]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/binfmt_elf.c
binfmt_elf: move brk out of mmap when doing direct loader exec
[mirror_ubuntu-bionic-kernel.git] / fs / binfmt_elf.c
1 /*
2 * linux/fs/binfmt_elf.c
3 *
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
8 *
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/elf-randomize.h>
35 #include <linux/utsname.h>
36 #include <linux/coredump.h>
37 #include <linux/sched.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/task_stack.h>
40 #include <linux/sched/cputime.h>
41 #include <linux/cred.h>
42 #include <linux/dax.h>
43 #include <linux/uaccess.h>
44 #include <asm/param.h>
45 #include <asm/page.h>
46
47 #ifndef user_long_t
48 #define user_long_t long
49 #endif
50 #ifndef user_siginfo_t
51 #define user_siginfo_t siginfo_t
52 #endif
53
54 /* That's for binfmt_elf_fdpic to deal with */
55 #ifndef elf_check_fdpic
56 #define elf_check_fdpic(ex) false
57 #endif
58
59 static int load_elf_binary(struct linux_binprm *bprm);
60 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
61 int, int, unsigned long);
62
63 #ifdef CONFIG_USELIB
64 static int load_elf_library(struct file *);
65 #else
66 #define load_elf_library NULL
67 #endif
68
69 /*
70 * If we don't support core dumping, then supply a NULL so we
71 * don't even try.
72 */
73 #ifdef CONFIG_ELF_CORE
74 static int elf_core_dump(struct coredump_params *cprm);
75 #else
76 #define elf_core_dump NULL
77 #endif
78
79 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
80 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
81 #else
82 #define ELF_MIN_ALIGN PAGE_SIZE
83 #endif
84
85 #ifndef ELF_CORE_EFLAGS
86 #define ELF_CORE_EFLAGS 0
87 #endif
88
89 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
90 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
91 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
92
93 static struct linux_binfmt elf_format = {
94 .module = THIS_MODULE,
95 .load_binary = load_elf_binary,
96 .load_shlib = load_elf_library,
97 .core_dump = elf_core_dump,
98 .min_coredump = ELF_EXEC_PAGESIZE,
99 };
100
101 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
102
103 static int set_brk(unsigned long start, unsigned long end, int prot)
104 {
105 start = ELF_PAGEALIGN(start);
106 end = ELF_PAGEALIGN(end);
107 if (end > start) {
108 /*
109 * Map the last of the bss segment.
110 * If the header is requesting these pages to be
111 * executable, honour that (ppc32 needs this).
112 */
113 int error = vm_brk_flags(start, end - start,
114 prot & PROT_EXEC ? VM_EXEC : 0);
115 if (error)
116 return error;
117 }
118 current->mm->start_brk = current->mm->brk = end;
119 return 0;
120 }
121
122 /* We need to explicitly zero any fractional pages
123 after the data section (i.e. bss). This would
124 contain the junk from the file that should not
125 be in memory
126 */
127 static int padzero(unsigned long elf_bss)
128 {
129 unsigned long nbyte;
130
131 nbyte = ELF_PAGEOFFSET(elf_bss);
132 if (nbyte) {
133 nbyte = ELF_MIN_ALIGN - nbyte;
134 if (clear_user((void __user *) elf_bss, nbyte))
135 return -EFAULT;
136 }
137 return 0;
138 }
139
140 /* Let's use some macros to make this stack manipulation a little clearer */
141 #ifdef CONFIG_STACK_GROWSUP
142 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
143 #define STACK_ROUND(sp, items) \
144 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
145 #define STACK_ALLOC(sp, len) ({ \
146 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
147 old_sp; })
148 #else
149 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
150 #define STACK_ROUND(sp, items) \
151 (((unsigned long) (sp - items)) &~ 15UL)
152 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
153 #endif
154
155 #ifndef ELF_BASE_PLATFORM
156 /*
157 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
158 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
159 * will be copied to the user stack in the same manner as AT_PLATFORM.
160 */
161 #define ELF_BASE_PLATFORM NULL
162 #endif
163
164 static int
165 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
166 unsigned long load_addr, unsigned long interp_load_addr)
167 {
168 unsigned long p = bprm->p;
169 int argc = bprm->argc;
170 int envc = bprm->envc;
171 elf_addr_t __user *sp;
172 elf_addr_t __user *u_platform;
173 elf_addr_t __user *u_base_platform;
174 elf_addr_t __user *u_rand_bytes;
175 const char *k_platform = ELF_PLATFORM;
176 const char *k_base_platform = ELF_BASE_PLATFORM;
177 unsigned char k_rand_bytes[16];
178 int items;
179 elf_addr_t *elf_info;
180 int ei_index = 0;
181 const struct cred *cred = current_cred();
182 struct vm_area_struct *vma;
183
184 /*
185 * In some cases (e.g. Hyper-Threading), we want to avoid L1
186 * evictions by the processes running on the same package. One
187 * thing we can do is to shuffle the initial stack for them.
188 */
189
190 p = arch_align_stack(p);
191
192 /*
193 * If this architecture has a platform capability string, copy it
194 * to userspace. In some cases (Sparc), this info is impossible
195 * for userspace to get any other way, in others (i386) it is
196 * merely difficult.
197 */
198 u_platform = NULL;
199 if (k_platform) {
200 size_t len = strlen(k_platform) + 1;
201
202 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
203 if (__copy_to_user(u_platform, k_platform, len))
204 return -EFAULT;
205 }
206
207 /*
208 * If this architecture has a "base" platform capability
209 * string, copy it to userspace.
210 */
211 u_base_platform = NULL;
212 if (k_base_platform) {
213 size_t len = strlen(k_base_platform) + 1;
214
215 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
216 if (__copy_to_user(u_base_platform, k_base_platform, len))
217 return -EFAULT;
218 }
219
220 /*
221 * Generate 16 random bytes for userspace PRNG seeding.
222 */
223 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
224 u_rand_bytes = (elf_addr_t __user *)
225 STACK_ALLOC(p, sizeof(k_rand_bytes));
226 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
227 return -EFAULT;
228
229 /* Create the ELF interpreter info */
230 elf_info = (elf_addr_t *)current->mm->saved_auxv;
231 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
232 #define NEW_AUX_ENT(id, val) \
233 do { \
234 elf_info[ei_index++] = id; \
235 elf_info[ei_index++] = val; \
236 } while (0)
237
238 #ifdef ARCH_DLINFO
239 /*
240 * ARCH_DLINFO must come first so PPC can do its special alignment of
241 * AUXV.
242 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
243 * ARCH_DLINFO changes
244 */
245 ARCH_DLINFO;
246 #endif
247 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
248 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
249 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
250 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
251 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
252 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
253 NEW_AUX_ENT(AT_BASE, interp_load_addr);
254 NEW_AUX_ENT(AT_FLAGS, 0);
255 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
256 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
257 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
258 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
259 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
260 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
261 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
262 #ifdef ELF_HWCAP2
263 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
264 #endif
265 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
266 if (k_platform) {
267 NEW_AUX_ENT(AT_PLATFORM,
268 (elf_addr_t)(unsigned long)u_platform);
269 }
270 if (k_base_platform) {
271 NEW_AUX_ENT(AT_BASE_PLATFORM,
272 (elf_addr_t)(unsigned long)u_base_platform);
273 }
274 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
275 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
276 }
277 #undef NEW_AUX_ENT
278 /* AT_NULL is zero; clear the rest too */
279 memset(&elf_info[ei_index], 0,
280 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
281
282 /* And advance past the AT_NULL entry. */
283 ei_index += 2;
284
285 sp = STACK_ADD(p, ei_index);
286
287 items = (argc + 1) + (envc + 1) + 1;
288 bprm->p = STACK_ROUND(sp, items);
289
290 /* Point sp at the lowest address on the stack */
291 #ifdef CONFIG_STACK_GROWSUP
292 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
293 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
294 #else
295 sp = (elf_addr_t __user *)bprm->p;
296 #endif
297
298
299 /*
300 * Grow the stack manually; some architectures have a limit on how
301 * far ahead a user-space access may be in order to grow the stack.
302 */
303 vma = find_extend_vma(current->mm, bprm->p);
304 if (!vma)
305 return -EFAULT;
306
307 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
308 if (__put_user(argc, sp++))
309 return -EFAULT;
310
311 /* Populate list of argv pointers back to argv strings. */
312 p = current->mm->arg_end = current->mm->arg_start;
313 while (argc-- > 0) {
314 size_t len;
315 if (__put_user((elf_addr_t)p, sp++))
316 return -EFAULT;
317 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
318 if (!len || len > MAX_ARG_STRLEN)
319 return -EINVAL;
320 p += len;
321 }
322 if (__put_user(0, sp++))
323 return -EFAULT;
324 current->mm->arg_end = p;
325
326 /* Populate list of envp pointers back to envp strings. */
327 current->mm->env_end = current->mm->env_start = p;
328 while (envc-- > 0) {
329 size_t len;
330 if (__put_user((elf_addr_t)p, sp++))
331 return -EFAULT;
332 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
333 if (!len || len > MAX_ARG_STRLEN)
334 return -EINVAL;
335 p += len;
336 }
337 if (__put_user(0, sp++))
338 return -EFAULT;
339 current->mm->env_end = p;
340
341 /* Put the elf_info on the stack in the right place. */
342 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
343 return -EFAULT;
344 return 0;
345 }
346
347 #ifndef elf_map
348
349 static unsigned long elf_map(struct file *filep, unsigned long addr,
350 struct elf_phdr *eppnt, int prot, int type,
351 unsigned long total_size)
352 {
353 unsigned long map_addr;
354 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
355 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
356 addr = ELF_PAGESTART(addr);
357 size = ELF_PAGEALIGN(size);
358
359 /* mmap() will return -EINVAL if given a zero size, but a
360 * segment with zero filesize is perfectly valid */
361 if (!size)
362 return addr;
363
364 /*
365 * total_size is the size of the ELF (interpreter) image.
