]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/eventpoll.c
cfg80211: prevent speculation on cfg80211_classify8021d() return
[mirror_ubuntu-bionic-kernel.git] / fs / eventpoll.c
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * Davide Libenzi <davidel@xmailserver.org>
11 *
12 */
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/signal.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
45 #include <net/busy_poll.h>
46
47 /*
48 * LOCKING:
49 * There are three level of locking required by epoll :
50 *
51 * 1) epmutex (mutex)
52 * 2) ep->mtx (mutex)
53 * 3) ep->lock (spinlock)
54 *
55 * The acquire order is the one listed above, from 1 to 3.
56 * We need a spinlock (ep->lock) because we manipulate objects
57 * from inside the poll callback, that might be triggered from
58 * a wake_up() that in turn might be called from IRQ context.
59 * So we can't sleep inside the poll callback and hence we need
60 * a spinlock. During the event transfer loop (from kernel to
61 * user space) we could end up sleeping due a copy_to_user(), so
62 * we need a lock that will allow us to sleep. This lock is a
63 * mutex (ep->mtx). It is acquired during the event transfer loop,
64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
65 * Then we also need a global mutex to serialize eventpoll_release_file()
66 * and ep_free().
67 * This mutex is acquired by ep_free() during the epoll file
68 * cleanup path and it is also acquired by eventpoll_release_file()
69 * if a file has been pushed inside an epoll set and it is then
70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
71 * It is also acquired when inserting an epoll fd onto another epoll
72 * fd. We do this so that we walk the epoll tree and ensure that this
73 * insertion does not create a cycle of epoll file descriptors, which
74 * could lead to deadlock. We need a global mutex to prevent two
75 * simultaneous inserts (A into B and B into A) from racing and
76 * constructing a cycle without either insert observing that it is
77 * going to.
78 * It is necessary to acquire multiple "ep->mtx"es at once in the
79 * case when one epoll fd is added to another. In this case, we
80 * always acquire the locks in the order of nesting (i.e. after
81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
82 * before e2->mtx). Since we disallow cycles of epoll file
83 * descriptors, this ensures that the mutexes are well-ordered. In
84 * order to communicate this nesting to lockdep, when walking a tree
85 * of epoll file descriptors, we use the current recursion depth as
86 * the lockdep subkey.
87 * It is possible to drop the "ep->mtx" and to use the global
88 * mutex "epmutex" (together with "ep->lock") to have it working,
89 * but having "ep->mtx" will make the interface more scalable.
90 * Events that require holding "epmutex" are very rare, while for
91 * normal operations the epoll private "ep->mtx" will guarantee
92 * a better scalability.
93 */
94
95 /* Epoll private bits inside the event mask */
96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
97
98 #define EPOLLINOUT_BITS (POLLIN | POLLOUT)
99
100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \
101 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
102
103 /* Maximum number of nesting allowed inside epoll sets */
104 #define EP_MAX_NESTS 4
105
106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
107
108 #define EP_UNACTIVE_PTR ((void *) -1L)
109
110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
111
112 struct epoll_filefd {
113 struct file *file;
114 int fd;
115 } __packed;
116
117 /*
118 * Structure used to track possible nested calls, for too deep recursions
119 * and loop cycles.
120 */
121 struct nested_call_node {
122 struct list_head llink;
123 void *cookie;
124 void *ctx;
125 };
126
127 /*
128 * This structure is used as collector for nested calls, to check for
129 * maximum recursion dept and loop cycles.
130 */
131 struct nested_calls {
132 struct list_head tasks_call_list;
133 spinlock_t lock;
134 };
135
136 /*
137 * Each file descriptor added to the eventpoll interface will
138 * have an entry of this type linked to the "rbr" RB tree.
139 * Avoid increasing the size of this struct, there can be many thousands
140 * of these on a server and we do not want this to take another cache line.
141 */
142 struct epitem {
143 union {
144 /* RB tree node links this structure to the eventpoll RB tree */
145 struct rb_node rbn;
146 /* Used to free the struct epitem */
147 struct rcu_head rcu;
148 };
149
150 /* List header used to link this structure to the eventpoll ready list */
151 struct list_head rdllink;
152
153 /*
154 * Works together "struct eventpoll"->ovflist in keeping the
155 * single linked chain of items.
156 */
157 struct epitem *next;
158
159 /* The file descriptor information this item refers to */
160 struct epoll_filefd ffd;
161
162 /* Number of active wait queue attached to poll operations */
163 int nwait;
164
165 /* List containing poll wait queues */
166 struct list_head pwqlist;
167
168 /* The "container" of this item */
169 struct eventpoll *ep;
170
171 /* List header used to link this item to the "struct file" items list */
172 struct list_head fllink;
173
174 /* wakeup_source used when EPOLLWAKEUP is set */
175 struct wakeup_source __rcu *ws;
176
177 /* The structure that describe the interested events and the source fd */
178 struct epoll_event event;
179 };
180
181 /*
182 * This structure is stored inside the "private_data" member of the file
183 * structure and represents the main data structure for the eventpoll
184 * interface.
185 */
186 struct eventpoll {
187 /* Protect the access to this structure */
188 spinlock_t lock;
189
190 /*
191 * This mutex is used to ensure that files are not removed
192 * while epoll is using them. This is held during the event
193 * collection loop, the file cleanup path, the epoll file exit
194 * code and the ctl operations.
195 */
196 struct mutex mtx;
197
198 /* Wait queue used by sys_epoll_wait() */
199 wait_queue_head_t wq;
200
201 /* Wait queue used by file->poll() */
202 wait_queue_head_t poll_wait;
203
204 /* List of ready file descriptors */
205 struct list_head rdllist;
206
207 /* RB tree root used to store monitored fd structs */
208 struct rb_root_cached rbr;
209
210 /*
211 * This is a single linked list that chains all the "struct epitem" that
212 * happened while transferring ready events to userspace w/out
213 * holding ->lock.
214 */
215 struct epitem *ovflist;
216
217 /* wakeup_source used when ep_scan_ready_list is running */
218 struct wakeup_source *ws;
219
220 /* The user that created the eventpoll descriptor */
221 struct user_struct *user;
222
223 struct file *file;
224
225 /* used to optimize loop detection check */
226 int visited;
227 struct list_head visited_list_link;
228
229 #ifdef CONFIG_NET_RX_BUSY_POLL
230 /* used to track busy poll napi_id */
231 unsigned int napi_id;
232 #endif
233 };
234
235 /* Wait structure used by the poll hooks */
236 struct eppoll_entry {
237 /* List header used to link this structure to the "struct epitem" */
238 struct list_head llink;
239
240 /* The "base" pointer is set to the container "struct epitem" */
241 struct epitem *base;
242
243 /*
244 * Wait queue item that will be linked to the target file wait
245 * queue head.
246 */
247 wait_queue_entry_t wait;
248
249 /* The wait queue head that linked the "wait" wait queue item */
250 wait_queue_head_t *whead;
251 };
252
253 /* Wrapper struct used by poll queueing */
254 struct ep_pqueue {
255 poll_table pt;
256 struct epitem *epi;
257 };
258
259 /* Used by the ep_send_events() function as callback private data */
260 struct ep_send_events_data {
261 int maxevents;
262 struct epoll_event __user *events;
263 };
264
265 /*
266 * Configuration options available inside /proc/sys/fs/epoll/
267 */
268 /* Maximum number of epoll watched descriptors, per user */
269 static long max_user_watches __read_mostly;
270
271 /*
272 * This mutex is used to serialize ep_free() and eventpoll_release_file().
273 */
274 static DEFINE_MUTEX(epmutex);
275
276 /* Used to check for epoll file descriptor inclusion loops */
277 static struct nested_calls poll_loop_ncalls;
278
279 /* Slab cache used to allocate "struct epitem" */
280 static struct kmem_cache *epi_cache __read_mostly;
281
282 /* Slab cache used to allocate "struct eppoll_entry" */
283 static struct kmem_cache *pwq_cache __read_mostly;
284
285 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
286 static LIST_HEAD(visited_list);
287
288 /*
289 * List of files with newly added links, where we may need to limit the number
290 * of emanating paths. Protected by the epmutex.
