]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/direct-io.c
drm/i915: Force 2*96 MHz cdclk on glk/cnl when audio power is enabled
[mirror_ubuntu-bionic-kernel.git] / fs / direct-io.c
1 /*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
8 * 04Jul2002 Andrew Morton
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40
41 /*
42 * How many user pages to map in one call to get_user_pages(). This determines
43 * the size of a structure in the slab cache
44 */
45 #define DIO_PAGES 64
46
47 /*
48 * Flags for dio_complete()
49 */
50 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */
51 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */
52
53 /*
54 * This code generally works in units of "dio_blocks". A dio_block is
55 * somewhere between the hard sector size and the filesystem block size. it
56 * is determined on a per-invocation basis. When talking to the filesystem
57 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
58 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
59 * to bio_block quantities by shifting left by blkfactor.
60 *
61 * If blkfactor is zero then the user's request was aligned to the filesystem's
62 * blocksize.
63 */
64
65 /* dio_state only used in the submission path */
66
67 struct dio_submit {
68 struct bio *bio; /* bio under assembly */
69 unsigned blkbits; /* doesn't change */
70 unsigned blkfactor; /* When we're using an alignment which
71 is finer than the filesystem's soft
72 blocksize, this specifies how much
73 finer. blkfactor=2 means 1/4-block
74 alignment. Does not change */
75 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
76 been performed at the start of a
77 write */
78 int pages_in_io; /* approximate total IO pages */
79 sector_t block_in_file; /* Current offset into the underlying
80 file in dio_block units. */
81 unsigned blocks_available; /* At block_in_file. changes */
82 int reap_counter; /* rate limit reaping */
83 sector_t final_block_in_request;/* doesn't change */
84 int boundary; /* prev block is at a boundary */
85 get_block_t *get_block; /* block mapping function */
86 dio_submit_t *submit_io; /* IO submition function */
87
88 loff_t logical_offset_in_bio; /* current first logical block in bio */
89 sector_t final_block_in_bio; /* current final block in bio + 1 */
90 sector_t next_block_for_io; /* next block to be put under IO,
91 in dio_blocks units */
92
93 /*
94 * Deferred addition of a page to the dio. These variables are
95 * private to dio_send_cur_page(), submit_page_section() and
96 * dio_bio_add_page().
97 */
98 struct page *cur_page; /* The page */
99 unsigned cur_page_offset; /* Offset into it, in bytes */
100 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
101 sector_t cur_page_block; /* Where it starts */
102 loff_t cur_page_fs_offset; /* Offset in file */
103
104 struct iov_iter *iter;
105 /*
106 * Page queue. These variables belong to dio_refill_pages() and
107 * dio_get_page().
108 */
109 unsigned head; /* next page to process */
110 unsigned tail; /* last valid page + 1 */
111 size_t from, to;
112 };
113
114 /* dio_state communicated between submission path and end_io */
115 struct dio {
116 int flags; /* doesn't change */
117 int op;
118 int op_flags;
119 blk_qc_t bio_cookie;
120 struct gendisk *bio_disk;
121 struct inode *inode;
122 loff_t i_size; /* i_size when submitted */
123 dio_iodone_t *end_io; /* IO completion function */
124
125 void *private; /* copy from map_bh.b_private */
126
127 /* BIO completion state */
128 spinlock_t bio_lock; /* protects BIO fields below */
129 int page_errors; /* errno from get_user_pages() */
130 int is_async; /* is IO async ? */
131 bool defer_completion; /* defer AIO completion to workqueue? */
132 bool should_dirty; /* if pages should be dirtied */
133 int io_error; /* IO error in completion path */
134 unsigned long refcount; /* direct_io_worker() and bios */
135 struct bio *bio_list; /* singly linked via bi_private */
136 struct task_struct *waiter; /* waiting task (NULL if none) */
137
138 /* AIO related stuff */
139 struct kiocb *iocb; /* kiocb */
140 ssize_t result; /* IO result */
141
142 /*
143 * pages[] (and any fields placed after it) are not zeroed out at
144 * allocation time. Don't add new fields after pages[] unless you
145 * wish that they not be zeroed.
146 */
147 union {
148 struct page *pages[DIO_PAGES]; /* page buffer */
149 struct work_struct complete_work;/* deferred AIO completion */
150 };
151 } ____cacheline_aligned_in_smp;
152
153 static struct kmem_cache *dio_cache __read_mostly;
154
155 /*
156 * How many pages are in the queue?
157 */
158 static inline unsigned dio_pages_present(struct dio_submit *sdio)
159 {
160 return sdio->tail - sdio->head;
161 }
162
163 /*
164 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
165 */
166 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
167 {
168 ssize_t ret;
169
170 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
171 &sdio->from);
172
173 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
174 struct page *page = ZERO_PAGE(0);
175 /*
176 * A memory fault, but the filesystem has some outstanding
177 * mapped blocks. We need to use those blocks up to avoid
178 * leaking stale data in the file.
179 */
180 if (dio->page_errors == 0)
181 dio->page_errors = ret;
182 get_page(page);
183 dio->pages[0] = page;
184 sdio->head = 0;
185 sdio->tail = 1;
186 sdio->from = 0;
187 sdio->to = PAGE_SIZE;
188 return 0;
189 }
190
191 if (ret >= 0) {
192 iov_iter_advance(sdio->iter, ret);
193 ret += sdio->from;
194 sdio->head = 0;
195 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
196 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
197 return 0;
198 }
199 return ret;
200 }
201
202 /*
203 * Get another userspace page. Returns an ERR_PTR on error. Pages are
204 * buffered inside the dio so that we can call get_user_pages() against a
205 * decent number of pages, less frequently. To provide nicer use of the
206 * L1 cache.
