]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/binfmt_elf.c
btrfs: use bool argument in free_root_pointers()
[mirror_ubuntu-bionic-kernel.git] / fs / binfmt_elf.c
1 /*
2 * linux/fs/binfmt_elf.c
3 *
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
8 *
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/elf-randomize.h>
35 #include <linux/utsname.h>
36 #include <linux/coredump.h>
37 #include <linux/sched.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/task_stack.h>
40 #include <linux/sched/cputime.h>
41 #include <linux/cred.h>
42 #include <linux/dax.h>
43 #include <linux/uaccess.h>
44 #include <asm/param.h>
45 #include <asm/page.h>
46
47 #ifndef user_long_t
48 #define user_long_t long
49 #endif
50 #ifndef user_siginfo_t
51 #define user_siginfo_t siginfo_t
52 #endif
53
54 /* That's for binfmt_elf_fdpic to deal with */
55 #ifndef elf_check_fdpic
56 #define elf_check_fdpic(ex) false
57 #endif
58
59 static int load_elf_binary(struct linux_binprm *bprm);
60 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
61 int, int, unsigned long);
62
63 #ifdef CONFIG_USELIB
64 static int load_elf_library(struct file *);
65 #else
66 #define load_elf_library NULL
67 #endif
68
69 /*
70 * If we don't support core dumping, then supply a NULL so we
71 * don't even try.
72 */
73 #ifdef CONFIG_ELF_CORE
74 static int elf_core_dump(struct coredump_params *cprm);
75 #else
76 #define elf_core_dump NULL
77 #endif
78
79 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
80 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
81 #else
82 #define ELF_MIN_ALIGN PAGE_SIZE
83 #endif
84
85 #ifndef ELF_CORE_EFLAGS
86 #define ELF_CORE_EFLAGS 0
87 #endif
88
89 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
90 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
91 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
92
93 static struct linux_binfmt elf_format = {
94 .module = THIS_MODULE,
95 .load_binary = load_elf_binary,
96 .load_shlib = load_elf_library,
97 .core_dump = elf_core_dump,
98 .min_coredump = ELF_EXEC_PAGESIZE,
99 };
100
101 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
102
103 static int set_brk(unsigned long start, unsigned long end, int prot)
104 {
105 start = ELF_PAGEALIGN(start);
106 end = ELF_PAGEALIGN(end);
107 if (end > start) {
108 /*
109 * Map the last of the bss segment.
110 * If the header is requesting these pages to be
111 * executable, honour that (ppc32 needs this).
112 */
113 int error = vm_brk_flags(start, end - start,
114 prot & PROT_EXEC ? VM_EXEC : 0);
115 if (error)
116 return error;
117 }
118 current->mm->start_brk = current->mm->brk = end;
119 return 0;
120 }
121
122 /* We need to explicitly zero any fractional pages
123 after the data section (i.e. bss). This would
124 contain the junk from the file that should not
125 be in memory
126 */
127 static int padzero(unsigned long elf_bss)
128 {
129 unsigned long nbyte;
130
131 nbyte = ELF_PAGEOFFSET(elf_bss);
132 if (nbyte) {
133 nbyte = ELF_MIN_ALIGN - nbyte;
134 if (clear_user((void __user *) elf_bss, nbyte))
135 return -EFAULT;
136 }
137 return 0;
138 }
139
140 /* Let's use some macros to make this stack manipulation a little clearer */
141 #ifdef CONFIG_STACK_GROWSUP
142 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
143 #define STACK_ROUND(sp, items) \
144 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
145 #define STACK_ALLOC(sp, len) ({ \
146 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
147 old_sp; })
148 #else
149 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
150 #define STACK_ROUND(sp, items) \
151 (((unsigned long) (sp - items)) &~ 15UL)
152 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
153 #endif
154
155 #ifndef ELF_BASE_PLATFORM
156 /*
157 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
158 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
159 * will be copied to the user stack in the same manner as AT_PLATFORM.
160 */
161 #define ELF_BASE_PLATFORM NULL
162 #endif
163
164 static int
165 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
166 unsigned long load_addr, unsigned long interp_load_addr)
167 {
168 unsigned long p = bprm->p;
169 int argc = bprm->argc;
170 int envc = bprm->envc;
171 elf_addr_t __user *sp;
172 elf_addr_t __user *u_platform;
173 elf_addr_t __user *u_base_platform;
174 elf_addr_t __user *u_rand_bytes;
175 const char *k_platform = ELF_PLATFORM;
176 const char *k_base_platform = ELF_BASE_PLATFORM;
177 unsigned char k_rand_bytes[16];
178 int items;
179 elf_addr_t *elf_info;
180 int ei_index = 0;
181 const struct cred *cred = current_cred();
182 struct vm_area_struct *vma;
183
184 /*
185 * In some cases (e.g. Hyper-Threading), we want to avoid L1
186 * evictions by the processes running on the same package. One
187 * thing we can do is to shuffle the initial stack for them.
188 */
189
190 p = arch_align_stack(p);
191
192 /*
193 * If this architecture has a platform capability string, copy it
194 * to userspace. In some cases (Sparc), this info is impossible
195 * for userspace to get any other way, in others (i386) it is
196 * merely difficult.
197 */
198 u_platform = NULL;
199 if (k_platform) {
200 size_t len = strlen(k_platform) + 1;
201
202 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
203 if (__copy_to_user(u_platform, k_platform, len))
204 return -EFAULT;
205 }
206
207 /*
208 * If this architecture has a "base" platform capability
209 * string, copy it to userspace.
210 */
211 u_base_platform = NULL;
212 if (k_base_platform) {
213 size_t len = strlen(k_base_platform) + 1;
214
215 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
216 if (__copy_to_user(u_base_platform, k_base_platform, len))
217 return -EFAULT;
218 }
219
220 /*
221 * Generate 16 random bytes for userspace PRNG seeding.
222 */
223 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
224 u_rand_bytes = (elf_addr_t __user *)
225 STACK_ALLOC(p, sizeof(k_rand_bytes));
226 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
227 return -EFAULT;
228
229 /* Create the ELF interpreter info */
230 elf_info = (elf_addr_t *)current->mm->saved_auxv;
231 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
232 #define NEW_AUX_ENT(id, val) \
233 do { \
234 elf_info[ei_index++] = id; \
235 elf_info[ei_index++] = val; \
236 } while (0)
237
238 #ifdef ARCH_DLINFO
239 /*
240 * ARCH_DLINFO must come first so PPC can do its special alignment of
241 * AUXV.
242 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
243 * ARCH_DLINFO changes
244 */
245 ARCH_DLINFO;
246 #endif
247 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
248 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
249 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
250 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
251 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
252 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
253 NEW_AUX_ENT(AT_BASE, interp_load_addr);
254 NEW_AUX_ENT(AT_FLAGS, 0);
255 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
256 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
257 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
258 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
259 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
260 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
261 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
262 #ifdef ELF_HWCAP2
263 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
264 #endif
265 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
266 if (k_platform) {
267 NEW_AUX_ENT(AT_PLATFORM,
268 (elf_addr_t)(unsigned long)u_platform);
269 }
270 if (k_base_platform) {
271 NEW_AUX_ENT(AT_BASE_PLATFORM,
272 (elf_addr_t)(unsigned long)u_base_platform);
273 }
274 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
275 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
276 }
277 #undef NEW_AUX_ENT
278 /* AT_NULL is zero; clear the rest too */
279 memset(&elf_info[ei_index], 0,
280 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
281
282 /* And advance past the AT_NULL entry. */
283 ei_index += 2;
284
285 sp = STACK_ADD(p, ei_index);
286
287 items = (argc + 1) + (envc + 1) + 1;
288 bprm->p = STACK_ROUND(sp, items);
289
290 /* Point sp at the lowest address on the stack */
291 #ifdef CONFIG_STACK_GROWSUP
292 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
293 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
294 #else
295 sp = (elf_addr_t __user *)bprm->p;
296 #endif
297
298
299 /*
300 * Grow the stack manually; some architectures have a limit on how
301 * far ahead a user-space access may be in order to grow the stack.
302 */
303 vma = find_extend_vma(current->mm, bprm->p);
304 if (!vma)
305 return -EFAULT;
306
307 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
308 if (__put_user(argc, sp++))
309 return -EFAULT;
310
311 /* Populate list of argv pointers back to argv strings. */
312 p = current->mm->arg_end = current->mm->arg_start;
313 while (argc-- > 0) {
314 size_t len;
315 if (__put_user((elf_addr_t)p, sp++))
316 return -EFAULT;
317 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
318 if (!len || len > MAX_ARG_STRLEN)
319 return -EINVAL;
320 p += len;
321 }
322 if (__put_user(0, sp++))
323 return -EFAULT;
324 current->mm->arg_end = p;
325
326 /* Populate list of envp pointers back to envp strings. */
327 current->mm->env_end = current->mm->env_start = p;
328 while (envc-- > 0) {
329 size_t len;
330 if (__put_user((elf_addr_t)p, sp++))
331 return -EFAULT;
332 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
333 if (!len || len > MAX_ARG_STRLEN)
334 return -EINVAL;
335 p += len;
336 }
337 if (__put_user(0, sp++))
338 return -EFAULT;
339 current->mm->env_end = p;
340
341 /* Put the elf_info on the stack in the right place. */
342 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
343 return -EFAULT;
344 return 0;
345 }
346
347 #ifndef elf_map
348
349 static unsigned long elf_map(struct file *filep, unsigned long addr,
350 struct elf_phdr *eppnt, int prot, int type,
351 unsigned long total_size)
352 {
353 unsigned long map_addr;
354 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
355 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
356 addr = ELF_PAGESTART(addr);
357 size = ELF_PAGEALIGN(size);
358
359 /* mmap() will return -EINVAL if given a zero size, but a
360 * segment with zero filesize is perfectly valid */
361 if (!size)
362 return addr;
363
364 /*
365 * total_size is the size of the ELF (interpreter) image.
