]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/dax.c
x86/msr-index: Cleanup bit defines
[mirror_ubuntu-bionic-kernel.git] / fs / dax.c
1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44
45 /* The 'colour' (ie low bits) within a PMD of a page offset. */
46 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
47
48 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
49
50 static int __init init_dax_wait_table(void)
51 {
52 int i;
53
54 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
55 init_waitqueue_head(wait_table + i);
56 return 0;
57 }
58 fs_initcall(init_dax_wait_table);
59
60 /*
61 * We use lowest available bit in exceptional entry for locking, one bit for
62 * the entry size (PMD) and two more to tell us if the entry is a zero page or
63 * an empty entry that is just used for locking. In total four special bits.
64 *
65 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
66 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
67 * block allocation.
68 */
69 #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
70 #define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
71 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
72 #define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
73 #define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
74
75 static unsigned long dax_radix_sector(void *entry)
76 {
77 return (unsigned long)entry >> RADIX_DAX_SHIFT;
78 }
79
80 static void *dax_radix_locked_entry(sector_t sector, unsigned long flags)
81 {
82 return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
83 ((unsigned long)sector << RADIX_DAX_SHIFT) |
84 RADIX_DAX_ENTRY_LOCK);
85 }
86
87 static unsigned int dax_radix_order(void *entry)
88 {
89 if ((unsigned long)entry & RADIX_DAX_PMD)
90 return PMD_SHIFT - PAGE_SHIFT;
91 return 0;
92 }
93
94 static int dax_is_pmd_entry(void *entry)
95 {
96 return (unsigned long)entry & RADIX_DAX_PMD;
97 }
98
99 static int dax_is_pte_entry(void *entry)
100 {
101 return !((unsigned long)entry & RADIX_DAX_PMD);
102 }
103
104 static int dax_is_zero_entry(void *entry)
105 {
106 return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
107 }
108
109 static int dax_is_empty_entry(void *entry)
110 {
111 return (unsigned long)entry & RADIX_DAX_EMPTY;
112 }
113
114 /*
115 * DAX radix tree locking
116 */
117 struct exceptional_entry_key {
118 struct address_space *mapping;
119 pgoff_t entry_start;
120 };
121
122 struct wait_exceptional_entry_queue {
123 wait_queue_entry_t wait;
124 struct exceptional_entry_key key;
125 };
126
127 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128 pgoff_t index, void *entry, struct exceptional_entry_key *key)
129 {
130 unsigned long hash;
131
132 /*
133 * If 'entry' is a PMD, align the 'index' that we use for the wait
134 * queue to the start of that PMD. This ensures that all offsets in
135 * the range covered by the PMD map to the same bit lock.
136 */
137 if (dax_is_pmd_entry(entry))
138 index &= ~PG_PMD_COLOUR;
139
140 key->mapping = mapping;
141 key->entry_start = index;
142
143 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144 return wait_table + hash;
145 }
146
147 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
148 int sync, void *keyp)
149 {
150 struct exceptional_entry_key *key = keyp;
151 struct wait_exceptional_entry_queue *ewait =
152 container_of(wait, struct wait_exceptional_entry_queue, wait);
153
154 if (key->mapping != ewait->key.mapping ||
155 key->entry_start != ewait->key.entry_start)
156 return 0;
157 return autoremove_wake_function(wait, mode, sync, NULL);
158 }
159
160 /*
161 * We do not necessarily hold the mapping->tree_lock when we call this
162 * function so it is possible that 'entry' is no longer a valid item in the
163 * radix tree. This is okay because all we really need to do is to find the
164 * correct waitqueue where tasks might be waiting for that old 'entry' and
165 * wake them.
166 */
167 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
168 pgoff_t index, void *entry, bool wake_all)
169 {
170 struct exceptional_entry_key key;
171 wait_queue_head_t *wq;
172
173 wq = dax_entry_waitqueue(mapping, index, entry, &key);
174
175 /*
176 * Checking for locked entry and prepare_to_wait_exclusive() happens
177 * under mapping->tree_lock, ditto for entry handling in our callers.
178 * So at this point all tasks that could have seen our entry locked
179 * must be in the waitqueue and the following check will see them.
180 */
181 if (waitqueue_active(wq))
182 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
183 }
184
185 /*
186 * Check whether the given slot is locked. The function must be called with
187 * mapping->tree_lock held
188 */
189 static inline int slot_locked(struct address_space *mapping, void **slot)
190 {
191 unsigned long entry = (unsigned long)
192 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
193 return entry & RADIX_DAX_ENTRY_LOCK;
194 }
195
196 /*
197 * Mark the given slot is locked. The function must be called with
198 * mapping->tree_lock held
199 */
200 static inline void *lock_slot(struct address_space *mapping, void **slot)
201 {
202 unsigned long entry = (unsigned long)
203 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
204
205 entry |= RADIX_DAX_ENTRY_LOCK;
206 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
207 return (void *)entry;
208 }
209
210 /*
211 * Mark the given slot is unlocked. The function must be called with
212 * mapping->tree_lock held
213 */
214 static inline void *unlock_slot(struct address_space *mapping, void **slot)
215 {
216 unsigned long entry = (unsigned long)
217 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
218
219 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
220 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
221 return (void *)entry;
222 }
223
224 /*
225 * Lookup entry in radix tree, wait for it to become unlocked if it is
226 * exceptional entry and return it. The caller must call
227 * put_unlocked_mapping_entry() when he decided not to lock the entry or
228 * put_locked_mapping_entry() when he locked the entry and now wants to
229 * unlock it.
230 *
231 * The function must be called with mapping->tree_lock held.
