]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/video/fbdev/omap2/omapfb/dss/dsi.c
30d49f3800b334b0a3f6b8ed29ea437d30cb632e
[mirror_ubuntu-bionic-kernel.git] / drivers / video / fbdev / omap2 / omapfb / dss / dsi.c
1 /*
2 * linux/drivers/video/omap2/dss/dsi.c
3 *
4 * Copyright (C) 2009 Nokia Corporation
5 * Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #define DSS_SUBSYS_NAME "DSI"
21
22 #include <linux/kernel.h>
23 #include <linux/io.h>
24 #include <linux/clk.h>
25 #include <linux/device.h>
26 #include <linux/err.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/mutex.h>
30 #include <linux/module.h>
31 #include <linux/semaphore.h>
32 #include <linux/seq_file.h>
33 #include <linux/platform_device.h>
34 #include <linux/regulator/consumer.h>
35 #include <linux/wait.h>
36 #include <linux/workqueue.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/debugfs.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/of.h>
42 #include <linux/of_platform.h>
43 #include <linux/component.h>
44
45 #include <video/omapfb_dss.h>
46 #include <video/mipi_display.h>
47
48 #include "dss.h"
49 #include "dss_features.h"
50
51 #define DSI_CATCH_MISSING_TE
52
53 struct dsi_reg { u16 module; u16 idx; };
54
55 #define DSI_REG(mod, idx) ((const struct dsi_reg) { mod, idx })
56
57 /* DSI Protocol Engine */
58
59 #define DSI_PROTO 0
60 #define DSI_PROTO_SZ 0x200
61
62 #define DSI_REVISION DSI_REG(DSI_PROTO, 0x0000)
63 #define DSI_SYSCONFIG DSI_REG(DSI_PROTO, 0x0010)
64 #define DSI_SYSSTATUS DSI_REG(DSI_PROTO, 0x0014)
65 #define DSI_IRQSTATUS DSI_REG(DSI_PROTO, 0x0018)
66 #define DSI_IRQENABLE DSI_REG(DSI_PROTO, 0x001C)
67 #define DSI_CTRL DSI_REG(DSI_PROTO, 0x0040)
68 #define DSI_GNQ DSI_REG(DSI_PROTO, 0x0044)
69 #define DSI_COMPLEXIO_CFG1 DSI_REG(DSI_PROTO, 0x0048)
70 #define DSI_COMPLEXIO_IRQ_STATUS DSI_REG(DSI_PROTO, 0x004C)
71 #define DSI_COMPLEXIO_IRQ_ENABLE DSI_REG(DSI_PROTO, 0x0050)
72 #define DSI_CLK_CTRL DSI_REG(DSI_PROTO, 0x0054)
73 #define DSI_TIMING1 DSI_REG(DSI_PROTO, 0x0058)
74 #define DSI_TIMING2 DSI_REG(DSI_PROTO, 0x005C)
75 #define DSI_VM_TIMING1 DSI_REG(DSI_PROTO, 0x0060)
76 #define DSI_VM_TIMING2 DSI_REG(DSI_PROTO, 0x0064)
77 #define DSI_VM_TIMING3 DSI_REG(DSI_PROTO, 0x0068)
78 #define DSI_CLK_TIMING DSI_REG(DSI_PROTO, 0x006C)
79 #define DSI_TX_FIFO_VC_SIZE DSI_REG(DSI_PROTO, 0x0070)
80 #define DSI_RX_FIFO_VC_SIZE DSI_REG(DSI_PROTO, 0x0074)
81 #define DSI_COMPLEXIO_CFG2 DSI_REG(DSI_PROTO, 0x0078)
82 #define DSI_RX_FIFO_VC_FULLNESS DSI_REG(DSI_PROTO, 0x007C)
83 #define DSI_VM_TIMING4 DSI_REG(DSI_PROTO, 0x0080)
84 #define DSI_TX_FIFO_VC_EMPTINESS DSI_REG(DSI_PROTO, 0x0084)
85 #define DSI_VM_TIMING5 DSI_REG(DSI_PROTO, 0x0088)
86 #define DSI_VM_TIMING6 DSI_REG(DSI_PROTO, 0x008C)
87 #define DSI_VM_TIMING7 DSI_REG(DSI_PROTO, 0x0090)
88 #define DSI_STOPCLK_TIMING DSI_REG(DSI_PROTO, 0x0094)
89 #define DSI_VC_CTRL(n) DSI_REG(DSI_PROTO, 0x0100 + (n * 0x20))
90 #define DSI_VC_TE(n) DSI_REG(DSI_PROTO, 0x0104 + (n * 0x20))
91 #define DSI_VC_LONG_PACKET_HEADER(n) DSI_REG(DSI_PROTO, 0x0108 + (n * 0x20))
92 #define DSI_VC_LONG_PACKET_PAYLOAD(n) DSI_REG(DSI_PROTO, 0x010C + (n * 0x20))
93 #define DSI_VC_SHORT_PACKET_HEADER(n) DSI_REG(DSI_PROTO, 0x0110 + (n * 0x20))
94 #define DSI_VC_IRQSTATUS(n) DSI_REG(DSI_PROTO, 0x0118 + (n * 0x20))
95 #define DSI_VC_IRQENABLE(n) DSI_REG(DSI_PROTO, 0x011C + (n * 0x20))
96
97 /* DSIPHY_SCP */
98
99 #define DSI_PHY 1
100 #define DSI_PHY_OFFSET 0x200
101 #define DSI_PHY_SZ 0x40
102
103 #define DSI_DSIPHY_CFG0 DSI_REG(DSI_PHY, 0x0000)
104 #define DSI_DSIPHY_CFG1 DSI_REG(DSI_PHY, 0x0004)
105 #define DSI_DSIPHY_CFG2 DSI_REG(DSI_PHY, 0x0008)
106 #define DSI_DSIPHY_CFG5 DSI_REG(DSI_PHY, 0x0014)
107 #define DSI_DSIPHY_CFG10 DSI_REG(DSI_PHY, 0x0028)
108
109 /* DSI_PLL_CTRL_SCP */
110
111 #define DSI_PLL 2
112 #define DSI_PLL_OFFSET 0x300
113 #define DSI_PLL_SZ 0x20
114
115 #define DSI_PLL_CONTROL DSI_REG(DSI_PLL, 0x0000)
116 #define DSI_PLL_STATUS DSI_REG(DSI_PLL, 0x0004)
117 #define DSI_PLL_GO DSI_REG(DSI_PLL, 0x0008)
118 #define DSI_PLL_CONFIGURATION1 DSI_REG(DSI_PLL, 0x000C)
119 #define DSI_PLL_CONFIGURATION2 DSI_REG(DSI_PLL, 0x0010)
120
121 #define REG_GET(dsidev, idx, start, end) \
122 FLD_GET(dsi_read_reg(dsidev, idx), start, end)
123
124 #define REG_FLD_MOD(dsidev, idx, val, start, end) \
125 dsi_write_reg(dsidev, idx, FLD_MOD(dsi_read_reg(dsidev, idx), val, start, end))
126
127 /* Global interrupts */
128 #define DSI_IRQ_VC0 (1 << 0)
129 #define DSI_IRQ_VC1 (1 << 1)
130 #define DSI_IRQ_VC2 (1 << 2)
131 #define DSI_IRQ_VC3 (1 << 3)
132 #define DSI_IRQ_WAKEUP (1 << 4)
133 #define DSI_IRQ_RESYNC (1 << 5)
134 #define DSI_IRQ_PLL_LOCK (1 << 7)
135 #define DSI_IRQ_PLL_UNLOCK (1 << 8)
136 #define DSI_IRQ_PLL_RECALL (1 << 9)
137 #define DSI_IRQ_COMPLEXIO_ERR (1 << 10)
138 #define DSI_IRQ_HS_TX_TIMEOUT (1 << 14)
139 #define DSI_IRQ_LP_RX_TIMEOUT (1 << 15)
140 #define DSI_IRQ_TE_TRIGGER (1 << 16)
141 #define DSI_IRQ_ACK_TRIGGER (1 << 17)
142 #define DSI_IRQ_SYNC_LOST (1 << 18)
143 #define DSI_IRQ_LDO_POWER_GOOD (1 << 19)
144 #define DSI_IRQ_TA_TIMEOUT (1 << 20)
145 #define DSI_IRQ_ERROR_MASK \
146 (DSI_IRQ_HS_TX_TIMEOUT | DSI_IRQ_LP_RX_TIMEOUT | DSI_IRQ_SYNC_LOST | \
147 DSI_IRQ_TA_TIMEOUT)
148 #define DSI_IRQ_CHANNEL_MASK 0xf
149
150 /* Virtual channel interrupts */
151 #define DSI_VC_IRQ_CS (1 << 0)
152 #define DSI_VC_IRQ_ECC_CORR (1 << 1)
153 #define DSI_VC_IRQ_PACKET_SENT (1 << 2)
154 #define DSI_VC_IRQ_FIFO_TX_OVF (1 << 3)
155 #define DSI_VC_IRQ_FIFO_RX_OVF (1 << 4)
156 #define DSI_VC_IRQ_BTA (1 << 5)
157 #define DSI_VC_IRQ_ECC_NO_CORR (1 << 6)
158 #define DSI_VC_IRQ_FIFO_TX_UDF (1 << 7)
159 #define DSI_VC_IRQ_PP_BUSY_CHANGE (1 << 8)
160 #define DSI_VC_IRQ_ERROR_MASK \
161 (DSI_VC_IRQ_CS | DSI_VC_IRQ_ECC_CORR | DSI_VC_IRQ_FIFO_TX_OVF | \
162 DSI_VC_IRQ_FIFO_RX_OVF | DSI_VC_IRQ_ECC_NO_CORR | \
163 DSI_VC_IRQ_FIFO_TX_UDF)
164
165 /* ComplexIO interrupts */
166 #define DSI_CIO_IRQ_ERRSYNCESC1 (1 << 0)
167 #define DSI_CIO_IRQ_ERRSYNCESC2 (1 << 1)
168 #define DSI_CIO_IRQ_ERRSYNCESC3 (1 << 2)
169 #define DSI_CIO_IRQ_ERRSYNCESC4 (1 << 3)
170 #define DSI_CIO_IRQ_ERRSYNCESC5 (1 << 4)
171 #define DSI_CIO_IRQ_ERRESC1 (1 << 5)
172 #define DSI_CIO_IRQ_ERRESC2 (1 << 6)
173 #define DSI_CIO_IRQ_ERRESC3 (1 << 7)
174 #define DSI_CIO_IRQ_ERRESC4 (1 << 8)
175 #define DSI_CIO_IRQ_ERRESC5 (1 << 9)
176 #define DSI_CIO_IRQ_ERRCONTROL1 (1 << 10)
177 #define DSI_CIO_IRQ_ERRCONTROL2 (1 << 11)
178 #define DSI_CIO_IRQ_ERRCONTROL3 (1 << 12)
179 #define DSI_CIO_IRQ_ERRCONTROL4 (1 << 13)
180 #define DSI_CIO_IRQ_ERRCONTROL5 (1 << 14)
181 #define DSI_CIO_IRQ_STATEULPS1 (1 << 15)
182 #define DSI_CIO_IRQ_STATEULPS2 (1 << 16)
183 #define DSI_CIO_IRQ_STATEULPS3 (1 << 17)
184 #define DSI_CIO_IRQ_STATEULPS4 (1 << 18)
185 #define DSI_CIO_IRQ_STATEULPS5 (1 << 19)
186 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_1 (1 << 20)
187 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_1 (1 << 21)
188 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_2 (1 << 22)
189 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_2 (1 << 23)
190 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_3 (1 << 24)
191 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_3 (1 << 25)
192 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_4 (1 << 26)
193 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_4 (1 << 27)
194 #define DSI_CIO_IRQ_ERRCONTENTIONLP0_5 (1 << 28)
195 #define DSI_CIO_IRQ_ERRCONTENTIONLP1_5 (1 << 29)
196 #define DSI_CIO_IRQ_ULPSACTIVENOT_ALL0 (1 << 30)
197 #define DSI_CIO_IRQ_ULPSACTIVENOT_ALL1 (1 << 31)
198 #define DSI_CIO_IRQ_ERROR_MASK \
199 (DSI_CIO_IRQ_ERRSYNCESC1 | DSI_CIO_IRQ_ERRSYNCESC2 | \
200 DSI_CIO_IRQ_ERRSYNCESC3 | DSI_CIO_IRQ_ERRSYNCESC4 | \
201 DSI_CIO_IRQ_ERRSYNCESC5 | \
202 DSI_CIO_IRQ_ERRESC1 | DSI_CIO_IRQ_ERRESC2 | \
203 DSI_CIO_IRQ_ERRESC3 | DSI_CIO_IRQ_ERRESC4 | \
204 DSI_CIO_IRQ_ERRESC5 | \
205 DSI_CIO_IRQ_ERRCONTROL1 | DSI_CIO_IRQ_ERRCONTROL2 | \
206 DSI_CIO_IRQ_ERRCONTROL3 | DSI_CIO_IRQ_ERRCONTROL4 | \
207 DSI_CIO_IRQ_ERRCONTROL5 | \
208 DSI_CIO_IRQ_ERRCONTENTIONLP0_1 | DSI_CIO_IRQ_ERRCONTENTIONLP1_1 | \
209 DSI_CIO_IRQ_ERRCONTENTIONLP0_2 | DSI_CIO_IRQ_ERRCONTENTIONLP1_2 | \
210 DSI_CIO_IRQ_ERRCONTENTIONLP0_3 | DSI_CIO_IRQ_ERRCONTENTIONLP1_3 | \
211 DSI_CIO_IRQ_ERRCONTENTIONLP0_4 | DSI_CIO_IRQ_ERRCONTENTIONLP1_4 | \
212 DSI_CIO_IRQ_ERRCONTENTIONLP0_5 | DSI_CIO_IRQ_ERRCONTENTIONLP1_5)
213
214 typedef void (*omap_dsi_isr_t) (void *arg, u32 mask);
215
216 static int dsi_display_init_dispc(struct platform_device *dsidev,
217 struct omap_overlay_manager *mgr);
218 static void dsi_display_uninit_dispc(struct platform_device *dsidev,
219 struct omap_overlay_manager *mgr);
220
221 static int dsi_vc_send_null(struct omap_dss_device *dssdev, int channel);
222
223 /* DSI PLL HSDIV indices */
224 #define HSDIV_DISPC 0
225 #define HSDIV_DSI 1
226
227 #define DSI_MAX_NR_ISRS 2
228 #define DSI_MAX_NR_LANES 5
229
230 enum dsi_lane_function {
231 DSI_LANE_UNUSED = 0,
232 DSI_LANE_CLK,
233 DSI_LANE_DATA1,
234 DSI_LANE_DATA2,
235 DSI_LANE_DATA3,
236 DSI_LANE_DATA4,
237 };
238
239 struct dsi_lane_config {
240 enum dsi_lane_function function;
241 u8 polarity;
242 };
243
244 struct dsi_isr_data {
245 omap_dsi_isr_t isr;
246 void *arg;
247 u32 mask;
248 };
249
250 enum fifo_size {
251 DSI_FIFO_SIZE_0 = 0,
252 DSI_FIFO_SIZE_32 = 1,
253 DSI_FIFO_SIZE_64 = 2,
254 DSI_FIFO_SIZE_96 = 3,
255 DSI_FIFO_SIZE_128 = 4,
256 };
257
258 enum dsi_vc_source {
259 DSI_VC_SOURCE_L4 = 0,
260 DSI_VC_SOURCE_VP,
261 };
262
263 struct dsi_irq_stats {
264 unsigned long last_reset;
265 unsigned irq_count;
266 unsigned dsi_irqs[32];
267 unsigned vc_irqs[4][32];
268 unsigned cio_irqs[32];
269 };
270
271 struct dsi_isr_tables {
272 struct dsi_isr_data isr_table[DSI_MAX_NR_ISRS];
273 struct dsi_isr_data isr_table_vc[4][DSI_MAX_NR_ISRS];
274 struct dsi_isr_data isr_table_cio[DSI_MAX_NR_ISRS];
275 };
276
277 struct dsi_clk_calc_ctx {
278 struct platform_device *dsidev;
279 struct dss_pll *pll;
280
281 /* inputs */
282
283 const struct omap_dss_dsi_config *config;
284
285 unsigned long req_pck_min, req_pck_nom, req_pck_max;
286
287 /* outputs */
288
289 struct dss_pll_clock_info dsi_cinfo;
290 struct dispc_clock_info dispc_cinfo;
291
292 struct omap_video_timings dispc_vm;
293 struct omap_dss_dsi_videomode_timings dsi_vm;
294 };
295
296 struct dsi_lp_clock_info {
297 unsigned long lp_clk;
298 u16 lp_clk_div;
299 };
300
301 struct dsi_data {
302 struct platform_device *pdev;
303 void __iomem *proto_base;
304 void __iomem *phy_base;
305 void __iomem *pll_base;
306
307 int module_id;
308
309 int irq;
310
311 bool is_enabled;
312
313 struct clk *dss_clk;
314
315 struct dispc_clock_info user_dispc_cinfo;
316 struct dss_pll_clock_info user_dsi_cinfo;
317
318 struct dsi_lp_clock_info user_lp_cinfo;
319 struct dsi_lp_clock_info current_lp_cinfo;
320
321 struct dss_pll pll;
322
323 bool vdds_dsi_enabled;
324 struct regulator *vdds_dsi_reg;
325
326 struct {
327 enum dsi_vc_source source;
328 struct omap_dss_device *dssdev;
329 enum fifo_size tx_fifo_size;
330 enum fifo_size rx_fifo_size;
331 int vc_id;
332 } vc[4];
333
334 struct mutex lock;
335 struct semaphore bus_lock;
336
337 spinlock_t irq_lock;
338 struct dsi_isr_tables isr_tables;
339 /* space for a copy used by the interrupt handler */
340 struct dsi_isr_tables isr_tables_copy;
341
342 int update_channel;
343 #ifdef DSI_PERF_MEASURE
344 unsigned update_bytes;
345 #endif
346
347 bool te_enabled;
348 bool ulps_enabled;
349
350 void (*framedone_callback)(int, void *);
351 void *framedone_data;
352
353 struct delayed_work framedone_timeout_work;
354
355 #ifdef DSI_CATCH_MISSING_TE
356 struct timer_list te_timer;
357 #endif
358
359 unsigned long cache_req_pck;
360 unsigned long cache_clk_freq;
361 struct dss_pll_clock_info cache_cinfo;
362
363 u32 errors;
364 spinlock_t errors_lock;
365 #ifdef DSI_PERF_MEASURE
366 ktime_t perf_setup_time;
367 ktime_t perf_start_time;
368 #endif
369 int debug_read;
370 int debug_write;
371
372 #ifdef CONFIG_FB_OMAP2_DSS_COLLECT_IRQ_STATS
373 spinlock_t irq_stats_lock;
374 struct dsi_irq_stats irq_stats;
375 #endif
376
377 unsigned num_lanes_supported;
378 unsigned line_buffer_size;
379
380 struct dsi_lane_config lanes[DSI_MAX_NR_LANES];
381 unsigned num_lanes_used;
382
383 unsigned scp_clk_refcount;
384
385 struct dss_lcd_mgr_config mgr_config;
386 struct omap_video_timings timings;
387 enum omap_dss_dsi_pixel_format pix_fmt;
388 enum omap_dss_dsi_mode mode;
389 struct omap_dss_dsi_videomode_timings vm_timings;
390
391 struct omap_dss_device output;
392 };
393
394 struct dsi_packet_sent_handler_data {
395 struct platform_device *dsidev;
396 struct completion *completion;
397 };
398
399 struct dsi_module_id_data {
400 u32 address;
401 int id;
402 };
403
404 static const struct of_device_id dsi_of_match[];
405
406 #ifdef DSI_PERF_MEASURE
407 static bool dsi_perf;
408 module_param(dsi_perf, bool, 0644);
409 #endif
410
411 static inline struct dsi_data *dsi_get_dsidrv_data(struct platform_device *dsidev)
412 {
413 return dev_get_drvdata(&dsidev->dev);
414 }
415
416 static inline struct platform_device *dsi_get_dsidev_from_dssdev(struct omap_dss_device *dssdev)
417 {
418 return to_platform_device(dssdev->dev);
419 }
420
421 static struct platform_device *dsi_get_dsidev_from_id(int module)
422 {
423 struct omap_dss_device *out;
424 enum omap_dss_output_id id;
425
426 switch (module) {
427 case 0:
428 id = OMAP_DSS_OUTPUT_DSI1;
429 break;
430 case 1:
431 id = OMAP_DSS_OUTPUT_DSI2;
432 break;
433 default:
434 return NULL;
435 }
436
437 out = omap_dss_get_output(id);
438
439 return out ? to_platform_device(out->dev) : NULL;
440 }
441
442 static inline void dsi_write_reg(struct platform_device *dsidev,
443 const struct dsi_reg idx, u32 val)
444 {
445 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
446 void __iomem *base;
447
448 switch(idx.module) {
449 case DSI_PROTO: base = dsi->proto_base; break;
450 case DSI_PHY: base = dsi->phy_base; break;
451 case DSI_PLL: base = dsi->pll_base; break;
452 default: return;
453 }
454
455 __raw_writel(val, base + idx.idx);
456 }
457
458 static inline u32 dsi_read_reg(struct platform_device *dsidev,
459 const struct dsi_reg idx)
460 {
461 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
462 void __iomem *base;
463
464 switch(idx.module) {
465 case DSI_PROTO: base = dsi->proto_base; break;
466 case DSI_PHY: base = dsi->phy_base; break;
467 case DSI_PLL: base = dsi->pll_base; break;
468 default: return 0;
469 }
470
471 return __raw_readl(base + idx.idx);
472 }
473
474 static void dsi_bus_lock(struct omap_dss_device *dssdev)
475 {
476 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
477 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
478
479 down(&dsi->bus_lock);
480 }
481
482 static void dsi_bus_unlock(struct omap_dss_device *dssdev)
483 {
484 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
485 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
486
487 up(&dsi->bus_lock);
488 }
489
490 static bool dsi_bus_is_locked(struct platform_device *dsidev)
491 {
492 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
493
494 return dsi->bus_lock.count == 0;
495 }
496
497 static void dsi_completion_handler(void *data, u32 mask)
498 {
499 complete((struct completion *)data);
500 }
501
502 static inline int wait_for_bit_change(struct platform_device *dsidev,
503 const struct dsi_reg idx, int bitnum, int value)
504 {
505 unsigned long timeout;
506 ktime_t wait;
507 int t;
508
509 /* first busyloop to see if the bit changes right away */
510 t = 100;
511 while (t-- > 0) {
512 if (REG_GET(dsidev, idx, bitnum, bitnum) == value)
513 return value;
514 }
515
516 /* then loop for 500ms, sleeping for 1ms in between */
517 timeout = jiffies + msecs_to_jiffies(500);
518 while (time_before(jiffies, timeout)) {
519 if (REG_GET(dsidev, idx, bitnum, bitnum) == value)
520 return value;
521
522 wait = ns_to_ktime(1000 * 1000);
523 set_current_state(TASK_UNINTERRUPTIBLE);
524 schedule_hrtimeout(&wait, HRTIMER_MODE_REL);
525 }
526
527 return !value;
528 }
529
530 u8 dsi_get_pixel_size(enum omap_dss_dsi_pixel_format fmt)
531 {
532 switch (fmt) {
533 case OMAP_DSS_DSI_FMT_RGB888:
534 case OMAP_DSS_DSI_FMT_RGB666:
535 return 24;
536 case OMAP_DSS_DSI_FMT_RGB666_PACKED:
537 return 18;
538 case OMAP_DSS_DSI_FMT_RGB565:
539 return 16;
540 default:
541 BUG();
542 return 0;
543 }
544 }
545
546 #ifdef DSI_PERF_MEASURE
547 static void dsi_perf_mark_setup(struct platform_device *dsidev)
548 {
549 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
550 dsi->perf_setup_time = ktime_get();
551 }
552
553 static void dsi_perf_mark_start(struct platform_device *dsidev)
554 {
555 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
556 dsi->perf_start_time = ktime_get();
557 }
558
559 static void dsi_perf_show(struct platform_device *dsidev, const char *name)
560 {
561 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
562 ktime_t t, setup_time, trans_time;
563 u32 total_bytes;
564 u32 setup_us, trans_us, total_us;
565
566 if (!dsi_perf)
567 return;
568
569 t = ktime_get();
570
571 setup_time = ktime_sub(dsi->perf_start_time, dsi->perf_setup_time);
572 setup_us = (u32)ktime_to_us(setup_time);
573 if (setup_us == 0)
574 setup_us = 1;
575
576 trans_time = ktime_sub(t, dsi->perf_start_time);
577 trans_us = (u32)ktime_to_us(trans_time);
578 if (trans_us == 0)
579 trans_us = 1;
580
581 total_us = setup_us + trans_us;
582
583 total_bytes = dsi->update_bytes;
584
585 printk(KERN_INFO "DSI(%s): %u us + %u us = %u us (%uHz), "
586 "%u bytes, %u kbytes/sec\n",
587 name,
588 setup_us,
589 trans_us,
590 total_us,
591 1000*1000 / total_us,
592 total_bytes,
593 total_bytes * 1000 / total_us);
594 }
595 #else
596 static inline void dsi_perf_mark_setup(struct platform_device *dsidev)
597 {
598 }
599
600 static inline void dsi_perf_mark_start(struct platform_device *dsidev)
601 {
602 }
603
604 static inline void dsi_perf_show(struct platform_device *dsidev,
605 const char *name)
606 {
607 }
608 #endif
609
610 static int verbose_irq;
611
612 static void print_irq_status(u32 status)
613 {
614 if (status == 0)
615 return;
616
617 if (!verbose_irq && (status & ~DSI_IRQ_CHANNEL_MASK) == 0)
618 return;
619
620 #define PIS(x) (status & DSI_IRQ_##x) ? (#x " ") : ""
621
622 pr_debug("DSI IRQ: 0x%x: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
623 status,
624 verbose_irq ? PIS(VC0) : "",
625 verbose_irq ? PIS(VC1) : "",
626 verbose_irq ? PIS(VC2) : "",
627 verbose_irq ? PIS(VC3) : "",
628 PIS(WAKEUP),
629 PIS(RESYNC),
630 PIS(PLL_LOCK),
631 PIS(PLL_UNLOCK),
632 PIS(PLL_RECALL),
633 PIS(COMPLEXIO_ERR),
634 PIS(HS_TX_TIMEOUT),
635 PIS(LP_RX_TIMEOUT),
636 PIS(TE_TRIGGER),
637 PIS(ACK_TRIGGER),
638 PIS(SYNC_LOST),
639 PIS(LDO_POWER_GOOD),
640 PIS(TA_TIMEOUT));
641 #undef PIS
642 }
643
644 static void print_irq_status_vc(int channel, u32 status)
645 {
646 if (status == 0)
647 return;
648
649 if (!verbose_irq && (status & ~DSI_VC_IRQ_PACKET_SENT) == 0)
650 return;
651
652 #define PIS(x) (status & DSI_VC_IRQ_##x) ? (#x " ") : ""
653
654 pr_debug("DSI VC(%d) IRQ 0x%x: %s%s%s%s%s%s%s%s%s\n",
655 channel,
656 status,
657 PIS(CS),
658 PIS(ECC_CORR),
659 PIS(ECC_NO_CORR),
660 verbose_irq ? PIS(PACKET_SENT) : "",
661 PIS(BTA),
662 PIS(FIFO_TX_OVF),
663 PIS(FIFO_RX_OVF),
664 PIS(FIFO_TX_UDF),
665 PIS(PP_BUSY_CHANGE));
666 #undef PIS
667 }
668
669 static void print_irq_status_cio(u32 status)
670 {
671 if (status == 0)
672 return;
673
674 #define PIS(x) (status & DSI_CIO_IRQ_##x) ? (#x " ") : ""
675
676 pr_debug("DSI CIO IRQ 0x%x: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
677 status,
678 PIS(ERRSYNCESC1),
679 PIS(ERRSYNCESC2),
680 PIS(ERRSYNCESC3),
681 PIS(ERRESC1),
682 PIS(ERRESC2),
683 PIS(ERRESC3),
684 PIS(ERRCONTROL1),
685 PIS(ERRCONTROL2),
686 PIS(ERRCONTROL3),
687 PIS(STATEULPS1),
688 PIS(STATEULPS2),