366 * The _first_ mmap needs to know the full size, otherwise
367 * randomization might put this image into an overlapping
368 * position with the ELF binary image. (since size < total_size)
369 * So we first map the 'big' image - and unmap the remainder at
370 * the end. (which unmap is needed for ELF images with holes.)
371 */
372 if (total_size) {
373 total_size = ELF_PAGEALIGN(total_size);
374 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
375 if (!BAD_ADDR(map_addr))
376 vm_munmap(map_addr+size, total_size-size);
377 } else
378 map_addr = vm_mmap(filep, addr, size, prot, type, off);
379
380 return(map_addr);
381 }
382
383 #endif /* !elf_map */
384
385 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
386 {
387 int i, first_idx = -1, last_idx = -1;
388
389 for (i = 0; i < nr; i++) {
390 if (cmds[i].p_type == PT_LOAD) {
391 last_idx = i;
392 if (first_idx == -1)
393 first_idx = i;
394 }
395 }
396 if (first_idx == -1)
397 return 0;
398
399 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
400 ELF_PAGESTART(cmds[first_idx].p_vaddr);
401 }
402
403 /**
404 * load_elf_phdrs() - load ELF program headers
405 * @elf_ex: ELF header of the binary whose program headers should be loaded
406 * @elf_file: the opened ELF binary file
407 *
408 * Loads ELF program headers from the binary file elf_file, which has the ELF
409 * header pointed to by elf_ex, into a newly allocated array. The caller is
410 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
411 */
412 static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
413 struct file *elf_file)
414 {
415 struct elf_phdr *elf_phdata = NULL;
416 int retval, size, err = -1;
417 loff_t pos = elf_ex->e_phoff;
418
419 /*
420 * If the size of this structure has changed, then punt, since
421 * we will be doing the wrong thing.
422 */
423 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
424 goto out;
425
426 /* Sanity check the number of program headers... */
427 if (elf_ex->e_phnum < 1 ||
428 elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
429 goto out;
430
431 /* ...and their total size. */
432 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
433 if (size > ELF_MIN_ALIGN)
434 goto out;
435
436 elf_phdata = kmalloc(size, GFP_KERNEL);
437 if (!elf_phdata)
438 goto out;
439
440 /* Read in the program headers */
441 retval = kernel_read(elf_file, elf_phdata, size, &pos);
442 if (retval != size) {
443 err = (retval < 0) ? retval : -EIO;
444 goto out;
445 }
446
447 /* Success! */
448 err = 0;
449 out:
450 if (err) {
451 kfree(elf_phdata);
452 elf_phdata = NULL;
453 }
454 return elf_phdata;
455 }
456
457 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
458
459 /**
460 * struct arch_elf_state - arch-specific ELF loading state
461 *
462 * This structure is used to preserve architecture specific data during
463 * the loading of an ELF file, throughout the checking of architecture
464 * specific ELF headers & through to the point where the ELF load is
465 * known to be proceeding (ie. SET_PERSONALITY).
466 *
467 * This implementation is a dummy for architectures which require no
468 * specific state.
469 */
470 struct arch_elf_state {
471 };
472
473 #define INIT_ARCH_ELF_STATE {}
474
475 /**
476 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
477 * @ehdr: The main ELF header
478 * @phdr: The program header to check
479 * @elf: The open ELF file
480 * @is_interp: True if the phdr is from the interpreter of the ELF being
481 * loaded, else false.
482 * @state: Architecture-specific state preserved throughout the process
483 * of loading the ELF.
484 *
485 * Inspects the program header phdr to validate its correctness and/or
486 * suitability for the system. Called once per ELF program header in the
487 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
488 * interpreter.
489 *
490 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
491 * with that return code.
492 */
493 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
494 struct elf_phdr *phdr,
495 struct file *elf, bool is_interp,
496 struct arch_elf_state *state)
497 {
498 /* Dummy implementation, always proceed */
499 return 0;
500 }
501
502 /**
503 * arch_check_elf() - check an ELF executable
504 * @ehdr: The main ELF header
505 * @has_interp: True if the ELF has an interpreter, else false.
506 * @interp_ehdr: The interpreter's ELF header
507 * @state: Architecture-specific state preserved throughout the process
508 * of loading the ELF.
509 *
510 * Provides a final opportunity for architecture code to reject the loading
511 * of the ELF & cause an exec syscall to return an error. This is called after
512 * all program headers to be checked by arch_elf_pt_proc have been.
513 *
514 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
515 * with that return code.
516 */
517 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
518 struct elfhdr *interp_ehdr,
519 struct arch_elf_state *state)
520 {
521 /* Dummy implementation, always proceed */
522 return 0;
523 }
524
525 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
526
527 /* This is much more generalized than the library routine read function,
528 so we keep this separate. Technically the library read function
529 is only provided so that we can read a.out libraries that have
530 an ELF header */
531
532 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
533 struct file *interpreter, unsigned long *interp_map_addr,
534 unsigned long no_base, struct elf_phdr *interp_elf_phdata)
535 {
536 struct elf_phdr *eppnt;
537 unsigned long load_addr = 0;
538 int load_addr_set = 0;
539 unsigned long last_bss = 0, elf_bss = 0;
540 int bss_prot = 0;
541 unsigned long error = ~0UL;
542 unsigned long total_size;
543 int i;
544
545 /* First of all, some simple consistency checks */
546 if (interp_elf_ex->e_type != ET_EXEC &&
547 interp_elf_ex->e_type != ET_DYN)
548 goto out;
549 if (!elf_check_arch(interp_elf_ex) ||
550 elf_check_fdpic(interp_elf_ex))
551 goto out;
552 if (!interpreter->f_op->mmap)
553 goto out;
554
555 total_size = total_mapping_size(interp_elf_phdata,
556 interp_elf_ex->e_phnum);
557 if (!total_size) {
558 error = -EINVAL;
559 goto out;
560 }
561
562 eppnt = interp_elf_phdata;
563 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
564 if (eppnt->p_type == PT_LOAD) {
565 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
566 int elf_prot = 0;
567 unsigned long vaddr = 0;
568 unsigned long k, map_addr;
569
570 if (eppnt->p_flags & PF_R)
571 elf_prot = PROT_READ;
572 if (eppnt->p_flags & PF_W)
573 elf_prot |= PROT_WRITE;
574 if (eppnt->p_flags & PF_X)
575 elf_prot |= PROT_EXEC;
576 vaddr = eppnt->p_vaddr;
577 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
578 elf_type |= MAP_FIXED;
579 else if (no_base && interp_elf_ex->e_type == ET_DYN)
580 load_addr = -vaddr;
581
582 map_addr = elf_map(interpreter, load_addr + vaddr,
583 eppnt, elf_prot, elf_type, total_size);
584 total_size = 0;
585 if (!*interp_map_addr)
586 *interp_map_addr = map_addr;
587 error = map_addr;
588 if (BAD_ADDR(map_addr))
589 goto out;
590
591 if (!load_addr_set &&
592 interp_elf_ex->e_type == ET_DYN) {
593 load_addr = map_addr - ELF_PAGESTART(vaddr);
594 load_addr_set = 1;
595 }
596
597 /*
598 * Check to see if the section's size will overflow the
599 * allowed task size. Note that p_filesz must always be
600 * <= p_memsize so it's only necessary to check p_memsz.
601 */
602 k = load_addr + eppnt->p_vaddr;
603 if (BAD_ADDR(k) ||
604 eppnt->p_filesz > eppnt->p_memsz ||
605 eppnt->p_memsz > TASK_SIZE ||
606 TASK_SIZE - eppnt->p_memsz < k) {
607 error = -ENOMEM;
608 goto out;
609 }
610
611 /*
612 * Find the end of the file mapping for this phdr, and
613 * keep track of the largest address we see for this.
614 */
615 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
616 if (k > elf_bss)
617 elf_bss = k;
618
619 /*
620 * Do the same thing for the memory mapping - between
621 * elf_bss and last_bss is the bss section.
622 */
623 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
624 if (k > last_bss) {
625 last_bss = k;
626 bss_prot = elf_prot;
627 }
628 }
629 }
630
631 /*
632 * Now fill out the bss section: first pad the last page from
633 * the file up to the page boundary, and zero it from elf_bss
634 * up to the end of the page.
635 */
636 if (padzero(elf_bss)) {
637 error = -EFAULT;
638 goto out;
639 }
640 /*
641 * Next, align both the file and mem bss up to the page size,
642 * since this is where elf_bss was just zeroed up to, and where
643 * last_bss will end after the vm_brk_flags() below.