232 */
233 static void *get_unlocked_mapping_entry(struct address_space *mapping,
234 pgoff_t index, void ***slotp)
235 {
236 void *entry, **slot;
237 struct wait_exceptional_entry_queue ewait;
238 wait_queue_head_t *wq;
239
240 init_wait(&ewait.wait);
241 ewait.wait.func = wake_exceptional_entry_func;
242
243 for (;;) {
244 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
245 &slot);
246 if (!entry ||
247 WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
248 !slot_locked(mapping, slot)) {
249 if (slotp)
250 *slotp = slot;
251 return entry;
252 }
253
254 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
255 prepare_to_wait_exclusive(wq, &ewait.wait,
256 TASK_UNINTERRUPTIBLE);
257 spin_unlock_irq(&mapping->tree_lock);
258 schedule();
259 finish_wait(wq, &ewait.wait);
260 spin_lock_irq(&mapping->tree_lock);
261 }
262 }
263
264 static void dax_unlock_mapping_entry(struct address_space *mapping,
265 pgoff_t index)
266 {
267 void *entry, **slot;
268
269 spin_lock_irq(&mapping->tree_lock);
270 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
271 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
272 !slot_locked(mapping, slot))) {
273 spin_unlock_irq(&mapping->tree_lock);
274 return;
275 }
276 unlock_slot(mapping, slot);
277 spin_unlock_irq(&mapping->tree_lock);
278 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
279 }
280
281 static void put_locked_mapping_entry(struct address_space *mapping,
282 pgoff_t index)
283 {
284 dax_unlock_mapping_entry(mapping, index);
285 }
286
287 /*
288 * Called when we are done with radix tree entry we looked up via
289 * get_unlocked_mapping_entry() and which we didn't lock in the end.
290 */
291 static void put_unlocked_mapping_entry(struct address_space *mapping,
292 pgoff_t index, void *entry)
293 {
294 if (!entry)
295 return;
296
297 /* We have to wake up next waiter for the radix tree entry lock */
298 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
299 }
300
301 /*
302 * Find radix tree entry at given index. If it points to an exceptional entry,
303 * return it with the radix tree entry locked. If the radix tree doesn't
304 * contain given index, create an empty exceptional entry for the index and
305 * return with it locked.
306 *
307 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
308 * either return that locked entry or will return an error. This error will
309 * happen if there are any 4k entries within the 2MiB range that we are
310 * requesting.
311 *
312 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
313 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
314 * insertion will fail if it finds any 4k entries already in the tree, and a
315 * 4k insertion will cause an existing 2MiB entry to be unmapped and
316 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
317 * well as 2MiB empty entries.
318 *
319 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
320 * real storage backing them. We will leave these real 2MiB DAX entries in
321 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
322 *
323 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
324 * persistent memory the benefit is doubtful. We can add that later if we can
325 * show it helps.
326 */
327 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
328 unsigned long size_flag)
329 {
330 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
331 void *entry, **slot;
332
333 restart:
334 spin_lock_irq(&mapping->tree_lock);
335 entry = get_unlocked_mapping_entry(mapping, index, &slot);
336
337 if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
338 entry = ERR_PTR(-EIO);
339 goto out_unlock;
340 }
341
342 if (entry) {
343 if (size_flag & RADIX_DAX_PMD) {
344 if (dax_is_pte_entry(entry)) {
345 put_unlocked_mapping_entry(mapping, index,
346 entry);
347 entry = ERR_PTR(-EEXIST);
348 goto out_unlock;
349 }
350 } else { /* trying to grab a PTE entry */
351 if (dax_is_pmd_entry(entry) &&
352 (dax_is_zero_entry(entry) ||
353 dax_is_empty_entry(entry))) {
354 pmd_downgrade = true;
355 }
356 }
357 }
358
359 /* No entry for given index? Make sure radix tree is big enough. */
360 if (!entry || pmd_downgrade) {
361 int err;
362
363 if (pmd_downgrade) {
364 /*
365 * Make sure 'entry' remains valid while we drop
366 * mapping->tree_lock.
367 */
368 entry = lock_slot(mapping, slot);
369 }
370
371 spin_unlock_irq(&mapping->tree_lock);
372 /*
373 * Besides huge zero pages the only other thing that gets
374 * downgraded are empty entries which don't need to be
375 * unmapped.
376 */
377 if (pmd_downgrade && dax_is_zero_entry(entry))
378 unmap_mapping_range(mapping,
379 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
380
381 err = radix_tree_preload(
382 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
383 if (err) {
384 if (pmd_downgrade)
385 put_locked_mapping_entry(mapping, index);
386 return ERR_PTR(err);
387 }
388 spin_lock_irq(&mapping->tree_lock);
389
390 if (!entry) {
391 /*
392 * We needed to drop the page_tree lock while calling
393 * radix_tree_preload() and we didn't have an entry to
394 * lock. See if another thread inserted an entry at
395 * our index during this time.
396 */
397 entry = __radix_tree_lookup(&mapping->page_tree, index,
398 NULL, &slot);
399 if (entry) {
400 radix_tree_preload_end();
401 spin_unlock_irq(&mapping->tree_lock);
402 goto restart;
403 }
404 }
405
406 if (pmd_downgrade) {
407 radix_tree_delete(&mapping->page_tree, index);
408 mapping->nrexceptional--;
409 dax_wake_mapping_entry_waiter(mapping, index, entry,
410 true);
411 }
412
413 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
414
415 err = __radix_tree_insert(&mapping->page_tree, index,
416 dax_radix_order(entry), entry);
417 radix_tree_preload_end();
418 if (err) {
419 spin_unlock_irq(&mapping->tree_lock);
420 /*
421 * Our insertion of a DAX entry failed, most likely
422 * because we were inserting a PMD entry and it
423 * collided with a PTE sized entry at a different
424 * index in the PMD range. We haven't inserted
425 * anything into the radix tree and have no waiters to
426 * wake.
