]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/mballoc.c
b2a73060bff850875a4a1ba4205a1e11543bb01f
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/backing-dev.h>
30 #include <trace/events/ext4.h>
31
32 #ifdef CONFIG_EXT4_DEBUG
33 ushort ext4_mballoc_debug __read_mostly;
34
35 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
36 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
37 #endif
38
39 /*
40 * MUSTDO:
41 * - test ext4_ext_search_left() and ext4_ext_search_right()
42 * - search for metadata in few groups
43 *
44 * TODO v4:
45 * - normalization should take into account whether file is still open
46 * - discard preallocations if no free space left (policy?)
47 * - don't normalize tails
48 * - quota
49 * - reservation for superuser
50 *
51 * TODO v3:
52 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
53 * - track min/max extents in each group for better group selection
54 * - mb_mark_used() may allocate chunk right after splitting buddy
55 * - tree of groups sorted by number of free blocks
56 * - error handling
57 */
58
59 /*
60 * The allocation request involve request for multiple number of blocks
61 * near to the goal(block) value specified.
62 *
63 * During initialization phase of the allocator we decide to use the
64 * group preallocation or inode preallocation depending on the size of
65 * the file. The size of the file could be the resulting file size we
66 * would have after allocation, or the current file size, which ever
67 * is larger. If the size is less than sbi->s_mb_stream_request we
68 * select to use the group preallocation. The default value of
69 * s_mb_stream_request is 16 blocks. This can also be tuned via
70 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
71 * terms of number of blocks.
72 *
73 * The main motivation for having small file use group preallocation is to
74 * ensure that we have small files closer together on the disk.
75 *
76 * First stage the allocator looks at the inode prealloc list,
77 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
78 * spaces for this particular inode. The inode prealloc space is
79 * represented as:
80 *
81 * pa_lstart -> the logical start block for this prealloc space
82 * pa_pstart -> the physical start block for this prealloc space
83 * pa_len -> length for this prealloc space (in clusters)
84 * pa_free -> free space available in this prealloc space (in clusters)
85 *
86 * The inode preallocation space is used looking at the _logical_ start
87 * block. If only the logical file block falls within the range of prealloc
88 * space we will consume the particular prealloc space. This makes sure that
89 * we have contiguous physical blocks representing the file blocks
90 *
91 * The important thing to be noted in case of inode prealloc space is that
92 * we don't modify the values associated to inode prealloc space except
93 * pa_free.
94 *
95 * If we are not able to find blocks in the inode prealloc space and if we
96 * have the group allocation flag set then we look at the locality group
97 * prealloc space. These are per CPU prealloc list represented as
98 *
99 * ext4_sb_info.s_locality_groups[smp_processor_id()]
100 *
101 * The reason for having a per cpu locality group is to reduce the contention
102 * between CPUs. It is possible to get scheduled at this point.
103 *
104 * The locality group prealloc space is used looking at whether we have
105 * enough free space (pa_free) within the prealloc space.
106 *
107 * If we can't allocate blocks via inode prealloc or/and locality group
108 * prealloc then we look at the buddy cache. The buddy cache is represented
109 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
110 * mapped to the buddy and bitmap information regarding different
111 * groups. The buddy information is attached to buddy cache inode so that
112 * we can access them through the page cache. The information regarding
113 * each group is loaded via ext4_mb_load_buddy. The information involve
114 * block bitmap and buddy information. The information are stored in the
115 * inode as:
116 *
117 * { page }
118 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
119 *
120 *
121 * one block each for bitmap and buddy information. So for each group we
122 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
123 * blocksize) blocks. So it can have information regarding groups_per_page
124 * which is blocks_per_page/2
125 *
126 * The buddy cache inode is not stored on disk. The inode is thrown
127 * away when the filesystem is unmounted.
128 *
129 * We look for count number of blocks in the buddy cache. If we were able
130 * to locate that many free blocks we return with additional information
131 * regarding rest of the contiguous physical block available
132 *
133 * Before allocating blocks via buddy cache we normalize the request
134 * blocks. This ensure we ask for more blocks that we needed. The extra
135 * blocks that we get after allocation is added to the respective prealloc
136 * list. In case of inode preallocation we follow a list of heuristics
137 * based on file size. This can be found in ext4_mb_normalize_request. If
138 * we are doing a group prealloc we try to normalize the request to
139 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
140 * dependent on the cluster size; for non-bigalloc file systems, it is
141 * 512 blocks. This can be tuned via
142 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
143 * terms of number of blocks. If we have mounted the file system with -O
144 * stripe=<value> option the group prealloc request is normalized to the
145 * the smallest multiple of the stripe value (sbi->s_stripe) which is
146 * greater than the default mb_group_prealloc.
147 *
148 * The regular allocator (using the buddy cache) supports a few tunables.
149 *
150 * /sys/fs/ext4/<partition>/mb_min_to_scan
151 * /sys/fs/ext4/<partition>/mb_max_to_scan
152 * /sys/fs/ext4/<partition>/mb_order2_req
153 *
154 * The regular allocator uses buddy scan only if the request len is power of
155 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
156 * value of s_mb_order2_reqs can be tuned via
157 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
158 * stripe size (sbi->s_stripe), we try to search for contiguous block in
159 * stripe size. This should result in better allocation on RAID setups. If
160 * not, we search in the specific group using bitmap for best extents. The
161 * tunable min_to_scan and max_to_scan control the behaviour here.
162 * min_to_scan indicate how long the mballoc __must__ look for a best
163 * extent and max_to_scan indicates how long the mballoc __can__ look for a
164 * best extent in the found extents. Searching for the blocks starts with
165 * the group specified as the goal value in allocation context via
166 * ac_g_ex. Each group is first checked based on the criteria whether it
167 * can be used for allocation. ext4_mb_good_group explains how the groups are
168 * checked.
169 *
170 * Both the prealloc space are getting populated as above. So for the first
171 * request we will hit the buddy cache which will result in this prealloc
172 * space getting filled. The prealloc space is then later used for the
173 * subsequent request.
174 */
175
176 /*
177 * mballoc operates on the following data:
178 * - on-disk bitmap
179 * - in-core buddy (actually includes buddy and bitmap)
180 * - preallocation descriptors (PAs)
181 *
182 * there are two types of preallocations:
183 * - inode
184 * assiged to specific inode and can be used for this inode only.
185 * it describes part of inode's space preallocated to specific
186 * physical blocks. any block from that preallocated can be used
187 * independent. the descriptor just tracks number of blocks left
188 * unused. so, before taking some block from descriptor, one must
189 * make sure corresponded logical block isn't allocated yet. this
190 * also means that freeing any block within descriptor's range
191 * must discard all preallocated blocks.
192 * - locality group
193 * assigned to specific locality group which does not translate to
194 * permanent set of inodes: inode can join and leave group. space
195 * from this type of preallocation can be used for any inode. thus
196 * it's consumed from the beginning to the end.
197 *
198 * relation between them can be expressed as:
199 * in-core buddy = on-disk bitmap + preallocation descriptors
200 *
201 * this mean blocks mballoc considers used are:
202 * - allocated blocks (persistent)
203 * - preallocated blocks (non-persistent)
204 *
205 * consistency in mballoc world means that at any time a block is either
206 * free or used in ALL structures. notice: "any time" should not be read
207 * literally -- time is discrete and delimited by locks.
208 *
209 * to keep it simple, we don't use block numbers, instead we count number of
210 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
211 *
212 * all operations can be expressed as:
213 * - init buddy: buddy = on-disk + PAs
214 * - new PA: buddy += N; PA = N
215 * - use inode PA: on-disk += N; PA -= N
216 * - discard inode PA buddy -= on-disk - PA; PA = 0
217 * - use locality group PA on-disk += N; PA -= N
218 * - discard locality group PA buddy -= PA; PA = 0
219 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
220 * is used in real operation because we can't know actual used
221 * bits from PA, only from on-disk bitmap
222 *
223 * if we follow this strict logic, then all operations above should be atomic.
224 * given some of them can block, we'd have to use something like semaphores
225 * killing performance on high-end SMP hardware. let's try to relax it using
226 * the following knowledge:
227 * 1) if buddy is referenced, it's already initialized
228 * 2) while block is used in buddy and the buddy is referenced,
229 * nobody can re-allocate that block
230 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
231 * bit set and PA claims same block, it's OK. IOW, one can set bit in
232 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
233 * block
234 *
235 * so, now we're building a concurrency table:
236 * - init buddy vs.
237 * - new PA
238 * blocks for PA are allocated in the buddy, buddy must be referenced
239 * until PA is linked to allocation group to avoid concurrent buddy init
240 * - use inode PA
241 * we need to make sure that either on-disk bitmap or PA has uptodate data
242 * given (3) we care that PA-=N operation doesn't interfere with init
243 * - discard inode PA
244 * the simplest way would be to have buddy initialized by the discard
245 * - use locality group PA
246 * again PA-=N must be serialized with init
247 * - discard locality group PA
248 * the simplest way would be to have buddy initialized by the discard
249 * - new PA vs.
250 * - use inode PA
251 * i_data_sem serializes them
252 * - discard inode PA
253 * discard process must wait until PA isn't used by another process
254 * - use locality group PA
255 * some mutex should serialize them
256 * - discard locality group PA
257 * discard process must wait until PA isn't used by another process
258 * - use inode PA
259 * - use inode PA
260 * i_data_sem or another mutex should serializes them
261 * - discard inode PA
262 * discard process must wait until PA isn't used by another process
263 * - use locality group PA
264 * nothing wrong here -- they're different PAs covering different blocks
265 * - discard locality group PA
266 * discard process must wait until PA isn't used by another process
267 *
268 * now we're ready to make few consequences:
269 * - PA is referenced and while it is no discard is possible
270 * - PA is referenced until block isn't marked in on-disk bitmap
271 * - PA changes only after on-disk bitmap
272 * - discard must not compete with init. either init is done before
273 * any discard or they're serialized somehow
274 * - buddy init as sum of on-disk bitmap and PAs is done atomically
275 *
276 * a special case when we've used PA to emptiness. no need to modify buddy
277 * in this case, but we should care about concurrent init
278 *
279 */
280
281 /*
282 * Logic in few words:
283 *
284 * - allocation:
285 * load group
286 * find blocks
287 * mark bits in on-disk bitmap
288 * release group
289 *
290 * - use preallocation:
291 * find proper PA (per-inode or group)
292 * load group
293 * mark bits in on-disk bitmap
294 * release group
295 * release PA
296 *
297 * - free:
298 * load group
299 * mark bits in on-disk bitmap
300 * release group
301 *
302 * - discard preallocations in group:
303 * mark PAs deleted
304 * move them onto local list
305 * load on-disk bitmap
306 * load group
307 * remove PA from object (inode or locality group)
308 * mark free blocks in-core
309 *
310 * - discard inode's preallocations:
311 */
312
313 /*
314 * Locking rules
315 *
316 * Locks:
317 * - bitlock on a group (group)
318 * - object (inode/locality) (object)
319 * - per-pa lock (pa)
320 *
321 * Paths:
322 * - new pa
323 * object
324 * group
325 *
326 * - find and use pa:
327 * pa
328 *
329 * - release consumed pa:
330 * pa
331 * group
332 * object
333 *
334 * - generate in-core bitmap:
335 * group
336 * pa
337 *
338 * - discard all for given object (inode, locality group):
339 * object
340 * pa
341 * group
342 *
343 * - discard all for given group:
344 * group
345 * pa
346 * group
347 * object
348 *
349 */
350 static struct kmem_cache *ext4_pspace_cachep;
351 static struct kmem_cache *ext4_ac_cachep;
352 static struct kmem_cache *ext4_free_data_cachep;
353
354 /* We create slab caches for groupinfo data structures based on the
355 * superblock block size. There will be one per mounted filesystem for
356 * each unique s_blocksize_bits */
357 #define NR_GRPINFO_CACHES 8
358 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
359
360 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
361 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
362 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
363 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
364 };
365
366 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
367 ext4_group_t group);
368 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
369 ext4_group_t group);
370
371 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
372 {
373 #if BITS_PER_LONG == 64
374 *bit += ((unsigned long) addr & 7UL) << 3;
375 addr = (void *) ((unsigned long) addr & ~7UL);
376 #elif BITS_PER_LONG == 32
377 *bit += ((unsigned long) addr & 3UL) << 3;
378 addr = (void *) ((unsigned long) addr & ~3UL);
379 #else
380 #error "how many bits you are?!"
381 #endif
382 return addr;
383 }
384
385 static inline int mb_test_bit(int bit, void *addr)
386 {
387 /*
388 * ext4_test_bit on architecture like powerpc
389 * needs unsigned long aligned address
390 */
391 addr = mb_correct_addr_and_bit(&bit, addr);
392 return ext4_test_bit(bit, addr);
393 }
394
395 static inline void mb_set_bit(int bit, void *addr)
396 {
397 addr = mb_correct_addr_and_bit(&bit, addr);
398 ext4_set_bit(bit, addr);
399 }
400
401 static inline void mb_clear_bit(int bit, void *addr)
402 {
403 addr = mb_correct_addr_and_bit(&bit, addr);
404 ext4_clear_bit(bit, addr);
405 }
406
407 static inline int mb_test_and_clear_bit(int bit, void *addr)
408 {
409 addr = mb_correct_addr_and_bit(&bit, addr);
410 return ext4_test_and_clear_bit(bit, addr);
411 }
412
413 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
414 {
415 int fix = 0, ret, tmpmax;
416 addr = mb_correct_addr_and_bit(&fix, addr);
417 tmpmax = max + fix;
418 start += fix;
419
420 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
421 if (ret > max)
422 return max;
423 return ret;
424 }
425
426 static inline int mb_find_next_bit(void *addr, int max, int start)
427 {
428 int fix = 0, ret, tmpmax;
429 addr = mb_correct_addr_and_bit(&fix, addr);
430 tmpmax = max + fix;
431 start += fix;
432
433 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
434 if (ret > max)
435 return max;
436 return ret;
437 }
438
439 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
440 {
441 char *bb;
442
443 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
444 BUG_ON(max == NULL);
445
446 if (order > e4b->bd_blkbits + 1) {
447 *max = 0;
448 return NULL;
449 }
450
451 /* at order 0 we see each particular block */
452 if (order == 0) {
453 *max = 1 << (e4b->bd_blkbits + 3);
454 return e4b->bd_bitmap;
455 }
456
457 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
458 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
459
460 return bb;
461 }
462
463 #ifdef DOUBLE_CHECK
464 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
465 int first, int count)
466 {
467 int i;
468 struct super_block *sb = e4b->bd_sb;
469
470 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
471 return;
472 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
473 for (i = 0; i < count; i++) {
474 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
475 ext4_fsblk_t blocknr;
476
477 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
478 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
479 ext4_grp_locked_error(sb, e4b->bd_group,
480 inode ? inode->i_ino : 0,
481 blocknr,
482 "freeing block already freed "
483 "(bit %u)",
484 first + i);
485 }
486 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
487 }
488 }
489
490 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
491 {
492 int i;
493
494 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
495 return;
496 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
497 for (i = 0; i < count; i++) {
498 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
499 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
500 }
501 }
502
503 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
504 {
505 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
506 unsigned char *b1, *b2;
507 int i;
508 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
509 b2 = (unsigned char *) bitmap;
510 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
511 if (b1[i] != b2[i]) {
512 ext4_msg(e4b->bd_sb, KERN_ERR,
513 "corruption in group %u "
514 "at byte %u(%u): %x in copy != %x "
515 "on disk/prealloc",
516 e4b->bd_group, i, i * 8, b1[i], b2[i]);
517 BUG();
518 }
519 }
520 }
521 }
522
523 #else
524 static inline void mb_free_blocks_double(struct inode *inode,
525 struct ext4_buddy *e4b, int first, int count)
526 {
527 return;
528 }
529 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
530 int first, int count)
531 {
532 return;
533 }
534 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
535 {
536 return;
537 }
538 #endif
539
540 #ifdef AGGRESSIVE_CHECK
541
542 #define MB_CHECK_ASSERT(assert) \
543 do { \
544 if (!(assert)) { \
545 printk(KERN_EMERG \
546 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
547 function, file, line, # assert); \
548 BUG(); \
549 } \
550 } while (0)
551
552 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
553 const char *function, int line)
554 {
555 struct super_block *sb = e4b->bd_sb;
556 int order = e4b->bd_blkbits + 1;
557 int max;
558 int max2;
559 int i;
560 int j;
561 int k;
562 int count;
563 struct ext4_group_info *grp;
564 int fragments = 0;
565 int fstart;
566 struct list_head *cur;
567 void *buddy;
568 void *buddy2;
569
570 {
571 static int mb_check_counter;
572 if (mb_check_counter++ % 100 != 0)
573 return 0;
574 }
575
576 while (order > 1) {
577 buddy = mb_find_buddy(e4b, order, &max);
578 MB_CHECK_ASSERT(buddy);
579 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
580 MB_CHECK_ASSERT(buddy2);
581 MB_CHECK_ASSERT(buddy != buddy2);
582 MB_CHECK_ASSERT(max * 2 == max2);
583
584 count = 0;
585 for (i = 0; i < max; i++) {
586
587 if (mb_test_bit(i, buddy)) {
588 /* only single bit in buddy2 may be 1 */
589 if (!mb_test_bit(i << 1, buddy2)) {
590 MB_CHECK_ASSERT(
591 mb_test_bit((i<<1)+1, buddy2));
592 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
593 MB_CHECK_ASSERT(
594 mb_test_bit(i << 1, buddy2));
595 }
596 continue;
597 }
598
599 /* both bits in buddy2 must be 1 */
600 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
601 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
602
603 for (j = 0; j < (1 << order); j++) {
604 k = (i * (1 << order)) + j;
605 MB_CHECK_ASSERT(
606 !mb_test_bit(k, e4b->bd_bitmap));
607 }
608 count++;
609 }
610 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
611 order--;
612 }
613
614 fstart = -1;
615 buddy = mb_find_buddy(e4b, 0, &max);
616 for (i = 0; i < max; i++) {
617 if (!mb_test_bit(i, buddy)) {
618 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
619 if (fstart == -1) {
620 fragments++;
621 fstart = i;
622 }
623 continue;
624 }
625 fstart = -1;
626 /* check used bits only */
627 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
628 buddy2 = mb_find_buddy(e4b, j, &max2);
629 k = i >> j;
630 MB_CHECK_ASSERT(k < max2);
631 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
632 }
633 }
634 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
635 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
636
637 grp = ext4_get_group_info(sb, e4b->bd_group);
638 list_for_each(cur, &grp->bb_prealloc_list) {
639 ext4_group_t groupnr;
640 struct ext4_prealloc_space *pa;
641 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
642 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
643 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
644 for (i = 0; i < pa->pa_len; i++)
645 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
646 }
647 return 0;
648 }
649 #undef MB_CHECK_ASSERT
650 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
651 __FILE__, __func__, __LINE__)
652 #else
653 #define mb_check_buddy(e4b)
654 #endif
655
656 /*
657 * Divide blocks started from @first with length @len into
658 * smaller chunks with power of 2 blocks.
659 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
660 * then increase bb_counters[] for corresponded chunk size.
661 */
662 static void ext4_mb_mark_free_simple(struct super_block *sb,
663 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
664 struct ext4_group_info *grp)
665 {
666 struct ext4_sb_info *sbi = EXT4_SB(sb);
667 ext4_grpblk_t min;
668 ext4_grpblk_t max;
669 ext4_grpblk_t chunk;
670 unsigned int border;
671
672 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
673
674 border = 2 << sb->s_blocksize_bits;
675
676 while (len > 0) {
677 /* find how many blocks can be covered since this position */
678 max = ffs(first | border) - 1;
679
680 /* find how many blocks of power 2 we need to mark */
681 min = fls(len) - 1;
682
683 if (max < min)
684 min = max;
685 chunk = 1 << min;
686
687 /* mark multiblock chunks only */
688 grp->bb_counters[min]++;
689 if (min > 0)
690 mb_clear_bit(first >> min,
691 buddy + sbi->s_mb_offsets[min]);
692
693 len -= chunk;
694 first += chunk;
695 }
696 }
697
698 /*
699 * Cache the order of the largest free extent we have available in this block
700 * group.
