spi_transfer we want to replace
2273 * @remove: number of transfers to remove
2274 * @insert: the number of transfers we want to insert instead
2275 * @release: extra release code necessary in some circumstances
2276 * @extradatasize: extra data to allocate (with alignment guarantees
2277 * of struct @spi_transfer)
2278 * @gfp: gfp flags
2279 *
2280 * Returns: pointer to @spi_replaced_transfers,
2281 * PTR_ERR(...) in case of errors.
2282 */
2283 struct spi_replaced_transfers *spi_replace_transfers(
2284 struct spi_message *msg,
2285 struct spi_transfer *xfer_first,
2286 size_t remove,
2287 size_t insert,
2288 spi_replaced_release_t release,
2289 size_t extradatasize,
2290 gfp_t gfp)
2291 {
2292 struct spi_replaced_transfers *rxfer;
2293 struct spi_transfer *xfer;
2294 size_t i;
2295
2296 /* allocate the structure using spi_res */
2297 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2298 insert * sizeof(struct spi_transfer)
2299 + sizeof(struct spi_replaced_transfers)
2300 + extradatasize,
2301 gfp);
2302 if (!rxfer)
2303 return ERR_PTR(-ENOMEM);
2304
2305 /* the release code to invoke before running the generic release */
2306 rxfer->release = release;
2307
2308 /* assign extradata */
2309 if (extradatasize)
2310 rxfer->extradata =
2311 &rxfer->inserted_transfers[insert];
2312
2313 /* init the replaced_transfers list */
2314 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2315
2316 /* assign the list_entry after which we should reinsert
2317 * the @replaced_transfers - it may be spi_message.messages!
2318 */
2319 rxfer->replaced_after = xfer_first->transfer_list.prev;
2320
2321 /* remove the requested number of transfers */
2322 for (i = 0; i < remove; i++) {
2323 /* if the entry after replaced_after it is msg->transfers
2324 * then we have been requested to remove more transfers
2325 * than are in the list
2326 */
2327 if (rxfer->replaced_after->next == &msg->transfers) {
2328 dev_err(&msg->spi->dev,
2329 "requested to remove more spi_transfers than are available\n");
2330 /* insert replaced transfers back into the message */
2331 list_splice(&rxfer->replaced_transfers,
2332 rxfer->replaced_after);
2333
2334 /* free the spi_replace_transfer structure */
2335 spi_res_free(rxfer);
2336
2337 /* and return with an error */
2338 return ERR_PTR(-EINVAL);
2339 }
2340
2341 /* remove the entry after replaced_after from list of
2342 * transfers and add it to list of replaced_transfers
2343 */
2344 list_move_tail(rxfer->replaced_after->next,
2345 &rxfer->replaced_transfers);
2346 }
2347
2348 /* create copy of the given xfer with identical settings
2349 * based on the first transfer to get removed
2350 */
2351 for (i = 0; i < insert; i++) {
2352 /* we need to run in reverse order */
2353 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2354
2355 /* copy all spi_transfer data */
2356 memcpy(xfer, xfer_first, sizeof(*xfer));
2357
2358 /* add to list */
2359 list_add(&xfer->transfer_list, rxfer->replaced_after);
2360
2361 /* clear cs_change and delay_usecs for all but the last */
2362 if (i) {
2363 xfer->cs_change = false;
2364 xfer->delay_usecs = 0;
2365 }
2366 }
2367
2368 /* set up inserted */
2369 rxfer->inserted = insert;
2370
2371 /* and register it with spi_res/spi_message */
2372 spi_res_add(msg, rxfer);
2373
2374 return rxfer;
2375 }
2376 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2377
2378 static int __spi_split_transfer_maxsize(struct spi_master *master,
2379 struct spi_message *msg,
2380 struct spi_transfer **xferp,
2381 size_t maxsize,
2382 gfp_t gfp)
2383 {
2384 struct spi_transfer *xfer = *xferp, *xfers;
2385 struct spi_replaced_transfers *srt;
2386 size_t offset;
2387 size_t count, i;
2388
2389 /* warn once about this fact that we are splitting a transfer */
2390 dev_warn_once(&msg->spi->dev,
2391 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2392 xfer->len, maxsize);
2393
2394 /* calculate how many we have to replace */
2395 count = DIV_ROUND_UP(xfer->len, maxsize);
2396
2397 /* create replacement */
2398 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2399 if (IS_ERR(srt))
2400 return PTR_ERR(srt);
2401 xfers = srt->inserted_transfers;
2402
2403 /* now handle each of those newly inserted spi_transfers
2404 * note that the replacements spi_transfers all are preset
2405 * to the same values as *xferp, so tx_buf, rx_buf and len
2406 * are all identical (as well as most others)
2407 * so we just have to fix up len and the pointers.
