]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/tty/serial/ifx6x60.c
473f4f81d690c6ab21a768c0b0745347fc4d9aa5
[mirror_ubuntu-bionic-kernel.git] / drivers / tty / serial / ifx6x60.c
1 // SPDX-License-Identifier: GPL-2.0
2 /****************************************************************************
3 *
4 * Driver for the IFX 6x60 spi modem.
5 *
6 * Copyright (C) 2008 Option International
7 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
8 * Denis Joseph Barrow <d.barow@option.com>
9 * Jan Dumon <j.dumon@option.com>
10 *
11 * Copyright (C) 2009, 2010 Intel Corp
12 * Russ Gorby <russ.gorby@intel.com>
13 *
14 * Driver modified by Intel from Option gtm501l_spi.c
15 *
16 * Notes
17 * o The driver currently assumes a single device only. If you need to
18 * change this then look for saved_ifx_dev and add a device lookup
19 * o The driver is intended to be big-endian safe but has never been
20 * tested that way (no suitable hardware). There are a couple of FIXME
21 * notes by areas that may need addressing
22 * o Some of the GPIO naming/setup assumptions may need revisiting if
23 * you need to use this driver for another platform.
24 *
25 *****************************************************************************/
26 #include <linux/dma-mapping.h>
27 #include <linux/module.h>
28 #include <linux/termios.h>
29 #include <linux/tty.h>
30 #include <linux/device.h>
31 #include <linux/spi/spi.h>
32 #include <linux/kfifo.h>
33 #include <linux/tty_flip.h>
34 #include <linux/timer.h>
35 #include <linux/serial.h>
36 #include <linux/interrupt.h>
37 #include <linux/irq.h>
38 #include <linux/rfkill.h>
39 #include <linux/fs.h>
40 #include <linux/ip.h>
41 #include <linux/dmapool.h>
42 #include <linux/gpio.h>
43 #include <linux/sched.h>
44 #include <linux/time.h>
45 #include <linux/wait.h>
46 #include <linux/pm.h>
47 #include <linux/pm_runtime.h>
48 #include <linux/spi/ifx_modem.h>
49 #include <linux/delay.h>
50 #include <linux/reboot.h>
51
52 #include "ifx6x60.h"
53
54 #define IFX_SPI_MORE_MASK 0x10
55 #define IFX_SPI_MORE_BIT 4 /* bit position in u8 */
56 #define IFX_SPI_CTS_BIT 6 /* bit position in u8 */
57 #define IFX_SPI_MODE SPI_MODE_1
58 #define IFX_SPI_TTY_ID 0
59 #define IFX_SPI_TIMEOUT_SEC 2
60 #define IFX_SPI_HEADER_0 (-1)
61 #define IFX_SPI_HEADER_F (-2)
62
63 #define PO_POST_DELAY 200
64 #define IFX_MDM_RST_PMU 4
65
66 /* forward reference */
67 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
68 static int ifx_modem_reboot_callback(struct notifier_block *nfb,
69 unsigned long event, void *data);
70 static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev);
71
72 /* local variables */
73 static int spi_bpw = 16; /* 8, 16 or 32 bit word length */
74 static struct tty_driver *tty_drv;
75 static struct ifx_spi_device *saved_ifx_dev;
76 static struct lock_class_key ifx_spi_key;
77
78 static struct notifier_block ifx_modem_reboot_notifier_block = {
79 .notifier_call = ifx_modem_reboot_callback,
80 };
81
82 static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev)
83 {
84 gpio_set_value(IFX_MDM_RST_PMU, 1);
85 msleep(PO_POST_DELAY);
86
87 return 0;
88 }
89
90 static int ifx_modem_reboot_callback(struct notifier_block *nfb,
91 unsigned long event, void *data)
92 {
93 if (saved_ifx_dev)
94 ifx_modem_power_off(saved_ifx_dev);
95 else
96 pr_warn("no ifx modem active;\n");
97
98 return NOTIFY_OK;
99 }
100
101 /* GPIO/GPE settings */
102
103 /**
104 * mrdy_set_high - set MRDY GPIO
105 * @ifx: device we are controlling
106 *
107 */
108 static inline void mrdy_set_high(struct ifx_spi_device *ifx)
109 {
110 gpio_set_value(ifx->gpio.mrdy, 1);
111 }
112
113 /**
114 * mrdy_set_low - clear MRDY GPIO
115 * @ifx: device we are controlling
116 *
117 */
118 static inline void mrdy_set_low(struct ifx_spi_device *ifx)
119 {
120 gpio_set_value(ifx->gpio.mrdy, 0);
121 }
122
123 /**
124 * ifx_spi_power_state_set
125 * @ifx_dev: our SPI device
126 * @val: bits to set
127 *
128 * Set bit in power status and signal power system if status becomes non-0
129 */
130 static void
131 ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
132 {
133 unsigned long flags;
134
135 spin_lock_irqsave(&ifx_dev->power_lock, flags);
136
137 /*
138 * if power status is already non-0, just update, else
139 * tell power system
140 */
141 if (!ifx_dev->power_status)
142 pm_runtime_get(&ifx_dev->spi_dev->dev);
143 ifx_dev->power_status |= val;
144
145 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
146 }
147
148 /**
149 * ifx_spi_power_state_clear - clear power bit
150 * @ifx_dev: our SPI device
151 * @val: bits to clear
152 *
153 * clear bit in power status and signal power system if status becomes 0
154 */
155 static void
156 ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
157 {
158 unsigned long flags;
159
160 spin_lock_irqsave(&ifx_dev->power_lock, flags);
161
162 if (ifx_dev->power_status) {
163 ifx_dev->power_status &= ~val;
164 if (!ifx_dev->power_status)
165 pm_runtime_put(&ifx_dev->spi_dev->dev);
166 }
167
168 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
169 }
170
171 /**
172 * swap_buf_8
173 * @buf: our buffer
174 * @len : number of bytes (not words) in the buffer
175 * @end: end of buffer
176 *
177 * Swap the contents of a buffer into big endian format
178 */
179 static inline void swap_buf_8(unsigned char *buf, int len, void *end)
180 {
181 /* don't swap buffer if SPI word width is 8 bits */
182 return;