207 */
208 static inline struct page *dio_get_page(struct dio *dio,
209 struct dio_submit *sdio)
210 {
211 if (dio_pages_present(sdio) == 0) {
212 int ret;
213
214 ret = dio_refill_pages(dio, sdio);
215 if (ret)
216 return ERR_PTR(ret);
217 BUG_ON(dio_pages_present(sdio) == 0);
218 }
219 return dio->pages[sdio->head];
220 }
221
222 /**
223 * dio_complete() - called when all DIO BIO I/O has been completed
224 * @offset: the byte offset in the file of the completed operation
225 *
226 * This drops i_dio_count, lets interested parties know that a DIO operation
227 * has completed, and calculates the resulting return code for the operation.
228 *
229 * It lets the filesystem know if it registered an interest earlier via
230 * get_block. Pass the private field of the map buffer_head so that
231 * filesystems can use it to hold additional state between get_block calls and
232 * dio_complete.
233 */
234 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
235 {
236 loff_t offset = dio->iocb->ki_pos;
237 ssize_t transferred = 0;
238 int err;
239
240 /*
241 * AIO submission can race with bio completion to get here while
242 * expecting to have the last io completed by bio completion.
243 * In that case -EIOCBQUEUED is in fact not an error we want
244 * to preserve through this call.
245 */
246 if (ret == -EIOCBQUEUED)
247 ret = 0;
248
249 if (dio->result) {
250 transferred = dio->result;
251
252 /* Check for short read case */
253 if ((dio->op == REQ_OP_READ) &&
254 ((offset + transferred) > dio->i_size))
255 transferred = dio->i_size - offset;
256 /* ignore EFAULT if some IO has been done */
257 if (unlikely(ret == -EFAULT) && transferred)
258 ret = 0;
259 }
260
261 if (ret == 0)
262 ret = dio->page_errors;
263 if (ret == 0)
264 ret = dio->io_error;
265 if (ret == 0)
266 ret = transferred;
267
268 if (dio->end_io) {
269 // XXX: ki_pos??
270 err = dio->end_io(dio->iocb, offset, ret, dio->private);
271 if (err)
272 ret = err;
273 }
274
275 /*
276 * Try again to invalidate clean pages which might have been cached by
277 * non-direct readahead, or faulted in by get_user_pages() if the source
278 * of the write was an mmap'ed region of the file we're writing. Either
279 * one is a pretty crazy thing to do, so we don't support it 100%. If
280 * this invalidation fails, tough, the write still worked...
281 *
282 * And this page cache invalidation has to be after dio->end_io(), as
283 * some filesystems convert unwritten extents to real allocations in
284 * end_io() when necessary, otherwise a racing buffer read would cache
285 * zeros from unwritten extents.
286 */
287 if (flags & DIO_COMPLETE_INVALIDATE &&
288 ret > 0 && dio->op == REQ_OP_WRITE &&
289 dio->inode->i_mapping->nrpages) {
290 err = invalidate_inode_pages2_range(dio->inode->i_mapping,
291 offset >> PAGE_SHIFT,
292 (offset + ret - 1) >> PAGE_SHIFT);
293 WARN_ON_ONCE(err);
294 }
295
296 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
297 inode_dio_end(dio->inode);
298
299 if (flags & DIO_COMPLETE_ASYNC) {
300 /*
301 * generic_write_sync expects ki_pos to have been updated
302 * already, but the submission path only does this for
303 * synchronous I/O.
304 */
305 dio->iocb->ki_pos += transferred;
306
307 if (dio->op == REQ_OP_WRITE)
308 ret = generic_write_sync(dio->iocb, transferred);
309 dio->iocb->ki_complete(dio->iocb, ret, 0);
310 }
311
312 kmem_cache_free(dio_cache, dio);
313 return ret;
314 }
315
316 static void dio_aio_complete_work(struct work_struct *work)
317 {
318 struct dio *dio = container_of(work, struct dio, complete_work);
319
320 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
321 }
322
323 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
324
325 /*
326 * Asynchronous IO callback.
327 */
328 static void dio_bio_end_aio(struct bio *bio)
329 {
330 struct dio *dio = bio->bi_private;
331 unsigned long remaining;
332 unsigned long flags;
333 bool defer_completion = false;
334
335 /* cleanup the bio */
336 dio_bio_complete(dio, bio);
337
338 spin_lock_irqsave(&dio->bio_lock, flags);
339 remaining = --dio->refcount;
340 if (remaining == 1 && dio->waiter)
341 wake_up_process(dio->waiter);
342 spin_unlock_irqrestore(&dio->bio_lock, flags);
343
344 if (remaining == 0) {
345 /*
346 * Defer completion when defer_completion is set or
347 * when the inode has pages mapped and this is AIO write.
348 * We need to invalidate those pages because there is a
349 * chance they contain stale data in the case buffered IO
350 * went in between AIO submission and completion into the
351 * same region.
352 */
353 if (dio->result)
354 defer_completion = dio->defer_completion ||
355 (dio->op == REQ_OP_WRITE &&
356 dio->inode->i_mapping->nrpages);
357 if (defer_completion) {
358 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
359 queue_work(dio->inode->i_sb->s_dio_done_wq,
360 &dio->complete_work);
361 } else {
362 dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
363 }
364 }
365 }
366
367 /*
368 * The BIO completion handler simply queues the BIO up for the process-context
369 * handler.
370 *
371 * During I/O bi_private points at the dio. After I/O, bi_private is used to
372 * implement a singly-linked list of completed BIOs, at dio->bio_list.