2408 *
2409 * this also includes support for the depreciated
2410 * spi_message.is_dma_mapped interface
2411 */
2412
2413 /* the first transfer just needs the length modified, so we
2414 * run it outside the loop
2415 */
2416 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2417
2418 /* all the others need rx_buf/tx_buf also set */
2419 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2420 /* update rx_buf, tx_buf and dma */
2421 if (xfers[i].rx_buf)
2422 xfers[i].rx_buf += offset;
2423 if (xfers[i].rx_dma)
2424 xfers[i].rx_dma += offset;
2425 if (xfers[i].tx_buf)
2426 xfers[i].tx_buf += offset;
2427 if (xfers[i].tx_dma)
2428 xfers[i].tx_dma += offset;
2429
2430 /* update length */
2431 xfers[i].len = min(maxsize, xfers[i].len - offset);
2432 }
2433
2434 /* we set up xferp to the last entry we have inserted,
2435 * so that we skip those already split transfers
2436 */
2437 *xferp = &xfers[count - 1];
2438
2439 /* increment statistics counters */
2440 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2441 transfers_split_maxsize);
2442 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2443 transfers_split_maxsize);
2444
2445 return 0;
2446 }
2447
2448 /**
2449 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2450 * when an individual transfer exceeds a
2451 * certain size
2452 * @master: the @spi_master for this transfer
2453 * @msg: the @spi_message to transform
2454 * @maxsize: the maximum when to apply this
2455 * @gfp: GFP allocation flags
2456 *
2457 * Return: status of transformation
2458 */
2459 int spi_split_transfers_maxsize(struct spi_master *master,
2460 struct spi_message *msg,
2461 size_t maxsize,
2462 gfp_t gfp)
2463 {
2464 struct spi_transfer *xfer;
2465 int ret;
2466
2467 /* iterate over the transfer_list,
2468 * but note that xfer is advanced to the last transfer inserted
2469 * to avoid checking sizes again unnecessarily (also xfer does
2470 * potentiall belong to a different list by the time the
2471 * replacement has happened
2472 */
2473 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2474 if (xfer->len > maxsize) {
2475 ret = __spi_split_transfer_maxsize(
2476 master, msg, &xfer, maxsize, gfp);
2477 if (ret)
2478 return ret;
2479 }
2480 }
2481
2482 return 0;
2483 }
2484 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2485
2486 /*-------------------------------------------------------------------------*/
2487
2488 /* Core methods for SPI master protocol drivers. Some of the
2489 * other core methods are currently defined as inline functions.
2490 */
2491
2492 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2493 {
2494 if (master->bits_per_word_mask) {
2495 /* Only 32 bits fit in the mask */
2496 if (bits_per_word > 32)
2497 return -EINVAL;
2498 if (!(master->bits_per_word_mask &
2499 SPI_BPW_MASK(bits_per_word)))
2500 return -EINVAL;
2501 }
2502
2503 return 0;
2504 }
2505
2506 /**
2507 * spi_setup - setup SPI mode and clock rate
2508 * @spi: the device whose settings are being modified
2509 * Context: can sleep, and no requests are queued to the device
2510 *
2511 * SPI protocol drivers may need to update the transfer mode if the
2512 * device doesn't work with its default. They may likewise need
2513 * to update clock rates or word sizes from initial values. This function
2514 * changes those settings, and must be called from a context that can sleep.
2515 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2516 * effect the next time the device is selected and data is transferred to
2517 * or from it. When this function returns, the spi device is deselected.
2518 *
2519 * Note that this call will fail if the protocol driver specifies an option
2520 * that the underlying controller or its driver does not support. For
2521 * example, not all hardware supports wire transfers using nine bit words,
2522 * LSB-first wire encoding, or active-high chipselects.