183 }
184
185 /**
186 * swap_buf_16
187 * @buf: our buffer
188 * @len : number of bytes (not words) in the buffer
189 * @end: end of buffer
190 *
191 * Swap the contents of a buffer into big endian format
192 */
193 static inline void swap_buf_16(unsigned char *buf, int len, void *end)
194 {
195 int n;
196
197 u16 *buf_16 = (u16 *)buf;
198 len = ((len + 1) >> 1);
199 if ((void *)&buf_16[len] > end) {
200 pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
201 &buf_16[len], end);
202 return;
203 }
204 for (n = 0; n < len; n++) {
205 *buf_16 = cpu_to_be16(*buf_16);
206 buf_16++;
207 }
208 }
209
210 /**
211 * swap_buf_32
212 * @buf: our buffer
213 * @len : number of bytes (not words) in the buffer
214 * @end: end of buffer
215 *
216 * Swap the contents of a buffer into big endian format
217 */
218 static inline void swap_buf_32(unsigned char *buf, int len, void *end)
219 {
220 int n;
221
222 u32 *buf_32 = (u32 *)buf;
223 len = (len + 3) >> 2;
224
225 if ((void *)&buf_32[len] > end) {
226 pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
227 &buf_32[len], end);
228 return;
229 }
230 for (n = 0; n < len; n++) {
231 *buf_32 = cpu_to_be32(*buf_32);
232 buf_32++;
233 }
234 }
235
236 /**
237 * mrdy_assert - assert MRDY line
238 * @ifx_dev: our SPI device
239 *
240 * Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
241 * now.
242 *
243 * FIXME: Can SRDY even go high as we are running this code ?
244 */
245 static void mrdy_assert(struct ifx_spi_device *ifx_dev)
246 {
247 int val = gpio_get_value(ifx_dev->gpio.srdy);
248 if (!val) {
249 if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
250 &ifx_dev->flags)) {
251 mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
252
253 }
254 }
255 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
256 mrdy_set_high(ifx_dev);
257 }
258
259 /**
260 * ifx_spi_timeout - SPI timeout
261 * @arg: our SPI device
262 *
263 * The SPI has timed out: hang up the tty. Users will then see a hangup
264 * and error events.
265 */
266 static void ifx_spi_timeout(unsigned long arg)
267 {
268 struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *)arg;
269
270 dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
271 tty_port_tty_hangup(&ifx_dev->tty_port, false);
272 mrdy_set_low(ifx_dev);
273 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
274 }
275
276 /* char/tty operations */
277
278 /**
279 * ifx_spi_tiocmget - get modem lines
280 * @tty: our tty device
281 * @filp: file handle issuing the request
282 *
283 * Map the signal state into Linux modem flags and report the value
284 * in Linux terms
285 */
286 static int ifx_spi_tiocmget(struct tty_struct *tty)
287 {
288 unsigned int value;
289 struct ifx_spi_device *ifx_dev = tty->driver_data;
290
291 value =
292 (test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
293 (test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
294 (test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
295 (test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
296 (test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
297 (test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
298 return value;
299 }
300
301 /**
302 * ifx_spi_tiocmset - set modem bits
303 * @tty: the tty structure
304 * @set: bits to set
305 * @clear: bits to clear
306 *
307 * The IFX6x60 only supports DTR and RTS. Set them accordingly
308 * and flag that an update to the modem is needed.
309 *
310 * FIXME: do we need to kick the tranfers when we do this ?
311 */
312 static int ifx_spi_tiocmset(struct tty_struct *tty,
313 unsigned int set, unsigned int clear)
314 {
315 struct ifx_spi_device *ifx_dev = tty->driver_data;
316
317 if (set & TIOCM_RTS)
318 set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
319 if (set & TIOCM_DTR)
320 set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
321 if (clear & TIOCM_RTS)
322 clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
323 if (clear & TIOCM_DTR)
324 clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
325
326 set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
327 return 0;
328 }
329
330 /**
331 * ifx_spi_open - called on tty open
332 * @tty: our tty device
333 * @filp: file handle being associated with the tty
334 *
335 * Open the tty interface. We let the tty_port layer do all the work
336 * for us.
337 *
338 * FIXME: Remove single device assumption and saved_ifx_dev
339 */
340 static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
341 {
342 return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
343 }
344
345 /**
346 * ifx_spi_close - called when our tty closes
347 * @tty: the tty being closed
348 * @filp: the file handle being closed
349 *
350 * Perform the close of the tty. We use the tty_port layer to do all
351 * our hard work.
352 */
353 static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
354 {
355 struct ifx_spi_device *ifx_dev = tty->driver_data;
356 tty_port_close(&ifx_dev->tty_port, tty, filp);
357 /* FIXME: should we do an ifx_spi_reset here ? */
358 }
359
360 /**
361 * ifx_decode_spi_header - decode received header
362 * @buffer: the received data
363 * @length: decoded length
364 * @more: decoded more flag
365 * @received_cts: status of cts we received
366 *
367 * Note how received_cts is handled -- if header is all F it is left
368 * the same as it was, if header is all 0 it is set to 0 otherwise it is
369 * taken from the incoming header.
