]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/usb/core/hcd.c
treewide: setup_timer() -> timer_setup()
[mirror_ubuntu-bionic-kernel.git] / drivers / usb / core / hcd.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
20 #include <linux/mm.h>
21 #include <asm/io.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
25 #include <asm/irq.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
32
33 #include <linux/phy/phy.h>
34 #include <linux/usb.h>
35 #include <linux/usb/hcd.h>
36 #include <linux/usb/phy.h>
37 #include <linux/usb/otg.h>
38
39 #include "usb.h"
40
41
42 /*-------------------------------------------------------------------------*/
43
44 /*
45 * USB Host Controller Driver framework
46 *
47 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
48 * HCD-specific behaviors/bugs.
49 *
50 * This does error checks, tracks devices and urbs, and delegates to a
51 * "hc_driver" only for code (and data) that really needs to know about
52 * hardware differences. That includes root hub registers, i/o queues,
53 * and so on ... but as little else as possible.
54 *
55 * Shared code includes most of the "root hub" code (these are emulated,
56 * though each HC's hardware works differently) and PCI glue, plus request
57 * tracking overhead. The HCD code should only block on spinlocks or on
58 * hardware handshaking; blocking on software events (such as other kernel
59 * threads releasing resources, or completing actions) is all generic.
60 *
61 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
62 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
63 * only by the hub driver ... and that neither should be seen or used by
64 * usb client device drivers.
65 *
66 * Contributors of ideas or unattributed patches include: David Brownell,
67 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
68 *
69 * HISTORY:
70 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
71 * associated cleanup. "usb_hcd" still != "usb_bus".
72 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
73 */
74
75 /*-------------------------------------------------------------------------*/
76
77 /* Keep track of which host controller drivers are loaded */
78 unsigned long usb_hcds_loaded;
79 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
80
81 /* host controllers we manage */
82 DEFINE_IDR (usb_bus_idr);
83 EXPORT_SYMBOL_GPL (usb_bus_idr);
84
85 /* used when allocating bus numbers */
86 #define USB_MAXBUS 64
87
88 /* used when updating list of hcds */
89 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
90 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
91
92 /* used for controlling access to virtual root hubs */
93 static DEFINE_SPINLOCK(hcd_root_hub_lock);
94
95 /* used when updating an endpoint's URB list */
96 static DEFINE_SPINLOCK(hcd_urb_list_lock);
97
98 /* used to protect against unlinking URBs after the device is gone */
99 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
100
101 /* wait queue for synchronous unlinks */
102 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
103
104 static inline int is_root_hub(struct usb_device *udev)
105 {
106 return (udev->parent == NULL);
107 }
108
109 /*-------------------------------------------------------------------------*/
110
111 /*
112 * Sharable chunks of root hub code.
113 */
114
115 /*-------------------------------------------------------------------------*/
116 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
117 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
118
119 /* usb 3.1 root hub device descriptor */
120 static const u8 usb31_rh_dev_descriptor[18] = {
121 0x12, /* __u8 bLength; */
122 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
123 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
124
125 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
126 0x00, /* __u8 bDeviceSubClass; */
127 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
128 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
129
130 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
131 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
132 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
133
134 0x03, /* __u8 iManufacturer; */
135 0x02, /* __u8 iProduct; */
136 0x01, /* __u8 iSerialNumber; */
137 0x01 /* __u8 bNumConfigurations; */
138 };
139
140 /* usb 3.0 root hub device descriptor */
141 static const u8 usb3_rh_dev_descriptor[18] = {
142 0x12, /* __u8 bLength; */
143 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
144 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
145
146 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
147 0x00, /* __u8 bDeviceSubClass; */
148 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
149 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
150
151 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
152 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
153 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
154
155 0x03, /* __u8 iManufacturer; */
156 0x02, /* __u8 iProduct; */
157 0x01, /* __u8 iSerialNumber; */
158 0x01 /* __u8 bNumConfigurations; */
159 };
160
161 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
162 static const u8 usb25_rh_dev_descriptor[18] = {
163 0x12, /* __u8 bLength; */
164 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
165 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
166
167 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
168 0x00, /* __u8 bDeviceSubClass; */
169 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
170 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
171
172 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
173 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
174 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
175
176 0x03, /* __u8 iManufacturer; */
177 0x02, /* __u8 iProduct; */
178 0x01, /* __u8 iSerialNumber; */
179 0x01 /* __u8 bNumConfigurations; */
180 };
181
182 /* usb 2.0 root hub device descriptor */
183 static const u8 usb2_rh_dev_descriptor[18] = {
184 0x12, /* __u8 bLength; */
185 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
186 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
187
188 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
189 0x00, /* __u8 bDeviceSubClass; */
190 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
191 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
192
193 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
194 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
195 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
196
197 0x03, /* __u8 iManufacturer; */
198 0x02, /* __u8 iProduct; */
199 0x01, /* __u8 iSerialNumber; */
200 0x01 /* __u8 bNumConfigurations; */
201 };
202
203 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
204
205 /* usb 1.1 root hub device descriptor */
206 static const u8 usb11_rh_dev_descriptor[18] = {
207 0x12, /* __u8 bLength; */
208 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
209 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
210
211 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
212 0x00, /* __u8 bDeviceSubClass; */
213 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
214 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
215
216 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
217 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
218 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
219
220 0x03, /* __u8 iManufacturer; */
221 0x02, /* __u8 iProduct; */
222 0x01, /* __u8 iSerialNumber; */
223 0x01 /* __u8 bNumConfigurations; */
224 };
225
226
227 /*-------------------------------------------------------------------------*/
228
229 /* Configuration descriptors for our root hubs */
230
231 static const u8 fs_rh_config_descriptor[] = {
232
233 /* one configuration */
234 0x09, /* __u8 bLength; */
235 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
236 0x19, 0x00, /* __le16 wTotalLength; */
237 0x01, /* __u8 bNumInterfaces; (1) */
238 0x01, /* __u8 bConfigurationValue; */
239 0x00, /* __u8 iConfiguration; */
240 0xc0, /* __u8 bmAttributes;
241 Bit 7: must be set,
242 6: Self-powered,
243 5: Remote wakeup,
244 4..0: resvd */
245 0x00, /* __u8 MaxPower; */
246
247 /* USB 1.1:
248 * USB 2.0, single TT organization (mandatory):
249 * one interface, protocol 0
250 *
251 * USB 2.0, multiple TT organization (optional):
252 * two interfaces, protocols 1 (like single TT)
253 * and 2 (multiple TT mode) ... config is
254 * sometimes settable
255 * NOT IMPLEMENTED
256 */
257
258 /* one interface */
259 0x09, /* __u8 if_bLength; */
260 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
261 0x00, /* __u8 if_bInterfaceNumber; */
262 0x00, /* __u8 if_bAlternateSetting; */
263 0x01, /* __u8 if_bNumEndpoints; */
264 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
265 0x00, /* __u8 if_bInterfaceSubClass; */
266 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
267 0x00, /* __u8 if_iInterface; */
268
269 /* one endpoint (status change endpoint) */
270 0x07, /* __u8 ep_bLength; */
271 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
272 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
273 0x03, /* __u8 ep_bmAttributes; Interrupt */
274 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
275 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
276 };
277
278 static const u8 hs_rh_config_descriptor[] = {
279
280 /* one configuration */
281 0x09, /* __u8 bLength; */
282 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
283 0x19, 0x00, /* __le16 wTotalLength; */
284 0x01, /* __u8 bNumInterfaces; (1) */
285 0x01, /* __u8 bConfigurationValue; */
286 0x00, /* __u8 iConfiguration; */
287 0xc0, /* __u8 bmAttributes;
288 Bit 7: must be set,
289 6: Self-powered,
290 5: Remote wakeup,
291 4..0: resvd */
292 0x00, /* __u8 MaxPower; */
293
294 /* USB 1.1:
295 * USB 2.0, single TT organization (mandatory):
296 * one interface, protocol 0
297 *
298 * USB 2.0, multiple TT organization (optional):
299 * two interfaces, protocols 1 (like single TT)
300 * and 2 (multiple TT mode) ... config is
301 * sometimes settable
302 * NOT IMPLEMENTED
303 */
304
305 /* one interface */
306 0x09, /* __u8 if_bLength; */
307 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
308 0x00, /* __u8 if_bInterfaceNumber; */
309 0x00, /* __u8 if_bAlternateSetting; */
310 0x01, /* __u8 if_bNumEndpoints; */
311 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
312 0x00, /* __u8 if_bInterfaceSubClass; */
313 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
314 0x00, /* __u8 if_iInterface; */
315
316 /* one endpoint (status change endpoint) */
317 0x07, /* __u8 ep_bLength; */
318 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
319 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
320 0x03, /* __u8 ep_bmAttributes; Interrupt */
321 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
322 * see hub.c:hub_configure() for details. */
323 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
324 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
325 };
326
327 static const u8 ss_rh_config_descriptor[] = {
328 /* one configuration */
329 0x09, /* __u8 bLength; */
330 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
331 0x1f, 0x00, /* __le16 wTotalLength; */
332 0x01, /* __u8 bNumInterfaces; (1) */
333 0x01, /* __u8 bConfigurationValue; */
334 0x00, /* __u8 iConfiguration; */
335 0xc0, /* __u8 bmAttributes;
336 Bit 7: must be set,
337 6: Self-powered,
338 5: Remote wakeup,
339 4..0: resvd */
340 0x00, /* __u8 MaxPower; */
341
342 /* one interface */
343 0x09, /* __u8 if_bLength; */
344 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
345 0x00, /* __u8 if_bInterfaceNumber; */
346 0x00, /* __u8 if_bAlternateSetting; */
347 0x01, /* __u8 if_bNumEndpoints; */
348 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
349 0x00, /* __u8 if_bInterfaceSubClass; */
350 0x00, /* __u8 if_bInterfaceProtocol; */
351 0x00, /* __u8 if_iInterface; */
352
353 /* one endpoint (status change endpoint) */
354 0x07, /* __u8 ep_bLength; */
355 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
356 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
357 0x03, /* __u8 ep_bmAttributes; Interrupt */
358 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
359 * see hub.c:hub_configure() for details. */
360 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
361 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
362
363 /* one SuperSpeed endpoint companion descriptor */
364 0x06, /* __u8 ss_bLength */
365 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
366 /* Companion */
367 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
368 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
369 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
370 };
371
372 /* authorized_default behaviour:
373 * -1 is authorized for all devices except wireless (old behaviour)
374 * 0 is unauthorized for all devices
375 * 1 is authorized for all devices
376 */
377 static int authorized_default = -1;
378 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
379 MODULE_PARM_DESC(authorized_default,
380 "Default USB device authorization: 0 is not authorized, 1 is "
381 "authorized, -1 is authorized except for wireless USB (default, "
382 "old behaviour");
383 /*-------------------------------------------------------------------------*/
384
385 /**
386 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
387 * @s: Null-terminated ASCII (actually ISO-8859-1) string
388 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
389 * @len: Length (in bytes; may be odd) of descriptor buffer.
390 *
391 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
392 * whichever is less.
393 *
394 * Note:
395 * USB String descriptors can contain at most 126 characters; input
396 * strings longer than that are truncated.
397 */
398 static unsigned
399 ascii2desc(char const *s, u8 *buf, unsigned len)
400 {
401 unsigned n, t = 2 + 2*strlen(s);
402
403 if (t > 254)
404 t = 254; /* Longest possible UTF string descriptor */
405 if (len > t)
406 len = t;
407
408 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
409
410 n = len;
411 while (n--) {
412 *buf++ = t;
413 if (!n--)
414 break;
415 *buf++ = t >> 8;
416 t = (unsigned char)*s++;
417 }
418 return len;
419 }
420
421 /**
422 * rh_string() - provides string descriptors for root hub
423 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
424 * @hcd: the host controller for this root hub
425 * @data: buffer for output packet
426 * @len: length of the provided buffer
427 *
428 * Produces either a manufacturer, product or serial number string for the
429 * virtual root hub device.