291 */
292 static LIST_HEAD(tfile_check_list);
293
294 #ifdef CONFIG_SYSCTL
295
296 #include <linux/sysctl.h>
297
298 static long zero;
299 static long long_max = LONG_MAX;
300
301 struct ctl_table epoll_table[] = {
302 {
303 .procname = "max_user_watches",
304 .data = &max_user_watches,
305 .maxlen = sizeof(max_user_watches),
306 .mode = 0644,
307 .proc_handler = proc_doulongvec_minmax,
308 .extra1 = &zero,
309 .extra2 = &long_max,
310 },
311 { }
312 };
313 #endif /* CONFIG_SYSCTL */
314
315 static const struct file_operations eventpoll_fops;
316
317 static inline int is_file_epoll(struct file *f)
318 {
319 return f->f_op == &eventpoll_fops;
320 }
321
322 /* Setup the structure that is used as key for the RB tree */
323 static inline void ep_set_ffd(struct epoll_filefd *ffd,
324 struct file *file, int fd)
325 {
326 ffd->file = file;
327 ffd->fd = fd;
328 }
329
330 /* Compare RB tree keys */
331 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
332 struct epoll_filefd *p2)
333 {
334 return (p1->file > p2->file ? +1:
335 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
336 }
337
338 /* Tells us if the item is currently linked */
339 static inline int ep_is_linked(struct list_head *p)
340 {
341 return !list_empty(p);
342 }
343
344 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
345 {
346 return container_of(p, struct eppoll_entry, wait);
347 }
348
349 /* Get the "struct epitem" from a wait queue pointer */
350 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
351 {
352 return container_of(p, struct eppoll_entry, wait)->base;
353 }
354
355 /* Get the "struct epitem" from an epoll queue wrapper */
356 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
357 {
358 return container_of(p, struct ep_pqueue, pt)->epi;
359 }
360
361 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
362 static inline int ep_op_has_event(int op)
363 {
364 return op != EPOLL_CTL_DEL;
365 }
366
367 /* Initialize the poll safe wake up structure */
368 static void ep_nested_calls_init(struct nested_calls *ncalls)
369 {
370 INIT_LIST_HEAD(&ncalls->tasks_call_list);
371 spin_lock_init(&ncalls->lock);
372 }
373
374 /**
375 * ep_events_available - Checks if ready events might be available.
376 *
377 * @ep: Pointer to the eventpoll context.
378 *
379 * Returns: Returns a value different than zero if ready events are available,
380 * or zero otherwise.
381 */
382 static inline int ep_events_available(struct eventpoll *ep)
383 {
384 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
385 }
386
387 #ifdef CONFIG_NET_RX_BUSY_POLL
388 static bool ep_busy_loop_end(void *p, unsigned long start_time)
389 {
390 struct eventpoll *ep = p;
391
392 return ep_events_available(ep) || busy_loop_timeout(start_time);
393 }
394 #endif /* CONFIG_NET_RX_BUSY_POLL */
395
396 /*
397 * Busy poll if globally on and supporting sockets found && no events,
398 * busy loop will return if need_resched or ep_events_available.
399 *
400 * we must do our busy polling with irqs enabled
401 */
402 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
403 {
404 #ifdef CONFIG_NET_RX_BUSY_POLL
405 unsigned int napi_id = READ_ONCE(ep->napi_id);
406
407 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
408 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
409 #endif
410 }
411
412 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
413 {
414 #ifdef CONFIG_NET_RX_BUSY_POLL
415 if (ep->napi_id)
416 ep->napi_id = 0;
417 #endif
418 }
419
420 /*
421 * Set epoll busy poll NAPI ID from sk.
422 */
423 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
424 {
425 #ifdef CONFIG_NET_RX_BUSY_POLL
426 struct eventpoll *ep;
427 unsigned int napi_id;
428 struct socket *sock;
429 struct sock *sk;
430 int err;
431
432 if (!net_busy_loop_on())
433 return;
434
435 sock = sock_from_file(epi->ffd.file, &err);
436 if (!sock)
437 return;
438
439 sk = sock->sk;
440 if (!sk)
441 return;
442
443 napi_id = READ_ONCE(sk->sk_napi_id);
444 ep = epi->ep;
445
446 /* Non-NAPI IDs can be rejected
447 * or
448 * Nothing to do if we already have this ID
449 */
450 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
451 return;
452
453 /* record NAPI ID for use in next busy poll */
454 ep->napi_id = napi_id;
455 #endif
456 }
457
458 /**
459 * ep_call_nested - Perform a bound (possibly) nested call, by checking
460 * that the recursion limit is not exceeded, and that
461 * the same nested call (by the meaning of same cookie) is
462 * no re-entered.
463 *
464 * @ncalls: Pointer to the nested_calls structure to be used for this call.
465 * @max_nests: Maximum number of allowed nesting calls.
466 * @nproc: Nested call core function pointer.
467 * @priv: Opaque data to be passed to the @nproc callback.
468 * @cookie: Cookie to be used to identify this nested call.
469 * @ctx: This instance context.
470 *
471 * Returns: Returns the code returned by the @nproc callback, or -1 if
472 * the maximum recursion limit has been exceeded.
473 */
474 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
475 int (*nproc)(void *, void *, int), void *priv,
476 void *cookie, void *ctx)
477 {
478 int error, call_nests = 0;
479 unsigned long flags;
480 struct list_head *lsthead = &ncalls->tasks_call_list;
481 struct nested_call_node *tncur;
482 struct nested_call_node tnode;
483
484 spin_lock_irqsave(&ncalls->lock, flags);
485
486 /*
487 * Try to see if the current task is already inside this wakeup call.
488 * We use a list here, since the population inside this set is always
489 * very much limited.
490 */
491 list_for_each_entry(tncur, lsthead, llink) {
492 if (tncur->ctx == ctx &&
493 (tncur->cookie == cookie || ++call_nests > max_nests)) {
494 /*
495 * Ops ... loop detected or maximum nest level reached.
496 * We abort this wake by breaking the cycle itself.
497 */
498 error = -1;
499 goto out_unlock;
500 }
501 }
502
503 /* Add the current task and cookie to the list */
504 tnode.ctx = ctx;
505 tnode.cookie = cookie;
506 list_add(&tnode.llink, lsthead);
507
508 spin_unlock_irqrestore(&ncalls->lock, flags);
509
510 /* Call the nested function */
511 error = (*nproc)(priv, cookie, call_nests);
512
513 /* Remove the current task from the list */
514 spin_lock_irqsave(&ncalls->lock, flags);
515 list_del(&tnode.llink);
516 out_unlock:
517 spin_unlock_irqrestore(&ncalls->lock, flags);
518
519 return error;
520 }
521
522 /*
523 * As described in commit 0ccf831cb lockdep: annotate epoll
524 * the use of wait queues used by epoll is done in a very controlled
525 * manner. Wake ups can nest inside each other, but are never done
526 * with the same locking. For example:
527 *
528 * dfd = socket(...);
529 * efd1 = epoll_create();
530 * efd2 = epoll_create();
531 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
532 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
533 *
534 * When a packet arrives to the device underneath "dfd", the net code will
535 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
536 * callback wakeup entry on that queue, and the wake_up() performed by the
537 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
538 * (efd1) notices that it may have some event ready, so it needs to wake up
539 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
540 * that ends up in another wake_up(), after having checked about the
541 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
542 * avoid stack blasting.
543 *
544 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
545 * this special case of epoll.
546 */
547 #ifdef CONFIG_DEBUG_LOCK_ALLOC
548
549 static struct nested_calls poll_safewake_ncalls;
550
551 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
552 {
553 unsigned long flags;
554 wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie;
555
556 spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1);
557 wake_up_locked_poll(wqueue, POLLIN);
558 spin_unlock_irqrestore(&wqueue->lock, flags);
559
560 return 0;
561 }
562
563 static void ep_poll_safewake(wait_queue_head_t *wq)
564 {
565 int this_cpu = get_cpu();
566
567 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
568 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
569
570 put_cpu();
571 }
572
573 #else
574
575 static void ep_poll_safewake(wait_queue_head_t *wq)
576 {
577 wake_up_poll(wq, POLLIN);
578 }
579
580 #endif
581
582 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
583 {
584 wait_queue_head_t *whead;
585
586 rcu_read_lock();
587 /*
588 * If it is cleared by POLLFREE, it should be rcu-safe.
589 * If we read NULL we need a barrier paired with
590 * smp_store_release() in ep_poll_callback(), otherwise
591 * we rely on whead->lock.
592 */
593 whead = smp_load_acquire(&pwq->whead);
594 if (whead)
595 remove_wait_queue(whead, &pwq->wait);
596 rcu_read_unlock();
597 }
598
599 /*
600 * This function unregisters poll callbacks from the associated file
601 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
602 * ep_free).
603 */
604 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
605 {
606 struct list_head *lsthead = &epi->pwqlist;
607 struct eppoll_entry *pwq;
608
609 while (!list_empty(lsthead)) {
610 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
611
612 list_del(&pwq->llink);
613 ep_remove_wait_queue(pwq);
614 kmem_cache_free(pwq_cache, pwq);
615 }
616 }
617
618 /* call only when ep->mtx is held */
619 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
620 {
621 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
622 }
623
624 /* call only when ep->mtx is held */
625 static inline void ep_pm_stay_awake(struct epitem *epi)
626 {
627 struct wakeup_source *ws = ep_wakeup_source(epi);
628
629 if (ws)
630 __pm_stay_awake(ws);
631 }
632
633 static inline bool ep_has_wakeup_source(struct epitem *epi)
634 {
635 return rcu_access_pointer(epi->ws) ? true : false;
636 }
637
638 /* call when ep->mtx cannot be held (ep_poll_callback) */
639 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
640 {
641 struct wakeup_source *ws;
642
643 rcu_read_lock();
644 ws = rcu_dereference(epi->ws);
645 if (ws)
646 __pm_stay_awake(ws);
647 rcu_read_unlock();
648 }
649
650 /**
651 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
652 * the scan code, to call f_op->poll(). Also allows for
653 * O(NumReady) performance.