370 *
371 * FIXME: endianness
372 */
373 static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
374 unsigned char *more, unsigned char *received_cts)
375 {
376 u16 h1;
377 u16 h2;
378 u16 *in_buffer = (u16 *)buffer;
379
380 h1 = *in_buffer;
381 h2 = *(in_buffer+1);
382
383 if (h1 == 0 && h2 == 0) {
384 *received_cts = 0;
385 *more = 0;
386 return IFX_SPI_HEADER_0;
387 } else if (h1 == 0xffff && h2 == 0xffff) {
388 *more = 0;
389 /* spi_slave_cts remains as it was */
390 return IFX_SPI_HEADER_F;
391 }
392
393 *length = h1 & 0xfff; /* upper bits of byte are flags */
394 *more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
395 *received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
396 return 0;
397 }
398
399 /**
400 * ifx_setup_spi_header - set header fields
401 * @txbuffer: pointer to start of SPI buffer
402 * @tx_count: bytes
403 * @more: indicate if more to follow
404 *
405 * Format up an SPI header for a transfer
406 *
407 * FIXME: endianness?
408 */
409 static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
410 unsigned char more)
411 {
412 *(u16 *)(txbuffer) = tx_count;
413 *(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
414 txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
415 }
416
417 /**
418 * ifx_spi_prepare_tx_buffer - prepare transmit frame
419 * @ifx_dev: our SPI device
420 *
421 * The transmit buffr needs a header and various other bits of
422 * information followed by as much data as we can pull from the FIFO
423 * and transfer. This function formats up a suitable buffer in the
424 * ifx_dev->tx_buffer
425 *
426 * FIXME: performance - should we wake the tty when the queue is half
427 * empty ?
428 */
429 static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
430 {
431 int temp_count;
432 int queue_length;
433 int tx_count;
434 unsigned char *tx_buffer;
435
436 tx_buffer = ifx_dev->tx_buffer;
437
438 /* make room for required SPI header */
439 tx_buffer += IFX_SPI_HEADER_OVERHEAD;
440 tx_count = IFX_SPI_HEADER_OVERHEAD;
441
442 /* clear to signal no more data if this turns out to be the
443 * last buffer sent in a sequence */
444 ifx_dev->spi_more = 0;
445
446 /* if modem cts is set, just send empty buffer */
447 if (!ifx_dev->spi_slave_cts) {
448 /* see if there's tx data */
449 queue_length = kfifo_len(&ifx_dev->tx_fifo);
450 if (queue_length != 0) {
451 /* data to mux -- see if there's room for it */
452 temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
453 temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
454 tx_buffer, temp_count,
455 &ifx_dev->fifo_lock);
456
457 /* update buffer pointer and data count in message */
458 tx_buffer += temp_count;
459 tx_count += temp_count;
460 if (temp_count == queue_length)
461 /* poke port to get more data */
462 tty_port_tty_wakeup(&ifx_dev->tty_port);
463 else /* more data in port, use next SPI message */
464 ifx_dev->spi_more = 1;
465 }
466 }
467 /* have data and info for header -- set up SPI header in buffer */
468 /* spi header needs payload size, not entire buffer size */
469 ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
470 tx_count-IFX_SPI_HEADER_OVERHEAD,
471 ifx_dev->spi_more);
472 /* swap actual data in the buffer */
473 ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
474 &ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
475 return tx_count;
476 }
477
478 /**
479 * ifx_spi_write - line discipline write
480 * @tty: our tty device
481 * @buf: pointer to buffer to write (kernel space)
482 * @count: size of buffer
483 *
484 * Write the characters we have been given into the FIFO. If the device
485 * is not active then activate it, when the SRDY line is asserted back
486 * this will commence I/O
487 */
488 static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
489 int count)
490 {
491 struct ifx_spi_device *ifx_dev = tty->driver_data;
492 unsigned char *tmp_buf = (unsigned char *)buf;
493 unsigned long flags;
494 bool is_fifo_empty;
495 int tx_count;
496
497 spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
498 is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
499 tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
500 spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
501 if (is_fifo_empty)
502 mrdy_assert(ifx_dev);
503
504 return tx_count;
505 }
506
507 /**
508 * ifx_spi_chars_in_buffer - line discipline helper
509 * @tty: our tty device
510 *
511 * Report how much data we can accept before we drop bytes. As we use
512 * a simple FIFO this is nice and easy.
513 */
514 static int ifx_spi_write_room(struct tty_struct *tty)
515 {
516 struct ifx_spi_device *ifx_dev = tty->driver_data;
517 return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
518 }
519
520 /**
521 * ifx_spi_chars_in_buffer - line discipline helper
522 * @tty: our tty device
523 *
524 * Report how many characters we have buffered. In our case this is the
525 * number of bytes sitting in our transmit FIFO.
526 */
527 static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
528 {
529 struct ifx_spi_device *ifx_dev = tty->driver_data;
530 return kfifo_len(&ifx_dev->tx_fifo);
531 }
532
533 /**
534 * ifx_port_hangup
535 * @port: our tty port
536 *
537 * tty port hang up. Called when tty_hangup processing is invoked either
538 * by loss of carrier, or by software (eg vhangup). Serialized against
539 * activate/shutdown by the tty layer.
540 */
541 static void ifx_spi_hangup(struct tty_struct *tty)
542 {
543 struct ifx_spi_device *ifx_dev = tty->driver_data;
544 tty_port_hangup(&ifx_dev->tty_port);
545 }
546
547 /**
548 * ifx_port_activate
549 * @port: our tty port
550 *
551 * tty port activate method - called for first open. Serialized
552 * with hangup and shutdown by the tty layer.