366 * The _first_ mmap needs to know the full size, otherwise
367 * randomization might put this image into an overlapping
368 * position with the ELF binary image. (since size < total_size)
369 * So we first map the 'big' image - and unmap the remainder at
370 * the end. (which unmap is needed for ELF images with holes.)
371 */
372 if (total_size) {
373 total_size = ELF_PAGEALIGN(total_size);
374 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
375 if (!BAD_ADDR(map_addr))
376 vm_munmap(map_addr+size, total_size-size);
377 } else
378 map_addr = vm_mmap(filep, addr, size, prot, type, off);
379
380 return(map_addr);
381 }
382
383 #endif /* !elf_map */
384
385 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
386 {
387 int i, first_idx = -1, last_idx = -1;
388
389 for (i = 0; i < nr; i++) {
390 if (cmds[i].p_type == PT_LOAD) {
391 last_idx = i;
392 if (first_idx == -1)
393 first_idx = i;
394 }
395 }
396 if (first_idx == -1)
397 return 0;
398
399 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
400 ELF_PAGESTART(cmds[first_idx].p_vaddr);
401 }
402
403 /**
404 * load_elf_phdrs() - load ELF program headers
405 * @elf_ex: ELF header of the binary whose program headers should be loaded
406 * @elf_file: the opened ELF binary file
407 *
408 * Loads ELF program headers from the binary file elf_file, which has the ELF
409 * header pointed to by elf_ex, into a newly allocated array. The caller is
410 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
411 */
412 static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
413 struct file *elf_file)
414 {
415 struct elf_phdr *elf_phdata = NULL;
416 int retval, size, err = -1;
417 loff_t pos = elf_ex->e_phoff;
418
419 /*
420 * If the size of this structure has changed, then punt, since
421 * we will be doing the wrong thing.
422 */
423 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
424 goto out;
425
426 /* Sanity check the number of program headers... */
427 if (elf_ex->e_phnum < 1 ||
428 elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
429 goto out;
430
431 /* ...and their total size. */
432 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
433 if (size > ELF_MIN_ALIGN)
434 goto out;
435
436 elf_phdata = kmalloc(size, GFP_KERNEL);
437 if (!elf_phdata)
438 goto out;
439
440 /* Read in the program headers */
441 retval = kernel_read(elf_file, elf_phdata, size, &pos);
442 if (retval != size) {
443 err = (retval < 0) ? retval : -EIO;
444 goto out;
445 }
446
447 /* Success! */
448 err = 0;
449 out:
450 if (err) {
451 kfree(elf_phdata);
452 elf_phdata = NULL;
453 }
454 return elf_phdata;
455 }
456
457 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
458
459 /**
460 * struct arch_elf_state - arch-specific ELF loading state
461 *
462 * This structure is used to preserve architecture specific data during
463 * the loading of an ELF file, throughout the checking of architecture
464 * specific ELF headers & through to the point where the ELF load is
465 * known to be proceeding (ie. SET_PERSONALITY).
466 *
467 * This implementation is a dummy for architectures which require no
468 * specific state.
469 */
470 struct arch_elf_state {
471 };
472
473 #define INIT_ARCH_ELF_STATE {}
474
475 /**
476 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
477 * @ehdr: The main ELF header
478 * @phdr: The program header to check
479 * @elf: The open ELF file
480 * @is_interp: True if the phdr is from the interpreter of the ELF being
481 * loaded, else false.
482 * @state: Architecture-specific state preserved throughout the process
483 * of loading the ELF.
484 *
485 * Inspects the program header phdr to validate its correctness and/or
486 * suitability for the system. Called once per ELF program header in the
487 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
488 * interpreter.
489 *
490 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
491 * with that return code.
492 */
493 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
494 struct elf_phdr *phdr,
495 struct file *elf, bool is_interp,
496 struct arch_elf_state *state)
497 {
498 /* Dummy implementation, always proceed */
499 return 0;
500 }
501
502 /**
503 * arch_check_elf() - check an ELF executable
504 * @ehdr: The main ELF header
505 * @has_interp: True if the ELF has an interpreter, else false.
506 * @interp_ehdr: The interpreter's ELF header
507 * @state: Architecture-specific state preserved throughout the process
508 * of loading the ELF.
509 *
510 * Provides a final opportunity for architecture code to reject the loading
511 * of the ELF & cause an exec syscall to return an error. This is called after
512 * all program headers to be checked by arch_elf_pt_proc have been.
513 *
514 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
515 * with that return code.
516 */
517 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
518 struct elfhdr *interp_ehdr,
519 struct arch_elf_state *state)
520 {
521 /* Dummy implementation, always proceed */
522 return 0;
523 }
524
525 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
526
527 /* This is much more generalized than the library routine read function,
528 so we keep this separate. Technically the library read function
529 is only provided so that we can read a.out libraries that have
530 an ELF header */
531
532 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
533 struct file *interpreter, unsigned long *interp_map_addr,
534 unsigned long no_base, struct elf_phdr *interp_elf_phdata)
535 {
536 struct elf_phdr *eppnt;
537 unsigned long load_addr = 0;
538 int load_addr_set = 0;
539 unsigned long last_bss = 0, elf_bss = 0;
540 int bss_prot = 0;
541 unsigned long error = ~0UL;
542 unsigned long total_size;
543 int i;
544
545 /* First of all, some simple consistency checks */
546 if (interp_elf_ex->e_type != ET_EXEC &&
547 interp_elf_ex->e_type != ET_DYN)
548 goto out;
549 if (!elf_check_arch(interp_elf_ex) ||
550 elf_check_fdpic(interp_elf_ex))
551 goto out;
552 if (!interpreter->f_op->mmap)
553 goto out;
554
555 total_size = total_mapping_size(interp_elf_phdata,
556 interp_elf_ex->e_phnum);
557 if (!total_size) {
558 error = -EINVAL;
559 goto out;
560 }
561
562 eppnt = interp_elf_phdata;
563 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
564 if (eppnt->p_type == PT_LOAD) {
565 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
566 int elf_prot = 0;
567 unsigned long vaddr = 0;
568 unsigned long k, map_addr;
569
570 if (eppnt->p_flags & PF_R)
571 elf_prot = PROT_READ;
572 if (eppnt->p_flags & PF_W)
573 elf_prot |= PROT_WRITE;
574 if (eppnt->p_flags & PF_X)
575 elf_prot |= PROT_EXEC;
576 vaddr = eppnt->p_vaddr;
577 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
578 elf_type |= MAP_FIXED;
579 else if (no_base && interp_elf_ex->e_type == ET_DYN)
580 load_addr = -vaddr;
581
582 map_addr = elf_map(interpreter, load_addr + vaddr,
583 eppnt, elf_prot, elf_type, total_size);
584 total_size = 0;
585 if (!*interp_map_addr)
586 *interp_map_addr = map_addr;
587 error = map_addr;
588 if (BAD_ADDR(map_addr))
589 goto out;
590
591 if (!load_addr_set &&
592 interp_elf_ex->e_type == ET_DYN) {
593 load_addr = map_addr - ELF_PAGESTART(vaddr);
594 load_addr_set = 1;
595 }
596
597 /*
598 * Check to see if the section's size will overflow the
599 * allowed task size. Note that p_filesz must always be
600 * <= p_memsize so it's only necessary to check p_memsz.
601 */
602 k = load_addr + eppnt->p_vaddr;
603 if (BAD_ADDR(k) ||
604 eppnt->p_filesz > eppnt->p_memsz ||
605 eppnt->p_memsz > TASK_SIZE ||
606 TASK_SIZE - eppnt->p_memsz < k) {
607 error = -ENOMEM;
608 goto out;
609 }
610
611 /*
612 * Find the end of the file mapping for this phdr, and
613 * keep track of the largest address we see for this.
614 */
615 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
616 if (k > elf_bss)
617 elf_bss = k;
618
619 /*
620 * Do the same thing for the memory mapping - between
621 * elf_bss and last_bss is the bss section.
622 */
623 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
624 if (k > last_bss) {
625 last_bss = k;
626 bss_prot = elf_prot;
627 }
628 }
629 }
630
631 /*
632 * Now fill out the bss section: first pad the last page from
633 * the file up to the page boundary, and zero it from elf_bss
634 * up to the end of the page.
635 */
636 if (padzero(elf_bss)) {
637 error = -EFAULT;
638 goto out;
639 }
640 /*
641 * Next, align both the file and mem bss up to the page size,
642 * since this is where elf_bss was just zeroed up to, and where
643 * last_bss will end after the vm_brk_flags() below.