427 */
428 return ERR_PTR(err);
429 }
430 /* Good, we have inserted empty locked entry into the tree. */
431 mapping->nrexceptional++;
432 spin_unlock_irq(&mapping->tree_lock);
433 return entry;
434 }
435 entry = lock_slot(mapping, slot);
436 out_unlock:
437 spin_unlock_irq(&mapping->tree_lock);
438 return entry;
439 }
440
441 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
442 pgoff_t index, bool trunc)
443 {
444 int ret = 0;
445 void *entry;
446 struct radix_tree_root *page_tree = &mapping->page_tree;
447
448 spin_lock_irq(&mapping->tree_lock);
449 entry = get_unlocked_mapping_entry(mapping, index, NULL);
450 if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
451 goto out;
452 if (!trunc &&
453 (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
454 radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
455 goto out;
456 radix_tree_delete(page_tree, index);
457 mapping->nrexceptional--;
458 ret = 1;
459 out:
460 put_unlocked_mapping_entry(mapping, index, entry);
461 spin_unlock_irq(&mapping->tree_lock);
462 return ret;
463 }
464 /*
465 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
466 * entry to get unlocked before deleting it.
467 */
468 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
469 {
470 int ret = __dax_invalidate_mapping_entry(mapping, index, true);
471
472 /*
473 * This gets called from truncate / punch_hole path. As such, the caller
474 * must hold locks protecting against concurrent modifications of the
475 * radix tree (usually fs-private i_mmap_sem for writing). Since the
476 * caller has seen exceptional entry for this index, we better find it
477 * at that index as well...
478 */
479 WARN_ON_ONCE(!ret);
480 return ret;
481 }
482
483 /*
484 * Invalidate exceptional DAX entry if it is clean.
485 */
486 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
487 pgoff_t index)
488 {
489 return __dax_invalidate_mapping_entry(mapping, index, false);
490 }
491
492 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
493 sector_t sector, size_t size, struct page *to,
494 unsigned long vaddr)
495 {
496 void *vto, *kaddr;
497 pgoff_t pgoff;
498 pfn_t pfn;
499 long rc;
500 int id;
501
502 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
503 if (rc)
504 return rc;
505
506 id = dax_read_lock();
507 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
508 if (rc < 0) {
509 dax_read_unlock(id);
510 return rc;
511 }
512 vto = kmap_atomic(to);
513 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
514 kunmap_atomic(vto);
515 dax_read_unlock(id);
516 return 0;
517 }
518
519 /*
520 * By this point grab_mapping_entry() has ensured that we have a locked entry
521 * of the appropriate size so we don't have to worry about downgrading PMDs to
522 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
523 * already in the tree, we will skip the insertion and just dirty the PMD as
524 * appropriate.
525 */
526 static void *dax_insert_mapping_entry(struct address_space *mapping,
527 struct vm_fault *vmf,
528 void *entry, sector_t sector,
529 unsigned long flags, bool dirty)
530 {
531 struct radix_tree_root *page_tree = &mapping->page_tree;
532 void *new_entry;
533 pgoff_t index = vmf->pgoff;
534
535 if (dirty)
536 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
537
538 if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
539 /* we are replacing a zero page with block mapping */
540 if (dax_is_pmd_entry(entry))
541 unmap_mapping_range(mapping,
542 (vmf->pgoff << PAGE_SHIFT) & PMD_MASK,
543 PMD_SIZE, 0);
544 else /* pte entry */
545 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
546 PAGE_SIZE, 0);
547 }
548
549 spin_lock_irq(&mapping->tree_lock);
550 new_entry = dax_radix_locked_entry(sector, flags);
551
552 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
553 /*
554 * Only swap our new entry into the radix tree if the current
555 * entry is a zero page or an empty entry. If a normal PTE or
556 * PMD entry is already in the tree, we leave it alone. This
557 * means that if we are trying to insert a PTE and the
558 * existing entry is a PMD, we will just leave the PMD in the
559 * tree and dirty it if necessary.
560 */
561 struct radix_tree_node *node;
562 void **slot;
563 void *ret;
564
565 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
566 WARN_ON_ONCE(ret != entry);
567 __radix_tree_replace(page_tree, node, slot,
568 new_entry, NULL);
569 entry = new_entry;
570 }
571
572 if (dirty)
573 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
574
575 spin_unlock_irq(&mapping->tree_lock);
576 return entry;
577 }
578
579 static inline unsigned long
580 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
581 {
582 unsigned long address;
583
584 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
585 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
586 return address;
587 }
588
589 /* Walk all mappings of a given index of a file and writeprotect them */
590 static void dax_mapping_entry_mkclean(struct address_space *mapping,
591 pgoff_t index, unsigned long pfn)
592 {
593 struct vm_area_struct *vma;
594 pte_t pte, *ptep = NULL;
595 pmd_t *pmdp = NULL;
596 spinlock_t *ptl;
597
598 i_mmap_lock_read(mapping);
599 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
600 unsigned long address, start, end;
601
602 cond_resched();
603
604 if (!(vma->vm_flags & VM_SHARED))
605 continue;
606
607 address = pgoff_address(index, vma);
608
609 /*
610 * Note because we provide start/end to follow_pte_pmd it will
611 * call mmu_notifier_invalidate_range_start() on our behalf
612 * before taking any lock.
613 */
614 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
615 continue;
616
617 /*
618 * No need to call mmu_notifier_invalidate_range() as we are
619 * downgrading page table protection not changing it to point
620 * to a new page.