2523 *
2524 * Return: zero on success, else a negative error code.
2525 */
2526 int spi_setup(struct spi_device *spi)
2527 {
2528 unsigned bad_bits, ugly_bits;
2529 int status;
2530
2531 /* check mode to prevent that DUAL and QUAD set at the same time
2532 */
2533 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2534 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2535 dev_err(&spi->dev,
2536 "setup: can not select dual and quad at the same time\n");
2537 return -EINVAL;
2538 }
2539 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2540 */
2541 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2542 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2543 return -EINVAL;
2544 /* help drivers fail *cleanly* when they need options
2545 * that aren't supported with their current master
2546 */
2547 bad_bits = spi->mode & ~spi->master->mode_bits;
2548 ugly_bits = bad_bits &
2549 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2550 if (ugly_bits) {
2551 dev_warn(&spi->dev,
2552 "setup: ignoring unsupported mode bits %x\n",
2553 ugly_bits);
2554 spi->mode &= ~ugly_bits;
2555 bad_bits &= ~ugly_bits;
2556 }
2557 if (bad_bits) {
2558 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2559 bad_bits);
2560 return -EINVAL;
2561 }
2562
2563 if (!spi->bits_per_word)
2564 spi->bits_per_word = 8;
2565
2566 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2567 if (status)
2568 return status;
2569
2570 if (!spi->max_speed_hz)
2571 spi->max_speed_hz = spi->master->max_speed_hz;
2572
2573 if (spi->master->setup)
2574 status = spi->master->setup(spi);
2575
2576 spi_set_cs(spi, false);
2577
2578 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2579 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2580 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2581 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2582 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2583 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2584 spi->bits_per_word, spi->max_speed_hz,
2585 status);
2586
2587 return status;
2588 }
2589 EXPORT_SYMBOL_GPL(spi_setup);
2590
2591 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2592 {
2593 struct spi_master *master = spi->master;
2594 struct spi_transfer *xfer;
2595 int w_size;
2596
2597 if (list_empty(&message->transfers))
2598 return -EINVAL;
2599
2600 /* Half-duplex links include original MicroWire, and ones with
2601 * only one data pin like SPI_3WIRE (switches direction) or where
2602 * either MOSI or MISO is missing. They can also be caused by
2603 * software limitations.
2604 */
2605 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2606 || (spi->mode & SPI_3WIRE)) {
2607 unsigned flags = master->flags;
2608
2609 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2610 if (xfer->rx_buf && xfer->tx_buf)
2611 return -EINVAL;
2612 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2613 return -EINVAL;
2614 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2615 return -EINVAL;
2616 }
2617 }
2618
2619 /**
2620 * Set transfer bits_per_word and max speed as spi device default if
2621 * it is not set for this transfer.
2622 * Set transfer tx_nbits and rx_nbits as single transfer default
2623 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2624 */
2625 message->frame_length = 0;
2626 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2627 message->frame_length += xfer->len;
2628 if (!xfer->bits_per_word)
2629 xfer->bits_per_word = spi->bits_per_word;
2630
2631 if (!xfer->speed_hz)
2632 xfer->speed_hz = spi->max_speed_hz;
2633 if (!xfer->speed_hz)
2634 xfer->speed_hz = master->max_speed_hz;
2635
2636 if (master->max_speed_hz &&
2637 xfer->speed_hz > master->max_speed_hz)
2638 xfer->speed_hz = master->max_speed_hz;
2639
2640 if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2641 return -EINVAL;
2642
2643 /*
2644 * SPI transfer length should be multiple of SPI word size
2645 * where SPI word size should be power-of-two multiple
2646 */
2647 if (xfer->bits_per_word <= 8)
2648 w_size = 1;
2649 else if (xfer->bits_per_word <= 16)
2650 w_size = 2;
2651 else
2652 w_size = 4;
2653
2654 /* No partial transfers accepted */
2655 if (xfer->len % w_size)
2656 return -EINVAL;
2657
2658 if (xfer->speed_hz && master->min_speed_hz &&
2659 xfer->speed_hz < master->min_speed_hz)
2660 return -EINVAL;
2661
2662 if (xfer->tx_buf && !xfer->tx_nbits)
2663 xfer->tx_nbits = SPI_NBITS_SINGLE;
2664 if (xfer->rx_buf && !xfer->rx_nbits)
2665 xfer->rx_nbits = SPI_NBITS_SINGLE;
2666 /* check transfer tx/rx_nbits:
2667 * 1. check the value matches one of single, dual and quad
2668 * 2. check tx/rx_nbits match the mode in spi_device
2669 */
2670 if (xfer->tx_buf) {
2671 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2672 xfer->tx_nbits != SPI_NBITS_DUAL &&
2673 xfer->tx_nbits != SPI_NBITS_QUAD)
2674 return -EINVAL;
2675 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2676 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2677 return -EINVAL;
2678 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2679 !(spi->mode & SPI_TX_QUAD))
2680 return -EINVAL;
2681 }
2682 /* check transfer rx_nbits */
2683 if (xfer->rx_buf) {
2684 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2685 xfer->rx_nbits != SPI_NBITS_DUAL &&
2686 xfer->rx_nbits != SPI_NBITS_QUAD)
2687 return -EINVAL;
2688 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2689 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2690 return -EINVAL;
2691 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2692 !(spi->mode & SPI_RX_QUAD))
2693 return -EINVAL;
2694 }
2695 }
2696
2697 message->status = -EINPROGRESS;
2698
2699 return 0;
2700 }
2701
2702 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2703 {
2704 struct spi_master *master = spi->master;
2705
2706 message->spi = spi;
2707
2708 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2709 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2710
2711 trace_spi_message_submit(message);
2712
2713 return master->transfer(spi, message);
2714 }
2715
2716 /**
2717 * spi_async - asynchronous SPI transfer
2718 * @spi: device with which data will be exchanged
2719 * @message: describes the data transfers, including completion callback
2720 * Context: any (irqs may be blocked, etc)
2721 *
2722 * This call may be used in_irq and other contexts which can't sleep,
2723 * as well as from task contexts which can sleep.
2724 *
2725 * The completion callback is invoked in a context which can't sleep.
2726 * Before that invocation, the value of message->status is undefined.
2727 * When the callback is issued, message->status holds either zero (to
2728 * indicate complete success) or a negative error code. After that
2729 * callback returns, the driver which issued the transfer request may
2730 * deallocate the associated memory; it's no longer in use by any SPI
2731 * core or controller driver code.
2732 *
2733 * Note that although all messages to a spi_device are handled in
2734 * FIFO order, messages may go to different devices in other orders.
2735 * Some device might be higher priority, or have various "hard" access
2736 * time requirements, for example.
2737 *
2738 * On detection of any fault during the transfer, processing of
2739 * the entire message is aborted, and the device is deselected.
2740 * Until returning from the associated message completion callback,
2741 * no other spi_message queued to that device will be processed.
2742 * (This rule applies equally to all the synchronous transfer calls,
2743 * which are wrappers around this core asynchronous primitive.)
2744 *
2745 * Return: zero on success, else a negative error code.
2746 */
2747 int spi_async(struct spi_device *spi, struct spi_message *message)
2748 {
2749 struct spi_master *master = spi->master;
2750 int ret;
2751 unsigned long flags;
2752
2753 ret = __spi_validate(spi, message);
2754 if (ret != 0)
2755 return ret;
2756
2757 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2758
2759 if (master->bus_lock_flag)
2760 ret = -EBUSY;
2761 else
2762 ret = __spi_async(spi, message);
2763
2764 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2765
2766 return ret;
2767 }
2768 EXPORT_SYMBOL_GPL(spi_async);
2769
2770 /**
2771 * spi_async_locked - version of spi_async with exclusive bus usage
2772 * @spi: device with which data will be exchanged
2773 * @message: describes the data transfers, including completion callback
2774 * Context: any (irqs may be blocked, etc)
2775 *
2776 * This call may be used in_irq and other contexts which can't sleep,
2777 * as well as from task contexts which can sleep.
2778 *
2779 * The completion callback is invoked in a context which can't sleep.
2780 * Before that invocation, the value of message->status is undefined.
2781 * When the callback is issued, message->status holds either zero (to
2782 * indicate complete success) or a negative error code. After that
2783 * callback returns, the driver which issued the transfer request may
2784 * deallocate the associated memory; it's no longer in use by any SPI
2785 * core or controller driver code.