644 */
645 elf_bss = ELF_PAGEALIGN(elf_bss);
646 last_bss = ELF_PAGEALIGN(last_bss);
647 /* Finally, if there is still more bss to allocate, do it. */
648 if (last_bss > elf_bss) {
649 error = vm_brk_flags(elf_bss, last_bss - elf_bss,
650 bss_prot & PROT_EXEC ? VM_EXEC : 0);
651 if (error)
652 goto out;
653 }
654
655 error = load_addr;
656 out:
657 return error;
658 }
659
660 /*
661 * These are the functions used to load ELF style executables and shared
662 * libraries. There is no binary dependent code anywhere else.
663 */
664
665 #ifndef STACK_RND_MASK
666 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
667 #endif
668
669 static unsigned long randomize_stack_top(unsigned long stack_top)
670 {
671 unsigned long random_variable = 0;
672
673 if (current->flags & PF_RANDOMIZE) {
674 random_variable = get_random_long();
675 random_variable &= STACK_RND_MASK;
676 random_variable <<= PAGE_SHIFT;
677 }
678 #ifdef CONFIG_STACK_GROWSUP
679 return PAGE_ALIGN(stack_top) + random_variable;
680 #else
681 return PAGE_ALIGN(stack_top) - random_variable;
682 #endif
683 }
684
685 static int load_elf_binary(struct linux_binprm *bprm)
686 {
687 struct file *interpreter = NULL; /* to shut gcc up */
688 unsigned long load_addr = 0, load_bias = 0;
689 int load_addr_set = 0;
690 char * elf_interpreter = NULL;
691 unsigned long error;
692 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
693 unsigned long elf_bss, elf_brk;
694 int bss_prot = 0;
695 int retval, i;
696 unsigned long elf_entry;
697 unsigned long interp_load_addr = 0;
698 unsigned long start_code, end_code, start_data, end_data;
699 unsigned long reloc_func_desc __maybe_unused = 0;
700 int executable_stack = EXSTACK_DEFAULT;
701 struct pt_regs *regs = current_pt_regs();
702 struct {
703 struct elfhdr elf_ex;
704 struct elfhdr interp_elf_ex;
705 } *loc;
706 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
707 loff_t pos;
708
709 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
710 if (!loc) {
711 retval = -ENOMEM;
712 goto out_ret;
713 }
714
715 /* Get the exec-header */
716 loc->elf_ex = *((struct elfhdr *)bprm->buf);
717
718 retval = -ENOEXEC;
719 /* First of all, some simple consistency checks */
720 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
721 goto out;
722
723 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
724 goto out;
725 if (!elf_check_arch(&loc->elf_ex))
726 goto out;
727 if (elf_check_fdpic(&loc->elf_ex))
728 goto out;
729 if (!bprm->file->f_op->mmap)
730 goto out;
731
732 elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
733 if (!elf_phdata)
734 goto out;
735
736 elf_ppnt = elf_phdata;
737 elf_bss = 0;
738 elf_brk = 0;
739
740 start_code = ~0UL;
741 end_code = 0;
742 start_data = 0;
743 end_data = 0;
744
745 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
746 if (elf_ppnt->p_type == PT_INTERP) {
747 /* This is the program interpreter used for
748 * shared libraries - for now assume that this
749 * is an a.out format binary
750 */
751 retval = -ENOEXEC;
752 if (elf_ppnt->p_filesz > PATH_MAX ||
753 elf_ppnt->p_filesz < 2)
754 goto out_free_ph;
755
756 retval = -ENOMEM;
757 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
758 GFP_KERNEL);
759 if (!elf_interpreter)
760 goto out_free_ph;
761
762 pos = elf_ppnt->p_offset;
763 retval = kernel_read(bprm->file, elf_interpreter,
764 elf_ppnt->p_filesz, &pos);
765 if (retval != elf_ppnt->p_filesz) {
766 if (retval >= 0)
767 retval = -EIO;
768 goto out_free_interp;
769 }
770 /* make sure path is NULL terminated */
771 retval = -ENOEXEC;
772 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
773 goto out_free_interp;
774
775 interpreter = open_exec(elf_interpreter);
776 retval = PTR_ERR(interpreter);
777 if (IS_ERR(interpreter))
778 goto out_free_interp;
779
780 /*
781 * If the binary is not readable then enforce
782 * mm->dumpable = 0 regardless of the interpreter's
783 * permissions.
784 */
785 would_dump(bprm, interpreter);
786
787 /* Get the exec headers */
788 pos = 0;
789 retval = kernel_read(interpreter, &loc->interp_elf_ex,
790 sizeof(loc->interp_elf_ex), &pos);
791 if (retval != sizeof(loc->interp_elf_ex)) {
792 if (retval >= 0)
793 retval = -EIO;
794 goto out_free_dentry;
795 }
796
797 break;
798 }
799 elf_ppnt++;
800 }
801
802 elf_ppnt = elf_phdata;
803 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
804 switch (elf_ppnt->p_type) {
805 case PT_GNU_STACK:
806 if (elf_ppnt->p_flags & PF_X)
807 executable_stack = EXSTACK_ENABLE_X;
808 else
809 executable_stack = EXSTACK_DISABLE_X;
810 break;
811
812 case PT_LOPROC ... PT_HIPROC:
813 retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
814 bprm->file, false,
815 &arch_state);
816 if (retval)
817 goto out_free_dentry;
818 break;
819 }
820
821 /* Some simple consistency checks for the interpreter */
822 if (elf_interpreter) {
823 retval = -ELIBBAD;
824 /* Not an ELF interpreter */
825 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
826 goto out_free_dentry;
827 /* Verify the interpreter has a valid arch */
828 if (!elf_check_arch(&loc->interp_elf_ex) ||
829 elf_check_fdpic(&loc->interp_elf_ex))
830 goto out_free_dentry;
831
832 /* Load the interpreter program headers */
833 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
834 interpreter);
835 if (!interp_elf_phdata)
836 goto out_free_dentry;
837
838 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
839 elf_ppnt = interp_elf_phdata;
840 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
841 switch (elf_ppnt->p_type) {
842 case PT_LOPROC ... PT_HIPROC:
843 retval = arch_elf_pt_proc(&loc->interp_elf_ex,
844 elf_ppnt, interpreter,
845 true, &arch_state);
846 if (retval)
847 goto out_free_dentry;
848 break;
849 }
850 }
851
852 /*
853 * Allow arch code to reject the ELF at this point, whilst it's
854 * still possible to return an error to the code that invoked
855 * the exec syscall.
856 */
857 retval = arch_check_elf(&loc->elf_ex,
858 !!interpreter, &loc->interp_elf_ex,
859 &arch_state);
860 if (retval)
861 goto out_free_dentry;
862
863 /* Flush all traces of the currently running executable */
864 retval = flush_old_exec(bprm);
865 if (retval)
866 goto out_free_dentry;
867
868 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
869 may depend on the personality. */
870 SET_PERSONALITY2(loc->elf_ex, &arch_state);
871 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
872 current->personality |= READ_IMPLIES_EXEC;
873
874 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
875 current->flags |= PF_RANDOMIZE;
876
877 setup_new_exec(bprm);
878 install_exec_creds(bprm);
879
880 /* Do this so that we can load the interpreter, if need be. We will
881 change some of these later */
882 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
883 executable_stack);
884 if (retval < 0)
885 goto out_free_dentry;
886
887 current->mm->start_stack = bprm->p;
888
889 /* Now we do a little grungy work by mmapping the ELF image into
890 the correct location in memory. */
891 for(i = 0, elf_ppnt = elf_phdata;
892 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
893 int elf_prot = 0, elf_flags;
894 unsigned long k, vaddr;
895 unsigned long total_size = 0;
896
897 if (elf_ppnt->p_type != PT_LOAD)
898 continue;
899
900 if (unlikely (elf_brk > elf_bss)) {
901 unsigned long nbyte;
902
903 /* There was a PT_LOAD segment with p_memsz > p_filesz
904 before this one. Map anonymous pages, if needed,
905 and clear the area. */
906 retval = set_brk(elf_bss + load_bias,
907 elf_brk + load_bias,
908 bss_prot);
909 if (retval)
910 goto out_free_dentry;
911 nbyte = ELF_PAGEOFFSET(elf_bss);
912 if (nbyte) {
913 nbyte = ELF_MIN_ALIGN - nbyte;
914 if (nbyte > elf_brk - elf_bss)
915 nbyte = elf_brk - elf_bss;
916 if (clear_user((void __user *)elf_bss +
917 load_bias, nbyte)) {
918 /*
919 * This bss-zeroing can fail if the ELF
920 * file specifies odd protections. So
921 * we don't check the return value
922 */
923 }
924 }
925 }
926
927 if (elf_ppnt->p_flags & PF_R)
928 elf_prot |= PROT_READ;
929 if (elf_ppnt->p_flags & PF_W)
930 elf_prot |= PROT_WRITE;
931 if (elf_ppnt->p_flags & PF_X)
932 elf_prot |= PROT_EXEC;
933
934 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
935
936 vaddr = elf_ppnt->p_vaddr;
937 /*
938 * If we are loading ET_EXEC or we have already performed
939 * the ET_DYN load_addr calculations, proceed normally.