621 *
622 * See Documentation/vm/mmu_notifier.txt
623 */
624 if (pmdp) {
625 #ifdef CONFIG_FS_DAX_PMD
626 pmd_t pmd;
627
628 if (pfn != pmd_pfn(*pmdp))
629 goto unlock_pmd;
630 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
631 goto unlock_pmd;
632
633 flush_cache_page(vma, address, pfn);
634 pmd = pmdp_huge_clear_flush(vma, address, pmdp);
635 pmd = pmd_wrprotect(pmd);
636 pmd = pmd_mkclean(pmd);
637 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
638 unlock_pmd:
639 #endif
640 spin_unlock(ptl);
641 } else {
642 if (pfn != pte_pfn(*ptep))
643 goto unlock_pte;
644 if (!pte_dirty(*ptep) && !pte_write(*ptep))
645 goto unlock_pte;
646
647 flush_cache_page(vma, address, pfn);
648 pte = ptep_clear_flush(vma, address, ptep);
649 pte = pte_wrprotect(pte);
650 pte = pte_mkclean(pte);
651 set_pte_at(vma->vm_mm, address, ptep, pte);
652 unlock_pte:
653 pte_unmap_unlock(ptep, ptl);
654 }
655
656 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
657 }
658 i_mmap_unlock_read(mapping);
659 }
660
661 static int dax_writeback_one(struct block_device *bdev,
662 struct dax_device *dax_dev, struct address_space *mapping,
663 pgoff_t index, void *entry)
664 {
665 struct radix_tree_root *page_tree = &mapping->page_tree;
666 void *entry2, **slot, *kaddr;
667 long ret = 0, id;
668 sector_t sector;
669 pgoff_t pgoff;
670 size_t size;
671 pfn_t pfn;
672
673 /*
674 * A page got tagged dirty in DAX mapping? Something is seriously
675 * wrong.
676 */
677 if (WARN_ON(!radix_tree_exceptional_entry(entry)))
678 return -EIO;
679
680 spin_lock_irq(&mapping->tree_lock);
681 entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
682 /* Entry got punched out / reallocated? */
683 if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
684 goto put_unlocked;
685 /*
686 * Entry got reallocated elsewhere? No need to writeback. We have to
687 * compare sectors as we must not bail out due to difference in lockbit
688 * or entry type.
689 */
690 if (dax_radix_sector(entry2) != dax_radix_sector(entry))
691 goto put_unlocked;
692 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
693 dax_is_zero_entry(entry))) {
694 ret = -EIO;
695 goto put_unlocked;
696 }
697
698 /* Another fsync thread may have already written back this entry */
699 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
700 goto put_unlocked;
701 /* Lock the entry to serialize with page faults */
702 entry = lock_slot(mapping, slot);
703 /*
704 * We can clear the tag now but we have to be careful so that concurrent
705 * dax_writeback_one() calls for the same index cannot finish before we
706 * actually flush the caches. This is achieved as the calls will look
707 * at the entry only under tree_lock and once they do that they will
708 * see the entry locked and wait for it to unlock.
709 */
710 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
711 spin_unlock_irq(&mapping->tree_lock);
712
713 /*
714 * Even if dax_writeback_mapping_range() was given a wbc->range_start
715 * in the middle of a PMD, the 'index' we are given will be aligned to
716 * the start index of the PMD, as will the sector we pull from
717 * 'entry'. This allows us to flush for PMD_SIZE and not have to
718 * worry about partial PMD writebacks.
719 */
720 sector = dax_radix_sector(entry);
721 size = PAGE_SIZE << dax_radix_order(entry);
722
723 id = dax_read_lock();
724 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
725 if (ret)
726 goto dax_unlock;
727
728 /*
729 * dax_direct_access() may sleep, so cannot hold tree_lock over
730 * its invocation.
731 */
732 ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn);
733 if (ret < 0)
734 goto dax_unlock;
735
736 if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) {
737 ret = -EIO;
738 goto dax_unlock;
739 }
740
741 dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn));
742 dax_flush(dax_dev, kaddr, size);
743 /*
744 * After we have flushed the cache, we can clear the dirty tag. There
745 * cannot be new dirty data in the pfn after the flush has completed as
746 * the pfn mappings are writeprotected and fault waits for mapping
747 * entry lock.
748 */
749 spin_lock_irq(&mapping->tree_lock);
750 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
751 spin_unlock_irq(&mapping->tree_lock);
752 trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
753 dax_unlock:
754 dax_read_unlock(id);
755 put_locked_mapping_entry(mapping, index);
756 return ret;
757
758 put_unlocked:
759 put_unlocked_mapping_entry(mapping, index, entry2);
760 spin_unlock_irq(&mapping->tree_lock);
761 return ret;
762 }
763
764 /*
765 * Flush the mapping to the persistent domain within the byte range of [start,
766 * end]. This is required by data integrity operations to ensure file data is
767 * on persistent storage prior to completion of the operation.
768 */
769 int dax_writeback_mapping_range(struct address_space *mapping,
770 struct block_device *bdev, struct writeback_control *wbc)
771 {
772 struct inode *inode = mapping->host;
773 pgoff_t start_index, end_index;
774 pgoff_t indices[PAGEVEC_SIZE];
775 struct dax_device *dax_dev;
776 struct pagevec pvec;
777 bool done = false;
778 int i, ret = 0;
779
780 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
781 return -EIO;
782
783 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
784 return 0;
785
786 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
787 if (!dax_dev)
788 return -EIO;
789
790 start_index = wbc->range_start >> PAGE_SHIFT;
791 end_index = wbc->range_end >> PAGE_SHIFT;
792
793 trace_dax_writeback_range(inode, start_index, end_index);
794
795 tag_pages_for_writeback(mapping, start_index, end_index);
796
797 pagevec_init(&pvec);
798 while (!done) {
799 pvec.nr = find_get_entries_tag(mapping, start_index,
800 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
801 pvec.pages, indices);
802
803 if (pvec.nr == 0)
804 break;
805
806 for (i = 0; i < pvec.nr; i++) {
807 if (indices[i] > end_index) {
808 done = true;
809 break;
810 }
811
812 ret = dax_writeback_one(bdev, dax_dev, mapping,
813 indices[i], pvec.pages[i]);
814 if (ret < 0) {
815 mapping_set_error(mapping, ret);
816 goto out;
817 }
818 }
819 start_index = indices[pvec.nr - 1] + 1;
820 }
821 out:
822 put_dax(dax_dev);
823 trace_dax_writeback_range_done(inode, start_index, end_index);
824 return (ret < 0 ? ret : 0);
825 }
826 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
827
828 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
829 {
830 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
831 }
832
833 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
834 pfn_t *pfnp)
835 {
836 const sector_t sector = dax_iomap_sector(iomap, pos);
837 pgoff_t pgoff;
838 void *kaddr;
839 int id, rc;
840 long length;
841
842 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
843 if (rc)
844 return rc;
845 id = dax_read_lock();
846 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
847 &kaddr, pfnp);
848 if (length < 0) {
849 rc = length;
850 goto out;
851 }
852 rc = -EINVAL;
853 if (PFN_PHYS(length) < size)
854 goto out;
855 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
856 goto out;
857 /* For larger pages we need devmap */
858 if (length > 1 && !pfn_t_devmap(*pfnp))
859 goto out;
860 rc = 0;
861 out:
862 dax_read_unlock(id);
863 return rc;
864 }
865
866 /*
867 * The user has performed a load from a hole in the file. Allocating a new
868 * page in the file would cause excessive storage usage for workloads with
869 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
870 * If this page is ever written to we will re-fault and change the mapping to
871 * point to real DAX storage instead.