430 *
431 * Return: The number of bytes filled in: the length of the descriptor or
432 * of the provided buffer, whichever is less.
433 */
434 static unsigned
435 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
436 {
437 char buf[100];
438 char const *s;
439 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
440
441 /* language ids */
442 switch (id) {
443 case 0:
444 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
445 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
446 if (len > 4)
447 len = 4;
448 memcpy(data, langids, len);
449 return len;
450 case 1:
451 /* Serial number */
452 s = hcd->self.bus_name;
453 break;
454 case 2:
455 /* Product name */
456 s = hcd->product_desc;
457 break;
458 case 3:
459 /* Manufacturer */
460 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
461 init_utsname()->release, hcd->driver->description);
462 s = buf;
463 break;
464 default:
465 /* Can't happen; caller guarantees it */
466 return 0;
467 }
468
469 return ascii2desc(s, data, len);
470 }
471
472
473 /* Root hub control transfers execute synchronously */
474 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
475 {
476 struct usb_ctrlrequest *cmd;
477 u16 typeReq, wValue, wIndex, wLength;
478 u8 *ubuf = urb->transfer_buffer;
479 unsigned len = 0;
480 int status;
481 u8 patch_wakeup = 0;
482 u8 patch_protocol = 0;
483 u16 tbuf_size;
484 u8 *tbuf = NULL;
485 const u8 *bufp;
486
487 might_sleep();
488
489 spin_lock_irq(&hcd_root_hub_lock);
490 status = usb_hcd_link_urb_to_ep(hcd, urb);
491 spin_unlock_irq(&hcd_root_hub_lock);
492 if (status)
493 return status;
494 urb->hcpriv = hcd; /* Indicate it's queued */
495
496 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
497 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
498 wValue = le16_to_cpu (cmd->wValue);
499 wIndex = le16_to_cpu (cmd->wIndex);
500 wLength = le16_to_cpu (cmd->wLength);
501
502 if (wLength > urb->transfer_buffer_length)
503 goto error;
504
505 /*
506 * tbuf should be at least as big as the
507 * USB hub descriptor.
508 */
509 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
510 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
511 if (!tbuf) {
512 status = -ENOMEM;
513 goto err_alloc;
514 }
515
516 bufp = tbuf;
517
518
519 urb->actual_length = 0;
520 switch (typeReq) {
521
522 /* DEVICE REQUESTS */
523
524 /* The root hub's remote wakeup enable bit is implemented using
525 * driver model wakeup flags. If this system supports wakeup
526 * through USB, userspace may change the default "allow wakeup"
527 * policy through sysfs or these calls.
528 *
529 * Most root hubs support wakeup from downstream devices, for
530 * runtime power management (disabling USB clocks and reducing
531 * VBUS power usage). However, not all of them do so; silicon,
532 * board, and BIOS bugs here are not uncommon, so these can't
533 * be treated quite like external hubs.
534 *
535 * Likewise, not all root hubs will pass wakeup events upstream,
536 * to wake up the whole system. So don't assume root hub and
537 * controller capabilities are identical.
538 */
539
540 case DeviceRequest | USB_REQ_GET_STATUS:
541 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
542 << USB_DEVICE_REMOTE_WAKEUP)
543 | (1 << USB_DEVICE_SELF_POWERED);
544 tbuf[1] = 0;
545 len = 2;
546 break;
547 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
548 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
549 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
550 else
551 goto error;
552 break;
553 case DeviceOutRequest | USB_REQ_SET_FEATURE:
554 if (device_can_wakeup(&hcd->self.root_hub->dev)
555 && wValue == USB_DEVICE_REMOTE_WAKEUP)
556 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
557 else
558 goto error;
559 break;
560 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
561 tbuf[0] = 1;
562 len = 1;
563 /* FALLTHROUGH */
564 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
565 break;
566 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
567 switch (wValue & 0xff00) {
568 case USB_DT_DEVICE << 8:
569 switch (hcd->speed) {
570 case HCD_USB31:
571 bufp = usb31_rh_dev_descriptor;
572 break;
573 case HCD_USB3:
574 bufp = usb3_rh_dev_descriptor;
575 break;
576 case HCD_USB25:
577 bufp = usb25_rh_dev_descriptor;
578 break;
579 case HCD_USB2:
580 bufp = usb2_rh_dev_descriptor;
581 break;
582 case HCD_USB11:
583 bufp = usb11_rh_dev_descriptor;
584 break;
585 default:
586 goto error;
587 }
588 len = 18;
589 if (hcd->has_tt)
590 patch_protocol = 1;
591 break;
592 case USB_DT_CONFIG << 8:
593 switch (hcd->speed) {
594 case HCD_USB31:
595 case HCD_USB3:
596 bufp = ss_rh_config_descriptor;
597 len = sizeof ss_rh_config_descriptor;
598 break;
599 case HCD_USB25:
600 case HCD_USB2:
601 bufp = hs_rh_config_descriptor;
602 len = sizeof hs_rh_config_descriptor;
603 break;
604 case HCD_USB11:
605 bufp = fs_rh_config_descriptor;
606 len = sizeof fs_rh_config_descriptor;
607 break;
608 default:
609 goto error;
610 }
611 if (device_can_wakeup(&hcd->self.root_hub->dev))
612 patch_wakeup = 1;
613 break;
614 case USB_DT_STRING << 8:
615 if ((wValue & 0xff) < 4)
616 urb->actual_length = rh_string(wValue & 0xff,
617 hcd, ubuf, wLength);
618 else /* unsupported IDs --> "protocol stall" */
619 goto error;
620 break;
621 case USB_DT_BOS << 8:
622 goto nongeneric;
623 default:
624 goto error;
625 }
626 break;
627 case DeviceRequest | USB_REQ_GET_INTERFACE:
628 tbuf[0] = 0;
629 len = 1;
630 /* FALLTHROUGH */
631 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
632 break;
633 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
634 /* wValue == urb->dev->devaddr */
635 dev_dbg (hcd->self.controller, "root hub device address %d\n",
636 wValue);
637 break;
638
639 /* INTERFACE REQUESTS (no defined feature/status flags) */
640
641 /* ENDPOINT REQUESTS */
642
643 case EndpointRequest | USB_REQ_GET_STATUS:
644 /* ENDPOINT_HALT flag */
645 tbuf[0] = 0;
646 tbuf[1] = 0;
647 len = 2;
648 /* FALLTHROUGH */
649 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
650 case EndpointOutRequest | USB_REQ_SET_FEATURE:
651 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
652 break;
653
654 /* CLASS REQUESTS (and errors) */
655
656 default:
657 nongeneric:
658 /* non-generic request */
659 switch (typeReq) {
660 case GetHubStatus:
661 len = 4;
662 break;
663 case GetPortStatus:
664 if (wValue == HUB_PORT_STATUS)
665 len = 4;
666 else
667 /* other port status types return 8 bytes */
668 len = 8;
669 break;
670 case GetHubDescriptor:
671 len = sizeof (struct usb_hub_descriptor);
672 break;
673 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
674 /* len is returned by hub_control */
675 break;
676 }
677 status = hcd->driver->hub_control (hcd,
678 typeReq, wValue, wIndex,
679 tbuf, wLength);
680
681 if (typeReq == GetHubDescriptor)
682 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
683 (struct usb_hub_descriptor *)tbuf);
684 break;
685 error:
686 /* "protocol stall" on error */
687 status = -EPIPE;
688 }
689
690 if (status < 0) {
691 len = 0;
692 if (status != -EPIPE) {
693 dev_dbg (hcd->self.controller,
694 "CTRL: TypeReq=0x%x val=0x%x "
695 "idx=0x%x len=%d ==> %d\n",
696 typeReq, wValue, wIndex,
697 wLength, status);
698 }
699 } else if (status > 0) {
700 /* hub_control may return the length of data copied. */
701 len = status;
702 status = 0;
703 }
704 if (len) {
705 if (urb->transfer_buffer_length < len)
706 len = urb->transfer_buffer_length;
707 urb->actual_length = len;
708 /* always USB_DIR_IN, toward host */
709 memcpy (ubuf, bufp, len);
710
711 /* report whether RH hardware supports remote wakeup */
712 if (patch_wakeup &&
713 len > offsetof (struct usb_config_descriptor,
714 bmAttributes))
715 ((struct usb_config_descriptor *)ubuf)->bmAttributes
716 |= USB_CONFIG_ATT_WAKEUP;
717
718 /* report whether RH hardware has an integrated TT */
719 if (patch_protocol &&
720 len > offsetof(struct usb_device_descriptor,
721 bDeviceProtocol))
722 ((struct usb_device_descriptor *) ubuf)->
723 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
724 }
725
726 kfree(tbuf);
727 err_alloc:
728
729 /* any errors get returned through the urb completion */
730 spin_lock_irq(&hcd_root_hub_lock);
731 usb_hcd_unlink_urb_from_ep(hcd, urb);
732 usb_hcd_giveback_urb(hcd, urb, status);
733 spin_unlock_irq(&hcd_root_hub_lock);
734 return 0;
735 }
736
737 /*-------------------------------------------------------------------------*/
738
739 /*
740 * Root Hub interrupt transfers are polled using a timer if the
741 * driver requests it; otherwise the driver is responsible for
742 * calling usb_hcd_poll_rh_status() when an event occurs.
743 *
744 * Completions are called in_interrupt(), but they may or may not
745 * be in_irq().
746 */
747 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
748 {
749 struct urb *urb;
750 int length;
751 unsigned long flags;
752 char buffer[6]; /* Any root hubs with > 31 ports? */
753
754 if (unlikely(!hcd->rh_pollable))
755 return;
756 if (!hcd->uses_new_polling && !hcd->status_urb)
757 return;
758
759 length = hcd->driver->hub_status_data(hcd, buffer);
760 if (length > 0) {
761
762 /* try to complete the status urb */
763 spin_lock_irqsave(&hcd_root_hub_lock, flags);
764 urb = hcd->status_urb;
765 if (urb) {
766 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
767 hcd->status_urb = NULL;
768 urb->actual_length = length;
769 memcpy(urb->transfer_buffer, buffer, length);
770
771 usb_hcd_unlink_urb_from_ep(hcd, urb);
772 usb_hcd_giveback_urb(hcd, urb, 0);
773 } else {
774 length = 0;
775 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
776 }
777 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
778 }
779
780 /* The USB 2.0 spec says 256 ms. This is close enough and won't
781 * exceed that limit if HZ is 100. The math is more clunky than
782 * maybe expected, this is to make sure that all timers for USB devices
783 * fire at the same time to give the CPU a break in between */
784 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
785 (length == 0 && hcd->status_urb != NULL))
786 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
787 }
788 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
789
790 /* timer callback */
791 static void rh_timer_func (struct timer_list *t)
792 {
793 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
794
795 usb_hcd_poll_rh_status(_hcd);
796 }
797
798 /*-------------------------------------------------------------------------*/
799
800 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
801 {
802 int retval;
803 unsigned long flags;
804 unsigned len = 1 + (urb->dev->maxchild / 8);
805
806 spin_lock_irqsave (&hcd_root_hub_lock, flags);
807 if (hcd->status_urb || urb->transfer_buffer_length < len) {
808 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
809 retval = -EINVAL;
810 goto done;
811 }
812
813 retval = usb_hcd_link_urb_to_ep(hcd, urb);
814 if (retval)
815 goto done;
816
817 hcd->status_urb = urb;
818 urb->hcpriv = hcd; /* indicate it's queued */
819 if (!hcd->uses_new_polling)
820 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
821
822 /* If a status change has already occurred, report it ASAP */
823 else if (HCD_POLL_PENDING(hcd))
824 mod_timer(&hcd->rh_timer, jiffies);
825 retval = 0;
826 done:
827 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
828 return retval;
829 }
830
831 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
832 {
833 if (usb_endpoint_xfer_int(&urb->ep->desc))
834 return rh_queue_status (hcd, urb);
835 if (usb_endpoint_xfer_control(&urb->ep->desc))
836 return rh_call_control (hcd, urb);
837 return -EINVAL;
838 }
839
840 /*-------------------------------------------------------------------------*/
841
842 /* Unlinks of root-hub control URBs are legal, but they don't do anything
843 * since these URBs always execute synchronously.