689 PIS(STATEULPS3),
690 PIS(ERRCONTENTIONLP0_1),
691 PIS(ERRCONTENTIONLP1_1),
692 PIS(ERRCONTENTIONLP0_2),
693 PIS(ERRCONTENTIONLP1_2),
694 PIS(ERRCONTENTIONLP0_3),
695 PIS(ERRCONTENTIONLP1_3),
696 PIS(ULPSACTIVENOT_ALL0),
697 PIS(ULPSACTIVENOT_ALL1));
698 #undef PIS
699 }
700
701 #ifdef CONFIG_FB_OMAP2_DSS_COLLECT_IRQ_STATS
702 static void dsi_collect_irq_stats(struct platform_device *dsidev, u32 irqstatus,
703 u32 *vcstatus, u32 ciostatus)
704 {
705 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
706 int i;
707
708 spin_lock(&dsi->irq_stats_lock);
709
710 dsi->irq_stats.irq_count++;
711 dss_collect_irq_stats(irqstatus, dsi->irq_stats.dsi_irqs);
712
713 for (i = 0; i < 4; ++i)
714 dss_collect_irq_stats(vcstatus[i], dsi->irq_stats.vc_irqs[i]);
715
716 dss_collect_irq_stats(ciostatus, dsi->irq_stats.cio_irqs);
717
718 spin_unlock(&dsi->irq_stats_lock);
719 }
720 #else
721 #define dsi_collect_irq_stats(dsidev, irqstatus, vcstatus, ciostatus)
722 #endif
723
724 static int debug_irq;
725
726 static void dsi_handle_irq_errors(struct platform_device *dsidev, u32 irqstatus,
727 u32 *vcstatus, u32 ciostatus)
728 {
729 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
730 int i;
731
732 if (irqstatus & DSI_IRQ_ERROR_MASK) {
733 DSSERR("DSI error, irqstatus %x\n", irqstatus);
734 print_irq_status(irqstatus);
735 spin_lock(&dsi->errors_lock);
736 dsi->errors |= irqstatus & DSI_IRQ_ERROR_MASK;
737 spin_unlock(&dsi->errors_lock);
738 } else if (debug_irq) {
739 print_irq_status(irqstatus);
740 }
741
742 for (i = 0; i < 4; ++i) {
743 if (vcstatus[i] & DSI_VC_IRQ_ERROR_MASK) {
744 DSSERR("DSI VC(%d) error, vc irqstatus %x\n",
745 i, vcstatus[i]);
746 print_irq_status_vc(i, vcstatus[i]);
747 } else if (debug_irq) {
748 print_irq_status_vc(i, vcstatus[i]);
749 }
750 }
751
752 if (ciostatus & DSI_CIO_IRQ_ERROR_MASK) {
753 DSSERR("DSI CIO error, cio irqstatus %x\n", ciostatus);
754 print_irq_status_cio(ciostatus);
755 } else if (debug_irq) {
756 print_irq_status_cio(ciostatus);
757 }
758 }
759
760 static void dsi_call_isrs(struct dsi_isr_data *isr_array,
761 unsigned isr_array_size, u32 irqstatus)
762 {
763 struct dsi_isr_data *isr_data;
764 int i;
765
766 for (i = 0; i < isr_array_size; i++) {
767 isr_data = &isr_array[i];
768 if (isr_data->isr && isr_data->mask & irqstatus)
769 isr_data->isr(isr_data->arg, irqstatus);
770 }
771 }
772
773 static void dsi_handle_isrs(struct dsi_isr_tables *isr_tables,
774 u32 irqstatus, u32 *vcstatus, u32 ciostatus)
775 {
776 int i;
777
778 dsi_call_isrs(isr_tables->isr_table,
779 ARRAY_SIZE(isr_tables->isr_table),
780 irqstatus);
781
782 for (i = 0; i < 4; ++i) {
783 if (vcstatus[i] == 0)
784 continue;
785 dsi_call_isrs(isr_tables->isr_table_vc[i],
786 ARRAY_SIZE(isr_tables->isr_table_vc[i]),
787 vcstatus[i]);
788 }
789
790 if (ciostatus != 0)
791 dsi_call_isrs(isr_tables->isr_table_cio,
792 ARRAY_SIZE(isr_tables->isr_table_cio),
793 ciostatus);
794 }
795
796 static irqreturn_t omap_dsi_irq_handler(int irq, void *arg)
797 {
798 struct platform_device *dsidev;
799 struct dsi_data *dsi;
800 u32 irqstatus, vcstatus[4], ciostatus;
801 int i;
802
803 dsidev = (struct platform_device *) arg;
804 dsi = dsi_get_dsidrv_data(dsidev);
805
806 if (!dsi->is_enabled)
807 return IRQ_NONE;
808
809 spin_lock(&dsi->irq_lock);
810
811 irqstatus = dsi_read_reg(dsidev, DSI_IRQSTATUS);
812
813 /* IRQ is not for us */
814 if (!irqstatus) {
815 spin_unlock(&dsi->irq_lock);
816 return IRQ_NONE;
817 }
818
819 dsi_write_reg(dsidev, DSI_IRQSTATUS, irqstatus & ~DSI_IRQ_CHANNEL_MASK);
820 /* flush posted write */
821 dsi_read_reg(dsidev, DSI_IRQSTATUS);
822
823 for (i = 0; i < 4; ++i) {
824 if ((irqstatus & (1 << i)) == 0) {
825 vcstatus[i] = 0;
826 continue;
827 }
828
829 vcstatus[i] = dsi_read_reg(dsidev, DSI_VC_IRQSTATUS(i));
830
831 dsi_write_reg(dsidev, DSI_VC_IRQSTATUS(i), vcstatus[i]);
832 /* flush posted write */
833 dsi_read_reg(dsidev, DSI_VC_IRQSTATUS(i));
834 }
835
836 if (irqstatus & DSI_IRQ_COMPLEXIO_ERR) {
837 ciostatus = dsi_read_reg(dsidev, DSI_COMPLEXIO_IRQ_STATUS);
838
839 dsi_write_reg(dsidev, DSI_COMPLEXIO_IRQ_STATUS, ciostatus);
840 /* flush posted write */
841 dsi_read_reg(dsidev, DSI_COMPLEXIO_IRQ_STATUS);
842 } else {
843 ciostatus = 0;
844 }
845
846 #ifdef DSI_CATCH_MISSING_TE
847 if (irqstatus & DSI_IRQ_TE_TRIGGER)
848 del_timer(&dsi->te_timer);
849 #endif
850
851 /* make a copy and unlock, so that isrs can unregister
852 * themselves */
853 memcpy(&dsi->isr_tables_copy, &dsi->isr_tables,
854 sizeof(dsi->isr_tables));
855
856 spin_unlock(&dsi->irq_lock);
857
858 dsi_handle_isrs(&dsi->isr_tables_copy, irqstatus, vcstatus, ciostatus);
859
860 dsi_handle_irq_errors(dsidev, irqstatus, vcstatus, ciostatus);
861
862 dsi_collect_irq_stats(dsidev, irqstatus, vcstatus, ciostatus);
863
864 return IRQ_HANDLED;
865 }
866
867 /* dsi->irq_lock has to be locked by the caller */
868 static void _omap_dsi_configure_irqs(struct platform_device *dsidev,
869 struct dsi_isr_data *isr_array,
870 unsigned isr_array_size, u32 default_mask,
871 const struct dsi_reg enable_reg,
872 const struct dsi_reg status_reg)
873 {
874 struct dsi_isr_data *isr_data;
875 u32 mask;
876 u32 old_mask;
877 int i;
878
879 mask = default_mask;
880
881 for (i = 0; i < isr_array_size; i++) {
882 isr_data = &isr_array[i];
883
884 if (isr_data->isr == NULL)
885 continue;
886
887 mask |= isr_data->mask;
888 }
889
890 old_mask = dsi_read_reg(dsidev, enable_reg);
891 /* clear the irqstatus for newly enabled irqs */
892 dsi_write_reg(dsidev, status_reg, (mask ^ old_mask) & mask);
893 dsi_write_reg(dsidev, enable_reg, mask);
894
895 /* flush posted writes */
896 dsi_read_reg(dsidev, enable_reg);
897 dsi_read_reg(dsidev, status_reg);
898 }
899
900 /* dsi->irq_lock has to be locked by the caller */
901 static void _omap_dsi_set_irqs(struct platform_device *dsidev)
902 {
903 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
904 u32 mask = DSI_IRQ_ERROR_MASK;
905 #ifdef DSI_CATCH_MISSING_TE
906 mask |= DSI_IRQ_TE_TRIGGER;
907 #endif
908 _omap_dsi_configure_irqs(dsidev, dsi->isr_tables.isr_table,
909 ARRAY_SIZE(dsi->isr_tables.isr_table), mask,
910 DSI_IRQENABLE, DSI_IRQSTATUS);
911 }
912
913 /* dsi->irq_lock has to be locked by the caller */
914 static void _omap_dsi_set_irqs_vc(struct platform_device *dsidev, int vc)
915 {
916 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
917
918 _omap_dsi_configure_irqs(dsidev, dsi->isr_tables.isr_table_vc[vc],
919 ARRAY_SIZE(dsi->isr_tables.isr_table_vc[vc]),
920 DSI_VC_IRQ_ERROR_MASK,
921 DSI_VC_IRQENABLE(vc), DSI_VC_IRQSTATUS(vc));
922 }
923
924 /* dsi->irq_lock has to be locked by the caller */
925 static void _omap_dsi_set_irqs_cio(struct platform_device *dsidev)
926 {
927 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
928
929 _omap_dsi_configure_irqs(dsidev, dsi->isr_tables.isr_table_cio,
930 ARRAY_SIZE(dsi->isr_tables.isr_table_cio),
931 DSI_CIO_IRQ_ERROR_MASK,
932 DSI_COMPLEXIO_IRQ_ENABLE, DSI_COMPLEXIO_IRQ_STATUS);
933 }
934
935 static void _dsi_initialize_irq(struct platform_device *dsidev)
936 {
937 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
938 unsigned long flags;
939 int vc;
940
941 spin_lock_irqsave(&dsi->irq_lock, flags);
942
943 memset(&dsi->isr_tables, 0, sizeof(dsi->isr_tables));
944
945 _omap_dsi_set_irqs(dsidev);
946 for (vc = 0; vc < 4; ++vc)
947 _omap_dsi_set_irqs_vc(dsidev, vc);
948 _omap_dsi_set_irqs_cio(dsidev);
949
950 spin_unlock_irqrestore(&dsi->irq_lock, flags);
951 }
952
953 static int _dsi_register_isr(omap_dsi_isr_t isr, void *arg, u32 mask,
954 struct dsi_isr_data *isr_array, unsigned isr_array_size)
955 {
956 struct dsi_isr_data *isr_data;
957 int free_idx;
958 int i;
959
960 BUG_ON(isr == NULL);
961
962 /* check for duplicate entry and find a free slot */
963 free_idx = -1;
964 for (i = 0; i < isr_array_size; i++) {
965 isr_data = &isr_array[i];
966
967 if (isr_data->isr == isr && isr_data->arg == arg &&
968 isr_data->mask == mask) {
969 return -EINVAL;
970 }
971
972 if (isr_data->isr == NULL && free_idx == -1)
973 free_idx = i;
974 }
975
976 if (free_idx == -1)
977 return -EBUSY;
978
979 isr_data = &isr_array[free_idx];
980 isr_data->isr = isr;
981 isr_data->arg = arg;
982 isr_data->mask = mask;
983
984 return 0;
985 }
986
987 static int _dsi_unregister_isr(omap_dsi_isr_t isr, void *arg, u32 mask,
988 struct dsi_isr_data *isr_array, unsigned isr_array_size)
989 {
990 struct dsi_isr_data *isr_data;
991 int i;
992
993 for (i = 0; i < isr_array_size; i++) {
994 isr_data = &isr_array[i];
995 if (isr_data->isr != isr || isr_data->arg != arg ||
996 isr_data->mask != mask)
997 continue;
998
999 isr_data->isr = NULL;
1000 isr_data->arg = NULL;
1001 isr_data->mask = 0;
1002
1003 return 0;
1004 }
1005
1006 return -EINVAL;
1007 }
1008
1009 static int dsi_register_isr(struct platform_device *dsidev, omap_dsi_isr_t isr,
1010 void *arg, u32 mask)
1011 {
1012 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1013 unsigned long flags;
1014 int r;
1015
1016 spin_lock_irqsave(&dsi->irq_lock, flags);
1017
1018 r = _dsi_register_isr(isr, arg, mask, dsi->isr_tables.isr_table,
1019 ARRAY_SIZE(dsi->isr_tables.isr_table));
1020
1021 if (r == 0)
1022 _omap_dsi_set_irqs(dsidev);
1023
1024 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1025
1026 return r;
1027 }
1028
1029 static int dsi_unregister_isr(struct platform_device *dsidev,
1030 omap_dsi_isr_t isr, void *arg, u32 mask)
1031 {
1032 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1033 unsigned long flags;
1034 int r;
1035
1036 spin_lock_irqsave(&dsi->irq_lock, flags);
1037
1038 r = _dsi_unregister_isr(isr, arg, mask, dsi->isr_tables.isr_table,
1039 ARRAY_SIZE(dsi->isr_tables.isr_table));
1040
1041 if (r == 0)
1042 _omap_dsi_set_irqs(dsidev);
1043
1044 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1045
1046 return r;
1047 }
1048
1049 static int dsi_register_isr_vc(struct platform_device *dsidev, int channel,
1050 omap_dsi_isr_t isr, void *arg, u32 mask)
1051 {
1052 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1053 unsigned long flags;
1054 int r;
1055
1056 spin_lock_irqsave(&dsi->irq_lock, flags);
1057
1058 r = _dsi_register_isr(isr, arg, mask,
1059 dsi->isr_tables.isr_table_vc[channel],
1060 ARRAY_SIZE(dsi->isr_tables.isr_table_vc[channel]));
1061
1062 if (r == 0)
1063 _omap_dsi_set_irqs_vc(dsidev, channel);
1064
1065 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1066
1067 return r;
1068 }
1069
1070 static int dsi_unregister_isr_vc(struct platform_device *dsidev, int channel,
1071 omap_dsi_isr_t isr, void *arg, u32 mask)
1072 {
1073 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1074 unsigned long flags;
1075 int r;
1076
1077 spin_lock_irqsave(&dsi->irq_lock, flags);
1078
1079 r = _dsi_unregister_isr(isr, arg, mask,
1080 dsi->isr_tables.isr_table_vc[channel],
1081 ARRAY_SIZE(dsi->isr_tables.isr_table_vc[channel]));
1082
1083 if (r == 0)
1084 _omap_dsi_set_irqs_vc(dsidev, channel);
1085
1086 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1087
1088 return r;
1089 }
1090
1091 static int dsi_register_isr_cio(struct platform_device *dsidev,
1092 omap_dsi_isr_t isr, void *arg, u32 mask)
1093 {
1094 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1095 unsigned long flags;
1096 int r;
1097
1098 spin_lock_irqsave(&dsi->irq_lock, flags);
1099
1100 r = _dsi_register_isr(isr, arg, mask, dsi->isr_tables.isr_table_cio,
1101 ARRAY_SIZE(dsi->isr_tables.isr_table_cio));
1102
1103 if (r == 0)
1104 _omap_dsi_set_irqs_cio(dsidev);
1105
1106 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1107
1108 return r;
1109 }
1110
1111 static int dsi_unregister_isr_cio(struct platform_device *dsidev,
1112 omap_dsi_isr_t isr, void *arg, u32 mask)
1113 {
1114 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1115 unsigned long flags;
1116 int r;
1117
1118 spin_lock_irqsave(&dsi->irq_lock, flags);
1119
1120 r = _dsi_unregister_isr(isr, arg, mask, dsi->isr_tables.isr_table_cio,
1121 ARRAY_SIZE(dsi->isr_tables.isr_table_cio));
1122
1123 if (r == 0)
1124 _omap_dsi_set_irqs_cio(dsidev);
1125
1126 spin_unlock_irqrestore(&dsi->irq_lock, flags);
1127
1128 return r;
1129 }
1130
1131 static u32 dsi_get_errors(struct platform_device *dsidev)
1132 {
1133 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1134 unsigned long flags;
1135 u32 e;
1136 spin_lock_irqsave(&dsi->errors_lock, flags);
1137 e = dsi->errors;
1138 dsi->errors = 0;
1139 spin_unlock_irqrestore(&dsi->errors_lock, flags);
1140 return e;
1141 }
1142
1143 static int dsi_runtime_get(struct platform_device *dsidev)
1144 {
1145 int r;
1146 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1147
1148 DSSDBG("dsi_runtime_get\n");
1149
1150 r = pm_runtime_get_sync(&dsi->pdev->dev);
1151 WARN_ON(r < 0);
1152 return r < 0 ? r : 0;
1153 }
1154
1155 static void dsi_runtime_put(struct platform_device *dsidev)
1156 {
1157 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1158 int r;
1159
1160 DSSDBG("dsi_runtime_put\n");
1161
1162 r = pm_runtime_put_sync(&dsi->pdev->dev);
1163 WARN_ON(r < 0 && r != -ENOSYS);
1164 }
1165
1166 static int dsi_regulator_init(struct platform_device *dsidev)
1167 {
1168 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1169 struct regulator *vdds_dsi;
1170
1171 if (dsi->vdds_dsi_reg != NULL)
1172 return 0;
1173
1174 vdds_dsi = devm_regulator_get(&dsi->pdev->dev, "vdd");
1175
1176 if (IS_ERR(vdds_dsi)) {
1177 if (PTR_ERR(vdds_dsi) != -EPROBE_DEFER)
1178 DSSERR("can't get DSI VDD regulator\n");
1179 return PTR_ERR(vdds_dsi);
1180 }
1181
1182 dsi->vdds_dsi_reg = vdds_dsi;
1183
1184 return 0;
1185 }
1186
1187 static void _dsi_print_reset_status(struct platform_device *dsidev)
1188 {
1189 u32 l;
1190 int b0, b1, b2;
1191
1192 /* A dummy read using the SCP interface to any DSIPHY register is
1193 * required after DSIPHY reset to complete the reset of the DSI complex
1194 * I/O. */
1195 l = dsi_read_reg(dsidev, DSI_DSIPHY_CFG5);
1196
1197 if (dss_has_feature(FEAT_DSI_REVERSE_TXCLKESC)) {
1198 b0 = 28;
1199 b1 = 27;
1200 b2 = 26;
1201 } else {
1202 b0 = 24;
1203 b1 = 25;
1204 b2 = 26;
1205 }
1206
1207 #define DSI_FLD_GET(fld, start, end)\
1208 FLD_GET(dsi_read_reg(dsidev, DSI_##fld), start, end)
1209
1210 pr_debug("DSI resets: PLL (%d) CIO (%d) PHY (%x%x%x, %d, %d, %d)\n",
1211 DSI_FLD_GET(PLL_STATUS, 0, 0),
1212 DSI_FLD_GET(COMPLEXIO_CFG1, 29, 29),
1213 DSI_FLD_GET(DSIPHY_CFG5, b0, b0),
1214 DSI_FLD_GET(DSIPHY_CFG5, b1, b1),
1215 DSI_FLD_GET(DSIPHY_CFG5, b2, b2),
1216 DSI_FLD_GET(DSIPHY_CFG5, 29, 29),
1217 DSI_FLD_GET(DSIPHY_CFG5, 30, 30),
1218 DSI_FLD_GET(DSIPHY_CFG5, 31, 31));
1219
1220 #undef DSI_FLD_GET
1221 }
1222
1223 static inline int dsi_if_enable(struct platform_device *dsidev, bool enable)
1224 {
1225 DSSDBG("dsi_if_enable(%d)\n", enable);
1226
1227 enable = enable ? 1 : 0;
1228 REG_FLD_MOD(dsidev, DSI_CTRL, enable, 0, 0); /* IF_EN */
1229
1230 if (wait_for_bit_change(dsidev, DSI_CTRL, 0, enable) != enable) {
1231 DSSERR("Failed to set dsi_if_enable to %d\n", enable);
1232 return -EIO;
1233 }
1234
1235 return 0;
1236 }
1237
1238 static unsigned long dsi_get_pll_hsdiv_dispc_rate(struct platform_device *dsidev)
1239 {
1240 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1241
1242 return dsi->pll.cinfo.clkout[HSDIV_DISPC];
1243 }
1244
1245 static unsigned long dsi_get_pll_hsdiv_dsi_rate(struct platform_device *dsidev)
1246 {
1247 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1248
1249 return dsi->pll.cinfo.clkout[HSDIV_DSI];
1250 }
1251
1252 static unsigned long dsi_get_txbyteclkhs(struct platform_device *dsidev)
1253 {
1254 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1255
1256 return dsi->pll.cinfo.clkdco / 16;
1257 }
1258
1259 static unsigned long dsi_fclk_rate(struct platform_device *dsidev)
1260 {
1261 unsigned long r;
1262 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1263
1264 if (dss_get_dsi_clk_source(dsi->module_id) == OMAP_DSS_CLK_SRC_FCK) {
1265 /* DSI FCLK source is DSS_CLK_FCK */
1266 r = clk_get_rate(dsi->dss_clk);
1267 } else {
1268 /* DSI FCLK source is dsi_pll_hsdiv_dsi_clk */
1269 r = dsi_get_pll_hsdiv_dsi_rate(dsidev);
1270 }
1271
1272 return r;
1273 }
1274
1275 static int dsi_lp_clock_calc(unsigned long dsi_fclk,
1276 unsigned long lp_clk_min, unsigned long lp_clk_max,
1277 struct dsi_lp_clock_info *lp_cinfo)
1278 {
1279 unsigned lp_clk_div;
1280 unsigned long lp_clk;
1281
1282 lp_clk_div = DIV_ROUND_UP(dsi_fclk, lp_clk_max * 2);
1283 lp_clk = dsi_fclk / 2 / lp_clk_div;
1284
1285 if (lp_clk < lp_clk_min || lp_clk > lp_clk_max)
1286 return -EINVAL;
1287
1288 lp_cinfo->lp_clk_div = lp_clk_div;
1289 lp_cinfo->lp_clk = lp_clk;
1290
1291 return 0;
1292 }
1293
1294 static int dsi_set_lp_clk_divisor(struct platform_device *dsidev)
1295 {
1296 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1297 unsigned long dsi_fclk;
1298 unsigned lp_clk_div;
1299 unsigned long lp_clk;
1300 unsigned lpdiv_max = dss_feat_get_param_max(FEAT_PARAM_DSIPLL_LPDIV);
1301
1302
1303 lp_clk_div = dsi->user_lp_cinfo.lp_clk_div;
1304
1305 if (lp_clk_div == 0 || lp_clk_div > lpdiv_max)
1306 return -EINVAL;
1307
1308 dsi_fclk = dsi_fclk_rate(dsidev);
1309
1310 lp_clk = dsi_fclk / 2 / lp_clk_div;
1311
1312 DSSDBG("LP_CLK_DIV %u, LP_CLK %lu\n", lp_clk_div, lp_clk);
1313 dsi->current_lp_cinfo.lp_clk = lp_clk;
1314 dsi->current_lp_cinfo.lp_clk_div = lp_clk_div;
1315
1316 /* LP_CLK_DIVISOR */
1317 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, lp_clk_div, 12, 0);
1318
1319 /* LP_RX_SYNCHRO_ENABLE */
1320 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, dsi_fclk > 30000000 ? 1 : 0, 21, 21);
1321
1322 return 0;
1323 }
1324
1325 static void dsi_enable_scp_clk(struct platform_device *dsidev)
1326 {
1327 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1328
1329 if (dsi->scp_clk_refcount++ == 0)
1330 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 1, 14, 14); /* CIO_CLK_ICG */
1331 }
1332
1333 static void dsi_disable_scp_clk(struct platform_device *dsidev)
1334 {
1335 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1336
1337 WARN_ON(dsi->scp_clk_refcount == 0);
1338 if (--dsi->scp_clk_refcount == 0)
1339 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 14, 14); /* CIO_CLK_ICG */
1340 }
1341
1342 enum dsi_pll_power_state {
1343 DSI_PLL_POWER_OFF = 0x0,
1344 DSI_PLL_POWER_ON_HSCLK = 0x1,
1345 DSI_PLL_POWER_ON_ALL = 0x2,
1346 DSI_PLL_POWER_ON_DIV = 0x3,
1347 };
1348
1349 static int dsi_pll_power(struct platform_device *dsidev,
1350 enum dsi_pll_power_state state)
1351 {
1352 int t = 0;
1353
1354 /* DSI-PLL power command 0x3 is not working */
1355 if (dss_has_feature(FEAT_DSI_PLL_PWR_BUG) &&
1356 state == DSI_PLL_POWER_ON_DIV)
1357 state = DSI_PLL_POWER_ON_ALL;
1358
1359 /* PLL_PWR_CMD */
1360 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, state, 31, 30);
1361
1362 /* PLL_PWR_STATUS */
1363 while (FLD_GET(dsi_read_reg(dsidev, DSI_CLK_CTRL), 29, 28) != state) {
1364 if (++t > 1000) {
1365 DSSERR("Failed to set DSI PLL power mode to %d\n",
1366 state);
1367 return -ENODEV;
1368 }
1369 udelay(1);
1370 }
1371
1372 return 0;
1373 }
1374
1375
1376 static void dsi_pll_calc_dsi_fck(struct dss_pll_clock_info *cinfo)
1377 {
1378 unsigned long max_dsi_fck;
1379
1380 max_dsi_fck = dss_feat_get_param_max(FEAT_PARAM_DSI_FCK);
1381
1382 cinfo->mX[HSDIV_DSI] = DIV_ROUND_UP(cinfo->clkdco, max_dsi_fck);
1383 cinfo->clkout[HSDIV_DSI] = cinfo->clkdco / cinfo->mX[HSDIV_DSI];
1384 }
1385
1386 static int dsi_pll_enable(struct dss_pll *pll)
1387 {
1388 struct dsi_data *dsi = container_of(pll, struct dsi_data, pll);
1389 struct platform_device *dsidev = dsi->pdev;
1390 int r = 0;
1391
1392 DSSDBG("PLL init\n");
1393
1394 r = dsi_regulator_init(dsidev);
1395 if (r)
1396 return r;
1397
1398 r = dsi_runtime_get(dsidev);
1399 if (r)
1400 return r;
1401
1402 /*
1403 * Note: SCP CLK is not required on OMAP3, but it is required on OMAP4.