2786 *
2787 * Note that although all messages to a spi_device are handled in
2788 * FIFO order, messages may go to different devices in other orders.
2789 * Some device might be higher priority, or have various "hard" access
2790 * time requirements, for example.
2791 *
2792 * On detection of any fault during the transfer, processing of
2793 * the entire message is aborted, and the device is deselected.
2794 * Until returning from the associated message completion callback,
2795 * no other spi_message queued to that device will be processed.
2796 * (This rule applies equally to all the synchronous transfer calls,
2797 * which are wrappers around this core asynchronous primitive.)
2798 *
2799 * Return: zero on success, else a negative error code.
2800 */
2801 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2802 {
2803 struct spi_master *master = spi->master;
2804 int ret;
2805 unsigned long flags;
2806
2807 ret = __spi_validate(spi, message);
2808 if (ret != 0)
2809 return ret;
2810
2811 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2812
2813 ret = __spi_async(spi, message);
2814
2815 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2816
2817 return ret;
2818
2819 }
2820 EXPORT_SYMBOL_GPL(spi_async_locked);
2821
2822
2823 int spi_flash_read(struct spi_device *spi,
2824 struct spi_flash_read_message *msg)
2825
2826 {
2827 struct spi_master *master = spi->master;
2828 struct device *rx_dev = NULL;
2829 int ret;
2830
2831 if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2832 msg->addr_nbits == SPI_NBITS_DUAL) &&
2833 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2834 return -EINVAL;
2835 if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2836 msg->addr_nbits == SPI_NBITS_QUAD) &&
2837 !(spi->mode & SPI_TX_QUAD))
2838 return -EINVAL;
2839 if (msg->data_nbits == SPI_NBITS_DUAL &&
2840 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2841 return -EINVAL;
2842 if (msg->data_nbits == SPI_NBITS_QUAD &&
2843 !(spi->mode & SPI_RX_QUAD))
2844 return -EINVAL;
2845
2846 if (master->auto_runtime_pm) {
2847 ret = pm_runtime_get_sync(master->dev.parent);
2848 if (ret < 0) {
2849 dev_err(&master->dev, "Failed to power device: %d\n",
2850 ret);
2851 return ret;
2852 }
2853 }
2854
2855 mutex_lock(&master->bus_lock_mutex);
2856 mutex_lock(&master->io_mutex);
2857 if (master->dma_rx) {
2858 rx_dev = master->dma_rx->device->dev;
2859 ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2860 msg->buf, msg->len,
2861 DMA_FROM_DEVICE);
2862 if (!ret)
2863 msg->cur_msg_mapped = true;
2864 }
2865 ret = master->spi_flash_read(spi, msg);
2866 if (msg->cur_msg_mapped)
2867 spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2868 DMA_FROM_DEVICE);
2869 mutex_unlock(&master->io_mutex);
2870 mutex_unlock(&master->bus_lock_mutex);
2871
2872 if (master->auto_runtime_pm)
2873 pm_runtime_put(master->dev.parent);
2874
2875 return ret;
2876 }
2877 EXPORT_SYMBOL_GPL(spi_flash_read);
2878
2879 /*-------------------------------------------------------------------------*/
2880
2881 /* Utility methods for SPI master protocol drivers, layered on
2882 * top of the core. Some other utility methods are defined as
2883 * inline functions.
2884 */
2885
2886 static void spi_complete(void *arg)
2887 {
2888 complete(arg);
2889 }
2890
2891 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
2892 {
2893 DECLARE_COMPLETION_ONSTACK(done);
2894 int status;
2895 struct spi_master *master = spi->master;
2896 unsigned long flags;
2897
2898 status = __spi_validate(spi, message);
2899 if (status != 0)
2900 return status;
2901
2902 message->complete = spi_complete;
2903 message->context = &done;
2904 message->spi = spi;
2905
2906 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2907 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2908
2909 /* If we're not using the legacy transfer method then we will
2910 * try to transfer in the calling context so special case.
2911 * This code would be less tricky if we could remove the
2912 * support for driver implemented message queues.
2913 */
2914 if (master->transfer == spi_queued_transfer) {
2915 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2916
2917 trace_spi_message_submit(message);
2918
2919 status = __spi_queued_transfer(spi, message, false);
2920
2921 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2922 } else {
2923 status = spi_async_locked(spi, message);
2924 }
2925
2926 if (status == 0) {
2927 /* Push out the messages in the calling context if we
2928 * can.