844 */
845 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
846 {
847 unsigned long flags;
848 int rc;
849
850 spin_lock_irqsave(&hcd_root_hub_lock, flags);
851 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
852 if (rc)
853 goto done;
854
855 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
856 ; /* Do nothing */
857
858 } else { /* Status URB */
859 if (!hcd->uses_new_polling)
860 del_timer (&hcd->rh_timer);
861 if (urb == hcd->status_urb) {
862 hcd->status_urb = NULL;
863 usb_hcd_unlink_urb_from_ep(hcd, urb);
864 usb_hcd_giveback_urb(hcd, urb, status);
865 }
866 }
867 done:
868 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
869 return rc;
870 }
871
872
873
874 /*
875 * Show & store the current value of authorized_default
876 */
877 static ssize_t authorized_default_show(struct device *dev,
878 struct device_attribute *attr, char *buf)
879 {
880 struct usb_device *rh_usb_dev = to_usb_device(dev);
881 struct usb_bus *usb_bus = rh_usb_dev->bus;
882 struct usb_hcd *hcd;
883
884 hcd = bus_to_hcd(usb_bus);
885 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
886 }
887
888 static ssize_t authorized_default_store(struct device *dev,
889 struct device_attribute *attr,
890 const char *buf, size_t size)
891 {
892 ssize_t result;
893 unsigned val;
894 struct usb_device *rh_usb_dev = to_usb_device(dev);
895 struct usb_bus *usb_bus = rh_usb_dev->bus;
896 struct usb_hcd *hcd;
897
898 hcd = bus_to_hcd(usb_bus);
899 result = sscanf(buf, "%u\n", &val);
900 if (result == 1) {
901 if (val)
902 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
903 else
904 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
905
906 result = size;
907 } else {
908 result = -EINVAL;
909 }
910 return result;
911 }
912 static DEVICE_ATTR_RW(authorized_default);
913
914 /*
915 * interface_authorized_default_show - show default authorization status
916 * for USB interfaces
917 *
918 * note: interface_authorized_default is the default value
919 * for initializing the authorized attribute of interfaces
920 */
921 static ssize_t interface_authorized_default_show(struct device *dev,
922 struct device_attribute *attr, char *buf)
923 {
924 struct usb_device *usb_dev = to_usb_device(dev);
925 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
926
927 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
928 }
929
930 /*
931 * interface_authorized_default_store - store default authorization status
932 * for USB interfaces
933 *
934 * note: interface_authorized_default is the default value
935 * for initializing the authorized attribute of interfaces
936 */
937 static ssize_t interface_authorized_default_store(struct device *dev,
938 struct device_attribute *attr, const char *buf, size_t count)
939 {
940 struct usb_device *usb_dev = to_usb_device(dev);
941 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
942 int rc = count;
943 bool val;
944
945 if (strtobool(buf, &val) != 0)
946 return -EINVAL;
947
948 if (val)
949 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
950 else
951 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
952
953 return rc;
954 }
955 static DEVICE_ATTR_RW(interface_authorized_default);
956
957 /* Group all the USB bus attributes */
958 static struct attribute *usb_bus_attrs[] = {
959 &dev_attr_authorized_default.attr,
960 &dev_attr_interface_authorized_default.attr,
961 NULL,
962 };
963
964 static const struct attribute_group usb_bus_attr_group = {
965 .name = NULL, /* we want them in the same directory */
966 .attrs = usb_bus_attrs,
967 };
968
969
970
971 /*-------------------------------------------------------------------------*/
972
973 /**
974 * usb_bus_init - shared initialization code
975 * @bus: the bus structure being initialized
976 *
977 * This code is used to initialize a usb_bus structure, memory for which is
978 * separately managed.
979 */
980 static void usb_bus_init (struct usb_bus *bus)
981 {
982 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
983
984 bus->devnum_next = 1;
985
986 bus->root_hub = NULL;
987 bus->busnum = -1;
988 bus->bandwidth_allocated = 0;
989 bus->bandwidth_int_reqs = 0;
990 bus->bandwidth_isoc_reqs = 0;
991 mutex_init(&bus->devnum_next_mutex);
992 }
993
994 /*-------------------------------------------------------------------------*/
995
996 /**
997 * usb_register_bus - registers the USB host controller with the usb core
998 * @bus: pointer to the bus to register
999 * Context: !in_interrupt()
1000 *
1001 * Assigns a bus number, and links the controller into usbcore data
1002 * structures so that it can be seen by scanning the bus list.
1003 *
1004 * Return: 0 if successful. A negative error code otherwise.
1005 */
1006 static int usb_register_bus(struct usb_bus *bus)
1007 {
1008 int result = -E2BIG;
1009 int busnum;
1010
1011 mutex_lock(&usb_bus_idr_lock);
1012 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1013 if (busnum < 0) {
1014 pr_err("%s: failed to get bus number\n", usbcore_name);
1015 goto error_find_busnum;
1016 }
1017 bus->busnum = busnum;
1018 mutex_unlock(&usb_bus_idr_lock);
1019
1020 usb_notify_add_bus(bus);
1021
1022 dev_info (bus->controller, "new USB bus registered, assigned bus "
1023 "number %d\n", bus->busnum);
1024 return 0;
1025
1026 error_find_busnum:
1027 mutex_unlock(&usb_bus_idr_lock);
1028 return result;
1029 }
1030
1031 /**
1032 * usb_deregister_bus - deregisters the USB host controller
1033 * @bus: pointer to the bus to deregister
1034 * Context: !in_interrupt()
1035 *
1036 * Recycles the bus number, and unlinks the controller from usbcore data
1037 * structures so that it won't be seen by scanning the bus list.
1038 */
1039 static void usb_deregister_bus (struct usb_bus *bus)
1040 {
1041 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1042
1043 /*
1044 * NOTE: make sure that all the devices are removed by the
1045 * controller code, as well as having it call this when cleaning
1046 * itself up
1047 */
1048 mutex_lock(&usb_bus_idr_lock);
1049 idr_remove(&usb_bus_idr, bus->busnum);
1050 mutex_unlock(&usb_bus_idr_lock);
1051
1052 usb_notify_remove_bus(bus);
1053 }
1054
1055 /**
1056 * register_root_hub - called by usb_add_hcd() to register a root hub
1057 * @hcd: host controller for this root hub
1058 *
1059 * This function registers the root hub with the USB subsystem. It sets up
1060 * the device properly in the device tree and then calls usb_new_device()
1061 * to register the usb device. It also assigns the root hub's USB address
1062 * (always 1).
1063 *
1064 * Return: 0 if successful. A negative error code otherwise.
1065 */
1066 static int register_root_hub(struct usb_hcd *hcd)
1067 {
1068 struct device *parent_dev = hcd->self.controller;
1069 struct usb_device *usb_dev = hcd->self.root_hub;
1070 const int devnum = 1;
1071 int retval;
1072
1073 usb_dev->devnum = devnum;
1074 usb_dev->bus->devnum_next = devnum + 1;
1075 memset (&usb_dev->bus->devmap.devicemap, 0,
1076 sizeof usb_dev->bus->devmap.devicemap);
1077 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1078 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1079
1080 mutex_lock(&usb_bus_idr_lock);
1081
1082 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1083 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1084 if (retval != sizeof usb_dev->descriptor) {
1085 mutex_unlock(&usb_bus_idr_lock);
1086 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1087 dev_name(&usb_dev->dev), retval);
1088 return (retval < 0) ? retval : -EMSGSIZE;
1089 }
1090
1091 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1092 retval = usb_get_bos_descriptor(usb_dev);
1093 if (!retval) {
1094 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1095 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1096 mutex_unlock(&usb_bus_idr_lock);
1097 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1098 dev_name(&usb_dev->dev), retval);
1099 return retval;
1100 }
1101 }
1102
1103 retval = usb_new_device (usb_dev);
1104 if (retval) {
1105 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1106 dev_name(&usb_dev->dev), retval);
1107 } else {
1108 spin_lock_irq (&hcd_root_hub_lock);
1109 hcd->rh_registered = 1;
1110 spin_unlock_irq (&hcd_root_hub_lock);
1111
1112 /* Did the HC die before the root hub was registered? */
1113 if (HCD_DEAD(hcd))
1114 usb_hc_died (hcd); /* This time clean up */
1115 }
1116 mutex_unlock(&usb_bus_idr_lock);
1117
1118 return retval;
1119 }
1120
1121 /*
1122 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1123 * @bus: the bus which the root hub belongs to
1124 * @portnum: the port which is being resumed
1125 *
1126 * HCDs should call this function when they know that a resume signal is
1127 * being sent to a root-hub port. The root hub will be prevented from
1128 * going into autosuspend until usb_hcd_end_port_resume() is called.
1129 *
1130 * The bus's private lock must be held by the caller.
1131 */
1132 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1133 {
1134 unsigned bit = 1 << portnum;
1135
1136 if (!(bus->resuming_ports & bit)) {
1137 bus->resuming_ports |= bit;
1138 pm_runtime_get_noresume(&bus->root_hub->dev);
1139 }
1140 }
1141 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1142
1143 /*
1144 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1145 * @bus: the bus which the root hub belongs to
1146 * @portnum: the port which is being resumed
1147 *
1148 * HCDs should call this function when they know that a resume signal has
1149 * stopped being sent to a root-hub port. The root hub will be allowed to
1150 * autosuspend again.
1151 *
1152 * The bus's private lock must be held by the caller.
1153 */
1154 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1155 {
1156 unsigned bit = 1 << portnum;
1157
1158 if (bus->resuming_ports & bit) {
1159 bus->resuming_ports &= ~bit;
1160 pm_runtime_put_noidle(&bus->root_hub->dev);
1161 }
1162 }
1163 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1164
1165 /*-------------------------------------------------------------------------*/
1166
1167 /**
1168 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1169 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1170 * @is_input: true iff the transaction sends data to the host
1171 * @isoc: true for isochronous transactions, false for interrupt ones
1172 * @bytecount: how many bytes in the transaction.
1173 *
1174 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1175 *
1176 * Note:
1177 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1178 * scheduled in software, this function is only used for such scheduling.
1179 */
1180 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1181 {
1182 unsigned long tmp;
1183
1184 switch (speed) {
1185 case USB_SPEED_LOW: /* INTR only */
1186 if (is_input) {
1187 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1188 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1189 } else {
1190 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1191 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1192 }
1193 case USB_SPEED_FULL: /* ISOC or INTR */
1194 if (isoc) {
1195 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1196 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1197 } else {
1198 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1199 return 9107L + BW_HOST_DELAY + tmp;
1200 }
1201 case USB_SPEED_HIGH: /* ISOC or INTR */
1202 /* FIXME adjust for input vs output */
1203 if (isoc)
1204 tmp = HS_NSECS_ISO (bytecount);
1205 else
1206 tmp = HS_NSECS (bytecount);
1207 return tmp;
1208 default:
1209 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1210 return -1;
1211 }
1212 }
1213 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1214
1215
1216 /*-------------------------------------------------------------------------*/
1217
1218 /*
1219 * Generic HC operations.
1220 */
1221
1222 /*-------------------------------------------------------------------------*/
1223
1224 /**
1225 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1226 * @hcd: host controller to which @urb was submitted
1227 * @urb: URB being submitted
1228 *
1229 * Host controller drivers should call this routine in their enqueue()
1230 * method. The HCD's private spinlock must be held and interrupts must
1231 * be disabled. The actions carried out here are required for URB
1232 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1233 *
1234 * Return: 0 for no error, otherwise a negative error code (in which case
1235 * the enqueue() method must fail). If no error occurs but enqueue() fails
1236 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1237 * the private spinlock and returning.