644 */
645 elf_bss = ELF_PAGEALIGN(elf_bss);
646 last_bss = ELF_PAGEALIGN(last_bss);
647 /* Finally, if there is still more bss to allocate, do it. */
648 if (last_bss > elf_bss) {
649 error = vm_brk_flags(elf_bss, last_bss - elf_bss,
650 bss_prot & PROT_EXEC ? VM_EXEC : 0);
651 if (error)
652 goto out;
653 }
654
655 error = load_addr;
656 out:
657 return error;
658 }
659
660 /*
661 * These are the functions used to load ELF style executables and shared
662 * libraries. There is no binary dependent code anywhere else.
663 */
664
665 #ifndef STACK_RND_MASK
666 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
667 #endif
668
669 static unsigned long randomize_stack_top(unsigned long stack_top)
670 {
671 unsigned long random_variable = 0;
672
673 if (current->flags & PF_RANDOMIZE) {
674 random_variable = get_random_long();
675 random_variable &= STACK_RND_MASK;
676 random_variable <<= PAGE_SHIFT;
677 }
678 #ifdef CONFIG_STACK_GROWSUP
679 return PAGE_ALIGN(stack_top) + random_variable;
680 #else
681 return PAGE_ALIGN(stack_top) - random_variable;
682 #endif
683 }
684
685 static int load_elf_binary(struct linux_binprm *bprm)
686 {
687 struct file *interpreter = NULL; /* to shut gcc up */
688 unsigned long load_addr = 0, load_bias = 0;
689 int load_addr_set = 0;
690 char * elf_interpreter = NULL;
691 unsigned long error;
692 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
693 unsigned long elf_bss, elf_brk;
694 int bss_prot = 0;
695 int retval, i;
696 unsigned long elf_entry;
697 unsigned long interp_load_addr = 0;
698 unsigned long start_code, end_code, start_data, end_data;
699 unsigned long reloc_func_desc __maybe_unused = 0;
700 int executable_stack = EXSTACK_DEFAULT;
701 struct pt_regs *regs = current_pt_regs();
702 struct {
703 struct elfhdr elf_ex;
704 struct elfhdr interp_elf_ex;
705 } *loc;
706 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
707 loff_t pos;
708
709 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
710 if (!loc) {
711 retval = -ENOMEM;
712 goto out_ret;
713 }
714
715 /* Get the exec-header */
716 loc->elf_ex = *((struct elfhdr *)bprm->buf);
717
718 retval = -ENOEXEC;
719 /* First of all, some simple consistency checks */
720 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
721 goto out;
722
723 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
724 goto out;
725 if (!elf_check_arch(&loc->elf_ex))
726 goto out;
727 if (elf_check_fdpic(&loc->elf_ex))
728 goto out;
729 if (!bprm->file->f_op->mmap)
730 goto out;
731
732 elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
733 if (!elf_phdata)
734 goto out;
735
736 elf_ppnt = elf_phdata;
737 elf_bss = 0;
738 elf_brk = 0;
739
740 start_code = ~0UL;
741 end_code = 0;
742 start_data = 0;
743 end_data = 0;
744
745 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
746 if (elf_ppnt->p_type == PT_INTERP) {
747 /* This is the program interpreter used for
748 * shared libraries - for now assume that this
749 * is an a.out format binary
750 */
751 retval = -ENOEXEC;
752 if (elf_ppnt->p_filesz > PATH_MAX ||
753 elf_ppnt->p_filesz < 2)
754 goto out_free_ph;
755
756 retval = -ENOMEM;
757 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
758 GFP_KERNEL);
759 if (!elf_interpreter)
760 goto out_free_ph;
761
762 pos = elf_ppnt->p_offset;
763 retval = kernel_read(bprm->file, elf_interpreter,
764 elf_ppnt->p_filesz, &pos);
765 if (retval != elf_ppnt->p_filesz) {
766 if (retval >= 0)
767 retval = -EIO;
768 goto out_free_interp;
769 }
770 /* make sure path is NULL terminated */
771 retval = -ENOEXEC;
772 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
773 goto out_free_interp;
774
775 interpreter = open_exec(elf_interpreter);
776 retval = PTR_ERR(interpreter);
777 if (IS_ERR(interpreter))
778 goto out_free_interp;
779
780 /*
781 * If the binary is not readable then enforce
782 * mm->dumpable = 0 regardless of the interpreter's
783 * permissions.
784 */
785 would_dump(bprm, interpreter);
786
787 /* Get the exec headers */
788 pos = 0;
789 retval = kernel_read(interpreter, &loc->interp_elf_ex,
790 sizeof(loc->interp_elf_ex), &pos);
791 if (retval != sizeof(loc->interp_elf_ex)) {
792 if (retval >= 0)
793 retval = -EIO;
794 goto out_free_dentry;
795 }
796
797 break;
798 }
799 elf_ppnt++;
800 }
801
802 elf_ppnt = elf_phdata;
803 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
804 switch (elf_ppnt->p_type) {
805 case PT_GNU_STACK:
806 if (elf_ppnt->p_flags & PF_X)
807 executable_stack = EXSTACK_ENABLE_X;
808 else
809 executable_stack = EXSTACK_DISABLE_X;
810 break;
811
812 case PT_LOPROC ... PT_HIPROC:
813 retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
814 bprm->file, false,
815 &arch_state);
816 if (retval)
817 goto out_free_dentry;
818 break;
819 }
820
821 /* Some simple consistency checks for the interpreter */
822 if (elf_interpreter) {
823 retval = -ELIBBAD;
824 /* Not an ELF interpreter */
825 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
826 goto out_free_dentry;
827 /* Verify the interpreter has a valid arch */
828 if (!elf_check_arch(&loc->interp_elf_ex) ||
829 elf_check_fdpic(&loc->interp_elf_ex))
830 goto out_free_dentry;
831
832 /* Load the interpreter program headers */
833 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
834 interpreter);
835 if (!interp_elf_phdata)
836 goto out_free_dentry;
837
838 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
839 elf_ppnt = interp_elf_phdata;
840 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
841 switch (elf_ppnt->p_type) {
842 case PT_LOPROC ... PT_HIPROC:
843 retval = arch_elf_pt_proc(&loc->interp_elf_ex,
844 elf_ppnt, interpreter,
845 true, &arch_state);
846 if (retval)
847 goto out_free_dentry;
848 break;
849 }
850 }
851
852 /*
853 * Allow arch code to reject the ELF at this point, whilst it's
854 * still possible to return an error to the code that invoked
855 * the exec syscall.
856 */
857 retval = arch_check_elf(&loc->elf_ex,
858 !!interpreter, &loc->interp_elf_ex,
859 &arch_state);
860 if (retval)
861 goto out_free_dentry;
862
863 /* Flush all traces of the currently running executable */
864 retval = flush_old_exec(bprm);
865 if (retval)
866 goto out_free_dentry;
867
868 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
869 may depend on the personality. */
870 SET_PERSONALITY2(loc->elf_ex, &arch_state);
871 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
872 current->personality |= READ_IMPLIES_EXEC;
873
874 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
875 current->flags |= PF_RANDOMIZE;
876
877 setup_new_exec(bprm);
878 install_exec_creds(bprm);
879
880 /* Do this so that we can load the interpreter, if need be. We will
881 change some of these later */
882 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
883 executable_stack);
884 if (retval < 0)
885 goto out_free_dentry;
886
887 current->mm->start_stack = bprm->p;
888
889 /* Now we do a little grungy work by mmapping the ELF image into
890 the correct location in memory. */
891 for(i = 0, elf_ppnt = elf_phdata;
892 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
893 int elf_prot = 0, elf_flags;
894 unsigned long k, vaddr;
895 unsigned long total_size = 0;
896
897 if (elf_ppnt->p_type != PT_LOAD)
898 continue;
899
900 if (unlikely (elf_brk > elf_bss)) {
901 unsigned long nbyte;
902
903 /* There was a PT_LOAD segment with p_memsz > p_filesz
904 before this one. Map anonymous pages, if needed,
905 and clear the area. */
906 retval = set_brk(elf_bss + load_bias,
907 elf_brk + load_bias,
908 bss_prot);
909 if (retval)
910 goto out_free_dentry;
911 nbyte = ELF_PAGEOFFSET(elf_bss);
912 if (nbyte) {
913 nbyte = ELF_MIN_ALIGN - nbyte;
914 if (nbyte > elf_brk - elf_bss)
915 nbyte = elf_brk - elf_bss;
916 if (clear_user((void __user *)elf_bss +
917 load_bias, nbyte)) {
918 /*
919 * This bss-zeroing can fail if the ELF
920 * file specifies odd protections. So
921 * we don't check the return value
922 */
923 }
924 }
925 }
926
927 if (elf_ppnt->p_flags & PF_R)
928 elf_prot |= PROT_READ;
929 if (elf_ppnt->p_flags & PF_W)
930 elf_prot |= PROT_WRITE;
931 if (elf_ppnt->p_flags & PF_X)
932 elf_prot |= PROT_EXEC;
933
934 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
935
936 vaddr = elf_ppnt->p_vaddr;
937 /*
938 * If we are loading ET_EXEC or we have already performed
939 * the ET_DYN load_addr calculations, proceed normally.