373 */
374 static void dio_bio_end_io(struct bio *bio)
375 {
376 struct dio *dio = bio->bi_private;
377 unsigned long flags;
378
379 spin_lock_irqsave(&dio->bio_lock, flags);
380 bio->bi_private = dio->bio_list;
381 dio->bio_list = bio;
382 if (--dio->refcount == 1 && dio->waiter)
383 wake_up_process(dio->waiter);
384 spin_unlock_irqrestore(&dio->bio_lock, flags);
385 }
386
387 /**
388 * dio_end_io - handle the end io action for the given bio
389 * @bio: The direct io bio thats being completed
390 *
391 * This is meant to be called by any filesystem that uses their own dio_submit_t
392 * so that the DIO specific endio actions are dealt with after the filesystem
393 * has done it's completion work.
394 */
395 void dio_end_io(struct bio *bio)
396 {
397 struct dio *dio = bio->bi_private;
398
399 if (dio->is_async)
400 dio_bio_end_aio(bio);
401 else
402 dio_bio_end_io(bio);
403 }
404 EXPORT_SYMBOL_GPL(dio_end_io);
405
406 static inline void
407 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
408 struct block_device *bdev,
409 sector_t first_sector, int nr_vecs)
410 {
411 struct bio *bio;
412
413 /*
414 * bio_alloc() is guaranteed to return a bio when called with
415 * __GFP_RECLAIM and we request a valid number of vectors.
416 */
417 bio = bio_alloc(GFP_KERNEL, nr_vecs);
418
419 bio_set_dev(bio, bdev);
420 bio->bi_iter.bi_sector = first_sector;
421 bio_set_op_attrs(bio, dio->op, dio->op_flags);
422 if (dio->is_async)
423 bio->bi_end_io = dio_bio_end_aio;
424 else
425 bio->bi_end_io = dio_bio_end_io;
426
427 bio->bi_write_hint = dio->iocb->ki_hint;
428
429 sdio->bio = bio;
430 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
431 }
432
433 /*
434 * In the AIO read case we speculatively dirty the pages before starting IO.
435 * During IO completion, any of these pages which happen to have been written
436 * back will be redirtied by bio_check_pages_dirty().
437 *
438 * bios hold a dio reference between submit_bio and ->end_io.
439 */
440 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
441 {
442 struct bio *bio = sdio->bio;
443 unsigned long flags;
444
445 bio->bi_private = dio;
446
447 spin_lock_irqsave(&dio->bio_lock, flags);
448 dio->refcount++;
449 spin_unlock_irqrestore(&dio->bio_lock, flags);
450
451 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
452 bio_set_pages_dirty(bio);
453
454 dio->bio_disk = bio->bi_disk;
455
456 if (sdio->submit_io) {
457 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
458 dio->bio_cookie = BLK_QC_T_NONE;
459 } else
460 dio->bio_cookie = submit_bio(bio);
461
462 sdio->bio = NULL;
463 sdio->boundary = 0;
464 sdio->logical_offset_in_bio = 0;
465 }
466
467 /*
468 * Release any resources in case of a failure
469 */
470 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
471 {
472 while (sdio->head < sdio->tail)
473 put_page(dio->pages[sdio->head++]);
474 }
475
476 /*
477 * Wait for the next BIO to complete. Remove it and return it. NULL is
478 * returned once all BIOs have been completed. This must only be called once
479 * all bios have been issued so that dio->refcount can only decrease. This
480 * requires that that the caller hold a reference on the dio.
481 */
482 static struct bio *dio_await_one(struct dio *dio)
483 {
484 unsigned long flags;
485 struct bio *bio = NULL;
486
487 spin_lock_irqsave(&dio->bio_lock, flags);
488
489 /*
490 * Wait as long as the list is empty and there are bios in flight. bio
491 * completion drops the count, maybe adds to the list, and wakes while
492 * holding the bio_lock so we don't need set_current_state()'s barrier
493 * and can call it after testing our condition.
494 */
495 while (dio->refcount > 1 && dio->bio_list == NULL) {
496 __set_current_state(TASK_UNINTERRUPTIBLE);
497 dio->waiter = current;
498 spin_unlock_irqrestore(&dio->bio_lock, flags);
499 if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
500 !blk_poll(dio->bio_disk->queue, dio->bio_cookie))
501 io_schedule();
502 /* wake up sets us TASK_RUNNING */
503 spin_lock_irqsave(&dio->bio_lock, flags);
504 dio->waiter = NULL;
505 }
506 if (dio->bio_list) {
507 bio = dio->bio_list;
508 dio->bio_list = bio->bi_private;
509 }
510 spin_unlock_irqrestore(&dio->bio_lock, flags);
511 return bio;
512 }
513
514 /*
515 * Process one completed BIO. No locks are held.
516 */
517 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
518 {
519 struct bio_vec *bvec;
520 unsigned i;
521 blk_status_t err = bio->bi_status;
522
523 if (err) {
524 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
525 dio->io_error = -EAGAIN;
526 else
527 dio->io_error = -EIO;
528 }
529
530 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) {
531 bio_check_pages_dirty(bio); /* transfers ownership */
532 } else {
533 bio_for_each_segment_all(bvec, bio, i) {
534 struct page *page = bvec->bv_page;
535
536 if (dio->op == REQ_OP_READ && !PageCompound(page) &&
537 dio->should_dirty)
538 set_page_dirty_lock(page);
539 put_page(page);
540 }
541 bio_put(bio);
542 }
543 return err;
544 }
545
546 /*
547 * Wait on and process all in-flight BIOs. This must only be called once
548 * all bios have been issued so that the refcount can only decrease.