701 */
702 static void
703 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
704 {
705 int i;
706 int bits;
707
708 grp->bb_largest_free_order = -1; /* uninit */
709
710 bits = sb->s_blocksize_bits + 1;
711 for (i = bits; i >= 0; i--) {
712 if (grp->bb_counters[i] > 0) {
713 grp->bb_largest_free_order = i;
714 break;
715 }
716 }
717 }
718
719 static noinline_for_stack
720 void ext4_mb_generate_buddy(struct super_block *sb,
721 void *buddy, void *bitmap, ext4_group_t group)
722 {
723 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
724 struct ext4_sb_info *sbi = EXT4_SB(sb);
725 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
726 ext4_grpblk_t i = 0;
727 ext4_grpblk_t first;
728 ext4_grpblk_t len;
729 unsigned free = 0;
730 unsigned fragments = 0;
731 unsigned long long period = get_cycles();
732
733 /* initialize buddy from bitmap which is aggregation
734 * of on-disk bitmap and preallocations */
735 i = mb_find_next_zero_bit(bitmap, max, 0);
736 grp->bb_first_free = i;
737 while (i < max) {
738 fragments++;
739 first = i;
740 i = mb_find_next_bit(bitmap, max, i);
741 len = i - first;
742 free += len;
743 if (len > 1)
744 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
745 else
746 grp->bb_counters[0]++;
747 if (i < max)
748 i = mb_find_next_zero_bit(bitmap, max, i);
749 }
750 grp->bb_fragments = fragments;
751
752 if (free != grp->bb_free) {
753 ext4_grp_locked_error(sb, group, 0, 0,
754 "block bitmap and bg descriptor "
755 "inconsistent: %u vs %u free clusters",
756 free, grp->bb_free);
757 /*
758 * If we intend to continue, we consider group descriptor
759 * corrupt and update bb_free using bitmap value
760 */
761 grp->bb_free = free;
762 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
763 percpu_counter_sub(&sbi->s_freeclusters_counter,
764 grp->bb_free);
765 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
766 }
767 mb_set_largest_free_order(sb, grp);
768
769 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
770
771 period = get_cycles() - period;
772 spin_lock(&EXT4_SB(sb)->s_bal_lock);
773 EXT4_SB(sb)->s_mb_buddies_generated++;
774 EXT4_SB(sb)->s_mb_generation_time += period;
775 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
776 }
777
778 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
779 {
780 int count;
781 int order = 1;
782 void *buddy;
783
784 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
785 ext4_set_bits(buddy, 0, count);
786 }
787 e4b->bd_info->bb_fragments = 0;
788 memset(e4b->bd_info->bb_counters, 0,
789 sizeof(*e4b->bd_info->bb_counters) *
790 (e4b->bd_sb->s_blocksize_bits + 2));
791
792 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
793 e4b->bd_bitmap, e4b->bd_group);
794 }
795
796 /* The buddy information is attached the buddy cache inode
797 * for convenience. The information regarding each group
798 * is loaded via ext4_mb_load_buddy. The information involve
799 * block bitmap and buddy information. The information are
800 * stored in the inode as
801 *
802 * { page }
803 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
804 *
805 *
806 * one block each for bitmap and buddy information.
807 * So for each group we take up 2 blocks. A page can
808 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
809 * So it can have information regarding groups_per_page which
810 * is blocks_per_page/2
811 *
812 * Locking note: This routine takes the block group lock of all groups
813 * for this page; do not hold this lock when calling this routine!
814 */
815
816 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
817 {
818 ext4_group_t ngroups;
819 int blocksize;
820 int blocks_per_page;
821 int groups_per_page;
822 int err = 0;
823 int i;
824 ext4_group_t first_group, group;
825 int first_block;
826 struct super_block *sb;
827 struct buffer_head *bhs;
828 struct buffer_head **bh = NULL;
829 struct inode *inode;
830 char *data;
831 char *bitmap;
832 struct ext4_group_info *grinfo;
833
834 mb_debug(1, "init page %lu\n", page->index);
835
836 inode = page->mapping->host;
837 sb = inode->i_sb;
838 ngroups = ext4_get_groups_count(sb);
839 blocksize = i_blocksize(inode);
840 blocks_per_page = PAGE_SIZE / blocksize;
841
842 groups_per_page = blocks_per_page >> 1;
843 if (groups_per_page == 0)
844 groups_per_page = 1;
845
846 /* allocate buffer_heads to read bitmaps */
847 if (groups_per_page > 1) {
848 i = sizeof(struct buffer_head *) * groups_per_page;
849 bh = kzalloc(i, gfp);
850 if (bh == NULL) {
851 err = -ENOMEM;
852 goto out;
853 }
854 } else
855 bh = &bhs;
856
857 first_group = page->index * blocks_per_page / 2;
858
859 /* read all groups the page covers into the cache */
860 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
861 if (group >= ngroups)
862 break;
863
864 grinfo = ext4_get_group_info(sb, group);
865 /*
866 * If page is uptodate then we came here after online resize
867 * which added some new uninitialized group info structs, so
868 * we must skip all initialized uptodate buddies on the page,
869 * which may be currently in use by an allocating task.
870 */
871 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
872 bh[i] = NULL;
873 continue;
874 }
875 bh[i] = ext4_read_block_bitmap_nowait(sb, group);
876 if (IS_ERR(bh[i])) {
877 err = PTR_ERR(bh[i]);
878 bh[i] = NULL;
879 goto out;
880 }
881 mb_debug(1, "read bitmap for group %u\n", group);
882 }
883
884 /* wait for I/O completion */
885 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
886 int err2;
887
888 if (!bh[i])
889 continue;
890 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
891 if (!err)
892 err = err2;
893 }
894
895 first_block = page->index * blocks_per_page;
896 for (i = 0; i < blocks_per_page; i++) {
897 group = (first_block + i) >> 1;
898 if (group >= ngroups)
899 break;
900
901 if (!bh[group - first_group])
902 /* skip initialized uptodate buddy */
903 continue;
904
905 if (!buffer_verified(bh[group - first_group]))
906 /* Skip faulty bitmaps */
907 continue;
908 err = 0;
909
910 /*
911 * data carry information regarding this
912 * particular group in the format specified
913 * above
914 *
915 */
916 data = page_address(page) + (i * blocksize);
917 bitmap = bh[group - first_group]->b_data;
918
919 /*
920 * We place the buddy block and bitmap block
921 * close together
922 */
923 if ((first_block + i) & 1) {
924 /* this is block of buddy */
925 BUG_ON(incore == NULL);
926 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
927 group, page->index, i * blocksize);
928 trace_ext4_mb_buddy_bitmap_load(sb, group);
929 grinfo = ext4_get_group_info(sb, group);
930 grinfo->bb_fragments = 0;
931 memset(grinfo->bb_counters, 0,
932 sizeof(*grinfo->bb_counters) *
933 (sb->s_blocksize_bits+2));
934 /*
935 * incore got set to the group block bitmap below
936 */
937 ext4_lock_group(sb, group);
938 /* init the buddy */
939 memset(data, 0xff, blocksize);
940 ext4_mb_generate_buddy(sb, data, incore, group);
941 ext4_unlock_group(sb, group);
942 incore = NULL;
943 } else {
944 /* this is block of bitmap */
945 BUG_ON(incore != NULL);
946 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
947 group, page->index, i * blocksize);
948 trace_ext4_mb_bitmap_load(sb, group);
949
950 /* see comments in ext4_mb_put_pa() */
951 ext4_lock_group(sb, group);
952 memcpy(data, bitmap, blocksize);
953
954 /* mark all preallocated blks used in in-core bitmap */
955 ext4_mb_generate_from_pa(sb, data, group);
956 ext4_mb_generate_from_freelist(sb, data, group);
957 ext4_unlock_group(sb, group);
958
959 /* set incore so that the buddy information can be
960 * generated using this
961 */
962 incore = data;
963 }
964 }
965 SetPageUptodate(page);
966
967 out:
968 if (bh) {
969 for (i = 0; i < groups_per_page; i++)
970 brelse(bh[i]);
971 if (bh != &bhs)
972 kfree(bh);
973 }
974 return err;
975 }
976
977 /*
978 * Lock the buddy and bitmap pages. This make sure other parallel init_group
979 * on the same buddy page doesn't happen whild holding the buddy page lock.
980 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
981 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
982 */
983 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
984 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
985 {
986 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
987 int block, pnum, poff;
988 int blocks_per_page;
989 struct page *page;
990
991 e4b->bd_buddy_page = NULL;
992 e4b->bd_bitmap_page = NULL;
993
994 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
995 /*
996 * the buddy cache inode stores the block bitmap
997 * and buddy information in consecutive blocks.
998 * So for each group we need two blocks.
999 */
1000 block = group * 2;
1001 pnum = block / blocks_per_page;
1002 poff = block % blocks_per_page;
1003 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1004 if (!page)
1005 return -ENOMEM;
1006 BUG_ON(page->mapping != inode->i_mapping);
1007 e4b->bd_bitmap_page = page;
1008 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1009
1010 if (blocks_per_page >= 2) {
1011 /* buddy and bitmap are on the same page */
1012 return 0;
1013 }
1014
1015 block++;
1016 pnum = block / blocks_per_page;
1017 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1018 if (!page)
1019 return -ENOMEM;
1020 BUG_ON(page->mapping != inode->i_mapping);
1021 e4b->bd_buddy_page = page;
1022 return 0;
1023 }
1024
1025 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1026 {
1027 if (e4b->bd_bitmap_page) {
1028 unlock_page(e4b->bd_bitmap_page);
1029 put_page(e4b->bd_bitmap_page);
1030 }
1031 if (e4b->bd_buddy_page) {
1032 unlock_page(e4b->bd_buddy_page);
1033 put_page(e4b->bd_buddy_page);
1034 }
1035 }
1036
1037 /*
1038 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1039 * block group lock of all groups for this page; do not hold the BG lock when
1040 * calling this routine!
1041 */
1042 static noinline_for_stack
1043 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1044 {
1045
1046 struct ext4_group_info *this_grp;
1047 struct ext4_buddy e4b;
1048 struct page *page;
1049 int ret = 0;
1050
1051 might_sleep();
1052 mb_debug(1, "init group %u\n", group);
1053 this_grp = ext4_get_group_info(sb, group);
1054 /*
1055 * This ensures that we don't reinit the buddy cache
1056 * page which map to the group from which we are already
1057 * allocating. If we are looking at the buddy cache we would
1058 * have taken a reference using ext4_mb_load_buddy and that
1059 * would have pinned buddy page to page cache.
1060 * The call to ext4_mb_get_buddy_page_lock will mark the
1061 * page accessed.
1062 */
1063 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1064 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1065 /*
1066 * somebody initialized the group
1067 * return without doing anything
1068 */
1069 goto err;
1070 }
1071
1072 page = e4b.bd_bitmap_page;
1073 ret = ext4_mb_init_cache(page, NULL, gfp);
1074 if (ret)
1075 goto err;
1076 if (!PageUptodate(page)) {
1077 ret = -EIO;
1078 goto err;
1079 }
1080
1081 if (e4b.bd_buddy_page == NULL) {
1082 /*
1083 * If both the bitmap and buddy are in
1084 * the same page we don't need to force
1085 * init the buddy
1086 */
1087 ret = 0;
1088 goto err;
1089 }
1090 /* init buddy cache */
1091 page = e4b.bd_buddy_page;
1092 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1093 if (ret)
1094 goto err;
1095 if (!PageUptodate(page)) {
1096 ret = -EIO;
1097 goto err;
1098 }
1099 err:
1100 ext4_mb_put_buddy_page_lock(&e4b);
1101 return ret;
1102 }
1103
1104 /*
1105 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1106 * block group lock of all groups for this page; do not hold the BG lock when
1107 * calling this routine!
1108 */
1109 static noinline_for_stack int
1110 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1111 struct ext4_buddy *e4b, gfp_t gfp)
1112 {
1113 int blocks_per_page;
1114 int block;
1115 int pnum;
1116 int poff;
1117 struct page *page;
1118 int ret;
1119 struct ext4_group_info *grp;
1120 struct ext4_sb_info *sbi = EXT4_SB(sb);
1121 struct inode *inode = sbi->s_buddy_cache;
1122
1123 might_sleep();
1124 mb_debug(1, "load group %u\n", group);
1125
1126 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1127 grp = ext4_get_group_info(sb, group);
1128
1129 e4b->bd_blkbits = sb->s_blocksize_bits;
1130 e4b->bd_info = grp;
1131 e4b->bd_sb = sb;
1132 e4b->bd_group = group;
1133 e4b->bd_buddy_page = NULL;
1134 e4b->bd_bitmap_page = NULL;
1135
1136 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1137 /*
1138 * we need full data about the group
1139 * to make a good selection
1140 */
1141 ret = ext4_mb_init_group(sb, group, gfp);
1142 if (ret)
1143 return ret;
1144 }
1145
1146 /*
1147 * the buddy cache inode stores the block bitmap
1148 * and buddy information in consecutive blocks.
1149 * So for each group we need two blocks.
1150 */
1151 block = group * 2;
1152 pnum = block / blocks_per_page;
1153 poff = block % blocks_per_page;
1154
1155 /* we could use find_or_create_page(), but it locks page
1156 * what we'd like to avoid in fast path ... */
1157 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1158 if (page == NULL || !PageUptodate(page)) {
1159 if (page)
1160 /*
1161 * drop the page reference and try
1162 * to get the page with lock. If we
1163 * are not uptodate that implies
1164 * somebody just created the page but
1165 * is yet to initialize the same. So
1166 * wait for it to initialize.
1167 */
1168 put_page(page);
1169 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1170 if (page) {
1171 BUG_ON(page->mapping != inode->i_mapping);
1172 if (!PageUptodate(page)) {
1173 ret = ext4_mb_init_cache(page, NULL, gfp);
1174 if (ret) {
1175 unlock_page(page);
1176 goto err;
1177 }
1178 mb_cmp_bitmaps(e4b, page_address(page) +
1179 (poff * sb->s_blocksize));
1180 }
1181 unlock_page(page);
1182 }
1183 }
1184 if (page == NULL) {
1185 ret = -ENOMEM;
1186 goto err;
1187 }
1188 if (!PageUptodate(page)) {
1189 ret = -EIO;
1190 goto err;
1191 }
1192
1193 /* Pages marked accessed already */
1194 e4b->bd_bitmap_page = page;
1195 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1196
1197 block++;
1198 pnum = block / blocks_per_page;
1199 poff = block % blocks_per_page;
1200
1201 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1202 if (page == NULL || !PageUptodate(page)) {
1203 if (page)
1204 put_page(page);
1205 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1206 if (page) {
1207 BUG_ON(page->mapping != inode->i_mapping);
1208 if (!PageUptodate(page)) {
1209 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1210 gfp);
1211 if (ret) {
1212 unlock_page(page);
1213 goto err;
1214 }
1215 }
1216 unlock_page(page);
1217 }
1218 }
1219 if (page == NULL) {
1220 ret = -ENOMEM;
1221 goto err;
1222 }
1223 if (!PageUptodate(page)) {
1224 ret = -EIO;
1225 goto err;
1226 }
1227
1228 /* Pages marked accessed already */
1229 e4b->bd_buddy_page = page;
1230 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1231
1232 BUG_ON(e4b->bd_bitmap_page == NULL);
1233 BUG_ON(e4b->bd_buddy_page == NULL);
1234
1235 return 0;
1236
1237 err:
1238 if (page)
1239 put_page(page);
1240 if (e4b->bd_bitmap_page)
1241 put_page(e4b->bd_bitmap_page);
1242 if (e4b->bd_buddy_page)
1243 put_page(e4b->bd_buddy_page);
1244 e4b->bd_buddy = NULL;
1245 e4b->bd_bitmap = NULL;
1246 return ret;
1247 }
1248
1249 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1250 struct ext4_buddy *e4b)
1251 {
1252 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1253 }
1254
1255 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1256 {
1257 if (e4b->bd_bitmap_page)
1258 put_page(e4b->bd_bitmap_page);
1259 if (e4b->bd_buddy_page)
1260 put_page(e4b->bd_buddy_page);
1261 }
1262
1263
1264 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1265 {
1266 int order = 1;
1267 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1268 void *bb;
1269
1270 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1271 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1272
1273 bb = e4b->bd_buddy;
1274 while (order <= e4b->bd_blkbits + 1) {
1275 block = block >> 1;
1276 if (!mb_test_bit(block, bb)) {
1277 /* this block is part of buddy of order 'order' */
1278 return order;
1279 }
1280 bb += bb_incr;
1281 bb_incr >>= 1;
1282 order++;
1283 }
1284 return 0;
1285 }
1286
1287 static void mb_clear_bits(void *bm, int cur, int len)
1288 {
1289 __u32 *addr;
1290
1291 len = cur + len;
1292 while (cur < len) {
1293 if ((cur & 31) == 0 && (len - cur) >= 32) {
1294 /* fast path: clear whole word at once */
1295 addr = bm + (cur >> 3);
1296 *addr = 0;
1297 cur += 32;
1298 continue;
1299 }
1300 mb_clear_bit(cur, bm);
1301 cur++;
1302 }
1303 }
1304
1305 /* clear bits in given range
1306 * will return first found zero bit if any, -1 otherwise
1307 */
1308 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1309 {
1310 __u32 *addr;
1311 int zero_bit = -1;
1312
1313 len = cur + len;
1314 while (cur < len) {
1315 if ((cur & 31) == 0 && (len - cur) >= 32) {
1316 /* fast path: clear whole word at once */
1317 addr = bm + (cur >> 3);
1318 if (*addr != (__u32)(-1) && zero_bit == -1)
1319 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1320 *addr = 0;
1321 cur += 32;
1322 continue;
1323 }
1324 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1325 zero_bit = cur;
1326 cur++;
1327 }
1328
1329 return zero_bit;
1330 }
1331
1332 void ext4_set_bits(void *bm, int cur, int len)
1333 {
1334 __u32 *addr;
1335
1336 len = cur + len;
1337 while (cur < len) {
1338 if ((cur & 31) == 0 && (len - cur) >= 32) {
1339 /* fast path: set whole word at once */
1340 addr = bm + (cur >> 3);
1341 *addr = 0xffffffff;
1342 cur += 32;
1343 continue;
1344 }
1345 mb_set_bit(cur, bm);
1346 cur++;
1347 }
1348 }
1349
1350 /*
1351 * _________________________________________________________________ */
1352
1353 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1354 {
1355 if (mb_test_bit(*bit + side, bitmap)) {
1356 mb_clear_bit(*bit, bitmap);
1357 (*bit) -= side;
1358 return 1;
1359 }
1360 else {
1361 (*bit) += side;
1362 mb_set_bit(*bit, bitmap);
1363 return -1;
1364 }
1365 }
1366
1367 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1368 {
1369 int max;
1370 int order = 1;
1371 void *buddy = mb_find_buddy(e4b, order, &max);
1372
1373 while (buddy) {
1374 void *buddy2;
1375
1376 /* Bits in range [first; last] are known to be set since
1377 * corresponding blocks were allocated. Bits in range
1378 * (first; last) will stay set because they form buddies on
1379 * upper layer. We just deal with borders if they don't
1380 * align with upper layer and then go up.
1381 * Releasing entire group is all about clearing
1382 * single bit of highest order buddy.
1383 */
1384
1385 /* Example:
1386 * ---------------------------------
1387 * | 1 | 1 | 1 | 1 |
1388 * ---------------------------------
1389 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1390 * ---------------------------------
1391 * 0 1 2 3 4 5 6 7
1392 * \_____________________/
1393 *
1394 * Neither [1] nor [6] is aligned to above layer.
1395 * Left neighbour [0] is free, so mark it busy,
1396 * decrease bb_counters and extend range to
1397 * [0; 6]
1398 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1399 * mark [6] free, increase bb_counters and shrink range to
1400 * [0; 5].
1401 * Then shift range to [0; 2], go up and do the same.