553 */
554 static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
555 {
556 struct ifx_spi_device *ifx_dev =
557 container_of(port, struct ifx_spi_device, tty_port);
558
559 /* clear any old data; can't do this in 'close' */
560 kfifo_reset(&ifx_dev->tx_fifo);
561
562 /* clear any flag which may be set in port shutdown procedure */
563 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
564 clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
565
566 /* put port data into this tty */
567 tty->driver_data = ifx_dev;
568
569 /* allows flip string push from int context */
570 port->low_latency = 1;
571
572 /* set flag to allows data transfer */
573 set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
574
575 return 0;
576 }
577
578 /**
579 * ifx_port_shutdown
580 * @port: our tty port
581 *
582 * tty port shutdown method - called for last port close. Serialized
583 * with hangup and activate by the tty layer.
584 */
585 static void ifx_port_shutdown(struct tty_port *port)
586 {
587 struct ifx_spi_device *ifx_dev =
588 container_of(port, struct ifx_spi_device, tty_port);
589
590 clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
591 mrdy_set_low(ifx_dev);
592 del_timer(&ifx_dev->spi_timer);
593 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
594 tasklet_kill(&ifx_dev->io_work_tasklet);
595 }
596
597 static const struct tty_port_operations ifx_tty_port_ops = {
598 .activate = ifx_port_activate,
599 .shutdown = ifx_port_shutdown,
600 };
601
602 static const struct tty_operations ifx_spi_serial_ops = {
603 .open = ifx_spi_open,
604 .close = ifx_spi_close,
605 .write = ifx_spi_write,
606 .hangup = ifx_spi_hangup,
607 .write_room = ifx_spi_write_room,
608 .chars_in_buffer = ifx_spi_chars_in_buffer,
609 .tiocmget = ifx_spi_tiocmget,
610 .tiocmset = ifx_spi_tiocmset,
611 };
612
613 /**
614 * ifx_spi_insert_fip_string - queue received data
615 * @ifx_ser: our SPI device
616 * @chars: buffer we have received
617 * @size: number of chars reeived
618 *
619 * Queue bytes to the tty assuming the tty side is currently open. If
620 * not the discard the data.
621 */
622 static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
623 unsigned char *chars, size_t size)
624 {
625 tty_insert_flip_string(&ifx_dev->tty_port, chars, size);
626 tty_flip_buffer_push(&ifx_dev->tty_port);
627 }
628
629 /**
630 * ifx_spi_complete - SPI transfer completed
631 * @ctx: our SPI device
632 *
633 * An SPI transfer has completed. Process any received data and kick off
634 * any further transmits we can commence.
635 */
636 static void ifx_spi_complete(void *ctx)
637 {
638 struct ifx_spi_device *ifx_dev = ctx;
639 int length;
640 int actual_length;
641 unsigned char more = 0;
642 unsigned char cts;
643 int local_write_pending = 0;
644 int queue_length;
645 int srdy;
646 int decode_result;
647
648 mrdy_set_low(ifx_dev);
649
650 if (!ifx_dev->spi_msg.status) {
651 /* check header validity, get comm flags */
652 ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
653 &ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
654 decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
655 &length, &more, &cts);
656 if (decode_result == IFX_SPI_HEADER_0) {
657 dev_dbg(&ifx_dev->spi_dev->dev,
658 "ignore input: invalid header 0");
659 ifx_dev->spi_slave_cts = 0;
660 goto complete_exit;
661 } else if (decode_result == IFX_SPI_HEADER_F) {
662 dev_dbg(&ifx_dev->spi_dev->dev,
663 "ignore input: invalid header F");
664 goto complete_exit;
665 }
666
667 ifx_dev->spi_slave_cts = cts;
668
669 actual_length = min((unsigned int)length,
670 ifx_dev->spi_msg.actual_length);
671 ifx_dev->swap_buf(
672 (ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
673 actual_length,
674 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
675 ifx_spi_insert_flip_string(
676 ifx_dev,
677 ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
678 (size_t)actual_length);
679 } else {
680 more = 0;
681 dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
682 ifx_dev->spi_msg.status);
683 }
684
685 complete_exit:
686 if (ifx_dev->write_pending) {
687 ifx_dev->write_pending = 0;
688 local_write_pending = 1;
689 }
690
691 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
692
693 queue_length = kfifo_len(&ifx_dev->tx_fifo);
694 srdy = gpio_get_value(ifx_dev->gpio.srdy);
695 if (!srdy)
696 ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
697
698 /* schedule output if there is more to do */
699 if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
700 tasklet_schedule(&ifx_dev->io_work_tasklet);
701 else {
702 if (more || ifx_dev->spi_more || queue_length > 0 ||
703 local_write_pending) {
704 if (ifx_dev->spi_slave_cts) {
705 if (more)
706 mrdy_assert(ifx_dev);
707 } else
708 mrdy_assert(ifx_dev);
709 } else {
710 /*
711 * poke line discipline driver if any for more data
712 * may or may not get more data to write
713 * for now, say not busy
714 */
715 ifx_spi_power_state_clear(ifx_dev,
716 IFX_SPI_POWER_DATA_PENDING);
717 tty_port_tty_wakeup(&ifx_dev->tty_port);
718 }
719 }
720 }
721
722 /**
723 * ifx_spio_io - I/O tasklet
724 * @data: our SPI device
725 *
726 * Queue data for transmission if possible and then kick off the
727 * transfer.