940 */
941 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
942 elf_flags |= MAP_FIXED;
943 } else if (loc->elf_ex.e_type == ET_DYN) {
944 /*
945 * This logic is run once for the first LOAD Program
946 * Header for ET_DYN binaries to calculate the
947 * randomization (load_bias) for all the LOAD
948 * Program Headers, and to calculate the entire
949 * size of the ELF mapping (total_size). (Note that
950 * load_addr_set is set to true later once the
951 * initial mapping is performed.)
952 *
953 * There are effectively two types of ET_DYN
954 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
955 * and loaders (ET_DYN without INTERP, since they
956 * _are_ the ELF interpreter). The loaders must
957 * be loaded away from programs since the program
958 * may otherwise collide with the loader (especially
959 * for ET_EXEC which does not have a randomized
960 * position). For example to handle invocations of
961 * "./ld.so someprog" to test out a new version of
962 * the loader, the subsequent program that the
963 * loader loads must avoid the loader itself, so
964 * they cannot share the same load range. Sufficient
965 * room for the brk must be allocated with the
966 * loader as well, since brk must be available with
967 * the loader.
968 *
969 * Therefore, programs are loaded offset from
970 * ELF_ET_DYN_BASE and loaders are loaded into the
971 * independently randomized mmap region (0 load_bias
972 * without MAP_FIXED).
973 */
974 if (elf_interpreter) {
975 load_bias = ELF_ET_DYN_BASE;
976 if (current->flags & PF_RANDOMIZE)
977 load_bias += arch_mmap_rnd();
978 elf_flags |= MAP_FIXED;
979 } else
980 load_bias = 0;
981
982 /*
983 * Since load_bias is used for all subsequent loading
984 * calculations, we must lower it by the first vaddr
985 * so that the remaining calculations based on the
986 * ELF vaddrs will be correctly offset. The result
987 * is then page aligned.
988 */
989 load_bias = ELF_PAGESTART(load_bias - vaddr);
990
991 total_size = total_mapping_size(elf_phdata,
992 loc->elf_ex.e_phnum);
993 if (!total_size) {
994 retval = -EINVAL;
995 goto out_free_dentry;
996 }
997 }
998
999 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1000 elf_prot, elf_flags, total_size);
1001 if (BAD_ADDR(error)) {
1002 retval = IS_ERR((void *)error) ?
1003 PTR_ERR((void*)error) : -EINVAL;
1004 goto out_free_dentry;
1005 }
1006
1007 if (!load_addr_set) {
1008 load_addr_set = 1;
1009 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1010 if (loc->elf_ex.e_type == ET_DYN) {
1011 load_bias += error -
1012 ELF_PAGESTART(load_bias + vaddr);
1013 load_addr += load_bias;
1014 reloc_func_desc = load_bias;
1015 }
1016 }
1017 k = elf_ppnt->p_vaddr;
1018 if (k < start_code)
1019 start_code = k;
1020 if (start_data < k)
1021 start_data = k;
1022
1023 /*
1024 * Check to see if the section's size will overflow the
1025 * allowed task size. Note that p_filesz must always be
1026 * <= p_memsz so it is only necessary to check p_memsz.
1027 */
1028 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1029 elf_ppnt->p_memsz > TASK_SIZE ||
1030 TASK_SIZE - elf_ppnt->p_memsz < k) {
1031 /* set_brk can never work. Avoid overflows. */
1032 retval = -EINVAL;
1033 goto out_free_dentry;
1034 }
1035
1036 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1037
1038 if (k > elf_bss)
1039 elf_bss = k;
1040 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1041 end_code = k;
1042 if (end_data < k)
1043 end_data = k;
1044 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1045 if (k > elf_brk) {
1046 bss_prot = elf_prot;
1047 elf_brk = k;
1048 }
1049 }
1050
1051 loc->elf_ex.e_entry += load_bias;
1052 elf_bss += load_bias;
1053 elf_brk += load_bias;
1054 start_code += load_bias;
1055 end_code += load_bias;
1056 start_data += load_bias;
1057 end_data += load_bias;
1058
1059 /* Calling set_brk effectively mmaps the pages that we need
1060 * for the bss and break sections. We must do this before
1061 * mapping in the interpreter, to make sure it doesn't wind
1062 * up getting placed where the bss needs to go.
1063 */
1064 retval = set_brk(elf_bss, elf_brk, bss_prot);
1065 if (retval)
1066 goto out_free_dentry;
1067 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1068 retval = -EFAULT; /* Nobody gets to see this, but.. */
1069 goto out_free_dentry;
1070 }
1071
1072 if (elf_interpreter) {
1073 unsigned long interp_map_addr = 0;
1074
1075 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1076 interpreter,
1077 &interp_map_addr,
1078 load_bias, interp_elf_phdata);
1079 if (!IS_ERR((void *)elf_entry)) {
1080 /*
1081 * load_elf_interp() returns relocation
1082 * adjustment
1083 */
1084 interp_load_addr = elf_entry;
1085 elf_entry += loc->interp_elf_ex.e_entry;
1086 }
1087 if (BAD_ADDR(elf_entry)) {
1088 retval = IS_ERR((void *)elf_entry) ?
1089 (int)elf_entry : -EINVAL;
1090 goto out_free_dentry;
1091 }
1092 reloc_func_desc = interp_load_addr;
1093
1094 allow_write_access(interpreter);
1095 fput(interpreter);
1096 kfree(elf_interpreter);
1097 } else {
1098 elf_entry = loc->elf_ex.e_entry;
1099 if (BAD_ADDR(elf_entry)) {
1100 retval = -EINVAL;
1101 goto out_free_dentry;
1102 }
1103 }
1104
1105 kfree(interp_elf_phdata);
1106 kfree(elf_phdata);
1107
1108 set_binfmt(&elf_format);
1109
1110 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1111 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1112 if (retval < 0)
1113 goto out;
1114 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1115
1116 retval = create_elf_tables(bprm, &loc->elf_ex,
1117 load_addr, interp_load_addr);
1118 if (retval < 0)
1119 goto out;
1120 /* N.B. passed_fileno might not be initialized? */
1121 current->mm->end_code = end_code;
1122 current->mm->start_code = start_code;
1123 current->mm->start_data = start_data;
1124 current->mm->end_data = end_data;
1125 current->mm->start_stack = bprm->p;
1126
1127 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1128 /*
1129 * For architectures with ELF randomization, when executing
1130 * a loader directly (i.e. no interpreter listed in ELF
1131 * headers), move the brk area out of the mmap region
1132 * (since it grows up, and may collide early with the stack
1133 * growing down), and into the unused ELF_ET_DYN_BASE region.
1134 */
1135 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) && !interpreter)
1136 current->mm->brk = current->mm->start_brk =
1137 ELF_ET_DYN_BASE;
1138
1139 current->mm->brk = current->mm->start_brk =
1140 arch_randomize_brk(current->mm);
1141 #ifdef compat_brk_randomized
1142 current->brk_randomized = 1;
1143 #endif
1144 }
1145
1146 if (current->personality & MMAP_PAGE_ZERO) {
1147 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1148 and some applications "depend" upon this behavior.
1149 Since we do not have the power to recompile these, we
1150 emulate the SVr4 behavior. Sigh. */
1151 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1152 MAP_FIXED | MAP_PRIVATE, 0);
1153 }
1154
1155 #ifdef ELF_PLAT_INIT
1156 /*
1157 * The ABI may specify that certain registers be set up in special
1158 * ways (on i386 %edx is the address of a DT_FINI function, for
1159 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1160 * that the e_entry field is the address of the function descriptor
1161 * for the startup routine, rather than the address of the startup
1162 * routine itself. This macro performs whatever initialization to
1163 * the regs structure is required as well as any relocations to the
1164 * function descriptor entries when executing dynamically links apps.