1402 */
1403
1404
1405 if (first & 1)
1406 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1407 if (!(last & 1))
1408 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1409 if (first > last)
1410 break;
1411 order++;
1412
1413 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1414 mb_clear_bits(buddy, first, last - first + 1);
1415 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1416 break;
1417 }
1418 first >>= 1;
1419 last >>= 1;
1420 buddy = buddy2;
1421 }
1422 }
1423
1424 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1425 int first, int count)
1426 {
1427 int left_is_free = 0;
1428 int right_is_free = 0;
1429 int block;
1430 int last = first + count - 1;
1431 struct super_block *sb = e4b->bd_sb;
1432
1433 if (WARN_ON(count == 0))
1434 return;
1435 BUG_ON(last >= (sb->s_blocksize << 3));
1436 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1437 /* Don't bother if the block group is corrupt. */
1438 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1439 return;
1440
1441 mb_check_buddy(e4b);
1442 mb_free_blocks_double(inode, e4b, first, count);
1443
1444 e4b->bd_info->bb_free += count;
1445 if (first < e4b->bd_info->bb_first_free)
1446 e4b->bd_info->bb_first_free = first;
1447
1448 /* access memory sequentially: check left neighbour,
1449 * clear range and then check right neighbour
1450 */
1451 if (first != 0)
1452 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1453 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1454 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1455 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1456
1457 if (unlikely(block != -1)) {
1458 struct ext4_sb_info *sbi = EXT4_SB(sb);
1459 ext4_fsblk_t blocknr;
1460
1461 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1462 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1463 ext4_grp_locked_error(sb, e4b->bd_group,
1464 inode ? inode->i_ino : 0,
1465 blocknr,
1466 "freeing already freed block "
1467 "(bit %u); block bitmap corrupt.",
1468 block);
1469 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1470 percpu_counter_sub(&sbi->s_freeclusters_counter,
1471 e4b->bd_info->bb_free);
1472 /* Mark the block group as corrupt. */
1473 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1474 &e4b->bd_info->bb_state);
1475 mb_regenerate_buddy(e4b);
1476 goto done;
1477 }
1478
1479 /* let's maintain fragments counter */
1480 if (left_is_free && right_is_free)
1481 e4b->bd_info->bb_fragments--;
1482 else if (!left_is_free && !right_is_free)
1483 e4b->bd_info->bb_fragments++;
1484
1485 /* buddy[0] == bd_bitmap is a special case, so handle
1486 * it right away and let mb_buddy_mark_free stay free of
1487 * zero order checks.
1488 * Check if neighbours are to be coaleasced,
1489 * adjust bitmap bb_counters and borders appropriately.
1490 */
1491 if (first & 1) {
1492 first += !left_is_free;
1493 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1494 }
1495 if (!(last & 1)) {
1496 last -= !right_is_free;
1497 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1498 }
1499
1500 if (first <= last)
1501 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1502
1503 done:
1504 mb_set_largest_free_order(sb, e4b->bd_info);
1505 mb_check_buddy(e4b);
1506 }
1507
1508 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1509 int needed, struct ext4_free_extent *ex)
1510 {
1511 int next = block;
1512 int max, order;
1513 void *buddy;
1514
1515 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1516 BUG_ON(ex == NULL);
1517
1518 buddy = mb_find_buddy(e4b, 0, &max);
1519 BUG_ON(buddy == NULL);
1520 BUG_ON(block >= max);
1521 if (mb_test_bit(block, buddy)) {
1522 ex->fe_len = 0;
1523 ex->fe_start = 0;
1524 ex->fe_group = 0;
1525 return 0;
1526 }
1527
1528 /* find actual order */
1529 order = mb_find_order_for_block(e4b, block);
1530 block = block >> order;
1531
1532 ex->fe_len = 1 << order;
1533 ex->fe_start = block << order;
1534 ex->fe_group = e4b->bd_group;
1535
1536 /* calc difference from given start */
1537 next = next - ex->fe_start;
1538 ex->fe_len -= next;
1539 ex->fe_start += next;
1540
1541 while (needed > ex->fe_len &&
1542 mb_find_buddy(e4b, order, &max)) {
1543
1544 if (block + 1 >= max)
1545 break;
1546
1547 next = (block + 1) * (1 << order);
1548 if (mb_test_bit(next, e4b->bd_bitmap))
1549 break;
1550
1551 order = mb_find_order_for_block(e4b, next);
1552
1553 block = next >> order;
1554 ex->fe_len += 1 << order;
1555 }
1556
1557 if (ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))) {
1558 /* Should never happen! (but apparently sometimes does?!?) */
1559 WARN_ON(1);
1560 ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
1561 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1562 block, order, needed, ex->fe_group, ex->fe_start,
1563 ex->fe_len, ex->fe_logical);
1564 ex->fe_len = 0;
1565 ex->fe_start = 0;
1566 ex->fe_group = 0;
1567 }
1568 return ex->fe_len;
1569 }
1570
1571 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1572 {
1573 int ord;
1574 int mlen = 0;
1575 int max = 0;
1576 int cur;
1577 int start = ex->fe_start;
1578 int len = ex->fe_len;
1579 unsigned ret = 0;
1580 int len0 = len;
1581 void *buddy;
1582
1583 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1584 BUG_ON(e4b->bd_group != ex->fe_group);
1585 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1586 mb_check_buddy(e4b);
1587 mb_mark_used_double(e4b, start, len);
1588
1589 e4b->bd_info->bb_free -= len;
1590 if (e4b->bd_info->bb_first_free == start)
1591 e4b->bd_info->bb_first_free += len;
1592
1593 /* let's maintain fragments counter */
1594 if (start != 0)
1595 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1596 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1597 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1598 if (mlen && max)
1599 e4b->bd_info->bb_fragments++;
1600 else if (!mlen && !max)
1601 e4b->bd_info->bb_fragments--;
1602
1603 /* let's maintain buddy itself */
1604 while (len) {
1605 ord = mb_find_order_for_block(e4b, start);
1606
1607 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1608 /* the whole chunk may be allocated at once! */
1609 mlen = 1 << ord;
1610 buddy = mb_find_buddy(e4b, ord, &max);
1611 BUG_ON((start >> ord) >= max);
1612 mb_set_bit(start >> ord, buddy);
1613 e4b->bd_info->bb_counters[ord]--;
1614 start += mlen;
1615 len -= mlen;
1616 BUG_ON(len < 0);
1617 continue;
1618 }
1619
1620 /* store for history */
1621 if (ret == 0)
1622 ret = len | (ord << 16);
1623
1624 /* we have to split large buddy */
1625 BUG_ON(ord <= 0);
1626 buddy = mb_find_buddy(e4b, ord, &max);
1627 mb_set_bit(start >> ord, buddy);
1628 e4b->bd_info->bb_counters[ord]--;
1629
1630 ord--;
1631 cur = (start >> ord) & ~1U;
1632 buddy = mb_find_buddy(e4b, ord, &max);
1633 mb_clear_bit(cur, buddy);
1634 mb_clear_bit(cur + 1, buddy);
1635 e4b->bd_info->bb_counters[ord]++;
1636 e4b->bd_info->bb_counters[ord]++;
1637 }
1638 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1639
1640 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1641 mb_check_buddy(e4b);
1642
1643 return ret;
1644 }
1645
1646 /*
1647 * Must be called under group lock!
1648 */
1649 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1650 struct ext4_buddy *e4b)
1651 {
1652 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1653 int ret;
1654
1655 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1656 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1657
1658 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1659 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1660 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1661
1662 /* preallocation can change ac_b_ex, thus we store actually
1663 * allocated blocks for history */
1664 ac->ac_f_ex = ac->ac_b_ex;
1665
1666 ac->ac_status = AC_STATUS_FOUND;
1667 ac->ac_tail = ret & 0xffff;
1668 ac->ac_buddy = ret >> 16;
1669
1670 /*
1671 * take the page reference. We want the page to be pinned
1672 * so that we don't get a ext4_mb_init_cache_call for this
1673 * group until we update the bitmap. That would mean we
1674 * double allocate blocks. The reference is dropped
1675 * in ext4_mb_release_context
1676 */
1677 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1678 get_page(ac->ac_bitmap_page);
1679 ac->ac_buddy_page = e4b->bd_buddy_page;
1680 get_page(ac->ac_buddy_page);
1681 /* store last allocated for subsequent stream allocation */
1682 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1683 spin_lock(&sbi->s_md_lock);
1684 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1685 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1686 spin_unlock(&sbi->s_md_lock);
1687 }
1688 }
1689
1690 /*
1691 * regular allocator, for general purposes allocation
1692 */
1693
1694 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1695 struct ext4_buddy *e4b,
1696 int finish_group)
1697 {
1698 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1699 struct ext4_free_extent *bex = &ac->ac_b_ex;
1700 struct ext4_free_extent *gex = &ac->ac_g_ex;
1701 struct ext4_free_extent ex;
1702 int max;
1703
1704 if (ac->ac_status == AC_STATUS_FOUND)
1705 return;
1706 /*
1707 * We don't want to scan for a whole year
1708 */
1709 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1710 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1711 ac->ac_status = AC_STATUS_BREAK;
1712 return;
1713 }
1714
1715 /*
1716 * Haven't found good chunk so far, let's continue
1717 */
1718 if (bex->fe_len < gex->fe_len)
1719 return;
1720
1721 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1722 && bex->fe_group == e4b->bd_group) {
1723 /* recheck chunk's availability - we don't know
1724 * when it was found (within this lock-unlock
1725 * period or not) */
1726 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1727 if (max >= gex->fe_len) {
1728 ext4_mb_use_best_found(ac, e4b);
1729 return;
1730 }
1731 }
1732 }
1733
1734 /*
1735 * The routine checks whether found extent is good enough. If it is,
1736 * then the extent gets marked used and flag is set to the context
1737 * to stop scanning. Otherwise, the extent is compared with the
1738 * previous found extent and if new one is better, then it's stored
1739 * in the context. Later, the best found extent will be used, if
1740 * mballoc can't find good enough extent.
1741 *
1742 * FIXME: real allocation policy is to be designed yet!
1743 */
1744 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1745 struct ext4_free_extent *ex,
1746 struct ext4_buddy *e4b)
1747 {
1748 struct ext4_free_extent *bex = &ac->ac_b_ex;
1749 struct ext4_free_extent *gex = &ac->ac_g_ex;
1750
1751 BUG_ON(ex->fe_len <= 0);
1752 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1753 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1754 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1755
1756 ac->ac_found++;
1757
1758 /*
1759 * The special case - take what you catch first
1760 */
1761 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1762 *bex = *ex;
1763 ext4_mb_use_best_found(ac, e4b);
1764 return;
1765 }
1766
1767 /*
1768 * Let's check whether the chuck is good enough
1769 */
1770 if (ex->fe_len == gex->fe_len) {
1771 *bex = *ex;
1772 ext4_mb_use_best_found(ac, e4b);
1773 return;
1774 }
1775
1776 /*
1777 * If this is first found extent, just store it in the context
1778 */
1779 if (bex->fe_len == 0) {
1780 *bex = *ex;
1781 return;
1782 }
1783
1784 /*
1785 * If new found extent is better, store it in the context
1786 */
1787 if (bex->fe_len < gex->fe_len) {
1788 /* if the request isn't satisfied, any found extent
1789 * larger than previous best one is better */
1790 if (ex->fe_len > bex->fe_len)
1791 *bex = *ex;
1792 } else if (ex->fe_len > gex->fe_len) {
1793 /* if the request is satisfied, then we try to find
1794 * an extent that still satisfy the request, but is
1795 * smaller than previous one */
1796 if (ex->fe_len < bex->fe_len)
1797 *bex = *ex;
1798 }
1799
1800 ext4_mb_check_limits(ac, e4b, 0);
1801 }
1802
1803 static noinline_for_stack
1804 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1805 struct ext4_buddy *e4b)
1806 {
1807 struct ext4_free_extent ex = ac->ac_b_ex;
1808 ext4_group_t group = ex.fe_group;
1809 int max;
1810 int err;
1811
1812 BUG_ON(ex.fe_len <= 0);
1813 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1814 if (err)
1815 return err;
1816
1817 ext4_lock_group(ac->ac_sb, group);
1818 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1819
1820 if (max > 0) {
1821 ac->ac_b_ex = ex;
1822 ext4_mb_use_best_found(ac, e4b);
1823 }
1824
1825 ext4_unlock_group(ac->ac_sb, group);
1826 ext4_mb_unload_buddy(e4b);
1827
1828 return 0;
1829 }
1830
1831 static noinline_for_stack
1832 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1833 struct ext4_buddy *e4b)
1834 {
1835 ext4_group_t group = ac->ac_g_ex.fe_group;
1836 int max;
1837 int err;
1838 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1839 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1840 struct ext4_free_extent ex;
1841
1842 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1843 return 0;
1844 if (grp->bb_free == 0)
1845 return 0;
1846
1847 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1848 if (err)
1849 return err;
1850
1851 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1852 ext4_mb_unload_buddy(e4b);
1853 return 0;
1854 }
1855
1856 ext4_lock_group(ac->ac_sb, group);
1857 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1858 ac->ac_g_ex.fe_len, &ex);
1859 ex.fe_logical = 0xDEADFA11; /* debug value */
1860
1861 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1862 ext4_fsblk_t start;
1863
1864 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1865 ex.fe_start;
1866 /* use do_div to get remainder (would be 64-bit modulo) */
1867 if (do_div(start, sbi->s_stripe) == 0) {
1868 ac->ac_found++;
1869 ac->ac_b_ex = ex;
1870 ext4_mb_use_best_found(ac, e4b);
1871 }
1872 } else if (max >= ac->ac_g_ex.fe_len) {
1873 BUG_ON(ex.fe_len <= 0);
1874 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1875 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1876 ac->ac_found++;
1877 ac->ac_b_ex = ex;
1878 ext4_mb_use_best_found(ac, e4b);
1879 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1880 /* Sometimes, caller may want to merge even small
1881 * number of blocks to an existing extent */
1882 BUG_ON(ex.fe_len <= 0);
1883 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1884 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1885 ac->ac_found++;
1886 ac->ac_b_ex = ex;
1887 ext4_mb_use_best_found(ac, e4b);
1888 }
1889 ext4_unlock_group(ac->ac_sb, group);
1890 ext4_mb_unload_buddy(e4b);
1891
1892 return 0;
1893 }
1894
1895 /*
1896 * The routine scans buddy structures (not bitmap!) from given order
1897 * to max order and tries to find big enough chunk to satisfy the req
1898 */
1899 static noinline_for_stack
1900 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1901 struct ext4_buddy *e4b)
1902 {
1903 struct super_block *sb = ac->ac_sb;
1904 struct ext4_group_info *grp = e4b->bd_info;
1905 void *buddy;
1906 int i;
1907 int k;
1908 int max;
1909
1910 BUG_ON(ac->ac_2order <= 0);
1911 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1912 if (grp->bb_counters[i] == 0)
1913 continue;
1914
1915 buddy = mb_find_buddy(e4b, i, &max);
1916 BUG_ON(buddy == NULL);
1917
1918 k = mb_find_next_zero_bit(buddy, max, 0);
1919 BUG_ON(k >= max);
1920
1921 ac->ac_found++;
1922
1923 ac->ac_b_ex.fe_len = 1 << i;
1924 ac->ac_b_ex.fe_start = k << i;
1925 ac->ac_b_ex.fe_group = e4b->bd_group;
1926
1927 ext4_mb_use_best_found(ac, e4b);
1928
1929 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1930
1931 if (EXT4_SB(sb)->s_mb_stats)
1932 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1933
1934 break;
1935 }
1936 }
1937
1938 /*
1939 * The routine scans the group and measures all found extents.
1940 * In order to optimize scanning, caller must pass number of
1941 * free blocks in the group, so the routine can know upper limit.
1942 */
1943 static noinline_for_stack
1944 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1945 struct ext4_buddy *e4b)
1946 {
1947 struct super_block *sb = ac->ac_sb;
1948 void *bitmap = e4b->bd_bitmap;
1949 struct ext4_free_extent ex;
1950 int i;
1951 int free;
1952
1953 free = e4b->bd_info->bb_free;
1954 BUG_ON(free <= 0);
1955
1956 i = e4b->bd_info->bb_first_free;
1957
1958 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1959 i = mb_find_next_zero_bit(bitmap,
1960 EXT4_CLUSTERS_PER_GROUP(sb), i);
1961 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1962 /*
1963 * IF we have corrupt bitmap, we won't find any
1964 * free blocks even though group info says we
1965 * we have free blocks
1966 */
1967 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1968 "%d free clusters as per "
1969 "group info. But bitmap says 0",
1970 free);
1971 break;
1972 }
1973
1974 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1975 BUG_ON(ex.fe_len <= 0);
1976 if (free < ex.fe_len) {
1977 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1978 "%d free clusters as per "
1979 "group info. But got %d blocks",
1980 free, ex.fe_len);
1981 /*
1982 * The number of free blocks differs. This mostly
1983 * indicate that the bitmap is corrupt. So exit
1984 * without claiming the space.
1985 */
1986 break;
1987 }
1988 ex.fe_logical = 0xDEADC0DE; /* debug value */
1989 ext4_mb_measure_extent(ac, &ex, e4b);
1990
1991 i += ex.fe_len;
1992 free -= ex.fe_len;
1993 }
1994
1995 ext4_mb_check_limits(ac, e4b, 1);
1996 }
1997
1998 /*
1999 * This is a special case for storages like raid5
2000 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2001 */
2002 static noinline_for_stack
2003 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2004 struct ext4_buddy *e4b)
2005 {
2006 struct super_block *sb = ac->ac_sb;
2007 struct ext4_sb_info *sbi = EXT4_SB(sb);
2008 void *bitmap = e4b->bd_bitmap;
2009 struct ext4_free_extent ex;
2010 ext4_fsblk_t first_group_block;
2011 ext4_fsblk_t a;
2012 ext4_grpblk_t i;
2013 int max;
2014
2015 BUG_ON(sbi->s_stripe == 0);
2016
2017 /* find first stripe-aligned block in group */
2018 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2019
2020 a = first_group_block + sbi->s_stripe - 1;
2021 do_div(a, sbi->s_stripe);
2022 i = (a * sbi->s_stripe) - first_group_block;
2023
2024 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2025 if (!mb_test_bit(i, bitmap)) {
2026 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2027 if (max >= sbi->s_stripe) {
2028 ac->ac_found++;
2029 ex.fe_logical = 0xDEADF00D; /* debug value */
2030 ac->ac_b_ex = ex;
2031 ext4_mb_use_best_found(ac, e4b);
2032 break;
2033 }
2034 }
2035 i += sbi->s_stripe;
2036 }
2037 }
2038
2039 /*
2040 * This is now called BEFORE we load the buddy bitmap.
2041 * Returns either 1 or 0 indicating that the group is either suitable
2042 * for the allocation or not. In addition it can also return negative
2043 * error code when something goes wrong.
2044 */
2045 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2046 ext4_group_t group, int cr)
2047 {
2048 unsigned free, fragments;
2049 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2050 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2051
2052 BUG_ON(cr < 0 || cr >= 4);
2053
2054 free = grp->bb_free;
2055 if (free == 0)
2056 return 0;
2057 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2058 return 0;
2059
2060 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2061 return 0;
2062
2063 /* We only do this if the grp has never been initialized */
2064 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2065 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2066 if (ret)
2067 return ret;
2068 }
2069
2070 fragments = grp->bb_fragments;
2071 if (fragments == 0)
2072 return 0;
2073
2074 switch (cr) {
2075 case 0:
2076 BUG_ON(ac->ac_2order == 0);
2077
2078 /* Avoid using the first bg of a flexgroup for data files */
2079 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2080 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2081 ((group % flex_size) == 0))
2082 return 0;
2083
2084 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2085 (free / fragments) >= ac->ac_g_ex.fe_len)
2086 return 1;
2087
2088 if (grp->bb_largest_free_order < ac->ac_2order)
2089 return 0;
2090
2091 return 1;
2092 case 1:
2093 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2094 return 1;
2095 break;
2096 case 2:
2097 if (free >= ac->ac_g_ex.fe_len)
2098 return 1;
2099 break;
2100 case 3:
2101 return 1;
2102 default:
2103 BUG();
2104 }
2105
2106 return 0;
2107 }
2108
2109 static noinline_for_stack int
2110 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2111 {
2112 ext4_group_t ngroups, group, i;
2113 int cr;
2114 int err = 0, first_err = 0;
2115 struct ext4_sb_info *sbi;
2116 struct super_block *sb;
2117 struct ext4_buddy e4b;
2118
2119 sb = ac->ac_sb;
2120 sbi = EXT4_SB(sb);
2121 ngroups = ext4_get_groups_count(sb);
2122 /* non-extent files are limited to low blocks/groups */
2123 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2124 ngroups = sbi->s_blockfile_groups;
2125
2126 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2127
2128 /* first, try the goal */
2129 err = ext4_mb_find_by_goal(ac, &e4b);
2130 if (err || ac->ac_status == AC_STATUS_FOUND)
2131 goto out;
2132
2133 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2134 goto out;
2135
2136 /*
2137 * ac->ac2_order is set only if the fe_len is a power of 2
2138 * if ac2_order is set we also set criteria to 0 so that we
2139 * try exact allocation using buddy.