728 */
729 static void ifx_spi_io(unsigned long data)
730 {
731 int retval;
732 struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
733
734 if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
735 test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
736 if (ifx_dev->gpio.unack_srdy_int_nb > 0)
737 ifx_dev->gpio.unack_srdy_int_nb--;
738
739 ifx_spi_prepare_tx_buffer(ifx_dev);
740
741 spi_message_init(&ifx_dev->spi_msg);
742 INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
743
744 ifx_dev->spi_msg.context = ifx_dev;
745 ifx_dev->spi_msg.complete = ifx_spi_complete;
746
747 /* set up our spi transfer */
748 /* note len is BYTES, not transfers */
749 ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
750 ifx_dev->spi_xfer.cs_change = 0;
751 ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
752 /* ifx_dev->spi_xfer.speed_hz = 390625; */
753 ifx_dev->spi_xfer.bits_per_word =
754 ifx_dev->spi_dev->bits_per_word;
755
756 ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
757 ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
758
759 /*
760 * setup dma pointers
761 */
762 if (ifx_dev->use_dma) {
763 ifx_dev->spi_msg.is_dma_mapped = 1;
764 ifx_dev->tx_dma = ifx_dev->tx_bus;
765 ifx_dev->rx_dma = ifx_dev->rx_bus;
766 ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
767 ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
768 } else {
769 ifx_dev->spi_msg.is_dma_mapped = 0;
770 ifx_dev->tx_dma = (dma_addr_t)0;
771 ifx_dev->rx_dma = (dma_addr_t)0;
772 ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
773 ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
774 }
775
776 spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
777
778 /* Assert MRDY. This may have already been done by the write
779 * routine.
780 */
781 mrdy_assert(ifx_dev);
782
783 retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
784 if (retval) {
785 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
786 &ifx_dev->flags);
787 tasklet_schedule(&ifx_dev->io_work_tasklet);
788 return;
789 }
790 } else
791 ifx_dev->write_pending = 1;
792 }
793
794 /**
795 * ifx_spi_free_port - free up the tty side
796 * @ifx_dev: IFX device going away
797 *
798 * Unregister and free up a port when the device goes away
799 */
800 static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
801 {
802 if (ifx_dev->tty_dev)
803 tty_unregister_device(tty_drv, ifx_dev->minor);
804 tty_port_destroy(&ifx_dev->tty_port);
805 kfifo_free(&ifx_dev->tx_fifo);
806 }
807
808 /**
809 * ifx_spi_create_port - create a new port
810 * @ifx_dev: our spi device
811 *
812 * Allocate and initialise the tty port that goes with this interface
813 * and add it to the tty layer so that it can be opened.
814 */
815 static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
816 {
817 int ret = 0;
818 struct tty_port *pport = &ifx_dev->tty_port;
819
820 spin_lock_init(&ifx_dev->fifo_lock);
821 lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
822 &ifx_spi_key, 0);
823
824 if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
825 ret = -ENOMEM;
826 goto error_ret;
827 }
828
829 tty_port_init(pport);
830 pport->ops = &ifx_tty_port_ops;
831 ifx_dev->minor = IFX_SPI_TTY_ID;
832 ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
833 ifx_dev->minor, &ifx_dev->spi_dev->dev);
834 if (IS_ERR(ifx_dev->tty_dev)) {
835 dev_dbg(&ifx_dev->spi_dev->dev,
836 "%s: registering tty device failed", __func__);
837 ret = PTR_ERR(ifx_dev->tty_dev);
838 goto error_port;
839 }
840 return 0;
841
842 error_port:
843 tty_port_destroy(pport);
844 error_ret:
845 ifx_spi_free_port(ifx_dev);
846 return ret;
847 }
848
849 /**
850 * ifx_spi_handle_srdy - handle SRDY
851 * @ifx_dev: device asserting SRDY
852 *
853 * Check our device state and see what we need to kick off when SRDY
854 * is asserted. This usually means killing the timer and firing off the
855 * I/O processing.
856 */
857 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
858 {
859 if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
860 del_timer(&ifx_dev->spi_timer);
861 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
862 }
863
864 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
865
866 if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
867 tasklet_schedule(&ifx_dev->io_work_tasklet);
868 else
869 set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
870 }
871
872 /**
873 * ifx_spi_srdy_interrupt - SRDY asserted
874 * @irq: our IRQ number
875 * @dev: our ifx device
876 *
877 * The modem asserted SRDY. Handle the srdy event
878 */
879 static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
880 {
881 struct ifx_spi_device *ifx_dev = dev;
882 ifx_dev->gpio.unack_srdy_int_nb++;
883 ifx_spi_handle_srdy(ifx_dev);
884 return IRQ_HANDLED;
885 }
886
887 /**
888 * ifx_spi_reset_interrupt - Modem has changed reset state
889 * @irq: interrupt number
890 * @dev: our device pointer
891 *
892 * The modem has either entered or left reset state. Check the GPIO
893 * line to see which.