1165 */
1166 ELF_PLAT_INIT(regs, reloc_func_desc);
1167 #endif
1168
1169 start_thread(regs, elf_entry, bprm->p);
1170 retval = 0;
1171 out:
1172 kfree(loc);
1173 out_ret:
1174 return retval;
1175
1176 /* error cleanup */
1177 out_free_dentry:
1178 kfree(interp_elf_phdata);
1179 allow_write_access(interpreter);
1180 if (interpreter)
1181 fput(interpreter);
1182 out_free_interp:
1183 kfree(elf_interpreter);
1184 out_free_ph:
1185 kfree(elf_phdata);
1186 goto out;
1187 }
1188
1189 #ifdef CONFIG_USELIB
1190 /* This is really simpleminded and specialized - we are loading an
1191 a.out library that is given an ELF header. */
1192 static int load_elf_library(struct file *file)
1193 {
1194 struct elf_phdr *elf_phdata;
1195 struct elf_phdr *eppnt;
1196 unsigned long elf_bss, bss, len;
1197 int retval, error, i, j;
1198 struct elfhdr elf_ex;
1199 loff_t pos = 0;
1200
1201 error = -ENOEXEC;
1202 retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos);
1203 if (retval != sizeof(elf_ex))
1204 goto out;
1205
1206 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1207 goto out;
1208
1209 /* First of all, some simple consistency checks */
1210 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1211 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1212 goto out;
1213 if (elf_check_fdpic(&elf_ex))
1214 goto out;
1215
1216 /* Now read in all of the header information */
1217
1218 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1219 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1220
1221 error = -ENOMEM;
1222 elf_phdata = kmalloc(j, GFP_KERNEL);
1223 if (!elf_phdata)
1224 goto out;
1225
1226 eppnt = elf_phdata;
1227 error = -ENOEXEC;
1228 pos = elf_ex.e_phoff;
1229 retval = kernel_read(file, eppnt, j, &pos);
1230 if (retval != j)
1231 goto out_free_ph;
1232
1233 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1234 if ((eppnt + i)->p_type == PT_LOAD)
1235 j++;
1236 if (j != 1)
1237 goto out_free_ph;
1238
1239 while (eppnt->p_type != PT_LOAD)
1240 eppnt++;
1241
1242 /* Now use mmap to map the library into memory. */
1243 error = vm_mmap(file,
1244 ELF_PAGESTART(eppnt->p_vaddr),
1245 (eppnt->p_filesz +
1246 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1247 PROT_READ | PROT_WRITE | PROT_EXEC,
1248 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1249 (eppnt->p_offset -
1250 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1251 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1252 goto out_free_ph;
1253
1254 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1255 if (padzero(elf_bss)) {
1256 error = -EFAULT;
1257 goto out_free_ph;
1258 }
1259
1260 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1261 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1262 if (bss > len) {
1263 error = vm_brk(len, bss - len);
1264 if (error)
1265 goto out_free_ph;
1266 }
1267 error = 0;
1268
1269 out_free_ph:
1270 kfree(elf_phdata);
1271 out:
1272 return error;
1273 }
1274 #endif /* #ifdef CONFIG_USELIB */
1275
1276 #ifdef CONFIG_ELF_CORE
1277 /*
1278 * ELF core dumper
1279 *
1280 * Modelled on fs/exec.c:aout_core_dump()
1281 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1282 */
1283
1284 /*
1285 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1286 * that are useful for post-mortem analysis are included in every core dump.
1287 * In that way we ensure that the core dump is fully interpretable later
1288 * without matching up the same kernel and hardware config to see what PC values
1289 * meant. These special mappings include - vDSO, vsyscall, and other
1290 * architecture specific mappings
1291 */
1292 static bool always_dump_vma(struct vm_area_struct *vma)
1293 {
1294 /* Any vsyscall mappings? */
1295 if (vma == get_gate_vma(vma->vm_mm))
1296 return true;
1297
1298 /*
1299 * Assume that all vmas with a .name op should always be dumped.
1300 * If this changes, a new vm_ops field can easily be added.
1301 */
1302 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1303 return true;
1304
1305 /*
1306 * arch_vma_name() returns non-NULL for special architecture mappings,
1307 * such as vDSO sections.
1308 */
1309 if (arch_vma_name(vma))
1310 return true;
1311
1312 return false;
1313 }
1314
1315 /*
1316 * Decide what to dump of a segment, part, all or none.
1317 */
1318 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1319 unsigned long mm_flags)
1320 {
1321 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1322
1323 /* always dump the vdso and vsyscall sections */
1324 if (always_dump_vma(vma))
1325 goto whole;
1326
1327 if (vma->vm_flags & VM_DONTDUMP)
1328 return 0;
1329
1330 /* support for DAX */
1331 if (vma_is_dax(vma)) {
1332 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1333 goto whole;
1334 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1335 goto whole;
1336 return 0;
1337 }
1338
1339 /* Hugetlb memory check */
1340 if (vma->vm_flags & VM_HUGETLB) {
1341 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1342 goto whole;
1343 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1344 goto whole;
1345 return 0;
1346 }
1347
1348 /* Do not dump I/O mapped devices or special mappings */
1349 if (vma->vm_flags & VM_IO)
1350 return 0;
1351
1352 /* By default, dump shared memory if mapped from an anonymous file. */
1353 if (vma->vm_flags & VM_SHARED) {
1354 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1355 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1356 goto whole;
1357 return 0;
1358 }
1359
1360 /* Dump segments that have been written to. */
1361 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1362 goto whole;
1363 if (vma->vm_file == NULL)
1364 return 0;
1365
1366 if (FILTER(MAPPED_PRIVATE))
1367 goto whole;
1368
1369 /*
1370 * If this looks like the beginning of a DSO or executable mapping,
1371 * check for an ELF header. If we find one, dump the first page to
1372 * aid in determining what was mapped here.
1373 */
1374 if (FILTER(ELF_HEADERS) &&
1375 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1376 u32 __user *header = (u32 __user *) vma->vm_start;
1377 u32 word;
1378 mm_segment_t fs = get_fs();
1379 /*
1380 * Doing it this way gets the constant folded by GCC.
1381 */
1382 union {
1383 u32 cmp;
1384 char elfmag[SELFMAG];
1385 } magic;
1386 BUILD_BUG_ON(SELFMAG != sizeof word);
1387 magic.elfmag[EI_MAG0] = ELFMAG0;
1388 magic.elfmag[EI_MAG1] = ELFMAG1;
1389 magic.elfmag[EI_MAG2] = ELFMAG2;
1390 magic.elfmag[EI_MAG3] = ELFMAG3;
1391 /*
1392 * Switch to the user "segment" for get_user(),
1393 * then put back what elf_core_dump() had in place.
1394 */
1395 set_fs(USER_DS);
1396 if (unlikely(get_user(word, header)))
1397 word = 0;
1398 set_fs(fs);
1399 if (word == magic.cmp)
1400 return PAGE_SIZE;
1401 }
1402
1403 #undef FILTER
1404
1405 return 0;
1406
1407 whole:
1408 return vma->vm_end - vma->vm_start;
1409 }
1410
1411 /* An ELF note in memory */
1412 struct memelfnote
1413 {
1414 const char *name;
1415 int type;
1416 unsigned int datasz;
1417 void *data;
1418 };
1419
1420 static int notesize(struct memelfnote *en)
1421 {
1422 int sz;
1423
1424 sz = sizeof(struct elf_note);
1425 sz += roundup(strlen(en->name) + 1, 4);
1426 sz += roundup(en->datasz, 4);
1427
1428 return sz;
1429 }
1430
1431 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1432 {
1433 struct elf_note en;
1434 en.n_namesz = strlen(men->name) + 1;
1435 en.n_descsz = men->datasz;
1436 en.n_type = men->type;
1437
1438 return dump_emit(cprm, &en, sizeof(en)) &&
1439 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1440 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1441 }
1442
1443 static void fill_elf_header(struct elfhdr *elf, int segs,
1444 u16 machine, u32 flags)
1445 {
1446 memset(elf, 0, sizeof(*elf));
1447
1448 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1449 elf->e_ident[EI_CLASS] = ELF_CLASS;
1450 elf->e_ident[EI_DATA] = ELF_DATA;
1451 elf->e_ident[EI_VERSION] = EV_CURRENT;
1452 elf->e_ident[EI_OSABI] = ELF_OSABI;
1453
1454 elf->e_type = ET_CORE;
1455 elf->e_machine = machine;
1456 elf->e_version = EV_CURRENT;
1457 elf->e_phoff = sizeof(struct elfhdr);
1458 elf->e_flags = flags;
1459 elf->e_ehsize = sizeof(struct elfhdr);
1460 elf->e_phentsize = sizeof(struct elf_phdr);
1461 elf->e_phnum = segs;
1462
1463 return;
1464 }
1465
1466 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1467 {
1468 phdr->p_type = PT_NOTE;
1469 phdr->p_offset = offset;
1470 phdr->p_vaddr = 0;
1471 phdr->p_paddr = 0;
1472 phdr->p_filesz = sz;
1473 phdr->p_memsz = 0;
1474 phdr->p_flags = 0;
1475 phdr->p_align = 0;
1476 return;
1477 }
1478
1479 static void fill_note(struct memelfnote *note, const char *name, int type,
1480 unsigned int sz, void *data)
1481 {
1482 note->name = name;
1483 note->type = type;
1484 note->datasz = sz;
1485 note->data = data;
1486 return;
1487 }
1488
1489 /*
1490 * fill up all the fields in prstatus from the given task struct, except
1491 * registers which need to be filled up separately.
1492 */
1493 static void fill_prstatus(struct elf_prstatus *prstatus,
1494 struct task_struct *p, long signr)
1495 {
1496 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1497 prstatus->pr_sigpend = p->pending.signal.sig[0];
1498 prstatus->pr_sighold = p->blocked.sig[0];
1499 rcu_read_lock();
1500 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1501 rcu_read_unlock();
1502 prstatus->pr_pid = task_pid_vnr(p);
1503 prstatus->pr_pgrp = task_pgrp_vnr(p);
1504 prstatus->pr_sid = task_session_vnr(p);
1505 if (thread_group_leader(p)) {
1506 struct task_cputime cputime;
1507
1508 /*
1509 * This is the record for the group leader. It shows the
1510 * group-wide total, not its individual thread total.