2140 */
2141 i = fls(ac->ac_g_ex.fe_len);
2142 ac->ac_2order = 0;
2143 /*
2144 * We search using buddy data only if the order of the request
2145 * is greater than equal to the sbi_s_mb_order2_reqs
2146 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2147 * We also support searching for power-of-two requests only for
2148 * requests upto maximum buddy size we have constructed.
2149 */
2150 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2151 /*
2152 * This should tell if fe_len is exactly power of 2
2153 */
2154 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2155 ac->ac_2order = i - 1;
2156 }
2157
2158 /* if stream allocation is enabled, use global goal */
2159 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2160 /* TBD: may be hot point */
2161 spin_lock(&sbi->s_md_lock);
2162 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2163 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2164 spin_unlock(&sbi->s_md_lock);
2165 }
2166
2167 /* Let's just scan groups to find more-less suitable blocks */
2168 cr = ac->ac_2order ? 0 : 1;
2169 /*
2170 * cr == 0 try to get exact allocation,
2171 * cr == 3 try to get anything
2172 */
2173 repeat:
2174 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2175 ac->ac_criteria = cr;
2176 /*
2177 * searching for the right group start
2178 * from the goal value specified
2179 */
2180 group = ac->ac_g_ex.fe_group;
2181
2182 for (i = 0; i < ngroups; group++, i++) {
2183 int ret = 0;
2184 cond_resched();
2185 /*
2186 * Artificially restricted ngroups for non-extent
2187 * files makes group > ngroups possible on first loop.
2188 */
2189 if (group >= ngroups)
2190 group = 0;
2191
2192 /* This now checks without needing the buddy page */
2193 ret = ext4_mb_good_group(ac, group, cr);
2194 if (ret <= 0) {
2195 if (!first_err)
2196 first_err = ret;
2197 continue;
2198 }
2199
2200 err = ext4_mb_load_buddy(sb, group, &e4b);
2201 if (err)
2202 goto out;
2203
2204 ext4_lock_group(sb, group);
2205
2206 /*
2207 * We need to check again after locking the
2208 * block group
2209 */
2210 ret = ext4_mb_good_group(ac, group, cr);
2211 if (ret <= 0) {
2212 ext4_unlock_group(sb, group);
2213 ext4_mb_unload_buddy(&e4b);
2214 if (!first_err)
2215 first_err = ret;
2216 continue;
2217 }
2218
2219 ac->ac_groups_scanned++;
2220 if (cr == 0)
2221 ext4_mb_simple_scan_group(ac, &e4b);
2222 else if (cr == 1 && sbi->s_stripe &&
2223 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2224 ext4_mb_scan_aligned(ac, &e4b);
2225 else
2226 ext4_mb_complex_scan_group(ac, &e4b);
2227
2228 ext4_unlock_group(sb, group);
2229 ext4_mb_unload_buddy(&e4b);
2230
2231 if (ac->ac_status != AC_STATUS_CONTINUE)
2232 break;
2233 }
2234 }
2235
2236 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2237 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2238 /*
2239 * We've been searching too long. Let's try to allocate
2240 * the best chunk we've found so far
2241 */
2242
2243 ext4_mb_try_best_found(ac, &e4b);
2244 if (ac->ac_status != AC_STATUS_FOUND) {
2245 /*
2246 * Someone more lucky has already allocated it.
2247 * The only thing we can do is just take first
2248 * found block(s)
2249 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2250 */
2251 ac->ac_b_ex.fe_group = 0;
2252 ac->ac_b_ex.fe_start = 0;
2253 ac->ac_b_ex.fe_len = 0;
2254 ac->ac_status = AC_STATUS_CONTINUE;
2255 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2256 cr = 3;
2257 atomic_inc(&sbi->s_mb_lost_chunks);
2258 goto repeat;
2259 }
2260 }
2261 out:
2262 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2263 err = first_err;
2264 return err;
2265 }
2266
2267 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2268 {
2269 struct super_block *sb = seq->private;
2270 ext4_group_t group;
2271
2272 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2273 return NULL;
2274 group = *pos + 1;
2275 return (void *) ((unsigned long) group);
2276 }
2277
2278 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2279 {
2280 struct super_block *sb = seq->private;
2281 ext4_group_t group;
2282
2283 ++*pos;
2284 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2285 return NULL;
2286 group = *pos + 1;
2287 return (void *) ((unsigned long) group);
2288 }
2289
2290 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2291 {
2292 struct super_block *sb = seq->private;
2293 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2294 int i;
2295 int err, buddy_loaded = 0;
2296 struct ext4_buddy e4b;
2297 struct ext4_group_info *grinfo;
2298 unsigned char blocksize_bits = min_t(unsigned char,
2299 sb->s_blocksize_bits,
2300 EXT4_MAX_BLOCK_LOG_SIZE);
2301 struct sg {
2302 struct ext4_group_info info;
2303 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2304 } sg;
2305
2306 group--;
2307 if (group == 0)
2308 seq_puts(seq, "#group: free frags first ["
2309 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2310 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2311
2312 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2313 sizeof(struct ext4_group_info);
2314
2315 grinfo = ext4_get_group_info(sb, group);
2316 /* Load the group info in memory only if not already loaded. */
2317 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2318 err = ext4_mb_load_buddy(sb, group, &e4b);
2319 if (err) {
2320 seq_printf(seq, "#%-5u: I/O error\n", group);
2321 return 0;
2322 }
2323 buddy_loaded = 1;
2324 }
2325
2326 memcpy(&sg, ext4_get_group_info(sb, group), i);
2327
2328 if (buddy_loaded)
2329 ext4_mb_unload_buddy(&e4b);
2330
2331 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2332 sg.info.bb_fragments, sg.info.bb_first_free);
2333 for (i = 0; i <= 13; i++)
2334 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2335 sg.info.bb_counters[i] : 0);
2336 seq_printf(seq, " ]\n");
2337
2338 return 0;
2339 }
2340
2341 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2342 {
2343 }
2344
2345 static const struct seq_operations ext4_mb_seq_groups_ops = {
2346 .start = ext4_mb_seq_groups_start,
2347 .next = ext4_mb_seq_groups_next,
2348 .stop = ext4_mb_seq_groups_stop,
2349 .show = ext4_mb_seq_groups_show,
2350 };
2351
2352 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2353 {
2354 struct super_block *sb = PDE_DATA(inode);
2355 int rc;
2356
2357 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2358 if (rc == 0) {
2359 struct seq_file *m = file->private_data;
2360 m->private = sb;
2361 }
2362 return rc;
2363
2364 }
2365
2366 const struct file_operations ext4_seq_mb_groups_fops = {
2367 .open = ext4_mb_seq_groups_open,
2368 .read = seq_read,
2369 .llseek = seq_lseek,
2370 .release = seq_release,
2371 };
2372
2373 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2374 {
2375 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2376 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2377
2378 BUG_ON(!cachep);
2379 return cachep;
2380 }
2381
2382 /*
2383 * Allocate the top-level s_group_info array for the specified number
2384 * of groups
2385 */
2386 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2387 {
2388 struct ext4_sb_info *sbi = EXT4_SB(sb);
2389 unsigned size;
2390 struct ext4_group_info ***new_groupinfo;
2391
2392 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2393 EXT4_DESC_PER_BLOCK_BITS(sb);
2394 if (size <= sbi->s_group_info_size)
2395 return 0;
2396
2397 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2398 new_groupinfo = kvzalloc(size, GFP_KERNEL);
2399 if (!new_groupinfo) {
2400 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2401 return -ENOMEM;
2402 }
2403 if (sbi->s_group_info) {
2404 memcpy(new_groupinfo, sbi->s_group_info,
2405 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2406 kvfree(sbi->s_group_info);
2407 }
2408 sbi->s_group_info = new_groupinfo;
2409 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2410 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2411 sbi->s_group_info_size);
2412 return 0;
2413 }
2414
2415 /* Create and initialize ext4_group_info data for the given group. */
2416 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2417 struct ext4_group_desc *desc)
2418 {
2419 int i;
2420 int metalen = 0;
2421 struct ext4_sb_info *sbi = EXT4_SB(sb);
2422 struct ext4_group_info **meta_group_info;
2423 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2424
2425 /*
2426 * First check if this group is the first of a reserved block.
2427 * If it's true, we have to allocate a new table of pointers
2428 * to ext4_group_info structures
2429 */
2430 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2431 metalen = sizeof(*meta_group_info) <<
2432 EXT4_DESC_PER_BLOCK_BITS(sb);
2433 meta_group_info = kmalloc(metalen, GFP_NOFS);
2434 if (meta_group_info == NULL) {
2435 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2436 "for a buddy group");
2437 goto exit_meta_group_info;
2438 }
2439 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2440 meta_group_info;
2441 }
2442
2443 meta_group_info =
2444 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2445 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2446
2447 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2448 if (meta_group_info[i] == NULL) {
2449 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2450 goto exit_group_info;
2451 }
2452 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2453 &(meta_group_info[i]->bb_state));
2454
2455 /*
2456 * initialize bb_free to be able to skip
2457 * empty groups without initialization
2458 */
2459 if (ext4_has_group_desc_csum(sb) &&
2460 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2461 meta_group_info[i]->bb_free =
2462 ext4_free_clusters_after_init(sb, group, desc);
2463 } else {
2464 meta_group_info[i]->bb_free =
2465 ext4_free_group_clusters(sb, desc);
2466 }
2467
2468 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2469 init_rwsem(&meta_group_info[i]->alloc_sem);
2470 meta_group_info[i]->bb_free_root = RB_ROOT;
2471 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2472
2473 #ifdef DOUBLE_CHECK
2474 {
2475 struct buffer_head *bh;
2476 meta_group_info[i]->bb_bitmap =
2477 kmalloc(sb->s_blocksize, GFP_NOFS);
2478 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2479 bh = ext4_read_block_bitmap(sb, group);
2480 BUG_ON(IS_ERR_OR_NULL(bh));
2481 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2482 sb->s_blocksize);
2483 put_bh(bh);
2484 }
2485 #endif
2486
2487 return 0;
2488
2489 exit_group_info:
2490 /* If a meta_group_info table has been allocated, release it now */
2491 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2492 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2493 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2494 }
2495 exit_meta_group_info:
2496 return -ENOMEM;
2497 } /* ext4_mb_add_groupinfo */
2498
2499 static int ext4_mb_init_backend(struct super_block *sb)
2500 {
2501 ext4_group_t ngroups = ext4_get_groups_count(sb);
2502 ext4_group_t i;
2503 struct ext4_sb_info *sbi = EXT4_SB(sb);
2504 int err;
2505 struct ext4_group_desc *desc;
2506 struct kmem_cache *cachep;
2507
2508 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2509 if (err)
2510 return err;
2511
2512 sbi->s_buddy_cache = new_inode(sb);
2513 if (sbi->s_buddy_cache == NULL) {
2514 ext4_msg(sb, KERN_ERR, "can't get new inode");
2515 goto err_freesgi;
2516 }
2517 /* To avoid potentially colliding with an valid on-disk inode number,
2518 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2519 * not in the inode hash, so it should never be found by iget(), but
2520 * this will avoid confusion if it ever shows up during debugging. */
2521 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2522 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2523 for (i = 0; i < ngroups; i++) {
2524 desc = ext4_get_group_desc(sb, i, NULL);
2525 if (desc == NULL) {
2526 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2527 goto err_freebuddy;
2528 }
2529 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2530 goto err_freebuddy;
2531 }
2532
2533 return 0;
2534
2535 err_freebuddy:
2536 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2537 while (i-- > 0)
2538 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2539 i = sbi->s_group_info_size;
2540 while (i-- > 0)
2541 kfree(sbi->s_group_info[i]);
2542 iput(sbi->s_buddy_cache);
2543 err_freesgi:
2544 kvfree(sbi->s_group_info);
2545 return -ENOMEM;
2546 }
2547
2548 static void ext4_groupinfo_destroy_slabs(void)
2549 {
2550 int i;
2551
2552 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2553 if (ext4_groupinfo_caches[i])
2554 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2555 ext4_groupinfo_caches[i] = NULL;
2556 }
2557 }
2558
2559 static int ext4_groupinfo_create_slab(size_t size)
2560 {
2561 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2562 int slab_size;
2563 int blocksize_bits = order_base_2(size);
2564 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2565 struct kmem_cache *cachep;
2566
2567 if (cache_index >= NR_GRPINFO_CACHES)
2568 return -EINVAL;
2569
2570 if (unlikely(cache_index < 0))
2571 cache_index = 0;
2572
2573 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2574 if (ext4_groupinfo_caches[cache_index]) {
2575 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2576 return 0; /* Already created */
2577 }
2578
2579 slab_size = offsetof(struct ext4_group_info,
2580 bb_counters[blocksize_bits + 2]);
2581
2582 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2583 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2584 NULL);
2585
2586 ext4_groupinfo_caches[cache_index] = cachep;
2587
2588 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2589 if (!cachep) {
2590 printk(KERN_EMERG
2591 "EXT4-fs: no memory for groupinfo slab cache\n");
2592 return -ENOMEM;
2593 }
2594
2595 return 0;
2596 }
2597
2598 int ext4_mb_init(struct super_block *sb)
2599 {
2600 struct ext4_sb_info *sbi = EXT4_SB(sb);
2601 unsigned i, j;
2602 unsigned offset, offset_incr;
2603 unsigned max;
2604 int ret;
2605
2606 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2607
2608 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2609 if (sbi->s_mb_offsets == NULL) {
2610 ret = -ENOMEM;
2611 goto out;
2612 }
2613
2614 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2615 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2616 if (sbi->s_mb_maxs == NULL) {
2617 ret = -ENOMEM;
2618 goto out;
2619 }
2620
2621 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2622 if (ret < 0)
2623 goto out;
2624
2625 /* order 0 is regular bitmap */
2626 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2627 sbi->s_mb_offsets[0] = 0;
2628
2629 i = 1;
2630 offset = 0;
2631 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2632 max = sb->s_blocksize << 2;
2633 do {
2634 sbi->s_mb_offsets[i] = offset;
2635 sbi->s_mb_maxs[i] = max;
2636 offset += offset_incr;
2637 offset_incr = offset_incr >> 1;
2638 max = max >> 1;
2639 i++;
2640 } while (i <= sb->s_blocksize_bits + 1);
2641
2642 spin_lock_init(&sbi->s_md_lock);
2643 spin_lock_init(&sbi->s_bal_lock);
2644 sbi->s_mb_free_pending = 0;
2645 INIT_LIST_HEAD(&sbi->s_freed_data_list);
2646
2647 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2648 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2649 sbi->s_mb_stats = MB_DEFAULT_STATS;
2650 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2651 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2652 /*
2653 * The default group preallocation is 512, which for 4k block
2654 * sizes translates to 2 megabytes. However for bigalloc file
2655 * systems, this is probably too big (i.e, if the cluster size
2656 * is 1 megabyte, then group preallocation size becomes half a
2657 * gigabyte!). As a default, we will keep a two megabyte
2658 * group pralloc size for cluster sizes up to 64k, and after
2659 * that, we will force a minimum group preallocation size of
2660 * 32 clusters. This translates to 8 megs when the cluster
2661 * size is 256k, and 32 megs when the cluster size is 1 meg,
2662 * which seems reasonable as a default.
2663 */
2664 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2665 sbi->s_cluster_bits, 32);
2666 /*
2667 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2668 * to the lowest multiple of s_stripe which is bigger than
2669 * the s_mb_group_prealloc as determined above. We want
2670 * the preallocation size to be an exact multiple of the
2671 * RAID stripe size so that preallocations don't fragment
2672 * the stripes.
2673 */
2674 if (sbi->s_stripe > 1) {
2675 sbi->s_mb_group_prealloc = roundup(
2676 sbi->s_mb_group_prealloc, sbi->s_stripe);
2677 }
2678
2679 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2680 if (sbi->s_locality_groups == NULL) {
2681 ret = -ENOMEM;
2682 goto out;
2683 }
2684 for_each_possible_cpu(i) {
2685 struct ext4_locality_group *lg;
2686 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2687 mutex_init(&lg->lg_mutex);
2688 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2689 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2690 spin_lock_init(&lg->lg_prealloc_lock);
2691 }
2692
2693 /* init file for buddy data */
2694 ret = ext4_mb_init_backend(sb);
2695 if (ret != 0)
2696 goto out_free_locality_groups;
2697
2698 return 0;
2699
2700 out_free_locality_groups:
2701 free_percpu(sbi->s_locality_groups);
2702 sbi->s_locality_groups = NULL;
2703 out:
2704 kfree(sbi->s_mb_offsets);
2705 sbi->s_mb_offsets = NULL;
2706 kfree(sbi->s_mb_maxs);
2707 sbi->s_mb_maxs = NULL;
2708 return ret;
2709 }
2710
2711 /* need to called with the ext4 group lock held */
2712 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2713 {
2714 struct ext4_prealloc_space *pa;
2715 struct list_head *cur, *tmp;
2716 int count = 0;
2717
2718 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2719 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2720 list_del(&pa->pa_group_list);
2721 count++;
2722 kmem_cache_free(ext4_pspace_cachep, pa);
2723 }
2724 if (count)
2725 mb_debug(1, "mballoc: %u PAs left\n", count);
2726
2727 }
2728
2729 int ext4_mb_release(struct super_block *sb)
2730 {
2731 ext4_group_t ngroups = ext4_get_groups_count(sb);
2732 ext4_group_t i;
2733 int num_meta_group_infos;
2734 struct ext4_group_info *grinfo;
2735 struct ext4_sb_info *sbi = EXT4_SB(sb);
2736 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2737
2738 if (sbi->s_group_info) {
2739 for (i = 0; i < ngroups; i++) {
2740 grinfo = ext4_get_group_info(sb, i);
2741 #ifdef DOUBLE_CHECK
2742 kfree(grinfo->bb_bitmap);
2743 #endif
2744 ext4_lock_group(sb, i);
2745 ext4_mb_cleanup_pa(grinfo);
2746 ext4_unlock_group(sb, i);
2747 kmem_cache_free(cachep, grinfo);
2748 }
2749 num_meta_group_infos = (ngroups +
2750 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2751 EXT4_DESC_PER_BLOCK_BITS(sb);
2752 for (i = 0; i < num_meta_group_infos; i++)
2753 kfree(sbi->s_group_info[i]);
2754 kvfree(sbi->s_group_info);
2755 }
2756 kfree(sbi->s_mb_offsets);
2757 kfree(sbi->s_mb_maxs);
2758 iput(sbi->s_buddy_cache);
2759 if (sbi->s_mb_stats) {
2760 ext4_msg(sb, KERN_INFO,
2761 "mballoc: %u blocks %u reqs (%u success)",
2762 atomic_read(&sbi->s_bal_allocated),
2763 atomic_read(&sbi->s_bal_reqs),
2764 atomic_read(&sbi->s_bal_success));
2765 ext4_msg(sb, KERN_INFO,
2766 "mballoc: %u extents scanned, %u goal hits, "
2767 "%u 2^N hits, %u breaks, %u lost",
2768 atomic_read(&sbi->s_bal_ex_scanned),
2769 atomic_read(&sbi->s_bal_goals),
2770 atomic_read(&sbi->s_bal_2orders),
2771 atomic_read(&sbi->s_bal_breaks),
2772 atomic_read(&sbi->s_mb_lost_chunks));
2773 ext4_msg(sb, KERN_INFO,
2774 "mballoc: %lu generated and it took %Lu",
2775 sbi->s_mb_buddies_generated,
2776 sbi->s_mb_generation_time);
2777 ext4_msg(sb, KERN_INFO,
2778 "mballoc: %u preallocated, %u discarded",
2779 atomic_read(&sbi->s_mb_preallocated),
2780 atomic_read(&sbi->s_mb_discarded));
2781 }
2782
2783 free_percpu(sbi->s_locality_groups);
2784
2785 return 0;
2786 }
2787
2788 static inline int ext4_issue_discard(struct super_block *sb,
2789 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2790 struct bio **biop)
2791 {
2792 ext4_fsblk_t discard_block;
2793
2794 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2795 ext4_group_first_block_no(sb, block_group));
2796 count = EXT4_C2B(EXT4_SB(sb), count);
2797 trace_ext4_discard_blocks(sb,
2798 (unsigned long long) discard_block, count);
2799 if (biop) {
2800 return __blkdev_issue_discard(sb->s_bdev,
2801 (sector_t)discard_block << (sb->s_blocksize_bits - 9),
2802 (sector_t)count << (sb->s_blocksize_bits - 9),
2803 GFP_NOFS, 0, biop);
2804 } else
2805 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2806 }
2807
2808 static void ext4_free_data_in_buddy(struct super_block *sb,
2809 struct ext4_free_data *entry)
2810 {
2811 struct ext4_buddy e4b;
2812 struct ext4_group_info *db;
2813 int err, count = 0, count2 = 0;
2814
2815 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2816 entry->efd_count, entry->efd_group, entry);
2817
2818 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2819 /* we expect to find existing buddy because it's pinned */
2820 BUG_ON(err != 0);
2821
2822 spin_lock(&EXT4_SB(sb)->s_md_lock);
2823 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2824 spin_unlock(&EXT4_SB(sb)->s_md_lock);
2825
2826 db = e4b.bd_info;
2827 /* there are blocks to put in buddy to make them really free */
2828 count += entry->efd_count;
2829 count2++;
2830 ext4_lock_group(sb, entry->efd_group);
2831 /* Take it out of per group rb tree */
2832 rb_erase(&entry->efd_node, &(db->bb_free_root));
2833 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2834
2835 /*
2836 * Clear the trimmed flag for the group so that the next
2837 * ext4_trim_fs can trim it.