549 * This just waits for all bios to make it through dio_bio_complete. IO
550 * errors are propagated through dio->io_error and should be propagated via
551 * dio_complete().
552 */
553 static void dio_await_completion(struct dio *dio)
554 {
555 struct bio *bio;
556 do {
557 bio = dio_await_one(dio);
558 if (bio)
559 dio_bio_complete(dio, bio);
560 } while (bio);
561 }
562
563 /*
564 * A really large O_DIRECT read or write can generate a lot of BIOs. So
565 * to keep the memory consumption sane we periodically reap any completed BIOs
566 * during the BIO generation phase.
567 *
568 * This also helps to limit the peak amount of pinned userspace memory.
569 */
570 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
571 {
572 int ret = 0;
573
574 if (sdio->reap_counter++ >= 64) {
575 while (dio->bio_list) {
576 unsigned long flags;
577 struct bio *bio;
578 int ret2;
579
580 spin_lock_irqsave(&dio->bio_lock, flags);
581 bio = dio->bio_list;
582 dio->bio_list = bio->bi_private;
583 spin_unlock_irqrestore(&dio->bio_lock, flags);
584 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
585 if (ret == 0)
586 ret = ret2;
587 }
588 sdio->reap_counter = 0;
589 }
590 return ret;
591 }
592
593 /*
594 * Create workqueue for deferred direct IO completions. We allocate the
595 * workqueue when it's first needed. This avoids creating workqueue for
596 * filesystems that don't need it and also allows us to create the workqueue
597 * late enough so the we can include s_id in the name of the workqueue.
598 */
599 int sb_init_dio_done_wq(struct super_block *sb)
600 {
601 struct workqueue_struct *old;
602 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
603 WQ_MEM_RECLAIM, 0,
604 sb->s_id);
605 if (!wq)
606 return -ENOMEM;
607 /*
608 * This has to be atomic as more DIOs can race to create the workqueue
609 */
610 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
611 /* Someone created workqueue before us? Free ours... */
612 if (old)
613 destroy_workqueue(wq);
614 return 0;
615 }
616
617 static int dio_set_defer_completion(struct dio *dio)
618 {
619 struct super_block *sb = dio->inode->i_sb;
620
621 if (dio->defer_completion)
622 return 0;
623 dio->defer_completion = true;
624 if (!sb->s_dio_done_wq)
625 return sb_init_dio_done_wq(sb);
626 return 0;
627 }
628
629 /*
630 * Call into the fs to map some more disk blocks. We record the current number
631 * of available blocks at sdio->blocks_available. These are in units of the
632 * fs blocksize, i_blocksize(inode).
633 *
634 * The fs is allowed to map lots of blocks at once. If it wants to do that,
635 * it uses the passed inode-relative block number as the file offset, as usual.
636 *
637 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
638 * has remaining to do. The fs should not map more than this number of blocks.
639 *
640 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
641 * indicate how much contiguous disk space has been made available at
642 * bh->b_blocknr.
643 *
644 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
645 * This isn't very efficient...
646 *
647 * In the case of filesystem holes: the fs may return an arbitrarily-large
648 * hole by returning an appropriate value in b_size and by clearing
649 * buffer_mapped(). However the direct-io code will only process holes one
650 * block at a time - it will repeatedly call get_block() as it walks the hole.
651 */
652 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
653 struct buffer_head *map_bh)
654 {
655 int ret;
656 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
657 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
658 unsigned long fs_count; /* Number of filesystem-sized blocks */
659 int create;
660 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
661
662 /*
663 * If there was a memory error and we've overwritten all the
664 * mapped blocks then we can now return that memory error
665 */
666 ret = dio->page_errors;
667 if (ret == 0) {
668 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
669 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
670 fs_endblk = (sdio->final_block_in_request - 1) >>
671 sdio->blkfactor;
672 fs_count = fs_endblk - fs_startblk + 1;
673
674 map_bh->b_state = 0;
675 map_bh->b_size = fs_count << i_blkbits;
676
677 /*
678 * For writes that could fill holes inside i_size on a
679 * DIO_SKIP_HOLES filesystem we forbid block creations: only
680 * overwrites are permitted. We will return early to the caller
681 * once we see an unmapped buffer head returned, and the caller
682 * will fall back to buffered I/O.
683 *
684 * Otherwise the decision is left to the get_blocks method,
685 * which may decide to handle it or also return an unmapped
686 * buffer head.
687 */
688 create = dio->op == REQ_OP_WRITE;
689 if (dio->flags & DIO_SKIP_HOLES) {
690 if (fs_startblk <= ((i_size_read(dio->inode) - 1) >>
691 i_blkbits))
692 create = 0;
693 }
694
695 ret = (*sdio->get_block)(dio->inode, fs_startblk,
696 map_bh, create);
697
698 /* Store for completion */
699 dio->private = map_bh->b_private;
700
701 if (ret == 0 && buffer_defer_completion(map_bh))
702 ret = dio_set_defer_completion(dio);
703 }
704 return ret;
705 }
706
707 /*
708 * There is no bio. Make one now.
709 */
710 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
711 sector_t start_sector, struct buffer_head *map_bh)
712 {
713 sector_t sector;
714 int ret, nr_pages;
715
716 ret = dio_bio_reap(dio, sdio);
717 if (ret)
718 goto out;
719 sector = start_sector << (sdio->blkbits - 9);
720 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
721 BUG_ON(nr_pages <= 0);
722 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
723 sdio->boundary = 0;
724 out:
725 return ret;
726 }
727
728 /*
729 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
730 * that was successful then update final_block_in_bio and take a ref against
731 * the just-added page.