872 */
873 static int dax_load_hole(struct address_space *mapping, void *entry,
874 struct vm_fault *vmf)
875 {
876 struct inode *inode = mapping->host;
877 unsigned long vaddr = vmf->address;
878 int ret = VM_FAULT_NOPAGE;
879 struct page *zero_page;
880 void *entry2;
881
882 zero_page = ZERO_PAGE(0);
883 if (unlikely(!zero_page)) {
884 ret = VM_FAULT_OOM;
885 goto out;
886 }
887
888 entry2 = dax_insert_mapping_entry(mapping, vmf, entry, 0,
889 RADIX_DAX_ZERO_PAGE, false);
890 if (IS_ERR(entry2)) {
891 ret = VM_FAULT_SIGBUS;
892 goto out;
893 }
894
895 vm_insert_mixed(vmf->vma, vaddr, page_to_pfn_t(zero_page));
896 out:
897 trace_dax_load_hole(inode, vmf, ret);
898 return ret;
899 }
900
901 static bool dax_range_is_aligned(struct block_device *bdev,
902 unsigned int offset, unsigned int length)
903 {
904 unsigned short sector_size = bdev_logical_block_size(bdev);
905
906 if (!IS_ALIGNED(offset, sector_size))
907 return false;
908 if (!IS_ALIGNED(length, sector_size))
909 return false;
910
911 return true;
912 }
913
914 int __dax_zero_page_range(struct block_device *bdev,
915 struct dax_device *dax_dev, sector_t sector,
916 unsigned int offset, unsigned int size)
917 {
918 if (dax_range_is_aligned(bdev, offset, size)) {
919 sector_t start_sector = sector + (offset >> 9);
920
921 return blkdev_issue_zeroout(bdev, start_sector,
922 size >> 9, GFP_NOFS, 0);
923 } else {
924 pgoff_t pgoff;
925 long rc, id;
926 void *kaddr;
927 pfn_t pfn;
928
929 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
930 if (rc)
931 return rc;
932
933 id = dax_read_lock();
934 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr,
935 &pfn);
936 if (rc < 0) {
937 dax_read_unlock(id);
938 return rc;
939 }
940 memset(kaddr + offset, 0, size);
941 dax_flush(dax_dev, kaddr + offset, size);
942 dax_read_unlock(id);
943 }
944 return 0;
945 }
946 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
947
948 static loff_t
949 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
950 struct iomap *iomap)
951 {
952 struct block_device *bdev = iomap->bdev;
953 struct dax_device *dax_dev = iomap->dax_dev;
954 struct iov_iter *iter = data;
955 loff_t end = pos + length, done = 0;
956 ssize_t ret = 0;
957 int id;
958
959 if (iov_iter_rw(iter) == READ) {
960 end = min(end, i_size_read(inode));
961 if (pos >= end)
962 return 0;
963
964 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
965 return iov_iter_zero(min(length, end - pos), iter);
966 }
967
968 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
969 return -EIO;
970
971 /*
972 * Write can allocate block for an area which has a hole page mapped
973 * into page tables. We have to tear down these mappings so that data
974 * written by write(2) is visible in mmap.
975 */
976 if (iomap->flags & IOMAP_F_NEW) {
977 invalidate_inode_pages2_range(inode->i_mapping,
978 pos >> PAGE_SHIFT,
979 (end - 1) >> PAGE_SHIFT);
980 }
981
982 id = dax_read_lock();
983 while (pos < end) {
984 unsigned offset = pos & (PAGE_SIZE - 1);
985 const size_t size = ALIGN(length + offset, PAGE_SIZE);
986 const sector_t sector = dax_iomap_sector(iomap, pos);
987 ssize_t map_len;
988 pgoff_t pgoff;
989 void *kaddr;
990 pfn_t pfn;
991
992 if (fatal_signal_pending(current)) {
993 ret = -EINTR;
994 break;
995 }
996
997 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
998 if (ret)
999 break;
1000
1001 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1002 &kaddr, &pfn);
1003 if (map_len < 0) {
1004 ret = map_len;
1005 break;
1006 }
1007
1008 map_len = PFN_PHYS(map_len);
1009 kaddr += offset;
1010 map_len -= offset;
1011 if (map_len > end - pos)
1012 map_len = end - pos;
1013
1014 /*
1015 * The userspace address for the memory copy has already been
1016 * validated via access_ok() in either vfs_read() or
1017 * vfs_write(), depending on which operation we are doing.
1018 */
1019 if (iov_iter_rw(iter) == WRITE)
1020 map_len = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1021 map_len, iter);
1022 else
1023 map_len = copy_to_iter(kaddr, map_len, iter);
1024 if (map_len <= 0) {
1025 ret = map_len ? map_len : -EFAULT;
1026 break;
1027 }
1028
1029 pos += map_len;
1030 length -= map_len;
1031 done += map_len;
1032 }
1033 dax_read_unlock(id);
1034
1035 return done ? done : ret;
1036 }
1037
1038 /**
1039 * dax_iomap_rw - Perform I/O to a DAX file
1040 * @iocb: The control block for this I/O
1041 * @iter: The addresses to do I/O from or to
1042 * @ops: iomap ops passed from the file system
1043 *
1044 * This function performs read and write operations to directly mapped
1045 * persistent memory. The callers needs to take care of read/write exclusion
1046 * and evicting any page cache pages in the region under I/O.