2838 * If the volume is mounted with -o discard, online discard
2839 * is supported and the free blocks will be trimmed online.
2840 */
2841 if (!test_opt(sb, DISCARD))
2842 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2843
2844 if (!db->bb_free_root.rb_node) {
2845 /* No more items in the per group rb tree
2846 * balance refcounts from ext4_mb_free_metadata()
2847 */
2848 put_page(e4b.bd_buddy_page);
2849 put_page(e4b.bd_bitmap_page);
2850 }
2851 ext4_unlock_group(sb, entry->efd_group);
2852 kmem_cache_free(ext4_free_data_cachep, entry);
2853 ext4_mb_unload_buddy(&e4b);
2854
2855 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2856 }
2857
2858 /*
2859 * This function is called by the jbd2 layer once the commit has finished,
2860 * so we know we can free the blocks that were released with that commit.
2861 */
2862 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
2863 {
2864 struct ext4_sb_info *sbi = EXT4_SB(sb);
2865 struct ext4_free_data *entry, *tmp;
2866 struct bio *discard_bio = NULL;
2867 struct list_head freed_data_list;
2868 struct list_head *cut_pos = NULL;
2869 int err;
2870
2871 INIT_LIST_HEAD(&freed_data_list);
2872
2873 spin_lock(&sbi->s_md_lock);
2874 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
2875 if (entry->efd_tid != commit_tid)
2876 break;
2877 cut_pos = &entry->efd_list;
2878 }
2879 if (cut_pos)
2880 list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
2881 cut_pos);
2882 spin_unlock(&sbi->s_md_lock);
2883
2884 if (test_opt(sb, DISCARD)) {
2885 list_for_each_entry(entry, &freed_data_list, efd_list) {
2886 err = ext4_issue_discard(sb, entry->efd_group,
2887 entry->efd_start_cluster,
2888 entry->efd_count,
2889 &discard_bio);
2890 if (err && err != -EOPNOTSUPP) {
2891 ext4_msg(sb, KERN_WARNING, "discard request in"
2892 " group:%d block:%d count:%d failed"
2893 " with %d", entry->efd_group,
2894 entry->efd_start_cluster,
2895 entry->efd_count, err);
2896 } else if (err == -EOPNOTSUPP)
2897 break;
2898 }
2899
2900 if (discard_bio) {
2901 submit_bio_wait(discard_bio);
2902 bio_put(discard_bio);
2903 }
2904 }
2905
2906 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
2907 ext4_free_data_in_buddy(sb, entry);
2908 }
2909
2910 int __init ext4_init_mballoc(void)
2911 {
2912 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2913 SLAB_RECLAIM_ACCOUNT);
2914 if (ext4_pspace_cachep == NULL)
2915 return -ENOMEM;
2916
2917 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2918 SLAB_RECLAIM_ACCOUNT);
2919 if (ext4_ac_cachep == NULL) {
2920 kmem_cache_destroy(ext4_pspace_cachep);
2921 return -ENOMEM;
2922 }
2923
2924 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2925 SLAB_RECLAIM_ACCOUNT);
2926 if (ext4_free_data_cachep == NULL) {
2927 kmem_cache_destroy(ext4_pspace_cachep);
2928 kmem_cache_destroy(ext4_ac_cachep);
2929 return -ENOMEM;
2930 }
2931 return 0;
2932 }
2933
2934 void ext4_exit_mballoc(void)
2935 {
2936 /*
2937 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2938 * before destroying the slab cache.
2939 */
2940 rcu_barrier();
2941 kmem_cache_destroy(ext4_pspace_cachep);
2942 kmem_cache_destroy(ext4_ac_cachep);
2943 kmem_cache_destroy(ext4_free_data_cachep);
2944 ext4_groupinfo_destroy_slabs();
2945 }
2946
2947
2948 /*
2949 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2950 * Returns 0 if success or error code
2951 */
2952 static noinline_for_stack int
2953 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2954 handle_t *handle, unsigned int reserv_clstrs)
2955 {
2956 struct buffer_head *bitmap_bh = NULL;
2957 struct ext4_group_desc *gdp;
2958 struct buffer_head *gdp_bh;
2959 struct ext4_sb_info *sbi;
2960 struct super_block *sb;
2961 ext4_fsblk_t block;
2962 int err, len;
2963
2964 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2965 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2966
2967 sb = ac->ac_sb;
2968 sbi = EXT4_SB(sb);
2969
2970 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2971 if (IS_ERR(bitmap_bh)) {
2972 err = PTR_ERR(bitmap_bh);
2973 bitmap_bh = NULL;
2974 goto out_err;
2975 }
2976
2977 BUFFER_TRACE(bitmap_bh, "getting write access");
2978 err = ext4_journal_get_write_access(handle, bitmap_bh);
2979 if (err)
2980 goto out_err;
2981
2982 err = -EIO;
2983 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2984 if (!gdp)
2985 goto out_err;
2986
2987 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2988 ext4_free_group_clusters(sb, gdp));
2989
2990 BUFFER_TRACE(gdp_bh, "get_write_access");
2991 err = ext4_journal_get_write_access(handle, gdp_bh);
2992 if (err)
2993 goto out_err;
2994
2995 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2996
2997 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2998 if (!ext4_data_block_valid(sbi, block, len)) {
2999 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3000 "fs metadata", block, block+len);
3001 /* File system mounted not to panic on error
3002 * Fix the bitmap and return EFSCORRUPTED
3003 * We leak some of the blocks here.
3004 */
3005 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3006 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3007 ac->ac_b_ex.fe_len);
3008 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3009 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3010 if (!err)
3011 err = -EFSCORRUPTED;
3012 goto out_err;
3013 }
3014
3015 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3016 #ifdef AGGRESSIVE_CHECK
3017 {
3018 int i;
3019 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3020 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3021 bitmap_bh->b_data));
3022 }
3023 }
3024 #endif
3025 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3026 ac->ac_b_ex.fe_len);
3027 if (ext4_has_group_desc_csum(sb) &&
3028 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3029 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3030 ext4_free_group_clusters_set(sb, gdp,
3031 ext4_free_clusters_after_init(sb,
3032 ac->ac_b_ex.fe_group, gdp));
3033 }
3034 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3035 ext4_free_group_clusters_set(sb, gdp, len);
3036 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3037 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3038
3039 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3040 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3041 /*
3042 * Now reduce the dirty block count also. Should not go negative
3043 */
3044 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3045 /* release all the reserved blocks if non delalloc */
3046 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3047 reserv_clstrs);
3048
3049 if (sbi->s_log_groups_per_flex) {
3050 ext4_group_t flex_group = ext4_flex_group(sbi,
3051 ac->ac_b_ex.fe_group);
3052 atomic64_sub(ac->ac_b_ex.fe_len,
3053 &sbi->s_flex_groups[flex_group].free_clusters);
3054 }
3055
3056 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3057 if (err)
3058 goto out_err;
3059 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3060
3061 out_err:
3062 brelse(bitmap_bh);
3063 return err;
3064 }
3065
3066 /*
3067 * here we normalize request for locality group
3068 * Group request are normalized to s_mb_group_prealloc, which goes to
3069 * s_strip if we set the same via mount option.
3070 * s_mb_group_prealloc can be configured via
3071 * /sys/fs/ext4/<partition>/mb_group_prealloc
3072 *
3073 * XXX: should we try to preallocate more than the group has now?
3074 */
3075 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3076 {
3077 struct super_block *sb = ac->ac_sb;
3078 struct ext4_locality_group *lg = ac->ac_lg;
3079
3080 BUG_ON(lg == NULL);
3081 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3082 mb_debug(1, "#%u: goal %u blocks for locality group\n",
3083 current->pid, ac->ac_g_ex.fe_len);
3084 }
3085
3086 /*
3087 * Normalization means making request better in terms of
3088 * size and alignment
3089 */
3090 static noinline_for_stack void
3091 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3092 struct ext4_allocation_request *ar)
3093 {
3094 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3095 int bsbits, max;
3096 ext4_lblk_t end;
3097 loff_t size, start_off;
3098 loff_t orig_size __maybe_unused;
3099 ext4_lblk_t start;
3100 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3101 struct ext4_prealloc_space *pa;
3102
3103 /* do normalize only data requests, metadata requests
3104 do not need preallocation */
3105 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3106 return;
3107
3108 /* sometime caller may want exact blocks */
3109 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3110 return;
3111
3112 /* caller may indicate that preallocation isn't
3113 * required (it's a tail, for example) */
3114 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3115 return;
3116
3117 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3118 ext4_mb_normalize_group_request(ac);
3119 return ;
3120 }
3121
3122 bsbits = ac->ac_sb->s_blocksize_bits;
3123
3124 /* first, let's learn actual file size
3125 * given current request is allocated */
3126 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3127 size = size << bsbits;
3128 if (size < i_size_read(ac->ac_inode))
3129 size = i_size_read(ac->ac_inode);
3130 orig_size = size;
3131
3132 /* max size of free chunks */
3133 max = 2 << bsbits;
3134
3135 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3136 (req <= (size) || max <= (chunk_size))
3137
3138 /* first, try to predict filesize */
3139 /* XXX: should this table be tunable? */
3140 start_off = 0;
3141 if (size <= 16 * 1024) {
3142 size = 16 * 1024;
3143 } else if (size <= 32 * 1024) {
3144 size = 32 * 1024;
3145 } else if (size <= 64 * 1024) {
3146 size = 64 * 1024;
3147 } else if (size <= 128 * 1024) {
3148 size = 128 * 1024;
3149 } else if (size <= 256 * 1024) {
3150 size = 256 * 1024;
3151 } else if (size <= 512 * 1024) {
3152 size = 512 * 1024;
3153 } else if (size <= 1024 * 1024) {
3154 size = 1024 * 1024;
3155 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3156 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3157 (21 - bsbits)) << 21;
3158 size = 2 * 1024 * 1024;
3159 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3160 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3161 (22 - bsbits)) << 22;
3162 size = 4 * 1024 * 1024;
3163 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3164 (8<<20)>>bsbits, max, 8 * 1024)) {
3165 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3166 (23 - bsbits)) << 23;
3167 size = 8 * 1024 * 1024;
3168 } else {
3169 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3170 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3171 ac->ac_o_ex.fe_len) << bsbits;
3172 }
3173 size = size >> bsbits;
3174 start = start_off >> bsbits;
3175
3176 /* don't cover already allocated blocks in selected range */
3177 if (ar->pleft && start <= ar->lleft) {
3178 size -= ar->lleft + 1 - start;
3179 start = ar->lleft + 1;
3180 }
3181 if (ar->pright && start + size - 1 >= ar->lright)
3182 size -= start + size - ar->lright;
3183
3184 /*
3185 * Trim allocation request for filesystems with artificially small
3186 * groups.
3187 */
3188 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3189 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3190
3191 end = start + size;
3192
3193 /* check we don't cross already preallocated blocks */
3194 rcu_read_lock();
3195 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3196 ext4_lblk_t pa_end;
3197
3198 if (pa->pa_deleted)
3199 continue;
3200 spin_lock(&pa->pa_lock);
3201 if (pa->pa_deleted) {
3202 spin_unlock(&pa->pa_lock);
3203 continue;
3204 }
3205
3206 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3207 pa->pa_len);
3208
3209 /* PA must not overlap original request */
3210 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3211 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3212
3213 /* skip PAs this normalized request doesn't overlap with */
3214 if (pa->pa_lstart >= end || pa_end <= start) {
3215 spin_unlock(&pa->pa_lock);
3216 continue;
3217 }
3218 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3219
3220 /* adjust start or end to be adjacent to this pa */
3221 if (pa_end <= ac->ac_o_ex.fe_logical) {
3222 BUG_ON(pa_end < start);
3223 start = pa_end;
3224 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3225 BUG_ON(pa->pa_lstart > end);
3226 end = pa->pa_lstart;
3227 }
3228 spin_unlock(&pa->pa_lock);
3229 }
3230 rcu_read_unlock();
3231 size = end - start;
3232
3233 /* XXX: extra loop to check we really don't overlap preallocations */
3234 rcu_read_lock();
3235 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3236 ext4_lblk_t pa_end;
3237
3238 spin_lock(&pa->pa_lock);
3239 if (pa->pa_deleted == 0) {
3240 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3241 pa->pa_len);
3242 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3243 }
3244 spin_unlock(&pa->pa_lock);
3245 }
3246 rcu_read_unlock();
3247
3248 if (start + size <= ac->ac_o_ex.fe_logical &&
3249 start > ac->ac_o_ex.fe_logical) {
3250 ext4_msg(ac->ac_sb, KERN_ERR,
3251 "start %lu, size %lu, fe_logical %lu",
3252 (unsigned long) start, (unsigned long) size,
3253 (unsigned long) ac->ac_o_ex.fe_logical);
3254 BUG();
3255 }
3256 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3257
3258 /* now prepare goal request */
3259
3260 /* XXX: is it better to align blocks WRT to logical
3261 * placement or satisfy big request as is */
3262 ac->ac_g_ex.fe_logical = start;
3263 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3264
3265 /* define goal start in order to merge */
3266 if (ar->pright && (ar->lright == (start + size))) {
3267 /* merge to the right */
3268 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3269 &ac->ac_f_ex.fe_group,
3270 &ac->ac_f_ex.fe_start);
3271 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3272 }
3273 if (ar->pleft && (ar->lleft + 1 == start)) {
3274 /* merge to the left */
3275 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3276 &ac->ac_f_ex.fe_group,
3277 &ac->ac_f_ex.fe_start);
3278 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3279 }
3280
3281 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3282 (unsigned) orig_size, (unsigned) start);
3283 }
3284
3285 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3286 {
3287 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3288
3289 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3290 atomic_inc(&sbi->s_bal_reqs);
3291 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3292 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3293 atomic_inc(&sbi->s_bal_success);
3294 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3295 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3296 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3297 atomic_inc(&sbi->s_bal_goals);
3298 if (ac->ac_found > sbi->s_mb_max_to_scan)
3299 atomic_inc(&sbi->s_bal_breaks);
3300 }
3301
3302 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3303 trace_ext4_mballoc_alloc(ac);
3304 else
3305 trace_ext4_mballoc_prealloc(ac);
3306 }
3307
3308 /*
3309 * Called on failure; free up any blocks from the inode PA for this
3310 * context. We don't need this for MB_GROUP_PA because we only change
3311 * pa_free in ext4_mb_release_context(), but on failure, we've already
3312 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3313 */
3314 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3315 {
3316 struct ext4_prealloc_space *pa = ac->ac_pa;
3317 struct ext4_buddy e4b;
3318 int err;
3319
3320 if (pa == NULL) {
3321 if (ac->ac_f_ex.fe_len == 0)
3322 return;
3323 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3324 if (err) {
3325 /*
3326 * This should never happen since we pin the
3327 * pages in the ext4_allocation_context so
3328 * ext4_mb_load_buddy() should never fail.
3329 */
3330 WARN(1, "mb_load_buddy failed (%d)", err);
3331 return;
3332 }
3333 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3334 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3335 ac->ac_f_ex.fe_len);
3336 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3337 ext4_mb_unload_buddy(&e4b);
3338 return;
3339 }
3340 if (pa->pa_type == MB_INODE_PA)
3341 pa->pa_free += ac->ac_b_ex.fe_len;
3342 }
3343
3344 /*
3345 * use blocks preallocated to inode
3346 */
3347 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3348 struct ext4_prealloc_space *pa)
3349 {
3350 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3351 ext4_fsblk_t start;
3352 ext4_fsblk_t end;
3353 int len;
3354
3355 /* found preallocated blocks, use them */
3356 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3357 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3358 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3359 len = EXT4_NUM_B2C(sbi, end - start);
3360 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3361 &ac->ac_b_ex.fe_start);
3362 ac->ac_b_ex.fe_len = len;
3363 ac->ac_status = AC_STATUS_FOUND;
3364 ac->ac_pa = pa;
3365
3366 BUG_ON(start < pa->pa_pstart);
3367 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3368 BUG_ON(pa->pa_free < len);
3369 pa->pa_free -= len;
3370
3371 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3372 }
3373
3374 /*
3375 * use blocks preallocated to locality group
3376 */
3377 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3378 struct ext4_prealloc_space *pa)
3379 {
3380 unsigned int len = ac->ac_o_ex.fe_len;
3381
3382 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3383 &ac->ac_b_ex.fe_group,
3384 &ac->ac_b_ex.fe_start);
3385 ac->ac_b_ex.fe_len = len;
3386 ac->ac_status = AC_STATUS_FOUND;
3387 ac->ac_pa = pa;
3388
3389 /* we don't correct pa_pstart or pa_plen here to avoid
3390 * possible race when the group is being loaded concurrently
3391 * instead we correct pa later, after blocks are marked
3392 * in on-disk bitmap -- see ext4_mb_release_context()
3393 * Other CPUs are prevented from allocating from this pa by lg_mutex
3394 */
3395 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3396 }
3397
3398 /*
3399 * Return the prealloc space that have minimal distance
3400 * from the goal block. @cpa is the prealloc
3401 * space that is having currently known minimal distance
3402 * from the goal block.