732 *
733 * Return zero on success. Non-zero means the caller needs to start a new BIO.
734 */
735 static inline int dio_bio_add_page(struct dio_submit *sdio)
736 {
737 int ret;
738
739 ret = bio_add_page(sdio->bio, sdio->cur_page,
740 sdio->cur_page_len, sdio->cur_page_offset);
741 if (ret == sdio->cur_page_len) {
742 /*
743 * Decrement count only, if we are done with this page
744 */
745 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
746 sdio->pages_in_io--;
747 get_page(sdio->cur_page);
748 sdio->final_block_in_bio = sdio->cur_page_block +
749 (sdio->cur_page_len >> sdio->blkbits);
750 ret = 0;
751 } else {
752 ret = 1;
753 }
754 return ret;
755 }
756
757 /*
758 * Put cur_page under IO. The section of cur_page which is described by
759 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
760 * starts on-disk at cur_page_block.
761 *
762 * We take a ref against the page here (on behalf of its presence in the bio).
763 *
764 * The caller of this function is responsible for removing cur_page from the
765 * dio, and for dropping the refcount which came from that presence.
766 */
767 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
768 struct buffer_head *map_bh)
769 {
770 int ret = 0;
771
772 if (sdio->bio) {
773 loff_t cur_offset = sdio->cur_page_fs_offset;
774 loff_t bio_next_offset = sdio->logical_offset_in_bio +
775 sdio->bio->bi_iter.bi_size;
776
777 /*
778 * See whether this new request is contiguous with the old.
779 *
780 * Btrfs cannot handle having logically non-contiguous requests
781 * submitted. For example if you have
782 *
783 * Logical: [0-4095][HOLE][8192-12287]
784 * Physical: [0-4095] [4096-8191]
785 *
786 * We cannot submit those pages together as one BIO. So if our
787 * current logical offset in the file does not equal what would
788 * be the next logical offset in the bio, submit the bio we
789 * have.
790 */
791 if (sdio->final_block_in_bio != sdio->cur_page_block ||
792 cur_offset != bio_next_offset)
793 dio_bio_submit(dio, sdio);
794 }
795
796 if (sdio->bio == NULL) {
797 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
798 if (ret)
799 goto out;
800 }
801
802 if (dio_bio_add_page(sdio) != 0) {
803 dio_bio_submit(dio, sdio);
804 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
805 if (ret == 0) {
806 ret = dio_bio_add_page(sdio);
807 BUG_ON(ret != 0);
808 }
809 }
810 out:
811 return ret;
812 }
813
814 /*
815 * An autonomous function to put a chunk of a page under deferred IO.
816 *
817 * The caller doesn't actually know (or care) whether this piece of page is in
818 * a BIO, or is under IO or whatever. We just take care of all possible
819 * situations here. The separation between the logic of do_direct_IO() and
820 * that of submit_page_section() is important for clarity. Please don't break.
821 *
822 * The chunk of page starts on-disk at blocknr.
823 *
824 * We perform deferred IO, by recording the last-submitted page inside our
825 * private part of the dio structure. If possible, we just expand the IO
826 * across that page here.
827 *
828 * If that doesn't work out then we put the old page into the bio and add this
829 * page to the dio instead.
830 */
831 static inline int
832 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
833 unsigned offset, unsigned len, sector_t blocknr,
834 struct buffer_head *map_bh)
835 {
836 int ret = 0;
837
838 if (dio->op == REQ_OP_WRITE) {
839 /*
840 * Read accounting is performed in submit_bio()
841 */
842 task_io_account_write(len);
843 }
844
845 /*
846 * Can we just grow the current page's presence in the dio?
847 */
848 if (sdio->cur_page == page &&
849 sdio->cur_page_offset + sdio->cur_page_len == offset &&
850 sdio->cur_page_block +
851 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
852 sdio->cur_page_len += len;
853 goto out;
854 }
855
856 /*
857 * If there's a deferred page already there then send it.
858 */
859 if (sdio->cur_page) {
860 ret = dio_send_cur_page(dio, sdio, map_bh);
861 put_page(sdio->cur_page);
862 sdio->cur_page = NULL;
863 if (ret)
864 return ret;
865 }
866
867 get_page(page); /* It is in dio */
868 sdio->cur_page = page;
869 sdio->cur_page_offset = offset;
870 sdio->cur_page_len = len;
871 sdio->cur_page_block = blocknr;
872 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
873 out:
874 /*
875 * If sdio->boundary then we want to schedule the IO now to
876 * avoid metadata seeks.
877 */
878 if (sdio->boundary) {
879 ret = dio_send_cur_page(dio, sdio, map_bh);
880 if (sdio->bio)
881 dio_bio_submit(dio, sdio);
882 put_page(sdio->cur_page);
883 sdio->cur_page = NULL;
884 }
885 return ret;
886 }
887
888 /*
889 * If we are not writing the entire block and get_block() allocated
890 * the block for us, we need to fill-in the unused portion of the
891 * block with zeros. This happens only if user-buffer, fileoffset or
892 * io length is not filesystem block-size multiple.
893 *
894 * `end' is zero if we're doing the start of the IO, 1 at the end of the
895 * IO.
896 */
897 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
898 int end, struct buffer_head *map_bh)
899 {
900 unsigned dio_blocks_per_fs_block;
901 unsigned this_chunk_blocks; /* In dio_blocks */
902 unsigned this_chunk_bytes;
903 struct page *page;
904
905 sdio->start_zero_done = 1;
906 if (!sdio->blkfactor || !buffer_new(map_bh))
907 return;
908
909 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
910 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
911
912 if (!this_chunk_blocks)
913 return;
914
915 /*
916 * We need to zero out part of an fs block. It is either at the
917 * beginning or the end of the fs block.