940 */
941 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
942 elf_flags |= MAP_FIXED;
943 } else if (loc->elf_ex.e_type == ET_DYN) {
944 /*
945 * This logic is run once for the first LOAD Program
946 * Header for ET_DYN binaries to calculate the
947 * randomization (load_bias) for all the LOAD
948 * Program Headers, and to calculate the entire
949 * size of the ELF mapping (total_size). (Note that
950 * load_addr_set is set to true later once the
951 * initial mapping is performed.)
952 *
953 * There are effectively two types of ET_DYN
954 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
955 * and loaders (ET_DYN without INTERP, since they
956 * _are_ the ELF interpreter). The loaders must
957 * be loaded away from programs since the program
958 * may otherwise collide with the loader (especially
959 * for ET_EXEC which does not have a randomized
960 * position). For example to handle invocations of
961 * "./ld.so someprog" to test out a new version of
962 * the loader, the subsequent program that the
963 * loader loads must avoid the loader itself, so
964 * they cannot share the same load range. Sufficient
965 * room for the brk must be allocated with the
966 * loader as well, since brk must be available with
967 * the loader.
968 *
969 * Therefore, programs are loaded offset from
970 * ELF_ET_DYN_BASE and loaders are loaded into the
971 * independently randomized mmap region (0 load_bias
972 * without MAP_FIXED).
973 */
974 if (elf_interpreter) {
975 load_bias = ELF_ET_DYN_BASE;
976 if (current->flags & PF_RANDOMIZE)
977 load_bias += arch_mmap_rnd();
978 elf_flags |= MAP_FIXED;
979 } else
980 load_bias = 0;
981
982 /*
983 * Since load_bias is used for all subsequent loading
984 * calculations, we must lower it by the first vaddr
985 * so that the remaining calculations based on the
986 * ELF vaddrs will be correctly offset. The result
987 * is then page aligned.
988 */
989 load_bias = ELF_PAGESTART(load_bias - vaddr);
990
991 total_size = total_mapping_size(elf_phdata,
992 loc->elf_ex.e_phnum);
993 if (!total_size) {
994 retval = -EINVAL;
995 goto out_free_dentry;
996 }
997 }
998
999 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1000 elf_prot, elf_flags, total_size);
1001 if (BAD_ADDR(error)) {
1002 retval = IS_ERR((void *)error) ?
1003 PTR_ERR((void*)error) : -EINVAL;
1004 goto out_free_dentry;
1005 }
1006
1007 if (!load_addr_set) {
1008 load_addr_set = 1;
1009 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1010 if (loc->elf_ex.e_type == ET_DYN) {
1011 load_bias += error -
1012 ELF_PAGESTART(load_bias + vaddr);
1013 load_addr += load_bias;
1014 reloc_func_desc = load_bias;
1015 }
1016 }
1017 k = elf_ppnt->p_vaddr;
1018 if (k < start_code)
1019 start_code = k;
1020 if (start_data < k)
1021 start_data = k;
1022
1023 /*
1024 * Check to see if the section's size will overflow the
1025 * allowed task size. Note that p_filesz must always be
1026 * <= p_memsz so it is only necessary to check p_memsz.
1027 */
1028 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1029 elf_ppnt->p_memsz > TASK_SIZE ||
1030 TASK_SIZE - elf_ppnt->p_memsz < k) {
1031 /* set_brk can never work. Avoid overflows. */
1032 retval = -EINVAL;
1033 goto out_free_dentry;
1034 }
1035
1036 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1037
1038 if (k > elf_bss)
1039 elf_bss = k;
1040 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1041 end_code = k;
1042 if (end_data < k)
1043 end_data = k;
1044 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1045 if (k > elf_brk) {
1046 bss_prot = elf_prot;
1047 elf_brk = k;
1048 }
1049 }
1050
1051 loc->elf_ex.e_entry += load_bias;
1052 elf_bss += load_bias;
1053 elf_brk += load_bias;
1054 start_code += load_bias;
1055 end_code += load_bias;
1056 start_data += load_bias;
1057 end_data += load_bias;
1058
1059 /* Calling set_brk effectively mmaps the pages that we need
1060 * for the bss and break sections. We must do this before
1061 * mapping in the interpreter, to make sure it doesn't wind
1062 * up getting placed where the bss needs to go.
1063 */
1064 retval = set_brk(elf_bss, elf_brk, bss_prot);
1065 if (retval)
1066 goto out_free_dentry;
1067 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1068 retval = -EFAULT; /* Nobody gets to see this, but.. */
1069 goto out_free_dentry;
1070 }
1071
1072 if (elf_interpreter) {
1073 unsigned long interp_map_addr = 0;
1074
1075 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1076 interpreter,
1077 &interp_map_addr,
1078 load_bias, interp_elf_phdata);
1079 if (!IS_ERR((void *)elf_entry)) {
1080 /*
1081 * load_elf_interp() returns relocation
1082 * adjustment
1083 */
1084 interp_load_addr = elf_entry;
1085 elf_entry += loc->interp_elf_ex.e_entry;
1086 }
1087 if (BAD_ADDR(elf_entry)) {
1088 retval = IS_ERR((void *)elf_entry) ?
1089 (int)elf_entry : -EINVAL;
1090 goto out_free_dentry;
1091 }
1092 reloc_func_desc = interp_load_addr;
1093
1094 allow_write_access(interpreter);
1095 fput(interpreter);
1096 kfree(elf_interpreter);
1097 } else {
1098 elf_entry = loc->elf_ex.e_entry;
1099 if (BAD_ADDR(elf_entry)) {
1100 retval = -EINVAL;
1101 goto out_free_dentry;
1102 }
1103 }
1104
1105 kfree(interp_elf_phdata);
1106 kfree(elf_phdata);
1107
1108 set_binfmt(&elf_format);
1109
1110 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1111 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1112 if (retval < 0)
1113 goto out;
1114 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1115
1116 retval = create_elf_tables(bprm, &loc->elf_ex,
1117 load_addr, interp_load_addr);
1118 if (retval < 0)
1119 goto out;
1120 /* N.B. passed_fileno might not be initialized? */
1121 current->mm->end_code = end_code;
1122 current->mm->start_code = start_code;
1123 current->mm->start_data = start_data;
1124 current->mm->end_data = end_data;
1125 current->mm->start_stack = bprm->p;
1126
1127 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1128 /*
1129 * For architectures with ELF randomization, when executing
1130 * a loader directly (i.e. no interpreter listed in ELF
1131 * headers), move the brk area out of the mmap region
1132 * (since it grows up, and may collide early with the stack
1133 * growing down), and into the unused ELF_ET_DYN_BASE region.
1134 */
1135 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1136 loc->elf_ex.e_type == ET_DYN && !interpreter)
1137 current->mm->brk = current->mm->start_brk =
1138 ELF_ET_DYN_BASE;
1139
1140 current->mm->brk = current->mm->start_brk =
1141 arch_randomize_brk(current->mm);
1142 #ifdef compat_brk_randomized
1143 current->brk_randomized = 1;
1144 #endif
1145 }
1146
1147 if (current->personality & MMAP_PAGE_ZERO) {
1148 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1149 and some applications "depend" upon this behavior.
1150 Since we do not have the power to recompile these, we
1151 emulate the SVr4 behavior. Sigh. */
1152 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1153 MAP_FIXED | MAP_PRIVATE, 0);
1154 }
1155
1156 #ifdef ELF_PLAT_INIT
1157 /*
1158 * The ABI may specify that certain registers be set up in special
1159 * ways (on i386 %edx is the address of a DT_FINI function, for
1160 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1161 * that the e_entry field is the address of the function descriptor
1162 * for the startup routine, rather than the address of the startup
1163 * routine itself. This macro performs whatever initialization to
1164 * the regs structure is required as well as any relocations to the
1165 * function descriptor entries when executing dynamically links apps.