654 *
655 * @ep: Pointer to the epoll private data structure.
656 * @sproc: Pointer to the scan callback.
657 * @priv: Private opaque data passed to the @sproc callback.
658 * @depth: The current depth of recursive f_op->poll calls.
659 * @ep_locked: caller already holds ep->mtx
660 *
661 * Returns: The same integer error code returned by the @sproc callback.
662 */
663 static int ep_scan_ready_list(struct eventpoll *ep,
664 int (*sproc)(struct eventpoll *,
665 struct list_head *, void *),
666 void *priv, int depth, bool ep_locked)
667 {
668 int error, pwake = 0;
669 unsigned long flags;
670 struct epitem *epi, *nepi;
671 LIST_HEAD(txlist);
672
673 /*
674 * We need to lock this because we could be hit by
675 * eventpoll_release_file() and epoll_ctl().
676 */
677
678 if (!ep_locked)
679 mutex_lock_nested(&ep->mtx, depth);
680
681 /*
682 * Steal the ready list, and re-init the original one to the
683 * empty list. Also, set ep->ovflist to NULL so that events
684 * happening while looping w/out locks, are not lost. We cannot
685 * have the poll callback to queue directly on ep->rdllist,
686 * because we want the "sproc" callback to be able to do it
687 * in a lockless way.
688 */
689 spin_lock_irqsave(&ep->lock, flags);
690 list_splice_init(&ep->rdllist, &txlist);
691 ep->ovflist = NULL;
692 spin_unlock_irqrestore(&ep->lock, flags);
693
694 /*
695 * Now call the callback function.
696 */
697 error = (*sproc)(ep, &txlist, priv);
698
699 spin_lock_irqsave(&ep->lock, flags);
700 /*
701 * During the time we spent inside the "sproc" callback, some
702 * other events might have been queued by the poll callback.
703 * We re-insert them inside the main ready-list here.
704 */
705 for (nepi = ep->ovflist; (epi = nepi) != NULL;
706 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
707 /*
708 * We need to check if the item is already in the list.
709 * During the "sproc" callback execution time, items are
710 * queued into ->ovflist but the "txlist" might already
711 * contain them, and the list_splice() below takes care of them.
712 */
713 if (!ep_is_linked(&epi->rdllink)) {
714 list_add_tail(&epi->rdllink, &ep->rdllist);
715 ep_pm_stay_awake(epi);
716 }
717 }
718 /*
719 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
720 * releasing the lock, events will be queued in the normal way inside
721 * ep->rdllist.
722 */
723 ep->ovflist = EP_UNACTIVE_PTR;
724
725 /*
726 * Quickly re-inject items left on "txlist".
727 */
728 list_splice(&txlist, &ep->rdllist);
729 __pm_relax(ep->ws);
730
731 if (!list_empty(&ep->rdllist)) {
732 /*
733 * Wake up (if active) both the eventpoll wait list and
734 * the ->poll() wait list (delayed after we release the lock).
735 */
736 if (waitqueue_active(&ep->wq))
737 wake_up_locked(&ep->wq);
738 if (waitqueue_active(&ep->poll_wait))
739 pwake++;
740 }
741 spin_unlock_irqrestore(&ep->lock, flags);
742
743 if (!ep_locked)
744 mutex_unlock(&ep->mtx);
745
746 /* We have to call this outside the lock */
747 if (pwake)
748 ep_poll_safewake(&ep->poll_wait);
749
750 return error;
751 }
752
753 static void epi_rcu_free(struct rcu_head *head)
754 {
755 struct epitem *epi = container_of(head, struct epitem, rcu);
756 kmem_cache_free(epi_cache, epi);
757 }
758
759 /*
760 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
761 * all the associated resources. Must be called with "mtx" held.
762 */
763 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
764 {
765 unsigned long flags;
766 struct file *file = epi->ffd.file;
767
768 /*
769 * Removes poll wait queue hooks. We _have_ to do this without holding
770 * the "ep->lock" otherwise a deadlock might occur. This because of the
771 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
772 * queue head lock when unregistering the wait queue. The wakeup callback
773 * will run by holding the wait queue head lock and will call our callback
774 * that will try to get "ep->lock".
775 */
776 ep_unregister_pollwait(ep, epi);
777
778 /* Remove the current item from the list of epoll hooks */
779 spin_lock(&file->f_lock);
780 list_del_rcu(&epi->fllink);
781 spin_unlock(&file->f_lock);
782
783 rb_erase_cached(&epi->rbn, &ep->rbr);
784
785 spin_lock_irqsave(&ep->lock, flags);
786 if (ep_is_linked(&epi->rdllink))
787 list_del_init(&epi->rdllink);
788 spin_unlock_irqrestore(&ep->lock, flags);
789
790 wakeup_source_unregister(ep_wakeup_source(epi));
791 /*
792 * At this point it is safe to free the eventpoll item. Use the union
793 * field epi->rcu, since we are trying to minimize the size of
794 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
795 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
796 * use of the rbn field.
797 */
798 call_rcu(&epi->rcu, epi_rcu_free);
799
800 atomic_long_dec(&ep->user->epoll_watches);
801
802 return 0;
803 }
804
805 static void ep_free(struct eventpoll *ep)
806 {
807 struct rb_node *rbp;
808 struct epitem *epi;
809
810 /* We need to release all tasks waiting for these file */
811 if (waitqueue_active(&ep->poll_wait))
812 ep_poll_safewake(&ep->poll_wait);
813
814 /*
815 * We need to lock this because we could be hit by
816 * eventpoll_release_file() while we're freeing the "struct eventpoll".
817 * We do not need to hold "ep->mtx" here because the epoll file
818 * is on the way to be removed and no one has references to it
819 * anymore. The only hit might come from eventpoll_release_file() but
820 * holding "epmutex" is sufficient here.
821 */
822 mutex_lock(&epmutex);
823
824 /*
825 * Walks through the whole tree by unregistering poll callbacks.
826 */
827 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
828 epi = rb_entry(rbp, struct epitem, rbn);
829
830 ep_unregister_pollwait(ep, epi);
831 cond_resched();
832 }
833
834 /*
835 * Walks through the whole tree by freeing each "struct epitem". At this
836 * point we are sure no poll callbacks will be lingering around, and also by
837 * holding "epmutex" we can be sure that no file cleanup code will hit
838 * us during this operation. So we can avoid the lock on "ep->lock".
839 * We do not need to lock ep->mtx, either, we only do it to prevent
840 * a lockdep warning.
841 */
842 mutex_lock(&ep->mtx);
843 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
844 epi = rb_entry(rbp, struct epitem, rbn);
845 ep_remove(ep, epi);
846 cond_resched();
847 }
848 mutex_unlock(&ep->mtx);
849
850 mutex_unlock(&epmutex);
851 mutex_destroy(&ep->mtx);
852 free_uid(ep->user);
853 wakeup_source_unregister(ep->ws);
854 kfree(ep);
855 }
856
857 static int ep_eventpoll_release(struct inode *inode, struct file *file)
858 {
859 struct eventpoll *ep = file->private_data;
860
861 if (ep)
862 ep_free(ep);
863
864 return 0;
865 }
866
867 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
868 void *priv);
869 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
870 poll_table *pt);
871
872 /*
873 * Differs from ep_eventpoll_poll() in that internal callers already have
874 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
875 * is correctly annotated.
876 */
877 static unsigned int ep_item_poll(struct epitem *epi, poll_table *pt, int depth)
878 {
879 struct eventpoll *ep;
880 bool locked;
881
882 pt->_key = epi->event.events;
883 if (!is_file_epoll(epi->ffd.file))
884 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) &
885 epi->event.events;
886
887 ep = epi->ffd.file->private_data;
888 poll_wait(epi->ffd.file, &ep->poll_wait, pt);
889 locked = pt && (pt->_qproc == ep_ptable_queue_proc);
890
891 return ep_scan_ready_list(epi->ffd.file->private_data,
892 ep_read_events_proc, &depth, depth,
893 locked) & epi->event.events;
894 }
895
896 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
897 void *priv)
898 {
899 struct epitem *epi, *tmp;
900 poll_table pt;
901 int depth = *(int *)priv;
902
903 init_poll_funcptr(&pt, NULL);
904 depth++;
905
906 list_for_each_entry_safe(epi, tmp, head, rdllink) {
907 if (ep_item_poll(epi, &pt, depth)) {
908 return POLLIN | POLLRDNORM;
909 } else {
910 /*
911 * Item has been dropped into the ready list by the poll
912 * callback, but it's not actually ready, as far as
913 * caller requested events goes. We can remove it here.