918 */
919 if (end)
920 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
921
922 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
923
924 page = ZERO_PAGE(0);
925 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
926 sdio->next_block_for_io, map_bh))
927 return;
928
929 sdio->next_block_for_io += this_chunk_blocks;
930 }
931
932 /*
933 * Walk the user pages, and the file, mapping blocks to disk and generating
934 * a sequence of (page,offset,len,block) mappings. These mappings are injected
935 * into submit_page_section(), which takes care of the next stage of submission
936 *
937 * Direct IO against a blockdev is different from a file. Because we can
938 * happily perform page-sized but 512-byte aligned IOs. It is important that
939 * blockdev IO be able to have fine alignment and large sizes.
940 *
941 * So what we do is to permit the ->get_block function to populate bh.b_size
942 * with the size of IO which is permitted at this offset and this i_blkbits.
943 *
944 * For best results, the blockdev should be set up with 512-byte i_blkbits and
945 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
946 * fine alignment but still allows this function to work in PAGE_SIZE units.
947 */
948 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
949 struct buffer_head *map_bh)
950 {
951 const unsigned blkbits = sdio->blkbits;
952 const unsigned i_blkbits = blkbits + sdio->blkfactor;
953 int ret = 0;
954
955 while (sdio->block_in_file < sdio->final_block_in_request) {
956 struct page *page;
957 size_t from, to;
958
959 page = dio_get_page(dio, sdio);
960 if (IS_ERR(page)) {
961 ret = PTR_ERR(page);
962 goto out;
963 }
964 from = sdio->head ? 0 : sdio->from;
965 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
966 sdio->head++;
967
968 while (from < to) {
969 unsigned this_chunk_bytes; /* # of bytes mapped */
970 unsigned this_chunk_blocks; /* # of blocks */
971 unsigned u;
972
973 if (sdio->blocks_available == 0) {
974 /*
975 * Need to go and map some more disk
976 */
977 unsigned long blkmask;
978 unsigned long dio_remainder;
979
980 ret = get_more_blocks(dio, sdio, map_bh);
981 if (ret) {
982 put_page(page);
983 goto out;
984 }
985 if (!buffer_mapped(map_bh))
986 goto do_holes;
987
988 sdio->blocks_available =
989 map_bh->b_size >> blkbits;
990 sdio->next_block_for_io =
991 map_bh->b_blocknr << sdio->blkfactor;
992 if (buffer_new(map_bh)) {
993 clean_bdev_aliases(
994 map_bh->b_bdev,
995 map_bh->b_blocknr,
996 map_bh->b_size >> i_blkbits);
997 }
998
999 if (!sdio->blkfactor)
1000 goto do_holes;
1001
1002 blkmask = (1 << sdio->blkfactor) - 1;
1003 dio_remainder = (sdio->block_in_file & blkmask);
1004
1005 /*
1006 * If we are at the start of IO and that IO
1007 * starts partway into a fs-block,
1008 * dio_remainder will be non-zero. If the IO
1009 * is a read then we can simply advance the IO
1010 * cursor to the first block which is to be
1011 * read. But if the IO is a write and the
1012 * block was newly allocated we cannot do that;
1013 * the start of the fs block must be zeroed out
1014 * on-disk
1015 */
1016 if (!buffer_new(map_bh))
1017 sdio->next_block_for_io += dio_remainder;
1018 sdio->blocks_available -= dio_remainder;
1019 }
1020 do_holes:
1021 /* Handle holes */
1022 if (!buffer_mapped(map_bh)) {
1023 loff_t i_size_aligned;
1024
1025 /* AKPM: eargh, -ENOTBLK is a hack */
1026 if (dio->op == REQ_OP_WRITE) {
1027 put_page(page);
1028 return -ENOTBLK;
1029 }
1030
1031 /*
1032 * Be sure to account for a partial block as the
1033 * last block in the file
1034 */
1035 i_size_aligned = ALIGN(i_size_read(dio->inode),
1036 1 << blkbits);
1037 if (sdio->block_in_file >=
1038 i_size_aligned >> blkbits) {
1039 /* We hit eof */
1040 put_page(page);
1041 goto out;
1042 }
1043 zero_user(page, from, 1 << blkbits);
1044 sdio->block_in_file++;
1045 from += 1 << blkbits;
1046 dio->result += 1 << blkbits;
1047 goto next_block;
1048 }
1049
1050 /*
1051 * If we're performing IO which has an alignment which
1052 * is finer than the underlying fs, go check to see if
1053 * we must zero out the start of this block.