3403 */
3404 static struct ext4_prealloc_space *
3405 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3406 struct ext4_prealloc_space *pa,
3407 struct ext4_prealloc_space *cpa)
3408 {
3409 ext4_fsblk_t cur_distance, new_distance;
3410
3411 if (cpa == NULL) {
3412 atomic_inc(&pa->pa_count);
3413 return pa;
3414 }
3415 cur_distance = abs(goal_block - cpa->pa_pstart);
3416 new_distance = abs(goal_block - pa->pa_pstart);
3417
3418 if (cur_distance <= new_distance)
3419 return cpa;
3420
3421 /* drop the previous reference */
3422 atomic_dec(&cpa->pa_count);
3423 atomic_inc(&pa->pa_count);
3424 return pa;
3425 }
3426
3427 /*
3428 * search goal blocks in preallocated space
3429 */
3430 static noinline_for_stack int
3431 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3432 {
3433 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3434 int order, i;
3435 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3436 struct ext4_locality_group *lg;
3437 struct ext4_prealloc_space *pa, *cpa = NULL;
3438 ext4_fsblk_t goal_block;
3439
3440 /* only data can be preallocated */
3441 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3442 return 0;
3443
3444 /* first, try per-file preallocation */
3445 rcu_read_lock();
3446 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3447
3448 /* all fields in this condition don't change,
3449 * so we can skip locking for them */
3450 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3451 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3452 EXT4_C2B(sbi, pa->pa_len)))
3453 continue;
3454
3455 /* non-extent files can't have physical blocks past 2^32 */
3456 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3457 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3458 EXT4_MAX_BLOCK_FILE_PHYS))
3459 continue;
3460
3461 /* found preallocated blocks, use them */
3462 spin_lock(&pa->pa_lock);
3463 if (pa->pa_deleted == 0 && pa->pa_free) {
3464 atomic_inc(&pa->pa_count);
3465 ext4_mb_use_inode_pa(ac, pa);
3466 spin_unlock(&pa->pa_lock);
3467 ac->ac_criteria = 10;
3468 rcu_read_unlock();
3469 return 1;
3470 }
3471 spin_unlock(&pa->pa_lock);
3472 }
3473 rcu_read_unlock();
3474
3475 /* can we use group allocation? */
3476 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3477 return 0;
3478
3479 /* inode may have no locality group for some reason */
3480 lg = ac->ac_lg;
3481 if (lg == NULL)
3482 return 0;
3483 order = fls(ac->ac_o_ex.fe_len) - 1;
3484 if (order > PREALLOC_TB_SIZE - 1)
3485 /* The max size of hash table is PREALLOC_TB_SIZE */
3486 order = PREALLOC_TB_SIZE - 1;
3487
3488 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3489 /*
3490 * search for the prealloc space that is having
3491 * minimal distance from the goal block.
3492 */
3493 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3494 rcu_read_lock();
3495 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3496 pa_inode_list) {
3497 spin_lock(&pa->pa_lock);
3498 if (pa->pa_deleted == 0 &&
3499 pa->pa_free >= ac->ac_o_ex.fe_len) {
3500
3501 cpa = ext4_mb_check_group_pa(goal_block,
3502 pa, cpa);
3503 }
3504 spin_unlock(&pa->pa_lock);
3505 }
3506 rcu_read_unlock();
3507 }
3508 if (cpa) {
3509 ext4_mb_use_group_pa(ac, cpa);
3510 ac->ac_criteria = 20;
3511 return 1;
3512 }
3513 return 0;
3514 }
3515
3516 /*
3517 * the function goes through all block freed in the group
3518 * but not yet committed and marks them used in in-core bitmap.
3519 * buddy must be generated from this bitmap
3520 * Need to be called with the ext4 group lock held
3521 */
3522 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3523 ext4_group_t group)
3524 {
3525 struct rb_node *n;
3526 struct ext4_group_info *grp;
3527 struct ext4_free_data *entry;
3528
3529 grp = ext4_get_group_info(sb, group);
3530 n = rb_first(&(grp->bb_free_root));
3531
3532 while (n) {
3533 entry = rb_entry(n, struct ext4_free_data, efd_node);
3534 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3535 n = rb_next(n);
3536 }
3537 return;
3538 }
3539
3540 /*
3541 * the function goes through all preallocation in this group and marks them
3542 * used in in-core bitmap. buddy must be generated from this bitmap
3543 * Need to be called with ext4 group lock held
3544 */
3545 static noinline_for_stack
3546 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3547 ext4_group_t group)
3548 {
3549 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3550 struct ext4_prealloc_space *pa;
3551 struct list_head *cur;
3552 ext4_group_t groupnr;
3553 ext4_grpblk_t start;
3554 int preallocated = 0;
3555 int len;
3556
3557 /* all form of preallocation discards first load group,
3558 * so the only competing code is preallocation use.
3559 * we don't need any locking here
3560 * notice we do NOT ignore preallocations with pa_deleted
3561 * otherwise we could leave used blocks available for
3562 * allocation in buddy when concurrent ext4_mb_put_pa()
3563 * is dropping preallocation
3564 */
3565 list_for_each(cur, &grp->bb_prealloc_list) {
3566 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3567 spin_lock(&pa->pa_lock);
3568 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3569 &groupnr, &start);
3570 len = pa->pa_len;
3571 spin_unlock(&pa->pa_lock);
3572 if (unlikely(len == 0))
3573 continue;
3574 BUG_ON(groupnr != group);
3575 ext4_set_bits(bitmap, start, len);
3576 preallocated += len;
3577 }
3578 mb_debug(1, "preallocated %u for group %u\n", preallocated, group);
3579 }
3580
3581 static void ext4_mb_pa_callback(struct rcu_head *head)
3582 {
3583 struct ext4_prealloc_space *pa;
3584 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3585
3586 BUG_ON(atomic_read(&pa->pa_count));
3587 BUG_ON(pa->pa_deleted == 0);
3588 kmem_cache_free(ext4_pspace_cachep, pa);
3589 }
3590
3591 /*
3592 * drops a reference to preallocated space descriptor
3593 * if this was the last reference and the space is consumed
3594 */
3595 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3596 struct super_block *sb, struct ext4_prealloc_space *pa)
3597 {
3598 ext4_group_t grp;
3599 ext4_fsblk_t grp_blk;
3600
3601 /* in this short window concurrent discard can set pa_deleted */
3602 spin_lock(&pa->pa_lock);
3603 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3604 spin_unlock(&pa->pa_lock);
3605 return;
3606 }
3607
3608 if (pa->pa_deleted == 1) {
3609 spin_unlock(&pa->pa_lock);
3610 return;
3611 }
3612
3613 pa->pa_deleted = 1;
3614 spin_unlock(&pa->pa_lock);
3615
3616 grp_blk = pa->pa_pstart;
3617 /*
3618 * If doing group-based preallocation, pa_pstart may be in the
3619 * next group when pa is used up
3620 */
3621 if (pa->pa_type == MB_GROUP_PA)
3622 grp_blk--;
3623
3624 grp = ext4_get_group_number(sb, grp_blk);
3625
3626 /*
3627 * possible race:
3628 *
3629 * P1 (buddy init) P2 (regular allocation)
3630 * find block B in PA
3631 * copy on-disk bitmap to buddy
3632 * mark B in on-disk bitmap
3633 * drop PA from group
3634 * mark all PAs in buddy
3635 *
3636 * thus, P1 initializes buddy with B available. to prevent this
3637 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3638 * against that pair
3639 */
3640 ext4_lock_group(sb, grp);
3641 list_del(&pa->pa_group_list);
3642 ext4_unlock_group(sb, grp);
3643
3644 spin_lock(pa->pa_obj_lock);
3645 list_del_rcu(&pa->pa_inode_list);
3646 spin_unlock(pa->pa_obj_lock);
3647
3648 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3649 }
3650
3651 /*
3652 * creates new preallocated space for given inode
3653 */
3654 static noinline_for_stack int
3655 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3656 {
3657 struct super_block *sb = ac->ac_sb;
3658 struct ext4_sb_info *sbi = EXT4_SB(sb);
3659 struct ext4_prealloc_space *pa;
3660 struct ext4_group_info *grp;
3661 struct ext4_inode_info *ei;
3662
3663 /* preallocate only when found space is larger then requested */
3664 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3665 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3666 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3667
3668 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3669 if (pa == NULL)
3670 return -ENOMEM;
3671
3672 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3673 int winl;
3674 int wins;
3675 int win;
3676 int offs;
3677
3678 /* we can't allocate as much as normalizer wants.
3679 * so, found space must get proper lstart
3680 * to cover original request */
3681 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3682 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3683
3684 /* we're limited by original request in that
3685 * logical block must be covered any way
3686 * winl is window we can move our chunk within */
3687 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3688
3689 /* also, we should cover whole original request */
3690 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3691
3692 /* the smallest one defines real window */
3693 win = min(winl, wins);
3694
3695 offs = ac->ac_o_ex.fe_logical %
3696 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3697 if (offs && offs < win)
3698 win = offs;
3699
3700 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3701 EXT4_NUM_B2C(sbi, win);
3702 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3703 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3704 }
3705
3706 /* preallocation can change ac_b_ex, thus we store actually
3707 * allocated blocks for history */
3708 ac->ac_f_ex = ac->ac_b_ex;
3709
3710 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3711 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3712 pa->pa_len = ac->ac_b_ex.fe_len;
3713 pa->pa_free = pa->pa_len;
3714 atomic_set(&pa->pa_count, 1);
3715 spin_lock_init(&pa->pa_lock);
3716 INIT_LIST_HEAD(&pa->pa_inode_list);
3717 INIT_LIST_HEAD(&pa->pa_group_list);
3718 pa->pa_deleted = 0;
3719 pa->pa_type = MB_INODE_PA;
3720
3721 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3722 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3723 trace_ext4_mb_new_inode_pa(ac, pa);
3724
3725 ext4_mb_use_inode_pa(ac, pa);
3726 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3727
3728 ei = EXT4_I(ac->ac_inode);
3729 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3730
3731 pa->pa_obj_lock = &ei->i_prealloc_lock;
3732 pa->pa_inode = ac->ac_inode;
3733
3734 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3735 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3736 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3737
3738 spin_lock(pa->pa_obj_lock);
3739 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3740 spin_unlock(pa->pa_obj_lock);
3741
3742 return 0;
3743 }
3744
3745 /*
3746 * creates new preallocated space for locality group inodes belongs to
3747 */
3748 static noinline_for_stack int
3749 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3750 {
3751 struct super_block *sb = ac->ac_sb;
3752 struct ext4_locality_group *lg;
3753 struct ext4_prealloc_space *pa;
3754 struct ext4_group_info *grp;
3755
3756 /* preallocate only when found space is larger then requested */
3757 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3758 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3759 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3760
3761 BUG_ON(ext4_pspace_cachep == NULL);
3762 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3763 if (pa == NULL)
3764 return -ENOMEM;
3765
3766 /* preallocation can change ac_b_ex, thus we store actually
3767 * allocated blocks for history */
3768 ac->ac_f_ex = ac->ac_b_ex;
3769
3770 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3771 pa->pa_lstart = pa->pa_pstart;
3772 pa->pa_len = ac->ac_b_ex.fe_len;
3773 pa->pa_free = pa->pa_len;
3774 atomic_set(&pa->pa_count, 1);
3775 spin_lock_init(&pa->pa_lock);
3776 INIT_LIST_HEAD(&pa->pa_inode_list);
3777 INIT_LIST_HEAD(&pa->pa_group_list);
3778 pa->pa_deleted = 0;
3779 pa->pa_type = MB_GROUP_PA;
3780
3781 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3782 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3783 trace_ext4_mb_new_group_pa(ac, pa);
3784
3785 ext4_mb_use_group_pa(ac, pa);
3786 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3787
3788 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3789 lg = ac->ac_lg;
3790 BUG_ON(lg == NULL);
3791
3792 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3793 pa->pa_inode = NULL;
3794
3795 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3796 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3797 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3798
3799 /*
3800 * We will later add the new pa to the right bucket
3801 * after updating the pa_free in ext4_mb_release_context
3802 */
3803 return 0;
3804 }
3805
3806 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3807 {
3808 int err;
3809
3810 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3811 err = ext4_mb_new_group_pa(ac);
3812 else
3813 err = ext4_mb_new_inode_pa(ac);
3814 return err;
3815 }
3816
3817 /*
3818 * finds all unused blocks in on-disk bitmap, frees them in
3819 * in-core bitmap and buddy.
3820 * @pa must be unlinked from inode and group lists, so that
3821 * nobody else can find/use it.
3822 * the caller MUST hold group/inode locks.
3823 * TODO: optimize the case when there are no in-core structures yet
3824 */
3825 static noinline_for_stack int
3826 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3827 struct ext4_prealloc_space *pa)
3828 {
3829 struct super_block *sb = e4b->bd_sb;
3830 struct ext4_sb_info *sbi = EXT4_SB(sb);
3831 unsigned int end;
3832 unsigned int next;
3833 ext4_group_t group;
3834 ext4_grpblk_t bit;
3835 unsigned long long grp_blk_start;
3836 int err = 0;
3837 int free = 0;
3838
3839 BUG_ON(pa->pa_deleted == 0);
3840 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3841 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3842 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3843 end = bit + pa->pa_len;
3844
3845 while (bit < end) {
3846 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3847 if (bit >= end)
3848 break;
3849 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3850 mb_debug(1, " free preallocated %u/%u in group %u\n",
3851 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3852 (unsigned) next - bit, (unsigned) group);
3853 free += next - bit;
3854
3855 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3856 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3857 EXT4_C2B(sbi, bit)),
3858 next - bit);
3859 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3860 bit = next + 1;
3861 }
3862 if (free != pa->pa_free) {
3863 ext4_msg(e4b->bd_sb, KERN_CRIT,
3864 "pa %p: logic %lu, phys. %lu, len %lu",
3865 pa, (unsigned long) pa->pa_lstart,
3866 (unsigned long) pa->pa_pstart,
3867 (unsigned long) pa->pa_len);
3868 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3869 free, pa->pa_free);
3870 /*
3871 * pa is already deleted so we use the value obtained
3872 * from the bitmap and continue.
3873 */
3874 }
3875 atomic_add(free, &sbi->s_mb_discarded);
3876
3877 return err;
3878 }
3879
3880 static noinline_for_stack int
3881 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3882 struct ext4_prealloc_space *pa)
3883 {
3884 struct super_block *sb = e4b->bd_sb;
3885 ext4_group_t group;
3886 ext4_grpblk_t bit;
3887
3888 trace_ext4_mb_release_group_pa(sb, pa);
3889 BUG_ON(pa->pa_deleted == 0);
3890 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3891 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3892 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3893 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3894 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3895
3896 return 0;
3897 }
3898
3899 /*
3900 * releases all preallocations in given group
3901 *
3902 * first, we need to decide discard policy:
3903 * - when do we discard
3904 * 1) ENOSPC
3905 * - how many do we discard
3906 * 1) how many requested
3907 */
3908 static noinline_for_stack int
3909 ext4_mb_discard_group_preallocations(struct super_block *sb,
3910 ext4_group_t group, int needed)
3911 {
3912 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3913 struct buffer_head *bitmap_bh = NULL;
3914 struct ext4_prealloc_space *pa, *tmp;
3915 struct list_head list;
3916 struct ext4_buddy e4b;
3917 int err;
3918 int busy = 0;
3919 int free = 0;
3920
3921 mb_debug(1, "discard preallocation for group %u\n", group);
3922
3923 if (list_empty(&grp->bb_prealloc_list))
3924 return 0;
3925
3926 bitmap_bh = ext4_read_block_bitmap(sb, group);
3927 if (IS_ERR(bitmap_bh)) {
3928 err = PTR_ERR(bitmap_bh);
3929 ext4_error(sb, "Error %d reading block bitmap for %u",
3930 err, group);
3931 return 0;
3932 }
3933
3934 err = ext4_mb_load_buddy(sb, group, &e4b);
3935 if (err) {
3936 ext4_warning(sb, "Error %d loading buddy information for %u",
3937 err, group);
3938 put_bh(bitmap_bh);
3939 return 0;
3940 }
3941
3942 if (needed == 0)
3943 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3944
3945 INIT_LIST_HEAD(&list);
3946 repeat:
3947 ext4_lock_group(sb, group);
3948 list_for_each_entry_safe(pa, tmp,
3949 &grp->bb_prealloc_list, pa_group_list) {
3950 spin_lock(&pa->pa_lock);
3951 if (atomic_read(&pa->pa_count)) {
3952 spin_unlock(&pa->pa_lock);
3953 busy = 1;
3954 continue;
3955 }
3956 if (pa->pa_deleted) {
3957 spin_unlock(&pa->pa_lock);
3958 continue;
3959 }
3960
3961 /* seems this one can be freed ... */
3962 pa->pa_deleted = 1;
3963
3964 /* we can trust pa_free ... */
3965 free += pa->pa_free;
3966
3967 spin_unlock(&pa->pa_lock);
3968
3969 list_del(&pa->pa_group_list);
3970 list_add(&pa->u.pa_tmp_list, &list);
3971 }
3972
3973 /* if we still need more blocks and some PAs were used, try again */
3974 if (free < needed && busy) {
3975 busy = 0;
3976 ext4_unlock_group(sb, group);
3977 cond_resched();
3978 goto repeat;
3979 }
3980
3981 /* found anything to free? */
3982 if (list_empty(&list)) {
3983 BUG_ON(free != 0);
3984 goto out;
3985 }
3986
3987 /* now free all selected PAs */
3988 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3989
3990 /* remove from object (inode or locality group) */
3991 spin_lock(pa->pa_obj_lock);
3992 list_del_rcu(&pa->pa_inode_list);
3993 spin_unlock(pa->pa_obj_lock);
3994
3995 if (pa->pa_type == MB_GROUP_PA)
3996 ext4_mb_release_group_pa(&e4b, pa);
3997 else
3998 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3999
4000 list_del(&pa->u.pa_tmp_list);
4001 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4002 }
4003
4004 out:
4005 ext4_unlock_group(sb, group);
4006 ext4_mb_unload_buddy(&e4b);
4007 put_bh(bitmap_bh);
4008 return free;
4009 }
4010
4011 /*
4012 * releases all non-used preallocated blocks for given inode
4013 *
4014 * It's important to discard preallocations under i_data_sem
4015 * We don't want another block to be served from the prealloc
4016 * space when we are discarding the inode prealloc space.