1511 */
1512 thread_group_cputime(p, &cputime);
1513 prstatus->pr_utime = ns_to_timeval(cputime.utime);
1514 prstatus->pr_stime = ns_to_timeval(cputime.stime);
1515 } else {
1516 u64 utime, stime;
1517
1518 task_cputime(p, &utime, &stime);
1519 prstatus->pr_utime = ns_to_timeval(utime);
1520 prstatus->pr_stime = ns_to_timeval(stime);
1521 }
1522
1523 prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1524 prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1525 }
1526
1527 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1528 struct mm_struct *mm)
1529 {
1530 const struct cred *cred;
1531 unsigned int i, len;
1532
1533 /* first copy the parameters from user space */
1534 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1535
1536 len = mm->arg_end - mm->arg_start;
1537 if (len >= ELF_PRARGSZ)
1538 len = ELF_PRARGSZ-1;
1539 if (copy_from_user(&psinfo->pr_psargs,
1540 (const char __user *)mm->arg_start, len))
1541 return -EFAULT;
1542 for(i = 0; i < len; i++)
1543 if (psinfo->pr_psargs[i] == 0)
1544 psinfo->pr_psargs[i] = ' ';
1545 psinfo->pr_psargs[len] = 0;
1546
1547 rcu_read_lock();
1548 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1549 rcu_read_unlock();
1550 psinfo->pr_pid = task_pid_vnr(p);
1551 psinfo->pr_pgrp = task_pgrp_vnr(p);
1552 psinfo->pr_sid = task_session_vnr(p);
1553
1554 i = p->state ? ffz(~p->state) + 1 : 0;
1555 psinfo->pr_state = i;
1556 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1557 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1558 psinfo->pr_nice = task_nice(p);
1559 psinfo->pr_flag = p->flags;
1560 rcu_read_lock();
1561 cred = __task_cred(p);
1562 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1563 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1564 rcu_read_unlock();
1565 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1566
1567 return 0;
1568 }
1569
1570 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1571 {
1572 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1573 int i = 0;
1574 do
1575 i += 2;
1576 while (auxv[i - 2] != AT_NULL);
1577 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1578 }
1579
1580 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1581 const siginfo_t *siginfo)
1582 {
1583 mm_segment_t old_fs = get_fs();
1584 set_fs(KERNEL_DS);
1585 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1586 set_fs(old_fs);
1587 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1588 }
1589
1590 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1591 /*
1592 * Format of NT_FILE note:
1593 *
1594 * long count -- how many files are mapped
1595 * long page_size -- units for file_ofs
1596 * array of [COUNT] elements of
1597 * long start
1598 * long end
1599 * long file_ofs
1600 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1601 */
1602 static int fill_files_note(struct memelfnote *note)
1603 {
1604 struct vm_area_struct *vma;
1605 unsigned count, size, names_ofs, remaining, n;
1606 user_long_t *data;
1607 user_long_t *start_end_ofs;
1608 char *name_base, *name_curpos;
1609
1610 /* *Estimated* file count and total data size needed */
1611 count = current->mm->map_count;
1612 size = count * 64;
1613
1614 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1615 alloc:
1616 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1617 return -EINVAL;
1618 size = round_up(size, PAGE_SIZE);
1619 data = vmalloc(size);
1620 if (!data)
1621 return -ENOMEM;
1622
1623 start_end_ofs = data + 2;
1624 name_base = name_curpos = ((char *)data) + names_ofs;
1625 remaining = size - names_ofs;
1626 count = 0;
1627 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1628 struct file *file;
1629 const char *filename;
1630
1631 file = vma->vm_file;
1632 if (!file)
1633 continue;
1634 filename = file_path(file, name_curpos, remaining);
1635 if (IS_ERR(filename)) {
1636 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1637 vfree(data);
1638 size = size * 5 / 4;
1639 goto alloc;
1640 }
1641 continue;
1642 }
1643
1644 /* file_path() fills at the end, move name down */
1645 /* n = strlen(filename) + 1: */
1646 n = (name_curpos + remaining) - filename;
1647 remaining = filename - name_curpos;
1648 memmove(name_curpos, filename, n);
1649 name_curpos += n;
1650
1651 *start_end_ofs++ = vma->vm_start;
1652 *start_end_ofs++ = vma->vm_end;
1653 *start_end_ofs++ = vma->vm_pgoff;
1654 count++;
1655 }
1656
1657 /* Now we know exact count of files, can store it */
1658 data[0] = count;
1659 data[1] = PAGE_SIZE;
1660 /*
1661 * Count usually is less than current->mm->map_count,
1662 * we need to move filenames down.
1663 */
1664 n = current->mm->map_count - count;
1665 if (n != 0) {
1666 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1667 memmove(name_base - shift_bytes, name_base,
1668 name_curpos - name_base);
1669 name_curpos -= shift_bytes;
1670 }
1671
1672 size = name_curpos - (char *)data;
1673 fill_note(note, "CORE", NT_FILE, size, data);
1674 return 0;
1675 }
1676
1677 #ifdef CORE_DUMP_USE_REGSET
1678 #include <linux/regset.h>
1679
1680 struct elf_thread_core_info {
1681 struct elf_thread_core_info *next;
1682 struct task_struct *task;
1683 struct elf_prstatus prstatus;
1684 struct memelfnote notes[0];
1685 };
1686
1687 struct elf_note_info {
1688 struct elf_thread_core_info *thread;
1689 struct memelfnote psinfo;
1690 struct memelfnote signote;
1691 struct memelfnote auxv;
1692 struct memelfnote files;
1693 user_siginfo_t csigdata;
1694 size_t size;
1695 int thread_notes;
1696 };
1697
1698 /*
1699 * When a regset has a writeback hook, we call it on each thread before
1700 * dumping user memory. On register window machines, this makes sure the
1701 * user memory backing the register data is up to date before we read it.
1702 */
1703 static void do_thread_regset_writeback(struct task_struct *task,
1704 const struct user_regset *regset)
1705 {
1706 if (regset->writeback)
1707 regset->writeback(task, regset, 1);
1708 }
1709
1710 #ifndef PRSTATUS_SIZE
1711 #define PRSTATUS_SIZE(S, R) sizeof(S)
1712 #endif
1713
1714 #ifndef SET_PR_FPVALID
1715 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1716 #endif
1717
1718 static int fill_thread_core_info(struct elf_thread_core_info *t,
1719 const struct user_regset_view *view,
1720 long signr, size_t *total)
1721 {
1722 unsigned int i;
1723 unsigned int regset0_size = regset_size(t->task, &view->regsets[0]);
1724
1725 /*
1726 * NT_PRSTATUS is the one special case, because the regset data
1727 * goes into the pr_reg field inside the note contents, rather
1728 * than being the whole note contents. We fill the reset in here.
1729 * We assume that regset 0 is NT_PRSTATUS.
1730 */
1731 fill_prstatus(&t->prstatus, t->task, signr);
1732 (void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size,
1733 &t->prstatus.pr_reg, NULL);
1734
1735 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1736 PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1737 *total += notesize(&t->notes[0]);
1738
1739 do_thread_regset_writeback(t->task, &view->regsets[0]);
1740
1741 /*
1742 * Each other regset might generate a note too. For each regset
1743 * that has no core_note_type or is inactive, we leave t->notes[i]
1744 * all zero and we'll know to skip writing it later.
1745 */
1746 for (i = 1; i < view->n; ++i) {
1747 const struct user_regset *regset = &view->regsets[i];
1748 do_thread_regset_writeback(t->task, regset);
1749 if (regset->core_note_type && regset->get &&
1750 (!regset->active || regset->active(t->task, regset) > 0)) {
1751 int ret;
1752 size_t size = regset_size(t->task, regset);
1753 void *data = kmalloc(size, GFP_KERNEL);
1754 if (unlikely(!data))
1755 return 0;
1756 ret = regset->get(t->task, regset,
1757 0, size, data, NULL);
1758 if (unlikely(ret))
1759 kfree(data);
1760 else {
1761 if (regset->core_note_type != NT_PRFPREG)
1762 fill_note(&t->notes[i], "LINUX",
1763 regset->core_note_type,
1764 size, data);
1765 else {
1766 SET_PR_FPVALID(&t->prstatus,
1767 1, regset0_size);
1768 fill_note(&t->notes[i], "CORE",
1769 NT_PRFPREG, size, data);
1770 }
1771 *total += notesize(&t->notes[i]);
1772 }
1773 }
1774 }
1775
1776 return 1;
1777 }
1778
1779 static int fill_note_info(struct elfhdr *elf, int phdrs,
1780 struct elf_note_info *info,
1781 const siginfo_t *siginfo, struct pt_regs *regs)
1782 {
1783 struct task_struct *dump_task = current;
1784 const struct user_regset_view *view = task_user_regset_view(dump_task);
1785 struct elf_thread_core_info *t;
1786 struct elf_prpsinfo *psinfo;
1787 struct core_thread *ct;
1788 unsigned int i;
1789
1790 info->size = 0;
1791 info->thread = NULL;
1792
1793 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1794 if (psinfo == NULL) {
1795 info->psinfo.data = NULL; /* So we don't free this wrongly */
1796 return 0;
1797 }
1798
1799 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1800
1801 /*
1802 * Figure out how many notes we're going to need for each thread.