1054 */
1055 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1056 dio_zero_block(dio, sdio, 0, map_bh);
1057
1058 /*
1059 * Work out, in this_chunk_blocks, how much disk we
1060 * can add to this page
1061 */
1062 this_chunk_blocks = sdio->blocks_available;
1063 u = (to - from) >> blkbits;
1064 if (this_chunk_blocks > u)
1065 this_chunk_blocks = u;
1066 u = sdio->final_block_in_request - sdio->block_in_file;
1067 if (this_chunk_blocks > u)
1068 this_chunk_blocks = u;
1069 this_chunk_bytes = this_chunk_blocks << blkbits;
1070 BUG_ON(this_chunk_bytes == 0);
1071
1072 if (this_chunk_blocks == sdio->blocks_available)
1073 sdio->boundary = buffer_boundary(map_bh);
1074 ret = submit_page_section(dio, sdio, page,
1075 from,
1076 this_chunk_bytes,
1077 sdio->next_block_for_io,
1078 map_bh);
1079 if (ret) {
1080 put_page(page);
1081 goto out;
1082 }
1083 sdio->next_block_for_io += this_chunk_blocks;
1084
1085 sdio->block_in_file += this_chunk_blocks;
1086 from += this_chunk_bytes;
1087 dio->result += this_chunk_bytes;
1088 sdio->blocks_available -= this_chunk_blocks;
1089 next_block:
1090 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1091 if (sdio->block_in_file == sdio->final_block_in_request)
1092 break;
1093 }
1094
1095 /* Drop the ref which was taken in get_user_pages() */
1096 put_page(page);
1097 }
1098 out:
1099 return ret;
1100 }
1101
1102 static inline int drop_refcount(struct dio *dio)
1103 {
1104 int ret2;
1105 unsigned long flags;
1106
1107 /*
1108 * Sync will always be dropping the final ref and completing the
1109 * operation. AIO can if it was a broken operation described above or
1110 * in fact if all the bios race to complete before we get here. In
1111 * that case dio_complete() translates the EIOCBQUEUED into the proper
1112 * return code that the caller will hand to ->complete().
1113 *
1114 * This is managed by the bio_lock instead of being an atomic_t so that
1115 * completion paths can drop their ref and use the remaining count to
1116 * decide to wake the submission path atomically.
1117 */
1118 spin_lock_irqsave(&dio->bio_lock, flags);
1119 ret2 = --dio->refcount;
1120 spin_unlock_irqrestore(&dio->bio_lock, flags);
1121 return ret2;
1122 }
1123
1124 /*
1125 * This is a library function for use by filesystem drivers.
1126 *
1127 * The locking rules are governed by the flags parameter:
1128 * - if the flags value contains DIO_LOCKING we use a fancy locking
1129 * scheme for dumb filesystems.
1130 * For writes this function is called under i_mutex and returns with
1131 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1132 * taken and dropped again before returning.
1133 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1134 * internal locking but rather rely on the filesystem to synchronize
1135 * direct I/O reads/writes versus each other and truncate.
1136 *
1137 * To help with locking against truncate we incremented the i_dio_count
1138 * counter before starting direct I/O, and decrement it once we are done.
1139 * Truncate can wait for it to reach zero to provide exclusion. It is
1140 * expected that filesystem provide exclusion between new direct I/O
1141 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1142 * but other filesystems need to take care of this on their own.
1143 *
1144 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1145 * is always inlined. Otherwise gcc is unable to split the structure into
1146 * individual fields and will generate much worse code. This is important
1147 * for the whole file.
1148 */
1149 static inline ssize_t
1150 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1151 struct block_device *bdev, struct iov_iter *iter,
1152 get_block_t get_block, dio_iodone_t end_io,
1153 dio_submit_t submit_io, int flags)
1154 {
1155 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1156 unsigned blkbits = i_blkbits;
1157 unsigned blocksize_mask = (1 << blkbits) - 1;
1158 ssize_t retval = -EINVAL;
1159 size_t count = iov_iter_count(iter);
1160 loff_t offset = iocb->ki_pos;
1161 loff_t end = offset + count;
1162 struct dio *dio;
1163 struct dio_submit sdio = { 0, };
1164 struct buffer_head map_bh = { 0, };
1165 struct blk_plug plug;
1166 unsigned long align = offset | iov_iter_alignment(iter);
1167
1168 /*
1169 * Avoid references to bdev if not absolutely needed to give
1170 * the early prefetch in the caller enough time.
1171 */
1172
1173 if (align & blocksize_mask) {
1174 if (bdev)
1175 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1176 blocksize_mask = (1 << blkbits) - 1;
1177 if (align & blocksize_mask)
1178 goto out;
1179 }
1180
1181 /* watch out for a 0 len io from a tricksy fs */
1182 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1183 return 0;
1184
1185 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1186 retval = -ENOMEM;
1187 if (!dio)
1188 goto out;
1189 /*
1190 * Believe it or not, zeroing out the page array caused a .5%
1191 * performance regression in a database benchmark. So, we take
1192 * care to only zero out what's needed.
1193 */
1194 memset(dio, 0, offsetof(struct dio, pages));
1195
1196 dio->flags = flags;
1197 if (dio->flags & DIO_LOCKING) {
1198 if (iov_iter_rw(iter) == READ) {
1199 struct address_space *mapping =
1200 iocb->ki_filp->f_mapping;
1201
1202 /* will be released by direct_io_worker */
1203 inode_lock(inode);
1204
1205 retval = filemap_write_and_wait_range(mapping, offset,
1206 end - 1);
1207 if (retval) {
1208 inode_unlock(inode);
1209 kmem_cache_free(dio_cache, dio);
1210 goto out;
1211 }
1212 }
1213 }
1214
1215 /* Once we sampled i_size check for reads beyond EOF */
1216 dio->i_size = i_size_read(inode);
1217 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1218 if (dio->flags & DIO_LOCKING)
1219 inode_unlock(inode);
1220 kmem_cache_free(dio_cache, dio);
1221 retval = 0;
1222 goto out;
1223 }
1224
1225 /*
1226 * For file extending writes updating i_size before data writeouts
1227 * complete can expose uninitialized blocks in dumb filesystems.
1228 * In that case we need to wait for I/O completion even if asked
1229 * for an asynchronous write.