894 *
895 * FIXME: review locking on MR_INPROGRESS versus
896 * parallel unsolicited reset/solicited reset
897 */
898 static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
899 {
900 struct ifx_spi_device *ifx_dev = dev;
901 int val = gpio_get_value(ifx_dev->gpio.reset_out);
902 int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
903
904 if (val == 0) {
905 /* entered reset */
906 set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
907 if (!solreset) {
908 /* unsolicited reset */
909 tty_port_tty_hangup(&ifx_dev->tty_port, false);
910 }
911 } else {
912 /* exited reset */
913 clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
914 if (solreset) {
915 set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
916 wake_up(&ifx_dev->mdm_reset_wait);
917 }
918 }
919 return IRQ_HANDLED;
920 }
921
922 /**
923 * ifx_spi_free_device - free device
924 * @ifx_dev: device to free
925 *
926 * Free the IFX device
927 */
928 static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
929 {
930 ifx_spi_free_port(ifx_dev);
931 dma_free_coherent(&ifx_dev->spi_dev->dev,
932 IFX_SPI_TRANSFER_SIZE,
933 ifx_dev->tx_buffer,
934 ifx_dev->tx_bus);
935 dma_free_coherent(&ifx_dev->spi_dev->dev,
936 IFX_SPI_TRANSFER_SIZE,
937 ifx_dev->rx_buffer,
938 ifx_dev->rx_bus);
939 }
940
941 /**
942 * ifx_spi_reset - reset modem
943 * @ifx_dev: modem to reset
944 *
945 * Perform a reset on the modem
946 */
947 static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
948 {
949 int ret;
950 /*
951 * set up modem power, reset
952 *
953 * delays are required on some platforms for the modem
954 * to reset properly
955 */
956 set_bit(MR_START, &ifx_dev->mdm_reset_state);
957 gpio_set_value(ifx_dev->gpio.po, 0);
958 gpio_set_value(ifx_dev->gpio.reset, 0);
959 msleep(25);
960 gpio_set_value(ifx_dev->gpio.reset, 1);
961 msleep(1);
962 gpio_set_value(ifx_dev->gpio.po, 1);
963 msleep(1);
964 gpio_set_value(ifx_dev->gpio.po, 0);
965 ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
966 test_bit(MR_COMPLETE,
967 &ifx_dev->mdm_reset_state),
968 IFX_RESET_TIMEOUT);
969 if (!ret)
970 dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
971 ifx_dev->mdm_reset_state);
972
973 ifx_dev->mdm_reset_state = 0;
974 return ret;
975 }
976
977 /**
978 * ifx_spi_spi_probe - probe callback
979 * @spi: our possible matching SPI device
980 *
981 * Probe for a 6x60 modem on SPI bus. Perform any needed device and
982 * GPIO setup.
983 *
984 * FIXME:
985 * - Support for multiple devices
986 * - Split out MID specific GPIO handling eventually
987 */
988
989 static int ifx_spi_spi_probe(struct spi_device *spi)
990 {
991 int ret;
992 int srdy;
993 struct ifx_modem_platform_data *pl_data;
994 struct ifx_spi_device *ifx_dev;
995
996 if (saved_ifx_dev) {
997 dev_dbg(&spi->dev, "ignoring subsequent detection");
998 return -ENODEV;
999 }
1000
1001 pl_data = dev_get_platdata(&spi->dev);
1002 if (!pl_data) {
1003 dev_err(&spi->dev, "missing platform data!");
1004 return -ENODEV;
1005 }
1006
1007 /* initialize structure to hold our device variables */
1008 ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
1009 if (!ifx_dev) {
1010 dev_err(&spi->dev, "spi device allocation failed");
1011 return -ENOMEM;
1012 }
1013 saved_ifx_dev = ifx_dev;
1014 ifx_dev->spi_dev = spi;
1015 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
1016 spin_lock_init(&ifx_dev->write_lock);
1017 spin_lock_init(&ifx_dev->power_lock);
1018 ifx_dev->power_status = 0;
1019 setup_timer(&ifx_dev->spi_timer, ifx_spi_timeout,
1020 (unsigned long)ifx_dev);
1021 ifx_dev->modem = pl_data->modem_type;
1022 ifx_dev->use_dma = pl_data->use_dma;
1023 ifx_dev->max_hz = pl_data->max_hz;
1024 /* initialize spi mode, etc */
1025 spi->max_speed_hz = ifx_dev->max_hz;
1026 spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
1027 spi->bits_per_word = spi_bpw;
1028 ret = spi_setup(spi);
1029 if (ret) {
1030 dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
1031 kfree(ifx_dev);
1032 return -ENODEV;
1033 }
1034
1035 /* init swap_buf function according to word width configuration */
1036 if (spi->bits_per_word == 32)
1037 ifx_dev->swap_buf = swap_buf_32;
1038 else if (spi->bits_per_word == 16)
1039 ifx_dev->swap_buf = swap_buf_16;
1040 else
1041 ifx_dev->swap_buf = swap_buf_8;
1042
1043 /* ensure SPI protocol flags are initialized to enable transfer */
1044 ifx_dev->spi_more = 0;
1045 ifx_dev->spi_slave_cts = 0;
1046
1047 /*initialize transfer and dma buffers */
1048 ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1049 IFX_SPI_TRANSFER_SIZE,
1050 &ifx_dev->tx_bus,
1051 GFP_KERNEL);
1052 if (!ifx_dev->tx_buffer) {
1053 dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1054 ret = -ENOMEM;
1055 goto error_ret;
1056 }
1057 ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1058 IFX_SPI_TRANSFER_SIZE,
1059 &ifx_dev->rx_bus,
1060 GFP_KERNEL);
1061 if (!ifx_dev->rx_buffer) {
1062 dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1063 ret = -ENOMEM;
1064 goto error_ret;
1065 }
1066
1067 /* initialize waitq for modem reset */
1068 init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1069
1070 spi_set_drvdata(spi, ifx_dev);
1071 tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1072 (unsigned long)ifx_dev);
1073
1074 set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1075
1076 /* create our tty port */
1077 ret = ifx_spi_create_port(ifx_dev);
1078 if (ret != 0) {
1079 dev_err(&spi->dev, "create default tty port failed");
1080 goto error_ret;
1081 }
1082
1083 ifx_dev->gpio.reset = pl_data->rst_pmu;
1084 ifx_dev->gpio.po = pl_data->pwr_on;
1085 ifx_dev->gpio.mrdy = pl_data->mrdy;