1238 */
1239 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1240 {
1241 int rc = 0;
1242
1243 spin_lock(&hcd_urb_list_lock);
1244
1245 /* Check that the URB isn't being killed */
1246 if (unlikely(atomic_read(&urb->reject))) {
1247 rc = -EPERM;
1248 goto done;
1249 }
1250
1251 if (unlikely(!urb->ep->enabled)) {
1252 rc = -ENOENT;
1253 goto done;
1254 }
1255
1256 if (unlikely(!urb->dev->can_submit)) {
1257 rc = -EHOSTUNREACH;
1258 goto done;
1259 }
1260
1261 /*
1262 * Check the host controller's state and add the URB to the
1263 * endpoint's queue.
1264 */
1265 if (HCD_RH_RUNNING(hcd)) {
1266 urb->unlinked = 0;
1267 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1268 } else {
1269 rc = -ESHUTDOWN;
1270 goto done;
1271 }
1272 done:
1273 spin_unlock(&hcd_urb_list_lock);
1274 return rc;
1275 }
1276 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1277
1278 /**
1279 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1280 * @hcd: host controller to which @urb was submitted
1281 * @urb: URB being checked for unlinkability
1282 * @status: error code to store in @urb if the unlink succeeds
1283 *
1284 * Host controller drivers should call this routine in their dequeue()
1285 * method. The HCD's private spinlock must be held and interrupts must
1286 * be disabled. The actions carried out here are required for making
1287 * sure than an unlink is valid.
1288 *
1289 * Return: 0 for no error, otherwise a negative error code (in which case
1290 * the dequeue() method must fail). The possible error codes are:
1291 *
1292 * -EIDRM: @urb was not submitted or has already completed.
1293 * The completion function may not have been called yet.
1294 *
1295 * -EBUSY: @urb has already been unlinked.
1296 */
1297 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1298 int status)
1299 {
1300 struct list_head *tmp;
1301
1302 /* insist the urb is still queued */
1303 list_for_each(tmp, &urb->ep->urb_list) {
1304 if (tmp == &urb->urb_list)
1305 break;
1306 }
1307 if (tmp != &urb->urb_list)
1308 return -EIDRM;
1309
1310 /* Any status except -EINPROGRESS means something already started to
1311 * unlink this URB from the hardware. So there's no more work to do.
1312 */
1313 if (urb->unlinked)
1314 return -EBUSY;
1315 urb->unlinked = status;
1316 return 0;
1317 }
1318 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1319
1320 /**
1321 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1322 * @hcd: host controller to which @urb was submitted
1323 * @urb: URB being unlinked
1324 *
1325 * Host controller drivers should call this routine before calling
1326 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1327 * interrupts must be disabled. The actions carried out here are required
1328 * for URB completion.
1329 */
1330 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1331 {
1332 /* clear all state linking urb to this dev (and hcd) */
1333 spin_lock(&hcd_urb_list_lock);
1334 list_del_init(&urb->urb_list);
1335 spin_unlock(&hcd_urb_list_lock);
1336 }
1337 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1338
1339 /*
1340 * Some usb host controllers can only perform dma using a small SRAM area.
1341 * The usb core itself is however optimized for host controllers that can dma
1342 * using regular system memory - like pci devices doing bus mastering.
1343 *
1344 * To support host controllers with limited dma capabilities we provide dma
1345 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1346 * For this to work properly the host controller code must first use the
1347 * function dma_declare_coherent_memory() to point out which memory area
1348 * that should be used for dma allocations.
1349 *
1350 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1351 * dma using dma_alloc_coherent() which in turn allocates from the memory
1352 * area pointed out with dma_declare_coherent_memory().
1353 *
1354 * So, to summarize...
1355 *
1356 * - We need "local" memory, canonical example being
1357 * a small SRAM on a discrete controller being the
1358 * only memory that the controller can read ...
1359 * (a) "normal" kernel memory is no good, and
1360 * (b) there's not enough to share
1361 *
1362 * - The only *portable* hook for such stuff in the
1363 * DMA framework is dma_declare_coherent_memory()
1364 *
1365 * - So we use that, even though the primary requirement
1366 * is that the memory be "local" (hence addressable
1367 * by that device), not "coherent".
1368 *
1369 */
1370
1371 static int hcd_alloc_coherent(struct usb_bus *bus,
1372 gfp_t mem_flags, dma_addr_t *dma_handle,
1373 void **vaddr_handle, size_t size,
1374 enum dma_data_direction dir)
1375 {
1376 unsigned char *vaddr;
1377
1378 if (*vaddr_handle == NULL) {
1379 WARN_ON_ONCE(1);
1380 return -EFAULT;
1381 }
1382
1383 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1384 mem_flags, dma_handle);
1385 if (!vaddr)
1386 return -ENOMEM;
1387
1388 /*
1389 * Store the virtual address of the buffer at the end
1390 * of the allocated dma buffer. The size of the buffer
1391 * may be uneven so use unaligned functions instead
1392 * of just rounding up. It makes sense to optimize for
1393 * memory footprint over access speed since the amount
1394 * of memory available for dma may be limited.
1395 */
1396 put_unaligned((unsigned long)*vaddr_handle,
1397 (unsigned long *)(vaddr + size));
1398
1399 if (dir == DMA_TO_DEVICE)
1400 memcpy(vaddr, *vaddr_handle, size);
1401
1402 *vaddr_handle = vaddr;
1403 return 0;
1404 }
1405
1406 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1407 void **vaddr_handle, size_t size,
1408 enum dma_data_direction dir)
1409 {
1410 unsigned char *vaddr = *vaddr_handle;
1411
1412 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1413
1414 if (dir == DMA_FROM_DEVICE)
1415 memcpy(vaddr, *vaddr_handle, size);
1416
1417 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1418
1419 *vaddr_handle = vaddr;
1420 *dma_handle = 0;
1421 }
1422
1423 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1424 {
1425 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1426 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1427 dma_unmap_single(hcd->self.sysdev,
1428 urb->setup_dma,
1429 sizeof(struct usb_ctrlrequest),
1430 DMA_TO_DEVICE);
1431 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1432 hcd_free_coherent(urb->dev->bus,
1433 &urb->setup_dma,
1434 (void **) &urb->setup_packet,
1435 sizeof(struct usb_ctrlrequest),
1436 DMA_TO_DEVICE);
1437
1438 /* Make it safe to call this routine more than once */
1439 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1440 }
1441 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1442
1443 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1444 {
1445 if (hcd->driver->unmap_urb_for_dma)
1446 hcd->driver->unmap_urb_for_dma(hcd, urb);
1447 else
1448 usb_hcd_unmap_urb_for_dma(hcd, urb);
1449 }
1450
1451 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1452 {
1453 enum dma_data_direction dir;
1454
1455 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1456
1457 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1458 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1459 (urb->transfer_flags & URB_DMA_MAP_SG))
1460 dma_unmap_sg(hcd->self.sysdev,
1461 urb->sg,
1462 urb->num_sgs,
1463 dir);
1464 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1465 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1466 dma_unmap_page(hcd->self.sysdev,
1467 urb->transfer_dma,
1468 urb->transfer_buffer_length,
1469 dir);
1470 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1471 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1472 dma_unmap_single(hcd->self.sysdev,
1473 urb->transfer_dma,
1474 urb->transfer_buffer_length,
1475 dir);
1476 else if (urb->transfer_flags & URB_MAP_LOCAL)
1477 hcd_free_coherent(urb->dev->bus,
1478 &urb->transfer_dma,
1479 &urb->transfer_buffer,
1480 urb->transfer_buffer_length,
1481 dir);
1482
1483 /* Make it safe to call this routine more than once */
1484 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1485 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1486 }
1487 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1488
1489 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1490 gfp_t mem_flags)
1491 {
1492 if (hcd->driver->map_urb_for_dma)
1493 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1494 else
1495 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1496 }
1497
1498 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1499 gfp_t mem_flags)
1500 {
1501 enum dma_data_direction dir;
1502 int ret = 0;
1503
1504 /* Map the URB's buffers for DMA access.
1505 * Lower level HCD code should use *_dma exclusively,
1506 * unless it uses pio or talks to another transport,
1507 * or uses the provided scatter gather list for bulk.
1508 */
1509
1510 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1511 if (hcd->self.uses_pio_for_control)
1512 return ret;
1513 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1514 if (is_vmalloc_addr(urb->setup_packet)) {
1515 WARN_ONCE(1, "setup packet is not dma capable\n");
1516 return -EAGAIN;
1517 } else if (object_is_on_stack(urb->setup_packet)) {
1518 WARN_ONCE(1, "setup packet is on stack\n");
1519 return -EAGAIN;
1520 }
1521
1522 urb->setup_dma = dma_map_single(
1523 hcd->self.sysdev,
1524 urb->setup_packet,
1525 sizeof(struct usb_ctrlrequest),
1526 DMA_TO_DEVICE);
1527 if (dma_mapping_error(hcd->self.sysdev,
1528 urb->setup_dma))
1529 return -EAGAIN;
1530 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1531 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1532 ret = hcd_alloc_coherent(
1533 urb->dev->bus, mem_flags,
1534 &urb->setup_dma,
1535 (void **)&urb->setup_packet,
1536 sizeof(struct usb_ctrlrequest),
1537 DMA_TO_DEVICE);
1538 if (ret)
1539 return ret;
1540 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1541 }
1542 }
1543
1544 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1545 if (urb->transfer_buffer_length != 0
1546 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1547 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1548 if (urb->num_sgs) {
1549 int n;
1550
1551 /* We don't support sg for isoc transfers ! */
1552 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1553 WARN_ON(1);
1554 return -EINVAL;
1555 }
1556
1557 n = dma_map_sg(
1558 hcd->self.sysdev,
1559 urb->sg,
1560 urb->num_sgs,
1561 dir);
1562 if (n <= 0)
1563 ret = -EAGAIN;
1564 else
1565 urb->transfer_flags |= URB_DMA_MAP_SG;
1566 urb->num_mapped_sgs = n;
1567 if (n != urb->num_sgs)
1568 urb->transfer_flags |=
1569 URB_DMA_SG_COMBINED;
1570 } else if (urb->sg) {
1571 struct scatterlist *sg = urb->sg;
1572 urb->transfer_dma = dma_map_page(
1573 hcd->self.sysdev,
1574 sg_page(sg),
1575 sg->offset,
1576 urb->transfer_buffer_length,
1577 dir);
1578 if (dma_mapping_error(hcd->self.sysdev,
1579 urb->transfer_dma))
1580 ret = -EAGAIN;
1581 else
1582 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1583 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1584 WARN_ONCE(1, "transfer buffer not dma capable\n");
1585 ret = -EAGAIN;
1586 } else if (object_is_on_stack(urb->transfer_buffer)) {
1587 WARN_ONCE(1, "transfer buffer is on stack\n");
1588 ret = -EAGAIN;
1589 } else {
1590 urb->transfer_dma = dma_map_single(
1591 hcd->self.sysdev,
1592 urb->transfer_buffer,
1593 urb->transfer_buffer_length,
1594 dir);
1595 if (dma_mapping_error(hcd->self.sysdev,
1596 urb->transfer_dma))
1597 ret = -EAGAIN;
1598 else
1599 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1600 }
1601 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1602 ret = hcd_alloc_coherent(
1603 urb->dev->bus, mem_flags,
1604 &urb->transfer_dma,
1605 &urb->transfer_buffer,
1606 urb->transfer_buffer_length,
1607 dir);
1608 if (ret == 0)
1609 urb->transfer_flags |= URB_MAP_LOCAL;
1610 }
1611 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1612 URB_SETUP_MAP_LOCAL)))
1613 usb_hcd_unmap_urb_for_dma(hcd, urb);
1614 }
1615 return ret;
1616 }
1617 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1618
1619 /*-------------------------------------------------------------------------*/
1620
1621 /* may be called in any context with a valid urb->dev usecount
1622 * caller surrenders "ownership" of urb
1623 * expects usb_submit_urb() to have sanity checked and conditioned all
1624 * inputs in the urb
1625 */
1626 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1627 {
1628 int status;
1629 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1630
1631 /* increment urb's reference count as part of giving it to the HCD
1632 * (which will control it). HCD guarantees that it either returns
1633 * an error or calls giveback(), but not both.