1803 */
1804 info->thread_notes = 0;
1805 for (i = 0; i < view->n; ++i)
1806 if (view->regsets[i].core_note_type != 0)
1807 ++info->thread_notes;
1808
1809 /*
1810 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1811 * since it is our one special case.
1812 */
1813 if (unlikely(info->thread_notes == 0) ||
1814 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1815 WARN_ON(1);
1816 return 0;
1817 }
1818
1819 /*
1820 * Initialize the ELF file header.
1821 */
1822 fill_elf_header(elf, phdrs,
1823 view->e_machine, view->e_flags);
1824
1825 /*
1826 * Allocate a structure for each thread.
1827 */
1828 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1829 t = kzalloc(offsetof(struct elf_thread_core_info,
1830 notes[info->thread_notes]),
1831 GFP_KERNEL);
1832 if (unlikely(!t))
1833 return 0;
1834
1835 t->task = ct->task;
1836 if (ct->task == dump_task || !info->thread) {
1837 t->next = info->thread;
1838 info->thread = t;
1839 } else {
1840 /*
1841 * Make sure to keep the original task at
1842 * the head of the list.
1843 */
1844 t->next = info->thread->next;
1845 info->thread->next = t;
1846 }
1847 }
1848
1849 /*
1850 * Now fill in each thread's information.
1851 */
1852 for (t = info->thread; t != NULL; t = t->next)
1853 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1854 return 0;
1855
1856 /*
1857 * Fill in the two process-wide notes.
1858 */
1859 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1860 info->size += notesize(&info->psinfo);
1861
1862 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1863 info->size += notesize(&info->signote);
1864
1865 fill_auxv_note(&info->auxv, current->mm);
1866 info->size += notesize(&info->auxv);
1867
1868 if (fill_files_note(&info->files) == 0)
1869 info->size += notesize(&info->files);
1870
1871 return 1;
1872 }
1873
1874 static size_t get_note_info_size(struct elf_note_info *info)
1875 {
1876 return info->size;
1877 }
1878
1879 /*
1880 * Write all the notes for each thread. When writing the first thread, the
1881 * process-wide notes are interleaved after the first thread-specific note.
1882 */
1883 static int write_note_info(struct elf_note_info *info,
1884 struct coredump_params *cprm)
1885 {
1886 bool first = true;
1887 struct elf_thread_core_info *t = info->thread;
1888
1889 do {
1890 int i;
1891
1892 if (!writenote(&t->notes[0], cprm))
1893 return 0;
1894
1895 if (first && !writenote(&info->psinfo, cprm))
1896 return 0;
1897 if (first && !writenote(&info->signote, cprm))
1898 return 0;
1899 if (first && !writenote(&info->auxv, cprm))
1900 return 0;
1901 if (first && info->files.data &&
1902 !writenote(&info->files, cprm))
1903 return 0;
1904
1905 for (i = 1; i < info->thread_notes; ++i)
1906 if (t->notes[i].data &&
1907 !writenote(&t->notes[i], cprm))
1908 return 0;
1909
1910 first = false;
1911 t = t->next;
1912 } while (t);
1913
1914 return 1;
1915 }
1916
1917 static void free_note_info(struct elf_note_info *info)
1918 {
1919 struct elf_thread_core_info *threads = info->thread;
1920 while (threads) {
1921 unsigned int i;
1922 struct elf_thread_core_info *t = threads;
1923 threads = t->next;
1924 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1925 for (i = 1; i < info->thread_notes; ++i)
1926 kfree(t->notes[i].data);
1927 kfree(t);
1928 }
1929 kfree(info->psinfo.data);
1930 vfree(info->files.data);
1931 }
1932
1933 #else
1934
1935 /* Here is the structure in which status of each thread is captured. */
1936 struct elf_thread_status
1937 {
1938 struct list_head list;
1939 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1940 elf_fpregset_t fpu; /* NT_PRFPREG */
1941 struct task_struct *thread;
1942 #ifdef ELF_CORE_COPY_XFPREGS
1943 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1944 #endif
1945 struct memelfnote notes[3];
1946 int num_notes;
1947 };
1948
1949 /*
1950 * In order to add the specific thread information for the elf file format,
1951 * we need to keep a linked list of every threads pr_status and then create
1952 * a single section for them in the final core file.
1953 */
1954 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1955 {
1956 int sz = 0;
1957 struct task_struct *p = t->thread;
1958 t->num_notes = 0;
1959
1960 fill_prstatus(&t->prstatus, p, signr);
1961 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1962
1963 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1964 &(t->prstatus));
1965 t->num_notes++;
1966 sz += notesize(&t->notes[0]);
1967
1968 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1969 &t->fpu))) {
1970 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1971 &(t->fpu));
1972 t->num_notes++;
1973 sz += notesize(&t->notes[1]);
1974 }
1975
1976 #ifdef ELF_CORE_COPY_XFPREGS
1977 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1978 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1979 sizeof(t->xfpu), &t->xfpu);
1980 t->num_notes++;
1981 sz += notesize(&t->notes[2]);
1982 }
1983 #endif
1984 return sz;
1985 }
1986
1987 struct elf_note_info {
1988 struct memelfnote *notes;
1989 struct memelfnote *notes_files;
1990 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1991 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1992 struct list_head thread_list;
1993 elf_fpregset_t *fpu;
1994 #ifdef ELF_CORE_COPY_XFPREGS
1995 elf_fpxregset_t *xfpu;
1996 #endif
1997 user_siginfo_t csigdata;
1998 int thread_status_size;
1999 int numnote;
2000 };
2001
2002 static int elf_note_info_init(struct elf_note_info *info)
2003 {
2004 memset(info, 0, sizeof(*info));
2005 INIT_LIST_HEAD(&info->thread_list);
2006
2007 /* Allocate space for ELF notes */
2008 info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
2009 if (!info->notes)
2010 return 0;
2011 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2012 if (!info->psinfo)
2013 return 0;
2014 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2015 if (!info->prstatus)
2016 return 0;
2017 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2018 if (!info->fpu)
2019 return 0;
2020 #ifdef ELF_CORE_COPY_XFPREGS
2021 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2022 if (!info->xfpu)
2023 return 0;
2024 #endif
2025 return 1;
2026 }
2027
2028 static int fill_note_info(struct elfhdr *elf, int phdrs,
2029 struct elf_note_info *info,
2030 const siginfo_t *siginfo, struct pt_regs *regs)
2031 {
2032 struct list_head *t;
2033 struct core_thread *ct;
2034 struct elf_thread_status *ets;
2035
2036 if (!elf_note_info_init(info))
2037 return 0;
2038
2039 for (ct = current->mm->core_state->dumper.next;
2040 ct; ct = ct->next) {
2041 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2042 if (!ets)
2043 return 0;
2044
2045 ets->thread = ct->task;
2046 list_add(&ets->list, &info->thread_list);
2047 }
2048
2049 list_for_each(t, &info->thread_list) {
2050 int sz;
2051
2052 ets = list_entry(t, struct elf_thread_status, list);
2053 sz = elf_dump_thread_status(siginfo->si_signo, ets);
2054 info->thread_status_size += sz;
2055 }
2056 /* now collect the dump for the current */
2057 memset(info->prstatus, 0, sizeof(*info->prstatus));
2058 fill_prstatus(info->prstatus, current, siginfo->si_signo);
2059 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2060
2061 /* Set up header */
2062 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2063
2064 /*
2065 * Set up the notes in similar form to SVR4 core dumps made
2066 * with info from their /proc.
2067 */
2068
2069 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2070 sizeof(*info->prstatus), info->prstatus);
2071 fill_psinfo(info->psinfo, current->group_leader, current->mm);
2072 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2073 sizeof(*info->psinfo), info->psinfo);
2074
2075 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2076 fill_auxv_note(info->notes + 3, current->mm);
2077 info->numnote = 4;
2078
2079 if (fill_files_note(info->notes + info->numnote) == 0) {
2080 info->notes_files = info->notes + info->numnote;
2081 info->numnote++;
2082 }
2083
2084 /* Try to dump the FPU. */
2085 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2086 info->fpu);
2087 if (info->prstatus->pr_fpvalid)
2088 fill_note(info->notes + info->numnote++,
2089 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2090 #ifdef ELF_CORE_COPY_XFPREGS
2091 if (elf_core_copy_task_xfpregs(current, info->xfpu))
2092 fill_note(info->notes + info->numnote++,
2093 "LINUX", ELF_CORE_XFPREG_TYPE,
2094 sizeof(*info->xfpu), info->xfpu);
2095 #endif
2096
2097 return 1;
2098 }
2099
2100 static size_t get_note_info_size(struct elf_note_info *info)
2101 {
2102 int sz = 0;
2103 int i;
2104
2105 for (i = 0; i < info->numnote; i++)
2106 sz += notesize(info->notes + i);
2107
2108 sz += info->thread_status_size;
2109
2110 return sz;
2111 }
2112
2113 static int write_note_info(struct elf_note_info *info,
2114 struct coredump_params *cprm)
2115 {
2116 int i;
2117 struct list_head *t;
2118
2119 for (i = 0; i < info->numnote; i++)
2120 if (!writenote(info->notes + i, cprm))
2121 return 0;
2122
2123 /* write out the thread status notes section */
2124 list_for_each(t, &info->thread_list) {
2125 struct elf_thread_status *tmp =
2126 list_entry(t, struct elf_thread_status, list);
2127
2128 for (i = 0; i < tmp->num_notes; i++)
2129 if (!writenote(&tmp->notes[i], cprm))
2130 return 0;
2131 }
2132
2133 return 1;
2134 }
2135
2136 static void free_note_info(struct elf_note_info *info)
2137 {
2138 while (!list_empty(&info->thread_list)) {
2139 struct list_head *tmp = info->thread_list.next;
2140 list_del(tmp);
2141 kfree(list_entry(tmp, struct elf_thread_status, list));
2142 }
2143
2144 /* Free data possibly allocated by fill_files_note(): */
2145 if (info->notes_files)
2146 vfree(info->notes_files->data);
2147
2148 kfree(info->prstatus);
2149 kfree(info->psinfo);
2150 kfree(info->notes);
2151 kfree(info->fpu);
2152 #ifdef ELF_CORE_COPY_XFPREGS
2153 kfree(info->xfpu);
2154 #endif
2155 }
2156
2157 #endif
2158
2159 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2160 struct vm_area_struct *gate_vma)
2161 {
2162 struct vm_area_struct *ret = tsk->mm->mmap;
2163
2164 if (ret)
2165 return ret;
2166 return gate_vma;
2167 }
2168 /*
2169 * Helper function for iterating across a vma list. It ensures that the caller
2170 * will visit `gate_vma' prior to terminating the search.