1086 ifx_dev->gpio.srdy = pl_data->srdy;
1087 ifx_dev->gpio.reset_out = pl_data->rst_out;
1088
1089 dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1090 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1091 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1092
1093 /* Configure gpios */
1094 ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1095 if (ret < 0) {
1096 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1097 ifx_dev->gpio.reset);
1098 goto error_ret;
1099 }
1100 ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1101 ret += gpio_export(ifx_dev->gpio.reset, 1);
1102 if (ret) {
1103 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1104 ifx_dev->gpio.reset);
1105 ret = -EBUSY;
1106 goto error_ret2;
1107 }
1108
1109 ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1110 ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1111 ret += gpio_export(ifx_dev->gpio.po, 1);
1112 if (ret) {
1113 dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1114 ifx_dev->gpio.po);
1115 ret = -EBUSY;
1116 goto error_ret3;
1117 }
1118
1119 ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1120 if (ret < 0) {
1121 dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1122 ifx_dev->gpio.mrdy);
1123 goto error_ret3;
1124 }
1125 ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1126 ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1127 if (ret) {
1128 dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1129 ifx_dev->gpio.mrdy);
1130 ret = -EBUSY;
1131 goto error_ret4;
1132 }
1133
1134 ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1135 if (ret < 0) {
1136 dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1137 ifx_dev->gpio.srdy);
1138 ret = -EBUSY;
1139 goto error_ret4;
1140 }
1141 ret += gpio_export(ifx_dev->gpio.srdy, 1);
1142 ret += gpio_direction_input(ifx_dev->gpio.srdy);
1143 if (ret) {
1144 dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1145 ifx_dev->gpio.srdy);
1146 ret = -EBUSY;
1147 goto error_ret5;
1148 }
1149
1150 ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1151 if (ret < 0) {
1152 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1153 ifx_dev->gpio.reset_out);
1154 goto error_ret5;
1155 }
1156 ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1157 ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1158 if (ret) {
1159 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1160 ifx_dev->gpio.reset_out);
1161 ret = -EBUSY;
1162 goto error_ret6;
1163 }
1164
1165 ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1166 ifx_spi_reset_interrupt,
1167 IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1168 ifx_dev);
1169 if (ret) {
1170 dev_err(&spi->dev, "Unable to get irq %x\n",
1171 gpio_to_irq(ifx_dev->gpio.reset_out));
1172 goto error_ret6;
1173 }
1174
1175 ret = ifx_spi_reset(ifx_dev);
1176
1177 ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1178 ifx_spi_srdy_interrupt, IRQF_TRIGGER_RISING, DRVNAME,
1179 ifx_dev);
1180 if (ret) {
1181 dev_err(&spi->dev, "Unable to get irq %x",
1182 gpio_to_irq(ifx_dev->gpio.srdy));
1183 goto error_ret7;
1184 }
1185
1186 /* set pm runtime power state and register with power system */
1187 pm_runtime_set_active(&spi->dev);
1188 pm_runtime_enable(&spi->dev);
1189
1190 /* handle case that modem is already signaling SRDY */
1191 /* no outgoing tty open at this point, this just satisfies the
1192 * modem's read and should reset communication properly
1193 */
1194 srdy = gpio_get_value(ifx_dev->gpio.srdy);
1195
1196 if (srdy) {
1197 mrdy_assert(ifx_dev);
1198 ifx_spi_handle_srdy(ifx_dev);
1199 } else
1200 mrdy_set_low(ifx_dev);
1201 return 0;
1202
1203 error_ret7:
1204 free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1205 error_ret6:
1206 gpio_free(ifx_dev->gpio.srdy);
1207 error_ret5:
1208 gpio_free(ifx_dev->gpio.mrdy);
1209 error_ret4:
1210 gpio_free(ifx_dev->gpio.reset);
1211 error_ret3:
1212 gpio_free(ifx_dev->gpio.po);
1213 error_ret2:
1214 gpio_free(ifx_dev->gpio.reset_out);
1215 error_ret:
1216 ifx_spi_free_device(ifx_dev);
1217 saved_ifx_dev = NULL;
1218 return ret;
1219 }
1220
1221 /**
1222 * ifx_spi_spi_remove - SPI device was removed
1223 * @spi: SPI device
1224 *
1225 * FIXME: We should be shutting the device down here not in
1226 * the module unload path.
1227 */
1228
1229 static int ifx_spi_spi_remove(struct spi_device *spi)
1230 {
1231 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1232 /* stop activity */
1233 tasklet_kill(&ifx_dev->io_work_tasklet);
1234 /* free irq */
1235 free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1236 free_irq(gpio_to_irq(ifx_dev->gpio.srdy), ifx_dev);
1237
1238 gpio_free(ifx_dev->gpio.srdy);
1239 gpio_free(ifx_dev->gpio.mrdy);
1240 gpio_free(ifx_dev->gpio.reset);
1241 gpio_free(ifx_dev->gpio.po);
1242 gpio_free(ifx_dev->gpio.reset_out);
1243
1244 /* free allocations */
1245 ifx_spi_free_device(ifx_dev);
1246
1247 saved_ifx_dev = NULL;
1248 return 0;
1249 }
1250
1251 /**
1252 * ifx_spi_spi_shutdown - called on SPI shutdown
1253 * @spi: SPI device
1254 *
1255 * No action needs to be taken here
1256 */
1257
1258 static void ifx_spi_spi_shutdown(struct spi_device *spi)
1259 {
1260 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1261
1262 ifx_modem_power_off(ifx_dev);
1263 }
1264
1265 /*
1266 * various suspends and resumes have nothing to do
1267 * no hardware to save state for
1268 */
1269
1270 /**
1271 * ifx_spi_pm_suspend - suspend modem on system suspend
1272 * @dev: device being suspended
1273 *
1274 * Suspend the modem. No action needed on Intel MID platforms, may
1275 * need extending for other systems.