1404 */
1405 dsi_enable_scp_clk(dsidev);
1406
1407 if (!dsi->vdds_dsi_enabled) {
1408 r = regulator_enable(dsi->vdds_dsi_reg);
1409 if (r)
1410 goto err0;
1411 dsi->vdds_dsi_enabled = true;
1412 }
1413
1414 /* XXX PLL does not come out of reset without this... */
1415 dispc_pck_free_enable(1);
1416
1417 if (wait_for_bit_change(dsidev, DSI_PLL_STATUS, 0, 1) != 1) {
1418 DSSERR("PLL not coming out of reset.\n");
1419 r = -ENODEV;
1420 dispc_pck_free_enable(0);
1421 goto err1;
1422 }
1423
1424 /* XXX ... but if left on, we get problems when planes do not
1425 * fill the whole display. No idea about this */
1426 dispc_pck_free_enable(0);
1427
1428 r = dsi_pll_power(dsidev, DSI_PLL_POWER_ON_ALL);
1429
1430 if (r)
1431 goto err1;
1432
1433 DSSDBG("PLL init done\n");
1434
1435 return 0;
1436 err1:
1437 if (dsi->vdds_dsi_enabled) {
1438 regulator_disable(dsi->vdds_dsi_reg);
1439 dsi->vdds_dsi_enabled = false;
1440 }
1441 err0:
1442 dsi_disable_scp_clk(dsidev);
1443 dsi_runtime_put(dsidev);
1444 return r;
1445 }
1446
1447 static void dsi_pll_uninit(struct platform_device *dsidev, bool disconnect_lanes)
1448 {
1449 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1450
1451 dsi_pll_power(dsidev, DSI_PLL_POWER_OFF);
1452 if (disconnect_lanes) {
1453 WARN_ON(!dsi->vdds_dsi_enabled);
1454 regulator_disable(dsi->vdds_dsi_reg);
1455 dsi->vdds_dsi_enabled = false;
1456 }
1457
1458 dsi_disable_scp_clk(dsidev);
1459 dsi_runtime_put(dsidev);
1460
1461 DSSDBG("PLL uninit done\n");
1462 }
1463
1464 static void dsi_pll_disable(struct dss_pll *pll)
1465 {
1466 struct dsi_data *dsi = container_of(pll, struct dsi_data, pll);
1467 struct platform_device *dsidev = dsi->pdev;
1468
1469 dsi_pll_uninit(dsidev, true);
1470 }
1471
1472 static void dsi_dump_dsidev_clocks(struct platform_device *dsidev,
1473 struct seq_file *s)
1474 {
1475 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1476 struct dss_pll_clock_info *cinfo = &dsi->pll.cinfo;
1477 enum omap_dss_clk_source dispc_clk_src, dsi_clk_src;
1478 int dsi_module = dsi->module_id;
1479 struct dss_pll *pll = &dsi->pll;
1480
1481 dispc_clk_src = dss_get_dispc_clk_source();
1482 dsi_clk_src = dss_get_dsi_clk_source(dsi_module);
1483
1484 if (dsi_runtime_get(dsidev))
1485 return;
1486
1487 seq_printf(s, "- DSI%d PLL -\n", dsi_module + 1);
1488
1489 seq_printf(s, "dsi pll clkin\t%lu\n", clk_get_rate(pll->clkin));
1490
1491 seq_printf(s, "Fint\t\t%-16lun %u\n", cinfo->fint, cinfo->n);
1492
1493 seq_printf(s, "CLKIN4DDR\t%-16lum %u\n",
1494 cinfo->clkdco, cinfo->m);
1495
1496 seq_printf(s, "DSI_PLL_HSDIV_DISPC (%s)\t%-16lum_dispc %u\t(%s)\n",
1497 dss_feat_get_clk_source_name(dsi_module == 0 ?
1498 OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DISPC :
1499 OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DISPC),
1500 cinfo->clkout[HSDIV_DISPC],
1501 cinfo->mX[HSDIV_DISPC],
1502 dispc_clk_src == OMAP_DSS_CLK_SRC_FCK ?
1503 "off" : "on");
1504
1505 seq_printf(s, "DSI_PLL_HSDIV_DSI (%s)\t%-16lum_dsi %u\t(%s)\n",
1506 dss_feat_get_clk_source_name(dsi_module == 0 ?
1507 OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DSI :
1508 OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DSI),
1509 cinfo->clkout[HSDIV_DSI],
1510 cinfo->mX[HSDIV_DSI],
1511 dsi_clk_src == OMAP_DSS_CLK_SRC_FCK ?
1512 "off" : "on");
1513
1514 seq_printf(s, "- DSI%d -\n", dsi_module + 1);
1515
1516 seq_printf(s, "dsi fclk source = %s (%s)\n",
1517 dss_get_generic_clk_source_name(dsi_clk_src),
1518 dss_feat_get_clk_source_name(dsi_clk_src));
1519
1520 seq_printf(s, "DSI_FCLK\t%lu\n", dsi_fclk_rate(dsidev));
1521
1522 seq_printf(s, "DDR_CLK\t\t%lu\n",
1523 cinfo->clkdco / 4);
1524
1525 seq_printf(s, "TxByteClkHS\t%lu\n", dsi_get_txbyteclkhs(dsidev));
1526
1527 seq_printf(s, "LP_CLK\t\t%lu\n", dsi->current_lp_cinfo.lp_clk);
1528
1529 dsi_runtime_put(dsidev);
1530 }
1531
1532 void dsi_dump_clocks(struct seq_file *s)
1533 {
1534 struct platform_device *dsidev;
1535 int i;
1536
1537 for (i = 0; i < MAX_NUM_DSI; i++) {
1538 dsidev = dsi_get_dsidev_from_id(i);
1539 if (dsidev)
1540 dsi_dump_dsidev_clocks(dsidev, s);
1541 }
1542 }
1543
1544 #ifdef CONFIG_FB_OMAP2_DSS_COLLECT_IRQ_STATS
1545 static void dsi_dump_dsidev_irqs(struct platform_device *dsidev,
1546 struct seq_file *s)
1547 {
1548 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1549 unsigned long flags;
1550 struct dsi_irq_stats stats;
1551
1552 spin_lock_irqsave(&dsi->irq_stats_lock, flags);
1553
1554 stats = dsi->irq_stats;
1555 memset(&dsi->irq_stats, 0, sizeof(dsi->irq_stats));
1556 dsi->irq_stats.last_reset = jiffies;
1557
1558 spin_unlock_irqrestore(&dsi->irq_stats_lock, flags);
1559
1560 seq_printf(s, "period %u ms\n",
1561 jiffies_to_msecs(jiffies - stats.last_reset));
1562
1563 seq_printf(s, "irqs %d\n", stats.irq_count);
1564 #define PIS(x) \
1565 seq_printf(s, "%-20s %10d\n", #x, stats.dsi_irqs[ffs(DSI_IRQ_##x)-1]);
1566
1567 seq_printf(s, "-- DSI%d interrupts --\n", dsi->module_id + 1);
1568 PIS(VC0);
1569 PIS(VC1);
1570 PIS(VC2);
1571 PIS(VC3);
1572 PIS(WAKEUP);
1573 PIS(RESYNC);
1574 PIS(PLL_LOCK);
1575 PIS(PLL_UNLOCK);
1576 PIS(PLL_RECALL);
1577 PIS(COMPLEXIO_ERR);
1578 PIS(HS_TX_TIMEOUT);
1579 PIS(LP_RX_TIMEOUT);
1580 PIS(TE_TRIGGER);
1581 PIS(ACK_TRIGGER);
1582 PIS(SYNC_LOST);
1583 PIS(LDO_POWER_GOOD);
1584 PIS(TA_TIMEOUT);
1585 #undef PIS
1586
1587 #define PIS(x) \
1588 seq_printf(s, "%-20s %10d %10d %10d %10d\n", #x, \
1589 stats.vc_irqs[0][ffs(DSI_VC_IRQ_##x)-1], \
1590 stats.vc_irqs[1][ffs(DSI_VC_IRQ_##x)-1], \
1591 stats.vc_irqs[2][ffs(DSI_VC_IRQ_##x)-1], \
1592 stats.vc_irqs[3][ffs(DSI_VC_IRQ_##x)-1]);
1593
1594 seq_printf(s, "-- VC interrupts --\n");
1595 PIS(CS);
1596 PIS(ECC_CORR);
1597 PIS(PACKET_SENT);
1598 PIS(FIFO_TX_OVF);
1599 PIS(FIFO_RX_OVF);
1600 PIS(BTA);
1601 PIS(ECC_NO_CORR);
1602 PIS(FIFO_TX_UDF);
1603 PIS(PP_BUSY_CHANGE);
1604 #undef PIS
1605
1606 #define PIS(x) \
1607 seq_printf(s, "%-20s %10d\n", #x, \
1608 stats.cio_irqs[ffs(DSI_CIO_IRQ_##x)-1]);
1609
1610 seq_printf(s, "-- CIO interrupts --\n");
1611 PIS(ERRSYNCESC1);
1612 PIS(ERRSYNCESC2);
1613 PIS(ERRSYNCESC3);
1614 PIS(ERRESC1);
1615 PIS(ERRESC2);
1616 PIS(ERRESC3);
1617 PIS(ERRCONTROL1);
1618 PIS(ERRCONTROL2);
1619 PIS(ERRCONTROL3);
1620 PIS(STATEULPS1);
1621 PIS(STATEULPS2);
1622 PIS(STATEULPS3);
1623 PIS(ERRCONTENTIONLP0_1);
1624 PIS(ERRCONTENTIONLP1_1);
1625 PIS(ERRCONTENTIONLP0_2);
1626 PIS(ERRCONTENTIONLP1_2);
1627 PIS(ERRCONTENTIONLP0_3);
1628 PIS(ERRCONTENTIONLP1_3);
1629 PIS(ULPSACTIVENOT_ALL0);
1630 PIS(ULPSACTIVENOT_ALL1);
1631 #undef PIS
1632 }
1633
1634 static void dsi1_dump_irqs(struct seq_file *s)
1635 {
1636 struct platform_device *dsidev = dsi_get_dsidev_from_id(0);
1637
1638 dsi_dump_dsidev_irqs(dsidev, s);
1639 }
1640
1641 static void dsi2_dump_irqs(struct seq_file *s)
1642 {
1643 struct platform_device *dsidev = dsi_get_dsidev_from_id(1);
1644
1645 dsi_dump_dsidev_irqs(dsidev, s);
1646 }
1647 #endif
1648
1649 static void dsi_dump_dsidev_regs(struct platform_device *dsidev,
1650 struct seq_file *s)
1651 {
1652 #define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, dsi_read_reg(dsidev, r))
1653
1654 if (dsi_runtime_get(dsidev))
1655 return;
1656 dsi_enable_scp_clk(dsidev);
1657
1658 DUMPREG(DSI_REVISION);
1659 DUMPREG(DSI_SYSCONFIG);
1660 DUMPREG(DSI_SYSSTATUS);
1661 DUMPREG(DSI_IRQSTATUS);
1662 DUMPREG(DSI_IRQENABLE);
1663 DUMPREG(DSI_CTRL);
1664 DUMPREG(DSI_COMPLEXIO_CFG1);
1665 DUMPREG(DSI_COMPLEXIO_IRQ_STATUS);
1666 DUMPREG(DSI_COMPLEXIO_IRQ_ENABLE);
1667 DUMPREG(DSI_CLK_CTRL);
1668 DUMPREG(DSI_TIMING1);
1669 DUMPREG(DSI_TIMING2);
1670 DUMPREG(DSI_VM_TIMING1);
1671 DUMPREG(DSI_VM_TIMING2);
1672 DUMPREG(DSI_VM_TIMING3);
1673 DUMPREG(DSI_CLK_TIMING);
1674 DUMPREG(DSI_TX_FIFO_VC_SIZE);
1675 DUMPREG(DSI_RX_FIFO_VC_SIZE);
1676 DUMPREG(DSI_COMPLEXIO_CFG2);
1677 DUMPREG(DSI_RX_FIFO_VC_FULLNESS);
1678 DUMPREG(DSI_VM_TIMING4);
1679 DUMPREG(DSI_TX_FIFO_VC_EMPTINESS);
1680 DUMPREG(DSI_VM_TIMING5);
1681 DUMPREG(DSI_VM_TIMING6);
1682 DUMPREG(DSI_VM_TIMING7);
1683 DUMPREG(DSI_STOPCLK_TIMING);
1684
1685 DUMPREG(DSI_VC_CTRL(0));
1686 DUMPREG(DSI_VC_TE(0));
1687 DUMPREG(DSI_VC_LONG_PACKET_HEADER(0));
1688 DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(0));
1689 DUMPREG(DSI_VC_SHORT_PACKET_HEADER(0));
1690 DUMPREG(DSI_VC_IRQSTATUS(0));
1691 DUMPREG(DSI_VC_IRQENABLE(0));
1692
1693 DUMPREG(DSI_VC_CTRL(1));
1694 DUMPREG(DSI_VC_TE(1));
1695 DUMPREG(DSI_VC_LONG_PACKET_HEADER(1));
1696 DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(1));
1697 DUMPREG(DSI_VC_SHORT_PACKET_HEADER(1));
1698 DUMPREG(DSI_VC_IRQSTATUS(1));
1699 DUMPREG(DSI_VC_IRQENABLE(1));
1700
1701 DUMPREG(DSI_VC_CTRL(2));
1702 DUMPREG(DSI_VC_TE(2));
1703 DUMPREG(DSI_VC_LONG_PACKET_HEADER(2));
1704 DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(2));
1705 DUMPREG(DSI_VC_SHORT_PACKET_HEADER(2));
1706 DUMPREG(DSI_VC_IRQSTATUS(2));
1707 DUMPREG(DSI_VC_IRQENABLE(2));
1708
1709 DUMPREG(DSI_VC_CTRL(3));
1710 DUMPREG(DSI_VC_TE(3));
1711 DUMPREG(DSI_VC_LONG_PACKET_HEADER(3));
1712 DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(3));
1713 DUMPREG(DSI_VC_SHORT_PACKET_HEADER(3));
1714 DUMPREG(DSI_VC_IRQSTATUS(3));
1715 DUMPREG(DSI_VC_IRQENABLE(3));
1716
1717 DUMPREG(DSI_DSIPHY_CFG0);
1718 DUMPREG(DSI_DSIPHY_CFG1);
1719 DUMPREG(DSI_DSIPHY_CFG2);
1720 DUMPREG(DSI_DSIPHY_CFG5);
1721
1722 DUMPREG(DSI_PLL_CONTROL);
1723 DUMPREG(DSI_PLL_STATUS);
1724 DUMPREG(DSI_PLL_GO);
1725 DUMPREG(DSI_PLL_CONFIGURATION1);
1726 DUMPREG(DSI_PLL_CONFIGURATION2);
1727
1728 dsi_disable_scp_clk(dsidev);
1729 dsi_runtime_put(dsidev);
1730 #undef DUMPREG
1731 }
1732
1733 static void dsi1_dump_regs(struct seq_file *s)
1734 {
1735 struct platform_device *dsidev = dsi_get_dsidev_from_id(0);
1736
1737 dsi_dump_dsidev_regs(dsidev, s);
1738 }
1739
1740 static void dsi2_dump_regs(struct seq_file *s)
1741 {
1742 struct platform_device *dsidev = dsi_get_dsidev_from_id(1);
1743
1744 dsi_dump_dsidev_regs(dsidev, s);
1745 }
1746
1747 enum dsi_cio_power_state {
1748 DSI_COMPLEXIO_POWER_OFF = 0x0,
1749 DSI_COMPLEXIO_POWER_ON = 0x1,
1750 DSI_COMPLEXIO_POWER_ULPS = 0x2,
1751 };
1752
1753 static int dsi_cio_power(struct platform_device *dsidev,
1754 enum dsi_cio_power_state state)
1755 {
1756 int t = 0;
1757
1758 /* PWR_CMD */
1759 REG_FLD_MOD(dsidev, DSI_COMPLEXIO_CFG1, state, 28, 27);
1760
1761 /* PWR_STATUS */
1762 while (FLD_GET(dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG1),
1763 26, 25) != state) {
1764 if (++t > 1000) {
1765 DSSERR("failed to set complexio power state to "
1766 "%d\n", state);
1767 return -ENODEV;
1768 }
1769 udelay(1);
1770 }
1771
1772 return 0;
1773 }
1774
1775 static unsigned dsi_get_line_buf_size(struct platform_device *dsidev)
1776 {
1777 int val;
1778
1779 /* line buffer on OMAP3 is 1024 x 24bits */
1780 /* XXX: for some reason using full buffer size causes
1781 * considerable TX slowdown with update sizes that fill the
1782 * whole buffer */
1783 if (!dss_has_feature(FEAT_DSI_GNQ))
1784 return 1023 * 3;
1785
1786 val = REG_GET(dsidev, DSI_GNQ, 14, 12); /* VP1_LINE_BUFFER_SIZE */
1787
1788 switch (val) {
1789 case 1:
1790 return 512 * 3; /* 512x24 bits */
1791 case 2:
1792 return 682 * 3; /* 682x24 bits */
1793 case 3:
1794 return 853 * 3; /* 853x24 bits */
1795 case 4:
1796 return 1024 * 3; /* 1024x24 bits */
1797 case 5:
1798 return 1194 * 3; /* 1194x24 bits */
1799 case 6:
1800 return 1365 * 3; /* 1365x24 bits */
1801 case 7:
1802 return 1920 * 3; /* 1920x24 bits */
1803 default:
1804 BUG();
1805 return 0;
1806 }
1807 }
1808
1809 static int dsi_set_lane_config(struct platform_device *dsidev)
1810 {
1811 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1812 static const u8 offsets[] = { 0, 4, 8, 12, 16 };
1813 static const enum dsi_lane_function functions[] = {
1814 DSI_LANE_CLK,
1815 DSI_LANE_DATA1,
1816 DSI_LANE_DATA2,
1817 DSI_LANE_DATA3,
1818 DSI_LANE_DATA4,
1819 };
1820 u32 r;
1821 int i;
1822
1823 r = dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG1);
1824
1825 for (i = 0; i < dsi->num_lanes_used; ++i) {
1826 unsigned offset = offsets[i];
1827 unsigned polarity, lane_number;
1828 unsigned t;
1829
1830 for (t = 0; t < dsi->num_lanes_supported; ++t)
1831 if (dsi->lanes[t].function == functions[i])
1832 break;
1833
1834 if (t == dsi->num_lanes_supported)
1835 return -EINVAL;
1836
1837 lane_number = t;
1838 polarity = dsi->lanes[t].polarity;
1839
1840 r = FLD_MOD(r, lane_number + 1, offset + 2, offset);
1841 r = FLD_MOD(r, polarity, offset + 3, offset + 3);
1842 }
1843
1844 /* clear the unused lanes */
1845 for (; i < dsi->num_lanes_supported; ++i) {
1846 unsigned offset = offsets[i];
1847
1848 r = FLD_MOD(r, 0, offset + 2, offset);
1849 r = FLD_MOD(r, 0, offset + 3, offset + 3);
1850 }
1851
1852 dsi_write_reg(dsidev, DSI_COMPLEXIO_CFG1, r);
1853
1854 return 0;
1855 }
1856
1857 static inline unsigned ns2ddr(struct platform_device *dsidev, unsigned ns)
1858 {
1859 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1860
1861 /* convert time in ns to ddr ticks, rounding up */
1862 unsigned long ddr_clk = dsi->pll.cinfo.clkdco / 4;
1863 return (ns * (ddr_clk / 1000 / 1000) + 999) / 1000;
1864 }
1865
1866 static inline unsigned ddr2ns(struct platform_device *dsidev, unsigned ddr)
1867 {
1868 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1869
1870 unsigned long ddr_clk = dsi->pll.cinfo.clkdco / 4;
1871 return ddr * 1000 * 1000 / (ddr_clk / 1000);
1872 }
1873
1874 static void dsi_cio_timings(struct platform_device *dsidev)
1875 {
1876 u32 r;
1877 u32 ths_prepare, ths_prepare_ths_zero, ths_trail, ths_exit;
1878 u32 tlpx_half, tclk_trail, tclk_zero;
1879 u32 tclk_prepare;
1880
1881 /* calculate timings */
1882
1883 /* 1 * DDR_CLK = 2 * UI */
1884
1885 /* min 40ns + 4*UI max 85ns + 6*UI */
1886 ths_prepare = ns2ddr(dsidev, 70) + 2;
1887
1888 /* min 145ns + 10*UI */
1889 ths_prepare_ths_zero = ns2ddr(dsidev, 175) + 2;
1890
1891 /* min max(8*UI, 60ns+4*UI) */
1892 ths_trail = ns2ddr(dsidev, 60) + 5;
1893
1894 /* min 100ns */
1895 ths_exit = ns2ddr(dsidev, 145);
1896
1897 /* tlpx min 50n */
1898 tlpx_half = ns2ddr(dsidev, 25);
1899
1900 /* min 60ns */
1901 tclk_trail = ns2ddr(dsidev, 60) + 2;
1902
1903 /* min 38ns, max 95ns */
1904 tclk_prepare = ns2ddr(dsidev, 65);
1905
1906 /* min tclk-prepare + tclk-zero = 300ns */
1907 tclk_zero = ns2ddr(dsidev, 260);
1908
1909 DSSDBG("ths_prepare %u (%uns), ths_prepare_ths_zero %u (%uns)\n",
1910 ths_prepare, ddr2ns(dsidev, ths_prepare),
1911 ths_prepare_ths_zero, ddr2ns(dsidev, ths_prepare_ths_zero));
1912 DSSDBG("ths_trail %u (%uns), ths_exit %u (%uns)\n",
1913 ths_trail, ddr2ns(dsidev, ths_trail),
1914 ths_exit, ddr2ns(dsidev, ths_exit));
1915
1916 DSSDBG("tlpx_half %u (%uns), tclk_trail %u (%uns), "
1917 "tclk_zero %u (%uns)\n",
1918 tlpx_half, ddr2ns(dsidev, tlpx_half),
1919 tclk_trail, ddr2ns(dsidev, tclk_trail),
1920 tclk_zero, ddr2ns(dsidev, tclk_zero));
1921 DSSDBG("tclk_prepare %u (%uns)\n",
1922 tclk_prepare, ddr2ns(dsidev, tclk_prepare));
1923
1924 /* program timings */
1925
1926 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG0);
1927 r = FLD_MOD(r, ths_prepare, 31, 24);
1928 r = FLD_MOD(r, ths_prepare_ths_zero, 23, 16);
1929 r = FLD_MOD(r, ths_trail, 15, 8);
1930 r = FLD_MOD(r, ths_exit, 7, 0);
1931 dsi_write_reg(dsidev, DSI_DSIPHY_CFG0, r);
1932
1933 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG1);
1934 r = FLD_MOD(r, tlpx_half, 20, 16);
1935 r = FLD_MOD(r, tclk_trail, 15, 8);
1936 r = FLD_MOD(r, tclk_zero, 7, 0);
1937
1938 if (dss_has_feature(FEAT_DSI_PHY_DCC)) {
1939 r = FLD_MOD(r, 0, 21, 21); /* DCCEN = disable */
1940 r = FLD_MOD(r, 1, 22, 22); /* CLKINP_DIVBY2EN = enable */
1941 r = FLD_MOD(r, 1, 23, 23); /* CLKINP_SEL = enable */
1942 }
1943
1944 dsi_write_reg(dsidev, DSI_DSIPHY_CFG1, r);
1945
1946 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG2);
1947 r = FLD_MOD(r, tclk_prepare, 7, 0);
1948 dsi_write_reg(dsidev, DSI_DSIPHY_CFG2, r);
1949 }
1950
1951 /* lane masks have lane 0 at lsb. mask_p for positive lines, n for negative */
1952 static void dsi_cio_enable_lane_override(struct platform_device *dsidev,
1953 unsigned mask_p, unsigned mask_n)
1954 {
1955 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
1956 int i;
1957 u32 l;
1958 u8 lptxscp_start = dsi->num_lanes_supported == 3 ? 22 : 26;
1959
1960 l = 0;
1961
1962 for (i = 0; i < dsi->num_lanes_supported; ++i) {
1963 unsigned p = dsi->lanes[i].polarity;
1964
1965 if (mask_p & (1 << i))
1966 l |= 1 << (i * 2 + (p ? 0 : 1));
1967
1968 if (mask_n & (1 << i))
1969 l |= 1 << (i * 2 + (p ? 1 : 0));
1970 }
1971
1972 /*
1973 * Bits in REGLPTXSCPDAT4TO0DXDY:
1974 * 17: DY0 18: DX0
1975 * 19: DY1 20: DX1
1976 * 21: DY2 22: DX2
1977 * 23: DY3 24: DX3
1978 * 25: DY4 26: DX4
1979 */
1980
1981 /* Set the lane override configuration */
1982
1983 /* REGLPTXSCPDAT4TO0DXDY */
1984 REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, l, lptxscp_start, 17);
1985
1986 /* Enable lane override */
1987
1988 /* ENLPTXSCPDAT */
1989 REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, 1, 27, 27);
1990 }
1991
1992 static void dsi_cio_disable_lane_override(struct platform_device *dsidev)
1993 {
1994 /* Disable lane override */
1995 REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, 0, 27, 27); /* ENLPTXSCPDAT */
1996 /* Reset the lane override configuration */
1997 /* REGLPTXSCPDAT4TO0DXDY */
1998 REG_FLD_MOD(dsidev, DSI_DSIPHY_CFG10, 0, 22, 17);
1999 }
2000
2001 static int dsi_cio_wait_tx_clk_esc_reset(struct platform_device *dsidev)
2002 {
2003 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2004 int t, i;
2005 bool in_use[DSI_MAX_NR_LANES];
2006 static const u8 offsets_old[] = { 28, 27, 26 };
2007 static const u8 offsets_new[] = { 24, 25, 26, 27, 28 };
2008 const u8 *offsets;
2009
2010 if (dss_has_feature(FEAT_DSI_REVERSE_TXCLKESC))
2011 offsets = offsets_old;
2012 else
2013 offsets = offsets_new;
2014
2015 for (i = 0; i < dsi->num_lanes_supported; ++i)
2016 in_use[i] = dsi->lanes[i].function != DSI_LANE_UNUSED;
2017
2018 t = 100000;
2019 while (true) {
2020 u32 l;
2021 int ok;
2022
2023 l = dsi_read_reg(dsidev, DSI_DSIPHY_CFG5);
2024
2025 ok = 0;
2026 for (i = 0; i < dsi->num_lanes_supported; ++i) {
2027 if (!in_use[i] || (l & (1 << offsets[i])))
2028 ok++;
2029 }
2030
2031 if (ok == dsi->num_lanes_supported)
2032 break;
2033
2034 if (--t == 0) {
2035 for (i = 0; i < dsi->num_lanes_supported; ++i) {
2036 if (!in_use[i] || (l & (1 << offsets[i])))
2037 continue;
2038
2039 DSSERR("CIO TXCLKESC%d domain not coming " \
2040 "out of reset\n", i);
2041 }
2042 return -EIO;
2043 }
2044 }
2045
2046 return 0;
2047 }
2048
2049 /* return bitmask of enabled lanes, lane0 being the lsb */
2050 static unsigned dsi_get_lane_mask(struct platform_device *dsidev)
2051 {
2052 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2053 unsigned mask = 0;
2054 int i;
2055
2056 for (i = 0; i < dsi->num_lanes_supported; ++i) {
2057 if (dsi->lanes[i].function != DSI_LANE_UNUSED)
2058 mask |= 1 << i;
2059 }
2060
2061 return mask;
2062 }
2063
2064 static int dsi_cio_init(struct platform_device *dsidev)
2065 {
2066 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2067 int r;
2068 u32 l;
2069
2070 DSSDBG("DSI CIO init starts");
2071
2072 r = dss_dsi_enable_pads(dsi->module_id, dsi_get_lane_mask(dsidev));
2073 if (r)
2074 return r;
2075
2076 dsi_enable_scp_clk(dsidev);
2077
2078 /* A dummy read using the SCP interface to any DSIPHY register is
2079 * required after DSIPHY reset to complete the reset of the DSI complex
2080 * I/O. */
2081 dsi_read_reg(dsidev, DSI_DSIPHY_CFG5);
2082
2083 if (wait_for_bit_change(dsidev, DSI_DSIPHY_CFG5, 30, 1) != 1) {
2084 DSSERR("CIO SCP Clock domain not coming out of reset.\n");
2085 r = -EIO;
2086 goto err_scp_clk_dom;
2087 }
2088
2089 r = dsi_set_lane_config(dsidev);
2090 if (r)
2091 goto err_scp_clk_dom;
2092
2093 /* set TX STOP MODE timer to maximum for this operation */
2094 l = dsi_read_reg(dsidev, DSI_TIMING1);
2095 l = FLD_MOD(l, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
2096 l = FLD_MOD(l, 1, 14, 14); /* STOP_STATE_X16_IO */
2097 l = FLD_MOD(l, 1, 13, 13); /* STOP_STATE_X4_IO */
2098 l = FLD_MOD(l, 0x1fff, 12, 0); /* STOP_STATE_COUNTER_IO */
2099 dsi_write_reg(dsidev, DSI_TIMING1, l);
2100
2101 if (dsi->ulps_enabled) {
2102 unsigned mask_p;
2103 int i;
2104
2105 DSSDBG("manual ulps exit\n");
2106
2107 /* ULPS is exited by Mark-1 state for 1ms, followed by
2108 * stop state. DSS HW cannot do this via the normal
2109 * ULPS exit sequence, as after reset the DSS HW thinks
2110 * that we are not in ULPS mode, and refuses to send the
2111 * sequence. So we need to send the ULPS exit sequence
2112 * manually by setting positive lines high and negative lines
2113 * low for 1ms.