1047 */
1048 ssize_t
1049 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1050 const struct iomap_ops *ops)
1051 {
1052 struct address_space *mapping = iocb->ki_filp->f_mapping;
1053 struct inode *inode = mapping->host;
1054 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1055 unsigned flags = 0;
1056
1057 if (iov_iter_rw(iter) == WRITE) {
1058 lockdep_assert_held_exclusive(&inode->i_rwsem);
1059 flags |= IOMAP_WRITE;
1060 } else {
1061 lockdep_assert_held(&inode->i_rwsem);
1062 }
1063
1064 while (iov_iter_count(iter)) {
1065 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1066 iter, dax_iomap_actor);
1067 if (ret <= 0)
1068 break;
1069 pos += ret;
1070 done += ret;
1071 }
1072
1073 iocb->ki_pos += done;
1074 return done ? done : ret;
1075 }
1076 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1077
1078 static int dax_fault_return(int error)
1079 {
1080 if (error == 0)
1081 return VM_FAULT_NOPAGE;
1082 if (error == -ENOMEM)
1083 return VM_FAULT_OOM;
1084 return VM_FAULT_SIGBUS;
1085 }
1086
1087 /*
1088 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1089 * flushed on write-faults (non-cow), but not read-faults.
1090 */
1091 static bool dax_fault_is_synchronous(unsigned long flags,
1092 struct vm_area_struct *vma, struct iomap *iomap)
1093 {
1094 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1095 && (iomap->flags & IOMAP_F_DIRTY);
1096 }
1097
1098 static int dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1099 const struct iomap_ops *ops)
1100 {
1101 struct vm_area_struct *vma = vmf->vma;
1102 struct address_space *mapping = vma->vm_file->f_mapping;
1103 struct inode *inode = mapping->host;
1104 unsigned long vaddr = vmf->address;
1105 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1106 struct iomap iomap = { 0 };
1107 unsigned flags = IOMAP_FAULT;
1108 int error, major = 0;
1109 bool write = vmf->flags & FAULT_FLAG_WRITE;
1110 bool sync;
1111 int vmf_ret = 0;
1112 void *entry;
1113 pfn_t pfn;
1114
1115 trace_dax_pte_fault(inode, vmf, vmf_ret);
1116 /*
1117 * Check whether offset isn't beyond end of file now. Caller is supposed
1118 * to hold locks serializing us with truncate / punch hole so this is
1119 * a reliable test.
1120 */
1121 if (pos >= i_size_read(inode)) {
1122 vmf_ret = VM_FAULT_SIGBUS;
1123 goto out;
1124 }
1125
1126 if (write && !vmf->cow_page)
1127 flags |= IOMAP_WRITE;
1128
1129 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1130 if (IS_ERR(entry)) {
1131 vmf_ret = dax_fault_return(PTR_ERR(entry));
1132 goto out;
1133 }
1134
1135 /*
1136 * It is possible, particularly with mixed reads & writes to private
1137 * mappings, that we have raced with a PMD fault that overlaps with
1138 * the PTE we need to set up. If so just return and the fault will be
1139 * retried.
1140 */
1141 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1142 vmf_ret = VM_FAULT_NOPAGE;
1143 goto unlock_entry;
1144 }
1145
1146 /*
1147 * Note that we don't bother to use iomap_apply here: DAX required
1148 * the file system block size to be equal the page size, which means
1149 * that we never have to deal with more than a single extent here.
1150 */
1151 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1152 if (error) {
1153 vmf_ret = dax_fault_return(error);
1154 goto unlock_entry;
1155 }
1156 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1157 error = -EIO; /* fs corruption? */
1158 goto error_finish_iomap;
1159 }
1160
1161 if (vmf->cow_page) {
1162 sector_t sector = dax_iomap_sector(&iomap, pos);
1163
1164 switch (iomap.type) {
1165 case IOMAP_HOLE:
1166 case IOMAP_UNWRITTEN:
1167 clear_user_highpage(vmf->cow_page, vaddr);
1168 break;
1169 case IOMAP_MAPPED:
1170 error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1171 sector, PAGE_SIZE, vmf->cow_page, vaddr);
1172 break;
1173 default:
1174 WARN_ON_ONCE(1);
1175 error = -EIO;
1176 break;
1177 }
1178
1179 if (error)
1180 goto error_finish_iomap;
1181
1182 __SetPageUptodate(vmf->cow_page);
1183 vmf_ret = finish_fault(vmf);
1184 if (!vmf_ret)
1185 vmf_ret = VM_FAULT_DONE_COW;
1186 goto finish_iomap;
1187 }
1188
1189 sync = dax_fault_is_synchronous(flags, vma, &iomap);
1190
1191 switch (iomap.type) {
1192 case IOMAP_MAPPED:
1193 if (iomap.flags & IOMAP_F_NEW) {
1194 count_vm_event(PGMAJFAULT);
1195 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1196 major = VM_FAULT_MAJOR;
1197 }
1198 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1199 if (error < 0)
1200 goto error_finish_iomap;
1201
1202 entry = dax_insert_mapping_entry(mapping, vmf, entry,
1203 dax_iomap_sector(&iomap, pos),
1204 0, write && !sync);
1205 if (IS_ERR(entry)) {
1206 error = PTR_ERR(entry);
1207 goto error_finish_iomap;
1208 }
1209
1210 /*
1211 * If we are doing synchronous page fault and inode needs fsync,
1212 * we can insert PTE into page tables only after that happens.
1213 * Skip insertion for now and return the pfn so that caller can
1214 * insert it after fsync is done.