1276 */
1277 static int ifx_spi_pm_suspend(struct device *dev)
1278 {
1279 return 0;
1280 }
1281
1282 /**
1283 * ifx_spi_pm_resume - resume modem on system resume
1284 * @dev: device being suspended
1285 *
1286 * Allow the modem to resume. No action needed.
1287 *
1288 * FIXME: do we need to reset anything here ?
1289 */
1290 static int ifx_spi_pm_resume(struct device *dev)
1291 {
1292 return 0;
1293 }
1294
1295 /**
1296 * ifx_spi_pm_runtime_resume - suspend modem
1297 * @dev: device being suspended
1298 *
1299 * Allow the modem to resume. No action needed.
1300 */
1301 static int ifx_spi_pm_runtime_resume(struct device *dev)
1302 {
1303 return 0;
1304 }
1305
1306 /**
1307 * ifx_spi_pm_runtime_suspend - suspend modem
1308 * @dev: device being suspended
1309 *
1310 * Allow the modem to suspend and thus suspend to continue up the
1311 * device tree.
1312 */
1313 static int ifx_spi_pm_runtime_suspend(struct device *dev)
1314 {
1315 return 0;
1316 }
1317
1318 /**
1319 * ifx_spi_pm_runtime_idle - check if modem idle
1320 * @dev: our device
1321 *
1322 * Check conditions and queue runtime suspend if idle.
1323 */
1324 static int ifx_spi_pm_runtime_idle(struct device *dev)
1325 {
1326 struct spi_device *spi = to_spi_device(dev);
1327 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1328
1329 if (!ifx_dev->power_status)
1330 pm_runtime_suspend(dev);
1331
1332 return 0;
1333 }
1334
1335 static const struct dev_pm_ops ifx_spi_pm = {
1336 .resume = ifx_spi_pm_resume,
1337 .suspend = ifx_spi_pm_suspend,
1338 .runtime_resume = ifx_spi_pm_runtime_resume,
1339 .runtime_suspend = ifx_spi_pm_runtime_suspend,
1340 .runtime_idle = ifx_spi_pm_runtime_idle
1341 };
1342
1343 static const struct spi_device_id ifx_id_table[] = {
1344 {"ifx6160", 0},
1345 {"ifx6260", 0},
1346 { }
1347 };
1348 MODULE_DEVICE_TABLE(spi, ifx_id_table);
1349
1350 /* spi operations */
1351 static struct spi_driver ifx_spi_driver = {
1352 .driver = {
1353 .name = DRVNAME,
1354 .pm = &ifx_spi_pm,
1355 },
1356 .probe = ifx_spi_spi_probe,
1357 .shutdown = ifx_spi_spi_shutdown,
1358 .remove = ifx_spi_spi_remove,
1359 .id_table = ifx_id_table
1360 };
1361
1362 /**
1363 * ifx_spi_exit - module exit
1364 *
1365 * Unload the module.
1366 */
1367
1368 static void __exit ifx_spi_exit(void)
1369 {
1370 /* unregister */
1371 spi_unregister_driver(&ifx_spi_driver);
1372 tty_unregister_driver(tty_drv);
1373 put_tty_driver(tty_drv);
1374 unregister_reboot_notifier(&ifx_modem_reboot_notifier_block);
1375 }
1376
1377 /**
1378 * ifx_spi_init - module entry point
1379 *
1380 * Initialise the SPI and tty interfaces for the IFX SPI driver
1381 * We need to initialize upper-edge spi driver after the tty
1382 * driver because otherwise the spi probe will race
1383 */
1384
1385 static int __init ifx_spi_init(void)
1386 {
1387 int result;
1388
1389 tty_drv = alloc_tty_driver(1);
1390 if (!tty_drv) {
1391 pr_err("%s: alloc_tty_driver failed", DRVNAME);
1392 return -ENOMEM;
1393 }
1394
1395 tty_drv->driver_name = DRVNAME;
1396 tty_drv->name = TTYNAME;
1397 tty_drv->minor_start = IFX_SPI_TTY_ID;
1398 tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1399 tty_drv->subtype = SERIAL_TYPE_NORMAL;
1400 tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1401 tty_drv->init_termios = tty_std_termios;
1402
1403 tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1404
1405 result = tty_register_driver(tty_drv);
1406 if (result) {
1407 pr_err("%s: tty_register_driver failed(%d)",
1408 DRVNAME, result);
1409 goto err_free_tty;
1410 }
1411
1412 result = spi_register_driver(&ifx_spi_driver);
1413 if (result) {
1414 pr_err("%s: spi_register_driver failed(%d)",
1415 DRVNAME, result);
1416 goto err_unreg_tty;
1417 }
1418
1419 result = register_reboot_notifier(&ifx_modem_reboot_notifier_block);
1420 if (result) {
1421 pr_err("%s: register ifx modem reboot notifier failed(%d)",
1422 DRVNAME, result);
1423 goto err_unreg_spi;
1424 }
1425
1426 return 0;
1427 err_unreg_spi:
1428 spi_unregister_driver(&ifx_spi_driver);
1429 err_unreg_tty:
1430 tty_unregister_driver(tty_drv);
1431 err_free_tty:
1432 put_tty_driver(tty_drv);
1433
1434 return result;
1435 }
1436
1437 module_init(ifx_spi_init);
1438 module_exit(ifx_spi_exit);
1439
1440 MODULE_AUTHOR("Intel");
1441 MODULE_DESCRIPTION("IFX6x60 spi driver");
1442 MODULE_LICENSE("GPL");
1443 MODULE_INFO(Version, "0.1-IFX6x60");