914 */
915 __pm_relax(ep_wakeup_source(epi));
916 list_del_init(&epi->rdllink);
917 }
918 }
919
920 return 0;
921 }
922
923 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
924 {
925 struct eventpoll *ep = file->private_data;
926 int depth = 0;
927
928 /* Insert inside our poll wait queue */
929 poll_wait(file, &ep->poll_wait, wait);
930
931 /*
932 * Proceed to find out if wanted events are really available inside
933 * the ready list.
934 */
935 return ep_scan_ready_list(ep, ep_read_events_proc,
936 &depth, depth, false);
937 }
938
939 #ifdef CONFIG_PROC_FS
940 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
941 {
942 struct eventpoll *ep = f->private_data;
943 struct rb_node *rbp;
944
945 mutex_lock(&ep->mtx);
946 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
947 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
948 struct inode *inode = file_inode(epi->ffd.file);
949
950 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
951 " pos:%lli ino:%lx sdev:%x\n",
952 epi->ffd.fd, epi->event.events,
953 (long long)epi->event.data,
954 (long long)epi->ffd.file->f_pos,
955 inode->i_ino, inode->i_sb->s_dev);
956 if (seq_has_overflowed(m))
957 break;
958 }
959 mutex_unlock(&ep->mtx);
960 }
961 #endif
962
963 /* File callbacks that implement the eventpoll file behaviour */
964 static const struct file_operations eventpoll_fops = {
965 #ifdef CONFIG_PROC_FS
966 .show_fdinfo = ep_show_fdinfo,
967 #endif
968 .release = ep_eventpoll_release,
969 .poll = ep_eventpoll_poll,
970 .llseek = noop_llseek,
971 };
972
973 /*
974 * This is called from eventpoll_release() to unlink files from the eventpoll
975 * interface. We need to have this facility to cleanup correctly files that are
976 * closed without being removed from the eventpoll interface.
977 */
978 void eventpoll_release_file(struct file *file)
979 {
980 struct eventpoll *ep;
981 struct epitem *epi, *next;
982
983 /*
984 * We don't want to get "file->f_lock" because it is not
985 * necessary. It is not necessary because we're in the "struct file"
986 * cleanup path, and this means that no one is using this file anymore.
987 * So, for example, epoll_ctl() cannot hit here since if we reach this
988 * point, the file counter already went to zero and fget() would fail.
989 * The only hit might come from ep_free() but by holding the mutex
990 * will correctly serialize the operation. We do need to acquire
991 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
992 * from anywhere but ep_free().
993 *
994 * Besides, ep_remove() acquires the lock, so we can't hold it here.
995 */
996 mutex_lock(&epmutex);
997 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
998 ep = epi->ep;
999 mutex_lock_nested(&ep->mtx, 0);
1000 ep_remove(ep, epi);
1001 mutex_unlock(&ep->mtx);
1002 }
1003 mutex_unlock(&epmutex);
1004 }
1005
1006 static int ep_alloc(struct eventpoll **pep)
1007 {
1008 int error;
1009 struct user_struct *user;
1010 struct eventpoll *ep;
1011
1012 user = get_current_user();
1013 error = -ENOMEM;
1014 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1015 if (unlikely(!ep))
1016 goto free_uid;
1017
1018 spin_lock_init(&ep->lock);
1019 mutex_init(&ep->mtx);
1020 init_waitqueue_head(&ep->wq);
1021 init_waitqueue_head(&ep->poll_wait);
1022 INIT_LIST_HEAD(&ep->rdllist);
1023 ep->rbr = RB_ROOT_CACHED;
1024 ep->ovflist = EP_UNACTIVE_PTR;
1025 ep->user = user;
1026
1027 *pep = ep;
1028
1029 return 0;
1030
1031 free_uid:
1032 free_uid(user);
1033 return error;
1034 }
1035
1036 /*
1037 * Search the file inside the eventpoll tree. The RB tree operations
1038 * are protected by the "mtx" mutex, and ep_find() must be called with
1039 * "mtx" held.
1040 */
1041 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1042 {
1043 int kcmp;
1044 struct rb_node *rbp;
1045 struct epitem *epi, *epir = NULL;
1046 struct epoll_filefd ffd;
1047
1048 ep_set_ffd(&ffd, file, fd);
1049 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1050 epi = rb_entry(rbp, struct epitem, rbn);
1051 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1052 if (kcmp > 0)
1053 rbp = rbp->rb_right;
1054 else if (kcmp < 0)
1055 rbp = rbp->rb_left;
1056 else {
1057 epir = epi;
1058 break;
1059 }
1060 }
1061
1062 return epir;
1063 }
1064
1065 #ifdef CONFIG_CHECKPOINT_RESTORE
1066 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1067 {
1068 struct rb_node *rbp;
1069 struct epitem *epi;
1070
1071 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1072 epi = rb_entry(rbp, struct epitem, rbn);
1073 if (epi->ffd.fd == tfd) {
1074 if (toff == 0)
1075 return epi;
1076 else
1077 toff--;
1078 }
1079 cond_resched();
1080 }
1081
1082 return NULL;
1083 }
1084
1085 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1086 unsigned long toff)
1087 {
1088 struct file *file_raw;
1089 struct eventpoll *ep;
1090 struct epitem *epi;
1091
1092 if (!is_file_epoll(file))
1093 return ERR_PTR(-EINVAL);
1094
1095 ep = file->private_data;
1096
1097 mutex_lock(&ep->mtx);
1098 epi = ep_find_tfd(ep, tfd, toff);
1099 if (epi)
1100 file_raw = epi->ffd.file;
1101 else
1102 file_raw = ERR_PTR(-ENOENT);
1103 mutex_unlock(&ep->mtx);
1104
1105 return file_raw;
1106 }
1107 #endif /* CONFIG_CHECKPOINT_RESTORE */
1108
1109 /*
1110 * This is the callback that is passed to the wait queue wakeup
1111 * mechanism. It is called by the stored file descriptors when they
1112 * have events to report.
1113 */
1114 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1115 {
1116 int pwake = 0;
1117 unsigned long flags;
1118 struct epitem *epi = ep_item_from_wait(wait);
1119 struct eventpoll *ep = epi->ep;
1120 int ewake = 0;
1121
1122 spin_lock_irqsave(&ep->lock, flags);
1123
1124 ep_set_busy_poll_napi_id(epi);
1125
1126 /*
1127 * If the event mask does not contain any poll(2) event, we consider the
1128 * descriptor to be disabled. This condition is likely the effect of the
1129 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1130 * until the next EPOLL_CTL_MOD will be issued.
1131 */
1132 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1133 goto out_unlock;
1134
1135 /*
1136 * Check the events coming with the callback. At this stage, not
1137 * every device reports the events in the "key" parameter of the
1138 * callback. We need to be able to handle both cases here, hence the
1139 * test for "key" != NULL before the event match test.
1140 */
1141 if (key && !((unsigned long) key & epi->event.events))
1142 goto out_unlock;
1143
1144 /*
1145 * If we are transferring events to userspace, we can hold no locks
1146 * (because we're accessing user memory, and because of linux f_op->poll()
1147 * semantics). All the events that happen during that period of time are
1148 * chained in ep->ovflist and requeued later on.
1149 */
1150 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1151 if (epi->next == EP_UNACTIVE_PTR) {
1152 epi->next = ep->ovflist;
1153 ep->ovflist = epi;
1154 if (epi->ws) {
1155 /*
1156 * Activate ep->ws since epi->ws may get
1157 * deactivated at any time.
1158 */
1159 __pm_stay_awake(ep->ws);
1160 }
1161
1162 }
1163 goto out_unlock;
1164 }
1165
1166 /* If this file is already in the ready list we exit soon */
1167 if (!ep_is_linked(&epi->rdllink)) {
1168 list_add_tail(&epi->rdllink, &ep->rdllist);
1169 ep_pm_stay_awake_rcu(epi);
1170 }
1171
1172 /*
1173 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1174 * wait list.
1175 */
1176 if (waitqueue_active(&ep->wq)) {
1177 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1178 !((unsigned long)key & POLLFREE)) {
1179 switch ((unsigned long)key & EPOLLINOUT_BITS) {
1180 case POLLIN:
1181 if (epi->event.events & POLLIN)
1182 ewake = 1;
1183 break;
1184 case POLLOUT:
1185 if (epi->event.events & POLLOUT)
1186 ewake = 1;
1187 break;
1188 case 0:
1189 ewake = 1;
1190 break;
1191 }
1192 }
1193 wake_up_locked(&ep->wq);
1194 }
1195 if (waitqueue_active(&ep->poll_wait))
1196 pwake++;
1197
1198 out_unlock:
1199 spin_unlock_irqrestore(&ep->lock, flags);
1200
1201 /* We have to call this outside the lock */
1202 if (pwake)
1203 ep_poll_safewake(&ep->poll_wait);
1204
1205 if (!(epi->event.events & EPOLLEXCLUSIVE))
1206 ewake = 1;
1207
1208 if ((unsigned long)key & POLLFREE) {
1209 /*
1210 * If we race with ep_remove_wait_queue() it can miss
1211 * ->whead = NULL and do another remove_wait_queue() after
1212 * us, so we can't use __remove_wait_queue().