1166 */
1167 ELF_PLAT_INIT(regs, reloc_func_desc);
1168 #endif
1169
1170 start_thread(regs, elf_entry, bprm->p);
1171 retval = 0;
1172 out:
1173 kfree(loc);
1174 out_ret:
1175 return retval;
1176
1177 /* error cleanup */
1178 out_free_dentry:
1179 kfree(interp_elf_phdata);
1180 allow_write_access(interpreter);
1181 if (interpreter)
1182 fput(interpreter);
1183 out_free_interp:
1184 kfree(elf_interpreter);
1185 out_free_ph:
1186 kfree(elf_phdata);
1187 goto out;
1188 }
1189
1190 #ifdef CONFIG_USELIB
1191 /* This is really simpleminded and specialized - we are loading an
1192 a.out library that is given an ELF header. */
1193 static int load_elf_library(struct file *file)
1194 {
1195 struct elf_phdr *elf_phdata;
1196 struct elf_phdr *eppnt;
1197 unsigned long elf_bss, bss, len;
1198 int retval, error, i, j;
1199 struct elfhdr elf_ex;
1200 loff_t pos = 0;
1201
1202 error = -ENOEXEC;
1203 retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos);
1204 if (retval != sizeof(elf_ex))
1205 goto out;
1206
1207 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1208 goto out;
1209
1210 /* First of all, some simple consistency checks */
1211 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1212 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1213 goto out;
1214 if (elf_check_fdpic(&elf_ex))
1215 goto out;
1216
1217 /* Now read in all of the header information */
1218
1219 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1220 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1221
1222 error = -ENOMEM;
1223 elf_phdata = kmalloc(j, GFP_KERNEL);
1224 if (!elf_phdata)
1225 goto out;
1226
1227 eppnt = elf_phdata;
1228 error = -ENOEXEC;
1229 pos = elf_ex.e_phoff;
1230 retval = kernel_read(file, eppnt, j, &pos);
1231 if (retval != j)
1232 goto out_free_ph;
1233
1234 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1235 if ((eppnt + i)->p_type == PT_LOAD)
1236 j++;
1237 if (j != 1)
1238 goto out_free_ph;
1239
1240 while (eppnt->p_type != PT_LOAD)
1241 eppnt++;
1242
1243 /* Now use mmap to map the library into memory. */
1244 error = vm_mmap(file,
1245 ELF_PAGESTART(eppnt->p_vaddr),
1246 (eppnt->p_filesz +
1247 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1248 PROT_READ | PROT_WRITE | PROT_EXEC,
1249 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1250 (eppnt->p_offset -
1251 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1252 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1253 goto out_free_ph;
1254
1255 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1256 if (padzero(elf_bss)) {
1257 error = -EFAULT;
1258 goto out_free_ph;
1259 }
1260
1261 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1262 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1263 if (bss > len) {
1264 error = vm_brk(len, bss - len);
1265 if (error)
1266 goto out_free_ph;
1267 }
1268 error = 0;
1269
1270 out_free_ph:
1271 kfree(elf_phdata);
1272 out:
1273 return error;
1274 }
1275 #endif /* #ifdef CONFIG_USELIB */
1276
1277 #ifdef CONFIG_ELF_CORE
1278 /*
1279 * ELF core dumper
1280 *
1281 * Modelled on fs/exec.c:aout_core_dump()
1282 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1283 */
1284
1285 /*
1286 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1287 * that are useful for post-mortem analysis are included in every core dump.
1288 * In that way we ensure that the core dump is fully interpretable later
1289 * without matching up the same kernel and hardware config to see what PC values
1290 * meant. These special mappings include - vDSO, vsyscall, and other
1291 * architecture specific mappings
1292 */
1293 static bool always_dump_vma(struct vm_area_struct *vma)
1294 {
1295 /* Any vsyscall mappings? */
1296 if (vma == get_gate_vma(vma->vm_mm))
1297 return true;
1298
1299 /*
1300 * Assume that all vmas with a .name op should always be dumped.
1301 * If this changes, a new vm_ops field can easily be added.
1302 */
1303 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1304 return true;
1305
1306 /*
1307 * arch_vma_name() returns non-NULL for special architecture mappings,
1308 * such as vDSO sections.
1309 */
1310 if (arch_vma_name(vma))
1311 return true;
1312
1313 return false;
1314 }
1315
1316 /*
1317 * Decide what to dump of a segment, part, all or none.
1318 */
1319 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1320 unsigned long mm_flags)
1321 {
1322 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1323
1324 /* always dump the vdso and vsyscall sections */
1325 if (always_dump_vma(vma))
1326 goto whole;
1327
1328 if (vma->vm_flags & VM_DONTDUMP)
1329 return 0;
1330
1331 /* support for DAX */
1332 if (vma_is_dax(vma)) {
1333 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1334 goto whole;
1335 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1336 goto whole;
1337 return 0;
1338 }
1339
1340 /* Hugetlb memory check */
1341 if (vma->vm_flags & VM_HUGETLB) {
1342 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1343 goto whole;
1344 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1345 goto whole;
1346 return 0;
1347 }
1348
1349 /* Do not dump I/O mapped devices or special mappings */
1350 if (vma->vm_flags & VM_IO)
1351 return 0;
1352
1353 /* By default, dump shared memory if mapped from an anonymous file. */
1354 if (vma->vm_flags & VM_SHARED) {
1355 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1356 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1357 goto whole;
1358 return 0;
1359 }
1360
1361 /* Dump segments that have been written to. */
1362 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1363 goto whole;
1364 if (vma->vm_file == NULL)
1365 return 0;
1366
1367 if (FILTER(MAPPED_PRIVATE))
1368 goto whole;
1369
1370 /*
1371 * If this looks like the beginning of a DSO or executable mapping,
1372 * check for an ELF header. If we find one, dump the first page to
1373 * aid in determining what was mapped here.
1374 */
1375 if (FILTER(ELF_HEADERS) &&
1376 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1377 u32 __user *header = (u32 __user *) vma->vm_start;
1378 u32 word;
1379 mm_segment_t fs = get_fs();
1380 /*
1381 * Doing it this way gets the constant folded by GCC.
1382 */
1383 union {
1384 u32 cmp;
1385 char elfmag[SELFMAG];
1386 } magic;
1387 BUILD_BUG_ON(SELFMAG != sizeof word);
1388 magic.elfmag[EI_MAG0] = ELFMAG0;
1389 magic.elfmag[EI_MAG1] = ELFMAG1;
1390 magic.elfmag[EI_MAG2] = ELFMAG2;
1391 magic.elfmag[EI_MAG3] = ELFMAG3;
1392 /*
1393 * Switch to the user "segment" for get_user(),
1394 * then put back what elf_core_dump() had in place.
1395 */
1396 set_fs(USER_DS);
1397 if (unlikely(get_user(word, header)))
1398 word = 0;
1399 set_fs(fs);
1400 if (word == magic.cmp)
1401 return PAGE_SIZE;
1402 }
1403
1404 #undef FILTER
1405
1406 return 0;
1407
1408 whole:
1409 return vma->vm_end - vma->vm_start;
1410 }
1411
1412 /* An ELF note in memory */
1413 struct memelfnote
1414 {
1415 const char *name;
1416 int type;
1417 unsigned int datasz;
1418 void *data;
1419 };
1420
1421 static int notesize(struct memelfnote *en)
1422 {
1423 int sz;
1424
1425 sz = sizeof(struct elf_note);
1426 sz += roundup(strlen(en->name) + 1, 4);
1427 sz += roundup(en->datasz, 4);
1428
1429 return sz;
1430 }
1431
1432 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1433 {
1434 struct elf_note en;
1435 en.n_namesz = strlen(men->name) + 1;
1436 en.n_descsz = men->datasz;
1437 en.n_type = men->type;
1438
1439 return dump_emit(cprm, &en, sizeof(en)) &&
1440 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1441 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1442 }
1443
1444 static void fill_elf_header(struct elfhdr *elf, int segs,
1445 u16 machine, u32 flags)
1446 {
1447 memset(elf, 0, sizeof(*elf));
1448
1449 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1450 elf->e_ident[EI_CLASS] = ELF_CLASS;
1451 elf->e_ident[EI_DATA] = ELF_DATA;
1452 elf->e_ident[EI_VERSION] = EV_CURRENT;
1453 elf->e_ident[EI_OSABI] = ELF_OSABI;
1454
1455 elf->e_type = ET_CORE;
1456 elf->e_machine = machine;
1457 elf->e_version = EV_CURRENT;
1458 elf->e_phoff = sizeof(struct elfhdr);
1459 elf->e_flags = flags;
1460 elf->e_ehsize = sizeof(struct elfhdr);
1461 elf->e_phentsize = sizeof(struct elf_phdr);
1462 elf->e_phnum = segs;
1463
1464 return;
1465 }
1466
1467 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1468 {
1469 phdr->p_type = PT_NOTE;
1470 phdr->p_offset = offset;
1471 phdr->p_vaddr = 0;
1472 phdr->p_paddr = 0;
1473 phdr->p_filesz = sz;
1474 phdr->p_memsz = 0;
1475 phdr->p_flags = 0;
1476 phdr->p_align = 0;
1477 return;
1478 }
1479
1480 static void fill_note(struct memelfnote *note, const char *name, int type,
1481 unsigned int sz, void *data)
1482 {
1483 note->name = name;
1484 note->type = type;
1485 note->datasz = sz;
1486 note->data = data;
1487 return;
1488 }
1489
1490 /*
1491 * fill up all the fields in prstatus from the given task struct, except
1492 * registers which need to be filled up separately.
1493 */
1494 static void fill_prstatus(struct elf_prstatus *prstatus,
1495 struct task_struct *p, long signr)
1496 {
1497 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1498 prstatus->pr_sigpend = p->pending.signal.sig[0];
1499 prstatus->pr_sighold = p->blocked.sig[0];
1500 rcu_read_lock();
1501 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1502 rcu_read_unlock();
1503 prstatus->pr_pid = task_pid_vnr(p);
1504 prstatus->pr_pgrp = task_pgrp_vnr(p);
1505 prstatus->pr_sid = task_session_vnr(p);
1506 if (thread_group_leader(p)) {
1507 struct task_cputime cputime;
1508
1509 /*
1510 * This is the record for the group leader. It shows the
1511 * group-wide total, not its individual thread total.