1230 */
1231 if (is_sync_kiocb(iocb))
1232 dio->is_async = false;
1233 else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1234 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1235 dio->is_async = false;
1236 else
1237 dio->is_async = true;
1238
1239 dio->inode = inode;
1240 if (iov_iter_rw(iter) == WRITE) {
1241 dio->op = REQ_OP_WRITE;
1242 dio->op_flags = REQ_SYNC | REQ_IDLE;
1243 if (iocb->ki_flags & IOCB_NOWAIT)
1244 dio->op_flags |= REQ_NOWAIT;
1245 } else {
1246 dio->op = REQ_OP_READ;
1247 }
1248
1249 /*
1250 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1251 * so that we can call ->fsync.
1252 */
1253 if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1254 retval = 0;
1255 if (iocb->ki_flags & IOCB_DSYNC)
1256 retval = dio_set_defer_completion(dio);
1257 else if (!dio->inode->i_sb->s_dio_done_wq) {
1258 /*
1259 * In case of AIO write racing with buffered read we
1260 * need to defer completion. We can't decide this now,
1261 * however the workqueue needs to be initialized here.
1262 */
1263 retval = sb_init_dio_done_wq(dio->inode->i_sb);
1264 }
1265 if (retval) {
1266 /*
1267 * We grab i_mutex only for reads so we don't have
1268 * to release it here
1269 */
1270 kmem_cache_free(dio_cache, dio);
1271 goto out;
1272 }
1273 }
1274
1275 /*
1276 * Will be decremented at I/O completion time.
1277 */
1278 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1279 inode_dio_begin(inode);
1280
1281 retval = 0;
1282 sdio.blkbits = blkbits;
1283 sdio.blkfactor = i_blkbits - blkbits;
1284 sdio.block_in_file = offset >> blkbits;
1285
1286 sdio.get_block = get_block;
1287 dio->end_io = end_io;
1288 sdio.submit_io = submit_io;
1289 sdio.final_block_in_bio = -1;
1290 sdio.next_block_for_io = -1;
1291
1292 dio->iocb = iocb;
1293
1294 spin_lock_init(&dio->bio_lock);
1295 dio->refcount = 1;
1296
1297 dio->should_dirty = (iter->type == ITER_IOVEC);
1298 sdio.iter = iter;
1299 sdio.final_block_in_request =
1300 (offset + iov_iter_count(iter)) >> blkbits;
1301
1302 /*
1303 * In case of non-aligned buffers, we may need 2 more
1304 * pages since we need to zero out first and last block.
1305 */
1306 if (unlikely(sdio.blkfactor))
1307 sdio.pages_in_io = 2;
1308
1309 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1310
1311 blk_start_plug(&plug);
1312
1313 retval = do_direct_IO(dio, &sdio, &map_bh);
1314 if (retval)
1315 dio_cleanup(dio, &sdio);
1316
1317 if (retval == -ENOTBLK) {
1318 /*
1319 * The remaining part of the request will be
1320 * be handled by buffered I/O when we return
1321 */
1322 retval = 0;
1323 }
1324 /*
1325 * There may be some unwritten disk at the end of a part-written
1326 * fs-block-sized block. Go zero that now.
1327 */
1328 dio_zero_block(dio, &sdio, 1, &map_bh);
1329
1330 if (sdio.cur_page) {
1331 ssize_t ret2;
1332
1333 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1334 if (retval == 0)
1335 retval = ret2;
1336 put_page(sdio.cur_page);
1337 sdio.cur_page = NULL;
1338 }
1339 if (sdio.bio)
1340 dio_bio_submit(dio, &sdio);
1341
1342 blk_finish_plug(&plug);
1343
1344 /*
1345 * It is possible that, we return short IO due to end of file.
1346 * In that case, we need to release all the pages we got hold on.
1347 */
1348 dio_cleanup(dio, &sdio);
1349
1350 /*
1351 * All block lookups have been performed. For READ requests
1352 * we can let i_mutex go now that its achieved its purpose
1353 * of protecting us from looking up uninitialized blocks.
1354 */
1355 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1356 inode_unlock(dio->inode);
1357
1358 /*
1359 * The only time we want to leave bios in flight is when a successful
1360 * partial aio read or full aio write have been setup. In that case
1361 * bio completion will call aio_complete. The only time it's safe to
1362 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1363 * This had *better* be the only place that raises -EIOCBQUEUED.
1364 */
1365 BUG_ON(retval == -EIOCBQUEUED);
1366 if (dio->is_async && retval == 0 && dio->result &&
1367 (iov_iter_rw(iter) == READ || dio->result == count))
1368 retval = -EIOCBQUEUED;
1369 else
1370 dio_await_completion(dio);
1371
1372 if (drop_refcount(dio) == 0) {
1373 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1374 } else
1375 BUG_ON(retval != -EIOCBQUEUED);
1376
1377 out:
1378 return retval;
1379 }
1380
1381 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1382 struct block_device *bdev, struct iov_iter *iter,
1383 get_block_t get_block,
1384 dio_iodone_t end_io, dio_submit_t submit_io,
1385 int flags)
1386 {
1387 /*
1388 * The block device state is needed in the end to finally
1389 * submit everything. Since it's likely to be cache cold
1390 * prefetch it here as first thing to hide some of the
1391 * latency.
1392 *
1393 * Attempt to prefetch the pieces we likely need later.
1394 */
1395 prefetch(&bdev->bd_disk->part_tbl);
1396 prefetch(bdev->bd_queue);
1397 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1398
1399 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1400 end_io, submit_io, flags);
1401 }
1402
1403 EXPORT_SYMBOL(__blockdev_direct_IO);
1404
1405 static __init int dio_init(void)
1406 {
1407 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1408 return 0;
1409 }
1410 module_init(dio_init)