2171 */
2172 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2173 struct vm_area_struct *gate_vma)
2174 {
2175 struct vm_area_struct *ret;
2176
2177 ret = this_vma->vm_next;
2178 if (ret)
2179 return ret;
2180 if (this_vma == gate_vma)
2181 return NULL;
2182 return gate_vma;
2183 }
2184
2185 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2186 elf_addr_t e_shoff, int segs)
2187 {
2188 elf->e_shoff = e_shoff;
2189 elf->e_shentsize = sizeof(*shdr4extnum);
2190 elf->e_shnum = 1;
2191 elf->e_shstrndx = SHN_UNDEF;
2192
2193 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2194
2195 shdr4extnum->sh_type = SHT_NULL;
2196 shdr4extnum->sh_size = elf->e_shnum;
2197 shdr4extnum->sh_link = elf->e_shstrndx;
2198 shdr4extnum->sh_info = segs;
2199 }
2200
2201 /*
2202 * Actual dumper
2203 *
2204 * This is a two-pass process; first we find the offsets of the bits,
2205 * and then they are actually written out. If we run out of core limit
2206 * we just truncate.
2207 */
2208 static int elf_core_dump(struct coredump_params *cprm)
2209 {
2210 int has_dumped = 0;
2211 mm_segment_t fs;
2212 int segs, i;
2213 size_t vma_data_size = 0;
2214 struct vm_area_struct *vma, *gate_vma;
2215 struct elfhdr *elf = NULL;
2216 loff_t offset = 0, dataoff;
2217 struct elf_note_info info = { };
2218 struct elf_phdr *phdr4note = NULL;
2219 struct elf_shdr *shdr4extnum = NULL;
2220 Elf_Half e_phnum;
2221 elf_addr_t e_shoff;
2222 elf_addr_t *vma_filesz = NULL;
2223
2224 /*
2225 * We no longer stop all VM operations.
2226 *
2227 * This is because those proceses that could possibly change map_count
2228 * or the mmap / vma pages are now blocked in do_exit on current
2229 * finishing this core dump.
2230 *
2231 * Only ptrace can touch these memory addresses, but it doesn't change
2232 * the map_count or the pages allocated. So no possibility of crashing
2233 * exists while dumping the mm->vm_next areas to the core file.
2234 */
2235
2236 /* alloc memory for large data structures: too large to be on stack */
2237 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2238 if (!elf)
2239 goto out;
2240 /*
2241 * The number of segs are recored into ELF header as 16bit value.
2242 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2243 */
2244 segs = current->mm->map_count;
2245 segs += elf_core_extra_phdrs();
2246
2247 gate_vma = get_gate_vma(current->mm);
2248 if (gate_vma != NULL)
2249 segs++;
2250
2251 /* for notes section */
2252 segs++;
2253
2254 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2255 * this, kernel supports extended numbering. Have a look at
2256 * include/linux/elf.h for further information. */
2257 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2258
2259 /*
2260 * Collect all the non-memory information about the process for the
2261 * notes. This also sets up the file header.
2262 */
2263 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2264 goto cleanup;
2265
2266 has_dumped = 1;
2267
2268 fs = get_fs();
2269 set_fs(KERNEL_DS);
2270
2271 offset += sizeof(*elf); /* Elf header */
2272 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2273
2274 /* Write notes phdr entry */
2275 {
2276 size_t sz = get_note_info_size(&info);
2277
2278 sz += elf_coredump_extra_notes_size();
2279
2280 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2281 if (!phdr4note)
2282 goto end_coredump;
2283
2284 fill_elf_note_phdr(phdr4note, sz, offset);
2285 offset += sz;
2286 }
2287
2288 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2289
2290 if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2291 goto end_coredump;
2292 vma_filesz = vmalloc((segs - 1) * sizeof(*vma_filesz));
2293 if (!vma_filesz)
2294 goto end_coredump;
2295
2296 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2297 vma = next_vma(vma, gate_vma)) {
2298 unsigned long dump_size;
2299
2300 dump_size = vma_dump_size(vma, cprm->mm_flags);
2301 vma_filesz[i++] = dump_size;
2302 vma_data_size += dump_size;
2303 }
2304
2305 offset += vma_data_size;
2306 offset += elf_core_extra_data_size();
2307 e_shoff = offset;
2308
2309 if (e_phnum == PN_XNUM) {
2310 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2311 if (!shdr4extnum)
2312 goto end_coredump;
2313 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2314 }
2315
2316 offset = dataoff;
2317
2318 if (!dump_emit(cprm, elf, sizeof(*elf)))
2319 goto end_coredump;
2320
2321 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2322 goto end_coredump;
2323
2324 /* Write program headers for segments dump */
2325 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2326 vma = next_vma(vma, gate_vma)) {
2327 struct elf_phdr phdr;
2328
2329 phdr.p_type = PT_LOAD;
2330 phdr.p_offset = offset;
2331 phdr.p_vaddr = vma->vm_start;
2332 phdr.p_paddr = 0;
2333 phdr.p_filesz = vma_filesz[i++];
2334 phdr.p_memsz = vma->vm_end - vma->vm_start;
2335 offset += phdr.p_filesz;
2336 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2337 if (vma->vm_flags & VM_WRITE)
2338 phdr.p_flags |= PF_W;
2339 if (vma->vm_flags & VM_EXEC)
2340 phdr.p_flags |= PF_X;
2341 phdr.p_align = ELF_EXEC_PAGESIZE;
2342
2343 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2344 goto end_coredump;
2345 }
2346
2347 if (!elf_core_write_extra_phdrs(cprm, offset))
2348 goto end_coredump;
2349
2350 /* write out the notes section */
2351 if (!write_note_info(&info, cprm))
2352 goto end_coredump;
2353
2354 if (elf_coredump_extra_notes_write(cprm))
2355 goto end_coredump;
2356
2357 /* Align to page */
2358 if (!dump_skip(cprm, dataoff - cprm->pos))
2359 goto end_coredump;
2360
2361 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2362 vma = next_vma(vma, gate_vma)) {
2363 unsigned long addr;
2364 unsigned long end;
2365
2366 end = vma->vm_start + vma_filesz[i++];
2367
2368 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2369 struct page *page;
2370 int stop;
2371
2372 page = get_dump_page(addr);
2373 if (page) {
2374 void *kaddr = kmap(page);
2375 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2376 kunmap(page);
2377 put_page(page);
2378 } else
2379 stop = !dump_skip(cprm, PAGE_SIZE);
2380 if (stop)
2381 goto end_coredump;
2382 }
2383 }
2384 dump_truncate(cprm);
2385
2386 if (!elf_core_write_extra_data(cprm))
2387 goto end_coredump;
2388
2389 if (e_phnum == PN_XNUM) {
2390 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2391 goto end_coredump;
2392 }
2393
2394 end_coredump:
2395 set_fs(fs);
2396
2397 cleanup:
2398 free_note_info(&info);
2399 kfree(shdr4extnum);
2400 vfree(vma_filesz);
2401 kfree(phdr4note);
2402 kfree(elf);
2403 out:
2404 return has_dumped;
2405 }
2406
2407 #endif /* CONFIG_ELF_CORE */
2408
2409 static int __init init_elf_binfmt(void)
2410 {
2411 register_binfmt(&elf_format);
2412 return 0;
2413 }
2414
2415 static void __exit exit_elf_binfmt(void)
2416 {
2417 /* Remove the COFF and ELF loaders. */
2418 unregister_binfmt(&elf_format);
2419 }
2420
2421 core_initcall(init_elf_binfmt);
2422 module_exit(exit_elf_binfmt);
2423 MODULE_LICENSE("GPL");