1213 */
1214 list_del_init(&wait->entry);
1215 /*
1216 * ->whead != NULL protects us from the race with ep_free()
1217 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1218 * held by the caller. Once we nullify it, nothing protects
1219 * ep/epi or even wait.
1220 */
1221 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1222 }
1223
1224 return ewake;
1225 }
1226
1227 /*
1228 * This is the callback that is used to add our wait queue to the
1229 * target file wakeup lists.
1230 */
1231 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1232 poll_table *pt)
1233 {
1234 struct epitem *epi = ep_item_from_epqueue(pt);
1235 struct eppoll_entry *pwq;
1236
1237 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1238 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1239 pwq->whead = whead;
1240 pwq->base = epi;
1241 if (epi->event.events & EPOLLEXCLUSIVE)
1242 add_wait_queue_exclusive(whead, &pwq->wait);
1243 else
1244 add_wait_queue(whead, &pwq->wait);
1245 list_add_tail(&pwq->llink, &epi->pwqlist);
1246 epi->nwait++;
1247 } else {
1248 /* We have to signal that an error occurred */
1249 epi->nwait = -1;
1250 }
1251 }
1252
1253 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1254 {
1255 int kcmp;
1256 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1257 struct epitem *epic;
1258 bool leftmost = true;
1259
1260 while (*p) {
1261 parent = *p;
1262 epic = rb_entry(parent, struct epitem, rbn);
1263 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1264 if (kcmp > 0) {
1265 p = &parent->rb_right;
1266 leftmost = false;
1267 } else
1268 p = &parent->rb_left;
1269 }
1270 rb_link_node(&epi->rbn, parent, p);
1271 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1272 }
1273
1274
1275
1276 #define PATH_ARR_SIZE 5
1277 /*
1278 * These are the number paths of length 1 to 5, that we are allowing to emanate
1279 * from a single file of interest. For example, we allow 1000 paths of length
1280 * 1, to emanate from each file of interest. This essentially represents the
1281 * potential wakeup paths, which need to be limited in order to avoid massive
1282 * uncontrolled wakeup storms. The common use case should be a single ep which
1283 * is connected to n file sources. In this case each file source has 1 path
1284 * of length 1. Thus, the numbers below should be more than sufficient. These
1285 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1286 * and delete can't add additional paths. Protected by the epmutex.
1287 */
1288 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1289 static int path_count[PATH_ARR_SIZE];
1290
1291 static int path_count_inc(int nests)
1292 {
1293 /* Allow an arbitrary number of depth 1 paths */
1294 if (nests == 0)
1295 return 0;
1296
1297 if (++path_count[nests] > path_limits[nests])
1298 return -1;
1299 return 0;
1300 }
1301
1302 static void path_count_init(void)
1303 {
1304 int i;
1305
1306 for (i = 0; i < PATH_ARR_SIZE; i++)
1307 path_count[i] = 0;
1308 }
1309
1310 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1311 {
1312 int error = 0;
1313 struct file *file = priv;
1314 struct file *child_file;
1315 struct epitem *epi;
1316
1317 /* CTL_DEL can remove links here, but that can't increase our count */
1318 rcu_read_lock();
1319 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1320 child_file = epi->ep->file;
1321 if (is_file_epoll(child_file)) {
1322 if (list_empty(&child_file->f_ep_links)) {
1323 if (path_count_inc(call_nests)) {
1324 error = -1;
1325 break;
1326 }
1327 } else {
1328 error = ep_call_nested(&poll_loop_ncalls,
1329 EP_MAX_NESTS,
1330 reverse_path_check_proc,
1331 child_file, child_file,
1332 current);
1333 }
1334 if (error != 0)
1335 break;
1336 } else {
1337 printk(KERN_ERR "reverse_path_check_proc: "
1338 "file is not an ep!\n");
1339 }
1340 }
1341 rcu_read_unlock();
1342 return error;
1343 }
1344
1345 /**
1346 * reverse_path_check - The tfile_check_list is list of file *, which have
1347 * links that are proposed to be newly added. We need to
1348 * make sure that those added links don't add too many
1349 * paths such that we will spend all our time waking up
1350 * eventpoll objects.
1351 *
1352 * Returns: Returns zero if the proposed links don't create too many paths,
1353 * -1 otherwise.
1354 */
1355 static int reverse_path_check(void)
1356 {
1357 int error = 0;
1358 struct file *current_file;
1359
1360 /* let's call this for all tfiles */
1361 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1362 path_count_init();
1363 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1364 reverse_path_check_proc, current_file,
1365 current_file, current);
1366 if (error)
1367 break;
1368 }
1369 return error;
1370 }
1371
1372 static int ep_create_wakeup_source(struct epitem *epi)
1373 {
1374 const char *name;
1375 struct wakeup_source *ws;
1376
1377 if (!epi->ep->ws) {
1378 epi->ep->ws = wakeup_source_register("eventpoll");
1379 if (!epi->ep->ws)
1380 return -ENOMEM;
1381 }
1382
1383 name = epi->ffd.file->f_path.dentry->d_name.name;
1384 ws = wakeup_source_register(name);
1385
1386 if (!ws)
1387 return -ENOMEM;
1388 rcu_assign_pointer(epi->ws, ws);
1389
1390 return 0;
1391 }
1392
1393 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1394 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1395 {
1396 struct wakeup_source *ws = ep_wakeup_source(epi);
1397
1398 RCU_INIT_POINTER(epi->ws, NULL);
1399
1400 /*
1401 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1402 * used internally by wakeup_source_remove, too (called by
1403 * wakeup_source_unregister), so we cannot use call_rcu
1404 */
1405 synchronize_rcu();
1406 wakeup_source_unregister(ws);
1407 }
1408
1409 /*
1410 * Must be called with "mtx" held.
1411 */
1412 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1413 struct file *tfile, int fd, int full_check)
1414 {
1415 int error, revents, pwake = 0;
1416 unsigned long flags;
1417 long user_watches;
1418 struct epitem *epi;
1419 struct ep_pqueue epq;
1420
1421 user_watches = atomic_long_read(&ep->user->epoll_watches);
1422 if (unlikely(user_watches >= max_user_watches))
1423 return -ENOSPC;
1424 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1425 return -ENOMEM;
1426
1427 /* Item initialization follow here ... */
1428 INIT_LIST_HEAD(&epi->rdllink);
1429 INIT_LIST_HEAD(&epi->fllink);
1430 INIT_LIST_HEAD(&epi->pwqlist);
1431 epi->ep = ep;
1432 ep_set_ffd(&epi->ffd, tfile, fd);
1433 epi->event = *event;
1434 epi->nwait = 0;
1435 epi->next = EP_UNACTIVE_PTR;
1436 if (epi->event.events & EPOLLWAKEUP) {
1437 error = ep_create_wakeup_source(epi);
1438 if (error)
1439 goto error_create_wakeup_source;
1440 } else {
1441 RCU_INIT_POINTER(epi->ws, NULL);
1442 }
1443
1444 /* Initialize the poll table using the queue callback */
1445 epq.epi = epi;
1446 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1447
1448 /*
1449 * Attach the item to the poll hooks and get current event bits.
1450 * We can safely use the file* here because its usage count has
1451 * been increased by the caller of this function. Note that after
1452 * this operation completes, the poll callback can start hitting
1453 * the new item.
1454 */
1455 revents = ep_item_poll(epi, &epq.pt, 1);
1456
1457 /*
1458 * We have to check if something went wrong during the poll wait queue
1459 * install process. Namely an allocation for a wait queue failed due
1460 * high memory pressure.
1461 */
1462 error = -ENOMEM;
1463 if (epi->nwait < 0)
1464 goto error_unregister;
1465
1466 /* Add the current item to the list of active epoll hook for this file */
1467 spin_lock(&tfile->f_lock);
1468 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1469 spin_unlock(&tfile->f_lock);
1470
1471 /*
1472 * Add the current item to the RB tree. All RB tree operations are
1473 * protected by "mtx", and ep_insert() is called with "mtx" held.