2114 */
2115
2116 mask_p = 0;
2117
2118 for (i = 0; i < dsi->num_lanes_supported; ++i) {
2119 if (dsi->lanes[i].function == DSI_LANE_UNUSED)
2120 continue;
2121 mask_p |= 1 << i;
2122 }
2123
2124 dsi_cio_enable_lane_override(dsidev, mask_p, 0);
2125 }
2126
2127 r = dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_ON);
2128 if (r)
2129 goto err_cio_pwr;
2130
2131 if (wait_for_bit_change(dsidev, DSI_COMPLEXIO_CFG1, 29, 1) != 1) {
2132 DSSERR("CIO PWR clock domain not coming out of reset.\n");
2133 r = -ENODEV;
2134 goto err_cio_pwr_dom;
2135 }
2136
2137 dsi_if_enable(dsidev, true);
2138 dsi_if_enable(dsidev, false);
2139 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 1, 20, 20); /* LP_CLK_ENABLE */
2140
2141 r = dsi_cio_wait_tx_clk_esc_reset(dsidev);
2142 if (r)
2143 goto err_tx_clk_esc_rst;
2144
2145 if (dsi->ulps_enabled) {
2146 /* Keep Mark-1 state for 1ms (as per DSI spec) */
2147 ktime_t wait = ns_to_ktime(1000 * 1000);
2148 set_current_state(TASK_UNINTERRUPTIBLE);
2149 schedule_hrtimeout(&wait, HRTIMER_MODE_REL);
2150
2151 /* Disable the override. The lanes should be set to Mark-11
2152 * state by the HW */
2153 dsi_cio_disable_lane_override(dsidev);
2154 }
2155
2156 /* FORCE_TX_STOP_MODE_IO */
2157 REG_FLD_MOD(dsidev, DSI_TIMING1, 0, 15, 15);
2158
2159 dsi_cio_timings(dsidev);
2160
2161 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
2162 /* DDR_CLK_ALWAYS_ON */
2163 REG_FLD_MOD(dsidev, DSI_CLK_CTRL,
2164 dsi->vm_timings.ddr_clk_always_on, 13, 13);
2165 }
2166
2167 dsi->ulps_enabled = false;
2168
2169 DSSDBG("CIO init done\n");
2170
2171 return 0;
2172
2173 err_tx_clk_esc_rst:
2174 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 20, 20); /* LP_CLK_ENABLE */
2175 err_cio_pwr_dom:
2176 dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_OFF);
2177 err_cio_pwr:
2178 if (dsi->ulps_enabled)
2179 dsi_cio_disable_lane_override(dsidev);
2180 err_scp_clk_dom:
2181 dsi_disable_scp_clk(dsidev);
2182 dss_dsi_disable_pads(dsi->module_id, dsi_get_lane_mask(dsidev));
2183 return r;
2184 }
2185
2186 static void dsi_cio_uninit(struct platform_device *dsidev)
2187 {
2188 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2189
2190 /* DDR_CLK_ALWAYS_ON */
2191 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 13, 13);
2192
2193 dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_OFF);
2194 dsi_disable_scp_clk(dsidev);
2195 dss_dsi_disable_pads(dsi->module_id, dsi_get_lane_mask(dsidev));
2196 }
2197
2198 static void dsi_config_tx_fifo(struct platform_device *dsidev,
2199 enum fifo_size size1, enum fifo_size size2,
2200 enum fifo_size size3, enum fifo_size size4)
2201 {
2202 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2203 u32 r = 0;
2204 int add = 0;
2205 int i;
2206
2207 dsi->vc[0].tx_fifo_size = size1;
2208 dsi->vc[1].tx_fifo_size = size2;
2209 dsi->vc[2].tx_fifo_size = size3;
2210 dsi->vc[3].tx_fifo_size = size4;
2211
2212 for (i = 0; i < 4; i++) {
2213 u8 v;
2214 int size = dsi->vc[i].tx_fifo_size;
2215
2216 if (add + size > 4) {
2217 DSSERR("Illegal FIFO configuration\n");
2218 BUG();
2219 return;
2220 }
2221
2222 v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4);
2223 r |= v << (8 * i);
2224 /*DSSDBG("TX FIFO vc %d: size %d, add %d\n", i, size, add); */
2225 add += size;
2226 }
2227
2228 dsi_write_reg(dsidev, DSI_TX_FIFO_VC_SIZE, r);
2229 }
2230
2231 static void dsi_config_rx_fifo(struct platform_device *dsidev,
2232 enum fifo_size size1, enum fifo_size size2,
2233 enum fifo_size size3, enum fifo_size size4)
2234 {
2235 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2236 u32 r = 0;
2237 int add = 0;
2238 int i;
2239
2240 dsi->vc[0].rx_fifo_size = size1;
2241 dsi->vc[1].rx_fifo_size = size2;
2242 dsi->vc[2].rx_fifo_size = size3;
2243 dsi->vc[3].rx_fifo_size = size4;
2244
2245 for (i = 0; i < 4; i++) {
2246 u8 v;
2247 int size = dsi->vc[i].rx_fifo_size;
2248
2249 if (add + size > 4) {
2250 DSSERR("Illegal FIFO configuration\n");
2251 BUG();
2252 return;
2253 }
2254
2255 v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4);
2256 r |= v << (8 * i);
2257 /*DSSDBG("RX FIFO vc %d: size %d, add %d\n", i, size, add); */
2258 add += size;
2259 }
2260
2261 dsi_write_reg(dsidev, DSI_RX_FIFO_VC_SIZE, r);
2262 }
2263
2264 static int dsi_force_tx_stop_mode_io(struct platform_device *dsidev)
2265 {
2266 u32 r;
2267
2268 r = dsi_read_reg(dsidev, DSI_TIMING1);
2269 r = FLD_MOD(r, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
2270 dsi_write_reg(dsidev, DSI_TIMING1, r);
2271
2272 if (wait_for_bit_change(dsidev, DSI_TIMING1, 15, 0) != 0) {
2273 DSSERR("TX_STOP bit not going down\n");
2274 return -EIO;
2275 }
2276
2277 return 0;
2278 }
2279
2280 static bool dsi_vc_is_enabled(struct platform_device *dsidev, int channel)
2281 {
2282 return REG_GET(dsidev, DSI_VC_CTRL(channel), 0, 0);
2283 }
2284
2285 static void dsi_packet_sent_handler_vp(void *data, u32 mask)
2286 {
2287 struct dsi_packet_sent_handler_data *vp_data =
2288 (struct dsi_packet_sent_handler_data *) data;
2289 struct dsi_data *dsi = dsi_get_dsidrv_data(vp_data->dsidev);
2290 const int channel = dsi->update_channel;
2291 u8 bit = dsi->te_enabled ? 30 : 31;
2292
2293 if (REG_GET(vp_data->dsidev, DSI_VC_TE(channel), bit, bit) == 0)
2294 complete(vp_data->completion);
2295 }
2296
2297 static int dsi_sync_vc_vp(struct platform_device *dsidev, int channel)
2298 {
2299 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2300 DECLARE_COMPLETION_ONSTACK(completion);
2301 struct dsi_packet_sent_handler_data vp_data = {
2302 .dsidev = dsidev,
2303 .completion = &completion
2304 };
2305 int r = 0;
2306 u8 bit;
2307
2308 bit = dsi->te_enabled ? 30 : 31;
2309
2310 r = dsi_register_isr_vc(dsidev, channel, dsi_packet_sent_handler_vp,
2311 &vp_data, DSI_VC_IRQ_PACKET_SENT);
2312 if (r)
2313 goto err0;
2314
2315 /* Wait for completion only if TE_EN/TE_START is still set */
2316 if (REG_GET(dsidev, DSI_VC_TE(channel), bit, bit)) {
2317 if (wait_for_completion_timeout(&completion,
2318 msecs_to_jiffies(10)) == 0) {
2319 DSSERR("Failed to complete previous frame transfer\n");
2320 r = -EIO;
2321 goto err1;
2322 }
2323 }
2324
2325 dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_vp,
2326 &vp_data, DSI_VC_IRQ_PACKET_SENT);
2327
2328 return 0;
2329 err1:
2330 dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_vp,
2331 &vp_data, DSI_VC_IRQ_PACKET_SENT);
2332 err0:
2333 return r;
2334 }
2335
2336 static void dsi_packet_sent_handler_l4(void *data, u32 mask)
2337 {
2338 struct dsi_packet_sent_handler_data *l4_data =
2339 (struct dsi_packet_sent_handler_data *) data;
2340 struct dsi_data *dsi = dsi_get_dsidrv_data(l4_data->dsidev);
2341 const int channel = dsi->update_channel;
2342
2343 if (REG_GET(l4_data->dsidev, DSI_VC_CTRL(channel), 5, 5) == 0)
2344 complete(l4_data->completion);
2345 }
2346
2347 static int dsi_sync_vc_l4(struct platform_device *dsidev, int channel)
2348 {
2349 DECLARE_COMPLETION_ONSTACK(completion);
2350 struct dsi_packet_sent_handler_data l4_data = {
2351 .dsidev = dsidev,
2352 .completion = &completion
2353 };
2354 int r = 0;
2355
2356 r = dsi_register_isr_vc(dsidev, channel, dsi_packet_sent_handler_l4,
2357 &l4_data, DSI_VC_IRQ_PACKET_SENT);
2358 if (r)
2359 goto err0;
2360
2361 /* Wait for completion only if TX_FIFO_NOT_EMPTY is still set */
2362 if (REG_GET(dsidev, DSI_VC_CTRL(channel), 5, 5)) {
2363 if (wait_for_completion_timeout(&completion,
2364 msecs_to_jiffies(10)) == 0) {
2365 DSSERR("Failed to complete previous l4 transfer\n");
2366 r = -EIO;
2367 goto err1;
2368 }
2369 }
2370
2371 dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_l4,
2372 &l4_data, DSI_VC_IRQ_PACKET_SENT);
2373
2374 return 0;
2375 err1:
2376 dsi_unregister_isr_vc(dsidev, channel, dsi_packet_sent_handler_l4,
2377 &l4_data, DSI_VC_IRQ_PACKET_SENT);
2378 err0:
2379 return r;
2380 }
2381
2382 static int dsi_sync_vc(struct platform_device *dsidev, int channel)
2383 {
2384 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2385
2386 WARN_ON(!dsi_bus_is_locked(dsidev));
2387
2388 WARN_ON(in_interrupt());
2389
2390 if (!dsi_vc_is_enabled(dsidev, channel))
2391 return 0;
2392
2393 switch (dsi->vc[channel].source) {
2394 case DSI_VC_SOURCE_VP:
2395 return dsi_sync_vc_vp(dsidev, channel);
2396 case DSI_VC_SOURCE_L4:
2397 return dsi_sync_vc_l4(dsidev, channel);
2398 default:
2399 BUG();
2400 return -EINVAL;
2401 }
2402 }
2403
2404 static int dsi_vc_enable(struct platform_device *dsidev, int channel,
2405 bool enable)
2406 {
2407 DSSDBG("dsi_vc_enable channel %d, enable %d\n",
2408 channel, enable);
2409
2410 enable = enable ? 1 : 0;
2411
2412 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), enable, 0, 0);
2413
2414 if (wait_for_bit_change(dsidev, DSI_VC_CTRL(channel),
2415 0, enable) != enable) {
2416 DSSERR("Failed to set dsi_vc_enable to %d\n", enable);
2417 return -EIO;
2418 }
2419
2420 return 0;
2421 }
2422
2423 static void dsi_vc_initial_config(struct platform_device *dsidev, int channel)
2424 {
2425 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2426 u32 r;
2427
2428 DSSDBG("Initial config of virtual channel %d", channel);
2429
2430 r = dsi_read_reg(dsidev, DSI_VC_CTRL(channel));
2431
2432 if (FLD_GET(r, 15, 15)) /* VC_BUSY */
2433 DSSERR("VC(%d) busy when trying to configure it!\n",
2434 channel);
2435
2436 r = FLD_MOD(r, 0, 1, 1); /* SOURCE, 0 = L4 */
2437 r = FLD_MOD(r, 0, 2, 2); /* BTA_SHORT_EN */
2438 r = FLD_MOD(r, 0, 3, 3); /* BTA_LONG_EN */
2439 r = FLD_MOD(r, 0, 4, 4); /* MODE, 0 = command */
2440 r = FLD_MOD(r, 1, 7, 7); /* CS_TX_EN */
2441 r = FLD_MOD(r, 1, 8, 8); /* ECC_TX_EN */
2442 r = FLD_MOD(r, 0, 9, 9); /* MODE_SPEED, high speed on/off */
2443 if (dss_has_feature(FEAT_DSI_VC_OCP_WIDTH))
2444 r = FLD_MOD(r, 3, 11, 10); /* OCP_WIDTH = 32 bit */
2445
2446 r = FLD_MOD(r, 4, 29, 27); /* DMA_RX_REQ_NB = no dma */
2447 r = FLD_MOD(r, 4, 23, 21); /* DMA_TX_REQ_NB = no dma */
2448
2449 dsi_write_reg(dsidev, DSI_VC_CTRL(channel), r);
2450
2451 dsi->vc[channel].source = DSI_VC_SOURCE_L4;
2452 }
2453
2454 static int dsi_vc_config_source(struct platform_device *dsidev, int channel,
2455 enum dsi_vc_source source)
2456 {
2457 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2458
2459 if (dsi->vc[channel].source == source)
2460 return 0;
2461
2462 DSSDBG("Source config of virtual channel %d", channel);
2463
2464 dsi_sync_vc(dsidev, channel);
2465
2466 dsi_vc_enable(dsidev, channel, 0);
2467
2468 /* VC_BUSY */
2469 if (wait_for_bit_change(dsidev, DSI_VC_CTRL(channel), 15, 0) != 0) {
2470 DSSERR("vc(%d) busy when trying to config for VP\n", channel);
2471 return -EIO;
2472 }
2473
2474 /* SOURCE, 0 = L4, 1 = video port */
2475 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), source, 1, 1);
2476
2477 /* DCS_CMD_ENABLE */
2478 if (dss_has_feature(FEAT_DSI_DCS_CMD_CONFIG_VC)) {
2479 bool enable = source == DSI_VC_SOURCE_VP;
2480 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), enable, 30, 30);
2481 }
2482
2483 dsi_vc_enable(dsidev, channel, 1);
2484
2485 dsi->vc[channel].source = source;
2486
2487 return 0;
2488 }
2489
2490 static void dsi_vc_enable_hs(struct omap_dss_device *dssdev, int channel,
2491 bool enable)
2492 {
2493 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2494 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2495
2496 DSSDBG("dsi_vc_enable_hs(%d, %d)\n", channel, enable);
2497
2498 WARN_ON(!dsi_bus_is_locked(dsidev));
2499
2500 dsi_vc_enable(dsidev, channel, 0);
2501 dsi_if_enable(dsidev, 0);
2502
2503 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), enable, 9, 9);
2504
2505 dsi_vc_enable(dsidev, channel, 1);
2506 dsi_if_enable(dsidev, 1);
2507
2508 dsi_force_tx_stop_mode_io(dsidev);
2509
2510 /* start the DDR clock by sending a NULL packet */
2511 if (dsi->vm_timings.ddr_clk_always_on && enable)
2512 dsi_vc_send_null(dssdev, channel);
2513 }
2514
2515 static void dsi_vc_flush_long_data(struct platform_device *dsidev, int channel)
2516 {
2517 while (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
2518 u32 val;
2519 val = dsi_read_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel));
2520 DSSDBG("\t\tb1 %#02x b2 %#02x b3 %#02x b4 %#02x\n",
2521 (val >> 0) & 0xff,
2522 (val >> 8) & 0xff,
2523 (val >> 16) & 0xff,
2524 (val >> 24) & 0xff);
2525 }
2526 }
2527
2528 static void dsi_show_rx_ack_with_err(u16 err)
2529 {
2530 DSSERR("\tACK with ERROR (%#x):\n", err);
2531 if (err & (1 << 0))
2532 DSSERR("\t\tSoT Error\n");
2533 if (err & (1 << 1))
2534 DSSERR("\t\tSoT Sync Error\n");
2535 if (err & (1 << 2))
2536 DSSERR("\t\tEoT Sync Error\n");
2537 if (err & (1 << 3))
2538 DSSERR("\t\tEscape Mode Entry Command Error\n");
2539 if (err & (1 << 4))
2540 DSSERR("\t\tLP Transmit Sync Error\n");
2541 if (err & (1 << 5))
2542 DSSERR("\t\tHS Receive Timeout Error\n");
2543 if (err & (1 << 6))
2544 DSSERR("\t\tFalse Control Error\n");
2545 if (err & (1 << 7))
2546 DSSERR("\t\t(reserved7)\n");
2547 if (err & (1 << 8))
2548 DSSERR("\t\tECC Error, single-bit (corrected)\n");
2549 if (err & (1 << 9))
2550 DSSERR("\t\tECC Error, multi-bit (not corrected)\n");
2551 if (err & (1 << 10))
2552 DSSERR("\t\tChecksum Error\n");
2553 if (err & (1 << 11))
2554 DSSERR("\t\tData type not recognized\n");
2555 if (err & (1 << 12))
2556 DSSERR("\t\tInvalid VC ID\n");
2557 if (err & (1 << 13))
2558 DSSERR("\t\tInvalid Transmission Length\n");
2559 if (err & (1 << 14))
2560 DSSERR("\t\t(reserved14)\n");
2561 if (err & (1 << 15))
2562 DSSERR("\t\tDSI Protocol Violation\n");
2563 }
2564
2565 static u16 dsi_vc_flush_receive_data(struct platform_device *dsidev,
2566 int channel)
2567 {
2568 /* RX_FIFO_NOT_EMPTY */
2569 while (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
2570 u32 val;
2571 u8 dt;
2572 val = dsi_read_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel));
2573 DSSERR("\trawval %#08x\n", val);
2574 dt = FLD_GET(val, 5, 0);
2575 if (dt == MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT) {
2576 u16 err = FLD_GET(val, 23, 8);
2577 dsi_show_rx_ack_with_err(err);
2578 } else if (dt == MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE) {
2579 DSSERR("\tDCS short response, 1 byte: %#x\n",
2580 FLD_GET(val, 23, 8));
2581 } else if (dt == MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE) {
2582 DSSERR("\tDCS short response, 2 byte: %#x\n",
2583 FLD_GET(val, 23, 8));
2584 } else if (dt == MIPI_DSI_RX_DCS_LONG_READ_RESPONSE) {
2585 DSSERR("\tDCS long response, len %d\n",
2586 FLD_GET(val, 23, 8));
2587 dsi_vc_flush_long_data(dsidev, channel);
2588 } else {
2589 DSSERR("\tunknown datatype 0x%02x\n", dt);
2590 }
2591 }
2592 return 0;
2593 }
2594
2595 static int dsi_vc_send_bta(struct platform_device *dsidev, int channel)
2596 {
2597 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2598
2599 if (dsi->debug_write || dsi->debug_read)
2600 DSSDBG("dsi_vc_send_bta %d\n", channel);
2601
2602 WARN_ON(!dsi_bus_is_locked(dsidev));
2603
2604 /* RX_FIFO_NOT_EMPTY */
2605 if (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
2606 DSSERR("rx fifo not empty when sending BTA, dumping data:\n");
2607 dsi_vc_flush_receive_data(dsidev, channel);
2608 }
2609
2610 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), 1, 6, 6); /* BTA_EN */
2611
2612 /* flush posted write */
2613 dsi_read_reg(dsidev, DSI_VC_CTRL(channel));
2614
2615 return 0;
2616 }
2617
2618 static int dsi_vc_send_bta_sync(struct omap_dss_device *dssdev, int channel)
2619 {
2620 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2621 DECLARE_COMPLETION_ONSTACK(completion);
2622 int r = 0;
2623 u32 err;
2624
2625 r = dsi_register_isr_vc(dsidev, channel, dsi_completion_handler,
2626 &completion, DSI_VC_IRQ_BTA);
2627 if (r)
2628 goto err0;
2629
2630 r = dsi_register_isr(dsidev, dsi_completion_handler, &completion,
2631 DSI_IRQ_ERROR_MASK);
2632 if (r)
2633 goto err1;
2634
2635 r = dsi_vc_send_bta(dsidev, channel);
2636 if (r)
2637 goto err2;
2638
2639 if (wait_for_completion_timeout(&completion,
2640 msecs_to_jiffies(500)) == 0) {
2641 DSSERR("Failed to receive BTA\n");
2642 r = -EIO;
2643 goto err2;
2644 }
2645
2646 err = dsi_get_errors(dsidev);
2647 if (err) {
2648 DSSERR("Error while sending BTA: %x\n", err);
2649 r = -EIO;
2650 goto err2;
2651 }
2652 err2:
2653 dsi_unregister_isr(dsidev, dsi_completion_handler, &completion,
2654 DSI_IRQ_ERROR_MASK);
2655 err1:
2656 dsi_unregister_isr_vc(dsidev, channel, dsi_completion_handler,
2657 &completion, DSI_VC_IRQ_BTA);
2658 err0:
2659 return r;
2660 }
2661
2662 static inline void dsi_vc_write_long_header(struct platform_device *dsidev,
2663 int channel, u8 data_type, u16 len, u8 ecc)
2664 {
2665 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2666 u32 val;
2667 u8 data_id;
2668
2669 WARN_ON(!dsi_bus_is_locked(dsidev));
2670
2671 data_id = data_type | dsi->vc[channel].vc_id << 6;
2672
2673 val = FLD_VAL(data_id, 7, 0) | FLD_VAL(len, 23, 8) |
2674 FLD_VAL(ecc, 31, 24);
2675
2676 dsi_write_reg(dsidev, DSI_VC_LONG_PACKET_HEADER(channel), val);
2677 }
2678
2679 static inline void dsi_vc_write_long_payload(struct platform_device *dsidev,
2680 int channel, u8 b1, u8 b2, u8 b3, u8 b4)
2681 {
2682 u32 val;
2683
2684 val = b4 << 24 | b3 << 16 | b2 << 8 | b1 << 0;
2685
2686 /* DSSDBG("\twriting %02x, %02x, %02x, %02x (%#010x)\n",
2687 b1, b2, b3, b4, val); */
2688
2689 dsi_write_reg(dsidev, DSI_VC_LONG_PACKET_PAYLOAD(channel), val);
2690 }
2691
2692 static int dsi_vc_send_long(struct platform_device *dsidev, int channel,
2693 u8 data_type, u8 *data, u16 len, u8 ecc)
2694 {
2695 /*u32 val; */
2696 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2697 int i;
2698 u8 *p;
2699 int r = 0;
2700 u8 b1, b2, b3, b4;
2701
2702 if (dsi->debug_write)
2703 DSSDBG("dsi_vc_send_long, %d bytes\n", len);
2704
2705 /* len + header */
2706 if (dsi->vc[channel].tx_fifo_size * 32 * 4 < len + 4) {
2707 DSSERR("unable to send long packet: packet too long.\n");
2708 return -EINVAL;
2709 }
2710
2711 dsi_vc_config_source(dsidev, channel, DSI_VC_SOURCE_L4);
2712
2713 dsi_vc_write_long_header(dsidev, channel, data_type, len, ecc);
2714
2715 p = data;
2716 for (i = 0; i < len >> 2; i++) {
2717 if (dsi->debug_write)
2718 DSSDBG("\tsending full packet %d\n", i);
2719
2720 b1 = *p++;
2721 b2 = *p++;
2722 b3 = *p++;
2723 b4 = *p++;
2724
2725 dsi_vc_write_long_payload(dsidev, channel, b1, b2, b3, b4);
2726 }
2727
2728 i = len % 4;
2729 if (i) {
2730 b1 = 0; b2 = 0; b3 = 0;
2731
2732 if (dsi->debug_write)
2733 DSSDBG("\tsending remainder bytes %d\n", i);
2734
2735 switch (i) {
2736 case 3:
2737 b1 = *p++;
2738 b2 = *p++;
2739 b3 = *p++;
2740 break;
2741 case 2:
2742 b1 = *p++;
2743 b2 = *p++;
2744 break;
2745 case 1:
2746 b1 = *p++;
2747 break;
2748 }
2749
2750 dsi_vc_write_long_payload(dsidev, channel, b1, b2, b3, 0);
2751 }
2752
2753 return r;
2754 }
2755
2756 static int dsi_vc_send_short(struct platform_device *dsidev, int channel,
2757 u8 data_type, u16 data, u8 ecc)
2758 {
2759 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2760 u32 r;
2761 u8 data_id;
2762
2763 WARN_ON(!dsi_bus_is_locked(dsidev));
2764
2765 if (dsi->debug_write)
2766 DSSDBG("dsi_vc_send_short(ch%d, dt %#x, b1 %#x, b2 %#x)\n",
2767 channel,
2768 data_type, data & 0xff, (data >> 8) & 0xff);
2769
2770 dsi_vc_config_source(dsidev, channel, DSI_VC_SOURCE_L4);
2771
2772 if (FLD_GET(dsi_read_reg(dsidev, DSI_VC_CTRL(channel)), 16, 16)) {
2773 DSSERR("ERROR FIFO FULL, aborting transfer\n");
2774 return -EINVAL;
2775 }
2776
2777 data_id = data_type | dsi->vc[channel].vc_id << 6;
2778
2779 r = (data_id << 0) | (data << 8) | (ecc << 24);
2780
2781 dsi_write_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel), r);
2782
2783 return 0;
2784 }
2785
2786 static int dsi_vc_send_null(struct omap_dss_device *dssdev, int channel)
2787 {
2788 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2789
2790 return dsi_vc_send_long(dsidev, channel, MIPI_DSI_NULL_PACKET, NULL,
2791 0, 0);
2792 }
2793
2794 static int dsi_vc_write_nosync_common(struct platform_device *dsidev,
2795 int channel, u8 *data, int len, enum dss_dsi_content_type type)
2796 {
2797 int r;
2798
2799 if (len == 0) {
2800 BUG_ON(type == DSS_DSI_CONTENT_DCS);
2801 r = dsi_vc_send_short(dsidev, channel,
2802 MIPI_DSI_GENERIC_SHORT_WRITE_0_PARAM, 0, 0);
2803 } else if (len == 1) {
2804 r = dsi_vc_send_short(dsidev, channel,
2805 type == DSS_DSI_CONTENT_GENERIC ?
2806 MIPI_DSI_GENERIC_SHORT_WRITE_1_PARAM :
2807 MIPI_DSI_DCS_SHORT_WRITE, data[0], 0);
2808 } else if (len == 2) {
2809 r = dsi_vc_send_short(dsidev, channel,
2810 type == DSS_DSI_CONTENT_GENERIC ?