1215 */
1216 if (sync) {
1217 if (WARN_ON_ONCE(!pfnp)) {
1218 error = -EIO;
1219 goto error_finish_iomap;
1220 }
1221 *pfnp = pfn;
1222 vmf_ret = VM_FAULT_NEEDDSYNC | major;
1223 goto finish_iomap;
1224 }
1225 trace_dax_insert_mapping(inode, vmf, entry);
1226 if (write)
1227 error = vm_insert_mixed_mkwrite(vma, vaddr, pfn);
1228 else
1229 error = vm_insert_mixed(vma, vaddr, pfn);
1230
1231 /* -EBUSY is fine, somebody else faulted on the same PTE */
1232 if (error == -EBUSY)
1233 error = 0;
1234 break;
1235 case IOMAP_UNWRITTEN:
1236 case IOMAP_HOLE:
1237 if (!write) {
1238 vmf_ret = dax_load_hole(mapping, entry, vmf);
1239 goto finish_iomap;
1240 }
1241 /*FALLTHRU*/
1242 default:
1243 WARN_ON_ONCE(1);
1244 error = -EIO;
1245 break;
1246 }
1247
1248 error_finish_iomap:
1249 vmf_ret = dax_fault_return(error) | major;
1250 finish_iomap:
1251 if (ops->iomap_end) {
1252 int copied = PAGE_SIZE;
1253
1254 if (vmf_ret & VM_FAULT_ERROR)
1255 copied = 0;
1256 /*
1257 * The fault is done by now and there's no way back (other
1258 * thread may be already happily using PTE we have installed).
1259 * Just ignore error from ->iomap_end since we cannot do much
1260 * with it.
1261 */
1262 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1263 }
1264 unlock_entry:
1265 put_locked_mapping_entry(mapping, vmf->pgoff);
1266 out:
1267 trace_dax_pte_fault_done(inode, vmf, vmf_ret);
1268 return vmf_ret;
1269 }
1270
1271 #ifdef CONFIG_FS_DAX_PMD
1272 /*
1273 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
1274 * more often than one might expect in the below functions.
1275 */
1276 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
1277
1278 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1279 void *entry)
1280 {
1281 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1282 unsigned long pmd_addr = vmf->address & PMD_MASK;
1283 struct inode *inode = mapping->host;
1284 struct page *zero_page;
1285 void *ret = NULL;
1286 spinlock_t *ptl;
1287 pmd_t pmd_entry;
1288
1289 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1290
1291 if (unlikely(!zero_page))
1292 goto fallback;
1293
1294 ret = dax_insert_mapping_entry(mapping, vmf, entry, 0,
1295 RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
1296 if (IS_ERR(ret))
1297 goto fallback;
1298
1299 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1300 if (!pmd_none(*(vmf->pmd))) {
1301 spin_unlock(ptl);
1302 goto fallback;
1303 }
1304
1305 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1306 pmd_entry = pmd_mkhuge(pmd_entry);
1307 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1308 spin_unlock(ptl);
1309 trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1310 return VM_FAULT_NOPAGE;
1311
1312 fallback:
1313 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1314 return VM_FAULT_FALLBACK;
1315 }
1316
1317 static int dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1318 const struct iomap_ops *ops)
1319 {
1320 struct vm_area_struct *vma = vmf->vma;
1321 struct address_space *mapping = vma->vm_file->f_mapping;
1322 unsigned long pmd_addr = vmf->address & PMD_MASK;
1323 bool write = vmf->flags & FAULT_FLAG_WRITE;
1324 bool sync;
1325 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1326 struct inode *inode = mapping->host;
1327 int result = VM_FAULT_FALLBACK;
1328 struct iomap iomap = { 0 };
1329 pgoff_t max_pgoff, pgoff;
1330 void *entry;
1331 loff_t pos;
1332 int error;
1333 pfn_t pfn;
1334
1335 /*
1336 * Check whether offset isn't beyond end of file now. Caller is
1337 * supposed to hold locks serializing us with truncate / punch hole so
1338 * this is a reliable test.
1339 */
1340 pgoff = linear_page_index(vma, pmd_addr);
1341 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1342
1343 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1344
1345 /*
1346 * Make sure that the faulting address's PMD offset (color) matches
1347 * the PMD offset from the start of the file. This is necessary so
1348 * that a PMD range in the page table overlaps exactly with a PMD
1349 * range in the radix tree.
1350 */
1351 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1352 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1353 goto fallback;
1354
1355 /* Fall back to PTEs if we're going to COW */
1356 if (write && !(vma->vm_flags & VM_SHARED))
1357 goto fallback;
1358
1359 /* If the PMD would extend outside the VMA */
1360 if (pmd_addr < vma->vm_start)
1361 goto fallback;
1362 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1363 goto fallback;
1364
1365 if (pgoff >= max_pgoff) {
1366 result = VM_FAULT_SIGBUS;
1367 goto out;
1368 }
1369
1370 /* If the PMD would extend beyond the file size */
1371 if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
1372 goto fallback;
1373
1374 /*
1375 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1376 * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page
1377 * is already in the tree, for instance), it will return -EEXIST and
1378 * we just fall back to 4k entries.
1379 */
1380 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1381 if (IS_ERR(entry))
1382 goto fallback;
1383
1384 /*
1385 * It is possible, particularly with mixed reads & writes to private
1386 * mappings, that we have raced with a PTE fault that overlaps with
1387 * the PMD we need to set up. If so just return and the fault will be
1388 * retried.
1389 */
1390 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1391 !pmd_devmap(*vmf->pmd)) {
1392 result = 0;
1393 goto unlock_entry;
1394 }
1395
1396 /*
1397 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1398 * setting up a mapping, so really we're using iomap_begin() as a way
1399 * to look up our filesystem block.