1474 */
1475 ep_rbtree_insert(ep, epi);
1476
1477 /* now check if we've created too many backpaths */
1478 error = -EINVAL;
1479 if (full_check && reverse_path_check())
1480 goto error_remove_epi;
1481
1482 /* We have to drop the new item inside our item list to keep track of it */
1483 spin_lock_irqsave(&ep->lock, flags);
1484
1485 /* record NAPI ID of new item if present */
1486 ep_set_busy_poll_napi_id(epi);
1487
1488 /* If the file is already "ready" we drop it inside the ready list */
1489 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1490 list_add_tail(&epi->rdllink, &ep->rdllist);
1491 ep_pm_stay_awake(epi);
1492
1493 /* Notify waiting tasks that events are available */
1494 if (waitqueue_active(&ep->wq))
1495 wake_up_locked(&ep->wq);
1496 if (waitqueue_active(&ep->poll_wait))
1497 pwake++;
1498 }
1499
1500 spin_unlock_irqrestore(&ep->lock, flags);
1501
1502 atomic_long_inc(&ep->user->epoll_watches);
1503
1504 /* We have to call this outside the lock */
1505 if (pwake)
1506 ep_poll_safewake(&ep->poll_wait);
1507
1508 return 0;
1509
1510 error_remove_epi:
1511 spin_lock(&tfile->f_lock);
1512 list_del_rcu(&epi->fllink);
1513 spin_unlock(&tfile->f_lock);
1514
1515 rb_erase_cached(&epi->rbn, &ep->rbr);
1516
1517 error_unregister:
1518 ep_unregister_pollwait(ep, epi);
1519
1520 /*
1521 * We need to do this because an event could have been arrived on some
1522 * allocated wait queue. Note that we don't care about the ep->ovflist
1523 * list, since that is used/cleaned only inside a section bound by "mtx".
1524 * And ep_insert() is called with "mtx" held.
1525 */
1526 spin_lock_irqsave(&ep->lock, flags);
1527 if (ep_is_linked(&epi->rdllink))
1528 list_del_init(&epi->rdllink);
1529 spin_unlock_irqrestore(&ep->lock, flags);
1530
1531 wakeup_source_unregister(ep_wakeup_source(epi));
1532
1533 error_create_wakeup_source:
1534 kmem_cache_free(epi_cache, epi);
1535
1536 return error;
1537 }
1538
1539 /*
1540 * Modify the interest event mask by dropping an event if the new mask
1541 * has a match in the current file status. Must be called with "mtx" held.
1542 */
1543 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1544 {
1545 int pwake = 0;
1546 unsigned int revents;
1547 poll_table pt;
1548
1549 init_poll_funcptr(&pt, NULL);
1550
1551 /*
1552 * Set the new event interest mask before calling f_op->poll();
1553 * otherwise we might miss an event that happens between the
1554 * f_op->poll() call and the new event set registering.
1555 */
1556 epi->event.events = event->events; /* need barrier below */
1557 epi->event.data = event->data; /* protected by mtx */
1558 if (epi->event.events & EPOLLWAKEUP) {
1559 if (!ep_has_wakeup_source(epi))
1560 ep_create_wakeup_source(epi);
1561 } else if (ep_has_wakeup_source(epi)) {
1562 ep_destroy_wakeup_source(epi);
1563 }
1564
1565 /*
1566 * The following barrier has two effects:
1567 *
1568 * 1) Flush epi changes above to other CPUs. This ensures
1569 * we do not miss events from ep_poll_callback if an
1570 * event occurs immediately after we call f_op->poll().
1571 * We need this because we did not take ep->lock while
1572 * changing epi above (but ep_poll_callback does take
1573 * ep->lock).
1574 *
1575 * 2) We also need to ensure we do not miss _past_ events
1576 * when calling f_op->poll(). This barrier also
1577 * pairs with the barrier in wq_has_sleeper (see
1578 * comments for wq_has_sleeper).
1579 *
1580 * This barrier will now guarantee ep_poll_callback or f_op->poll
1581 * (or both) will notice the readiness of an item.
1582 */
1583 smp_mb();
1584
1585 /*
1586 * Get current event bits. We can safely use the file* here because
1587 * its usage count has been increased by the caller of this function.
1588 */
1589 revents = ep_item_poll(epi, &pt, 1);
1590
1591 /*
1592 * If the item is "hot" and it is not registered inside the ready
1593 * list, push it inside.
1594 */
1595 if (revents & event->events) {
1596 spin_lock_irq(&ep->lock);
1597 if (!ep_is_linked(&epi->rdllink)) {
1598 list_add_tail(&epi->rdllink, &ep->rdllist);
1599 ep_pm_stay_awake(epi);
1600
1601 /* Notify waiting tasks that events are available */
1602 if (waitqueue_active(&ep->wq))
1603 wake_up_locked(&ep->wq);
1604 if (waitqueue_active(&ep->poll_wait))
1605 pwake++;
1606 }
1607 spin_unlock_irq(&ep->lock);
1608 }
1609
1610 /* We have to call this outside the lock */
1611 if (pwake)
1612 ep_poll_safewake(&ep->poll_wait);
1613
1614 return 0;
1615 }
1616
1617 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1618 void *priv)
1619 {
1620 struct ep_send_events_data *esed = priv;
1621 int eventcnt;
1622 unsigned int revents;
1623 struct epitem *epi;
1624 struct epoll_event __user *uevent;
1625 struct wakeup_source *ws;
1626 poll_table pt;
1627
1628 init_poll_funcptr(&pt, NULL);
1629
1630 /*
1631 * We can loop without lock because we are passed a task private list.
1632 * Items cannot vanish during the loop because ep_scan_ready_list() is
1633 * holding "mtx" during this call.
1634 */
1635 for (eventcnt = 0, uevent = esed->events;
1636 !list_empty(head) && eventcnt < esed->maxevents;) {
1637 epi = list_first_entry(head, struct epitem, rdllink);
1638
1639 /*
1640 * Activate ep->ws before deactivating epi->ws to prevent
1641 * triggering auto-suspend here (in case we reactive epi->ws
1642 * below).
1643 *
1644 * This could be rearranged to delay the deactivation of epi->ws
1645 * instead, but then epi->ws would temporarily be out of sync
1646 * with ep_is_linked().
1647 */
1648 ws = ep_wakeup_source(epi);
1649 if (ws) {
1650 if (ws->active)
1651 __pm_stay_awake(ep->ws);
1652 __pm_relax(ws);
1653 }
1654
1655 list_del_init(&epi->rdllink);
1656
1657 revents = ep_item_poll(epi, &pt, 1);
1658
1659 /*
1660 * If the event mask intersect the caller-requested one,
1661 * deliver the event to userspace. Again, ep_scan_ready_list()
1662 * is holding "mtx", so no operations coming from userspace
1663 * can change the item.
1664 */
1665 if (revents) {
1666 if (__put_user(revents, &uevent->events) ||
1667 __put_user(epi->event.data, &uevent->data)) {
1668 list_add(&epi->rdllink, head);
1669 ep_pm_stay_awake(epi);
1670 return eventcnt ? eventcnt : -EFAULT;
1671 }
1672 eventcnt++;
1673 uevent++;
1674 if (epi->event.events & EPOLLONESHOT)
1675 epi->event.events &= EP_PRIVATE_BITS;
1676 else if (!(epi->event.events & EPOLLET)) {
1677 /*
1678 * If this file has been added with Level
1679 * Trigger mode, we need to insert back inside
1680 * the ready list, so that the next call to
1681 * epoll_wait() will check again the events
1682 * availability. At this point, no one can insert
1683 * into ep->rdllist besides us. The epoll_ctl()
1684 * callers are locked out by
1685 * ep_scan_ready_list() holding "mtx" and the
1686 * poll callback will queue them in ep->ovflist.
1687 */
1688 list_add_tail(&epi->rdllink, &ep->rdllist);
1689 ep_pm_stay_awake(epi);
1690 }
1691 }
1692 }
1693
1694 return eventcnt;
1695 }
1696
1697 static int ep_send_events(struct eventpoll *ep,
1698 struct epoll_event __user *events, int maxevents)
1699 {
1700 struct ep_send_events_data esed;
1701
1702 esed.maxevents = maxevents;
1703 esed.events = events;
1704
1705 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1706 }
1707
1708 static inline struct timespec64 ep_set_mstimeout(long ms)
1709 {
1710 struct timespec64 now, ts = {
1711 .tv_sec = ms / MSEC_PER_SEC,
1712 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1713 };
1714
1715 ktime_get_ts64(&now);
1716 return timespec64_add_safe(now, ts);
1717 }
1718
1719 /**
1720 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1721 * event buffer.
1722 *
1723 * @ep: Pointer to the eventpoll context.
1724 * @events: Pointer to the userspace buffer where the ready events should be
1725 * stored.
1726 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1727 * @timeout: Maximum timeout for the ready events fetch operation, in
1728 * milliseconds. If the @timeout is zero, the function will not block,
1729 * while if the @timeout is less than zero, the function will block
1730 * until at least one event has been retrieved (or an error
1731 * occurred).
1732 *
1733 * Returns: Returns the number of ready events which have been fetched, or an
1734 * error code, in case of error.
1735 */
1736 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1737 int maxevents, long timeout)
1738 {
1739 int res = 0, eavail, timed_out = 0;
1740 unsigned long flags;
1741 u64 slack = 0;
1742 wait_queue_entry_t wait;
1743 ktime_t expires, *to = NULL;
1744
1745 if (timeout > 0) {
1746 struct timespec64 end_time = ep_set_mstimeout(timeout);
1747
1748 slack = select_estimate_accuracy(&end_time);
1749 to = &expires;
1750 *to = timespec64_to_ktime(end_time);
1751 } else if (timeout == 0) {
1752 /*
1753 * Avoid the unnecessary trip to the wait queue loop, if the
1754 * caller specified a non blocking operation.