1512 */
1513 thread_group_cputime(p, &cputime);
1514 prstatus->pr_utime = ns_to_timeval(cputime.utime);
1515 prstatus->pr_stime = ns_to_timeval(cputime.stime);
1516 } else {
1517 u64 utime, stime;
1518
1519 task_cputime(p, &utime, &stime);
1520 prstatus->pr_utime = ns_to_timeval(utime);
1521 prstatus->pr_stime = ns_to_timeval(stime);
1522 }
1523
1524 prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1525 prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1526 }
1527
1528 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1529 struct mm_struct *mm)
1530 {
1531 const struct cred *cred;
1532 unsigned int i, len;
1533
1534 /* first copy the parameters from user space */
1535 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1536
1537 len = mm->arg_end - mm->arg_start;
1538 if (len >= ELF_PRARGSZ)
1539 len = ELF_PRARGSZ-1;
1540 if (copy_from_user(&psinfo->pr_psargs,
1541 (const char __user *)mm->arg_start, len))
1542 return -EFAULT;
1543 for(i = 0; i < len; i++)
1544 if (psinfo->pr_psargs[i] == 0)
1545 psinfo->pr_psargs[i] = ' ';
1546 psinfo->pr_psargs[len] = 0;
1547
1548 rcu_read_lock();
1549 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1550 rcu_read_unlock();
1551 psinfo->pr_pid = task_pid_vnr(p);
1552 psinfo->pr_pgrp = task_pgrp_vnr(p);
1553 psinfo->pr_sid = task_session_vnr(p);
1554
1555 i = p->state ? ffz(~p->state) + 1 : 0;
1556 psinfo->pr_state = i;
1557 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1558 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1559 psinfo->pr_nice = task_nice(p);
1560 psinfo->pr_flag = p->flags;
1561 rcu_read_lock();
1562 cred = __task_cred(p);
1563 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1564 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1565 rcu_read_unlock();
1566 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1567
1568 return 0;
1569 }
1570
1571 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1572 {
1573 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1574 int i = 0;
1575 do
1576 i += 2;
1577 while (auxv[i - 2] != AT_NULL);
1578 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1579 }
1580
1581 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1582 const siginfo_t *siginfo)
1583 {
1584 mm_segment_t old_fs = get_fs();
1585 set_fs(KERNEL_DS);
1586 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1587 set_fs(old_fs);
1588 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1589 }
1590
1591 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1592 /*
1593 * Format of NT_FILE note:
1594 *
1595 * long count -- how many files are mapped
1596 * long page_size -- units for file_ofs
1597 * array of [COUNT] elements of
1598 * long start
1599 * long end
1600 * long file_ofs
1601 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1602 */
1603 static int fill_files_note(struct memelfnote *note)
1604 {
1605 struct vm_area_struct *vma;
1606 unsigned count, size, names_ofs, remaining, n;
1607 user_long_t *data;
1608 user_long_t *start_end_ofs;
1609 char *name_base, *name_curpos;
1610
1611 /* *Estimated* file count and total data size needed */
1612 count = current->mm->map_count;
1613 size = count * 64;
1614
1615 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1616 alloc:
1617 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1618 return -EINVAL;
1619 size = round_up(size, PAGE_SIZE);
1620 data = vmalloc(size);
1621 if (!data)
1622 return -ENOMEM;
1623
1624 start_end_ofs = data + 2;
1625 name_base = name_curpos = ((char *)data) + names_ofs;
1626 remaining = size - names_ofs;
1627 count = 0;
1628 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1629 struct file *file;
1630 const char *filename;
1631
1632 file = vma->vm_file;
1633 if (!file)
1634 continue;
1635 filename = file_path(file, name_curpos, remaining);
1636 if (IS_ERR(filename)) {
1637 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1638 vfree(data);
1639 size = size * 5 / 4;
1640 goto alloc;
1641 }
1642 continue;
1643 }
1644
1645 /* file_path() fills at the end, move name down */
1646 /* n = strlen(filename) + 1: */
1647 n = (name_curpos + remaining) - filename;
1648 remaining = filename - name_curpos;
1649 memmove(name_curpos, filename, n);
1650 name_curpos += n;
1651
1652 *start_end_ofs++ = vma->vm_start;
1653 *start_end_ofs++ = vma->vm_end;
1654 *start_end_ofs++ = vma->vm_pgoff;
1655 count++;
1656 }
1657
1658 /* Now we know exact count of files, can store it */
1659 data[0] = count;
1660 data[1] = PAGE_SIZE;
1661 /*
1662 * Count usually is less than current->mm->map_count,
1663 * we need to move filenames down.
1664 */
1665 n = current->mm->map_count - count;
1666 if (n != 0) {
1667 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1668 memmove(name_base - shift_bytes, name_base,
1669 name_curpos - name_base);
1670 name_curpos -= shift_bytes;
1671 }
1672
1673 size = name_curpos - (char *)data;
1674 fill_note(note, "CORE", NT_FILE, size, data);
1675 return 0;
1676 }
1677
1678 #ifdef CORE_DUMP_USE_REGSET
1679 #include <linux/regset.h>
1680
1681 struct elf_thread_core_info {
1682 struct elf_thread_core_info *next;
1683 struct task_struct *task;
1684 struct elf_prstatus prstatus;
1685 struct memelfnote notes[0];
1686 };
1687
1688 struct elf_note_info {
1689 struct elf_thread_core_info *thread;
1690 struct memelfnote psinfo;
1691 struct memelfnote signote;
1692 struct memelfnote auxv;
1693 struct memelfnote files;
1694 user_siginfo_t csigdata;
1695 size_t size;
1696 int thread_notes;
1697 };
1698
1699 /*
1700 * When a regset has a writeback hook, we call it on each thread before
1701 * dumping user memory. On register window machines, this makes sure the
1702 * user memory backing the register data is up to date before we read it.
1703 */
1704 static void do_thread_regset_writeback(struct task_struct *task,
1705 const struct user_regset *regset)
1706 {
1707 if (regset->writeback)
1708 regset->writeback(task, regset, 1);
1709 }
1710
1711 #ifndef PRSTATUS_SIZE
1712 #define PRSTATUS_SIZE(S, R) sizeof(S)
1713 #endif
1714
1715 #ifndef SET_PR_FPVALID
1716 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1717 #endif
1718
1719 static int fill_thread_core_info(struct elf_thread_core_info *t,
1720 const struct user_regset_view *view,
1721 long signr, size_t *total)
1722 {
1723 unsigned int i;
1724 unsigned int regset0_size = regset_size(t->task, &view->regsets[0]);
1725
1726 /*
1727 * NT_PRSTATUS is the one special case, because the regset data
1728 * goes into the pr_reg field inside the note contents, rather
1729 * than being the whole note contents. We fill the reset in here.
1730 * We assume that regset 0 is NT_PRSTATUS.
1731 */
1732 fill_prstatus(&t->prstatus, t->task, signr);
1733 (void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size,
1734 &t->prstatus.pr_reg, NULL);
1735
1736 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1737 PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1738 *total += notesize(&t->notes[0]);
1739
1740 do_thread_regset_writeback(t->task, &view->regsets[0]);
1741
1742 /*
1743 * Each other regset might generate a note too. For each regset
1744 * that has no core_note_type or is inactive, we leave t->notes[i]
1745 * all zero and we'll know to skip writing it later.
1746 */
1747 for (i = 1; i < view->n; ++i) {
1748 const struct user_regset *regset = &view->regsets[i];
1749 do_thread_regset_writeback(t->task, regset);
1750 if (regset->core_note_type && regset->get &&
1751 (!regset->active || regset->active(t->task, regset) > 0)) {
1752 int ret;
1753 size_t size = regset_size(t->task, regset);
1754 void *data = kmalloc(size, GFP_KERNEL);
1755 if (unlikely(!data))
1756 return 0;
1757 ret = regset->get(t->task, regset,
1758 0, size, data, NULL);
1759 if (unlikely(ret))
1760 kfree(data);
1761 else {
1762 if (regset->core_note_type != NT_PRFPREG)
1763 fill_note(&t->notes[i], "LINUX",
1764 regset->core_note_type,
1765 size, data);
1766 else {
1767 SET_PR_FPVALID(&t->prstatus,
1768 1, regset0_size);
1769 fill_note(&t->notes[i], "CORE",
1770 NT_PRFPREG, size, data);
1771 }
1772 *total += notesize(&t->notes[i]);
1773 }
1774 }
1775 }
1776
1777 return 1;
1778 }
1779
1780 static int fill_note_info(struct elfhdr *elf, int phdrs,
1781 struct elf_note_info *info,
1782 const siginfo_t *siginfo, struct pt_regs *regs)
1783 {
1784 struct task_struct *dump_task = current;
1785 const struct user_regset_view *view = task_user_regset_view(dump_task);
1786 struct elf_thread_core_info *t;
1787 struct elf_prpsinfo *psinfo;
1788 struct core_thread *ct;
1789 unsigned int i;
1790
1791 info->size = 0;
1792 info->thread = NULL;
1793
1794 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1795 if (psinfo == NULL) {
1796 info->psinfo.data = NULL; /* So we don't free this wrongly */
1797 return 0;
1798 }
1799
1800 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1801
1802 /*
1803 * Figure out how many notes we're going to need for each thread.