2929 */
2930 if (master->transfer == spi_queued_transfer) {
2931 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2932 spi_sync_immediate);
2933 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2934 spi_sync_immediate);
2935 __spi_pump_messages(master, false);
2936 }
2937
2938 wait_for_completion(&done);
2939 status = message->status;
2940 }
2941 message->context = NULL;
2942 return status;
2943 }
2944
2945 /**
2946 * spi_sync - blocking/synchronous SPI data transfers
2947 * @spi: device with which data will be exchanged
2948 * @message: describes the data transfers
2949 * Context: can sleep
2950 *
2951 * This call may only be used from a context that may sleep. The sleep
2952 * is non-interruptible, and has no timeout. Low-overhead controller
2953 * drivers may DMA directly into and out of the message buffers.
2954 *
2955 * Note that the SPI device's chip select is active during the message,
2956 * and then is normally disabled between messages. Drivers for some
2957 * frequently-used devices may want to minimize costs of selecting a chip,
2958 * by leaving it selected in anticipation that the next message will go
2959 * to the same chip. (That may increase power usage.)
2960 *
2961 * Also, the caller is guaranteeing that the memory associated with the
2962 * message will not be freed before this call returns.
2963 *
2964 * Return: zero on success, else a negative error code.
2965 */
2966 int spi_sync(struct spi_device *spi, struct spi_message *message)
2967 {
2968 int ret;
2969
2970 mutex_lock(&spi->master->bus_lock_mutex);
2971 ret = __spi_sync(spi, message);
2972 mutex_unlock(&spi->master->bus_lock_mutex);
2973
2974 return ret;
2975 }
2976 EXPORT_SYMBOL_GPL(spi_sync);
2977
2978 /**
2979 * spi_sync_locked - version of spi_sync with exclusive bus usage
2980 * @spi: device with which data will be exchanged
2981 * @message: describes the data transfers
2982 * Context: can sleep
2983 *
2984 * This call may only be used from a context that may sleep. The sleep
2985 * is non-interruptible, and has no timeout. Low-overhead controller
2986 * drivers may DMA directly into and out of the message buffers.
2987 *
2988 * This call should be used by drivers that require exclusive access to the
2989 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2990 * be released by a spi_bus_unlock call when the exclusive access is over.
2991 *
2992 * Return: zero on success, else a negative error code.
2993 */
2994 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2995 {
2996 return __spi_sync(spi, message);
2997 }
2998 EXPORT_SYMBOL_GPL(spi_sync_locked);
2999
3000 /**
3001 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3002 * @master: SPI bus master that should be locked for exclusive bus access
3003 * Context: can sleep
3004 *
3005 * This call may only be used from a context that may sleep. The sleep
3006 * is non-interruptible, and has no timeout.
3007 *
3008 * This call should be used by drivers that require exclusive access to the
3009 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3010 * exclusive access is over. Data transfer must be done by spi_sync_locked
3011 * and spi_async_locked calls when the SPI bus lock is held.
3012 *
3013 * Return: always zero.
3014 */
3015 int spi_bus_lock(struct spi_master *master)
3016 {
3017 unsigned long flags;
3018
3019 mutex_lock(&master->bus_lock_mutex);
3020
3021 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
3022 master->bus_lock_flag = 1;
3023 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
3024
3025 /* mutex remains locked until spi_bus_unlock is called */
3026
3027 return 0;
3028 }
3029 EXPORT_SYMBOL_GPL(spi_bus_lock);
3030
3031 /**
3032 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3033 * @master: SPI bus master that was locked for exclusive bus access
3034 * Context: can sleep
3035 *
3036 * This call may only be used from a context that may sleep. The sleep
3037 * is non-interruptible, and has no timeout.
3038 *
3039 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3040 * call.
3041 *
3042 * Return: always zero.