1755 */
1756 timed_out = 1;
1757 spin_lock_irqsave(&ep->lock, flags);
1758 goto check_events;
1759 }
1760
1761 fetch_events:
1762
1763 if (!ep_events_available(ep))
1764 ep_busy_loop(ep, timed_out);
1765
1766 spin_lock_irqsave(&ep->lock, flags);
1767
1768 if (!ep_events_available(ep)) {
1769 /*
1770 * Busy poll timed out. Drop NAPI ID for now, we can add
1771 * it back in when we have moved a socket with a valid NAPI
1772 * ID onto the ready list.
1773 */
1774 ep_reset_busy_poll_napi_id(ep);
1775
1776 /*
1777 * We don't have any available event to return to the caller.
1778 * We need to sleep here, and we will be wake up by
1779 * ep_poll_callback() when events will become available.
1780 */
1781 init_waitqueue_entry(&wait, current);
1782 __add_wait_queue_exclusive(&ep->wq, &wait);
1783
1784 for (;;) {
1785 /*
1786 * We don't want to sleep if the ep_poll_callback() sends us
1787 * a wakeup in between. That's why we set the task state
1788 * to TASK_INTERRUPTIBLE before doing the checks.
1789 */
1790 set_current_state(TASK_INTERRUPTIBLE);
1791 /*
1792 * Always short-circuit for fatal signals to allow
1793 * threads to make a timely exit without the chance of
1794 * finding more events available and fetching
1795 * repeatedly.
1796 */
1797 if (fatal_signal_pending(current)) {
1798 res = -EINTR;
1799 break;
1800 }
1801 if (ep_events_available(ep) || timed_out)
1802 break;
1803 if (signal_pending(current)) {
1804 res = -EINTR;
1805 break;
1806 }
1807
1808 spin_unlock_irqrestore(&ep->lock, flags);
1809 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1810 timed_out = 1;
1811
1812 spin_lock_irqsave(&ep->lock, flags);
1813 }
1814
1815 __remove_wait_queue(&ep->wq, &wait);
1816 __set_current_state(TASK_RUNNING);
1817 }
1818 check_events:
1819 /* Is it worth to try to dig for events ? */
1820 eavail = ep_events_available(ep);
1821
1822 spin_unlock_irqrestore(&ep->lock, flags);
1823
1824 /*
1825 * Try to transfer events to user space. In case we get 0 events and
1826 * there's still timeout left over, we go trying again in search of
1827 * more luck.
1828 */
1829 if (!res && eavail &&
1830 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1831 goto fetch_events;
1832
1833 return res;
1834 }
1835
1836 /**
1837 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1838 * API, to verify that adding an epoll file inside another
1839 * epoll structure, does not violate the constraints, in
1840 * terms of closed loops, or too deep chains (which can
1841 * result in excessive stack usage).
1842 *
1843 * @priv: Pointer to the epoll file to be currently checked.
1844 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1845 * data structure pointer.
1846 * @call_nests: Current dept of the @ep_call_nested() call stack.
1847 *
1848 * Returns: Returns zero if adding the epoll @file inside current epoll
1849 * structure @ep does not violate the constraints, or -1 otherwise.
1850 */
1851 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1852 {
1853 int error = 0;
1854 struct file *file = priv;
1855 struct eventpoll *ep = file->private_data;
1856 struct eventpoll *ep_tovisit;
1857 struct rb_node *rbp;
1858 struct epitem *epi;
1859
1860 mutex_lock_nested(&ep->mtx, call_nests + 1);
1861 ep->visited = 1;
1862 list_add(&ep->visited_list_link, &visited_list);
1863 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1864 epi = rb_entry(rbp, struct epitem, rbn);
1865 if (unlikely(is_file_epoll(epi->ffd.file))) {
1866 ep_tovisit = epi->ffd.file->private_data;
1867 if (ep_tovisit->visited)
1868 continue;
1869 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1870 ep_loop_check_proc, epi->ffd.file,
1871 ep_tovisit, current);
1872 if (error != 0)
1873 break;
1874 } else {
1875 /*
1876 * If we've reached a file that is not associated with
1877 * an ep, then we need to check if the newly added
1878 * links are going to add too many wakeup paths. We do
1879 * this by adding it to the tfile_check_list, if it's
1880 * not already there, and calling reverse_path_check()
1881 * during ep_insert().
1882 */
1883 if (list_empty(&epi->ffd.file->f_tfile_llink))
1884 list_add(&epi->ffd.file->f_tfile_llink,
1885 &tfile_check_list);
1886 }
1887 }
1888 mutex_unlock(&ep->mtx);
1889
1890 return error;
1891 }
1892
1893 /**
1894 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1895 * another epoll file (represented by @ep) does not create
1896 * closed loops or too deep chains.
1897 *
1898 * @ep: Pointer to the epoll private data structure.
1899 * @file: Pointer to the epoll file to be checked.
1900 *
1901 * Returns: Returns zero if adding the epoll @file inside current epoll
1902 * structure @ep does not violate the constraints, or -1 otherwise.
1903 */
1904 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1905 {
1906 int ret;
1907 struct eventpoll *ep_cur, *ep_next;
1908
1909 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1910 ep_loop_check_proc, file, ep, current);
1911 /* clear visited list */
1912 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1913 visited_list_link) {
1914 ep_cur->visited = 0;
1915 list_del(&ep_cur->visited_list_link);
1916 }
1917 return ret;
1918 }
1919
1920 static void clear_tfile_check_list(void)
1921 {
1922 struct file *file;
1923
1924 /* first clear the tfile_check_list */
1925 while (!list_empty(&tfile_check_list)) {
1926 file = list_first_entry(&tfile_check_list, struct file,
1927 f_tfile_llink);
1928 list_del_init(&file->f_tfile_llink);
1929 }
1930 INIT_LIST_HEAD(&tfile_check_list);
1931 }
1932
1933 /*
1934 * Open an eventpoll file descriptor.
1935 */
1936 SYSCALL_DEFINE1(epoll_create1, int, flags)
1937 {
1938 int error, fd;
1939 struct eventpoll *ep = NULL;
1940 struct file *file;
1941
1942 /* Check the EPOLL_* constant for consistency. */
1943 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1944
1945 if (flags & ~EPOLL_CLOEXEC)
1946 return -EINVAL;
1947 /*
1948 * Create the internal data structure ("struct eventpoll").
1949 */
1950 error = ep_alloc(&ep);
1951 if (error < 0)
1952 return error;
1953 /*
1954 * Creates all the items needed to setup an eventpoll file. That is,
1955 * a file structure and a free file descriptor.
1956 */
1957 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1958 if (fd < 0) {
1959 error = fd;
1960 goto out_free_ep;
1961 }
1962 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1963 O_RDWR | (flags & O_CLOEXEC));
1964 if (IS_ERR(file)) {
1965 error = PTR_ERR(file);
1966 goto out_free_fd;
1967 }
1968 ep->file = file;
1969 fd_install(fd, file);
1970 return fd;
1971
1972 out_free_fd:
1973 put_unused_fd(fd);
1974 out_free_ep:
1975 ep_free(ep);
1976 return error;
1977 }
1978
1979 SYSCALL_DEFINE1(epoll_create, int, size)
1980 {
1981 if (size <= 0)
1982 return -EINVAL;
1983
1984 return sys_epoll_create1(0);
1985 }
1986
1987 /*
1988 * The following function implements the controller interface for
1989 * the eventpoll file that enables the insertion/removal/change of
1990 * file descriptors inside the interest set.
1991 */
1992 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1993 struct epoll_event __user *, event)
1994 {
1995 int error;
1996 int full_check = 0;
1997 struct fd f, tf;
1998 struct eventpoll *ep;
1999 struct epitem *epi;
2000 struct epoll_event epds;
2001 struct eventpoll *tep = NULL;
2002
2003 error = -EFAULT;
2004 if (ep_op_has_event(op) &&
2005 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2006 goto error_return;
2007
2008 error = -EBADF;
2009 f = fdget(epfd);
2010 if (!f.file)
2011 goto error_return;
2012
2013 /* Get the "struct file *" for the target file */
2014 tf = fdget(fd);
2015 if (!tf.file)
2016 goto error_fput;
2017
2018 /* The target file descriptor must support poll */
2019 error = -EPERM;
2020 if (!tf.file->f_op->poll)
2021 goto error_tgt_fput;
2022
2023 /* Check if EPOLLWAKEUP is allowed */
2024 if (ep_op_has_event(op))
2025 ep_take_care_of_epollwakeup(&epds);
2026
2027 /*
2028 * We have to check that the file structure underneath the file descriptor
2029 * the user passed to us _is_ an eventpoll file. And also we do not permit
2030 * adding an epoll file descriptor inside itself.