1804 */
1805 info->thread_notes = 0;
1806 for (i = 0; i < view->n; ++i)
1807 if (view->regsets[i].core_note_type != 0)
1808 ++info->thread_notes;
1809
1810 /*
1811 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1812 * since it is our one special case.
1813 */
1814 if (unlikely(info->thread_notes == 0) ||
1815 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1816 WARN_ON(1);
1817 return 0;
1818 }
1819
1820 /*
1821 * Initialize the ELF file header.
1822 */
1823 fill_elf_header(elf, phdrs,
1824 view->e_machine, view->e_flags);
1825
1826 /*
1827 * Allocate a structure for each thread.
1828 */
1829 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1830 t = kzalloc(offsetof(struct elf_thread_core_info,
1831 notes[info->thread_notes]),
1832 GFP_KERNEL);
1833 if (unlikely(!t))
1834 return 0;
1835
1836 t->task = ct->task;
1837 if (ct->task == dump_task || !info->thread) {
1838 t->next = info->thread;
1839 info->thread = t;
1840 } else {
1841 /*
1842 * Make sure to keep the original task at
1843 * the head of the list.
1844 */
1845 t->next = info->thread->next;
1846 info->thread->next = t;
1847 }
1848 }
1849
1850 /*
1851 * Now fill in each thread's information.
1852 */
1853 for (t = info->thread; t != NULL; t = t->next)
1854 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1855 return 0;
1856
1857 /*
1858 * Fill in the two process-wide notes.
1859 */
1860 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1861 info->size += notesize(&info->psinfo);
1862
1863 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1864 info->size += notesize(&info->signote);
1865
1866 fill_auxv_note(&info->auxv, current->mm);
1867 info->size += notesize(&info->auxv);
1868
1869 if (fill_files_note(&info->files) == 0)
1870 info->size += notesize(&info->files);
1871
1872 return 1;
1873 }
1874
1875 static size_t get_note_info_size(struct elf_note_info *info)
1876 {
1877 return info->size;
1878 }
1879
1880 /*
1881 * Write all the notes for each thread. When writing the first thread, the
1882 * process-wide notes are interleaved after the first thread-specific note.
1883 */
1884 static int write_note_info(struct elf_note_info *info,
1885 struct coredump_params *cprm)
1886 {
1887 bool first = true;
1888 struct elf_thread_core_info *t = info->thread;
1889
1890 do {
1891 int i;
1892
1893 if (!writenote(&t->notes[0], cprm))
1894 return 0;
1895
1896 if (first && !writenote(&info->psinfo, cprm))
1897 return 0;
1898 if (first && !writenote(&info->signote, cprm))
1899 return 0;
1900 if (first && !writenote(&info->auxv, cprm))
1901 return 0;
1902 if (first && info->files.data &&
1903 !writenote(&info->files, cprm))
1904 return 0;
1905
1906 for (i = 1; i < info->thread_notes; ++i)
1907 if (t->notes[i].data &&
1908 !writenote(&t->notes[i], cprm))
1909 return 0;
1910
1911 first = false;
1912 t = t->next;
1913 } while (t);
1914
1915 return 1;
1916 }
1917
1918 static void free_note_info(struct elf_note_info *info)
1919 {
1920 struct elf_thread_core_info *threads = info->thread;
1921 while (threads) {
1922 unsigned int i;
1923 struct elf_thread_core_info *t = threads;
1924 threads = t->next;
1925 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1926 for (i = 1; i < info->thread_notes; ++i)
1927 kfree(t->notes[i].data);
1928 kfree(t);
1929 }
1930 kfree(info->psinfo.data);
1931 vfree(info->files.data);
1932 }
1933
1934 #else
1935
1936 /* Here is the structure in which status of each thread is captured. */
1937 struct elf_thread_status
1938 {
1939 struct list_head list;
1940 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1941 elf_fpregset_t fpu; /* NT_PRFPREG */
1942 struct task_struct *thread;
1943 #ifdef ELF_CORE_COPY_XFPREGS
1944 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1945 #endif
1946 struct memelfnote notes[3];
1947 int num_notes;
1948 };
1949
1950 /*
1951 * In order to add the specific thread information for the elf file format,
1952 * we need to keep a linked list of every threads pr_status and then create
1953 * a single section for them in the final core file.
1954 */
1955 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1956 {
1957 int sz = 0;
1958 struct task_struct *p = t->thread;
1959 t->num_notes = 0;
1960
1961 fill_prstatus(&t->prstatus, p, signr);
1962 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1963
1964 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1965 &(t->prstatus));
1966 t->num_notes++;
1967 sz += notesize(&t->notes[0]);
1968
1969 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1970 &t->fpu))) {
1971 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1972 &(t->fpu));
1973 t->num_notes++;
1974 sz += notesize(&t->notes[1]);
1975 }
1976
1977 #ifdef ELF_CORE_COPY_XFPREGS
1978 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1979 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1980 sizeof(t->xfpu), &t->xfpu);
1981 t->num_notes++;
1982 sz += notesize(&t->notes[2]);
1983 }
1984 #endif
1985 return sz;
1986 }
1987
1988 struct elf_note_info {
1989 struct memelfnote *notes;
1990 struct memelfnote *notes_files;
1991 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1992 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1993 struct list_head thread_list;
1994 elf_fpregset_t *fpu;
1995 #ifdef ELF_CORE_COPY_XFPREGS
1996 elf_fpxregset_t *xfpu;
1997 #endif
1998 user_siginfo_t csigdata;
1999 int thread_status_size;
2000 int numnote;
2001 };
2002
2003 static int elf_note_info_init(struct elf_note_info *info)
2004 {
2005 memset(info, 0, sizeof(*info));
2006 INIT_LIST_HEAD(&info->thread_list);
2007
2008 /* Allocate space for ELF notes */
2009 info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
2010 if (!info->notes)
2011 return 0;
2012 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2013 if (!info->psinfo)
2014 return 0;
2015 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2016 if (!info->prstatus)
2017 return 0;
2018 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2019 if (!info->fpu)
2020 return 0;
2021 #ifdef ELF_CORE_COPY_XFPREGS
2022 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2023 if (!info->xfpu)
2024 return 0;
2025 #endif
2026 return 1;
2027 }
2028
2029 static int fill_note_info(struct elfhdr *elf, int phdrs,
2030 struct elf_note_info *info,
2031 const siginfo_t *siginfo, struct pt_regs *regs)
2032 {
2033 struct list_head *t;
2034 struct core_thread *ct;
2035 struct elf_thread_status *ets;
2036
2037 if (!elf_note_info_init(info))
2038 return 0;
2039
2040 for (ct = current->mm->core_state->dumper.next;
2041 ct; ct = ct->next) {
2042 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2043 if (!ets)
2044 return 0;
2045
2046 ets->thread = ct->task;
2047 list_add(&ets->list, &info->thread_list);
2048 }
2049
2050 list_for_each(t, &info->thread_list) {
2051 int sz;
2052
2053 ets = list_entry(t, struct elf_thread_status, list);
2054 sz = elf_dump_thread_status(siginfo->si_signo, ets);
2055 info->thread_status_size += sz;
2056 }
2057 /* now collect the dump for the current */
2058 memset(info->prstatus, 0, sizeof(*info->prstatus));
2059 fill_prstatus(info->prstatus, current, siginfo->si_signo);
2060 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2061
2062 /* Set up header */
2063 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2064
2065 /*
2066 * Set up the notes in similar form to SVR4 core dumps made
2067 * with info from their /proc.
2068 */
2069
2070 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2071 sizeof(*info->prstatus), info->prstatus);
2072 fill_psinfo(info->psinfo, current->group_leader, current->mm);
2073 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2074 sizeof(*info->psinfo), info->psinfo);
2075
2076 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2077 fill_auxv_note(info->notes + 3, current->mm);
2078 info->numnote = 4;
2079
2080 if (fill_files_note(info->notes + info->numnote) == 0) {
2081 info->notes_files = info->notes + info->numnote;
2082 info->numnote++;
2083 }
2084
2085 /* Try to dump the FPU. */
2086 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2087 info->fpu);
2088 if (info->prstatus->pr_fpvalid)
2089 fill_note(info->notes + info->numnote++,
2090 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2091 #ifdef ELF_CORE_COPY_XFPREGS
2092 if (elf_core_copy_task_xfpregs(current, info->xfpu))
2093 fill_note(info->notes + info->numnote++,
2094 "LINUX", ELF_CORE_XFPREG_TYPE,
2095 sizeof(*info->xfpu), info->xfpu);
2096 #endif
2097
2098 return 1;
2099 }
2100
2101 static size_t get_note_info_size(struct elf_note_info *info)
2102 {
2103 int sz = 0;
2104 int i;
2105
2106 for (i = 0; i < info->numnote; i++)
2107 sz += notesize(info->notes + i);
2108
2109 sz += info->thread_status_size;
2110
2111 return sz;
2112 }
2113
2114 static int write_note_info(struct elf_note_info *info,
2115 struct coredump_params *cprm)
2116 {
2117 int i;
2118 struct list_head *t;
2119
2120 for (i = 0; i < info->numnote; i++)
2121 if (!writenote(info->notes + i, cprm))
2122 return 0;
2123
2124 /* write out the thread status notes section */
2125 list_for_each(t, &info->thread_list) {
2126 struct elf_thread_status *tmp =
2127 list_entry(t, struct elf_thread_status, list);
2128
2129 for (i = 0; i < tmp->num_notes; i++)
2130 if (!writenote(&tmp->notes[i], cprm))
2131 return 0;
2132 }
2133
2134 return 1;
2135 }
2136
2137 static void free_note_info(struct elf_note_info *info)
2138 {
2139 while (!list_empty(&info->thread_list)) {
2140 struct list_head *tmp = info->thread_list.next;
2141 list_del(tmp);
2142 kfree(list_entry(tmp, struct elf_thread_status, list));
2143 }
2144
2145 /* Free data possibly allocated by fill_files_note(): */
2146 if (info->notes_files)
2147 vfree(info->notes_files->data);
2148
2149 kfree(info->prstatus);
2150 kfree(info->psinfo);
2151 kfree(info->notes);
2152 kfree(info->fpu);
2153 #ifdef ELF_CORE_COPY_XFPREGS
2154 kfree(info->xfpu);
2155 #endif
2156 }
2157
2158 #endif
2159
2160 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2161 struct vm_area_struct *gate_vma)
2162 {
2163 struct vm_area_struct *ret = tsk->mm->mmap;
2164
2165 if (ret)
2166 return ret;
2167 return gate_vma;
2168 }
2169 /*
2170 * Helper function for iterating across a vma list. It ensures that the caller
2171 * will visit `gate_vma' prior to terminating the search.