1634 */
1635 usb_get_urb(urb);
1636 atomic_inc(&urb->use_count);
1637 atomic_inc(&urb->dev->urbnum);
1638 usbmon_urb_submit(&hcd->self, urb);
1639
1640 /* NOTE requirements on root-hub callers (usbfs and the hub
1641 * driver, for now): URBs' urb->transfer_buffer must be
1642 * valid and usb_buffer_{sync,unmap}() not be needed, since
1643 * they could clobber root hub response data. Also, control
1644 * URBs must be submitted in process context with interrupts
1645 * enabled.
1646 */
1647
1648 if (is_root_hub(urb->dev)) {
1649 status = rh_urb_enqueue(hcd, urb);
1650 } else {
1651 status = map_urb_for_dma(hcd, urb, mem_flags);
1652 if (likely(status == 0)) {
1653 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1654 if (unlikely(status))
1655 unmap_urb_for_dma(hcd, urb);
1656 }
1657 }
1658
1659 if (unlikely(status)) {
1660 usbmon_urb_submit_error(&hcd->self, urb, status);
1661 urb->hcpriv = NULL;
1662 INIT_LIST_HEAD(&urb->urb_list);
1663 atomic_dec(&urb->use_count);
1664 atomic_dec(&urb->dev->urbnum);
1665 if (atomic_read(&urb->reject))
1666 wake_up(&usb_kill_urb_queue);
1667 usb_put_urb(urb);
1668 }
1669 return status;
1670 }
1671
1672 /*-------------------------------------------------------------------------*/
1673
1674 /* this makes the hcd giveback() the urb more quickly, by kicking it
1675 * off hardware queues (which may take a while) and returning it as
1676 * soon as practical. we've already set up the urb's return status,
1677 * but we can't know if the callback completed already.
1678 */
1679 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1680 {
1681 int value;
1682
1683 if (is_root_hub(urb->dev))
1684 value = usb_rh_urb_dequeue(hcd, urb, status);
1685 else {
1686
1687 /* The only reason an HCD might fail this call is if
1688 * it has not yet fully queued the urb to begin with.
1689 * Such failures should be harmless. */
1690 value = hcd->driver->urb_dequeue(hcd, urb, status);
1691 }
1692 return value;
1693 }
1694
1695 /*
1696 * called in any context
1697 *
1698 * caller guarantees urb won't be recycled till both unlink()
1699 * and the urb's completion function return
1700 */
1701 int usb_hcd_unlink_urb (struct urb *urb, int status)
1702 {
1703 struct usb_hcd *hcd;
1704 struct usb_device *udev = urb->dev;
1705 int retval = -EIDRM;
1706 unsigned long flags;
1707
1708 /* Prevent the device and bus from going away while
1709 * the unlink is carried out. If they are already gone
1710 * then urb->use_count must be 0, since disconnected
1711 * devices can't have any active URBs.
1712 */
1713 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1714 if (atomic_read(&urb->use_count) > 0) {
1715 retval = 0;
1716 usb_get_dev(udev);
1717 }
1718 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1719 if (retval == 0) {
1720 hcd = bus_to_hcd(urb->dev->bus);
1721 retval = unlink1(hcd, urb, status);
1722 if (retval == 0)
1723 retval = -EINPROGRESS;
1724 else if (retval != -EIDRM && retval != -EBUSY)
1725 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1726 urb, retval);
1727 usb_put_dev(udev);
1728 }
1729 return retval;
1730 }
1731
1732 /*-------------------------------------------------------------------------*/
1733
1734 static void __usb_hcd_giveback_urb(struct urb *urb)
1735 {
1736 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1737 struct usb_anchor *anchor = urb->anchor;
1738 int status = urb->unlinked;
1739 unsigned long flags;
1740
1741 urb->hcpriv = NULL;
1742 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1743 urb->actual_length < urb->transfer_buffer_length &&
1744 !status))
1745 status = -EREMOTEIO;
1746
1747 unmap_urb_for_dma(hcd, urb);
1748 usbmon_urb_complete(&hcd->self, urb, status);
1749 usb_anchor_suspend_wakeups(anchor);
1750 usb_unanchor_urb(urb);
1751 if (likely(status == 0))
1752 usb_led_activity(USB_LED_EVENT_HOST);
1753
1754 /* pass ownership to the completion handler */
1755 urb->status = status;
1756
1757 /*
1758 * We disable local IRQs here avoid possible deadlock because
1759 * drivers may call spin_lock() to hold lock which might be
1760 * acquired in one hard interrupt handler.
1761 *
1762 * The local_irq_save()/local_irq_restore() around complete()
1763 * will be removed if current USB drivers have been cleaned up
1764 * and no one may trigger the above deadlock situation when
1765 * running complete() in tasklet.
1766 */
1767 local_irq_save(flags);
1768 urb->complete(urb);
1769 local_irq_restore(flags);
1770
1771 usb_anchor_resume_wakeups(anchor);
1772 atomic_dec(&urb->use_count);
1773 if (unlikely(atomic_read(&urb->reject)))
1774 wake_up(&usb_kill_urb_queue);
1775 usb_put_urb(urb);
1776 }
1777
1778 static void usb_giveback_urb_bh(unsigned long param)
1779 {
1780 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1781 struct list_head local_list;
1782
1783 spin_lock_irq(&bh->lock);
1784 bh->running = true;
1785 restart:
1786 list_replace_init(&bh->head, &local_list);
1787 spin_unlock_irq(&bh->lock);
1788
1789 while (!list_empty(&local_list)) {
1790 struct urb *urb;
1791
1792 urb = list_entry(local_list.next, struct urb, urb_list);
1793 list_del_init(&urb->urb_list);
1794 bh->completing_ep = urb->ep;
1795 __usb_hcd_giveback_urb(urb);
1796 bh->completing_ep = NULL;
1797 }
1798
1799 /* check if there are new URBs to giveback */
1800 spin_lock_irq(&bh->lock);
1801 if (!list_empty(&bh->head))
1802 goto restart;
1803 bh->running = false;
1804 spin_unlock_irq(&bh->lock);
1805 }
1806
1807 /**
1808 * usb_hcd_giveback_urb - return URB from HCD to device driver
1809 * @hcd: host controller returning the URB
1810 * @urb: urb being returned to the USB device driver.
1811 * @status: completion status code for the URB.
1812 * Context: in_interrupt()
1813 *
1814 * This hands the URB from HCD to its USB device driver, using its
1815 * completion function. The HCD has freed all per-urb resources
1816 * (and is done using urb->hcpriv). It also released all HCD locks;
1817 * the device driver won't cause problems if it frees, modifies,
1818 * or resubmits this URB.
1819 *
1820 * If @urb was unlinked, the value of @status will be overridden by
1821 * @urb->unlinked. Erroneous short transfers are detected in case
1822 * the HCD hasn't checked for them.
1823 */
1824 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1825 {
1826 struct giveback_urb_bh *bh;
1827 bool running, high_prio_bh;
1828
1829 /* pass status to tasklet via unlinked */
1830 if (likely(!urb->unlinked))
1831 urb->unlinked = status;
1832
1833 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1834 __usb_hcd_giveback_urb(urb);
1835 return;
1836 }
1837
1838 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1839 bh = &hcd->high_prio_bh;
1840 high_prio_bh = true;
1841 } else {
1842 bh = &hcd->low_prio_bh;
1843 high_prio_bh = false;
1844 }
1845
1846 spin_lock(&bh->lock);
1847 list_add_tail(&urb->urb_list, &bh->head);
1848 running = bh->running;
1849 spin_unlock(&bh->lock);
1850
1851 if (running)
1852 ;
1853 else if (high_prio_bh)
1854 tasklet_hi_schedule(&bh->bh);
1855 else
1856 tasklet_schedule(&bh->bh);
1857 }
1858 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1859
1860 /*-------------------------------------------------------------------------*/
1861
1862 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1863 * queue to drain completely. The caller must first insure that no more
1864 * URBs can be submitted for this endpoint.
1865 */
1866 void usb_hcd_flush_endpoint(struct usb_device *udev,
1867 struct usb_host_endpoint *ep)
1868 {
1869 struct usb_hcd *hcd;
1870 struct urb *urb;
1871
1872 if (!ep)
1873 return;
1874 might_sleep();
1875 hcd = bus_to_hcd(udev->bus);
1876
1877 /* No more submits can occur */
1878 spin_lock_irq(&hcd_urb_list_lock);
1879 rescan:
1880 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1881 int is_in;
1882
1883 if (urb->unlinked)
1884 continue;
1885 usb_get_urb (urb);
1886 is_in = usb_urb_dir_in(urb);
1887 spin_unlock(&hcd_urb_list_lock);
1888
1889 /* kick hcd */
1890 unlink1(hcd, urb, -ESHUTDOWN);
1891 dev_dbg (hcd->self.controller,
1892 "shutdown urb %pK ep%d%s%s\n",
1893 urb, usb_endpoint_num(&ep->desc),
1894 is_in ? "in" : "out",
1895 ({ char *s;
1896
1897 switch (usb_endpoint_type(&ep->desc)) {
1898 case USB_ENDPOINT_XFER_CONTROL:
1899 s = ""; break;
1900 case USB_ENDPOINT_XFER_BULK:
1901 s = "-bulk"; break;
1902 case USB_ENDPOINT_XFER_INT:
1903 s = "-intr"; break;
1904 default:
1905 s = "-iso"; break;
1906 };
1907 s;
1908 }));
1909 usb_put_urb (urb);
1910
1911 /* list contents may have changed */
1912 spin_lock(&hcd_urb_list_lock);
1913 goto rescan;
1914 }
1915 spin_unlock_irq(&hcd_urb_list_lock);
1916
1917 /* Wait until the endpoint queue is completely empty */
1918 while (!list_empty (&ep->urb_list)) {
1919 spin_lock_irq(&hcd_urb_list_lock);
1920
1921 /* The list may have changed while we acquired the spinlock */
1922 urb = NULL;
1923 if (!list_empty (&ep->urb_list)) {
1924 urb = list_entry (ep->urb_list.prev, struct urb,
1925 urb_list);
1926 usb_get_urb (urb);
1927 }
1928 spin_unlock_irq(&hcd_urb_list_lock);
1929
1930 if (urb) {
1931 usb_kill_urb (urb);
1932 usb_put_urb (urb);
1933 }
1934 }
1935 }
1936
1937 /**
1938 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1939 * the bus bandwidth
1940 * @udev: target &usb_device
1941 * @new_config: new configuration to install
1942 * @cur_alt: the current alternate interface setting
1943 * @new_alt: alternate interface setting that is being installed
1944 *
1945 * To change configurations, pass in the new configuration in new_config,
1946 * and pass NULL for cur_alt and new_alt.
1947 *
1948 * To reset a device's configuration (put the device in the ADDRESSED state),
1949 * pass in NULL for new_config, cur_alt, and new_alt.
1950 *
1951 * To change alternate interface settings, pass in NULL for new_config,
1952 * pass in the current alternate interface setting in cur_alt,
1953 * and pass in the new alternate interface setting in new_alt.
1954 *
1955 * Return: An error if the requested bandwidth change exceeds the
1956 * bus bandwidth or host controller internal resources.