2031 */
2032 error = -EINVAL;
2033 if (f.file == tf.file || !is_file_epoll(f.file))
2034 goto error_tgt_fput;
2035
2036 /*
2037 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2038 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2039 * Also, we do not currently supported nested exclusive wakeups.
2040 */
2041 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2042 if (op == EPOLL_CTL_MOD)
2043 goto error_tgt_fput;
2044 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2045 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2046 goto error_tgt_fput;
2047 }
2048
2049 /*
2050 * At this point it is safe to assume that the "private_data" contains
2051 * our own data structure.
2052 */
2053 ep = f.file->private_data;
2054
2055 /*
2056 * When we insert an epoll file descriptor, inside another epoll file
2057 * descriptor, there is the change of creating closed loops, which are
2058 * better be handled here, than in more critical paths. While we are
2059 * checking for loops we also determine the list of files reachable
2060 * and hang them on the tfile_check_list, so we can check that we
2061 * haven't created too many possible wakeup paths.
2062 *
2063 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2064 * the epoll file descriptor is attaching directly to a wakeup source,
2065 * unless the epoll file descriptor is nested. The purpose of taking the
2066 * 'epmutex' on add is to prevent complex toplogies such as loops and
2067 * deep wakeup paths from forming in parallel through multiple
2068 * EPOLL_CTL_ADD operations.
2069 */
2070 mutex_lock_nested(&ep->mtx, 0);
2071 if (op == EPOLL_CTL_ADD) {
2072 if (!list_empty(&f.file->f_ep_links) ||
2073 is_file_epoll(tf.file)) {
2074 full_check = 1;
2075 mutex_unlock(&ep->mtx);
2076 mutex_lock(&epmutex);
2077 if (is_file_epoll(tf.file)) {
2078 error = -ELOOP;
2079 if (ep_loop_check(ep, tf.file) != 0) {
2080 clear_tfile_check_list();
2081 goto error_tgt_fput;
2082 }
2083 } else
2084 list_add(&tf.file->f_tfile_llink,
2085 &tfile_check_list);
2086 mutex_lock_nested(&ep->mtx, 0);
2087 if (is_file_epoll(tf.file)) {
2088 tep = tf.file->private_data;
2089 mutex_lock_nested(&tep->mtx, 1);
2090 }
2091 }
2092 }
2093
2094 /*
2095 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2096 * above, we can be sure to be able to use the item looked up by
2097 * ep_find() till we release the mutex.
2098 */
2099 epi = ep_find(ep, tf.file, fd);
2100
2101 error = -EINVAL;
2102 switch (op) {
2103 case EPOLL_CTL_ADD:
2104 if (!epi) {
2105 epds.events |= POLLERR | POLLHUP;
2106 error = ep_insert(ep, &epds, tf.file, fd, full_check);
2107 } else
2108 error = -EEXIST;
2109 if (full_check)
2110 clear_tfile_check_list();
2111 break;
2112 case EPOLL_CTL_DEL:
2113 if (epi)
2114 error = ep_remove(ep, epi);
2115 else
2116 error = -ENOENT;
2117 break;
2118 case EPOLL_CTL_MOD:
2119 if (epi) {
2120 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2121 epds.events |= POLLERR | POLLHUP;
2122 error = ep_modify(ep, epi, &epds);
2123 }
2124 } else
2125 error = -ENOENT;
2126 break;
2127 }
2128 if (tep != NULL)
2129 mutex_unlock(&tep->mtx);
2130 mutex_unlock(&ep->mtx);
2131
2132 error_tgt_fput:
2133 if (full_check)
2134 mutex_unlock(&epmutex);
2135
2136 fdput(tf);
2137 error_fput:
2138 fdput(f);
2139 error_return:
2140
2141 return error;
2142 }
2143
2144 /*
2145 * Implement the event wait interface for the eventpoll file. It is the kernel
2146 * part of the user space epoll_wait(2).
2147 */
2148 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2149 int, maxevents, int, timeout)
2150 {
2151 int error;
2152 struct fd f;
2153 struct eventpoll *ep;
2154
2155 /* The maximum number of event must be greater than zero */
2156 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2157 return -EINVAL;
2158
2159 /* Verify that the area passed by the user is writeable */
2160 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
2161 return -EFAULT;
2162
2163 /* Get the "struct file *" for the eventpoll file */
2164 f = fdget(epfd);
2165 if (!f.file)
2166 return -EBADF;
2167
2168 /*
2169 * We have to check that the file structure underneath the fd
2170 * the user passed to us _is_ an eventpoll file.
2171 */
2172 error = -EINVAL;
2173 if (!is_file_epoll(f.file))
2174 goto error_fput;
2175
2176 /*
2177 * At this point it is safe to assume that the "private_data" contains
2178 * our own data structure.
2179 */
2180 ep = f.file->private_data;
2181
2182 /* Time to fish for events ... */
2183 error = ep_poll(ep, events, maxevents, timeout);
2184
2185 error_fput:
2186 fdput(f);
2187 return error;
2188 }
2189
2190 /*
2191 * Implement the event wait interface for the eventpoll file. It is the kernel
2192 * part of the user space epoll_pwait(2).
2193 */
2194 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2195 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2196 size_t, sigsetsize)
2197 {
2198 int error;
2199 sigset_t ksigmask, sigsaved;
2200
2201 /*
2202 * If the caller wants a certain signal mask to be set during the wait,
2203 * we apply it here.
2204 */
2205 if (sigmask) {
2206 if (sigsetsize != sizeof(sigset_t))
2207 return -EINVAL;
2208 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2209 return -EFAULT;
2210 sigsaved = current->blocked;
2211 set_current_blocked(&ksigmask);
2212 }
2213
2214 error = sys_epoll_wait(epfd, events, maxevents, timeout);
2215
2216 /*
2217 * If we changed the signal mask, we need to restore the original one.
2218 * In case we've got a signal while waiting, we do not restore the
2219 * signal mask yet, and we allow do_signal() to deliver the signal on
2220 * the way back to userspace, before the signal mask is restored.
2221 */
2222 if (sigmask) {
2223 if (error == -EINTR) {
2224 memcpy(&current->saved_sigmask, &sigsaved,
2225 sizeof(sigsaved));
2226 set_restore_sigmask();
2227 } else
2228 set_current_blocked(&sigsaved);
2229 }
2230
2231 return error;
2232 }
2233
2234 #ifdef CONFIG_COMPAT
2235 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2236 struct epoll_event __user *, events,
2237 int, maxevents, int, timeout,
2238 const compat_sigset_t __user *, sigmask,
2239 compat_size_t, sigsetsize)
2240 {
2241 long err;
2242 sigset_t ksigmask, sigsaved;
2243
2244 /*
2245 * If the caller wants a certain signal mask to be set during the wait,
2246 * we apply it here.
2247 */
2248 if (sigmask) {
2249 if (sigsetsize != sizeof(compat_sigset_t))
2250 return -EINVAL;
2251 if (get_compat_sigset(&ksigmask, sigmask))
2252 return -EFAULT;
2253 sigsaved = current->blocked;
2254 set_current_blocked(&ksigmask);
2255 }
2256
2257 err = sys_epoll_wait(epfd, events, maxevents, timeout);
2258
2259 /*
2260 * If we changed the signal mask, we need to restore the original one.
2261 * In case we've got a signal while waiting, we do not restore the
2262 * signal mask yet, and we allow do_signal() to deliver the signal on
2263 * the way back to userspace, before the signal mask is restored.
2264 */
2265 if (sigmask) {
2266 if (err == -EINTR) {
2267 memcpy(&current->saved_sigmask, &sigsaved,
2268 sizeof(sigsaved));
2269 set_restore_sigmask();
2270 } else
2271 set_current_blocked(&sigsaved);
2272 }
2273
2274 return err;
2275 }
2276 #endif
2277
2278 static int __init eventpoll_init(void)
2279 {
2280 struct sysinfo si;
2281
2282 si_meminfo(&si);
2283 /*
2284 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2285 */
2286 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2287 EP_ITEM_COST;
2288 BUG_ON(max_user_watches < 0);
2289
2290 /*
2291 * Initialize the structure used to perform epoll file descriptor
2292 * inclusion loops checks.
2293 */
2294 ep_nested_calls_init(&poll_loop_ncalls);
2295
2296 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2297 /* Initialize the structure used to perform safe poll wait head wake ups */
2298 ep_nested_calls_init(&poll_safewake_ncalls);
2299 #endif
2300
2301 /*
2302 * We can have many thousands of epitems, so prevent this from
2303 * using an extra cache line on 64-bit (and smaller) CPUs
2304 */
2305 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2306
2307 /* Allocates slab cache used to allocate "struct epitem" items */
2308 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2309 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2310
2311 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2312 pwq_cache = kmem_cache_create("eventpoll_pwq",
2313 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2314
2315 return 0;
2316 }
2317 fs_initcall(eventpoll_init);