4017 *
4018 * FIXME!! Make sure it is valid at all the call sites
4019 */
4020 void ext4_discard_preallocations(struct inode *inode)
4021 {
4022 struct ext4_inode_info *ei = EXT4_I(inode);
4023 struct super_block *sb = inode->i_sb;
4024 struct buffer_head *bitmap_bh = NULL;
4025 struct ext4_prealloc_space *pa, *tmp;
4026 ext4_group_t group = 0;
4027 struct list_head list;
4028 struct ext4_buddy e4b;
4029 int err;
4030
4031 if (!S_ISREG(inode->i_mode)) {
4032 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4033 return;
4034 }
4035
4036 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
4037 trace_ext4_discard_preallocations(inode);
4038
4039 INIT_LIST_HEAD(&list);
4040
4041 repeat:
4042 /* first, collect all pa's in the inode */
4043 spin_lock(&ei->i_prealloc_lock);
4044 while (!list_empty(&ei->i_prealloc_list)) {
4045 pa = list_entry(ei->i_prealloc_list.next,
4046 struct ext4_prealloc_space, pa_inode_list);
4047 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4048 spin_lock(&pa->pa_lock);
4049 if (atomic_read(&pa->pa_count)) {
4050 /* this shouldn't happen often - nobody should
4051 * use preallocation while we're discarding it */
4052 spin_unlock(&pa->pa_lock);
4053 spin_unlock(&ei->i_prealloc_lock);
4054 ext4_msg(sb, KERN_ERR,
4055 "uh-oh! used pa while discarding");
4056 WARN_ON(1);
4057 schedule_timeout_uninterruptible(HZ);
4058 goto repeat;
4059
4060 }
4061 if (pa->pa_deleted == 0) {
4062 pa->pa_deleted = 1;
4063 spin_unlock(&pa->pa_lock);
4064 list_del_rcu(&pa->pa_inode_list);
4065 list_add(&pa->u.pa_tmp_list, &list);
4066 continue;
4067 }
4068
4069 /* someone is deleting pa right now */
4070 spin_unlock(&pa->pa_lock);
4071 spin_unlock(&ei->i_prealloc_lock);
4072
4073 /* we have to wait here because pa_deleted
4074 * doesn't mean pa is already unlinked from
4075 * the list. as we might be called from
4076 * ->clear_inode() the inode will get freed
4077 * and concurrent thread which is unlinking
4078 * pa from inode's list may access already
4079 * freed memory, bad-bad-bad */
4080
4081 /* XXX: if this happens too often, we can
4082 * add a flag to force wait only in case
4083 * of ->clear_inode(), but not in case of
4084 * regular truncate */
4085 schedule_timeout_uninterruptible(HZ);
4086 goto repeat;
4087 }
4088 spin_unlock(&ei->i_prealloc_lock);
4089
4090 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4091 BUG_ON(pa->pa_type != MB_INODE_PA);
4092 group = ext4_get_group_number(sb, pa->pa_pstart);
4093
4094 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4095 GFP_NOFS|__GFP_NOFAIL);
4096 if (err) {
4097 ext4_error(sb, "Error %d loading buddy information for %u",
4098 err, group);
4099 continue;
4100 }
4101
4102 bitmap_bh = ext4_read_block_bitmap(sb, group);
4103 if (IS_ERR(bitmap_bh)) {
4104 err = PTR_ERR(bitmap_bh);
4105 ext4_error(sb, "Error %d reading block bitmap for %u",
4106 err, group);
4107 ext4_mb_unload_buddy(&e4b);
4108 continue;
4109 }
4110
4111 ext4_lock_group(sb, group);
4112 list_del(&pa->pa_group_list);
4113 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4114 ext4_unlock_group(sb, group);
4115
4116 ext4_mb_unload_buddy(&e4b);
4117 put_bh(bitmap_bh);
4118
4119 list_del(&pa->u.pa_tmp_list);
4120 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4121 }
4122 }
4123
4124 #ifdef CONFIG_EXT4_DEBUG
4125 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4126 {
4127 struct super_block *sb = ac->ac_sb;
4128 ext4_group_t ngroups, i;
4129
4130 if (!ext4_mballoc_debug ||
4131 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4132 return;
4133
4134 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4135 " Allocation context details:");
4136 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4137 ac->ac_status, ac->ac_flags);
4138 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4139 "goal %lu/%lu/%lu@%lu, "
4140 "best %lu/%lu/%lu@%lu cr %d",
4141 (unsigned long)ac->ac_o_ex.fe_group,
4142 (unsigned long)ac->ac_o_ex.fe_start,
4143 (unsigned long)ac->ac_o_ex.fe_len,
4144 (unsigned long)ac->ac_o_ex.fe_logical,
4145 (unsigned long)ac->ac_g_ex.fe_group,
4146 (unsigned long)ac->ac_g_ex.fe_start,
4147 (unsigned long)ac->ac_g_ex.fe_len,
4148 (unsigned long)ac->ac_g_ex.fe_logical,
4149 (unsigned long)ac->ac_b_ex.fe_group,
4150 (unsigned long)ac->ac_b_ex.fe_start,
4151 (unsigned long)ac->ac_b_ex.fe_len,
4152 (unsigned long)ac->ac_b_ex.fe_logical,
4153 (int)ac->ac_criteria);
4154 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4155 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4156 ngroups = ext4_get_groups_count(sb);
4157 for (i = 0; i < ngroups; i++) {
4158 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4159 struct ext4_prealloc_space *pa;
4160 ext4_grpblk_t start;
4161 struct list_head *cur;
4162 ext4_lock_group(sb, i);
4163 list_for_each(cur, &grp->bb_prealloc_list) {
4164 pa = list_entry(cur, struct ext4_prealloc_space,
4165 pa_group_list);
4166 spin_lock(&pa->pa_lock);
4167 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4168 NULL, &start);
4169 spin_unlock(&pa->pa_lock);
4170 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4171 start, pa->pa_len);
4172 }
4173 ext4_unlock_group(sb, i);
4174
4175 if (grp->bb_free == 0)
4176 continue;
4177 printk(KERN_ERR "%u: %d/%d \n",
4178 i, grp->bb_free, grp->bb_fragments);
4179 }
4180 printk(KERN_ERR "\n");
4181 }
4182 #else
4183 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4184 {
4185 return;
4186 }
4187 #endif
4188
4189 /*
4190 * We use locality group preallocation for small size file. The size of the
4191 * file is determined by the current size or the resulting size after
4192 * allocation which ever is larger
4193 *
4194 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4195 */
4196 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4197 {
4198 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4199 int bsbits = ac->ac_sb->s_blocksize_bits;
4200 loff_t size, isize;
4201
4202 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4203 return;
4204
4205 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4206 return;
4207
4208 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4209 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4210 >> bsbits;
4211
4212 if ((size == isize) &&
4213 !ext4_fs_is_busy(sbi) &&
4214 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4215 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4216 return;
4217 }
4218
4219 if (sbi->s_mb_group_prealloc <= 0) {
4220 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4221 return;
4222 }
4223
4224 /* don't use group allocation for large files */
4225 size = max(size, isize);
4226 if (size > sbi->s_mb_stream_request) {
4227 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4228 return;
4229 }
4230
4231 BUG_ON(ac->ac_lg != NULL);
4232 /*
4233 * locality group prealloc space are per cpu. The reason for having
4234 * per cpu locality group is to reduce the contention between block
4235 * request from multiple CPUs.
4236 */
4237 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4238
4239 /* we're going to use group allocation */
4240 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4241
4242 /* serialize all allocations in the group */
4243 mutex_lock(&ac->ac_lg->lg_mutex);
4244 }
4245
4246 static noinline_for_stack int
4247 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4248 struct ext4_allocation_request *ar)
4249 {
4250 struct super_block *sb = ar->inode->i_sb;
4251 struct ext4_sb_info *sbi = EXT4_SB(sb);
4252 struct ext4_super_block *es = sbi->s_es;
4253 ext4_group_t group;
4254 unsigned int len;
4255 ext4_fsblk_t goal;
4256 ext4_grpblk_t block;
4257
4258 /* we can't allocate > group size */
4259 len = ar->len;
4260
4261 /* just a dirty hack to filter too big requests */
4262 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4263 len = EXT4_CLUSTERS_PER_GROUP(sb);
4264
4265 /* start searching from the goal */
4266 goal = ar->goal;
4267 if (goal < le32_to_cpu(es->s_first_data_block) ||
4268 goal >= ext4_blocks_count(es))
4269 goal = le32_to_cpu(es->s_first_data_block);
4270 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4271
4272 /* set up allocation goals */
4273 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4274 ac->ac_status = AC_STATUS_CONTINUE;
4275 ac->ac_sb = sb;
4276 ac->ac_inode = ar->inode;
4277 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4278 ac->ac_o_ex.fe_group = group;
4279 ac->ac_o_ex.fe_start = block;
4280 ac->ac_o_ex.fe_len = len;
4281 ac->ac_g_ex = ac->ac_o_ex;
4282 ac->ac_flags = ar->flags;
4283
4284 /* we have to define context: we'll we work with a file or
4285 * locality group. this is a policy, actually */
4286 ext4_mb_group_or_file(ac);
4287
4288 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4289 "left: %u/%u, right %u/%u to %swritable\n",
4290 (unsigned) ar->len, (unsigned) ar->logical,
4291 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4292 (unsigned) ar->lleft, (unsigned) ar->pleft,
4293 (unsigned) ar->lright, (unsigned) ar->pright,
4294 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4295 return 0;
4296
4297 }
4298
4299 static noinline_for_stack void
4300 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4301 struct ext4_locality_group *lg,
4302 int order, int total_entries)
4303 {
4304 ext4_group_t group = 0;
4305 struct ext4_buddy e4b;
4306 struct list_head discard_list;
4307 struct ext4_prealloc_space *pa, *tmp;
4308
4309 mb_debug(1, "discard locality group preallocation\n");
4310
4311 INIT_LIST_HEAD(&discard_list);
4312
4313 spin_lock(&lg->lg_prealloc_lock);
4314 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4315 pa_inode_list) {
4316 spin_lock(&pa->pa_lock);
4317 if (atomic_read(&pa->pa_count)) {
4318 /*
4319 * This is the pa that we just used
4320 * for block allocation. So don't
4321 * free that
4322 */
4323 spin_unlock(&pa->pa_lock);
4324 continue;
4325 }
4326 if (pa->pa_deleted) {
4327 spin_unlock(&pa->pa_lock);
4328 continue;
4329 }
4330 /* only lg prealloc space */
4331 BUG_ON(pa->pa_type != MB_GROUP_PA);
4332
4333 /* seems this one can be freed ... */
4334 pa->pa_deleted = 1;
4335 spin_unlock(&pa->pa_lock);
4336
4337 list_del_rcu(&pa->pa_inode_list);
4338 list_add(&pa->u.pa_tmp_list, &discard_list);
4339
4340 total_entries--;
4341 if (total_entries <= 5) {
4342 /*
4343 * we want to keep only 5 entries
4344 * allowing it to grow to 8. This
4345 * mak sure we don't call discard
4346 * soon for this list.
4347 */
4348 break;
4349 }
4350 }
4351 spin_unlock(&lg->lg_prealloc_lock);
4352
4353 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4354 int err;
4355
4356 group = ext4_get_group_number(sb, pa->pa_pstart);
4357 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4358 GFP_NOFS|__GFP_NOFAIL);
4359 if (err) {
4360 ext4_error(sb, "Error %d loading buddy information for %u",
4361 err, group);
4362 continue;
4363 }
4364 ext4_lock_group(sb, group);
4365 list_del(&pa->pa_group_list);
4366 ext4_mb_release_group_pa(&e4b, pa);
4367 ext4_unlock_group(sb, group);
4368
4369 ext4_mb_unload_buddy(&e4b);
4370 list_del(&pa->u.pa_tmp_list);
4371 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4372 }
4373 }
4374
4375 /*
4376 * We have incremented pa_count. So it cannot be freed at this
4377 * point. Also we hold lg_mutex. So no parallel allocation is
4378 * possible from this lg. That means pa_free cannot be updated.
4379 *
4380 * A parallel ext4_mb_discard_group_preallocations is possible.
4381 * which can cause the lg_prealloc_list to be updated.
4382 */
4383
4384 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4385 {
4386 int order, added = 0, lg_prealloc_count = 1;
4387 struct super_block *sb = ac->ac_sb;
4388 struct ext4_locality_group *lg = ac->ac_lg;
4389 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4390
4391 order = fls(pa->pa_free) - 1;
4392 if (order > PREALLOC_TB_SIZE - 1)
4393 /* The max size of hash table is PREALLOC_TB_SIZE */
4394 order = PREALLOC_TB_SIZE - 1;
4395 /* Add the prealloc space to lg */
4396 spin_lock(&lg->lg_prealloc_lock);
4397 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4398 pa_inode_list) {
4399 spin_lock(&tmp_pa->pa_lock);
4400 if (tmp_pa->pa_deleted) {
4401 spin_unlock(&tmp_pa->pa_lock);
4402 continue;
4403 }
4404 if (!added && pa->pa_free < tmp_pa->pa_free) {
4405 /* Add to the tail of the previous entry */
4406 list_add_tail_rcu(&pa->pa_inode_list,
4407 &tmp_pa->pa_inode_list);
4408 added = 1;
4409 /*
4410 * we want to count the total
4411 * number of entries in the list
4412 */
4413 }
4414 spin_unlock(&tmp_pa->pa_lock);
4415 lg_prealloc_count++;
4416 }
4417 if (!added)
4418 list_add_tail_rcu(&pa->pa_inode_list,
4419 &lg->lg_prealloc_list[order]);
4420 spin_unlock(&lg->lg_prealloc_lock);
4421
4422 /* Now trim the list to be not more than 8 elements */
4423 if (lg_prealloc_count > 8) {
4424 ext4_mb_discard_lg_preallocations(sb, lg,
4425 order, lg_prealloc_count);
4426 return;
4427 }
4428 return ;
4429 }
4430
4431 /*
4432 * release all resource we used in allocation
4433 */
4434 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4435 {
4436 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4437 struct ext4_prealloc_space *pa = ac->ac_pa;
4438 if (pa) {
4439 if (pa->pa_type == MB_GROUP_PA) {
4440 /* see comment in ext4_mb_use_group_pa() */
4441 spin_lock(&pa->pa_lock);
4442 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4443 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4444 pa->pa_free -= ac->ac_b_ex.fe_len;
4445 pa->pa_len -= ac->ac_b_ex.fe_len;
4446 spin_unlock(&pa->pa_lock);
4447 }
4448 }
4449 if (pa) {
4450 /*
4451 * We want to add the pa to the right bucket.
4452 * Remove it from the list and while adding
4453 * make sure the list to which we are adding
4454 * doesn't grow big.
4455 */
4456 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4457 spin_lock(pa->pa_obj_lock);
4458 list_del_rcu(&pa->pa_inode_list);
4459 spin_unlock(pa->pa_obj_lock);
4460 ext4_mb_add_n_trim(ac);
4461 }
4462 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4463 }
4464 if (ac->ac_bitmap_page)
4465 put_page(ac->ac_bitmap_page);
4466 if (ac->ac_buddy_page)
4467 put_page(ac->ac_buddy_page);
4468 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4469 mutex_unlock(&ac->ac_lg->lg_mutex);
4470 ext4_mb_collect_stats(ac);
4471 return 0;
4472 }
4473
4474 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4475 {
4476 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4477 int ret;
4478 int freed = 0;
4479
4480 trace_ext4_mb_discard_preallocations(sb, needed);
4481 for (i = 0; i < ngroups && needed > 0; i++) {
4482 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4483 freed += ret;
4484 needed -= ret;
4485 }
4486
4487 return freed;
4488 }
4489
4490 /*
4491 * Main entry point into mballoc to allocate blocks
4492 * it tries to use preallocation first, then falls back
4493 * to usual allocation
4494 */
4495 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4496 struct ext4_allocation_request *ar, int *errp)
4497 {
4498 int freed;
4499 struct ext4_allocation_context *ac = NULL;
4500 struct ext4_sb_info *sbi;
4501 struct super_block *sb;
4502 ext4_fsblk_t block = 0;
4503 unsigned int inquota = 0;
4504 unsigned int reserv_clstrs = 0;
4505
4506 might_sleep();
4507 sb = ar->inode->i_sb;
4508 sbi = EXT4_SB(sb);
4509
4510 trace_ext4_request_blocks(ar);
4511
4512 /* Allow to use superuser reservation for quota file */
4513 if (ext4_is_quota_file(ar->inode))
4514 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4515
4516 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4517 /* Without delayed allocation we need to verify
4518 * there is enough free blocks to do block allocation
4519 * and verify allocation doesn't exceed the quota limits.
4520 */
4521 while (ar->len &&
4522 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4523
4524 /* let others to free the space */
4525 cond_resched();
4526 ar->len = ar->len >> 1;
4527 }
4528 if (!ar->len) {
4529 *errp = -ENOSPC;
4530 return 0;
4531 }
4532 reserv_clstrs = ar->len;
4533 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4534 dquot_alloc_block_nofail(ar->inode,
4535 EXT4_C2B(sbi, ar->len));
4536 } else {
4537 while (ar->len &&
4538 dquot_alloc_block(ar->inode,
4539 EXT4_C2B(sbi, ar->len))) {
4540
4541 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4542 ar->len--;
4543 }
4544 }
4545 inquota = ar->len;
4546 if (ar->len == 0) {
4547 *errp = -EDQUOT;
4548 goto out;
4549 }
4550 }
4551
4552 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4553 if (!ac) {
4554 ar->len = 0;
4555 *errp = -ENOMEM;
4556 goto out;
4557 }
4558
4559 *errp = ext4_mb_initialize_context(ac, ar);
4560 if (*errp) {
4561 ar->len = 0;
4562 goto out;
4563 }
4564
4565 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4566 if (!ext4_mb_use_preallocated(ac)) {
4567 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4568 ext4_mb_normalize_request(ac, ar);
4569 repeat:
4570 /* allocate space in core */
4571 *errp = ext4_mb_regular_allocator(ac);
4572 if (*errp)
4573 goto discard_and_exit;
4574
4575 /* as we've just preallocated more space than
4576 * user requested originally, we store allocated
4577 * space in a special descriptor */
4578 if (ac->ac_status == AC_STATUS_FOUND &&
4579 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4580 *errp = ext4_mb_new_preallocation(ac);
4581 if (*errp) {
4582 discard_and_exit:
4583 ext4_discard_allocated_blocks(ac);
4584 goto errout;
4585 }
4586 }
4587 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4588 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4589 if (*errp) {
4590 ext4_discard_allocated_blocks(ac);
4591 goto errout;
4592 } else {
4593 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4594 ar->len = ac->ac_b_ex.fe_len;
4595 }
4596 } else {
4597 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4598 if (freed)
4599 goto repeat;
4600 *errp = -ENOSPC;
4601 }
4602
4603 errout:
4604 if (*errp) {
4605 ac->ac_b_ex.fe_len = 0;
4606 ar->len = 0;
4607 ext4_mb_show_ac(ac);
4608 }
4609 ext4_mb_release_context(ac);
4610 out:
4611 if (ac)
4612 kmem_cache_free(ext4_ac_cachep, ac);
4613 if (inquota && ar->len < inquota)
4614 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4615 if (!ar->len) {
4616 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4617 /* release all the reserved blocks if non delalloc */
4618 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4619 reserv_clstrs);
4620 }
4621
4622 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4623
4624 return block;
4625 }
4626
4627 /*
4628 * We can merge two free data extents only if the physical blocks
4629 * are contiguous, AND the extents were freed by the same transaction,
4630 * AND the blocks are associated with the same group.
4631 */
4632 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
4633 struct ext4_free_data *entry,
4634 struct ext4_free_data *new_entry,
4635 struct rb_root *entry_rb_root)
4636 {
4637 if ((entry->efd_tid != new_entry->efd_tid) ||
4638 (entry->efd_group != new_entry->efd_group))
4639 return;
4640 if (entry->efd_start_cluster + entry->efd_count ==
4641 new_entry->efd_start_cluster) {
4642 new_entry->efd_start_cluster = entry->efd_start_cluster;
4643 new_entry->efd_count += entry->efd_count;
4644 } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
4645 entry->efd_start_cluster) {
4646 new_entry->efd_count += entry->efd_count;
4647 } else
4648 return;
4649 spin_lock(&sbi->s_md_lock);
4650 list_del(&entry->efd_list);
4651 spin_unlock(&sbi->s_md_lock);
4652 rb_erase(&entry->efd_node, entry_rb_root);
4653 kmem_cache_free(ext4_free_data_cachep, entry);
4654 }
4655
4656 static noinline_for_stack int
4657 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4658 struct ext4_free_data *new_entry)
4659 {
4660 ext4_group_t group = e4b->bd_group;
4661 ext4_grpblk_t cluster;
4662 ext4_grpblk_t clusters = new_entry->efd_count;
4663 struct ext4_free_data *entry;
4664 struct ext4_group_info *db = e4b->bd_info;
4665 struct super_block *sb = e4b->bd_sb;
4666 struct ext4_sb_info *sbi = EXT4_SB(sb);
4667 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4668 struct rb_node *parent = NULL, *new_node;
4669
4670 BUG_ON(!ext4_handle_valid(handle));
4671 BUG_ON(e4b->bd_bitmap_page == NULL);
4672 BUG_ON(e4b->bd_buddy_page == NULL);
4673
4674 new_node = &new_entry->efd_node;
4675 cluster = new_entry->efd_start_cluster;
4676
4677 if (!*n) {
4678 /* first free block exent. We need to
4679 protect buddy cache from being freed,
4680 * otherwise we'll refresh it from
4681 * on-disk bitmap and lose not-yet-available
4682 * blocks */
4683 get_page(e4b->bd_buddy_page);
4684 get_page(e4b->bd_bitmap_page);
4685 }
4686 while (*n) {
4687 parent = *n;
4688 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4689 if (cluster < entry->efd_start_cluster)
4690 n = &(*n)->rb_left;
4691 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4692 n = &(*n)->rb_right;
4693 else {
4694 ext4_grp_locked_error(sb, group, 0,
4695 ext4_group_first_block_no(sb, group) +
4696 EXT4_C2B(sbi, cluster),
4697 "Block already on to-be-freed list");
4698 return 0;
4699 }
4700 }
4701
4702 rb_link_node(new_node, parent, n);
4703 rb_insert_color(new_node, &db->bb_free_root);
4704
4705 /* Now try to see the extent can be merged to left and right */
4706 node = rb_prev(new_node);
4707 if (node) {
4708 entry = rb_entry(node, struct ext4_free_data, efd_node);
4709 ext4_try_merge_freed_extent(sbi, entry, new_entry,
4710 &(db->bb_free_root));
4711 }
4712
4713 node = rb_next(new_node);
4714 if (node) {
4715 entry = rb_entry(node, struct ext4_free_data, efd_node);
4716 ext4_try_merge_freed_extent(sbi, entry, new_entry,
4717 &(db->bb_free_root));
4718 }
4719
4720 spin_lock(&sbi->s_md_lock);
4721 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
4722 sbi->s_mb_free_pending += clusters;
4723 spin_unlock(&sbi->s_md_lock);
4724 return 0;
4725 }
4726
4727 /**
4728 * ext4_free_blocks() -- Free given blocks and update quota
4729 * @handle: handle for this transaction
4730 * @inode: inode
4731 * @block: start physical block to free
4732 * @count: number of blocks to count
4733 * @flags: flags used by ext4_free_blocks
4734 */
4735 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4736 struct buffer_head *bh, ext4_fsblk_t block,
4737 unsigned long count, int flags)
4738 {
4739 struct buffer_head *bitmap_bh = NULL;
4740 struct super_block *sb = inode->i_sb;
4741 struct ext4_group_desc *gdp;
4742 unsigned int overflow;
4743 ext4_grpblk_t bit;
4744 struct buffer_head *gd_bh;
4745 ext4_group_t block_group;
4746 struct ext4_sb_info *sbi;
4747 struct ext4_buddy e4b;
4748 unsigned int count_clusters;
4749 int err = 0;
4750 int ret;
4751
4752 might_sleep();
4753 if (bh) {
4754 if (block)
4755 BUG_ON(block != bh->b_blocknr);
4756 else
4757 block = bh->b_blocknr;
4758 }
4759
4760 sbi = EXT4_SB(sb);
4761 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4762 !ext4_data_block_valid(sbi, block, count)) {
4763 ext4_error(sb, "Freeing blocks not in datazone - "
4764 "block = %llu, count = %lu", block, count);
4765 goto error_return;
4766 }
4767
4768 ext4_debug("freeing block %llu\n", block);
4769 trace_ext4_free_blocks(inode, block, count, flags);
4770
4771 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4772 BUG_ON(count > 1);
4773
4774 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4775 inode, bh, block);
4776 }
4777
4778 /*
4779 * If the extent to be freed does not begin on a cluster
4780 * boundary, we need to deal with partial clusters at the
4781 * beginning and end of the extent. Normally we will free
4782 * blocks at the beginning or the end unless we are explicitly
4783 * requested to avoid doing so.