3043 */
3044 int spi_bus_unlock(struct spi_master *master)
3045 {
3046 master->bus_lock_flag = 0;
3047
3048 mutex_unlock(&master->bus_lock_mutex);
3049
3050 return 0;
3051 }
3052 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3053
3054 /* portable code must never pass more than 32 bytes */
3055 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3056
3057 static u8 *buf;
3058
3059 /**
3060 * spi_write_then_read - SPI synchronous write followed by read
3061 * @spi: device with which data will be exchanged
3062 * @txbuf: data to be written (need not be dma-safe)
3063 * @n_tx: size of txbuf, in bytes
3064 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3065 * @n_rx: size of rxbuf, in bytes
3066 * Context: can sleep
3067 *
3068 * This performs a half duplex MicroWire style transaction with the
3069 * device, sending txbuf and then reading rxbuf. The return value
3070 * is zero for success, else a negative errno status code.
3071 * This call may only be used from a context that may sleep.
3072 *
3073 * Parameters to this routine are always copied using a small buffer;
3074 * portable code should never use this for more than 32 bytes.
3075 * Performance-sensitive or bulk transfer code should instead use
3076 * spi_{async,sync}() calls with dma-safe buffers.
3077 *
3078 * Return: zero on success, else a negative error code.
3079 */
3080 int spi_write_then_read(struct spi_device *spi,
3081 const void *txbuf, unsigned n_tx,
3082 void *rxbuf, unsigned n_rx)
3083 {
3084 static DEFINE_MUTEX(lock);
3085
3086 int status;
3087 struct spi_message message;
3088 struct spi_transfer x[2];
3089 u8 *local_buf;
3090
3091 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3092 * copying here, (as a pure convenience thing), but we can
3093 * keep heap costs out of the hot path unless someone else is
3094 * using the pre-allocated buffer or the transfer is too large.
3095 */
3096 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3097 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3098 GFP_KERNEL | GFP_DMA);
3099 if (!local_buf)
3100 return -ENOMEM;
3101 } else {
3102 local_buf = buf;
3103 }
3104
3105 spi_message_init(&message);
3106 memset(x, 0, sizeof(x));
3107 if (n_tx) {
3108 x[0].len = n_tx;
3109 spi_message_add_tail(&x[0], &message);
3110 }
3111 if (n_rx) {
3112 x[1].len = n_rx;
3113 spi_message_add_tail(&x[1], &message);
3114 }
3115
3116 memcpy(local_buf, txbuf, n_tx);
3117 x[0].tx_buf = local_buf;
3118 x[1].rx_buf = local_buf + n_tx;
3119
3120 /* do the i/o */
3121 status = spi_sync(spi, &message);
3122 if (status == 0)
3123 memcpy(rxbuf, x[1].rx_buf, n_rx);
3124
3125 if (x[0].tx_buf == buf)
3126 mutex_unlock(&lock);
3127 else
3128 kfree(local_buf);
3129
3130 return status;
3131 }
3132 EXPORT_SYMBOL_GPL(spi_write_then_read);
3133
3134 /*-------------------------------------------------------------------------*/
3135
3136 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3137 static int __spi_of_device_match(struct device *dev, void *data)
3138 {
3139 return dev->of_node == data;
3140 }
3141
3142 /* must call put_device() when done with returned spi_device device */
3143 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3144 {
3145 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3146 __spi_of_device_match);
3147 return dev ? to_spi_device(dev) : NULL;
3148 }
3149
3150 static int __spi_of_master_match(struct device *dev, const void *data)
3151 {
3152 return dev->of_node == data;
3153 }
3154
3155 /* the spi masters are not using spi_bus, so we find it with another way */
3156 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3157 {
3158 struct device *dev;
3159
3160 dev = class_find_device(&spi_master_class, NULL, node,
3161 __spi_of_master_match);
3162 if (!dev)
3163 return NULL;
3164
3165 /* reference got in class_find_device */
3166 return container_of(dev, struct spi_master, dev);
3167 }
3168
3169 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3170 void *arg)
3171 {
3172 struct of_reconfig_data *rd = arg;
3173 struct spi_master *master;
3174 struct spi_device *spi;
3175
3176 switch (of_reconfig_get_state_change(action, arg)) {
3177 case OF_RECONFIG_CHANGE_ADD:
3178 master = of_find_spi_master_by_node(rd->dn->parent);
3179 if (master == NULL)
3180 return NOTIFY_OK; /* not for us */
3181
3182 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3183 put_device(&master->dev);
3184 return NOTIFY_OK;
3185 }
3186
3187 spi = of_register_spi_device(master, rd->dn);
3188 put_device(&master->dev);
3189
3190 if (IS_ERR(spi)) {
3191 pr_err("%s: failed to create for '%s'\n",
3192 __func__, rd->dn->full_name);
3193 of_node_clear_flag(rd->dn, OF_POPULATED);
3194 return notifier_from_errno(PTR_ERR(spi));
3195 }
3196 break;
3197
3198 case OF_RECONFIG_CHANGE_REMOVE:
3199 /* already depopulated? */
3200 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3201 return NOTIFY_OK;
3202
3203 /* find our device by node */
3204 spi = of_find_spi_device_by_node(rd->dn);
3205 if (spi == NULL)
3206 return NOTIFY_OK; /* no? not meant for us */
3207
3208 /* unregister takes one ref away */
3209 spi_unregister_device(spi);
3210
3211 /* and put the reference of the find */
3212 put_device(&spi->dev);
3213 break;
3214 }
3215
3216 return NOTIFY_OK;
3217 }
3218
3219 static struct notifier_block spi_of_notifier = {
3220 .notifier_call = of_spi_notify,
3221 };
3222 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3223 extern struct notifier_block spi_of_notifier;
3224 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3225
3226 #if IS_ENABLED(CONFIG_ACPI)
3227 static int spi_acpi_master_match(struct device *dev, const void *data)
3228 {
3229 return ACPI_COMPANION(dev->parent) == data;
3230 }
3231
3232 static int spi_acpi_device_match(struct device *dev, void *data)
3233 {
3234 return ACPI_COMPANION(dev) == data;
3235 }
3236
3237 static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
3238 {
3239 struct device *dev;
3240
3241 dev = class_find_device(&spi_master_class, NULL, adev,
3242 spi_acpi_master_match);
3243 if (!dev)
3244 return NULL;
3245
3246 return container_of(dev, struct spi_master, dev);
3247 }
3248
3249 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3250 {
3251 struct device *dev;
3252
3253 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3254
3255 return dev ? to_spi_device(dev) : NULL;
3256 }
3257
3258 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3259 void *arg)
3260 {
3261 struct acpi_device *adev = arg;
3262 struct spi_master *master;
3263 struct spi_device *spi;
3264
3265 switch (value) {
3266 case ACPI_RECONFIG_DEVICE_ADD:
3267 master = acpi_spi_find_master_by_adev(adev->parent);
3268 if (!master)
3269 break;
3270
3271 acpi_register_spi_device(master, adev);
3272 put_device(&master->dev);
3273 break;
3274 case ACPI_RECONFIG_DEVICE_REMOVE:
3275 if (!acpi_device_enumerated(adev))
3276 break;
3277
3278 spi = acpi_spi_find_device_by_adev(adev);
3279 if (!spi)
3280 break;
3281
3282 spi_unregister_device(spi);
3283 put_device(&spi->dev);
3284 break;
3285 }
3286
3287 return NOTIFY_OK;
3288 }
3289
3290 static struct notifier_block spi_acpi_notifier = {
3291 .notifier_call = acpi_spi_notify,
3292 };
3293 #else
3294 extern struct notifier_block spi_acpi_notifier;
3295 #endif
3296
3297 static int __init spi_init(void)
3298 {
3299 int status;
3300
3301 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3302 if (!buf) {
3303 status = -ENOMEM;
3304 goto err0;
3305 }
3306
3307 status = bus_register(&spi_bus_type);
3308 if (status < 0)
3309 goto err1;
3310
3311 status = class_register(&spi_master_class);
3312 if (status < 0)
3313 goto err2;
3314
3315 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3316 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3317 if (IS_ENABLED(CONFIG_ACPI))
3318 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3319
3320 return 0;
3321
3322 err2:
3323 bus_unregister(&spi_bus_type);
3324 err1:
3325 kfree(buf);
3326 buf = NULL;
3327 err0:
3328 return status;
3329 }
3330
3331 /* board_info is normally registered in arch_initcall(),
3332 * but even essential drivers wait till later
3333 *
3334 * REVISIT only boardinfo really needs static linking. the rest (device and
3335 * driver registration) _could_ be dynamically linked (modular) ... costs
3336 * include needing to have boardinfo data structures be much more public.
3337 */
3338 postcore_initcall(spi_init);
3339