1400 */
1401 pos = (loff_t)pgoff << PAGE_SHIFT;
1402 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1403 if (error)
1404 goto unlock_entry;
1405
1406 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1407 goto finish_iomap;
1408
1409 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1410
1411 switch (iomap.type) {
1412 case IOMAP_MAPPED:
1413 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1414 if (error < 0)
1415 goto finish_iomap;
1416
1417 entry = dax_insert_mapping_entry(mapping, vmf, entry,
1418 dax_iomap_sector(&iomap, pos),
1419 RADIX_DAX_PMD, write && !sync);
1420 if (IS_ERR(entry))
1421 goto finish_iomap;
1422
1423 /*
1424 * If we are doing synchronous page fault and inode needs fsync,
1425 * we can insert PMD into page tables only after that happens.
1426 * Skip insertion for now and return the pfn so that caller can
1427 * insert it after fsync is done.
1428 */
1429 if (sync) {
1430 if (WARN_ON_ONCE(!pfnp))
1431 goto finish_iomap;
1432 *pfnp = pfn;
1433 result = VM_FAULT_NEEDDSYNC;
1434 goto finish_iomap;
1435 }
1436
1437 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1438 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1439 write);
1440 break;
1441 case IOMAP_UNWRITTEN:
1442 case IOMAP_HOLE:
1443 if (WARN_ON_ONCE(write))
1444 break;
1445 result = dax_pmd_load_hole(vmf, &iomap, entry);
1446 break;
1447 default:
1448 WARN_ON_ONCE(1);
1449 break;
1450 }
1451
1452 finish_iomap:
1453 if (ops->iomap_end) {
1454 int copied = PMD_SIZE;
1455
1456 if (result == VM_FAULT_FALLBACK)
1457 copied = 0;
1458 /*
1459 * The fault is done by now and there's no way back (other
1460 * thread may be already happily using PMD we have installed).
1461 * Just ignore error from ->iomap_end since we cannot do much
1462 * with it.
1463 */
1464 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1465 &iomap);
1466 }
1467 unlock_entry:
1468 put_locked_mapping_entry(mapping, pgoff);
1469 fallback:
1470 if (result == VM_FAULT_FALLBACK) {
1471 split_huge_pmd(vma, vmf->pmd, vmf->address);
1472 count_vm_event(THP_FAULT_FALLBACK);
1473 }
1474 out:
1475 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1476 return result;
1477 }
1478 #else
1479 static int dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1480 const struct iomap_ops *ops)
1481 {
1482 return VM_FAULT_FALLBACK;
1483 }
1484 #endif /* CONFIG_FS_DAX_PMD */
1485
1486 /**
1487 * dax_iomap_fault - handle a page fault on a DAX file
1488 * @vmf: The description of the fault
1489 * @pe_size: Size of the page to fault in
1490 * @pfnp: PFN to insert for synchronous faults if fsync is required
1491 * @ops: Iomap ops passed from the file system
1492 *
1493 * When a page fault occurs, filesystems may call this helper in
1494 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1495 * has done all the necessary locking for page fault to proceed
1496 * successfully.
1497 */
1498 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1499 pfn_t *pfnp, const struct iomap_ops *ops)
1500 {
1501 switch (pe_size) {
1502 case PE_SIZE_PTE:
1503 return dax_iomap_pte_fault(vmf, pfnp, ops);
1504 case PE_SIZE_PMD:
1505 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1506 default:
1507 return VM_FAULT_FALLBACK;
1508 }
1509 }
1510 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1511
1512 /**
1513 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1514 * @vmf: The description of the fault
1515 * @pe_size: Size of entry to be inserted
1516 * @pfn: PFN to insert
1517 *
1518 * This function inserts writeable PTE or PMD entry into page tables for mmaped
1519 * DAX file. It takes care of marking corresponding radix tree entry as dirty
1520 * as well.
1521 */
1522 static int dax_insert_pfn_mkwrite(struct vm_fault *vmf,
1523 enum page_entry_size pe_size,
1524 pfn_t pfn)
1525 {
1526 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1527 void *entry, **slot;
1528 pgoff_t index = vmf->pgoff;
1529 int vmf_ret, error;
1530
1531 spin_lock_irq(&mapping->tree_lock);
1532 entry = get_unlocked_mapping_entry(mapping, index, &slot);
1533 /* Did we race with someone splitting entry or so? */
1534 if (!entry ||
1535 (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
1536 (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
1537 put_unlocked_mapping_entry(mapping, index, entry);
1538 spin_unlock_irq(&mapping->tree_lock);
1539 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1540 VM_FAULT_NOPAGE);
1541 return VM_FAULT_NOPAGE;
1542 }
1543 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
1544 entry = lock_slot(mapping, slot);
1545 spin_unlock_irq(&mapping->tree_lock);
1546 switch (pe_size) {
1547 case PE_SIZE_PTE:
1548 error = vm_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1549 vmf_ret = dax_fault_return(error);
1550 break;
1551 #ifdef CONFIG_FS_DAX_PMD
1552 case PE_SIZE_PMD:
1553 vmf_ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1554 pfn, true);
1555 break;
1556 #endif
1557 default:
1558 vmf_ret = VM_FAULT_FALLBACK;
1559 }
1560 put_locked_mapping_entry(mapping, index);
1561 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, vmf_ret);
1562 return vmf_ret;
1563 }
1564
1565 /**
1566 * dax_finish_sync_fault - finish synchronous page fault
1567 * @vmf: The description of the fault
1568 * @pe_size: Size of entry to be inserted
1569 * @pfn: PFN to insert
1570 *
1571 * This function ensures that the file range touched by the page fault is
1572 * stored persistently on the media and handles inserting of appropriate page
1573 * table entry.
1574 */
1575 int dax_finish_sync_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1576 pfn_t pfn)
1577 {
1578 int err;
1579 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1580 size_t len = 0;
1581
1582 if (pe_size == PE_SIZE_PTE)
1583 len = PAGE_SIZE;
1584 else if (pe_size == PE_SIZE_PMD)
1585 len = PMD_SIZE;
1586 else
1587 WARN_ON_ONCE(1);
1588 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1589 if (err)
1590 return VM_FAULT_SIGBUS;
1591 return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
1592 }
1593 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);