4784 */
4785 overflow = EXT4_PBLK_COFF(sbi, block);
4786 if (overflow) {
4787 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4788 overflow = sbi->s_cluster_ratio - overflow;
4789 block += overflow;
4790 if (count > overflow)
4791 count -= overflow;
4792 else
4793 return;
4794 } else {
4795 block -= overflow;
4796 count += overflow;
4797 }
4798 }
4799 overflow = EXT4_LBLK_COFF(sbi, count);
4800 if (overflow) {
4801 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4802 if (count > overflow)
4803 count -= overflow;
4804 else
4805 return;
4806 } else
4807 count += sbi->s_cluster_ratio - overflow;
4808 }
4809
4810 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4811 int i;
4812 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4813
4814 for (i = 0; i < count; i++) {
4815 cond_resched();
4816 if (is_metadata)
4817 bh = sb_find_get_block(inode->i_sb, block + i);
4818 ext4_forget(handle, is_metadata, inode, bh, block + i);
4819 }
4820 }
4821
4822 do_more:
4823 overflow = 0;
4824 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4825
4826 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4827 ext4_get_group_info(sb, block_group))))
4828 return;
4829
4830 /*
4831 * Check to see if we are freeing blocks across a group
4832 * boundary.
4833 */
4834 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4835 overflow = EXT4_C2B(sbi, bit) + count -
4836 EXT4_BLOCKS_PER_GROUP(sb);
4837 count -= overflow;
4838 }
4839 count_clusters = EXT4_NUM_B2C(sbi, count);
4840 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4841 if (IS_ERR(bitmap_bh)) {
4842 err = PTR_ERR(bitmap_bh);
4843 bitmap_bh = NULL;
4844 goto error_return;
4845 }
4846 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4847 if (!gdp) {
4848 err = -EIO;
4849 goto error_return;
4850 }
4851
4852 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4853 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4854 in_range(block, ext4_inode_table(sb, gdp),
4855 EXT4_SB(sb)->s_itb_per_group) ||
4856 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4857 EXT4_SB(sb)->s_itb_per_group)) {
4858
4859 ext4_error(sb, "Freeing blocks in system zone - "
4860 "Block = %llu, count = %lu", block, count);
4861 /* err = 0. ext4_std_error should be a no op */
4862 goto error_return;
4863 }
4864
4865 BUFFER_TRACE(bitmap_bh, "getting write access");
4866 err = ext4_journal_get_write_access(handle, bitmap_bh);
4867 if (err)
4868 goto error_return;
4869
4870 /*
4871 * We are about to modify some metadata. Call the journal APIs
4872 * to unshare ->b_data if a currently-committing transaction is
4873 * using it
4874 */
4875 BUFFER_TRACE(gd_bh, "get_write_access");
4876 err = ext4_journal_get_write_access(handle, gd_bh);
4877 if (err)
4878 goto error_return;
4879 #ifdef AGGRESSIVE_CHECK
4880 {
4881 int i;
4882 for (i = 0; i < count_clusters; i++)
4883 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4884 }
4885 #endif
4886 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4887
4888 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4889 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4890 GFP_NOFS|__GFP_NOFAIL);
4891 if (err)
4892 goto error_return;
4893
4894 /*
4895 * We need to make sure we don't reuse the freed block until after the
4896 * transaction is committed. We make an exception if the inode is to be
4897 * written in writeback mode since writeback mode has weak data
4898 * consistency guarantees.
4899 */
4900 if (ext4_handle_valid(handle) &&
4901 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4902 !ext4_should_writeback_data(inode))) {
4903 struct ext4_free_data *new_entry;
4904 /*
4905 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4906 * to fail.
4907 */
4908 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4909 GFP_NOFS|__GFP_NOFAIL);
4910 new_entry->efd_start_cluster = bit;
4911 new_entry->efd_group = block_group;
4912 new_entry->efd_count = count_clusters;
4913 new_entry->efd_tid = handle->h_transaction->t_tid;
4914
4915 ext4_lock_group(sb, block_group);
4916 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4917 ext4_mb_free_metadata(handle, &e4b, new_entry);
4918 } else {
4919 /* need to update group_info->bb_free and bitmap
4920 * with group lock held. generate_buddy look at
4921 * them with group lock_held
4922 */
4923 if (test_opt(sb, DISCARD)) {
4924 err = ext4_issue_discard(sb, block_group, bit, count,
4925 NULL);
4926 if (err && err != -EOPNOTSUPP)
4927 ext4_msg(sb, KERN_WARNING, "discard request in"
4928 " group:%d block:%d count:%lu failed"
4929 " with %d", block_group, bit, count,
4930 err);
4931 } else
4932 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4933
4934 ext4_lock_group(sb, block_group);
4935 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4936 mb_free_blocks(inode, &e4b, bit, count_clusters);
4937 }
4938
4939 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4940 ext4_free_group_clusters_set(sb, gdp, ret);
4941 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4942 ext4_group_desc_csum_set(sb, block_group, gdp);
4943 ext4_unlock_group(sb, block_group);
4944
4945 if (sbi->s_log_groups_per_flex) {
4946 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4947 atomic64_add(count_clusters,
4948 &sbi->s_flex_groups[flex_group].free_clusters);
4949 }
4950
4951 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4952 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4953 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4954
4955 ext4_mb_unload_buddy(&e4b);
4956
4957 /* We dirtied the bitmap block */
4958 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4959 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4960
4961 /* And the group descriptor block */
4962 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4963 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4964 if (!err)
4965 err = ret;
4966
4967 if (overflow && !err) {
4968 block += count;
4969 count = overflow;
4970 put_bh(bitmap_bh);
4971 goto do_more;
4972 }
4973 error_return:
4974 brelse(bitmap_bh);
4975 ext4_std_error(sb, err);
4976 return;
4977 }
4978
4979 /**
4980 * ext4_group_add_blocks() -- Add given blocks to an existing group
4981 * @handle: handle to this transaction
4982 * @sb: super block
4983 * @block: start physical block to add to the block group
4984 * @count: number of blocks to free
4985 *
4986 * This marks the blocks as free in the bitmap and buddy.
4987 */
4988 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4989 ext4_fsblk_t block, unsigned long count)
4990 {
4991 struct buffer_head *bitmap_bh = NULL;
4992 struct buffer_head *gd_bh;
4993 ext4_group_t block_group;
4994 ext4_grpblk_t bit;
4995 unsigned int i;
4996 struct ext4_group_desc *desc;
4997 struct ext4_sb_info *sbi = EXT4_SB(sb);
4998 struct ext4_buddy e4b;
4999 int err = 0, ret, free_clusters_count;
5000 ext4_grpblk_t clusters_freed;
5001 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
5002 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
5003 unsigned long cluster_count = last_cluster - first_cluster + 1;
5004
5005 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
5006
5007 if (count == 0)
5008 return 0;
5009
5010 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5011 /*
5012 * Check to see if we are freeing blocks across a group
5013 * boundary.
5014 */
5015 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
5016 ext4_warning(sb, "too many blocks added to group %u",
5017 block_group);
5018 err = -EINVAL;
5019 goto error_return;
5020 }
5021
5022 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5023 if (IS_ERR(bitmap_bh)) {
5024 err = PTR_ERR(bitmap_bh);
5025 bitmap_bh = NULL;
5026 goto error_return;
5027 }
5028
5029 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5030 if (!desc) {
5031 err = -EIO;
5032 goto error_return;
5033 }
5034
5035 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5036 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5037 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5038 in_range(block + count - 1, ext4_inode_table(sb, desc),
5039 sbi->s_itb_per_group)) {
5040 ext4_error(sb, "Adding blocks in system zones - "
5041 "Block = %llu, count = %lu",
5042 block, count);
5043 err = -EINVAL;
5044 goto error_return;
5045 }
5046
5047 BUFFER_TRACE(bitmap_bh, "getting write access");
5048 err = ext4_journal_get_write_access(handle, bitmap_bh);
5049 if (err)
5050 goto error_return;
5051
5052 /*
5053 * We are about to modify some metadata. Call the journal APIs
5054 * to unshare ->b_data if a currently-committing transaction is
5055 * using it
5056 */
5057 BUFFER_TRACE(gd_bh, "get_write_access");
5058 err = ext4_journal_get_write_access(handle, gd_bh);
5059 if (err)
5060 goto error_return;
5061
5062 for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5063 BUFFER_TRACE(bitmap_bh, "clear bit");
5064 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5065 ext4_error(sb, "bit already cleared for block %llu",
5066 (ext4_fsblk_t)(block + i));
5067 BUFFER_TRACE(bitmap_bh, "bit already cleared");
5068 } else {
5069 clusters_freed++;
5070 }
5071 }
5072
5073 err = ext4_mb_load_buddy(sb, block_group, &e4b);
5074 if (err)
5075 goto error_return;
5076
5077 /*
5078 * need to update group_info->bb_free and bitmap
5079 * with group lock held. generate_buddy look at
5080 * them with group lock_held
5081 */
5082 ext4_lock_group(sb, block_group);
5083 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5084 mb_free_blocks(NULL, &e4b, bit, cluster_count);
5085 free_clusters_count = clusters_freed +
5086 ext4_free_group_clusters(sb, desc);
5087 ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5088 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5089 ext4_group_desc_csum_set(sb, block_group, desc);
5090 ext4_unlock_group(sb, block_group);
5091 percpu_counter_add(&sbi->s_freeclusters_counter,
5092 clusters_freed);
5093
5094 if (sbi->s_log_groups_per_flex) {
5095 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5096 atomic64_add(clusters_freed,
5097 &sbi->s_flex_groups[flex_group].free_clusters);
5098 }
5099
5100 ext4_mb_unload_buddy(&e4b);
5101
5102 /* We dirtied the bitmap block */
5103 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5104 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5105
5106 /* And the group descriptor block */
5107 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5108 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5109 if (!err)
5110 err = ret;
5111
5112 error_return:
5113 brelse(bitmap_bh);
5114 ext4_std_error(sb, err);
5115 return err;
5116 }
5117
5118 /**
5119 * ext4_trim_extent -- function to TRIM one single free extent in the group
5120 * @sb: super block for the file system
5121 * @start: starting block of the free extent in the alloc. group
5122 * @count: number of blocks to TRIM
5123 * @group: alloc. group we are working with
5124 * @e4b: ext4 buddy for the group
5125 *
5126 * Trim "count" blocks starting at "start" in the "group". To assure that no
5127 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5128 * be called with under the group lock.
5129 */
5130 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5131 ext4_group_t group, struct ext4_buddy *e4b)
5132 __releases(bitlock)
5133 __acquires(bitlock)
5134 {
5135 struct ext4_free_extent ex;
5136 int ret = 0;
5137
5138 trace_ext4_trim_extent(sb, group, start, count);
5139
5140 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5141
5142 ex.fe_start = start;
5143 ex.fe_group = group;
5144 ex.fe_len = count;
5145
5146 /*
5147 * Mark blocks used, so no one can reuse them while
5148 * being trimmed.
5149 */
5150 mb_mark_used(e4b, &ex);
5151 ext4_unlock_group(sb, group);
5152 ret = ext4_issue_discard(sb, group, start, count, NULL);
5153 ext4_lock_group(sb, group);
5154 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5155 return ret;
5156 }
5157
5158 /**
5159 * ext4_trim_all_free -- function to trim all free space in alloc. group
5160 * @sb: super block for file system
5161 * @group: group to be trimmed
5162 * @start: first group block to examine
5163 * @max: last group block to examine
5164 * @minblocks: minimum extent block count
5165 *
5166 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5167 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5168 * the extent.
5169 *
5170 *
5171 * ext4_trim_all_free walks through group's block bitmap searching for free
5172 * extents. When the free extent is found, mark it as used in group buddy
5173 * bitmap. Then issue a TRIM command on this extent and free the extent in
5174 * the group buddy bitmap. This is done until whole group is scanned.
5175 */
5176 static ext4_grpblk_t
5177 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5178 ext4_grpblk_t start, ext4_grpblk_t max,
5179 ext4_grpblk_t minblocks)
5180 {
5181 void *bitmap;
5182 ext4_grpblk_t next, count = 0, free_count = 0;
5183 struct ext4_buddy e4b;
5184 int ret = 0;
5185
5186 trace_ext4_trim_all_free(sb, group, start, max);
5187
5188 ret = ext4_mb_load_buddy(sb, group, &e4b);
5189 if (ret) {
5190 ext4_warning(sb, "Error %d loading buddy information for %u",
5191 ret, group);
5192 return ret;
5193 }
5194 bitmap = e4b.bd_bitmap;
5195
5196 ext4_lock_group(sb, group);
5197 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5198 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5199 goto out;
5200
5201 start = (e4b.bd_info->bb_first_free > start) ?
5202 e4b.bd_info->bb_first_free : start;
5203
5204 while (start <= max) {
5205 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5206 if (start > max)
5207 break;
5208 next = mb_find_next_bit(bitmap, max + 1, start);
5209
5210 if ((next - start) >= minblocks) {
5211 ret = ext4_trim_extent(sb, start,
5212 next - start, group, &e4b);
5213 if (ret && ret != -EOPNOTSUPP)
5214 break;
5215 ret = 0;
5216 count += next - start;
5217 }
5218 free_count += next - start;
5219 start = next + 1;
5220
5221 if (fatal_signal_pending(current)) {
5222 count = -ERESTARTSYS;
5223 break;
5224 }
5225
5226 if (need_resched()) {
5227 ext4_unlock_group(sb, group);
5228 cond_resched();
5229 ext4_lock_group(sb, group);
5230 }
5231
5232 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5233 break;
5234 }
5235
5236 if (!ret) {
5237 ret = count;
5238 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5239 }
5240 out:
5241 ext4_unlock_group(sb, group);
5242 ext4_mb_unload_buddy(&e4b);
5243
5244 ext4_debug("trimmed %d blocks in the group %d\n",
5245 count, group);
5246
5247 return ret;
5248 }
5249
5250 /**
5251 * ext4_trim_fs() -- trim ioctl handle function
5252 * @sb: superblock for filesystem
5253 * @range: fstrim_range structure
5254 *
5255 * start: First Byte to trim
5256 * len: number of Bytes to trim from start
5257 * minlen: minimum extent length in Bytes
5258 * ext4_trim_fs goes through all allocation groups containing Bytes from
5259 * start to start+len. For each such a group ext4_trim_all_free function
5260 * is invoked to trim all free space.
5261 */
5262 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5263 {
5264 struct ext4_group_info *grp;
5265 ext4_group_t group, first_group, last_group;
5266 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5267 uint64_t start, end, minlen, trimmed = 0;
5268 ext4_fsblk_t first_data_blk =
5269 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5270 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5271 int ret = 0;
5272
5273 start = range->start >> sb->s_blocksize_bits;
5274 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5275 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5276 range->minlen >> sb->s_blocksize_bits);
5277
5278 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5279 start >= max_blks ||
5280 range->len < sb->s_blocksize)
5281 return -EINVAL;
5282 if (end >= max_blks)
5283 end = max_blks - 1;
5284 if (end <= first_data_blk)
5285 goto out;
5286 if (start < first_data_blk)
5287 start = first_data_blk;
5288
5289 /* Determine first and last group to examine based on start and end */
5290 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5291 &first_group, &first_cluster);
5292 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5293 &last_group, &last_cluster);
5294
5295 /* end now represents the last cluster to discard in this group */
5296 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5297
5298 for (group = first_group; group <= last_group; group++) {
5299 grp = ext4_get_group_info(sb, group);
5300 /* We only do this if the grp has never been initialized */
5301 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5302 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5303 if (ret)
5304 break;
5305 }
5306
5307 /*
5308 * For all the groups except the last one, last cluster will
5309 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5310 * change it for the last group, note that last_cluster is
5311 * already computed earlier by ext4_get_group_no_and_offset()
5312 */
5313 if (group == last_group)
5314 end = last_cluster;
5315
5316 if (grp->bb_free >= minlen) {
5317 cnt = ext4_trim_all_free(sb, group, first_cluster,
5318 end, minlen);
5319 if (cnt < 0) {
5320 ret = cnt;
5321 break;
5322 }
5323 trimmed += cnt;
5324 }
5325
5326 /*
5327 * For every group except the first one, we are sure
5328 * that the first cluster to discard will be cluster #0.
5329 */
5330 first_cluster = 0;
5331 }
5332
5333 if (!ret)
5334 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5335
5336 out:
5337 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5338 return ret;
5339 }
5340
5341 /* Iterate all the free extents in the group. */
5342 int
5343 ext4_mballoc_query_range(
5344 struct super_block *sb,
5345 ext4_group_t group,
5346 ext4_grpblk_t start,
5347 ext4_grpblk_t end,
5348 ext4_mballoc_query_range_fn formatter,
5349 void *priv)
5350 {
5351 void *bitmap;
5352 ext4_grpblk_t next;
5353 struct ext4_buddy e4b;
5354 int error;
5355
5356 error = ext4_mb_load_buddy(sb, group, &e4b);
5357 if (error)
5358 return error;
5359 bitmap = e4b.bd_bitmap;
5360
5361 ext4_lock_group(sb, group);
5362
5363 start = (e4b.bd_info->bb_first_free > start) ?
5364 e4b.bd_info->bb_first_free : start;
5365 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5366 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5367
5368 while (start <= end) {
5369 start = mb_find_next_zero_bit(bitmap, end + 1, start);
5370 if (start > end)
5371 break;
5372 next = mb_find_next_bit(bitmap, end + 1, start);
5373
5374 ext4_unlock_group(sb, group);
5375 error = formatter(sb, group, start, next - start, priv);
5376 if (error)
5377 goto out_unload;
5378 ext4_lock_group(sb, group);
5379
5380 start = next + 1;
5381 }
5382
5383 ext4_unlock_group(sb, group);
5384 out_unload:
5385 ext4_mb_unload_buddy(&e4b);
5386
5387 return error;
5388 }