1957 */
1958 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1959 struct usb_host_config *new_config,
1960 struct usb_host_interface *cur_alt,
1961 struct usb_host_interface *new_alt)
1962 {
1963 int num_intfs, i, j;
1964 struct usb_host_interface *alt = NULL;
1965 int ret = 0;
1966 struct usb_hcd *hcd;
1967 struct usb_host_endpoint *ep;
1968
1969 hcd = bus_to_hcd(udev->bus);
1970 if (!hcd->driver->check_bandwidth)
1971 return 0;
1972
1973 /* Configuration is being removed - set configuration 0 */
1974 if (!new_config && !cur_alt) {
1975 for (i = 1; i < 16; ++i) {
1976 ep = udev->ep_out[i];
1977 if (ep)
1978 hcd->driver->drop_endpoint(hcd, udev, ep);
1979 ep = udev->ep_in[i];
1980 if (ep)
1981 hcd->driver->drop_endpoint(hcd, udev, ep);
1982 }
1983 hcd->driver->check_bandwidth(hcd, udev);
1984 return 0;
1985 }
1986 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1987 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1988 * of the bus. There will always be bandwidth for endpoint 0, so it's
1989 * ok to exclude it.
1990 */
1991 if (new_config) {
1992 num_intfs = new_config->desc.bNumInterfaces;
1993 /* Remove endpoints (except endpoint 0, which is always on the
1994 * schedule) from the old config from the schedule
1995 */
1996 for (i = 1; i < 16; ++i) {
1997 ep = udev->ep_out[i];
1998 if (ep) {
1999 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2000 if (ret < 0)
2001 goto reset;
2002 }
2003 ep = udev->ep_in[i];
2004 if (ep) {
2005 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2006 if (ret < 0)
2007 goto reset;
2008 }
2009 }
2010 for (i = 0; i < num_intfs; ++i) {
2011 struct usb_host_interface *first_alt;
2012 int iface_num;
2013
2014 first_alt = &new_config->intf_cache[i]->altsetting[0];
2015 iface_num = first_alt->desc.bInterfaceNumber;
2016 /* Set up endpoints for alternate interface setting 0 */
2017 alt = usb_find_alt_setting(new_config, iface_num, 0);
2018 if (!alt)
2019 /* No alt setting 0? Pick the first setting. */
2020 alt = first_alt;
2021
2022 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2023 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2024 if (ret < 0)
2025 goto reset;
2026 }
2027 }
2028 }
2029 if (cur_alt && new_alt) {
2030 struct usb_interface *iface = usb_ifnum_to_if(udev,
2031 cur_alt->desc.bInterfaceNumber);
2032
2033 if (!iface)
2034 return -EINVAL;
2035 if (iface->resetting_device) {
2036 /*
2037 * The USB core just reset the device, so the xHCI host
2038 * and the device will think alt setting 0 is installed.
2039 * However, the USB core will pass in the alternate
2040 * setting installed before the reset as cur_alt. Dig
2041 * out the alternate setting 0 structure, or the first
2042 * alternate setting if a broken device doesn't have alt
2043 * setting 0.
2044 */
2045 cur_alt = usb_altnum_to_altsetting(iface, 0);
2046 if (!cur_alt)
2047 cur_alt = &iface->altsetting[0];
2048 }
2049
2050 /* Drop all the endpoints in the current alt setting */
2051 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2052 ret = hcd->driver->drop_endpoint(hcd, udev,
2053 &cur_alt->endpoint[i]);
2054 if (ret < 0)
2055 goto reset;
2056 }
2057 /* Add all the endpoints in the new alt setting */
2058 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2059 ret = hcd->driver->add_endpoint(hcd, udev,
2060 &new_alt->endpoint[i]);
2061 if (ret < 0)
2062 goto reset;
2063 }
2064 }
2065 ret = hcd->driver->check_bandwidth(hcd, udev);
2066 reset:
2067 if (ret < 0)
2068 hcd->driver->reset_bandwidth(hcd, udev);
2069 return ret;
2070 }
2071
2072 /* Disables the endpoint: synchronizes with the hcd to make sure all
2073 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2074 * have been called previously. Use for set_configuration, set_interface,
2075 * driver removal, physical disconnect.
2076 *
2077 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2078 * type, maxpacket size, toggle, halt status, and scheduling.
2079 */
2080 void usb_hcd_disable_endpoint(struct usb_device *udev,
2081 struct usb_host_endpoint *ep)
2082 {
2083 struct usb_hcd *hcd;
2084
2085 might_sleep();
2086 hcd = bus_to_hcd(udev->bus);
2087 if (hcd->driver->endpoint_disable)
2088 hcd->driver->endpoint_disable(hcd, ep);
2089 }
2090
2091 /**
2092 * usb_hcd_reset_endpoint - reset host endpoint state
2093 * @udev: USB device.
2094 * @ep: the endpoint to reset.
2095 *
2096 * Resets any host endpoint state such as the toggle bit, sequence
2097 * number and current window.
2098 */
2099 void usb_hcd_reset_endpoint(struct usb_device *udev,
2100 struct usb_host_endpoint *ep)
2101 {
2102 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2103
2104 if (hcd->driver->endpoint_reset)
2105 hcd->driver->endpoint_reset(hcd, ep);
2106 else {
2107 int epnum = usb_endpoint_num(&ep->desc);
2108 int is_out = usb_endpoint_dir_out(&ep->desc);
2109 int is_control = usb_endpoint_xfer_control(&ep->desc);
2110
2111 usb_settoggle(udev, epnum, is_out, 0);
2112 if (is_control)
2113 usb_settoggle(udev, epnum, !is_out, 0);
2114 }
2115 }
2116
2117 /**
2118 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2119 * @interface: alternate setting that includes all endpoints.
2120 * @eps: array of endpoints that need streams.
2121 * @num_eps: number of endpoints in the array.
2122 * @num_streams: number of streams to allocate.
2123 * @mem_flags: flags hcd should use to allocate memory.
2124 *
2125 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2126 * Drivers may queue multiple transfers to different stream IDs, which may
2127 * complete in a different order than they were queued.
2128 *
2129 * Return: On success, the number of allocated streams. On failure, a negative
2130 * error code.
2131 */
2132 int usb_alloc_streams(struct usb_interface *interface,
2133 struct usb_host_endpoint **eps, unsigned int num_eps,
2134 unsigned int num_streams, gfp_t mem_flags)
2135 {
2136 struct usb_hcd *hcd;
2137 struct usb_device *dev;
2138 int i, ret;
2139
2140 dev = interface_to_usbdev(interface);
2141 hcd = bus_to_hcd(dev->bus);
2142 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2143 return -EINVAL;
2144 if (dev->speed < USB_SPEED_SUPER)
2145 return -EINVAL;
2146 if (dev->state < USB_STATE_CONFIGURED)
2147 return -ENODEV;
2148
2149 for (i = 0; i < num_eps; i++) {
2150 /* Streams only apply to bulk endpoints. */
2151 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2152 return -EINVAL;
2153 /* Re-alloc is not allowed */
2154 if (eps[i]->streams)
2155 return -EINVAL;
2156 }
2157
2158 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2159 num_streams, mem_flags);
2160 if (ret < 0)
2161 return ret;
2162
2163 for (i = 0; i < num_eps; i++)
2164 eps[i]->streams = ret;
2165
2166 return ret;
2167 }
2168 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2169
2170 /**
2171 * usb_free_streams - free bulk endpoint stream IDs.
2172 * @interface: alternate setting that includes all endpoints.
2173 * @eps: array of endpoints to remove streams from.
2174 * @num_eps: number of endpoints in the array.
2175 * @mem_flags: flags hcd should use to allocate memory.
2176 *
2177 * Reverts a group of bulk endpoints back to not using stream IDs.
2178 * Can fail if we are given bad arguments, or HCD is broken.
2179 *
2180 * Return: 0 on success. On failure, a negative error code.
2181 */
2182 int usb_free_streams(struct usb_interface *interface,
2183 struct usb_host_endpoint **eps, unsigned int num_eps,
2184 gfp_t mem_flags)
2185 {
2186 struct usb_hcd *hcd;
2187 struct usb_device *dev;
2188 int i, ret;
2189
2190 dev = interface_to_usbdev(interface);
2191 hcd = bus_to_hcd(dev->bus);
2192 if (dev->speed < USB_SPEED_SUPER)
2193 return -EINVAL;
2194
2195 /* Double-free is not allowed */
2196 for (i = 0; i < num_eps; i++)
2197 if (!eps[i] || !eps[i]->streams)
2198 return -EINVAL;
2199
2200 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2201 if (ret < 0)
2202 return ret;
2203
2204 for (i = 0; i < num_eps; i++)
2205 eps[i]->streams = 0;
2206
2207 return ret;
2208 }
2209 EXPORT_SYMBOL_GPL(usb_free_streams);
2210
2211 /* Protect against drivers that try to unlink URBs after the device
2212 * is gone, by waiting until all unlinks for @udev are finished.
2213 * Since we don't currently track URBs by device, simply wait until
2214 * nothing is running in the locked region of usb_hcd_unlink_urb().
2215 */
2216 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2217 {
2218 spin_lock_irq(&hcd_urb_unlink_lock);
2219 spin_unlock_irq(&hcd_urb_unlink_lock);
2220 }
2221
2222 /*-------------------------------------------------------------------------*/
2223
2224 /* called in any context */
2225 int usb_hcd_get_frame_number (struct usb_device *udev)
2226 {
2227 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2228
2229 if (!HCD_RH_RUNNING(hcd))
2230 return -ESHUTDOWN;
2231 return hcd->driver->get_frame_number (hcd);
2232 }
2233
2234 /*-------------------------------------------------------------------------*/
2235
2236 #ifdef CONFIG_PM
2237
2238 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2239 {
2240 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2241 int status;
2242 int old_state = hcd->state;
2243
2244 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2245 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2246 rhdev->do_remote_wakeup);
2247 if (HCD_DEAD(hcd)) {
2248 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2249 return 0;
2250 }
2251
2252 if (!hcd->driver->bus_suspend) {
2253 status = -ENOENT;
2254 } else {
2255 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2256 hcd->state = HC_STATE_QUIESCING;
2257 status = hcd->driver->bus_suspend(hcd);
2258 }
2259 if (status == 0) {
2260 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2261 hcd->state = HC_STATE_SUSPENDED;
2262
2263 /* Did we race with a root-hub wakeup event? */
2264 if (rhdev->do_remote_wakeup) {
2265 char buffer[6];
2266
2267 status = hcd->driver->hub_status_data(hcd, buffer);
2268 if (status != 0) {
2269 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2270 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2271 status = -EBUSY;
2272 }
2273 }
2274 } else {
2275 spin_lock_irq(&hcd_root_hub_lock);
2276 if (!HCD_DEAD(hcd)) {
2277 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2278 hcd->state = old_state;
2279 }
2280 spin_unlock_irq(&hcd_root_hub_lock);
2281 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2282 "suspend", status);
2283 }
2284 return status;
2285 }
2286
2287 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2288 {
2289 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2290 int status;
2291 int old_state = hcd->state;
2292
2293 dev_dbg(&rhdev->dev, "usb %sresume\n",
2294 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2295 if (HCD_DEAD(hcd)) {
2296 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2297 return 0;
2298 }
2299 if (!hcd->driver->bus_resume)
2300 return -ENOENT;
2301 if (HCD_RH_RUNNING(hcd))
2302 return 0;
2303
2304 hcd->state = HC_STATE_RESUMING;
2305 status = hcd->driver->bus_resume(hcd);
2306 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2307 if (status == 0) {
2308 struct usb_device *udev;
2309 int port1;
2310
2311 spin_lock_irq(&hcd_root_hub_lock);
2312 if (!HCD_DEAD(hcd)) {
2313 usb_set_device_state(rhdev, rhdev->actconfig
2314 ? USB_STATE_CONFIGURED
2315 : USB_STATE_ADDRESS);
2316 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2317 hcd->state = HC_STATE_RUNNING;
2318 }
2319 spin_unlock_irq(&hcd_root_hub_lock);
2320
2321 /*
2322 * Check whether any of the enabled ports on the root hub are
2323 * unsuspended. If they are then a TRSMRCY delay is needed
2324 * (this is what the USB-2 spec calls a "global resume").