2811 MIPI_DSI_GENERIC_SHORT_WRITE_2_PARAM :
2812 MIPI_DSI_DCS_SHORT_WRITE_PARAM,
2813 data[0] | (data[1] << 8), 0);
2814 } else {
2815 r = dsi_vc_send_long(dsidev, channel,
2816 type == DSS_DSI_CONTENT_GENERIC ?
2817 MIPI_DSI_GENERIC_LONG_WRITE :
2818 MIPI_DSI_DCS_LONG_WRITE, data, len, 0);
2819 }
2820
2821 return r;
2822 }
2823
2824 static int dsi_vc_dcs_write_nosync(struct omap_dss_device *dssdev, int channel,
2825 u8 *data, int len)
2826 {
2827 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2828
2829 return dsi_vc_write_nosync_common(dsidev, channel, data, len,
2830 DSS_DSI_CONTENT_DCS);
2831 }
2832
2833 static int dsi_vc_generic_write_nosync(struct omap_dss_device *dssdev, int channel,
2834 u8 *data, int len)
2835 {
2836 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2837
2838 return dsi_vc_write_nosync_common(dsidev, channel, data, len,
2839 DSS_DSI_CONTENT_GENERIC);
2840 }
2841
2842 static int dsi_vc_write_common(struct omap_dss_device *dssdev, int channel,
2843 u8 *data, int len, enum dss_dsi_content_type type)
2844 {
2845 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
2846 int r;
2847
2848 r = dsi_vc_write_nosync_common(dsidev, channel, data, len, type);
2849 if (r)
2850 goto err;
2851
2852 r = dsi_vc_send_bta_sync(dssdev, channel);
2853 if (r)
2854 goto err;
2855
2856 /* RX_FIFO_NOT_EMPTY */
2857 if (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20)) {
2858 DSSERR("rx fifo not empty after write, dumping data:\n");
2859 dsi_vc_flush_receive_data(dsidev, channel);
2860 r = -EIO;
2861 goto err;
2862 }
2863
2864 return 0;
2865 err:
2866 DSSERR("dsi_vc_write_common(ch %d, cmd 0x%02x, len %d) failed\n",
2867 channel, data[0], len);
2868 return r;
2869 }
2870
2871 static int dsi_vc_dcs_write(struct omap_dss_device *dssdev, int channel, u8 *data,
2872 int len)
2873 {
2874 return dsi_vc_write_common(dssdev, channel, data, len,
2875 DSS_DSI_CONTENT_DCS);
2876 }
2877
2878 static int dsi_vc_generic_write(struct omap_dss_device *dssdev, int channel, u8 *data,
2879 int len)
2880 {
2881 return dsi_vc_write_common(dssdev, channel, data, len,
2882 DSS_DSI_CONTENT_GENERIC);
2883 }
2884
2885 static int dsi_vc_dcs_send_read_request(struct platform_device *dsidev,
2886 int channel, u8 dcs_cmd)
2887 {
2888 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2889 int r;
2890
2891 if (dsi->debug_read)
2892 DSSDBG("dsi_vc_dcs_send_read_request(ch%d, dcs_cmd %x)\n",
2893 channel, dcs_cmd);
2894
2895 r = dsi_vc_send_short(dsidev, channel, MIPI_DSI_DCS_READ, dcs_cmd, 0);
2896 if (r) {
2897 DSSERR("dsi_vc_dcs_send_read_request(ch %d, cmd 0x%02x)"
2898 " failed\n", channel, dcs_cmd);
2899 return r;
2900 }
2901
2902 return 0;
2903 }
2904
2905 static int dsi_vc_generic_send_read_request(struct platform_device *dsidev,
2906 int channel, u8 *reqdata, int reqlen)
2907 {
2908 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2909 u16 data;
2910 u8 data_type;
2911 int r;
2912
2913 if (dsi->debug_read)
2914 DSSDBG("dsi_vc_generic_send_read_request(ch %d, reqlen %d)\n",
2915 channel, reqlen);
2916
2917 if (reqlen == 0) {
2918 data_type = MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM;
2919 data = 0;
2920 } else if (reqlen == 1) {
2921 data_type = MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM;
2922 data = reqdata[0];
2923 } else if (reqlen == 2) {
2924 data_type = MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM;
2925 data = reqdata[0] | (reqdata[1] << 8);
2926 } else {
2927 BUG();
2928 return -EINVAL;
2929 }
2930
2931 r = dsi_vc_send_short(dsidev, channel, data_type, data, 0);
2932 if (r) {
2933 DSSERR("dsi_vc_generic_send_read_request(ch %d, reqlen %d)"
2934 " failed\n", channel, reqlen);
2935 return r;
2936 }
2937
2938 return 0;
2939 }
2940
2941 static int dsi_vc_read_rx_fifo(struct platform_device *dsidev, int channel,
2942 u8 *buf, int buflen, enum dss_dsi_content_type type)
2943 {
2944 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
2945 u32 val;
2946 u8 dt;
2947 int r;
2948
2949 /* RX_FIFO_NOT_EMPTY */
2950 if (REG_GET(dsidev, DSI_VC_CTRL(channel), 20, 20) == 0) {
2951 DSSERR("RX fifo empty when trying to read.\n");
2952 r = -EIO;
2953 goto err;
2954 }
2955
2956 val = dsi_read_reg(dsidev, DSI_VC_SHORT_PACKET_HEADER(channel));
2957 if (dsi->debug_read)
2958 DSSDBG("\theader: %08x\n", val);
2959 dt = FLD_GET(val, 5, 0);
2960 if (dt == MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT) {
2961 u16 err = FLD_GET(val, 23, 8);
2962 dsi_show_rx_ack_with_err(err);
2963 r = -EIO;
2964 goto err;
2965
2966 } else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
2967 MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE :
2968 MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE)) {
2969 u8 data = FLD_GET(val, 15, 8);
2970 if (dsi->debug_read)
2971 DSSDBG("\t%s short response, 1 byte: %02x\n",
2972 type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
2973 "DCS", data);
2974
2975 if (buflen < 1) {
2976 r = -EIO;
2977 goto err;
2978 }
2979
2980 buf[0] = data;
2981
2982 return 1;
2983 } else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
2984 MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE :
2985 MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE)) {
2986 u16 data = FLD_GET(val, 23, 8);
2987 if (dsi->debug_read)
2988 DSSDBG("\t%s short response, 2 byte: %04x\n",
2989 type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
2990 "DCS", data);
2991
2992 if (buflen < 2) {
2993 r = -EIO;
2994 goto err;
2995 }
2996
2997 buf[0] = data & 0xff;
2998 buf[1] = (data >> 8) & 0xff;
2999
3000 return 2;
3001 } else if (dt == (type == DSS_DSI_CONTENT_GENERIC ?
3002 MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE :
3003 MIPI_DSI_RX_DCS_LONG_READ_RESPONSE)) {
3004 int w;
3005 int len = FLD_GET(val, 23, 8);
3006 if (dsi->debug_read)
3007 DSSDBG("\t%s long response, len %d\n",
3008 type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" :
3009 "DCS", len);
3010
3011 if (len > buflen) {
3012 r = -EIO;
3013 goto err;
3014 }
3015
3016 /* two byte checksum ends the packet, not included in len */
3017 for (w = 0; w < len + 2;) {
3018 int b;
3019 val = dsi_read_reg(dsidev,
3020 DSI_VC_SHORT_PACKET_HEADER(channel));
3021 if (dsi->debug_read)
3022 DSSDBG("\t\t%02x %02x %02x %02x\n",
3023 (val >> 0) & 0xff,
3024 (val >> 8) & 0xff,
3025 (val >> 16) & 0xff,
3026 (val >> 24) & 0xff);
3027
3028 for (b = 0; b < 4; ++b) {
3029 if (w < len)
3030 buf[w] = (val >> (b * 8)) & 0xff;
3031 /* we discard the 2 byte checksum */
3032 ++w;
3033 }
3034 }
3035
3036 return len;
3037 } else {
3038 DSSERR("\tunknown datatype 0x%02x\n", dt);
3039 r = -EIO;
3040 goto err;
3041 }
3042
3043 err:
3044 DSSERR("dsi_vc_read_rx_fifo(ch %d type %s) failed\n", channel,
3045 type == DSS_DSI_CONTENT_GENERIC ? "GENERIC" : "DCS");
3046
3047 return r;
3048 }
3049
3050 static int dsi_vc_dcs_read(struct omap_dss_device *dssdev, int channel, u8 dcs_cmd,
3051 u8 *buf, int buflen)
3052 {
3053 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3054 int r;
3055
3056 r = dsi_vc_dcs_send_read_request(dsidev, channel, dcs_cmd);
3057 if (r)
3058 goto err;
3059
3060 r = dsi_vc_send_bta_sync(dssdev, channel);
3061 if (r)
3062 goto err;
3063
3064 r = dsi_vc_read_rx_fifo(dsidev, channel, buf, buflen,
3065 DSS_DSI_CONTENT_DCS);
3066 if (r < 0)
3067 goto err;
3068
3069 if (r != buflen) {
3070 r = -EIO;
3071 goto err;
3072 }
3073
3074 return 0;
3075 err:
3076 DSSERR("dsi_vc_dcs_read(ch %d, cmd 0x%02x) failed\n", channel, dcs_cmd);
3077 return r;
3078 }
3079
3080 static int dsi_vc_generic_read(struct omap_dss_device *dssdev, int channel,
3081 u8 *reqdata, int reqlen, u8 *buf, int buflen)
3082 {
3083 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3084 int r;
3085
3086 r = dsi_vc_generic_send_read_request(dsidev, channel, reqdata, reqlen);
3087 if (r)
3088 return r;
3089
3090 r = dsi_vc_send_bta_sync(dssdev, channel);
3091 if (r)
3092 return r;
3093
3094 r = dsi_vc_read_rx_fifo(dsidev, channel, buf, buflen,
3095 DSS_DSI_CONTENT_GENERIC);
3096 if (r < 0)
3097 return r;
3098
3099 if (r != buflen) {
3100 r = -EIO;
3101 return r;
3102 }
3103
3104 return 0;
3105 }
3106
3107 static int dsi_vc_set_max_rx_packet_size(struct omap_dss_device *dssdev, int channel,
3108 u16 len)
3109 {
3110 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3111
3112 return dsi_vc_send_short(dsidev, channel,
3113 MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, len, 0);
3114 }
3115
3116 static int dsi_enter_ulps(struct platform_device *dsidev)
3117 {
3118 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3119 DECLARE_COMPLETION_ONSTACK(completion);
3120 int r, i;
3121 unsigned mask;
3122
3123 DSSDBG("Entering ULPS");
3124
3125 WARN_ON(!dsi_bus_is_locked(dsidev));
3126
3127 WARN_ON(dsi->ulps_enabled);
3128
3129 if (dsi->ulps_enabled)
3130 return 0;
3131
3132 /* DDR_CLK_ALWAYS_ON */
3133 if (REG_GET(dsidev, DSI_CLK_CTRL, 13, 13)) {
3134 dsi_if_enable(dsidev, 0);
3135 REG_FLD_MOD(dsidev, DSI_CLK_CTRL, 0, 13, 13);
3136 dsi_if_enable(dsidev, 1);
3137 }
3138
3139 dsi_sync_vc(dsidev, 0);
3140 dsi_sync_vc(dsidev, 1);
3141 dsi_sync_vc(dsidev, 2);
3142 dsi_sync_vc(dsidev, 3);
3143
3144 dsi_force_tx_stop_mode_io(dsidev);
3145
3146 dsi_vc_enable(dsidev, 0, false);
3147 dsi_vc_enable(dsidev, 1, false);
3148 dsi_vc_enable(dsidev, 2, false);
3149 dsi_vc_enable(dsidev, 3, false);
3150
3151 if (REG_GET(dsidev, DSI_COMPLEXIO_CFG2, 16, 16)) { /* HS_BUSY */
3152 DSSERR("HS busy when enabling ULPS\n");
3153 return -EIO;
3154 }
3155
3156 if (REG_GET(dsidev, DSI_COMPLEXIO_CFG2, 17, 17)) { /* LP_BUSY */
3157 DSSERR("LP busy when enabling ULPS\n");
3158 return -EIO;
3159 }
3160
3161 r = dsi_register_isr_cio(dsidev, dsi_completion_handler, &completion,
3162 DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
3163 if (r)
3164 return r;
3165
3166 mask = 0;
3167
3168 for (i = 0; i < dsi->num_lanes_supported; ++i) {
3169 if (dsi->lanes[i].function == DSI_LANE_UNUSED)
3170 continue;
3171 mask |= 1 << i;
3172 }
3173 /* Assert TxRequestEsc for data lanes and TxUlpsClk for clk lane */
3174 /* LANEx_ULPS_SIG2 */
3175 REG_FLD_MOD(dsidev, DSI_COMPLEXIO_CFG2, mask, 9, 5);
3176
3177 /* flush posted write and wait for SCP interface to finish the write */
3178 dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG2);
3179
3180 if (wait_for_completion_timeout(&completion,
3181 msecs_to_jiffies(1000)) == 0) {
3182 DSSERR("ULPS enable timeout\n");
3183 r = -EIO;
3184 goto err;
3185 }
3186
3187 dsi_unregister_isr_cio(dsidev, dsi_completion_handler, &completion,
3188 DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
3189
3190 /* Reset LANEx_ULPS_SIG2 */
3191 REG_FLD_MOD(dsidev, DSI_COMPLEXIO_CFG2, 0, 9, 5);
3192
3193 /* flush posted write and wait for SCP interface to finish the write */
3194 dsi_read_reg(dsidev, DSI_COMPLEXIO_CFG2);
3195
3196 dsi_cio_power(dsidev, DSI_COMPLEXIO_POWER_ULPS);
3197
3198 dsi_if_enable(dsidev, false);
3199
3200 dsi->ulps_enabled = true;
3201
3202 return 0;
3203
3204 err:
3205 dsi_unregister_isr_cio(dsidev, dsi_completion_handler, &completion,
3206 DSI_CIO_IRQ_ULPSACTIVENOT_ALL0);
3207 return r;
3208 }
3209
3210 static void dsi_set_lp_rx_timeout(struct platform_device *dsidev,
3211 unsigned ticks, bool x4, bool x16)
3212 {
3213 unsigned long fck;
3214 unsigned long total_ticks;
3215 u32 r;
3216
3217 BUG_ON(ticks > 0x1fff);
3218
3219 /* ticks in DSI_FCK */
3220 fck = dsi_fclk_rate(dsidev);
3221
3222 r = dsi_read_reg(dsidev, DSI_TIMING2);
3223 r = FLD_MOD(r, 1, 15, 15); /* LP_RX_TO */
3224 r = FLD_MOD(r, x16 ? 1 : 0, 14, 14); /* LP_RX_TO_X16 */
3225 r = FLD_MOD(r, x4 ? 1 : 0, 13, 13); /* LP_RX_TO_X4 */
3226 r = FLD_MOD(r, ticks, 12, 0); /* LP_RX_COUNTER */
3227 dsi_write_reg(dsidev, DSI_TIMING2, r);
3228
3229 total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
3230
3231 DSSDBG("LP_RX_TO %lu ticks (%#x%s%s) = %lu ns\n",
3232 total_ticks,
3233 ticks, x4 ? " x4" : "", x16 ? " x16" : "",
3234 (total_ticks * 1000) / (fck / 1000 / 1000));
3235 }
3236
3237 static void dsi_set_ta_timeout(struct platform_device *dsidev, unsigned ticks,
3238 bool x8, bool x16)
3239 {
3240 unsigned long fck;
3241 unsigned long total_ticks;
3242 u32 r;
3243
3244 BUG_ON(ticks > 0x1fff);
3245
3246 /* ticks in DSI_FCK */
3247 fck = dsi_fclk_rate(dsidev);
3248
3249 r = dsi_read_reg(dsidev, DSI_TIMING1);
3250 r = FLD_MOD(r, 1, 31, 31); /* TA_TO */
3251 r = FLD_MOD(r, x16 ? 1 : 0, 30, 30); /* TA_TO_X16 */
3252 r = FLD_MOD(r, x8 ? 1 : 0, 29, 29); /* TA_TO_X8 */
3253 r = FLD_MOD(r, ticks, 28, 16); /* TA_TO_COUNTER */
3254 dsi_write_reg(dsidev, DSI_TIMING1, r);
3255
3256 total_ticks = ticks * (x16 ? 16 : 1) * (x8 ? 8 : 1);
3257
3258 DSSDBG("TA_TO %lu ticks (%#x%s%s) = %lu ns\n",
3259 total_ticks,
3260 ticks, x8 ? " x8" : "", x16 ? " x16" : "",
3261 (total_ticks * 1000) / (fck / 1000 / 1000));
3262 }
3263
3264 static void dsi_set_stop_state_counter(struct platform_device *dsidev,
3265 unsigned ticks, bool x4, bool x16)
3266 {
3267 unsigned long fck;
3268 unsigned long total_ticks;
3269 u32 r;
3270
3271 BUG_ON(ticks > 0x1fff);
3272
3273 /* ticks in DSI_FCK */
3274 fck = dsi_fclk_rate(dsidev);
3275
3276 r = dsi_read_reg(dsidev, DSI_TIMING1);
3277 r = FLD_MOD(r, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
3278 r = FLD_MOD(r, x16 ? 1 : 0, 14, 14); /* STOP_STATE_X16_IO */
3279 r = FLD_MOD(r, x4 ? 1 : 0, 13, 13); /* STOP_STATE_X4_IO */
3280 r = FLD_MOD(r, ticks, 12, 0); /* STOP_STATE_COUNTER_IO */
3281 dsi_write_reg(dsidev, DSI_TIMING1, r);
3282
3283 total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
3284
3285 DSSDBG("STOP_STATE_COUNTER %lu ticks (%#x%s%s) = %lu ns\n",
3286 total_ticks,
3287 ticks, x4 ? " x4" : "", x16 ? " x16" : "",
3288 (total_ticks * 1000) / (fck / 1000 / 1000));
3289 }
3290
3291 static void dsi_set_hs_tx_timeout(struct platform_device *dsidev,
3292 unsigned ticks, bool x4, bool x16)
3293 {
3294 unsigned long fck;
3295 unsigned long total_ticks;
3296 u32 r;
3297
3298 BUG_ON(ticks > 0x1fff);
3299
3300 /* ticks in TxByteClkHS */
3301 fck = dsi_get_txbyteclkhs(dsidev);
3302
3303 r = dsi_read_reg(dsidev, DSI_TIMING2);
3304 r = FLD_MOD(r, 1, 31, 31); /* HS_TX_TO */
3305 r = FLD_MOD(r, x16 ? 1 : 0, 30, 30); /* HS_TX_TO_X16 */
3306 r = FLD_MOD(r, x4 ? 1 : 0, 29, 29); /* HS_TX_TO_X8 (4 really) */
3307 r = FLD_MOD(r, ticks, 28, 16); /* HS_TX_TO_COUNTER */
3308 dsi_write_reg(dsidev, DSI_TIMING2, r);
3309
3310 total_ticks = ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1);
3311
3312 DSSDBG("HS_TX_TO %lu ticks (%#x%s%s) = %lu ns\n",
3313 total_ticks,
3314 ticks, x4 ? " x4" : "", x16 ? " x16" : "",
3315 (total_ticks * 1000) / (fck / 1000 / 1000));
3316 }
3317
3318 static void dsi_config_vp_num_line_buffers(struct platform_device *dsidev)
3319 {
3320 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3321 int num_line_buffers;
3322
3323 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3324 int bpp = dsi_get_pixel_size(dsi->pix_fmt);
3325 struct omap_video_timings *timings = &dsi->timings;
3326 /*
3327 * Don't use line buffers if width is greater than the video
3328 * port's line buffer size
3329 */
3330 if (dsi->line_buffer_size <= timings->x_res * bpp / 8)
3331 num_line_buffers = 0;
3332 else
3333 num_line_buffers = 2;
3334 } else {
3335 /* Use maximum number of line buffers in command mode */
3336 num_line_buffers = 2;
3337 }
3338
3339 /* LINE_BUFFER */
3340 REG_FLD_MOD(dsidev, DSI_CTRL, num_line_buffers, 13, 12);
3341 }
3342
3343 static void dsi_config_vp_sync_events(struct platform_device *dsidev)
3344 {
3345 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3346 bool sync_end;
3347 u32 r;
3348
3349 if (dsi->vm_timings.trans_mode == OMAP_DSS_DSI_PULSE_MODE)
3350 sync_end = true;
3351 else
3352 sync_end = false;
3353
3354 r = dsi_read_reg(dsidev, DSI_CTRL);
3355 r = FLD_MOD(r, 1, 9, 9); /* VP_DE_POL */
3356 r = FLD_MOD(r, 1, 10, 10); /* VP_HSYNC_POL */
3357 r = FLD_MOD(r, 1, 11, 11); /* VP_VSYNC_POL */
3358 r = FLD_MOD(r, 1, 15, 15); /* VP_VSYNC_START */
3359 r = FLD_MOD(r, sync_end, 16, 16); /* VP_VSYNC_END */
3360 r = FLD_MOD(r, 1, 17, 17); /* VP_HSYNC_START */
3361 r = FLD_MOD(r, sync_end, 18, 18); /* VP_HSYNC_END */
3362 dsi_write_reg(dsidev, DSI_CTRL, r);
3363 }
3364
3365 static void dsi_config_blanking_modes(struct platform_device *dsidev)
3366 {
3367 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3368 int blanking_mode = dsi->vm_timings.blanking_mode;
3369 int hfp_blanking_mode = dsi->vm_timings.hfp_blanking_mode;
3370 int hbp_blanking_mode = dsi->vm_timings.hbp_blanking_mode;
3371 int hsa_blanking_mode = dsi->vm_timings.hsa_blanking_mode;
3372 u32 r;
3373
3374 /*
3375 * 0 = TX FIFO packets sent or LPS in corresponding blanking periods
3376 * 1 = Long blanking packets are sent in corresponding blanking periods
3377 */
3378 r = dsi_read_reg(dsidev, DSI_CTRL);
3379 r = FLD_MOD(r, blanking_mode, 20, 20); /* BLANKING_MODE */
3380 r = FLD_MOD(r, hfp_blanking_mode, 21, 21); /* HFP_BLANKING */
3381 r = FLD_MOD(r, hbp_blanking_mode, 22, 22); /* HBP_BLANKING */
3382 r = FLD_MOD(r, hsa_blanking_mode, 23, 23); /* HSA_BLANKING */
3383 dsi_write_reg(dsidev, DSI_CTRL, r);
3384 }
3385
3386 /*
3387 * According to section 'HS Command Mode Interleaving' in OMAP TRM, Scenario 3
3388 * results in maximum transition time for data and clock lanes to enter and
3389 * exit HS mode. Hence, this is the scenario where the least amount of command
3390 * mode data can be interleaved. We program the minimum amount of TXBYTECLKHS
3391 * clock cycles that can be used to interleave command mode data in HS so that
3392 * all scenarios are satisfied.
3393 */
3394 static int dsi_compute_interleave_hs(int blank, bool ddr_alwon, int enter_hs,
3395 int exit_hs, int exiths_clk, int ddr_pre, int ddr_post)
3396 {
3397 int transition;
3398
3399 /*
3400 * If DDR_CLK_ALWAYS_ON is set, we need to consider HS mode transition
3401 * time of data lanes only, if it isn't set, we need to consider HS
3402 * transition time of both data and clock lanes. HS transition time
3403 * of Scenario 3 is considered.
3404 */
3405 if (ddr_alwon) {
3406 transition = enter_hs + exit_hs + max(enter_hs, 2) + 1;
3407 } else {
3408 int trans1, trans2;
3409 trans1 = ddr_pre + enter_hs + exit_hs + max(enter_hs, 2) + 1;
3410 trans2 = ddr_pre + enter_hs + exiths_clk + ddr_post + ddr_pre +
3411 enter_hs + 1;
3412 transition = max(trans1, trans2);
3413 }
3414
3415 return blank > transition ? blank - transition : 0;
3416 }
3417
3418 /*
3419 * According to section 'LP Command Mode Interleaving' in OMAP TRM, Scenario 1
3420 * results in maximum transition time for data lanes to enter and exit LP mode.
3421 * Hence, this is the scenario where the least amount of command mode data can
3422 * be interleaved. We program the minimum amount of bytes that can be
3423 * interleaved in LP so that all scenarios are satisfied.
3424 */
3425 static int dsi_compute_interleave_lp(int blank, int enter_hs, int exit_hs,
3426 int lp_clk_div, int tdsi_fclk)
3427 {
3428 int trans_lp; /* time required for a LP transition, in TXBYTECLKHS */
3429 int tlp_avail; /* time left for interleaving commands, in CLKIN4DDR */
3430 int ttxclkesc; /* period of LP transmit escape clock, in CLKIN4DDR */
3431 int thsbyte_clk = 16; /* Period of TXBYTECLKHS clock, in CLKIN4DDR */
3432 int lp_inter; /* cmd mode data that can be interleaved, in bytes */
3433
3434 /* maximum LP transition time according to Scenario 1 */
3435 trans_lp = exit_hs + max(enter_hs, 2) + 1;
3436
3437 /* CLKIN4DDR = 16 * TXBYTECLKHS */
3438 tlp_avail = thsbyte_clk * (blank - trans_lp);
3439
3440 ttxclkesc = tdsi_fclk * lp_clk_div;
3441
3442 lp_inter = ((tlp_avail - 8 * thsbyte_clk - 5 * tdsi_fclk) / ttxclkesc -
3443 26) / 16;
3444
3445 return max(lp_inter, 0);
3446 }
3447
3448 static void dsi_config_cmd_mode_interleaving(struct platform_device *dsidev)
3449 {
3450 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3451 int blanking_mode;
3452 int hfp_blanking_mode, hbp_blanking_mode, hsa_blanking_mode;
3453 int hsa, hfp, hbp, width_bytes, bllp, lp_clk_div;
3454 int ddr_clk_pre, ddr_clk_post, enter_hs_mode_lat, exit_hs_mode_lat;
3455 int tclk_trail, ths_exit, exiths_clk;
3456 bool ddr_alwon;
3457 struct omap_video_timings *timings = &dsi->timings;
3458 int bpp = dsi_get_pixel_size(dsi->pix_fmt);
3459 int ndl = dsi->num_lanes_used - 1;
3460 int dsi_fclk_hsdiv = dsi->user_dsi_cinfo.mX[HSDIV_DSI] + 1;
3461 int hsa_interleave_hs = 0, hsa_interleave_lp = 0;
3462 int hfp_interleave_hs = 0, hfp_interleave_lp = 0;
3463 int hbp_interleave_hs = 0, hbp_interleave_lp = 0;
3464 int bl_interleave_hs = 0, bl_interleave_lp = 0;
3465 u32 r;
3466
3467 r = dsi_read_reg(dsidev, DSI_CTRL);
3468 blanking_mode = FLD_GET(r, 20, 20);
3469 hfp_blanking_mode = FLD_GET(r, 21, 21);
3470 hbp_blanking_mode = FLD_GET(r, 22, 22);
3471 hsa_blanking_mode = FLD_GET(r, 23, 23);
3472
3473 r = dsi_read_reg(dsidev, DSI_VM_TIMING1);
3474 hbp = FLD_GET(r, 11, 0);
3475 hfp = FLD_GET(r, 23, 12);
3476 hsa = FLD_GET(r, 31, 24);
3477
3478 r = dsi_read_reg(dsidev, DSI_CLK_TIMING);
3479 ddr_clk_post = FLD_GET(r, 7, 0);
3480 ddr_clk_pre = FLD_GET(r, 15, 8);
3481
3482 r = dsi_read_reg(dsidev, DSI_VM_TIMING7);
3483 exit_hs_mode_lat = FLD_GET(r, 15, 0);
3484 enter_hs_mode_lat = FLD_GET(r, 31, 16);
3485
3486 r = dsi_read_reg(dsidev, DSI_CLK_CTRL);
3487 lp_clk_div = FLD_GET(r, 12, 0);
3488 ddr_alwon = FLD_GET(r, 13, 13);
3489
3490 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG0);
3491 ths_exit = FLD_GET(r, 7, 0);
3492
3493 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG1);
3494 tclk_trail = FLD_GET(r, 15, 8);
3495
3496 exiths_clk = ths_exit + tclk_trail;
3497
3498 width_bytes = DIV_ROUND_UP(timings->x_res * bpp, 8);
3499 bllp = hbp + hfp + hsa + DIV_ROUND_UP(width_bytes + 6, ndl);
3500
3501 if (!hsa_blanking_mode) {
3502 hsa_interleave_hs = dsi_compute_interleave_hs(hsa, ddr_alwon,
3503 enter_hs_mode_lat, exit_hs_mode_lat,
3504 exiths_clk, ddr_clk_pre, ddr_clk_post);
3505 hsa_interleave_lp = dsi_compute_interleave_lp(hsa,
3506 enter_hs_mode_lat, exit_hs_mode_lat,
3507 lp_clk_div, dsi_fclk_hsdiv);
3508 }
3509
3510 if (!hfp_blanking_mode) {
3511 hfp_interleave_hs = dsi_compute_interleave_hs(hfp, ddr_alwon,
3512 enter_hs_mode_lat, exit_hs_mode_lat,
3513 exiths_clk, ddr_clk_pre, ddr_clk_post);
3514 hfp_interleave_lp = dsi_compute_interleave_lp(hfp,
3515 enter_hs_mode_lat, exit_hs_mode_lat,
3516 lp_clk_div, dsi_fclk_hsdiv);
3517 }
3518
3519 if (!hbp_blanking_mode) {
3520 hbp_interleave_hs = dsi_compute_interleave_hs(hbp, ddr_alwon,
3521 enter_hs_mode_lat, exit_hs_mode_lat,
3522 exiths_clk, ddr_clk_pre, ddr_clk_post);
3523
3524 hbp_interleave_lp = dsi_compute_interleave_lp(hbp,
3525 enter_hs_mode_lat, exit_hs_mode_lat,
3526 lp_clk_div, dsi_fclk_hsdiv);
3527 }
3528
3529 if (!blanking_mode) {
3530 bl_interleave_hs = dsi_compute_interleave_hs(bllp, ddr_alwon,
3531 enter_hs_mode_lat, exit_hs_mode_lat,
3532 exiths_clk, ddr_clk_pre, ddr_clk_post);
3533
3534 bl_interleave_lp = dsi_compute_interleave_lp(bllp,
3535 enter_hs_mode_lat, exit_hs_mode_lat,
3536 lp_clk_div, dsi_fclk_hsdiv);
3537 }
3538
3539 DSSDBG("DSI HS interleaving(TXBYTECLKHS) HSA %d, HFP %d, HBP %d, BLLP %d\n",
3540 hsa_interleave_hs, hfp_interleave_hs, hbp_interleave_hs,
3541 bl_interleave_hs);
3542
3543 DSSDBG("DSI LP interleaving(bytes) HSA %d, HFP %d, HBP %d, BLLP %d\n",
3544 hsa_interleave_lp, hfp_interleave_lp, hbp_interleave_lp,
3545 bl_interleave_lp);
3546
3547 r = dsi_read_reg(dsidev, DSI_VM_TIMING4);
3548 r = FLD_MOD(r, hsa_interleave_hs, 23, 16);
3549 r = FLD_MOD(r, hfp_interleave_hs, 15, 8);
3550 r = FLD_MOD(r, hbp_interleave_hs, 7, 0);
3551 dsi_write_reg(dsidev, DSI_VM_TIMING4, r);
3552
3553 r = dsi_read_reg(dsidev, DSI_VM_TIMING5);
3554 r = FLD_MOD(r, hsa_interleave_lp, 23, 16);
3555 r = FLD_MOD(r, hfp_interleave_lp, 15, 8);
3556 r = FLD_MOD(r, hbp_interleave_lp, 7, 0);
3557 dsi_write_reg(dsidev, DSI_VM_TIMING5, r);
3558
3559 r = dsi_read_reg(dsidev, DSI_VM_TIMING6);
3560 r = FLD_MOD(r, bl_interleave_hs, 31, 15);
3561 r = FLD_MOD(r, bl_interleave_lp, 16, 0);
3562 dsi_write_reg(dsidev, DSI_VM_TIMING6, r);
3563 }
3564
3565 static int dsi_proto_config(struct platform_device *dsidev)
3566 {
3567 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3568 u32 r;
3569 int buswidth = 0;
3570
3571 dsi_config_tx_fifo(dsidev, DSI_FIFO_SIZE_32,
3572 DSI_FIFO_SIZE_32,
3573 DSI_FIFO_SIZE_32,
3574 DSI_FIFO_SIZE_32);
3575
3576 dsi_config_rx_fifo(dsidev, DSI_FIFO_SIZE_32,
3577 DSI_FIFO_SIZE_32,
3578 DSI_FIFO_SIZE_32,
3579 DSI_FIFO_SIZE_32);
3580
3581 /* XXX what values for the timeouts? */
3582 dsi_set_stop_state_counter(dsidev, 0x1000, false, false);
3583 dsi_set_ta_timeout(dsidev, 0x1fff, true, true);
3584 dsi_set_lp_rx_timeout(dsidev, 0x1fff, true, true);
3585 dsi_set_hs_tx_timeout(dsidev, 0x1fff, true, true);
3586
3587 switch (dsi_get_pixel_size(dsi->pix_fmt)) {
3588 case 16:
3589 buswidth = 0;
3590 break;
3591 case 18:
3592 buswidth = 1;
3593 break;
3594 case 24:
3595 buswidth = 2;
3596 break;
3597 default:
3598 BUG();
3599 return -EINVAL;
3600 }
3601
3602 r = dsi_read_reg(dsidev, DSI_CTRL);
3603 r = FLD_MOD(r, 1, 1, 1); /* CS_RX_EN */
3604 r = FLD_MOD(r, 1, 2, 2); /* ECC_RX_EN */
3605 r = FLD_MOD(r, 1, 3, 3); /* TX_FIFO_ARBITRATION */
3606 r = FLD_MOD(r, 1, 4, 4); /* VP_CLK_RATIO, always 1, see errata*/
3607 r = FLD_MOD(r, buswidth, 7, 6); /* VP_DATA_BUS_WIDTH */
3608 r = FLD_MOD(r, 0, 8, 8); /* VP_CLK_POL */
3609 r = FLD_MOD(r, 1, 14, 14); /* TRIGGER_RESET_MODE */
3610 r = FLD_MOD(r, 1, 19, 19); /* EOT_ENABLE */
3611 if (!dss_has_feature(FEAT_DSI_DCS_CMD_CONFIG_VC)) {
3612 r = FLD_MOD(r, 1, 24, 24); /* DCS_CMD_ENABLE */
3613 /* DCS_CMD_CODE, 1=start, 0=continue */
3614 r = FLD_MOD(r, 0, 25, 25);
3615 }
3616
3617 dsi_write_reg(dsidev, DSI_CTRL, r);
3618
3619 dsi_config_vp_num_line_buffers(dsidev);
3620
3621 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3622 dsi_config_vp_sync_events(dsidev);
3623 dsi_config_blanking_modes(dsidev);
3624 dsi_config_cmd_mode_interleaving(dsidev);
3625 }
3626
3627 dsi_vc_initial_config(dsidev, 0);
3628 dsi_vc_initial_config(dsidev, 1);
3629 dsi_vc_initial_config(dsidev, 2);
3630 dsi_vc_initial_config(dsidev, 3);
3631
3632 return 0;
3633 }
3634
3635 static void dsi_proto_timings(struct platform_device *dsidev)
3636 {
3637 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3638 unsigned tlpx, tclk_zero, tclk_prepare, tclk_trail;
3639 unsigned tclk_pre, tclk_post;
3640 unsigned ths_prepare, ths_prepare_ths_zero, ths_zero;
3641 unsigned ths_trail, ths_exit;
3642 unsigned ddr_clk_pre, ddr_clk_post;
3643 unsigned enter_hs_mode_lat, exit_hs_mode_lat;
3644 unsigned ths_eot;
3645 int ndl = dsi->num_lanes_used - 1;
3646 u32 r;
3647
3648 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG0);
3649 ths_prepare = FLD_GET(r, 31, 24);
3650 ths_prepare_ths_zero = FLD_GET(r, 23, 16);
3651 ths_zero = ths_prepare_ths_zero - ths_prepare;
3652 ths_trail = FLD_GET(r, 15, 8);
3653 ths_exit = FLD_GET(r, 7, 0);
3654
3655 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG1);
3656 tlpx = FLD_GET(r, 20, 16) * 2;
3657 tclk_trail = FLD_GET(r, 15, 8);
3658 tclk_zero = FLD_GET(r, 7, 0);
3659
3660 r = dsi_read_reg(dsidev, DSI_DSIPHY_CFG2);
3661 tclk_prepare = FLD_GET(r, 7, 0);
3662
3663 /* min 8*UI */
3664 tclk_pre = 20;
3665 /* min 60ns + 52*UI */
3666 tclk_post = ns2ddr(dsidev, 60) + 26;
3667
3668 ths_eot = DIV_ROUND_UP(4, ndl);
3669
3670 ddr_clk_pre = DIV_ROUND_UP(tclk_pre + tlpx + tclk_zero + tclk_prepare,
3671 4);
3672 ddr_clk_post = DIV_ROUND_UP(tclk_post + ths_trail, 4) + ths_eot;
3673
3674 BUG_ON(ddr_clk_pre == 0 || ddr_clk_pre > 255);
3675 BUG_ON(ddr_clk_post == 0 || ddr_clk_post > 255);
3676
3677 r = dsi_read_reg(dsidev, DSI_CLK_TIMING);
3678 r = FLD_MOD(r, ddr_clk_pre, 15, 8);
3679 r = FLD_MOD(r, ddr_clk_post, 7, 0);
3680 dsi_write_reg(dsidev, DSI_CLK_TIMING, r);
3681
3682 DSSDBG("ddr_clk_pre %u, ddr_clk_post %u\n",
3683 ddr_clk_pre,
3684 ddr_clk_post);
3685
3686 enter_hs_mode_lat = 1 + DIV_ROUND_UP(tlpx, 4) +
3687 DIV_ROUND_UP(ths_prepare, 4) +
3688 DIV_ROUND_UP(ths_zero + 3, 4);
3689
3690 exit_hs_mode_lat = DIV_ROUND_UP(ths_trail + ths_exit, 4) + 1 + ths_eot;
3691
3692 r = FLD_VAL(enter_hs_mode_lat, 31, 16) |
3693 FLD_VAL(exit_hs_mode_lat, 15, 0);
3694 dsi_write_reg(dsidev, DSI_VM_TIMING7, r);
3695
3696 DSSDBG("enter_hs_mode_lat %u, exit_hs_mode_lat %u\n",
3697 enter_hs_mode_lat, exit_hs_mode_lat);
3698
3699 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3700 /* TODO: Implement a video mode check_timings function */
3701 int hsa = dsi->vm_timings.hsa;
3702 int hfp = dsi->vm_timings.hfp;
3703 int hbp = dsi->vm_timings.hbp;
3704 int vsa = dsi->vm_timings.vsa;
3705 int vfp = dsi->vm_timings.vfp;
3706 int vbp = dsi->vm_timings.vbp;
3707 int window_sync = dsi->vm_timings.window_sync;
3708 bool hsync_end;
3709 struct omap_video_timings *timings = &dsi->timings;
3710 int bpp = dsi_get_pixel_size(dsi->pix_fmt);
3711 int tl, t_he, width_bytes;
3712
3713 hsync_end = dsi->vm_timings.trans_mode == OMAP_DSS_DSI_PULSE_MODE;
3714 t_he = hsync_end ?
3715 ((hsa == 0 && ndl == 3) ? 1 : DIV_ROUND_UP(4, ndl)) : 0;
3716
3717 width_bytes = DIV_ROUND_UP(timings->x_res * bpp, 8);
3718
3719 /* TL = t_HS + HSA + t_HE + HFP + ceil((WC + 6) / NDL) + HBP */
3720 tl = DIV_ROUND_UP(4, ndl) + (hsync_end ? hsa : 0) + t_he + hfp +
3721 DIV_ROUND_UP(width_bytes + 6, ndl) + hbp;
3722
3723 DSSDBG("HBP: %d, HFP: %d, HSA: %d, TL: %d TXBYTECLKHS\n", hbp,
3724 hfp, hsync_end ? hsa : 0, tl);
3725 DSSDBG("VBP: %d, VFP: %d, VSA: %d, VACT: %d lines\n", vbp, vfp,
3726 vsa, timings->y_res);
3727
3728 r = dsi_read_reg(dsidev, DSI_VM_TIMING1);
3729 r = FLD_MOD(r, hbp, 11, 0); /* HBP */
3730 r = FLD_MOD(r, hfp, 23, 12); /* HFP */
3731 r = FLD_MOD(r, hsync_end ? hsa : 0, 31, 24); /* HSA */
3732 dsi_write_reg(dsidev, DSI_VM_TIMING1, r);
3733
3734 r = dsi_read_reg(dsidev, DSI_VM_TIMING2);
3735 r = FLD_MOD(r, vbp, 7, 0); /* VBP */
3736 r = FLD_MOD(r, vfp, 15, 8); /* VFP */
3737 r = FLD_MOD(r, vsa, 23, 16); /* VSA */
3738 r = FLD_MOD(r, window_sync, 27, 24); /* WINDOW_SYNC */
3739 dsi_write_reg(dsidev, DSI_VM_TIMING2, r);
3740
3741 r = dsi_read_reg(dsidev, DSI_VM_TIMING3);
3742 r = FLD_MOD(r, timings->y_res, 14, 0); /* VACT */
3743 r = FLD_MOD(r, tl, 31, 16); /* TL */
3744 dsi_write_reg(dsidev, DSI_VM_TIMING3, r);
3745 }
3746 }
3747
3748 static int dsi_configure_pins(struct omap_dss_device *dssdev,
3749 const struct omap_dsi_pin_config *pin_cfg)
3750 {
3751 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3752 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3753 int num_pins;
3754 const int *pins;
3755 struct dsi_lane_config lanes[DSI_MAX_NR_LANES];
3756 int num_lanes;
3757 int i;
3758
3759 static const enum dsi_lane_function functions[] = {
3760 DSI_LANE_CLK,
3761 DSI_LANE_DATA1,
3762 DSI_LANE_DATA2,
3763 DSI_LANE_DATA3,
3764 DSI_LANE_DATA4,
3765 };
3766
3767 num_pins = pin_cfg->num_pins;
3768 pins = pin_cfg->pins;
3769
3770 if (num_pins < 4 || num_pins > dsi->num_lanes_supported * 2
3771 || num_pins % 2 != 0)
3772 return -EINVAL;
3773
3774 for (i = 0; i < DSI_MAX_NR_LANES; ++i)
3775 lanes[i].function = DSI_LANE_UNUSED;
3776
3777 num_lanes = 0;
3778
3779 for (i = 0; i < num_pins; i += 2) {
3780 u8 lane, pol;
3781 int dx, dy;
3782
3783 dx = pins[i];
3784 dy = pins[i + 1];
3785
3786 if (dx < 0 || dx >= dsi->num_lanes_supported * 2)
3787 return -EINVAL;
3788
3789 if (dy < 0 || dy >= dsi->num_lanes_supported * 2)
3790 return -EINVAL;
3791
3792 if (dx & 1) {
3793 if (dy != dx - 1)
3794 return -EINVAL;
3795 pol = 1;
3796 } else {
3797 if (dy != dx + 1)
3798 return -EINVAL;
3799 pol = 0;
3800 }
3801
3802 lane = dx / 2;
3803
3804 lanes[lane].function = functions[i / 2];
3805 lanes[lane].polarity = pol;
3806 num_lanes++;
3807 }
3808
3809 memcpy(dsi->lanes, lanes, sizeof(dsi->lanes));
3810 dsi->num_lanes_used = num_lanes;
3811
3812 return 0;
3813 }
3814
3815 static int dsi_enable_video_output(struct omap_dss_device *dssdev, int channel)
3816 {
3817 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3818 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3819 struct omap_overlay_manager *mgr = dsi->output.manager;
3820 int bpp = dsi_get_pixel_size(dsi->pix_fmt);
3821 struct omap_dss_device *out = &dsi->output;
3822 u8 data_type;
3823 u16 word_count;
3824 int r;
3825
3826 if (out->manager == NULL) {
3827 DSSERR("failed to enable display: no output/manager\n");
3828 return -ENODEV;
3829 }
3830
3831 r = dsi_display_init_dispc(dsidev, mgr);
3832 if (r)
3833 goto err_init_dispc;
3834
3835 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3836 switch (dsi->pix_fmt) {
3837 case OMAP_DSS_DSI_FMT_RGB888:
3838 data_type = MIPI_DSI_PACKED_PIXEL_STREAM_24;
3839 break;
3840 case OMAP_DSS_DSI_FMT_RGB666:
3841 data_type = MIPI_DSI_PIXEL_STREAM_3BYTE_18;
3842 break;
3843 case OMAP_DSS_DSI_FMT_RGB666_PACKED:
3844 data_type = MIPI_DSI_PACKED_PIXEL_STREAM_18;
3845 break;
3846 case OMAP_DSS_DSI_FMT_RGB565:
3847 data_type = MIPI_DSI_PACKED_PIXEL_STREAM_16;
3848 break;
3849 default:
3850 r = -EINVAL;
3851 goto err_pix_fmt;
3852 }
3853
3854 dsi_if_enable(dsidev, false);
3855 dsi_vc_enable(dsidev, channel, false);
3856
3857 /* MODE, 1 = video mode */
3858 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), 1, 4, 4);
3859
3860 word_count = DIV_ROUND_UP(dsi->timings.x_res * bpp, 8);
3861
3862 dsi_vc_write_long_header(dsidev, channel, data_type,
3863 word_count, 0);
3864
3865 dsi_vc_enable(dsidev, channel, true);
3866 dsi_if_enable(dsidev, true);
3867 }
3868
3869 r = dss_mgr_enable(mgr);
3870 if (r)
3871 goto err_mgr_enable;
3872
3873 return 0;
3874
3875 err_mgr_enable:
3876 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3877 dsi_if_enable(dsidev, false);
3878 dsi_vc_enable(dsidev, channel, false);
3879 }
3880 err_pix_fmt:
3881 dsi_display_uninit_dispc(dsidev, mgr);
3882 err_init_dispc:
3883 return r;
3884 }
3885
3886 static void dsi_disable_video_output(struct omap_dss_device *dssdev, int channel)
3887 {
3888 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
3889 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3890 struct omap_overlay_manager *mgr = dsi->output.manager;
3891
3892 if (dsi->mode == OMAP_DSS_DSI_VIDEO_MODE) {
3893 dsi_if_enable(dsidev, false);
3894 dsi_vc_enable(dsidev, channel, false);
3895
3896 /* MODE, 0 = command mode */
3897 REG_FLD_MOD(dsidev, DSI_VC_CTRL(channel), 0, 4, 4);
3898
3899 dsi_vc_enable(dsidev, channel, true);
3900 dsi_if_enable(dsidev, true);
3901 }
3902
3903 dss_mgr_disable(mgr);
3904
3905 dsi_display_uninit_dispc(dsidev, mgr);
3906 }
3907
3908 static void dsi_update_screen_dispc(struct platform_device *dsidev)
3909 {
3910 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
3911 struct omap_overlay_manager *mgr = dsi->output.manager;
3912 unsigned bytespp;
3913 unsigned bytespl;
3914 unsigned bytespf;
3915 unsigned total_len;
3916 unsigned packet_payload;
3917 unsigned packet_len;
3918 u32 l;
3919 int r;
3920 const unsigned channel = dsi->update_channel;
3921 const unsigned line_buf_size = dsi->line_buffer_size;
3922 u16 w = dsi->timings.x_res;
3923 u16 h = dsi->timings.y_res;
3924
3925 DSSDBG("dsi_update_screen_dispc(%dx%d)\n", w, h);
3926
3927 dsi_vc_config_source(dsidev, channel, DSI_VC_SOURCE_VP);
3928
3929 bytespp = dsi_get_pixel_size(dsi->pix_fmt) / 8;
3930 bytespl = w * bytespp;
3931 bytespf = bytespl * h;
3932
3933 /* NOTE: packet_payload has to be equal to N * bytespl, where N is
3934 * number of lines in a packet. See errata about VP_CLK_RATIO */
3935
3936 if (bytespf < line_buf_size)
3937 packet_payload = bytespf;
3938 else
3939 packet_payload = (line_buf_size) / bytespl * bytespl;
3940
3941 packet_len = packet_payload + 1; /* 1 byte for DCS cmd */
3942 total_len = (bytespf / packet_payload) * packet_len;
3943
3944 if (bytespf % packet_payload)
3945 total_len += (bytespf % packet_payload) + 1;
3946
3947 l = FLD_VAL(total_len, 23, 0); /* TE_SIZE */
3948 dsi_write_reg(dsidev, DSI_VC_TE(channel), l);
3949
3950 dsi_vc_write_long_header(dsidev, channel, MIPI_DSI_DCS_LONG_WRITE,
3951 packet_len, 0);
3952
3953 if (dsi->te_enabled)
3954 l = FLD_MOD(l, 1, 30, 30); /* TE_EN */
3955 else
3956 l = FLD_MOD(l, 1, 31, 31); /* TE_START */
3957 dsi_write_reg(dsidev, DSI_VC_TE(channel), l);
3958
3959 /* We put SIDLEMODE to no-idle for the duration of the transfer,
3960 * because DSS interrupts are not capable of waking up the CPU and the
3961 * framedone interrupt could be delayed for quite a long time. I think
3962 * the same goes for any DSS interrupts, but for some reason I have not
3963 * seen the problem anywhere else than here.
3964 */
3965 dispc_disable_sidle();
3966
3967 dsi_perf_mark_start(dsidev);
3968
3969 r = schedule_delayed_work(&dsi->framedone_timeout_work,
3970 msecs_to_jiffies(250));
3971 BUG_ON(r == 0);
3972
3973 dss_mgr_set_timings(mgr, &dsi->timings);
3974
3975 dss_mgr_start_update(mgr);
3976
3977 if (dsi->te_enabled) {
3978 /* disable LP_RX_TO, so that we can receive TE. Time to wait
3979 * for TE is longer than the timer allows */
3980 REG_FLD_MOD(dsidev, DSI_TIMING2, 0, 15, 15); /* LP_RX_TO */
3981
3982 dsi_vc_send_bta(dsidev, channel);
3983
3984 #ifdef DSI_CATCH_MISSING_TE
3985 mod_timer(&dsi->te_timer, jiffies + msecs_to_jiffies(250));
3986 #endif
3987 }
3988 }
3989
3990 #ifdef DSI_CATCH_MISSING_TE
3991 static void dsi_te_timeout(unsigned long arg)
3992 {
3993 DSSERR("TE not received for 250ms!\n");
3994 }
3995 #endif
3996
3997 static void dsi_handle_framedone(struct platform_device *dsidev, int error)
3998 {
3999 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4000
4001 /* SIDLEMODE back to smart-idle */
4002 dispc_enable_sidle();
4003
4004 if (dsi->te_enabled) {
4005 /* enable LP_RX_TO again after the TE */
4006 REG_FLD_MOD(dsidev, DSI_TIMING2, 1, 15, 15); /* LP_RX_TO */
4007 }
4008
4009 dsi->framedone_callback(error, dsi->framedone_data);
4010
4011 if (!error)
4012 dsi_perf_show(dsidev, "DISPC");
4013 }
4014
4015 static void dsi_framedone_timeout_work_callback(struct work_struct *work)
4016 {
4017 struct dsi_data *dsi = container_of(work, struct dsi_data,
4018 framedone_timeout_work.work);
4019 /* XXX While extremely unlikely, we could get FRAMEDONE interrupt after
4020 * 250ms which would conflict with this timeout work. What should be
4021 * done is first cancel the transfer on the HW, and then cancel the
4022 * possibly scheduled framedone work. However, cancelling the transfer
4023 * on the HW is buggy, and would probably require resetting the whole
4024 * DSI */
4025
4026 DSSERR("Framedone not received for 250ms!\n");
4027
4028 dsi_handle_framedone(dsi->pdev, -ETIMEDOUT);
4029 }
4030
4031 static void dsi_framedone_irq_callback(void *data)
4032 {
4033 struct platform_device *dsidev = (struct platform_device *) data;
4034 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4035
4036 /* Note: We get FRAMEDONE when DISPC has finished sending pixels and
4037 * turns itself off. However, DSI still has the pixels in its buffers,
4038 * and is sending the data.
4039 */
4040
4041 cancel_delayed_work(&dsi->framedone_timeout_work);
4042
4043 dsi_handle_framedone(dsidev, 0);
4044 }
4045
4046 static int dsi_update(struct omap_dss_device *dssdev, int channel,
4047 void (*callback)(int, void *), void *data)
4048 {
4049 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4050 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4051 u16 dw, dh;
4052
4053 dsi_perf_mark_setup(dsidev);
4054
4055 dsi->update_channel = channel;
4056
4057 dsi->framedone_callback = callback;
4058 dsi->framedone_data = data;
4059
4060 dw = dsi->timings.x_res;
4061 dh = dsi->timings.y_res;
4062
4063 #ifdef DSI_PERF_MEASURE
4064 dsi->update_bytes = dw * dh *
4065 dsi_get_pixel_size(dsi->pix_fmt) / 8;
4066 #endif
4067 dsi_update_screen_dispc(dsidev);
4068
4069 return 0;
4070 }
4071
4072 /* Display funcs */
4073
4074 static int dsi_configure_dispc_clocks(struct platform_device *dsidev)
4075 {
4076 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4077 struct dispc_clock_info dispc_cinfo;
4078 int r;
4079 unsigned long fck;
4080
4081 fck = dsi_get_pll_hsdiv_dispc_rate(dsidev);
4082
4083 dispc_cinfo.lck_div = dsi->user_dispc_cinfo.lck_div;
4084 dispc_cinfo.pck_div = dsi->user_dispc_cinfo.pck_div;
4085
4086 r = dispc_calc_clock_rates(fck, &dispc_cinfo);
4087 if (r) {
4088 DSSERR("Failed to calc dispc clocks\n");
4089 return r;
4090 }
4091
4092 dsi->mgr_config.clock_info = dispc_cinfo;
4093
4094 return 0;
4095 }
4096
4097 static int dsi_display_init_dispc(struct platform_device *dsidev,
4098 struct omap_overlay_manager *mgr)
4099 {
4100 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4101 int r;
4102
4103 dss_select_lcd_clk_source(mgr->id, dsi->module_id == 0 ?
4104 OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DISPC :
4105 OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DISPC);
4106
4107 if (dsi->mode == OMAP_DSS_DSI_CMD_MODE) {
4108 r = dss_mgr_register_framedone_handler(mgr,
4109 dsi_framedone_irq_callback, dsidev);
4110 if (r) {
4111 DSSERR("can't register FRAMEDONE handler\n");
4112 goto err;
4113 }
4114
4115 dsi->mgr_config.stallmode = true;
4116 dsi->mgr_config.fifohandcheck = true;
4117 } else {
4118 dsi->mgr_config.stallmode = false;
4119 dsi->mgr_config.fifohandcheck = false;
4120 }
4121
4122 /*
4123 * override interlace, logic level and edge related parameters in
4124 * omap_video_timings with default values
4125 */
4126 dsi->timings.interlace = false;
4127 dsi->timings.hsync_level = OMAPDSS_SIG_ACTIVE_HIGH;
4128 dsi->timings.vsync_level = OMAPDSS_SIG_ACTIVE_HIGH;
4129 dsi->timings.data_pclk_edge = OMAPDSS_DRIVE_SIG_RISING_EDGE;
4130 dsi->timings.de_level = OMAPDSS_SIG_ACTIVE_HIGH;
4131 dsi->timings.sync_pclk_edge = OMAPDSS_DRIVE_SIG_FALLING_EDGE;
4132
4133 dss_mgr_set_timings(mgr, &dsi->timings);
4134
4135 r = dsi_configure_dispc_clocks(dsidev);
4136 if (r)
4137 goto err1;
4138
4139 dsi->mgr_config.io_pad_mode = DSS_IO_PAD_MODE_BYPASS;
4140 dsi->mgr_config.video_port_width =
4141 dsi_get_pixel_size(dsi->pix_fmt);
4142 dsi->mgr_config.lcden_sig_polarity = 0;
4143
4144 dss_mgr_set_lcd_config(mgr, &dsi->mgr_config);
4145
4146 return 0;
4147 err1:
4148 if (dsi->mode == OMAP_DSS_DSI_CMD_MODE)
4149 dss_mgr_unregister_framedone_handler(mgr,
4150 dsi_framedone_irq_callback, dsidev);
4151 err:
4152 dss_select_lcd_clk_source(mgr->id, OMAP_DSS_CLK_SRC_FCK);
4153 return r;
4154 }
4155
4156 static void dsi_display_uninit_dispc(struct platform_device *dsidev,
4157 struct omap_overlay_manager *mgr)
4158 {
4159 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4160
4161 if (dsi->mode == OMAP_DSS_DSI_CMD_MODE)
4162 dss_mgr_unregister_framedone_handler(mgr,
4163 dsi_framedone_irq_callback, dsidev);
4164
4165 dss_select_lcd_clk_source(mgr->id, OMAP_DSS_CLK_SRC_FCK);
4166 }
4167
4168 static int dsi_configure_dsi_clocks(struct platform_device *dsidev)
4169 {
4170 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4171 struct dss_pll_clock_info cinfo;
4172 int r;
4173
4174 cinfo = dsi->user_dsi_cinfo;
4175
4176 r = dss_pll_set_config(&dsi->pll, &cinfo);
4177 if (r) {
4178 DSSERR("Failed to set dsi clocks\n");
4179 return r;
4180 }
4181
4182 return 0;
4183 }
4184
4185 static int dsi_display_init_dsi(struct platform_device *dsidev)
4186 {
4187 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4188 int r;
4189
4190 r = dss_pll_enable(&dsi->pll);
4191 if (r)
4192 goto err0;
4193
4194 r = dsi_configure_dsi_clocks(dsidev);
4195 if (r)
4196 goto err1;
4197
4198 dss_select_dsi_clk_source(dsi->module_id, dsi->module_id == 0 ?
4199 OMAP_DSS_CLK_SRC_DSI_PLL_HSDIV_DSI :
4200 OMAP_DSS_CLK_SRC_DSI2_PLL_HSDIV_DSI);
4201
4202 DSSDBG("PLL OK\n");
4203
4204 r = dsi_cio_init(dsidev);
4205 if (r)
4206 goto err2;
4207
4208 _dsi_print_reset_status(dsidev);
4209
4210 dsi_proto_timings(dsidev);
4211 dsi_set_lp_clk_divisor(dsidev);
4212
4213 if (1)
4214 _dsi_print_reset_status(dsidev);
4215
4216 r = dsi_proto_config(dsidev);
4217 if (r)
4218 goto err3;
4219
4220 /* enable interface */
4221 dsi_vc_enable(dsidev, 0, 1);
4222 dsi_vc_enable(dsidev, 1, 1);
4223 dsi_vc_enable(dsidev, 2, 1);
4224 dsi_vc_enable(dsidev, 3, 1);
4225 dsi_if_enable(dsidev, 1);
4226 dsi_force_tx_stop_mode_io(dsidev);
4227
4228 return 0;
4229 err3:
4230 dsi_cio_uninit(dsidev);
4231 err2:
4232 dss_select_dsi_clk_source(dsi->module_id, OMAP_DSS_CLK_SRC_FCK);
4233 err1:
4234 dss_pll_disable(&dsi->pll);
4235 err0:
4236 return r;
4237 }
4238
4239 static void dsi_display_uninit_dsi(struct platform_device *dsidev,
4240 bool disconnect_lanes, bool enter_ulps)
4241 {
4242 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4243
4244 if (enter_ulps && !dsi->ulps_enabled)
4245 dsi_enter_ulps(dsidev);
4246
4247 /* disable interface */
4248 dsi_if_enable(dsidev, 0);
4249 dsi_vc_enable(dsidev, 0, 0);
4250 dsi_vc_enable(dsidev, 1, 0);
4251 dsi_vc_enable(dsidev, 2, 0);
4252 dsi_vc_enable(dsidev, 3, 0);
4253
4254 dss_select_dsi_clk_source(dsi->module_id, OMAP_DSS_CLK_SRC_FCK);
4255 dsi_cio_uninit(dsidev);
4256 dsi_pll_uninit(dsidev, disconnect_lanes);
4257 }
4258
4259 static int dsi_display_enable(struct omap_dss_device *dssdev)
4260 {
4261 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4262 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4263 int r = 0;
4264
4265 DSSDBG("dsi_display_enable\n");
4266
4267 WARN_ON(!dsi_bus_is_locked(dsidev));
4268
4269 mutex_lock(&dsi->lock);
4270
4271 r = dsi_runtime_get(dsidev);
4272 if (r)
4273 goto err_get_dsi;
4274
4275 _dsi_initialize_irq(dsidev);
4276
4277 r = dsi_display_init_dsi(dsidev);
4278 if (r)
4279 goto err_init_dsi;
4280
4281 mutex_unlock(&dsi->lock);
4282
4283 return 0;
4284
4285 err_init_dsi:
4286 dsi_runtime_put(dsidev);
4287 err_get_dsi:
4288 mutex_unlock(&dsi->lock);
4289 DSSDBG("dsi_display_enable FAILED\n");
4290 return r;
4291 }
4292
4293 static void dsi_display_disable(struct omap_dss_device *dssdev,
4294 bool disconnect_lanes, bool enter_ulps)
4295 {
4296 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4297 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4298
4299 DSSDBG("dsi_display_disable\n");
4300
4301 WARN_ON(!dsi_bus_is_locked(dsidev));
4302
4303 mutex_lock(&dsi->lock);
4304
4305 dsi_sync_vc(dsidev, 0);
4306 dsi_sync_vc(dsidev, 1);
4307 dsi_sync_vc(dsidev, 2);
4308 dsi_sync_vc(dsidev, 3);
4309
4310 dsi_display_uninit_dsi(dsidev, disconnect_lanes, enter_ulps);
4311
4312 dsi_runtime_put(dsidev);
4313
4314 mutex_unlock(&dsi->lock);
4315 }
4316
4317 static int dsi_enable_te(struct omap_dss_device *dssdev, bool enable)
4318 {
4319 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4320 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4321
4322 dsi->te_enabled = enable;
4323 return 0;
4324 }
4325
4326 #ifdef PRINT_VERBOSE_VM_TIMINGS
4327 static void print_dsi_vm(const char *str,
4328 const struct omap_dss_dsi_videomode_timings *t)
4329 {
4330 unsigned long byteclk = t->hsclk / 4;
4331 int bl, wc, pps, tot;
4332
4333 wc = DIV_ROUND_UP(t->hact * t->bitspp, 8);
4334 pps = DIV_ROUND_UP(wc + 6, t->ndl); /* pixel packet size */
4335 bl = t->hss + t->hsa + t->hse + t->hbp + t->hfp;
4336 tot = bl + pps;
4337
4338 #define TO_DSI_T(x) ((u32)div64_u64((u64)x * 1000000000llu, byteclk))
4339
4340 pr_debug("%s bck %lu, %u/%u/%u/%u/%u/%u = %u+%u = %u, "
4341 "%u/%u/%u/%u/%u/%u = %u + %u = %u\n",
4342 str,
4343 byteclk,
4344 t->hss, t->hsa, t->hse, t->hbp, pps, t->hfp,
4345 bl, pps, tot,
4346 TO_DSI_T(t->hss),
4347 TO_DSI_T(t->hsa),
4348 TO_DSI_T(t->hse),
4349 TO_DSI_T(t->hbp),
4350 TO_DSI_T(pps),
4351 TO_DSI_T(t->hfp),
4352
4353 TO_DSI_T(bl),
4354 TO_DSI_T(pps),
4355
4356 TO_DSI_T(tot));
4357 #undef TO_DSI_T
4358 }
4359
4360 static void print_dispc_vm(const char *str, const struct omap_video_timings *t)
4361 {
4362 unsigned long pck = t->pixelclock;
4363 int hact, bl, tot;
4364
4365 hact = t->x_res;
4366 bl = t->hsw + t->hbp + t->hfp;
4367 tot = hact + bl;
4368
4369 #define TO_DISPC_T(x) ((u32)div64_u64((u64)x * 1000000000llu, pck))
4370
4371 pr_debug("%s pck %lu, %u/%u/%u/%u = %u+%u = %u, "
4372 "%u/%u/%u/%u = %u + %u = %u\n",
4373 str,
4374 pck,
4375 t->hsw, t->hbp, hact, t->hfp,
4376 bl, hact, tot,
4377 TO_DISPC_T(t->hsw),
4378 TO_DISPC_T(t->hbp),
4379 TO_DISPC_T(hact),
4380 TO_DISPC_T(t->hfp),
4381 TO_DISPC_T(bl),
4382 TO_DISPC_T(hact),
4383 TO_DISPC_T(tot));
4384 #undef TO_DISPC_T
4385 }
4386
4387 /* note: this is not quite accurate */
4388 static void print_dsi_dispc_vm(const char *str,
4389 const struct omap_dss_dsi_videomode_timings *t)
4390 {
4391 struct omap_video_timings vm = { 0 };
4392 unsigned long byteclk = t->hsclk / 4;
4393 unsigned long pck;
4394 u64 dsi_tput;
4395 int dsi_hact, dsi_htot;
4396
4397 dsi_tput = (u64)byteclk * t->ndl * 8;
4398 pck = (u32)div64_u64(dsi_tput, t->bitspp);
4399 dsi_hact = DIV_ROUND_UP(DIV_ROUND_UP(t->hact * t->bitspp, 8) + 6, t->ndl);
4400 dsi_htot = t->hss + t->hsa + t->hse + t->hbp + dsi_hact + t->hfp;
4401
4402 vm.pixelclock = pck;
4403 vm.hsw = div64_u64((u64)(t->hsa + t->hse) * pck, byteclk);
4404 vm.hbp = div64_u64((u64)t->hbp * pck, byteclk);
4405 vm.hfp = div64_u64((u64)t->hfp * pck, byteclk);
4406 vm.x_res = t->hact;
4407
4408 print_dispc_vm(str, &vm);
4409 }
4410 #endif /* PRINT_VERBOSE_VM_TIMINGS */
4411
4412 static bool dsi_cm_calc_dispc_cb(int lckd, int pckd, unsigned long lck,
4413 unsigned long pck, void *data)
4414 {
4415 struct dsi_clk_calc_ctx *ctx = data;
4416 struct omap_video_timings *t = &ctx->dispc_vm;
4417
4418 ctx->dispc_cinfo.lck_div = lckd;
4419 ctx->dispc_cinfo.pck_div = pckd;
4420 ctx->dispc_cinfo.lck = lck;
4421 ctx->dispc_cinfo.pck = pck;
4422
4423 *t = *ctx->config->timings;
4424 t->pixelclock = pck;
4425 t->x_res = ctx->config->timings->x_res;
4426 t->y_res = ctx->config->timings->y_res;
4427 t->hsw = t->hfp = t->hbp = t->vsw = 1;
4428 t->vfp = t->vbp = 0;
4429
4430 return true;
4431 }
4432
4433 static bool dsi_cm_calc_hsdiv_cb(int m_dispc, unsigned long dispc,
4434 void *data)
4435 {
4436 struct dsi_clk_calc_ctx *ctx = data;
4437
4438 ctx->dsi_cinfo.mX[HSDIV_DISPC] = m_dispc;
4439 ctx->dsi_cinfo.clkout[HSDIV_DISPC] = dispc;
4440
4441 return dispc_div_calc(dispc, ctx->req_pck_min, ctx->req_pck_max,
4442 dsi_cm_calc_dispc_cb, ctx);
4443 }
4444
4445 static bool dsi_cm_calc_pll_cb(int n, int m, unsigned long fint,
4446 unsigned long clkdco, void *data)
4447 {
4448 struct dsi_clk_calc_ctx *ctx = data;
4449
4450 ctx->dsi_cinfo.n = n;
4451 ctx->dsi_cinfo.m = m;
4452 ctx->dsi_cinfo.fint = fint;
4453 ctx->dsi_cinfo.clkdco = clkdco;
4454
4455 return dss_pll_hsdiv_calc(ctx->pll, clkdco, ctx->req_pck_min,
4456 dss_feat_get_param_max(FEAT_PARAM_DSS_FCK),
4457 dsi_cm_calc_hsdiv_cb, ctx);
4458 }
4459
4460 static bool dsi_cm_calc(struct dsi_data *dsi,
4461 const struct omap_dss_dsi_config *cfg,
4462 struct dsi_clk_calc_ctx *ctx)
4463 {
4464 unsigned long clkin;
4465 int bitspp, ndl;
4466 unsigned long pll_min, pll_max;
4467 unsigned long pck, txbyteclk;
4468
4469 clkin = clk_get_rate(dsi->pll.clkin);
4470 bitspp = dsi_get_pixel_size(cfg->pixel_format);
4471 ndl = dsi->num_lanes_used - 1;
4472
4473 /*
4474 * Here we should calculate minimum txbyteclk to be able to send the
4475 * frame in time, and also to handle TE. That's not very simple, though,
4476 * especially as we go to LP between each pixel packet due to HW
4477 * "feature". So let's just estimate very roughly and multiply by 1.5.
4478 */
4479 pck = cfg->timings->pixelclock;
4480 pck = pck * 3 / 2;
4481 txbyteclk = pck * bitspp / 8 / ndl;
4482
4483 memset(ctx, 0, sizeof(*ctx));
4484 ctx->dsidev = dsi->pdev;
4485 ctx->pll = &dsi->pll;
4486 ctx->config = cfg;
4487 ctx->req_pck_min = pck;
4488 ctx->req_pck_nom = pck;
4489 ctx->req_pck_max = pck * 3 / 2;
4490
4491 pll_min = max(cfg->hs_clk_min * 4, txbyteclk * 4 * 4);
4492 pll_max = cfg->hs_clk_max * 4;
4493
4494 return dss_pll_calc(ctx->pll, clkin,
4495 pll_min, pll_max,
4496 dsi_cm_calc_pll_cb, ctx);
4497 }
4498
4499 static bool dsi_vm_calc_blanking(struct dsi_clk_calc_ctx *ctx)
4500 {
4501 struct dsi_data *dsi = dsi_get_dsidrv_data(ctx->dsidev);
4502 const struct omap_dss_dsi_config *cfg = ctx->config;
4503 int bitspp = dsi_get_pixel_size(cfg->pixel_format);
4504 int ndl = dsi->num_lanes_used - 1;
4505 unsigned long hsclk = ctx->dsi_cinfo.clkdco / 4;
4506 unsigned long byteclk = hsclk / 4;
4507
4508 unsigned long dispc_pck, req_pck_min, req_pck_nom, req_pck_max;
4509 int xres;
4510 int panel_htot, panel_hbl; /* pixels */
4511 int dispc_htot, dispc_hbl; /* pixels */
4512 int dsi_htot, dsi_hact, dsi_hbl, hss, hse; /* byteclks */
4513 int hfp, hsa, hbp;
4514 const struct omap_video_timings *req_vm;
4515 struct omap_video_timings *dispc_vm;
4516 struct omap_dss_dsi_videomode_timings *dsi_vm;
4517 u64 dsi_tput, dispc_tput;
4518
4519 dsi_tput = (u64)byteclk * ndl * 8;
4520
4521 req_vm = cfg->timings;
4522 req_pck_min = ctx->req_pck_min;
4523 req_pck_max = ctx->req_pck_max;
4524 req_pck_nom = ctx->req_pck_nom;
4525
4526 dispc_pck = ctx->dispc_cinfo.pck;
4527 dispc_tput = (u64)dispc_pck * bitspp;
4528
4529 xres = req_vm->x_res;
4530
4531 panel_hbl = req_vm->hfp + req_vm->hbp + req_vm->hsw;
4532 panel_htot = xres + panel_hbl;
4533
4534 dsi_hact = DIV_ROUND_UP(DIV_ROUND_UP(xres * bitspp, 8) + 6, ndl);
4535
4536 /*
4537 * When there are no line buffers, DISPC and DSI must have the
4538 * same tput. Otherwise DISPC tput needs to be higher than DSI's.
4539 */
4540 if (dsi->line_buffer_size < xres * bitspp / 8) {
4541 if (dispc_tput != dsi_tput)
4542 return false;
4543 } else {
4544 if (dispc_tput < dsi_tput)
4545 return false;
4546 }
4547
4548 /* DSI tput must be over the min requirement */
4549 if (dsi_tput < (u64)bitspp * req_pck_min)
4550 return false;
4551
4552 /* When non-burst mode, DSI tput must be below max requirement. */
4553 if (cfg->trans_mode != OMAP_DSS_DSI_BURST_MODE) {
4554 if (dsi_tput > (u64)bitspp * req_pck_max)
4555 return false;
4556 }
4557
4558 hss = DIV_ROUND_UP(4, ndl);
4559
4560 if (cfg->trans_mode == OMAP_DSS_DSI_PULSE_MODE) {
4561 if (ndl == 3 && req_vm->hsw == 0)
4562 hse = 1;
4563 else
4564 hse = DIV_ROUND_UP(4, ndl);
4565 } else {
4566 hse = 0;
4567 }
4568
4569 /* DSI htot to match the panel's nominal pck */
4570 dsi_htot = div64_u64((u64)panel_htot * byteclk, req_pck_nom);
4571
4572 /* fail if there would be no time for blanking */
4573 if (dsi_htot < hss + hse + dsi_hact)
4574 return false;
4575
4576 /* total DSI blanking needed to achieve panel's TL */
4577 dsi_hbl = dsi_htot - dsi_hact;
4578
4579 /* DISPC htot to match the DSI TL */
4580 dispc_htot = div64_u64((u64)dsi_htot * dispc_pck, byteclk);
4581
4582 /* verify that the DSI and DISPC TLs are the same */
4583 if ((u64)dsi_htot * dispc_pck != (u64)dispc_htot * byteclk)
4584 return false;
4585
4586 dispc_hbl = dispc_htot - xres;
4587
4588 /* setup DSI videomode */
4589
4590 dsi_vm = &ctx->dsi_vm;
4591 memset(dsi_vm, 0, sizeof(*dsi_vm));
4592
4593 dsi_vm->hsclk = hsclk;
4594
4595 dsi_vm->ndl = ndl;
4596 dsi_vm->bitspp = bitspp;
4597
4598 if (cfg->trans_mode != OMAP_DSS_DSI_PULSE_MODE) {
4599 hsa = 0;
4600 } else if (ndl == 3 && req_vm->hsw == 0) {
4601 hsa = 0;
4602 } else {
4603 hsa = div64_u64((u64)req_vm->hsw * byteclk, req_pck_nom);
4604 hsa = max(hsa - hse, 1);
4605 }
4606
4607 hbp = div64_u64((u64)req_vm->hbp * byteclk, req_pck_nom);
4608 hbp = max(hbp, 1);
4609
4610 hfp = dsi_hbl - (hss + hsa + hse + hbp);
4611 if (hfp < 1) {
4612 int t;
4613 /* we need to take cycles from hbp */
4614
4615 t = 1 - hfp;
4616 hbp = max(hbp - t, 1);
4617 hfp = dsi_hbl - (hss + hsa + hse + hbp);
4618
4619 if (hfp < 1 && hsa > 0) {
4620 /* we need to take cycles from hsa */
4621 t = 1 - hfp;
4622 hsa = max(hsa - t, 1);
4623 hfp = dsi_hbl - (hss + hsa + hse + hbp);
4624 }
4625 }
4626
4627 if (hfp < 1)
4628 return false;
4629
4630 dsi_vm->hss = hss;
4631 dsi_vm->hsa = hsa;
4632 dsi_vm->hse = hse;
4633 dsi_vm->hbp = hbp;
4634 dsi_vm->hact = xres;
4635 dsi_vm->hfp = hfp;
4636
4637 dsi_vm->vsa = req_vm->vsw;
4638 dsi_vm->vbp = req_vm->vbp;
4639 dsi_vm->vact = req_vm->y_res;
4640 dsi_vm->vfp = req_vm->vfp;
4641
4642 dsi_vm->trans_mode = cfg->trans_mode;
4643
4644 dsi_vm->blanking_mode = 0;
4645 dsi_vm->hsa_blanking_mode = 1;
4646 dsi_vm->hfp_blanking_mode = 1;
4647 dsi_vm->hbp_blanking_mode = 1;
4648
4649 dsi_vm->ddr_clk_always_on = cfg->ddr_clk_always_on;
4650 dsi_vm->window_sync = 4;
4651
4652 /* setup DISPC videomode */
4653
4654 dispc_vm = &ctx->dispc_vm;
4655 *dispc_vm = *req_vm;
4656 dispc_vm->pixelclock = dispc_pck;
4657
4658 if (cfg->trans_mode == OMAP_DSS_DSI_PULSE_MODE) {
4659 hsa = div64_u64((u64)req_vm->hsw * dispc_pck,
4660 req_pck_nom);
4661 hsa = max(hsa, 1);
4662 } else {
4663 hsa = 1;
4664 }
4665
4666 hbp = div64_u64((u64)req_vm->hbp * dispc_pck, req_pck_nom);
4667 hbp = max(hbp, 1);
4668
4669 hfp = dispc_hbl - hsa - hbp;
4670 if (hfp < 1) {
4671 int t;
4672 /* we need to take cycles from hbp */
4673
4674 t = 1 - hfp;
4675 hbp = max(hbp - t, 1);
4676 hfp = dispc_hbl - hsa - hbp;
4677
4678 if (hfp < 1) {
4679 /* we need to take cycles from hsa */
4680 t = 1 - hfp;
4681 hsa = max(hsa - t, 1);
4682 hfp = dispc_hbl - hsa - hbp;
4683 }
4684 }
4685
4686 if (hfp < 1)
4687 return false;
4688
4689 dispc_vm->hfp = hfp;
4690 dispc_vm->hsw = hsa;
4691 dispc_vm->hbp = hbp;
4692
4693 return true;
4694 }
4695
4696
4697 static bool dsi_vm_calc_dispc_cb(int lckd, int pckd, unsigned long lck,
4698 unsigned long pck, void *data)
4699 {
4700 struct dsi_clk_calc_ctx *ctx = data;
4701
4702 ctx->dispc_cinfo.lck_div = lckd;
4703 ctx->dispc_cinfo.pck_div = pckd;
4704 ctx->dispc_cinfo.lck = lck;
4705 ctx->dispc_cinfo.pck = pck;
4706
4707 if (dsi_vm_calc_blanking(ctx) == false)
4708 return false;
4709
4710 #ifdef PRINT_VERBOSE_VM_TIMINGS
4711 print_dispc_vm("dispc", &ctx->dispc_vm);
4712 print_dsi_vm("dsi ", &ctx->dsi_vm);
4713 print_dispc_vm("req ", ctx->config->timings);
4714 print_dsi_dispc_vm("act ", &ctx->dsi_vm);
4715 #endif
4716
4717 return true;
4718 }
4719
4720 static bool dsi_vm_calc_hsdiv_cb(int m_dispc, unsigned long dispc,
4721 void *data)
4722 {
4723 struct dsi_clk_calc_ctx *ctx = data;
4724 unsigned long pck_max;
4725
4726 ctx->dsi_cinfo.mX[HSDIV_DISPC] = m_dispc;
4727 ctx->dsi_cinfo.clkout[HSDIV_DISPC] = dispc;
4728
4729 /*
4730 * In burst mode we can let the dispc pck be arbitrarily high, but it
4731 * limits our scaling abilities. So for now, don't aim too high.
4732 */
4733
4734 if (ctx->config->trans_mode == OMAP_DSS_DSI_BURST_MODE)
4735 pck_max = ctx->req_pck_max + 10000000;
4736 else
4737 pck_max = ctx->req_pck_max;
4738
4739 return dispc_div_calc(dispc, ctx->req_pck_min, pck_max,
4740 dsi_vm_calc_dispc_cb, ctx);
4741 }
4742
4743 static bool dsi_vm_calc_pll_cb(int n, int m, unsigned long fint,
4744 unsigned long clkdco, void *data)
4745 {
4746 struct dsi_clk_calc_ctx *ctx = data;
4747
4748 ctx->dsi_cinfo.n = n;
4749 ctx->dsi_cinfo.m = m;
4750 ctx->dsi_cinfo.fint = fint;
4751 ctx->dsi_cinfo.clkdco = clkdco;
4752
4753 return dss_pll_hsdiv_calc(ctx->pll, clkdco, ctx->req_pck_min,
4754 dss_feat_get_param_max(FEAT_PARAM_DSS_FCK),
4755 dsi_vm_calc_hsdiv_cb, ctx);
4756 }
4757
4758 static bool dsi_vm_calc(struct dsi_data *dsi,
4759 const struct omap_dss_dsi_config *cfg,
4760 struct dsi_clk_calc_ctx *ctx)
4761 {
4762 const struct omap_video_timings *t = cfg->timings;
4763 unsigned long clkin;
4764 unsigned long pll_min;
4765 unsigned long pll_max;
4766 int ndl = dsi->num_lanes_used - 1;
4767 int bitspp = dsi_get_pixel_size(cfg->pixel_format);
4768 unsigned long byteclk_min;
4769
4770 clkin = clk_get_rate(dsi->pll.clkin);
4771
4772 memset(ctx, 0, sizeof(*ctx));
4773 ctx->dsidev = dsi->pdev;
4774 ctx->pll = &dsi->pll;
4775 ctx->config = cfg;
4776
4777 /* these limits should come from the panel driver */
4778 ctx->req_pck_min = t->pixelclock - 1000;
4779 ctx->req_pck_nom = t->pixelclock;
4780 ctx->req_pck_max = t->pixelclock + 1000;
4781
4782 byteclk_min = div64_u64((u64)ctx->req_pck_min * bitspp, ndl * 8);
4783 pll_min = max(cfg->hs_clk_min * 4, byteclk_min * 4 * 4);
4784
4785 if (cfg->trans_mode == OMAP_DSS_DSI_BURST_MODE) {
4786 pll_max = cfg->hs_clk_max * 4;
4787 } else {
4788 unsigned long byteclk_max;
4789 byteclk_max = div64_u64((u64)ctx->req_pck_max * bitspp,
4790 ndl * 8);
4791
4792 pll_max = byteclk_max * 4 * 4;
4793 }
4794
4795 return dss_pll_calc(ctx->pll, clkin,
4796 pll_min, pll_max,
4797 dsi_vm_calc_pll_cb, ctx);
4798 }
4799
4800 static int dsi_set_config(struct omap_dss_device *dssdev,
4801 const struct omap_dss_dsi_config *config)
4802 {
4803 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4804 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4805 struct dsi_clk_calc_ctx ctx;
4806 bool ok;
4807 int r;
4808
4809 mutex_lock(&dsi->lock);
4810
4811 dsi->pix_fmt = config->pixel_format;
4812 dsi->mode = config->mode;
4813
4814 if (config->mode == OMAP_DSS_DSI_VIDEO_MODE)
4815 ok = dsi_vm_calc(dsi, config, &ctx);
4816 else
4817 ok = dsi_cm_calc(dsi, config, &ctx);
4818
4819 if (!ok) {
4820 DSSERR("failed to find suitable DSI clock settings\n");
4821 r = -EINVAL;
4822 goto err;
4823 }
4824
4825 dsi_pll_calc_dsi_fck(&ctx.dsi_cinfo);
4826
4827 r = dsi_lp_clock_calc(ctx.dsi_cinfo.clkout[HSDIV_DSI],
4828 config->lp_clk_min, config->lp_clk_max, &dsi->user_lp_cinfo);
4829 if (r) {
4830 DSSERR("failed to find suitable DSI LP clock settings\n");
4831 goto err;
4832 }
4833
4834 dsi->user_dsi_cinfo = ctx.dsi_cinfo;
4835 dsi->user_dispc_cinfo = ctx.dispc_cinfo;
4836
4837 dsi->timings = ctx.dispc_vm;
4838 dsi->vm_timings = ctx.dsi_vm;
4839
4840 mutex_unlock(&dsi->lock);
4841
4842 return 0;
4843 err:
4844 mutex_unlock(&dsi->lock);
4845
4846 return r;
4847 }
4848
4849 /*
4850 * Return a hardcoded channel for the DSI output. This should work for
4851 * current use cases, but this can be later expanded to either resolve
4852 * the channel in some more dynamic manner, or get the channel as a user
4853 * parameter.
4854 */
4855 static enum omap_channel dsi_get_channel(int module_id)
4856 {
4857 switch (omapdss_get_version()) {
4858 case OMAPDSS_VER_OMAP24xx:
4859 case OMAPDSS_VER_AM43xx:
4860 DSSWARN("DSI not supported\n");
4861 return OMAP_DSS_CHANNEL_LCD;
4862
4863 case OMAPDSS_VER_OMAP34xx_ES1:
4864 case OMAPDSS_VER_OMAP34xx_ES3:
4865 case OMAPDSS_VER_OMAP3630:
4866 case OMAPDSS_VER_AM35xx:
4867 return OMAP_DSS_CHANNEL_LCD;
4868
4869 case OMAPDSS_VER_OMAP4430_ES1:
4870 case OMAPDSS_VER_OMAP4430_ES2:
4871 case OMAPDSS_VER_OMAP4:
4872 switch (module_id) {
4873 case 0:
4874 return OMAP_DSS_CHANNEL_LCD;
4875 case 1:
4876 return OMAP_DSS_CHANNEL_LCD2;
4877 default:
4878 DSSWARN("unsupported module id\n");
4879 return OMAP_DSS_CHANNEL_LCD;
4880 }
4881
4882 case OMAPDSS_VER_OMAP5:
4883 switch (module_id) {
4884 case 0:
4885 return OMAP_DSS_CHANNEL_LCD;
4886 case 1:
4887 return OMAP_DSS_CHANNEL_LCD3;
4888 default:
4889 DSSWARN("unsupported module id\n");
4890 return OMAP_DSS_CHANNEL_LCD;
4891 }
4892
4893 default:
4894 DSSWARN("unsupported DSS version\n");
4895 return OMAP_DSS_CHANNEL_LCD;
4896 }
4897 }
4898
4899 static int dsi_request_vc(struct omap_dss_device *dssdev, int *channel)
4900 {
4901 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4902 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4903 int i;
4904
4905 for (i = 0; i < ARRAY_SIZE(dsi->vc); i++) {
4906 if (!dsi->vc[i].dssdev) {
4907 dsi->vc[i].dssdev = dssdev;
4908 *channel = i;
4909 return 0;
4910 }
4911 }
4912
4913 DSSERR("cannot get VC for display %s", dssdev->name);
4914 return -ENOSPC;
4915 }
4916
4917 static int dsi_set_vc_id(struct omap_dss_device *dssdev, int channel, int vc_id)
4918 {
4919 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4920 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4921
4922 if (vc_id < 0 || vc_id > 3) {
4923 DSSERR("VC ID out of range\n");
4924 return -EINVAL;
4925 }
4926
4927 if (channel < 0 || channel > 3) {
4928 DSSERR("Virtual Channel out of range\n");
4929 return -EINVAL;
4930 }
4931
4932 if (dsi->vc[channel].dssdev != dssdev) {
4933 DSSERR("Virtual Channel not allocated to display %s\n",
4934 dssdev->name);
4935 return -EINVAL;
4936 }
4937
4938 dsi->vc[channel].vc_id = vc_id;
4939
4940 return 0;
4941 }
4942
4943 static void dsi_release_vc(struct omap_dss_device *dssdev, int channel)
4944 {
4945 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4946 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4947
4948 if ((channel >= 0 && channel <= 3) &&
4949 dsi->vc[channel].dssdev == dssdev) {
4950 dsi->vc[channel].dssdev = NULL;
4951 dsi->vc[channel].vc_id = 0;
4952 }
4953 }
4954
4955
4956 static int dsi_get_clocks(struct platform_device *dsidev)
4957 {
4958 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
4959 struct clk *clk;
4960
4961 clk = devm_clk_get(&dsidev->dev, "fck");
4962 if (IS_ERR(clk)) {
4963 DSSERR("can't get fck\n");
4964 return PTR_ERR(clk);
4965 }
4966
4967 dsi->dss_clk = clk;
4968
4969 return 0;
4970 }
4971
4972 static int dsi_connect(struct omap_dss_device *dssdev,
4973 struct omap_dss_device *dst)
4974 {
4975 struct platform_device *dsidev = dsi_get_dsidev_from_dssdev(dssdev);
4976 struct omap_overlay_manager *mgr;
4977 int r;
4978
4979 r = dsi_regulator_init(dsidev);
4980 if (r)
4981 return r;
4982
4983 mgr = omap_dss_get_overlay_manager(dssdev->dispc_channel);
4984 if (!mgr)
4985 return -ENODEV;
4986
4987 r = dss_mgr_connect(mgr, dssdev);
4988 if (r)
4989 return r;
4990
4991 r = omapdss_output_set_device(dssdev, dst);
4992 if (r) {
4993 DSSERR("failed to connect output to new device: %s\n",
4994 dssdev->name);
4995 dss_mgr_disconnect(mgr, dssdev);
4996 return r;
4997 }
4998
4999 return 0;
5000 }
5001
5002 static void dsi_disconnect(struct omap_dss_device *dssdev,
5003 struct omap_dss_device *dst)
5004 {
5005 WARN_ON(dst != dssdev->dst);
5006
5007 if (dst != dssdev->dst)
5008 return;
5009
5010 omapdss_output_unset_device(dssdev);
5011
5012 if (dssdev->manager)
5013 dss_mgr_disconnect(dssdev->manager, dssdev);
5014 }
5015
5016 static const struct omapdss_dsi_ops dsi_ops = {
5017 .connect = dsi_connect,
5018 .disconnect = dsi_disconnect,
5019
5020 .bus_lock = dsi_bus_lock,
5021 .bus_unlock = dsi_bus_unlock,
5022
5023 .enable = dsi_display_enable,
5024 .disable = dsi_display_disable,
5025
5026 .enable_hs = dsi_vc_enable_hs,
5027
5028 .configure_pins = dsi_configure_pins,
5029 .set_config = dsi_set_config,
5030
5031 .enable_video_output = dsi_enable_video_output,
5032 .disable_video_output = dsi_disable_video_output,
5033
5034 .update = dsi_update,
5035
5036 .enable_te = dsi_enable_te,
5037
5038 .request_vc = dsi_request_vc,
5039 .set_vc_id = dsi_set_vc_id,
5040 .release_vc = dsi_release_vc,
5041
5042 .dcs_write = dsi_vc_dcs_write,
5043 .dcs_write_nosync = dsi_vc_dcs_write_nosync,
5044 .dcs_read = dsi_vc_dcs_read,
5045
5046 .gen_write = dsi_vc_generic_write,
5047 .gen_write_nosync = dsi_vc_generic_write_nosync,
5048 .gen_read = dsi_vc_generic_read,
5049
5050 .bta_sync = dsi_vc_send_bta_sync,
5051
5052 .set_max_rx_packet_size = dsi_vc_set_max_rx_packet_size,
5053 };
5054
5055 static void dsi_init_output(struct platform_device *dsidev)
5056 {
5057 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
5058 struct omap_dss_device *out = &dsi->output;
5059
5060 out->dev = &dsidev->dev;
5061 out->id = dsi->module_id == 0 ?
5062 OMAP_DSS_OUTPUT_DSI1 : OMAP_DSS_OUTPUT_DSI2;
5063
5064 out->output_type = OMAP_DISPLAY_TYPE_DSI;
5065 out->name = dsi->module_id == 0 ? "dsi.0" : "dsi.1";
5066 out->dispc_channel = dsi_get_channel(dsi->module_id);
5067 out->ops.dsi = &dsi_ops;
5068 out->owner = THIS_MODULE;
5069
5070 omapdss_register_output(out);
5071 }
5072
5073 static void dsi_uninit_output(struct platform_device *dsidev)
5074 {
5075 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
5076 struct omap_dss_device *out = &dsi->output;
5077
5078 omapdss_unregister_output(out);
5079 }
5080
5081 static int dsi_probe_of(struct platform_device *pdev)
5082 {
5083 struct device_node *node = pdev->dev.of_node;
5084 struct dsi_data *dsi = dsi_get_dsidrv_data(pdev);
5085 struct property *prop;
5086 u32 lane_arr[10];
5087 int len, num_pins;
5088 int r, i;
5089 struct device_node *ep;
5090 struct omap_dsi_pin_config pin_cfg;
5091
5092 ep = omapdss_of_get_first_endpoint(node);
5093 if (!ep)
5094 return 0;
5095
5096 prop = of_find_property(ep, "lanes", &len);
5097 if (prop == NULL) {
5098 dev_err(&pdev->dev, "failed to find lane data\n");
5099 r = -EINVAL;
5100 goto err;
5101 }
5102
5103 num_pins = len / sizeof(u32);
5104
5105 if (num_pins < 4 || num_pins % 2 != 0 ||
5106 num_pins > dsi->num_lanes_supported * 2) {
5107 dev_err(&pdev->dev, "bad number of lanes\n");
5108 r = -EINVAL;
5109 goto err;
5110 }
5111
5112 r = of_property_read_u32_array(ep, "lanes", lane_arr, num_pins);
5113 if (r) {
5114 dev_err(&pdev->dev, "failed to read lane data\n");
5115 goto err;
5116 }
5117
5118 pin_cfg.num_pins = num_pins;
5119 for (i = 0; i < num_pins; ++i)
5120 pin_cfg.pins[i] = (int)lane_arr[i];
5121
5122 r = dsi_configure_pins(&dsi->output, &pin_cfg);
5123 if (r) {
5124 dev_err(&pdev->dev, "failed to configure pins");
5125 goto err;
5126 }
5127
5128 of_node_put(ep);
5129
5130 return 0;
5131
5132 err:
5133 of_node_put(ep);
5134 return r;
5135 }
5136
5137 static const struct dss_pll_ops dsi_pll_ops = {
5138 .enable = dsi_pll_enable,
5139 .disable = dsi_pll_disable,
5140 .set_config = dss_pll_write_config_type_a,
5141 };
5142
5143 static const struct dss_pll_hw dss_omap3_dsi_pll_hw = {
5144 .n_max = (1 << 7) - 1,
5145 .m_max = (1 << 11) - 1,
5146 .mX_max = (1 << 4) - 1,
5147 .fint_min = 750000,
5148 .fint_max = 2100000,
5149 .clkdco_low = 1000000000,
5150 .clkdco_max = 1800000000,
5151
5152 .n_msb = 7,
5153 .n_lsb = 1,
5154 .m_msb = 18,
5155 .m_lsb = 8,
5156
5157 .mX_msb[0] = 22,
5158 .mX_lsb[0] = 19,
5159 .mX_msb[1] = 26,
5160 .mX_lsb[1] = 23,
5161
5162 .has_stopmode = true,
5163 .has_freqsel = true,
5164 .has_selfreqdco = false,
5165 .has_refsel = false,
5166 };
5167
5168 static const struct dss_pll_hw dss_omap4_dsi_pll_hw = {
5169 .n_max = (1 << 8) - 1,
5170 .m_max = (1 << 12) - 1,
5171 .mX_max = (1 << 5) - 1,
5172 .fint_min = 500000,
5173 .fint_max = 2500000,
5174 .clkdco_low = 1000000000,
5175 .clkdco_max = 1800000000,
5176
5177 .n_msb = 8,
5178 .n_lsb = 1,
5179 .m_msb = 20,
5180 .m_lsb = 9,
5181
5182 .mX_msb[0] = 25,
5183 .mX_lsb[0] = 21,
5184 .mX_msb[1] = 30,
5185 .mX_lsb[1] = 26,
5186
5187 .has_stopmode = true,
5188 .has_freqsel = false,
5189 .has_selfreqdco = false,
5190 .has_refsel = false,
5191 };
5192
5193 static const struct dss_pll_hw dss_omap5_dsi_pll_hw = {
5194 .n_max = (1 << 8) - 1,
5195 .m_max = (1 << 12) - 1,
5196 .mX_max = (1 << 5) - 1,
5197 .fint_min = 150000,
5198 .fint_max = 52000000,
5199 .clkdco_low = 1000000000,
5200 .clkdco_max = 1800000000,
5201
5202 .n_msb = 8,
5203 .n_lsb = 1,
5204 .m_msb = 20,
5205 .m_lsb = 9,
5206
5207 .mX_msb[0] = 25,
5208 .mX_lsb[0] = 21,
5209 .mX_msb[1] = 30,
5210 .mX_lsb[1] = 26,
5211
5212 .has_stopmode = true,
5213 .has_freqsel = false,
5214 .has_selfreqdco = true,
5215 .has_refsel = true,
5216 };
5217
5218 static int dsi_init_pll_data(struct platform_device *dsidev)
5219 {
5220 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
5221 struct dss_pll *pll = &dsi->pll;
5222 struct clk *clk;
5223 int r;
5224
5225 clk = devm_clk_get(&dsidev->dev, "sys_clk");
5226 if (IS_ERR(clk)) {
5227 DSSERR("can't get sys_clk\n");
5228 return PTR_ERR(clk);
5229 }
5230
5231 pll->name = dsi->module_id == 0 ? "dsi0" : "dsi1";
5232 pll->id = dsi->module_id == 0 ? DSS_PLL_DSI1 : DSS_PLL_DSI2;
5233 pll->clkin = clk;
5234 pll->base = dsi->pll_base;
5235
5236 switch (omapdss_get_version()) {
5237 case OMAPDSS_VER_OMAP34xx_ES1:
5238 case OMAPDSS_VER_OMAP34xx_ES3:
5239 case OMAPDSS_VER_OMAP3630:
5240 case OMAPDSS_VER_AM35xx:
5241 pll->hw = &dss_omap3_dsi_pll_hw;
5242 break;
5243
5244 case OMAPDSS_VER_OMAP4430_ES1:
5245 case OMAPDSS_VER_OMAP4430_ES2:
5246 case OMAPDSS_VER_OMAP4:
5247 pll->hw = &dss_omap4_dsi_pll_hw;
5248 break;
5249
5250 case OMAPDSS_VER_OMAP5:
5251 pll->hw = &dss_omap5_dsi_pll_hw;
5252 break;
5253
5254 default:
5255 return -ENODEV;
5256 }
5257
5258 pll->ops = &dsi_pll_ops;
5259
5260 r = dss_pll_register(pll);
5261 if (r)
5262 return r;
5263
5264 return 0;
5265 }
5266
5267 /* DSI1 HW IP initialisation */
5268 static int dsi_bind(struct device *dev, struct device *master, void *data)
5269 {
5270 struct platform_device *dsidev = to_platform_device(dev);
5271 u32 rev;
5272 int r, i;
5273 struct dsi_data *dsi;
5274 struct resource *dsi_mem;
5275 struct resource *res;
5276 struct resource temp_res;
5277
5278 dsi = devm_kzalloc(&dsidev->dev, sizeof(*dsi), GFP_KERNEL);
5279 if (!dsi)
5280 return -ENOMEM;
5281
5282 dsi->pdev = dsidev;
5283 dev_set_drvdata(&dsidev->dev, dsi);
5284
5285 spin_lock_init(&dsi->irq_lock);
5286 spin_lock_init(&dsi->errors_lock);
5287 dsi->errors = 0;
5288
5289 #ifdef CONFIG_FB_OMAP2_DSS_COLLECT_IRQ_STATS
5290 spin_lock_init(&dsi->irq_stats_lock);
5291 dsi->irq_stats.last_reset = jiffies;
5292 #endif
5293
5294 mutex_init(&dsi->lock);
5295 sema_init(&dsi->bus_lock, 1);
5296
5297 INIT_DEFERRABLE_WORK(&dsi->framedone_timeout_work,
5298 dsi_framedone_timeout_work_callback);
5299
5300 #ifdef DSI_CATCH_MISSING_TE
5301 init_timer(&dsi->te_timer);
5302 dsi->te_timer.function = dsi_te_timeout;
5303 dsi->te_timer.data = 0;
5304 #endif
5305
5306 res = platform_get_resource_byname(dsidev, IORESOURCE_MEM, "proto");
5307 if (!res) {
5308 res = platform_get_resource(dsidev, IORESOURCE_MEM, 0);
5309 if (!res) {
5310 DSSERR("can't get IORESOURCE_MEM DSI\n");
5311 return -EINVAL;
5312 }
5313
5314 temp_res.start = res->start;
5315 temp_res.end = temp_res.start + DSI_PROTO_SZ - 1;
5316 res = &temp_res;
5317 }
5318
5319 dsi_mem = res;
5320
5321 dsi->proto_base = devm_ioremap(&dsidev->dev, res->start,
5322 resource_size(res));
5323 if (!dsi->proto_base) {
5324 DSSERR("can't ioremap DSI protocol engine\n");
5325 return -ENOMEM;
5326 }
5327
5328 res = platform_get_resource_byname(dsidev, IORESOURCE_MEM, "phy");
5329 if (!res) {
5330 res = platform_get_resource(dsidev, IORESOURCE_MEM, 0);
5331 if (!res) {
5332 DSSERR("can't get IORESOURCE_MEM DSI\n");
5333 return -EINVAL;
5334 }
5335
5336 temp_res.start = res->start + DSI_PHY_OFFSET;
5337 temp_res.end = temp_res.start + DSI_PHY_SZ - 1;
5338 res = &temp_res;
5339 }
5340
5341 dsi->phy_base = devm_ioremap(&dsidev->dev, res->start,
5342 resource_size(res));
5343 if (!dsi->phy_base) {
5344 DSSERR("can't ioremap DSI PHY\n");
5345 return -ENOMEM;
5346 }
5347
5348 res = platform_get_resource_byname(dsidev, IORESOURCE_MEM, "pll");
5349 if (!res) {
5350 res = platform_get_resource(dsidev, IORESOURCE_MEM, 0);
5351 if (!res) {
5352 DSSERR("can't get IORESOURCE_MEM DSI\n");
5353 return -EINVAL;
5354 }
5355
5356 temp_res.start = res->start + DSI_PLL_OFFSET;
5357 temp_res.end = temp_res.start + DSI_PLL_SZ - 1;
5358 res = &temp_res;
5359 }
5360
5361 dsi->pll_base = devm_ioremap(&dsidev->dev, res->start,
5362 resource_size(res));
5363 if (!dsi->pll_base) {
5364 DSSERR("can't ioremap DSI PLL\n");
5365 return -ENOMEM;
5366 }
5367
5368 dsi->irq = platform_get_irq(dsi->pdev, 0);
5369 if (dsi->irq < 0) {
5370 DSSERR("platform_get_irq failed\n");
5371 return -ENODEV;
5372 }
5373
5374 r = devm_request_irq(&dsidev->dev, dsi->irq, omap_dsi_irq_handler,
5375 IRQF_SHARED, dev_name(&dsidev->dev), dsi->pdev);
5376 if (r < 0) {
5377 DSSERR("request_irq failed\n");
5378 return r;
5379 }
5380
5381 if (dsidev->dev.of_node) {
5382 const struct of_device_id *match;
5383 const struct dsi_module_id_data *d;
5384
5385 match = of_match_node(dsi_of_match, dsidev->dev.of_node);
5386 if (!match) {
5387 DSSERR("unsupported DSI module\n");
5388 return -ENODEV;
5389 }
5390
5391 d = match->data;
5392
5393 while (d->address != 0 && d->address != dsi_mem->start)
5394 d++;
5395
5396 if (d->address == 0) {
5397 DSSERR("unsupported DSI module\n");
5398 return -ENODEV;
5399 }
5400
5401 dsi->module_id = d->id;
5402 } else {
5403 dsi->module_id = dsidev->id;
5404 }
5405
5406 /* DSI VCs initialization */
5407 for (i = 0; i < ARRAY_SIZE(dsi->vc); i++) {
5408 dsi->vc[i].source = DSI_VC_SOURCE_L4;
5409 dsi->vc[i].dssdev = NULL;
5410 dsi->vc[i].vc_id = 0;
5411 }
5412
5413 r = dsi_get_clocks(dsidev);
5414 if (r)
5415 return r;
5416
5417 dsi_init_pll_data(dsidev);
5418
5419 pm_runtime_enable(&dsidev->dev);
5420
5421 r = dsi_runtime_get(dsidev);
5422 if (r)
5423 goto err_runtime_get;
5424
5425 rev = dsi_read_reg(dsidev, DSI_REVISION);
5426 dev_dbg(&dsidev->dev, "OMAP DSI rev %d.%d\n",
5427 FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
5428
5429 /* DSI on OMAP3 doesn't have register DSI_GNQ, set number
5430 * of data to 3 by default */
5431 if (dss_has_feature(FEAT_DSI_GNQ))
5432 /* NB_DATA_LANES */
5433 dsi->num_lanes_supported = 1 + REG_GET(dsidev, DSI_GNQ, 11, 9);
5434 else
5435 dsi->num_lanes_supported = 3;
5436
5437 dsi->line_buffer_size = dsi_get_line_buf_size(dsidev);
5438
5439 dsi_init_output(dsidev);
5440
5441 if (dsidev->dev.of_node) {
5442 r = dsi_probe_of(dsidev);
5443 if (r) {
5444 DSSERR("Invalid DSI DT data\n");
5445 goto err_probe_of;
5446 }
5447
5448 r = of_platform_populate(dsidev->dev.of_node, NULL, NULL,
5449 &dsidev->dev);
5450 if (r)
5451 DSSERR("Failed to populate DSI child devices: %d\n", r);
5452 }
5453
5454 dsi_runtime_put(dsidev);
5455
5456 if (dsi->module_id == 0)
5457 dss_debugfs_create_file("dsi1_regs", dsi1_dump_regs);
5458 else if (dsi->module_id == 1)
5459 dss_debugfs_create_file("dsi2_regs", dsi2_dump_regs);
5460
5461 #ifdef CONFIG_FB_OMAP2_DSS_COLLECT_IRQ_STATS
5462 if (dsi->module_id == 0)
5463 dss_debugfs_create_file("dsi1_irqs", dsi1_dump_irqs);
5464 else if (dsi->module_id == 1)
5465 dss_debugfs_create_file("dsi2_irqs", dsi2_dump_irqs);
5466 #endif
5467
5468 return 0;
5469
5470 err_probe_of:
5471 dsi_uninit_output(dsidev);
5472 dsi_runtime_put(dsidev);
5473
5474 err_runtime_get:
5475 pm_runtime_disable(&dsidev->dev);
5476 return r;
5477 }
5478
5479 static void dsi_unbind(struct device *dev, struct device *master, void *data)
5480 {
5481 struct platform_device *dsidev = to_platform_device(dev);
5482 struct dsi_data *dsi = dsi_get_dsidrv_data(dsidev);
5483
5484 of_platform_depopulate(&dsidev->dev);
5485
5486 WARN_ON(dsi->scp_clk_refcount > 0);
5487
5488 dss_pll_unregister(&dsi->pll);
5489
5490 dsi_uninit_output(dsidev);
5491
5492 pm_runtime_disable(&dsidev->dev);
5493
5494 if (dsi->vdds_dsi_reg != NULL && dsi->vdds_dsi_enabled) {
5495 regulator_disable(dsi->vdds_dsi_reg);
5496 dsi->vdds_dsi_enabled = false;
5497 }
5498 }
5499
5500 static const struct component_ops dsi_component_ops = {
5501 .bind = dsi_bind,
5502 .unbind = dsi_unbind,
5503 };
5504
5505 static int dsi_probe(struct platform_device *pdev)
5506 {
5507 return component_add(&pdev->dev, &dsi_component_ops);
5508 }
5509
5510 static int dsi_remove(struct platform_device *pdev)
5511 {
5512 component_del(&pdev->dev, &dsi_component_ops);
5513 return 0;
5514 }
5515
5516 static int dsi_runtime_suspend(struct device *dev)
5517 {
5518 struct platform_device *pdev = to_platform_device(dev);
5519 struct dsi_data *dsi = dsi_get_dsidrv_data(pdev);
5520
5521 dsi->is_enabled = false;
5522 /* ensure the irq handler sees the is_enabled value */
5523 smp_wmb();
5524 /* wait for current handler to finish before turning the DSI off */
5525 synchronize_irq(dsi->irq);
5526
5527 dispc_runtime_put();
5528
5529 return 0;
5530 }
5531
5532 static int dsi_runtime_resume(struct device *dev)
5533 {
5534 struct platform_device *pdev = to_platform_device(dev);
5535 struct dsi_data *dsi = dsi_get_dsidrv_data(pdev);
5536 int r;
5537
5538 r = dispc_runtime_get();
5539 if (r)
5540 return r;
5541
5542 dsi->is_enabled = true;
5543 /* ensure the irq handler sees the is_enabled value */
5544 smp_wmb();
5545
5546 return 0;
5547 }
5548
5549 static const struct dev_pm_ops dsi_pm_ops = {
5550 .runtime_suspend = dsi_runtime_suspend,
5551 .runtime_resume = dsi_runtime_resume,
5552 };
5553
5554 static const struct dsi_module_id_data dsi_of_data_omap3[] = {
5555 { .address = 0x4804fc00, .id = 0, },
5556 { },
5557 };
5558
5559 static const struct dsi_module_id_data dsi_of_data_omap4[] = {
5560 { .address = 0x58004000, .id = 0, },
5561 { .address = 0x58005000, .id = 1, },
5562 { },
5563 };
5564
5565 static const struct dsi_module_id_data dsi_of_data_omap5[] = {
5566 { .address = 0x58004000, .id = 0, },
5567 { .address = 0x58009000, .id = 1, },
5568 { },
5569 };
5570
5571 static const struct of_device_id dsi_of_match[] = {
5572 { .compatible = "ti,omap3-dsi", .data = dsi_of_data_omap3, },
5573 { .compatible = "ti,omap4-dsi", .data = dsi_of_data_omap4, },
5574 { .compatible = "ti,omap5-dsi", .data = dsi_of_data_omap5, },
5575 {},
5576 };
5577
5578 static struct platform_driver omap_dsihw_driver = {
5579 .probe = dsi_probe,
5580 .remove = dsi_remove,
5581 .driver = {
5582 .name = "omapdss_dsi",
5583 .pm = &dsi_pm_ops,
5584 .of_match_table = dsi_of_match,
5585 .suppress_bind_attrs = true,
5586 },
5587 };
5588
5589 int __init dsi_init_platform_driver(void)
5590 {
5591 return platform_driver_register(&omap_dsihw_driver);
5592 }
5593
5594 void dsi_uninit_platform_driver(void)
5595 {
5596 platform_driver_unregister(&omap_dsihw_driver);
5597 }