2172 */
2173 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2174 struct vm_area_struct *gate_vma)
2175 {
2176 struct vm_area_struct *ret;
2177
2178 ret = this_vma->vm_next;
2179 if (ret)
2180 return ret;
2181 if (this_vma == gate_vma)
2182 return NULL;
2183 return gate_vma;
2184 }
2185
2186 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2187 elf_addr_t e_shoff, int segs)
2188 {
2189 elf->e_shoff = e_shoff;
2190 elf->e_shentsize = sizeof(*shdr4extnum);
2191 elf->e_shnum = 1;
2192 elf->e_shstrndx = SHN_UNDEF;
2193
2194 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2195
2196 shdr4extnum->sh_type = SHT_NULL;
2197 shdr4extnum->sh_size = elf->e_shnum;
2198 shdr4extnum->sh_link = elf->e_shstrndx;
2199 shdr4extnum->sh_info = segs;
2200 }
2201
2202 /*
2203 * Actual dumper
2204 *
2205 * This is a two-pass process; first we find the offsets of the bits,
2206 * and then they are actually written out. If we run out of core limit
2207 * we just truncate.
2208 */
2209 static int elf_core_dump(struct coredump_params *cprm)
2210 {
2211 int has_dumped = 0;
2212 mm_segment_t fs;
2213 int segs, i;
2214 size_t vma_data_size = 0;
2215 struct vm_area_struct *vma, *gate_vma;
2216 struct elfhdr *elf = NULL;
2217 loff_t offset = 0, dataoff;
2218 struct elf_note_info info = { };
2219 struct elf_phdr *phdr4note = NULL;
2220 struct elf_shdr *shdr4extnum = NULL;
2221 Elf_Half e_phnum;
2222 elf_addr_t e_shoff;
2223 elf_addr_t *vma_filesz = NULL;
2224
2225 /*
2226 * We no longer stop all VM operations.
2227 *
2228 * This is because those proceses that could possibly change map_count
2229 * or the mmap / vma pages are now blocked in do_exit on current
2230 * finishing this core dump.
2231 *
2232 * Only ptrace can touch these memory addresses, but it doesn't change
2233 * the map_count or the pages allocated. So no possibility of crashing
2234 * exists while dumping the mm->vm_next areas to the core file.
2235 */
2236
2237 /* alloc memory for large data structures: too large to be on stack */
2238 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2239 if (!elf)
2240 goto out;
2241 /*
2242 * The number of segs are recored into ELF header as 16bit value.
2243 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2244 */
2245 segs = current->mm->map_count;
2246 segs += elf_core_extra_phdrs();
2247
2248 gate_vma = get_gate_vma(current->mm);
2249 if (gate_vma != NULL)
2250 segs++;
2251
2252 /* for notes section */
2253 segs++;
2254
2255 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2256 * this, kernel supports extended numbering. Have a look at
2257 * include/linux/elf.h for further information. */
2258 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2259
2260 /*
2261 * Collect all the non-memory information about the process for the
2262 * notes. This also sets up the file header.
2263 */
2264 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2265 goto cleanup;
2266
2267 has_dumped = 1;
2268
2269 fs = get_fs();
2270 set_fs(KERNEL_DS);
2271
2272 offset += sizeof(*elf); /* Elf header */
2273 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2274
2275 /* Write notes phdr entry */
2276 {
2277 size_t sz = get_note_info_size(&info);
2278
2279 sz += elf_coredump_extra_notes_size();
2280
2281 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2282 if (!phdr4note)
2283 goto end_coredump;
2284
2285 fill_elf_note_phdr(phdr4note, sz, offset);
2286 offset += sz;
2287 }
2288
2289 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2290
2291 if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2292 goto end_coredump;
2293 vma_filesz = vmalloc((segs - 1) * sizeof(*vma_filesz));
2294 if (!vma_filesz)
2295 goto end_coredump;
2296
2297 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2298 vma = next_vma(vma, gate_vma)) {
2299 unsigned long dump_size;
2300
2301 dump_size = vma_dump_size(vma, cprm->mm_flags);
2302 vma_filesz[i++] = dump_size;
2303 vma_data_size += dump_size;
2304 }
2305
2306 offset += vma_data_size;
2307 offset += elf_core_extra_data_size();
2308 e_shoff = offset;
2309
2310 if (e_phnum == PN_XNUM) {
2311 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2312 if (!shdr4extnum)
2313 goto end_coredump;
2314 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2315 }
2316
2317 offset = dataoff;
2318
2319 if (!dump_emit(cprm, elf, sizeof(*elf)))
2320 goto end_coredump;
2321
2322 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2323 goto end_coredump;
2324
2325 /* Write program headers for segments dump */
2326 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2327 vma = next_vma(vma, gate_vma)) {
2328 struct elf_phdr phdr;
2329
2330 phdr.p_type = PT_LOAD;
2331 phdr.p_offset = offset;
2332 phdr.p_vaddr = vma->vm_start;
2333 phdr.p_paddr = 0;
2334 phdr.p_filesz = vma_filesz[i++];
2335 phdr.p_memsz = vma->vm_end - vma->vm_start;
2336 offset += phdr.p_filesz;
2337 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2338 if (vma->vm_flags & VM_WRITE)
2339 phdr.p_flags |= PF_W;
2340 if (vma->vm_flags & VM_EXEC)
2341 phdr.p_flags |= PF_X;
2342 phdr.p_align = ELF_EXEC_PAGESIZE;
2343
2344 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2345 goto end_coredump;
2346 }
2347
2348 if (!elf_core_write_extra_phdrs(cprm, offset))
2349 goto end_coredump;
2350
2351 /* write out the notes section */
2352 if (!write_note_info(&info, cprm))
2353 goto end_coredump;
2354
2355 if (elf_coredump_extra_notes_write(cprm))
2356 goto end_coredump;
2357
2358 /* Align to page */
2359 if (!dump_skip(cprm, dataoff - cprm->pos))
2360 goto end_coredump;
2361
2362 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2363 vma = next_vma(vma, gate_vma)) {
2364 unsigned long addr;
2365 unsigned long end;
2366
2367 end = vma->vm_start + vma_filesz[i++];
2368
2369 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2370 struct page *page;
2371 int stop;
2372
2373 page = get_dump_page(addr);
2374 if (page) {
2375 void *kaddr = kmap(page);
2376 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2377 kunmap(page);
2378 put_page(page);
2379 } else
2380 stop = !dump_skip(cprm, PAGE_SIZE);
2381 if (stop)
2382 goto end_coredump;
2383 }
2384 }
2385 dump_truncate(cprm);
2386
2387 if (!elf_core_write_extra_data(cprm))
2388 goto end_coredump;
2389
2390 if (e_phnum == PN_XNUM) {
2391 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2392 goto end_coredump;
2393 }
2394
2395 end_coredump:
2396 set_fs(fs);
2397
2398 cleanup:
2399 free_note_info(&info);
2400 kfree(shdr4extnum);
2401 vfree(vma_filesz);
2402 kfree(phdr4note);
2403 kfree(elf);
2404 out:
2405 return has_dumped;
2406 }
2407
2408 #endif /* CONFIG_ELF_CORE */
2409
2410 static int __init init_elf_binfmt(void)
2411 {
2412 register_binfmt(&elf_format);
2413 return 0;
2414 }
2415
2416 static void __exit exit_elf_binfmt(void)
2417 {
2418 /* Remove the COFF and ELF loaders. */
2419 unregister_binfmt(&elf_format);
2420 }
2421
2422 core_initcall(init_elf_binfmt);
2423 module_exit(exit_elf_binfmt);
2424 MODULE_LICENSE("GPL");