2325 * Otherwise we can skip the delay.
2326 */
2327 usb_hub_for_each_child(rhdev, port1, udev) {
2328 if (udev->state != USB_STATE_NOTATTACHED &&
2329 !udev->port_is_suspended) {
2330 usleep_range(10000, 11000); /* TRSMRCY */
2331 break;
2332 }
2333 }
2334 } else {
2335 hcd->state = old_state;
2336 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2337 "resume", status);
2338 if (status != -ESHUTDOWN)
2339 usb_hc_died(hcd);
2340 }
2341 return status;
2342 }
2343
2344 /* Workqueue routine for root-hub remote wakeup */
2345 static void hcd_resume_work(struct work_struct *work)
2346 {
2347 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2348 struct usb_device *udev = hcd->self.root_hub;
2349
2350 usb_remote_wakeup(udev);
2351 }
2352
2353 /**
2354 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2355 * @hcd: host controller for this root hub
2356 *
2357 * The USB host controller calls this function when its root hub is
2358 * suspended (with the remote wakeup feature enabled) and a remote
2359 * wakeup request is received. The routine submits a workqueue request
2360 * to resume the root hub (that is, manage its downstream ports again).
2361 */
2362 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2363 {
2364 unsigned long flags;
2365
2366 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2367 if (hcd->rh_registered) {
2368 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2369 queue_work(pm_wq, &hcd->wakeup_work);
2370 }
2371 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2372 }
2373 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2374
2375 #endif /* CONFIG_PM */
2376
2377 /*-------------------------------------------------------------------------*/
2378
2379 #ifdef CONFIG_USB_OTG
2380
2381 /**
2382 * usb_bus_start_enum - start immediate enumeration (for OTG)
2383 * @bus: the bus (must use hcd framework)
2384 * @port_num: 1-based number of port; usually bus->otg_port
2385 * Context: in_interrupt()
2386 *
2387 * Starts enumeration, with an immediate reset followed later by
2388 * hub_wq identifying and possibly configuring the device.
2389 * This is needed by OTG controller drivers, where it helps meet
2390 * HNP protocol timing requirements for starting a port reset.
2391 *
2392 * Return: 0 if successful.
2393 */
2394 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2395 {
2396 struct usb_hcd *hcd;
2397 int status = -EOPNOTSUPP;
2398
2399 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2400 * boards with root hubs hooked up to internal devices (instead of
2401 * just the OTG port) may need more attention to resetting...
2402 */
2403 hcd = bus_to_hcd(bus);
2404 if (port_num && hcd->driver->start_port_reset)
2405 status = hcd->driver->start_port_reset(hcd, port_num);
2406
2407 /* allocate hub_wq shortly after (first) root port reset finishes;
2408 * it may issue others, until at least 50 msecs have passed.
2409 */
2410 if (status == 0)
2411 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2412 return status;
2413 }
2414 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2415
2416 #endif
2417
2418 /*-------------------------------------------------------------------------*/
2419
2420 /**
2421 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2422 * @irq: the IRQ being raised
2423 * @__hcd: pointer to the HCD whose IRQ is being signaled
2424 *
2425 * If the controller isn't HALTed, calls the driver's irq handler.
2426 * Checks whether the controller is now dead.
2427 *
2428 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2429 */
2430 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2431 {
2432 struct usb_hcd *hcd = __hcd;
2433 irqreturn_t rc;
2434
2435 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2436 rc = IRQ_NONE;
2437 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2438 rc = IRQ_NONE;
2439 else
2440 rc = IRQ_HANDLED;
2441
2442 return rc;
2443 }
2444 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2445
2446 /*-------------------------------------------------------------------------*/
2447
2448 /**
2449 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2450 * @hcd: pointer to the HCD representing the controller
2451 *
2452 * This is called by bus glue to report a USB host controller that died
2453 * while operations may still have been pending. It's called automatically
2454 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2455 *
2456 * Only call this function with the primary HCD.
2457 */
2458 void usb_hc_died (struct usb_hcd *hcd)
2459 {
2460 unsigned long flags;
2461
2462 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2463
2464 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2465 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2466 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2467 if (hcd->rh_registered) {
2468 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2469
2470 /* make hub_wq clean up old urbs and devices */
2471 usb_set_device_state (hcd->self.root_hub,
2472 USB_STATE_NOTATTACHED);
2473 usb_kick_hub_wq(hcd->self.root_hub);
2474 }
2475 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2476 hcd = hcd->shared_hcd;
2477 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2478 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2479 if (hcd->rh_registered) {
2480 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2481
2482 /* make hub_wq clean up old urbs and devices */
2483 usb_set_device_state(hcd->self.root_hub,
2484 USB_STATE_NOTATTACHED);
2485 usb_kick_hub_wq(hcd->self.root_hub);
2486 }
2487 }
2488 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2489 /* Make sure that the other roothub is also deallocated. */
2490 }
2491 EXPORT_SYMBOL_GPL (usb_hc_died);
2492
2493 /*-------------------------------------------------------------------------*/
2494
2495 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2496 {
2497
2498 spin_lock_init(&bh->lock);
2499 INIT_LIST_HEAD(&bh->head);
2500 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2501 }
2502
2503 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2504 struct device *sysdev, struct device *dev, const char *bus_name,
2505 struct usb_hcd *primary_hcd)
2506 {
2507 struct usb_hcd *hcd;
2508
2509 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2510 if (!hcd)
2511 return NULL;
2512 if (primary_hcd == NULL) {
2513 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2514 GFP_KERNEL);
2515 if (!hcd->address0_mutex) {
2516 kfree(hcd);
2517 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2518 return NULL;
2519 }
2520 mutex_init(hcd->address0_mutex);
2521 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2522 GFP_KERNEL);
2523 if (!hcd->bandwidth_mutex) {
2524 kfree(hcd->address0_mutex);
2525 kfree(hcd);
2526 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2527 return NULL;
2528 }
2529 mutex_init(hcd->bandwidth_mutex);
2530 dev_set_drvdata(dev, hcd);
2531 } else {
2532 mutex_lock(&usb_port_peer_mutex);
2533 hcd->address0_mutex = primary_hcd->address0_mutex;
2534 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2535 hcd->primary_hcd = primary_hcd;
2536 primary_hcd->primary_hcd = primary_hcd;
2537 hcd->shared_hcd = primary_hcd;
2538 primary_hcd->shared_hcd = hcd;
2539 mutex_unlock(&usb_port_peer_mutex);
2540 }
2541
2542 kref_init(&hcd->kref);
2543
2544 usb_bus_init(&hcd->self);
2545 hcd->self.controller = dev;
2546 hcd->self.sysdev = sysdev;
2547 hcd->self.bus_name = bus_name;
2548 hcd->self.uses_dma = (sysdev->dma_mask != NULL);
2549
2550 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2551 #ifdef CONFIG_PM
2552 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2553 #endif
2554
2555 hcd->driver = driver;
2556 hcd->speed = driver->flags & HCD_MASK;
2557 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2558 "USB Host Controller";
2559 return hcd;
2560 }
2561 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2562
2563 /**
2564 * usb_create_shared_hcd - create and initialize an HCD structure
2565 * @driver: HC driver that will use this hcd
2566 * @dev: device for this HC, stored in hcd->self.controller
2567 * @bus_name: value to store in hcd->self.bus_name
2568 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2569 * PCI device. Only allocate certain resources for the primary HCD
2570 * Context: !in_interrupt()
2571 *
2572 * Allocate a struct usb_hcd, with extra space at the end for the
2573 * HC driver's private data. Initialize the generic members of the
2574 * hcd structure.
2575 *
2576 * Return: On success, a pointer to the created and initialized HCD structure.
2577 * On failure (e.g. if memory is unavailable), %NULL.
2578 */
2579 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2580 struct device *dev, const char *bus_name,
2581 struct usb_hcd *primary_hcd)
2582 {
2583 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2584 }
2585 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2586
2587 /**
2588 * usb_create_hcd - create and initialize an HCD structure
2589 * @driver: HC driver that will use this hcd
2590 * @dev: device for this HC, stored in hcd->self.controller
2591 * @bus_name: value to store in hcd->self.bus_name
2592 * Context: !in_interrupt()
2593 *
2594 * Allocate a struct usb_hcd, with extra space at the end for the
2595 * HC driver's private data. Initialize the generic members of the
2596 * hcd structure.
2597 *
2598 * Return: On success, a pointer to the created and initialized HCD
2599 * structure. On failure (e.g. if memory is unavailable), %NULL.
2600 */
2601 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2602 struct device *dev, const char *bus_name)
2603 {
2604 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2605 }
2606 EXPORT_SYMBOL_GPL(usb_create_hcd);
2607
2608 /*
2609 * Roothubs that share one PCI device must also share the bandwidth mutex.
2610 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2611 * deallocated.
2612 *
2613 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2614 * freed. When hcd_release() is called for either hcd in a peer set,
2615 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2616 */
2617 static void hcd_release(struct kref *kref)
2618 {
2619 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2620
2621 mutex_lock(&usb_port_peer_mutex);
2622 if (hcd->shared_hcd) {
2623 struct usb_hcd *peer = hcd->shared_hcd;
2624
2625 peer->shared_hcd = NULL;
2626 peer->primary_hcd = NULL;
2627 } else {
2628 kfree(hcd->address0_mutex);
2629 kfree(hcd->bandwidth_mutex);
2630 }
2631 mutex_unlock(&usb_port_peer_mutex);
2632 kfree(hcd);
2633 }
2634
2635 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2636 {
2637 if (hcd)
2638 kref_get (&hcd->kref);
2639 return hcd;
2640 }
2641 EXPORT_SYMBOL_GPL(usb_get_hcd);
2642
2643 void usb_put_hcd (struct usb_hcd *hcd)
2644 {
2645 if (hcd)
2646 kref_put (&hcd->kref, hcd_release);
2647 }
2648 EXPORT_SYMBOL_GPL(usb_put_hcd);
2649
2650 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2651 {
2652 if (!hcd->primary_hcd)
2653 return 1;
2654 return hcd == hcd->primary_hcd;
2655 }
2656 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2657
2658 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2659 {
2660 if (!hcd->driver->find_raw_port_number)
2661 return port1;
2662
2663 return hcd->driver->find_raw_port_number(hcd, port1);
2664 }
2665
2666 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2667 unsigned int irqnum, unsigned long irqflags)
2668 {
2669 int retval;
2670
2671 if (hcd->driver->irq) {
2672
2673 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2674 hcd->driver->description, hcd->self.busnum);
2675 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2676 hcd->irq_descr, hcd);
2677 if (retval != 0) {
2678 dev_err(hcd->self.controller,
2679 "request interrupt %d failed\n",
2680 irqnum);
2681 return retval;
2682 }
2683 hcd->irq = irqnum;
2684 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2685 (hcd->driver->flags & HCD_MEMORY) ?
2686 "io mem" : "io base",
2687 (unsigned long long)hcd->rsrc_start);
2688 } else {
2689 hcd->irq = 0;
2690 if (hcd->rsrc_start)
2691 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2692 (hcd->driver->flags & HCD_MEMORY) ?
2693 "io mem" : "io base",
2694 (unsigned long long)hcd->rsrc_start);
2695 }
2696 return 0;
2697 }
2698
2699 /*
2700 * Before we free this root hub, flush in-flight peering attempts
2701 * and disable peer lookups
2702 */
2703 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2704 {
2705 struct usb_device *rhdev;
2706
2707 mutex_lock(&usb_port_peer_mutex);
2708 rhdev = hcd->self.root_hub;
2709 hcd->self.root_hub = NULL;
2710 mutex_unlock(&usb_port_peer_mutex);
2711 usb_put_dev(rhdev);
2712 }
2713
2714 /**
2715 * usb_add_hcd - finish generic HCD structure initialization and register
2716 * @hcd: the usb_hcd structure to initialize
2717 * @irqnum: Interrupt line to allocate
2718 * @irqflags: Interrupt type flags
2719 *
2720 * Finish the remaining parts of generic HCD initialization: allocate the
2721 * buffers of consistent memory, register the bus, request the IRQ line,
2722 * and call the driver's reset() and start() routines.
2723 */
2724 int usb_add_hcd(struct usb_hcd *hcd,
2725 unsigned int irqnum, unsigned long irqflags)
2726 {
2727 int retval;
2728 struct usb_device *rhdev;
2729
2730 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2731 struct usb_phy *phy = usb_get_phy_dev(hcd->self.sysdev, 0);
2732
2733 if (IS_ERR(phy)) {
2734 retval = PTR_ERR(phy);
2735 if (retval == -EPROBE_DEFER)
2736 return retval;
2737 } else {
2738 retval = usb_phy_init(phy);
2739 if (retval) {
2740 usb_put_phy(phy);
2741 return retval;
2742 }
2743 hcd->usb_phy = phy;
2744 hcd->remove_phy = 1;
2745 }
2746 }
2747
2748 if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2749 struct phy *phy = phy_get(hcd->self.sysdev, "usb");
2750
2751 if (IS_ERR(phy)) {
2752 retval = PTR_ERR(phy);
2753 if (retval == -EPROBE_DEFER)
2754 goto err_phy;
2755 } else {
2756 retval = phy_init(phy);
2757 if (retval) {
2758 phy_put(phy);
2759 goto err_phy;
2760 }
2761 retval = phy_power_on(phy);
2762 if (retval) {
2763 phy_exit(phy);
2764 phy_put(phy);
2765 goto err_phy;
2766 }
2767 hcd->phy = phy;
2768 hcd->remove_phy = 1;
2769 }
2770 }
2771
2772 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2773
2774 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2775 if (authorized_default < 0 || authorized_default > 1) {
2776 if (hcd->wireless)
2777 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2778 else
2779 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2780 } else {
2781 if (authorized_default)
2782 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2783 else
2784 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2785 }
2786 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2787
2788 /* per default all interfaces are authorized */
2789 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2790
2791 /* HC is in reset state, but accessible. Now do the one-time init,
2792 * bottom up so that hcds can customize the root hubs before hub_wq
2793 * starts talking to them. (Note, bus id is assigned early too.)
2794 */
2795 retval = hcd_buffer_create(hcd);
2796 if (retval != 0) {
2797 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2798 goto err_create_buf;
2799 }
2800
2801 retval = usb_register_bus(&hcd->self);
2802 if (retval < 0)
2803 goto err_register_bus;
2804
2805 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2806 if (rhdev == NULL) {
2807 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2808 retval = -ENOMEM;
2809 goto err_allocate_root_hub;
2810 }
2811 mutex_lock(&usb_port_peer_mutex);
2812 hcd->self.root_hub = rhdev;
2813 mutex_unlock(&usb_port_peer_mutex);
2814
2815 switch (hcd->speed) {
2816 case HCD_USB11:
2817 rhdev->speed = USB_SPEED_FULL;
2818 break;
2819 case HCD_USB2:
2820 rhdev->speed = USB_SPEED_HIGH;
2821 break;
2822 case HCD_USB25:
2823 rhdev->speed = USB_SPEED_WIRELESS;
2824 break;
2825 case HCD_USB3:
2826 rhdev->speed = USB_SPEED_SUPER;
2827 break;
2828 case HCD_USB31:
2829 rhdev->speed = USB_SPEED_SUPER_PLUS;
2830 break;
2831 default:
2832 retval = -EINVAL;
2833 goto err_set_rh_speed;
2834 }
2835
2836 /* wakeup flag init defaults to "everything works" for root hubs,
2837 * but drivers can override it in reset() if needed, along with
2838 * recording the overall controller's system wakeup capability.
2839 */
2840 device_set_wakeup_capable(&rhdev->dev, 1);
2841
2842 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2843 * registered. But since the controller can die at any time,
2844 * let's initialize the flag before touching the hardware.
2845 */
2846 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2847
2848 /* "reset" is misnamed; its role is now one-time init. the controller
2849 * should already have been reset (and boot firmware kicked off etc).
2850 */
2851 if (hcd->driver->reset) {
2852 retval = hcd->driver->reset(hcd);
2853 if (retval < 0) {
2854 dev_err(hcd->self.controller, "can't setup: %d\n",
2855 retval);
2856 goto err_hcd_driver_setup;
2857 }
2858 }
2859 hcd->rh_pollable = 1;
2860
2861 /* NOTE: root hub and controller capabilities may not be the same */
2862 if (device_can_wakeup(hcd->self.controller)
2863 && device_can_wakeup(&hcd->self.root_hub->dev))
2864 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2865
2866 /* initialize tasklets */
2867 init_giveback_urb_bh(&hcd->high_prio_bh);
2868 init_giveback_urb_bh(&hcd->low_prio_bh);
2869
2870 /* enable irqs just before we start the controller,
2871 * if the BIOS provides legacy PCI irqs.
2872 */
2873 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2874 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2875 if (retval)
2876 goto err_request_irq;
2877 }
2878
2879 hcd->state = HC_STATE_RUNNING;
2880 retval = hcd->driver->start(hcd);
2881 if (retval < 0) {
2882 dev_err(hcd->self.controller, "startup error %d\n", retval);
2883 goto err_hcd_driver_start;
2884 }
2885
2886 /* starting here, usbcore will pay attention to this root hub */
2887 retval = register_root_hub(hcd);
2888 if (retval != 0)
2889 goto err_register_root_hub;
2890
2891 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2892 if (retval < 0) {
2893 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2894 retval);
2895 goto error_create_attr_group;
2896 }
2897 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2898 usb_hcd_poll_rh_status(hcd);
2899
2900 return retval;
2901
2902 error_create_attr_group:
2903 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2904 if (HC_IS_RUNNING(hcd->state))
2905 hcd->state = HC_STATE_QUIESCING;
2906 spin_lock_irq(&hcd_root_hub_lock);
2907 hcd->rh_registered = 0;
2908 spin_unlock_irq(&hcd_root_hub_lock);
2909
2910 #ifdef CONFIG_PM
2911 cancel_work_sync(&hcd->wakeup_work);
2912 #endif
2913 mutex_lock(&usb_bus_idr_lock);
2914 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2915 mutex_unlock(&usb_bus_idr_lock);
2916 err_register_root_hub:
2917 hcd->rh_pollable = 0;
2918 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2919 del_timer_sync(&hcd->rh_timer);
2920 hcd->driver->stop(hcd);
2921 hcd->state = HC_STATE_HALT;
2922 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2923 del_timer_sync(&hcd->rh_timer);
2924 err_hcd_driver_start:
2925 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2926 free_irq(irqnum, hcd);
2927 err_request_irq:
2928 err_hcd_driver_setup:
2929 err_set_rh_speed:
2930 usb_put_invalidate_rhdev(hcd);
2931 err_allocate_root_hub:
2932 usb_deregister_bus(&hcd->self);
2933 err_register_bus:
2934 hcd_buffer_destroy(hcd);
2935 err_create_buf:
2936 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2937 phy_power_off(hcd->phy);
2938 phy_exit(hcd->phy);
2939 phy_put(hcd->phy);
2940 hcd->phy = NULL;
2941 }
2942 err_phy:
2943 if (hcd->remove_phy && hcd->usb_phy) {
2944 usb_phy_shutdown(hcd->usb_phy);
2945 usb_put_phy(hcd->usb_phy);
2946 hcd->usb_phy = NULL;
2947 }
2948 return retval;
2949 }
2950 EXPORT_SYMBOL_GPL(usb_add_hcd);
2951
2952 /**
2953 * usb_remove_hcd - shutdown processing for generic HCDs
2954 * @hcd: the usb_hcd structure to remove
2955 * Context: !in_interrupt()
2956 *
2957 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2958 * invoking the HCD's stop() method.
2959 */
2960 void usb_remove_hcd(struct usb_hcd *hcd)
2961 {
2962 struct usb_device *rhdev = hcd->self.root_hub;
2963
2964 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2965
2966 usb_get_dev(rhdev);
2967 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2968
2969 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2970 if (HC_IS_RUNNING (hcd->state))
2971 hcd->state = HC_STATE_QUIESCING;
2972
2973 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2974 spin_lock_irq (&hcd_root_hub_lock);
2975 hcd->rh_registered = 0;
2976 spin_unlock_irq (&hcd_root_hub_lock);
2977
2978 #ifdef CONFIG_PM
2979 cancel_work_sync(&hcd->wakeup_work);
2980 #endif
2981
2982 mutex_lock(&usb_bus_idr_lock);
2983 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2984 mutex_unlock(&usb_bus_idr_lock);
2985
2986 /*
2987 * tasklet_kill() isn't needed here because:
2988 * - driver's disconnect() called from usb_disconnect() should
2989 * make sure its URBs are completed during the disconnect()
2990 * callback
2991 *
2992 * - it is too late to run complete() here since driver may have
2993 * been removed already now
2994 */
2995
2996 /* Prevent any more root-hub status calls from the timer.
2997 * The HCD might still restart the timer (if a port status change
2998 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2999 * the hub_status_data() callback.
3000 */
3001 hcd->rh_pollable = 0;
3002 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3003 del_timer_sync(&hcd->rh_timer);
3004
3005 hcd->driver->stop(hcd);
3006 hcd->state = HC_STATE_HALT;
3007
3008 /* In case the HCD restarted the timer, stop it again. */
3009 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3010 del_timer_sync(&hcd->rh_timer);
3011
3012 if (usb_hcd_is_primary_hcd(hcd)) {
3013 if (hcd->irq > 0)
3014 free_irq(hcd->irq, hcd);
3015 }
3016
3017 usb_deregister_bus(&hcd->self);
3018 hcd_buffer_destroy(hcd);
3019
3020 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3021 phy_power_off(hcd->phy);
3022 phy_exit(hcd->phy);
3023 phy_put(hcd->phy);
3024 hcd->phy = NULL;
3025 }
3026 if (hcd->remove_phy && hcd->usb_phy) {
3027 usb_phy_shutdown(hcd->usb_phy);
3028 usb_put_phy(hcd->usb_phy);
3029 hcd->usb_phy = NULL;
3030 }
3031
3032 usb_put_invalidate_rhdev(hcd);
3033 hcd->flags = 0;
3034 }
3035 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3036
3037 void
3038 usb_hcd_platform_shutdown(struct platform_device *dev)
3039 {
3040 struct usb_hcd *hcd = platform_get_drvdata(dev);
3041
3042 if (hcd->driver->shutdown)
3043 hcd->driver->shutdown(hcd);
3044 }
3045 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3046
3047 /*-------------------------------------------------------------------------*/
3048
3049 #if IS_ENABLED(CONFIG_USB_MON)
3050
3051 const struct usb_mon_operations *mon_ops;
3052
3053 /*
3054 * The registration is unlocked.
3055 * We do it this way because we do not want to lock in hot paths.
3056 *
3057 * Notice that the code is minimally error-proof. Because usbmon needs
3058 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3059 */
3060
3061 int usb_mon_register(const struct usb_mon_operations *ops)
3062 {
3063
3064 if (mon_ops)
3065 return -EBUSY;
3066
3067 mon_ops = ops;
3068 mb();
3069 return 0;
3070 }
3071 EXPORT_SYMBOL_GPL (usb_mon_register);
3072
3073 void usb_mon_deregister (void)
3074 {
3075
3076 if (mon_ops == NULL) {
3077 printk(KERN_ERR "USB: monitor was not registered\n");
3078 return;
3079 }
3080 mon_ops = NULL;
3081 mb();
3082 }
3083 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3084
3085 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */