]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/namespace.c
299ace7bc5e8d3085fc0db21404740ebe60633b5
[mirror_ubuntu-bionic-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29
30 #include "pnode.h"
31 #include "internal.h"
32
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly = 100000;
35
36 static unsigned int m_hash_mask __read_mostly;
37 static unsigned int m_hash_shift __read_mostly;
38 static unsigned int mp_hash_mask __read_mostly;
39 static unsigned int mp_hash_shift __read_mostly;
40
41 static __initdata unsigned long mhash_entries;
42 static int __init set_mhash_entries(char *str)
43 {
44 if (!str)
45 return 0;
46 mhash_entries = simple_strtoul(str, &str, 0);
47 return 1;
48 }
49 __setup("mhash_entries=", set_mhash_entries);
50
51 static __initdata unsigned long mphash_entries;
52 static int __init set_mphash_entries(char *str)
53 {
54 if (!str)
55 return 0;
56 mphash_entries = simple_strtoul(str, &str, 0);
57 return 1;
58 }
59 __setup("mphash_entries=", set_mphash_entries);
60
61 static u64 event;
62 static DEFINE_IDA(mnt_id_ida);
63 static DEFINE_IDA(mnt_group_ida);
64 static DEFINE_SPINLOCK(mnt_id_lock);
65 static int mnt_id_start = 0;
66 static int mnt_group_start = 1;
67
68 static struct hlist_head *mount_hashtable __read_mostly;
69 static struct hlist_head *mountpoint_hashtable __read_mostly;
70 static struct kmem_cache *mnt_cache __read_mostly;
71 static DECLARE_RWSEM(namespace_sem);
72
73 /* /sys/fs */
74 struct kobject *fs_kobj;
75 EXPORT_SYMBOL_GPL(fs_kobj);
76
77 /*
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
80 * up the tree.
81 *
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
84 */
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
86
87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
88 {
89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
91 tmp = tmp + (tmp >> m_hash_shift);
92 return &mount_hashtable[tmp & m_hash_mask];
93 }
94
95 static inline struct hlist_head *mp_hash(struct dentry *dentry)
96 {
97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 tmp = tmp + (tmp >> mp_hash_shift);
99 return &mountpoint_hashtable[tmp & mp_hash_mask];
100 }
101
102 static int mnt_alloc_id(struct mount *mnt)
103 {
104 int res;
105
106 retry:
107 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
108 spin_lock(&mnt_id_lock);
109 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
110 if (!res)
111 mnt_id_start = mnt->mnt_id + 1;
112 spin_unlock(&mnt_id_lock);
113 if (res == -EAGAIN)
114 goto retry;
115
116 return res;
117 }
118
119 static void mnt_free_id(struct mount *mnt)
120 {
121 int id = mnt->mnt_id;
122 spin_lock(&mnt_id_lock);
123 ida_remove(&mnt_id_ida, id);
124 if (mnt_id_start > id)
125 mnt_id_start = id;
126 spin_unlock(&mnt_id_lock);
127 }
128
129 /*
130 * Allocate a new peer group ID
131 *
132 * mnt_group_ida is protected by namespace_sem
133 */
134 static int mnt_alloc_group_id(struct mount *mnt)
135 {
136 int res;
137
138 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 return -ENOMEM;
140
141 res = ida_get_new_above(&mnt_group_ida,
142 mnt_group_start,
143 &mnt->mnt_group_id);
144 if (!res)
145 mnt_group_start = mnt->mnt_group_id + 1;
146
147 return res;
148 }
149
150 /*
151 * Release a peer group ID
152 */
153 void mnt_release_group_id(struct mount *mnt)
154 {
155 int id = mnt->mnt_group_id;
156 ida_remove(&mnt_group_ida, id);
157 if (mnt_group_start > id)
158 mnt_group_start = id;
159 mnt->mnt_group_id = 0;
160 }
161
162 /*
163 * vfsmount lock must be held for read
164 */
165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 preempt_disable();
171 mnt->mnt_count += n;
172 preempt_enable();
173 #endif
174 }
175
176 /*
177 * vfsmount lock must be held for write
178 */
179 unsigned int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 unsigned int count = 0;
183 int cpu;
184
185 for_each_possible_cpu(cpu) {
186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 }
188
189 return count;
190 #else
191 return mnt->mnt_count;
192 #endif
193 }
194
195 static void drop_mountpoint(struct fs_pin *p)
196 {
197 struct mount *m = container_of(p, struct mount, mnt_umount);
198 dput(m->mnt_ex_mountpoint);
199 pin_remove(p);
200 mntput(&m->mnt);
201 }
202
203 static struct mount *alloc_vfsmnt(const char *name)
204 {
205 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
206 if (mnt) {
207 int err;
208
209 err = mnt_alloc_id(mnt);
210 if (err)
211 goto out_free_cache;
212
213 if (name) {
214 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
215 if (!mnt->mnt_devname)
216 goto out_free_id;
217 }
218
219 #ifdef CONFIG_SMP
220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 if (!mnt->mnt_pcp)
222 goto out_free_devname;
223
224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
225 #else
226 mnt->mnt_count = 1;
227 mnt->mnt_writers = 0;
228 #endif
229
230 INIT_HLIST_NODE(&mnt->mnt_hash);
231 INIT_LIST_HEAD(&mnt->mnt_child);
232 INIT_LIST_HEAD(&mnt->mnt_mounts);
233 INIT_LIST_HEAD(&mnt->mnt_list);
234 INIT_LIST_HEAD(&mnt->mnt_expire);
235 INIT_LIST_HEAD(&mnt->mnt_share);
236 INIT_LIST_HEAD(&mnt->mnt_slave_list);
237 INIT_LIST_HEAD(&mnt->mnt_slave);
238 INIT_HLIST_NODE(&mnt->mnt_mp_list);
239 INIT_LIST_HEAD(&mnt->mnt_umounting);
240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241 }
242 return mnt;
243
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 mnt_free_id(mnt);
250 out_free_cache:
251 kmem_cache_free(mnt_cache, mnt);
252 return NULL;
253 }
254
255 /*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263 /*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274 int __mnt_is_readonly(struct vfsmount *mnt)
275 {
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (sb_rdonly(mnt->mnt_sb))
279 return 1;
280 return 0;
281 }
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
284 static inline void mnt_inc_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 mnt->mnt_writers++;
290 #endif
291 }
292
293 static inline void mnt_dec_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 mnt->mnt_writers--;
299 #endif
300 }
301
302 static unsigned int mnt_get_writers(struct mount *mnt)
303 {
304 #ifdef CONFIG_SMP
305 unsigned int count = 0;
306 int cpu;
307
308 for_each_possible_cpu(cpu) {
309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310 }
311
312 return count;
313 #else
314 return mnt->mnt_writers;
315 #endif
316 }
317
318 static int mnt_is_readonly(struct vfsmount *mnt)
319 {
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325 }
326
327 /*
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
332 */
333 /**
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
342 */
343 int __mnt_want_write(struct vfsmount *m)
344 {
345 struct mount *mnt = real_mount(m);
346 int ret = 0;
347
348 preempt_disable();
349 mnt_inc_writers(mnt);
350 /*
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
356 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
364 if (mnt_is_readonly(m)) {
365 mnt_dec_writers(mnt);
366 ret = -EROFS;
367 }
368 preempt_enable();
369
370 return ret;
371 }
372
373 /**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382 int mnt_want_write(struct vfsmount *m)
383 {
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
390 return ret;
391 }
392 EXPORT_SYMBOL_GPL(mnt_want_write);
393
394 /**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406 int mnt_clone_write(struct vfsmount *mnt)
407 {
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
412 mnt_inc_writers(real_mount(mnt));
413 preempt_enable();
414 return 0;
415 }
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418 /**
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
421 *
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
424 */
425 int __mnt_want_write_file(struct file *file)
426 {
427 if (!(file->f_mode & FMODE_WRITER))
428 return __mnt_want_write(file->f_path.mnt);
429 else
430 return mnt_clone_write(file->f_path.mnt);
431 }
432
433 /**
434 * mnt_want_write_file_path - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 *
440 * Called by the vfs for cases when we have an open file at hand, but will do an
441 * inode operation on it (important distinction for files opened on overlayfs,
442 * since the file operations will come from the real underlying file, while
443 * inode operations come from the overlay).
444 */
445 int mnt_want_write_file_path(struct file *file)
446 {
447 int ret;
448
449 sb_start_write(file->f_path.mnt->mnt_sb);
450 ret = __mnt_want_write_file(file);
451 if (ret)
452 sb_end_write(file->f_path.mnt->mnt_sb);
453 return ret;
454 }
455
456 static inline int may_write_real(struct file *file)
457 {
458 struct dentry *dentry = file->f_path.dentry;
459 struct dentry *upperdentry;
460
461 /* Writable file? */
462 if (file->f_mode & FMODE_WRITER)
463 return 0;
464
465 /* Not overlayfs? */
466 if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
467 return 0;
468
469 /* File refers to upper, writable layer? */
470 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
471 if (upperdentry &&
472 (file_inode(file) == d_inode(upperdentry) ||
473 file_inode(file) == d_inode(dentry)))
474 return 0;
475
476 /* Lower layer: can't write to real file, sorry... */
477 return -EPERM;
478 }
479
480 /**
481 * mnt_want_write_file - get write access to a file's mount
482 * @file: the file who's mount on which to take a write
483 *
484 * This is like mnt_want_write, but it takes a file and can
485 * do some optimisations if the file is open for write already
486 *
487 * Mostly called by filesystems from their ioctl operation before performing
488 * modification. On overlayfs this needs to check if the file is on a read-only
489 * lower layer and deny access in that case.
490 */
491 int mnt_want_write_file(struct file *file)
492 {
493 int ret;
494
495 ret = may_write_real(file);
496 if (!ret) {
497 sb_start_write(file_inode(file)->i_sb);
498 ret = __mnt_want_write_file(file);
499 if (ret)
500 sb_end_write(file_inode(file)->i_sb);
501 }
502 return ret;
503 }
504 EXPORT_SYMBOL_GPL(mnt_want_write_file);
505
506 /**
507 * __mnt_drop_write - give up write access to a mount
508 * @mnt: the mount on which to give up write access
509 *
510 * Tells the low-level filesystem that we are done
511 * performing writes to it. Must be matched with
512 * __mnt_want_write() call above.
513 */
514 void __mnt_drop_write(struct vfsmount *mnt)
515 {
516 preempt_disable();
517 mnt_dec_writers(real_mount(mnt));
518 preempt_enable();
519 }
520 EXPORT_SYMBOL_GPL(__mnt_drop_write);
521
522 /**
523 * mnt_drop_write - give up write access to a mount
524 * @mnt: the mount on which to give up write access
525 *
526 * Tells the low-level filesystem that we are done performing writes to it and
527 * also allows filesystem to be frozen again. Must be matched with
528 * mnt_want_write() call above.
529 */
530 void mnt_drop_write(struct vfsmount *mnt)
531 {
532 __mnt_drop_write(mnt);
533 sb_end_write(mnt->mnt_sb);
534 }
535 EXPORT_SYMBOL_GPL(mnt_drop_write);
536
537 void __mnt_drop_write_file(struct file *file)
538 {
539 __mnt_drop_write(file->f_path.mnt);
540 }
541
542 void mnt_drop_write_file_path(struct file *file)
543 {
544 mnt_drop_write(file->f_path.mnt);
545 }
546
547 void mnt_drop_write_file(struct file *file)
548 {
549 __mnt_drop_write(file->f_path.mnt);
550 sb_end_write(file_inode(file)->i_sb);
551 }
552 EXPORT_SYMBOL(mnt_drop_write_file);
553
554 static int mnt_make_readonly(struct mount *mnt)
555 {
556 int ret = 0;
557
558 lock_mount_hash();
559 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
560 /*
561 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
562 * should be visible before we do.
563 */
564 smp_mb();
565
566 /*
567 * With writers on hold, if this value is zero, then there are
568 * definitely no active writers (although held writers may subsequently
569 * increment the count, they'll have to wait, and decrement it after
570 * seeing MNT_READONLY).
571 *
572 * It is OK to have counter incremented on one CPU and decremented on
573 * another: the sum will add up correctly. The danger would be when we
574 * sum up each counter, if we read a counter before it is incremented,
575 * but then read another CPU's count which it has been subsequently
576 * decremented from -- we would see more decrements than we should.
577 * MNT_WRITE_HOLD protects against this scenario, because
578 * mnt_want_write first increments count, then smp_mb, then spins on
579 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
580 * we're counting up here.
581 */
582 if (mnt_get_writers(mnt) > 0)
583 ret = -EBUSY;
584 else
585 mnt->mnt.mnt_flags |= MNT_READONLY;
586 /*
587 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
588 * that become unheld will see MNT_READONLY.
589 */
590 smp_wmb();
591 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
592 unlock_mount_hash();
593 return ret;
594 }
595
596 static void __mnt_unmake_readonly(struct mount *mnt)
597 {
598 lock_mount_hash();
599 mnt->mnt.mnt_flags &= ~MNT_READONLY;
600 unlock_mount_hash();
601 }
602
603 int sb_prepare_remount_readonly(struct super_block *sb)
604 {
605 struct mount *mnt;
606 int err = 0;
607
608 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
609 if (atomic_long_read(&sb->s_remove_count))
610 return -EBUSY;
611
612 lock_mount_hash();
613 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
614 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
615 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
616 smp_mb();
617 if (mnt_get_writers(mnt) > 0) {
618 err = -EBUSY;
619 break;
620 }
621 }
622 }
623 if (!err && atomic_long_read(&sb->s_remove_count))
624 err = -EBUSY;
625
626 if (!err) {
627 sb->s_readonly_remount = 1;
628 smp_wmb();
629 }
630 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
631 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
632 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
633 }
634 unlock_mount_hash();
635
636 return err;
637 }
638
639 static void free_vfsmnt(struct mount *mnt)
640 {
641 kfree_const(mnt->mnt_devname);
642 #ifdef CONFIG_SMP
643 free_percpu(mnt->mnt_pcp);
644 #endif
645 kmem_cache_free(mnt_cache, mnt);
646 }
647
648 static void delayed_free_vfsmnt(struct rcu_head *head)
649 {
650 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
651 }
652
653 /* call under rcu_read_lock */
654 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
655 {
656 struct mount *mnt;
657 if (read_seqretry(&mount_lock, seq))
658 return 1;
659 if (bastard == NULL)
660 return 0;
661 mnt = real_mount(bastard);
662 mnt_add_count(mnt, 1);
663 if (likely(!read_seqretry(&mount_lock, seq)))
664 return 0;
665 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
666 mnt_add_count(mnt, -1);
667 return 1;
668 }
669 return -1;
670 }
671
672 /* call under rcu_read_lock */
673 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
674 {
675 int res = __legitimize_mnt(bastard, seq);
676 if (likely(!res))
677 return true;
678 if (unlikely(res < 0)) {
679 rcu_read_unlock();
680 mntput(bastard);
681 rcu_read_lock();
682 }
683 return false;
684 }
685
686 /*
687 * find the first mount at @dentry on vfsmount @mnt.
688 * call under rcu_read_lock()
689 */
690 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
691 {
692 struct hlist_head *head = m_hash(mnt, dentry);
693 struct mount *p;
694
695 hlist_for_each_entry_rcu(p, head, mnt_hash)
696 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
697 return p;
698 return NULL;
699 }
700
701 /*
702 * lookup_mnt - Return the first child mount mounted at path
703 *
704 * "First" means first mounted chronologically. If you create the
705 * following mounts:
706 *
707 * mount /dev/sda1 /mnt
708 * mount /dev/sda2 /mnt
709 * mount /dev/sda3 /mnt
710 *
711 * Then lookup_mnt() on the base /mnt dentry in the root mount will
712 * return successively the root dentry and vfsmount of /dev/sda1, then
713 * /dev/sda2, then /dev/sda3, then NULL.
714 *
715 * lookup_mnt takes a reference to the found vfsmount.
716 */
717 struct vfsmount *lookup_mnt(const struct path *path)
718 {
719 struct mount *child_mnt;
720 struct vfsmount *m;
721 unsigned seq;
722
723 rcu_read_lock();
724 do {
725 seq = read_seqbegin(&mount_lock);
726 child_mnt = __lookup_mnt(path->mnt, path->dentry);
727 m = child_mnt ? &child_mnt->mnt : NULL;
728 } while (!legitimize_mnt(m, seq));
729 rcu_read_unlock();
730 return m;
731 }
732
733 /*
734 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
735 * current mount namespace.
736 *
737 * The common case is dentries are not mountpoints at all and that
738 * test is handled inline. For the slow case when we are actually
739 * dealing with a mountpoint of some kind, walk through all of the
740 * mounts in the current mount namespace and test to see if the dentry
741 * is a mountpoint.
742 *
743 * The mount_hashtable is not usable in the context because we
744 * need to identify all mounts that may be in the current mount
745 * namespace not just a mount that happens to have some specified
746 * parent mount.
747 */
748 bool __is_local_mountpoint(struct dentry *dentry)
749 {
750 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
751 struct mount *mnt;
752 bool is_covered = false;
753
754 if (!d_mountpoint(dentry))
755 goto out;
756
757 down_read(&namespace_sem);
758 list_for_each_entry(mnt, &ns->list, mnt_list) {
759 is_covered = (mnt->mnt_mountpoint == dentry);
760 if (is_covered)
761 break;
762 }
763 up_read(&namespace_sem);
764 out:
765 return is_covered;
766 }
767
768 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
769 {
770 struct hlist_head *chain = mp_hash(dentry);
771 struct mountpoint *mp;
772
773 hlist_for_each_entry(mp, chain, m_hash) {
774 if (mp->m_dentry == dentry) {
775 /* might be worth a WARN_ON() */
776 if (d_unlinked(dentry))
777 return ERR_PTR(-ENOENT);
778 mp->m_count++;
779 return mp;
780 }
781 }
782 return NULL;
783 }
784
785 static struct mountpoint *get_mountpoint(struct dentry *dentry)
786 {
787 struct mountpoint *mp, *new = NULL;
788 int ret;
789
790 if (d_mountpoint(dentry)) {
791 mountpoint:
792 read_seqlock_excl(&mount_lock);
793 mp = lookup_mountpoint(dentry);
794 read_sequnlock_excl(&mount_lock);
795 if (mp)
796 goto done;
797 }
798
799 if (!new)
800 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
801 if (!new)
802 return ERR_PTR(-ENOMEM);
803
804
805 /* Exactly one processes may set d_mounted */
806 ret = d_set_mounted(dentry);
807
808 /* Someone else set d_mounted? */
809 if (ret == -EBUSY)
810 goto mountpoint;
811
812 /* The dentry is not available as a mountpoint? */
813 mp = ERR_PTR(ret);
814 if (ret)
815 goto done;
816
817 /* Add the new mountpoint to the hash table */
818 read_seqlock_excl(&mount_lock);
819 new->m_dentry = dentry;
820 new->m_count = 1;
821 hlist_add_head(&new->m_hash, mp_hash(dentry));
822 INIT_HLIST_HEAD(&new->m_list);
823 read_sequnlock_excl(&mount_lock);
824
825 mp = new;
826 new = NULL;
827 done:
828 kfree(new);
829 return mp;
830 }
831
832 static void put_mountpoint(struct mountpoint *mp)
833 {
834 if (!--mp->m_count) {
835 struct dentry *dentry = mp->m_dentry;
836 BUG_ON(!hlist_empty(&mp->m_list));
837 spin_lock(&dentry->d_lock);
838 dentry->d_flags &= ~DCACHE_MOUNTED;
839 spin_unlock(&dentry->d_lock);
840 hlist_del(&mp->m_hash);
841 kfree(mp);
842 }
843 }
844
845 static inline int check_mnt(struct mount *mnt)
846 {
847 return mnt->mnt_ns == current->nsproxy->mnt_ns;
848 }
849
850 /* for aufs, CONFIG_AUFS_BR_FUSE */
851 int is_current_mnt_ns(struct vfsmount *mnt)
852 {
853 return check_mnt(real_mount(mnt));
854 }
855 EXPORT_SYMBOL_GPL(is_current_mnt_ns);
856
857 /*
858 * vfsmount lock must be held for write
859 */
860 static void touch_mnt_namespace(struct mnt_namespace *ns)
861 {
862 if (ns) {
863 ns->event = ++event;
864 wake_up_interruptible(&ns->poll);
865 }
866 }
867
868 /*
869 * vfsmount lock must be held for write
870 */
871 static void __touch_mnt_namespace(struct mnt_namespace *ns)
872 {
873 if (ns && ns->event != event) {
874 ns->event = event;
875 wake_up_interruptible(&ns->poll);
876 }
877 }
878
879 /*
880 * vfsmount lock must be held for write
881 */
882 static void unhash_mnt(struct mount *mnt)
883 {
884 mnt->mnt_parent = mnt;
885 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
886 list_del_init(&mnt->mnt_child);
887 hlist_del_init_rcu(&mnt->mnt_hash);
888 hlist_del_init(&mnt->mnt_mp_list);
889 put_mountpoint(mnt->mnt_mp);
890 mnt->mnt_mp = NULL;
891 }
892
893 /*
894 * vfsmount lock must be held for write
895 */
896 static void detach_mnt(struct mount *mnt, struct path *old_path)
897 {
898 old_path->dentry = mnt->mnt_mountpoint;
899 old_path->mnt = &mnt->mnt_parent->mnt;
900 unhash_mnt(mnt);
901 }
902
903 /*
904 * vfsmount lock must be held for write
905 */
906 static void umount_mnt(struct mount *mnt)
907 {
908 /* old mountpoint will be dropped when we can do that */
909 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
910 unhash_mnt(mnt);
911 }
912
913 /*
914 * vfsmount lock must be held for write
915 */
916 void mnt_set_mountpoint(struct mount *mnt,
917 struct mountpoint *mp,
918 struct mount *child_mnt)
919 {
920 mp->m_count++;
921 mnt_add_count(mnt, 1); /* essentially, that's mntget */
922 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
923 child_mnt->mnt_parent = mnt;
924 child_mnt->mnt_mp = mp;
925 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
926 }
927
928 static void __attach_mnt(struct mount *mnt, struct mount *parent)
929 {
930 hlist_add_head_rcu(&mnt->mnt_hash,
931 m_hash(&parent->mnt, mnt->mnt_mountpoint));
932 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
933 }
934
935 /*
936 * vfsmount lock must be held for write
937 */
938 static void attach_mnt(struct mount *mnt,
939 struct mount *parent,
940 struct mountpoint *mp)
941 {
942 mnt_set_mountpoint(parent, mp, mnt);
943 __attach_mnt(mnt, parent);
944 }
945
946 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
947 {
948 struct mountpoint *old_mp = mnt->mnt_mp;
949 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
950 struct mount *old_parent = mnt->mnt_parent;
951
952 list_del_init(&mnt->mnt_child);
953 hlist_del_init(&mnt->mnt_mp_list);
954 hlist_del_init_rcu(&mnt->mnt_hash);
955
956 attach_mnt(mnt, parent, mp);
957
958 put_mountpoint(old_mp);
959
960 /*
961 * Safely avoid even the suggestion this code might sleep or
962 * lock the mount hash by taking advantage of the knowledge that
963 * mnt_change_mountpoint will not release the final reference
964 * to a mountpoint.
965 *
966 * During mounting, the mount passed in as the parent mount will
967 * continue to use the old mountpoint and during unmounting, the
968 * old mountpoint will continue to exist until namespace_unlock,
969 * which happens well after mnt_change_mountpoint.
970 */
971 spin_lock(&old_mountpoint->d_lock);
972 old_mountpoint->d_lockref.count--;
973 spin_unlock(&old_mountpoint->d_lock);
974
975 mnt_add_count(old_parent, -1);
976 }
977
978 /*
979 * vfsmount lock must be held for write
980 */
981 static void commit_tree(struct mount *mnt)
982 {
983 struct mount *parent = mnt->mnt_parent;
984 struct mount *m;
985 LIST_HEAD(head);
986 struct mnt_namespace *n = parent->mnt_ns;
987
988 BUG_ON(parent == mnt);
989
990 list_add_tail(&head, &mnt->mnt_list);
991 list_for_each_entry(m, &head, mnt_list)
992 m->mnt_ns = n;
993
994 list_splice(&head, n->list.prev);
995
996 n->mounts += n->pending_mounts;
997 n->pending_mounts = 0;
998
999 __attach_mnt(mnt, parent);
1000 touch_mnt_namespace(n);
1001 }
1002
1003 static struct mount *next_mnt(struct mount *p, struct mount *root)
1004 {
1005 struct list_head *next = p->mnt_mounts.next;
1006 if (next == &p->mnt_mounts) {
1007 while (1) {
1008 if (p == root)
1009 return NULL;
1010 next = p->mnt_child.next;
1011 if (next != &p->mnt_parent->mnt_mounts)
1012 break;
1013 p = p->mnt_parent;
1014 }
1015 }
1016 return list_entry(next, struct mount, mnt_child);
1017 }
1018
1019 static struct mount *skip_mnt_tree(struct mount *p)
1020 {
1021 struct list_head *prev = p->mnt_mounts.prev;
1022 while (prev != &p->mnt_mounts) {
1023 p = list_entry(prev, struct mount, mnt_child);
1024 prev = p->mnt_mounts.prev;
1025 }
1026 return p;
1027 }
1028
1029 struct vfsmount *
1030 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
1031 {
1032 struct mount *mnt;
1033 struct dentry *root;
1034
1035 if (!type)
1036 return ERR_PTR(-ENODEV);
1037
1038 mnt = alloc_vfsmnt(name);
1039 if (!mnt)
1040 return ERR_PTR(-ENOMEM);
1041
1042 if (flags & SB_KERNMOUNT)
1043 mnt->mnt.mnt_flags = MNT_INTERNAL;
1044
1045 root = mount_fs(type, flags, name, data);
1046 if (IS_ERR(root)) {
1047 mnt_free_id(mnt);
1048 free_vfsmnt(mnt);
1049 return ERR_CAST(root);
1050 }
1051
1052 mnt->mnt.mnt_root = root;
1053 mnt->mnt.mnt_sb = root->d_sb;
1054 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1055 mnt->mnt_parent = mnt;
1056 lock_mount_hash();
1057 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1058 unlock_mount_hash();
1059 return &mnt->mnt;
1060 }
1061 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1062
1063 struct vfsmount *
1064 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1065 const char *name, void *data)
1066 {
1067 /* Until it is worked out how to pass the user namespace
1068 * through from the parent mount to the submount don't support
1069 * unprivileged mounts with submounts.
1070 */
1071 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1072 return ERR_PTR(-EPERM);
1073
1074 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1075 }
1076 EXPORT_SYMBOL_GPL(vfs_submount);
1077
1078 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1079 int flag)
1080 {
1081 struct super_block *sb = old->mnt.mnt_sb;
1082 struct mount *mnt;
1083 int err;
1084
1085 mnt = alloc_vfsmnt(old->mnt_devname);
1086 if (!mnt)
1087 return ERR_PTR(-ENOMEM);
1088
1089 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1090 mnt->mnt_group_id = 0; /* not a peer of original */
1091 else
1092 mnt->mnt_group_id = old->mnt_group_id;
1093
1094 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1095 err = mnt_alloc_group_id(mnt);
1096 if (err)
1097 goto out_free;
1098 }
1099
1100 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
1101 /* Don't allow unprivileged users to change mount flags */
1102 if (flag & CL_UNPRIVILEGED) {
1103 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1104
1105 if (mnt->mnt.mnt_flags & MNT_READONLY)
1106 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1107
1108 if (mnt->mnt.mnt_flags & MNT_NODEV)
1109 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1110
1111 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1112 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1113
1114 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1115 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1116 }
1117
1118 /* Don't allow unprivileged users to reveal what is under a mount */
1119 if ((flag & CL_UNPRIVILEGED) &&
1120 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1121 mnt->mnt.mnt_flags |= MNT_LOCKED;
1122
1123 atomic_inc(&sb->s_active);
1124 mnt->mnt.mnt_sb = sb;
1125 mnt->mnt.mnt_root = dget(root);
1126 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1127 mnt->mnt_parent = mnt;
1128 lock_mount_hash();
1129 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1130 unlock_mount_hash();
1131
1132 if ((flag & CL_SLAVE) ||
1133 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1134 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1135 mnt->mnt_master = old;
1136 CLEAR_MNT_SHARED(mnt);
1137 } else if (!(flag & CL_PRIVATE)) {
1138 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1139 list_add(&mnt->mnt_share, &old->mnt_share);
1140 if (IS_MNT_SLAVE(old))
1141 list_add(&mnt->mnt_slave, &old->mnt_slave);
1142 mnt->mnt_master = old->mnt_master;
1143 } else {
1144 CLEAR_MNT_SHARED(mnt);
1145 }
1146 if (flag & CL_MAKE_SHARED)
1147 set_mnt_shared(mnt);
1148
1149 /* stick the duplicate mount on the same expiry list
1150 * as the original if that was on one */
1151 if (flag & CL_EXPIRE) {
1152 if (!list_empty(&old->mnt_expire))
1153 list_add(&mnt->mnt_expire, &old->mnt_expire);
1154 }
1155
1156 return mnt;
1157
1158 out_free:
1159 mnt_free_id(mnt);
1160 free_vfsmnt(mnt);
1161 return ERR_PTR(err);
1162 }
1163
1164 static void cleanup_mnt(struct mount *mnt)
1165 {
1166 /*
1167 * This probably indicates that somebody messed
1168 * up a mnt_want/drop_write() pair. If this
1169 * happens, the filesystem was probably unable
1170 * to make r/w->r/o transitions.
1171 */
1172 /*
1173 * The locking used to deal with mnt_count decrement provides barriers,
1174 * so mnt_get_writers() below is safe.
1175 */
1176 WARN_ON(mnt_get_writers(mnt));
1177 if (unlikely(mnt->mnt_pins.first))
1178 mnt_pin_kill(mnt);
1179 fsnotify_vfsmount_delete(&mnt->mnt);
1180 dput(mnt->mnt.mnt_root);
1181 deactivate_super(mnt->mnt.mnt_sb);
1182 mnt_free_id(mnt);
1183 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1184 }
1185
1186 static void __cleanup_mnt(struct rcu_head *head)
1187 {
1188 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1189 }
1190
1191 static LLIST_HEAD(delayed_mntput_list);
1192 static void delayed_mntput(struct work_struct *unused)
1193 {
1194 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1195 struct mount *m, *t;
1196
1197 llist_for_each_entry_safe(m, t, node, mnt_llist)
1198 cleanup_mnt(m);
1199 }
1200 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1201
1202 static void mntput_no_expire(struct mount *mnt)
1203 {
1204 rcu_read_lock();
1205 mnt_add_count(mnt, -1);
1206 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1207 rcu_read_unlock();
1208 return;
1209 }
1210 lock_mount_hash();
1211 if (mnt_get_count(mnt)) {
1212 rcu_read_unlock();
1213 unlock_mount_hash();
1214 return;
1215 }
1216 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1217 rcu_read_unlock();
1218 unlock_mount_hash();
1219 return;
1220 }
1221 mnt->mnt.mnt_flags |= MNT_DOOMED;
1222 rcu_read_unlock();
1223
1224 list_del(&mnt->mnt_instance);
1225
1226 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1227 struct mount *p, *tmp;
1228 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1229 umount_mnt(p);
1230 }
1231 }
1232 unlock_mount_hash();
1233
1234 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1235 struct task_struct *task = current;
1236 if (likely(!(task->flags & PF_KTHREAD))) {
1237 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1238 if (!task_work_add(task, &mnt->mnt_rcu, true))
1239 return;
1240 }
1241 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1242 schedule_delayed_work(&delayed_mntput_work, 1);
1243 return;
1244 }
1245 cleanup_mnt(mnt);
1246 }
1247
1248 void mntput(struct vfsmount *mnt)
1249 {
1250 if (mnt) {
1251 struct mount *m = real_mount(mnt);
1252 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1253 if (unlikely(m->mnt_expiry_mark))
1254 m->mnt_expiry_mark = 0;
1255 mntput_no_expire(m);
1256 }
1257 }
1258 EXPORT_SYMBOL(mntput);
1259
1260 struct vfsmount *mntget(struct vfsmount *mnt)
1261 {
1262 if (mnt)
1263 mnt_add_count(real_mount(mnt), 1);
1264 return mnt;
1265 }
1266 EXPORT_SYMBOL(mntget);
1267
1268 /* path_is_mountpoint() - Check if path is a mount in the current
1269 * namespace.
1270 *
1271 * d_mountpoint() can only be used reliably to establish if a dentry is
1272 * not mounted in any namespace and that common case is handled inline.
1273 * d_mountpoint() isn't aware of the possibility there may be multiple
1274 * mounts using a given dentry in a different namespace. This function
1275 * checks if the passed in path is a mountpoint rather than the dentry
1276 * alone.
1277 */
1278 bool path_is_mountpoint(const struct path *path)
1279 {
1280 unsigned seq;
1281 bool res;
1282
1283 if (!d_mountpoint(path->dentry))
1284 return false;
1285
1286 rcu_read_lock();
1287 do {
1288 seq = read_seqbegin(&mount_lock);
1289 res = __path_is_mountpoint(path);
1290 } while (read_seqretry(&mount_lock, seq));
1291 rcu_read_unlock();
1292
1293 return res;
1294 }
1295 EXPORT_SYMBOL(path_is_mountpoint);
1296
1297 struct vfsmount *mnt_clone_internal(const struct path *path)
1298 {
1299 struct mount *p;
1300 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1301 if (IS_ERR(p))
1302 return ERR_CAST(p);
1303 p->mnt.mnt_flags |= MNT_INTERNAL;
1304 return &p->mnt;
1305 }
1306
1307 #ifdef CONFIG_PROC_FS
1308 /* iterator; we want it to have access to namespace_sem, thus here... */
1309 static void *m_start(struct seq_file *m, loff_t *pos)
1310 {
1311 struct proc_mounts *p = m->private;
1312
1313 down_read(&namespace_sem);
1314 if (p->cached_event == p->ns->event) {
1315 void *v = p->cached_mount;
1316 if (*pos == p->cached_index)
1317 return v;
1318 if (*pos == p->cached_index + 1) {
1319 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1320 return p->cached_mount = v;
1321 }
1322 }
1323
1324 p->cached_event = p->ns->event;
1325 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1326 p->cached_index = *pos;
1327 return p->cached_mount;
1328 }
1329
1330 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1331 {
1332 struct proc_mounts *p = m->private;
1333
1334 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1335 p->cached_index = *pos;
1336 return p->cached_mount;
1337 }
1338
1339 static void m_stop(struct seq_file *m, void *v)
1340 {
1341 up_read(&namespace_sem);
1342 }
1343
1344 static int m_show(struct seq_file *m, void *v)
1345 {
1346 struct proc_mounts *p = m->private;
1347 struct mount *r = list_entry(v, struct mount, mnt_list);
1348 return p->show(m, &r->mnt);
1349 }
1350
1351 const struct seq_operations mounts_op = {
1352 .start = m_start,
1353 .next = m_next,
1354 .stop = m_stop,
1355 .show = m_show,
1356 };
1357 #endif /* CONFIG_PROC_FS */
1358
1359 /**
1360 * may_umount_tree - check if a mount tree is busy
1361 * @mnt: root of mount tree
1362 *
1363 * This is called to check if a tree of mounts has any
1364 * open files, pwds, chroots or sub mounts that are
1365 * busy.
1366 */
1367 int may_umount_tree(struct vfsmount *m)
1368 {
1369 struct mount *mnt = real_mount(m);
1370 int actual_refs = 0;
1371 int minimum_refs = 0;
1372 struct mount *p;
1373 BUG_ON(!m);
1374
1375 /* write lock needed for mnt_get_count */
1376 lock_mount_hash();
1377 for (p = mnt; p; p = next_mnt(p, mnt)) {
1378 actual_refs += mnt_get_count(p);
1379 minimum_refs += 2;
1380 }
1381 unlock_mount_hash();
1382
1383 if (actual_refs > minimum_refs)
1384 return 0;
1385
1386 return 1;
1387 }
1388
1389 EXPORT_SYMBOL(may_umount_tree);
1390
1391 /**
1392 * may_umount - check if a mount point is busy
1393 * @mnt: root of mount
1394 *
1395 * This is called to check if a mount point has any
1396 * open files, pwds, chroots or sub mounts. If the
1397 * mount has sub mounts this will return busy
1398 * regardless of whether the sub mounts are busy.
1399 *
1400 * Doesn't take quota and stuff into account. IOW, in some cases it will
1401 * give false negatives. The main reason why it's here is that we need
1402 * a non-destructive way to look for easily umountable filesystems.
1403 */
1404 int may_umount(struct vfsmount *mnt)
1405 {
1406 int ret = 1;
1407 down_read(&namespace_sem);
1408 lock_mount_hash();
1409 if (propagate_mount_busy(real_mount(mnt), 2))
1410 ret = 0;
1411 unlock_mount_hash();
1412 up_read(&namespace_sem);
1413 return ret;
1414 }
1415
1416 EXPORT_SYMBOL(may_umount);
1417
1418 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1419
1420 static void namespace_unlock(void)
1421 {
1422 struct hlist_head head;
1423
1424 hlist_move_list(&unmounted, &head);
1425
1426 up_write(&namespace_sem);
1427
1428 if (likely(hlist_empty(&head)))
1429 return;
1430
1431 synchronize_rcu();
1432
1433 group_pin_kill(&head);
1434 }
1435
1436 static inline void namespace_lock(void)
1437 {
1438 down_write(&namespace_sem);
1439 }
1440
1441 enum umount_tree_flags {
1442 UMOUNT_SYNC = 1,
1443 UMOUNT_PROPAGATE = 2,
1444 UMOUNT_CONNECTED = 4,
1445 };
1446
1447 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1448 {
1449 /* Leaving mounts connected is only valid for lazy umounts */
1450 if (how & UMOUNT_SYNC)
1451 return true;
1452
1453 /* A mount without a parent has nothing to be connected to */
1454 if (!mnt_has_parent(mnt))
1455 return true;
1456
1457 /* Because the reference counting rules change when mounts are
1458 * unmounted and connected, umounted mounts may not be
1459 * connected to mounted mounts.
1460 */
1461 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1462 return true;
1463
1464 /* Has it been requested that the mount remain connected? */
1465 if (how & UMOUNT_CONNECTED)
1466 return false;
1467
1468 /* Is the mount locked such that it needs to remain connected? */
1469 if (IS_MNT_LOCKED(mnt))
1470 return false;
1471
1472 /* By default disconnect the mount */
1473 return true;
1474 }
1475
1476 /*
1477 * mount_lock must be held
1478 * namespace_sem must be held for write
1479 */
1480 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1481 {
1482 LIST_HEAD(tmp_list);
1483 struct mount *p;
1484
1485 if (how & UMOUNT_PROPAGATE)
1486 propagate_mount_unlock(mnt);
1487
1488 /* Gather the mounts to umount */
1489 for (p = mnt; p; p = next_mnt(p, mnt)) {
1490 p->mnt.mnt_flags |= MNT_UMOUNT;
1491 list_move(&p->mnt_list, &tmp_list);
1492 }
1493
1494 /* Hide the mounts from mnt_mounts */
1495 list_for_each_entry(p, &tmp_list, mnt_list) {
1496 list_del_init(&p->mnt_child);
1497 }
1498
1499 /* Add propogated mounts to the tmp_list */
1500 if (how & UMOUNT_PROPAGATE)
1501 propagate_umount(&tmp_list);
1502
1503 while (!list_empty(&tmp_list)) {
1504 struct mnt_namespace *ns;
1505 bool disconnect;
1506 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1507 list_del_init(&p->mnt_expire);
1508 list_del_init(&p->mnt_list);
1509 ns = p->mnt_ns;
1510 if (ns) {
1511 ns->mounts--;
1512 __touch_mnt_namespace(ns);
1513 }
1514 p->mnt_ns = NULL;
1515 if (how & UMOUNT_SYNC)
1516 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1517
1518 disconnect = disconnect_mount(p, how);
1519
1520 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1521 disconnect ? &unmounted : NULL);
1522 if (mnt_has_parent(p)) {
1523 mnt_add_count(p->mnt_parent, -1);
1524 if (!disconnect) {
1525 /* Don't forget about p */
1526 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1527 } else {
1528 umount_mnt(p);
1529 }
1530 }
1531 change_mnt_propagation(p, MS_PRIVATE);
1532 }
1533 }
1534
1535 static void shrink_submounts(struct mount *mnt);
1536
1537 static int do_umount(struct mount *mnt, int flags)
1538 {
1539 struct super_block *sb = mnt->mnt.mnt_sb;
1540 int retval;
1541
1542 retval = security_sb_umount(&mnt->mnt, flags);
1543 if (retval)
1544 return retval;
1545
1546 /*
1547 * Allow userspace to request a mountpoint be expired rather than
1548 * unmounting unconditionally. Unmount only happens if:
1549 * (1) the mark is already set (the mark is cleared by mntput())
1550 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1551 */
1552 if (flags & MNT_EXPIRE) {
1553 if (&mnt->mnt == current->fs->root.mnt ||
1554 flags & (MNT_FORCE | MNT_DETACH))
1555 return -EINVAL;
1556
1557 /*
1558 * probably don't strictly need the lock here if we examined
1559 * all race cases, but it's a slowpath.
1560 */
1561 lock_mount_hash();
1562 if (mnt_get_count(mnt) != 2) {
1563 unlock_mount_hash();
1564 return -EBUSY;
1565 }
1566 unlock_mount_hash();
1567
1568 if (!xchg(&mnt->mnt_expiry_mark, 1))
1569 return -EAGAIN;
1570 }
1571
1572 /*
1573 * If we may have to abort operations to get out of this
1574 * mount, and they will themselves hold resources we must
1575 * allow the fs to do things. In the Unix tradition of
1576 * 'Gee thats tricky lets do it in userspace' the umount_begin
1577 * might fail to complete on the first run through as other tasks
1578 * must return, and the like. Thats for the mount program to worry
1579 * about for the moment.
1580 */
1581
1582 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1583 sb->s_op->umount_begin(sb);
1584 }
1585
1586 /*
1587 * No sense to grab the lock for this test, but test itself looks
1588 * somewhat bogus. Suggestions for better replacement?
1589 * Ho-hum... In principle, we might treat that as umount + switch
1590 * to rootfs. GC would eventually take care of the old vfsmount.
1591 * Actually it makes sense, especially if rootfs would contain a
1592 * /reboot - static binary that would close all descriptors and
1593 * call reboot(9). Then init(8) could umount root and exec /reboot.
1594 */
1595 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1596 /*
1597 * Special case for "unmounting" root ...
1598 * we just try to remount it readonly.
1599 */
1600 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1601 return -EPERM;
1602 down_write(&sb->s_umount);
1603 if (!sb_rdonly(sb))
1604 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1605 up_write(&sb->s_umount);
1606 return retval;
1607 }
1608
1609 namespace_lock();
1610 lock_mount_hash();
1611 event++;
1612
1613 if (flags & MNT_DETACH) {
1614 if (!list_empty(&mnt->mnt_list))
1615 umount_tree(mnt, UMOUNT_PROPAGATE);
1616 retval = 0;
1617 } else {
1618 shrink_submounts(mnt);
1619 retval = -EBUSY;
1620 if (!propagate_mount_busy(mnt, 2)) {
1621 if (!list_empty(&mnt->mnt_list))
1622 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1623 retval = 0;
1624 }
1625 }
1626 unlock_mount_hash();
1627 namespace_unlock();
1628 return retval;
1629 }
1630
1631 /*
1632 * __detach_mounts - lazily unmount all mounts on the specified dentry
1633 *
1634 * During unlink, rmdir, and d_drop it is possible to loose the path
1635 * to an existing mountpoint, and wind up leaking the mount.
1636 * detach_mounts allows lazily unmounting those mounts instead of
1637 * leaking them.
1638 *
1639 * The caller may hold dentry->d_inode->i_mutex.
1640 */
1641 void __detach_mounts(struct dentry *dentry)
1642 {
1643 struct mountpoint *mp;
1644 struct mount *mnt;
1645
1646 namespace_lock();
1647 lock_mount_hash();
1648 mp = lookup_mountpoint(dentry);
1649 if (IS_ERR_OR_NULL(mp))
1650 goto out_unlock;
1651
1652 event++;
1653 while (!hlist_empty(&mp->m_list)) {
1654 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1655 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1656 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1657 umount_mnt(mnt);
1658 }
1659 else umount_tree(mnt, UMOUNT_CONNECTED);
1660 }
1661 put_mountpoint(mp);
1662 out_unlock:
1663 unlock_mount_hash();
1664 namespace_unlock();
1665 }
1666
1667 /*
1668 * Is the caller allowed to modify his namespace?
1669 */
1670 static inline bool may_mount(void)
1671 {
1672 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1673 }
1674
1675 static inline bool may_mandlock(void)
1676 {
1677 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1678 return false;
1679 #endif
1680 return capable(CAP_SYS_ADMIN);
1681 }
1682
1683 /*
1684 * Now umount can handle mount points as well as block devices.
1685 * This is important for filesystems which use unnamed block devices.
1686 *
1687 * We now support a flag for forced unmount like the other 'big iron'
1688 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1689 */
1690
1691 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1692 {
1693 struct path path;
1694 struct mount *mnt;
1695 int retval;
1696 int lookup_flags = 0;
1697
1698 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1699 return -EINVAL;
1700
1701 if (!may_mount())
1702 return -EPERM;
1703
1704 if (!(flags & UMOUNT_NOFOLLOW))
1705 lookup_flags |= LOOKUP_FOLLOW;
1706
1707 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1708 if (retval)
1709 goto out;
1710 mnt = real_mount(path.mnt);
1711 retval = -EINVAL;
1712 if (path.dentry != path.mnt->mnt_root)
1713 goto dput_and_out;
1714 if (!check_mnt(mnt))
1715 goto dput_and_out;
1716 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1717 goto dput_and_out;
1718 retval = -EPERM;
1719 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1720 goto dput_and_out;
1721
1722 retval = do_umount(mnt, flags);
1723 dput_and_out:
1724 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1725 dput(path.dentry);
1726 mntput_no_expire(mnt);
1727 out:
1728 return retval;
1729 }
1730
1731 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1732
1733 /*
1734 * The 2.0 compatible umount. No flags.
1735 */
1736 SYSCALL_DEFINE1(oldumount, char __user *, name)
1737 {
1738 return sys_umount(name, 0);
1739 }
1740
1741 #endif
1742
1743 static bool is_mnt_ns_file(struct dentry *dentry)
1744 {
1745 /* Is this a proxy for a mount namespace? */
1746 return dentry->d_op == &ns_dentry_operations &&
1747 dentry->d_fsdata == &mntns_operations;
1748 }
1749
1750 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1751 {
1752 return container_of(ns, struct mnt_namespace, ns);
1753 }
1754
1755 static bool mnt_ns_loop(struct dentry *dentry)
1756 {
1757 /* Could bind mounting the mount namespace inode cause a
1758 * mount namespace loop?
1759 */
1760 struct mnt_namespace *mnt_ns;
1761 if (!is_mnt_ns_file(dentry))
1762 return false;
1763
1764 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1765 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1766 }
1767
1768 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1769 int flag)
1770 {
1771 struct mount *res, *p, *q, *r, *parent;
1772
1773 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1774 return ERR_PTR(-EINVAL);
1775
1776 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1777 return ERR_PTR(-EINVAL);
1778
1779 res = q = clone_mnt(mnt, dentry, flag);
1780 if (IS_ERR(q))
1781 return q;
1782
1783 q->mnt_mountpoint = mnt->mnt_mountpoint;
1784
1785 p = mnt;
1786 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1787 struct mount *s;
1788 if (!is_subdir(r->mnt_mountpoint, dentry))
1789 continue;
1790
1791 for (s = r; s; s = next_mnt(s, r)) {
1792 if (!(flag & CL_COPY_UNBINDABLE) &&
1793 IS_MNT_UNBINDABLE(s)) {
1794 s = skip_mnt_tree(s);
1795 continue;
1796 }
1797 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1798 is_mnt_ns_file(s->mnt.mnt_root)) {
1799 s = skip_mnt_tree(s);
1800 continue;
1801 }
1802 while (p != s->mnt_parent) {
1803 p = p->mnt_parent;
1804 q = q->mnt_parent;
1805 }
1806 p = s;
1807 parent = q;
1808 q = clone_mnt(p, p->mnt.mnt_root, flag);
1809 if (IS_ERR(q))
1810 goto out;
1811 lock_mount_hash();
1812 list_add_tail(&q->mnt_list, &res->mnt_list);
1813 attach_mnt(q, parent, p->mnt_mp);
1814 unlock_mount_hash();
1815 }
1816 }
1817 return res;
1818 out:
1819 if (res) {
1820 lock_mount_hash();
1821 umount_tree(res, UMOUNT_SYNC);
1822 unlock_mount_hash();
1823 }
1824 return q;
1825 }
1826
1827 /* Caller should check returned pointer for errors */
1828
1829 struct vfsmount *collect_mounts(const struct path *path)
1830 {
1831 struct mount *tree;
1832 namespace_lock();
1833 if (!check_mnt(real_mount(path->mnt)))
1834 tree = ERR_PTR(-EINVAL);
1835 else
1836 tree = copy_tree(real_mount(path->mnt), path->dentry,
1837 CL_COPY_ALL | CL_PRIVATE);
1838 namespace_unlock();
1839 if (IS_ERR(tree))
1840 return ERR_CAST(tree);
1841 return &tree->mnt;
1842 }
1843
1844 void drop_collected_mounts(struct vfsmount *mnt)
1845 {
1846 namespace_lock();
1847 lock_mount_hash();
1848 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1849 unlock_mount_hash();
1850 namespace_unlock();
1851 }
1852
1853 /**
1854 * clone_private_mount - create a private clone of a path
1855 *
1856 * This creates a new vfsmount, which will be the clone of @path. The new will
1857 * not be attached anywhere in the namespace and will be private (i.e. changes
1858 * to the originating mount won't be propagated into this).
1859 *
1860 * Release with mntput().
1861 */
1862 struct vfsmount *clone_private_mount(const struct path *path)
1863 {
1864 struct mount *old_mnt = real_mount(path->mnt);
1865 struct mount *new_mnt;
1866
1867 if (IS_MNT_UNBINDABLE(old_mnt))
1868 return ERR_PTR(-EINVAL);
1869
1870 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1871 if (IS_ERR(new_mnt))
1872 return ERR_CAST(new_mnt);
1873
1874 return &new_mnt->mnt;
1875 }
1876 EXPORT_SYMBOL_GPL(clone_private_mount);
1877
1878 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1879 struct vfsmount *root)
1880 {
1881 struct mount *mnt;
1882 int res = f(root, arg);
1883 if (res)
1884 return res;
1885 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1886 res = f(&mnt->mnt, arg);
1887 if (res)
1888 return res;
1889 }
1890 return 0;
1891 }
1892 EXPORT_SYMBOL_GPL(iterate_mounts);
1893
1894 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1895 {
1896 struct mount *p;
1897
1898 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1899 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1900 mnt_release_group_id(p);
1901 }
1902 }
1903
1904 static int invent_group_ids(struct mount *mnt, bool recurse)
1905 {
1906 struct mount *p;
1907
1908 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1909 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1910 int err = mnt_alloc_group_id(p);
1911 if (err) {
1912 cleanup_group_ids(mnt, p);
1913 return err;
1914 }
1915 }
1916 }
1917
1918 return 0;
1919 }
1920
1921 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1922 {
1923 unsigned int max = READ_ONCE(sysctl_mount_max);
1924 unsigned int mounts = 0, old, pending, sum;
1925 struct mount *p;
1926
1927 for (p = mnt; p; p = next_mnt(p, mnt))
1928 mounts++;
1929
1930 old = ns->mounts;
1931 pending = ns->pending_mounts;
1932 sum = old + pending;
1933 if ((old > sum) ||
1934 (pending > sum) ||
1935 (max < sum) ||
1936 (mounts > (max - sum)))
1937 return -ENOSPC;
1938
1939 ns->pending_mounts = pending + mounts;
1940 return 0;
1941 }
1942
1943 /*
1944 * @source_mnt : mount tree to be attached
1945 * @nd : place the mount tree @source_mnt is attached
1946 * @parent_nd : if non-null, detach the source_mnt from its parent and
1947 * store the parent mount and mountpoint dentry.
1948 * (done when source_mnt is moved)
1949 *
1950 * NOTE: in the table below explains the semantics when a source mount
1951 * of a given type is attached to a destination mount of a given type.
1952 * ---------------------------------------------------------------------------
1953 * | BIND MOUNT OPERATION |
1954 * |**************************************************************************
1955 * | source-->| shared | private | slave | unbindable |
1956 * | dest | | | | |
1957 * | | | | | | |
1958 * | v | | | | |
1959 * |**************************************************************************
1960 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1961 * | | | | | |
1962 * |non-shared| shared (+) | private | slave (*) | invalid |
1963 * ***************************************************************************
1964 * A bind operation clones the source mount and mounts the clone on the
1965 * destination mount.
1966 *
1967 * (++) the cloned mount is propagated to all the mounts in the propagation
1968 * tree of the destination mount and the cloned mount is added to
1969 * the peer group of the source mount.
1970 * (+) the cloned mount is created under the destination mount and is marked
1971 * as shared. The cloned mount is added to the peer group of the source
1972 * mount.
1973 * (+++) the mount is propagated to all the mounts in the propagation tree
1974 * of the destination mount and the cloned mount is made slave
1975 * of the same master as that of the source mount. The cloned mount
1976 * is marked as 'shared and slave'.
1977 * (*) the cloned mount is made a slave of the same master as that of the
1978 * source mount.
1979 *
1980 * ---------------------------------------------------------------------------
1981 * | MOVE MOUNT OPERATION |
1982 * |**************************************************************************
1983 * | source-->| shared | private | slave | unbindable |
1984 * | dest | | | | |
1985 * | | | | | | |
1986 * | v | | | | |
1987 * |**************************************************************************
1988 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1989 * | | | | | |
1990 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1991 * ***************************************************************************
1992 *
1993 * (+) the mount is moved to the destination. And is then propagated to
1994 * all the mounts in the propagation tree of the destination mount.
1995 * (+*) the mount is moved to the destination.
1996 * (+++) the mount is moved to the destination and is then propagated to
1997 * all the mounts belonging to the destination mount's propagation tree.
1998 * the mount is marked as 'shared and slave'.
1999 * (*) the mount continues to be a slave at the new location.
2000 *
2001 * if the source mount is a tree, the operations explained above is
2002 * applied to each mount in the tree.
2003 * Must be called without spinlocks held, since this function can sleep
2004 * in allocations.
2005 */
2006 static int attach_recursive_mnt(struct mount *source_mnt,
2007 struct mount *dest_mnt,
2008 struct mountpoint *dest_mp,
2009 struct path *parent_path)
2010 {
2011 HLIST_HEAD(tree_list);
2012 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2013 struct mountpoint *smp;
2014 struct mount *child, *p;
2015 struct hlist_node *n;
2016 int err;
2017
2018 /* Preallocate a mountpoint in case the new mounts need
2019 * to be tucked under other mounts.
2020 */
2021 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2022 if (IS_ERR(smp))
2023 return PTR_ERR(smp);
2024
2025 /* Is there space to add these mounts to the mount namespace? */
2026 if (!parent_path) {
2027 err = count_mounts(ns, source_mnt);
2028 if (err)
2029 goto out;
2030 }
2031
2032 if (IS_MNT_SHARED(dest_mnt)) {
2033 err = invent_group_ids(source_mnt, true);
2034 if (err)
2035 goto out;
2036 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2037 lock_mount_hash();
2038 if (err)
2039 goto out_cleanup_ids;
2040 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2041 set_mnt_shared(p);
2042 } else {
2043 lock_mount_hash();
2044 }
2045 if (parent_path) {
2046 detach_mnt(source_mnt, parent_path);
2047 attach_mnt(source_mnt, dest_mnt, dest_mp);
2048 touch_mnt_namespace(source_mnt->mnt_ns);
2049 } else {
2050 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2051 commit_tree(source_mnt);
2052 }
2053
2054 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2055 struct mount *q;
2056 hlist_del_init(&child->mnt_hash);
2057 q = __lookup_mnt(&child->mnt_parent->mnt,
2058 child->mnt_mountpoint);
2059 if (q)
2060 mnt_change_mountpoint(child, smp, q);
2061 commit_tree(child);
2062 }
2063 put_mountpoint(smp);
2064 unlock_mount_hash();
2065
2066 return 0;
2067
2068 out_cleanup_ids:
2069 while (!hlist_empty(&tree_list)) {
2070 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2071 child->mnt_parent->mnt_ns->pending_mounts = 0;
2072 umount_tree(child, UMOUNT_SYNC);
2073 }
2074 unlock_mount_hash();
2075 cleanup_group_ids(source_mnt, NULL);
2076 out:
2077 ns->pending_mounts = 0;
2078
2079 read_seqlock_excl(&mount_lock);
2080 put_mountpoint(smp);
2081 read_sequnlock_excl(&mount_lock);
2082
2083 return err;
2084 }
2085
2086 static struct mountpoint *lock_mount(struct path *path)
2087 {
2088 struct vfsmount *mnt;
2089 struct dentry *dentry = path->dentry;
2090 retry:
2091 inode_lock(dentry->d_inode);
2092 if (unlikely(cant_mount(dentry))) {
2093 inode_unlock(dentry->d_inode);
2094 return ERR_PTR(-ENOENT);
2095 }
2096 namespace_lock();
2097 mnt = lookup_mnt(path);
2098 if (likely(!mnt)) {
2099 struct mountpoint *mp = get_mountpoint(dentry);
2100 if (IS_ERR(mp)) {
2101 namespace_unlock();
2102 inode_unlock(dentry->d_inode);
2103 return mp;
2104 }
2105 return mp;
2106 }
2107 namespace_unlock();
2108 inode_unlock(path->dentry->d_inode);
2109 path_put(path);
2110 path->mnt = mnt;
2111 dentry = path->dentry = dget(mnt->mnt_root);
2112 goto retry;
2113 }
2114
2115 static void unlock_mount(struct mountpoint *where)
2116 {
2117 struct dentry *dentry = where->m_dentry;
2118
2119 read_seqlock_excl(&mount_lock);
2120 put_mountpoint(where);
2121 read_sequnlock_excl(&mount_lock);
2122
2123 namespace_unlock();
2124 inode_unlock(dentry->d_inode);
2125 }
2126
2127 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2128 {
2129 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2130 return -EINVAL;
2131
2132 if (d_is_dir(mp->m_dentry) !=
2133 d_is_dir(mnt->mnt.mnt_root))
2134 return -ENOTDIR;
2135
2136 return attach_recursive_mnt(mnt, p, mp, NULL);
2137 }
2138
2139 /*
2140 * Sanity check the flags to change_mnt_propagation.
2141 */
2142
2143 static int flags_to_propagation_type(int ms_flags)
2144 {
2145 int type = ms_flags & ~(MS_REC | MS_SILENT);
2146
2147 /* Fail if any non-propagation flags are set */
2148 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2149 return 0;
2150 /* Only one propagation flag should be set */
2151 if (!is_power_of_2(type))
2152 return 0;
2153 return type;
2154 }
2155
2156 /*
2157 * recursively change the type of the mountpoint.
2158 */
2159 static int do_change_type(struct path *path, int ms_flags)
2160 {
2161 struct mount *m;
2162 struct mount *mnt = real_mount(path->mnt);
2163 int recurse = ms_flags & MS_REC;
2164 int type;
2165 int err = 0;
2166
2167 if (path->dentry != path->mnt->mnt_root)
2168 return -EINVAL;
2169
2170 type = flags_to_propagation_type(ms_flags);
2171 if (!type)
2172 return -EINVAL;
2173
2174 namespace_lock();
2175 if (type == MS_SHARED) {
2176 err = invent_group_ids(mnt, recurse);
2177 if (err)
2178 goto out_unlock;
2179 }
2180
2181 lock_mount_hash();
2182 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2183 change_mnt_propagation(m, type);
2184 unlock_mount_hash();
2185
2186 out_unlock:
2187 namespace_unlock();
2188 return err;
2189 }
2190
2191 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2192 {
2193 struct mount *child;
2194 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2195 if (!is_subdir(child->mnt_mountpoint, dentry))
2196 continue;
2197
2198 if (child->mnt.mnt_flags & MNT_LOCKED)
2199 return true;
2200 }
2201 return false;
2202 }
2203
2204 /*
2205 * do loopback mount.
2206 */
2207 static int do_loopback(struct path *path, const char *old_name,
2208 int recurse)
2209 {
2210 struct path old_path;
2211 struct mount *mnt = NULL, *old, *parent;
2212 struct mountpoint *mp;
2213 int err;
2214 if (!old_name || !*old_name)
2215 return -EINVAL;
2216 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2217 if (err)
2218 return err;
2219
2220 err = -EINVAL;
2221 if (mnt_ns_loop(old_path.dentry))
2222 goto out;
2223
2224 mp = lock_mount(path);
2225 err = PTR_ERR(mp);
2226 if (IS_ERR(mp))
2227 goto out;
2228
2229 old = real_mount(old_path.mnt);
2230 parent = real_mount(path->mnt);
2231
2232 err = -EINVAL;
2233 if (IS_MNT_UNBINDABLE(old))
2234 goto out2;
2235
2236 if (!check_mnt(parent))
2237 goto out2;
2238
2239 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2240 goto out2;
2241
2242 if (!recurse && has_locked_children(old, old_path.dentry))
2243 goto out2;
2244
2245 if (recurse)
2246 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2247 else
2248 mnt = clone_mnt(old, old_path.dentry, 0);
2249
2250 if (IS_ERR(mnt)) {
2251 err = PTR_ERR(mnt);
2252 goto out2;
2253 }
2254
2255 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2256
2257 err = graft_tree(mnt, parent, mp);
2258 if (err) {
2259 lock_mount_hash();
2260 umount_tree(mnt, UMOUNT_SYNC);
2261 unlock_mount_hash();
2262 }
2263 out2:
2264 unlock_mount(mp);
2265 out:
2266 path_put(&old_path);
2267 return err;
2268 }
2269
2270 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2271 {
2272 int error = 0;
2273 int readonly_request = 0;
2274
2275 if (ms_flags & MS_RDONLY)
2276 readonly_request = 1;
2277 if (readonly_request == __mnt_is_readonly(mnt))
2278 return 0;
2279
2280 if (readonly_request)
2281 error = mnt_make_readonly(real_mount(mnt));
2282 else
2283 __mnt_unmake_readonly(real_mount(mnt));
2284 return error;
2285 }
2286
2287 /*
2288 * change filesystem flags. dir should be a physical root of filesystem.
2289 * If you've mounted a non-root directory somewhere and want to do remount
2290 * on it - tough luck.
2291 */
2292 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2293 int mnt_flags, void *data)
2294 {
2295 int err;
2296 struct super_block *sb = path->mnt->mnt_sb;
2297 struct mount *mnt = real_mount(path->mnt);
2298
2299 if (!check_mnt(mnt))
2300 return -EINVAL;
2301
2302 if (path->dentry != path->mnt->mnt_root)
2303 return -EINVAL;
2304
2305 /* Don't allow changing of locked mnt flags.
2306 *
2307 * No locks need to be held here while testing the various
2308 * MNT_LOCK flags because those flags can never be cleared
2309 * once they are set.
2310 */
2311 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2312 !(mnt_flags & MNT_READONLY)) {
2313 return -EPERM;
2314 }
2315 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2316 !(mnt_flags & MNT_NODEV)) {
2317 return -EPERM;
2318 }
2319 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2320 !(mnt_flags & MNT_NOSUID)) {
2321 return -EPERM;
2322 }
2323 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2324 !(mnt_flags & MNT_NOEXEC)) {
2325 return -EPERM;
2326 }
2327 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2328 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2329 return -EPERM;
2330 }
2331
2332 err = security_sb_remount(sb, data);
2333 if (err)
2334 return err;
2335
2336 down_write(&sb->s_umount);
2337 if (ms_flags & MS_BIND)
2338 err = change_mount_flags(path->mnt, ms_flags);
2339 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2340 err = -EPERM;
2341 else
2342 err = do_remount_sb(sb, sb_flags, data, 0);
2343 if (!err) {
2344 lock_mount_hash();
2345 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2346 mnt->mnt.mnt_flags = mnt_flags;
2347 touch_mnt_namespace(mnt->mnt_ns);
2348 unlock_mount_hash();
2349 }
2350 up_write(&sb->s_umount);
2351 return err;
2352 }
2353
2354 static inline int tree_contains_unbindable(struct mount *mnt)
2355 {
2356 struct mount *p;
2357 for (p = mnt; p; p = next_mnt(p, mnt)) {
2358 if (IS_MNT_UNBINDABLE(p))
2359 return 1;
2360 }
2361 return 0;
2362 }
2363
2364 static int do_move_mount(struct path *path, const char *old_name)
2365 {
2366 struct path old_path, parent_path;
2367 struct mount *p;
2368 struct mount *old;
2369 struct mountpoint *mp;
2370 int err;
2371 if (!old_name || !*old_name)
2372 return -EINVAL;
2373 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2374 if (err)
2375 return err;
2376
2377 mp = lock_mount(path);
2378 err = PTR_ERR(mp);
2379 if (IS_ERR(mp))
2380 goto out;
2381
2382 old = real_mount(old_path.mnt);
2383 p = real_mount(path->mnt);
2384
2385 err = -EINVAL;
2386 if (!check_mnt(p) || !check_mnt(old))
2387 goto out1;
2388
2389 if (old->mnt.mnt_flags & MNT_LOCKED)
2390 goto out1;
2391
2392 err = -EINVAL;
2393 if (old_path.dentry != old_path.mnt->mnt_root)
2394 goto out1;
2395
2396 if (!mnt_has_parent(old))
2397 goto out1;
2398
2399 if (d_is_dir(path->dentry) !=
2400 d_is_dir(old_path.dentry))
2401 goto out1;
2402 /*
2403 * Don't move a mount residing in a shared parent.
2404 */
2405 if (IS_MNT_SHARED(old->mnt_parent))
2406 goto out1;
2407 /*
2408 * Don't move a mount tree containing unbindable mounts to a destination
2409 * mount which is shared.
2410 */
2411 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2412 goto out1;
2413 err = -ELOOP;
2414 for (; mnt_has_parent(p); p = p->mnt_parent)
2415 if (p == old)
2416 goto out1;
2417
2418 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2419 if (err)
2420 goto out1;
2421
2422 /* if the mount is moved, it should no longer be expire
2423 * automatically */
2424 list_del_init(&old->mnt_expire);
2425 out1:
2426 unlock_mount(mp);
2427 out:
2428 if (!err)
2429 path_put(&parent_path);
2430 path_put(&old_path);
2431 return err;
2432 }
2433
2434 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2435 {
2436 int err;
2437 const char *subtype = strchr(fstype, '.');
2438 if (subtype) {
2439 subtype++;
2440 err = -EINVAL;
2441 if (!subtype[0])
2442 goto err;
2443 } else
2444 subtype = "";
2445
2446 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2447 err = -ENOMEM;
2448 if (!mnt->mnt_sb->s_subtype)
2449 goto err;
2450 return mnt;
2451
2452 err:
2453 mntput(mnt);
2454 return ERR_PTR(err);
2455 }
2456
2457 /*
2458 * add a mount into a namespace's mount tree
2459 */
2460 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2461 {
2462 struct mountpoint *mp;
2463 struct mount *parent;
2464 int err;
2465
2466 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2467
2468 mp = lock_mount(path);
2469 if (IS_ERR(mp))
2470 return PTR_ERR(mp);
2471
2472 parent = real_mount(path->mnt);
2473 err = -EINVAL;
2474 if (unlikely(!check_mnt(parent))) {
2475 /* that's acceptable only for automounts done in private ns */
2476 if (!(mnt_flags & MNT_SHRINKABLE))
2477 goto unlock;
2478 /* ... and for those we'd better have mountpoint still alive */
2479 if (!parent->mnt_ns)
2480 goto unlock;
2481 }
2482
2483 /* Refuse the same filesystem on the same mount point */
2484 err = -EBUSY;
2485 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2486 path->mnt->mnt_root == path->dentry)
2487 goto unlock;
2488
2489 err = -EINVAL;
2490 if (d_is_symlink(newmnt->mnt.mnt_root))
2491 goto unlock;
2492
2493 newmnt->mnt.mnt_flags = mnt_flags;
2494 err = graft_tree(newmnt, parent, mp);
2495
2496 unlock:
2497 unlock_mount(mp);
2498 return err;
2499 }
2500
2501 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2502
2503 /*
2504 * create a new mount for userspace and request it to be added into the
2505 * namespace's tree
2506 */
2507 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2508 int mnt_flags, const char *name, void *data)
2509 {
2510 struct file_system_type *type;
2511 struct vfsmount *mnt;
2512 int err;
2513
2514 if (!fstype)
2515 return -EINVAL;
2516
2517 type = get_fs_type(fstype);
2518 if (!type)
2519 return -ENODEV;
2520
2521 mnt = vfs_kern_mount(type, sb_flags, name, data);
2522 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2523 !mnt->mnt_sb->s_subtype)
2524 mnt = fs_set_subtype(mnt, fstype);
2525
2526 put_filesystem(type);
2527 if (IS_ERR(mnt))
2528 return PTR_ERR(mnt);
2529
2530 if (mount_too_revealing(mnt, &mnt_flags)) {
2531 mntput(mnt);
2532 return -EPERM;
2533 }
2534
2535 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2536 if (err)
2537 mntput(mnt);
2538 return err;
2539 }
2540
2541 int finish_automount(struct vfsmount *m, struct path *path)
2542 {
2543 struct mount *mnt = real_mount(m);
2544 int err;
2545 /* The new mount record should have at least 2 refs to prevent it being
2546 * expired before we get a chance to add it
2547 */
2548 BUG_ON(mnt_get_count(mnt) < 2);
2549
2550 if (m->mnt_sb == path->mnt->mnt_sb &&
2551 m->mnt_root == path->dentry) {
2552 err = -ELOOP;
2553 goto fail;
2554 }
2555
2556 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2557 if (!err)
2558 return 0;
2559 fail:
2560 /* remove m from any expiration list it may be on */
2561 if (!list_empty(&mnt->mnt_expire)) {
2562 namespace_lock();
2563 list_del_init(&mnt->mnt_expire);
2564 namespace_unlock();
2565 }
2566 mntput(m);
2567 mntput(m);
2568 return err;
2569 }
2570
2571 /**
2572 * mnt_set_expiry - Put a mount on an expiration list
2573 * @mnt: The mount to list.
2574 * @expiry_list: The list to add the mount to.
2575 */
2576 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2577 {
2578 namespace_lock();
2579
2580 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2581
2582 namespace_unlock();
2583 }
2584 EXPORT_SYMBOL(mnt_set_expiry);
2585
2586 /*
2587 * process a list of expirable mountpoints with the intent of discarding any
2588 * mountpoints that aren't in use and haven't been touched since last we came
2589 * here
2590 */
2591 void mark_mounts_for_expiry(struct list_head *mounts)
2592 {
2593 struct mount *mnt, *next;
2594 LIST_HEAD(graveyard);
2595
2596 if (list_empty(mounts))
2597 return;
2598
2599 namespace_lock();
2600 lock_mount_hash();
2601
2602 /* extract from the expiration list every vfsmount that matches the
2603 * following criteria:
2604 * - only referenced by its parent vfsmount
2605 * - still marked for expiry (marked on the last call here; marks are
2606 * cleared by mntput())
2607 */
2608 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2609 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2610 propagate_mount_busy(mnt, 1))
2611 continue;
2612 list_move(&mnt->mnt_expire, &graveyard);
2613 }
2614 while (!list_empty(&graveyard)) {
2615 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2616 touch_mnt_namespace(mnt->mnt_ns);
2617 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2618 }
2619 unlock_mount_hash();
2620 namespace_unlock();
2621 }
2622
2623 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2624
2625 /*
2626 * Ripoff of 'select_parent()'
2627 *
2628 * search the list of submounts for a given mountpoint, and move any
2629 * shrinkable submounts to the 'graveyard' list.
2630 */
2631 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2632 {
2633 struct mount *this_parent = parent;
2634 struct list_head *next;
2635 int found = 0;
2636
2637 repeat:
2638 next = this_parent->mnt_mounts.next;
2639 resume:
2640 while (next != &this_parent->mnt_mounts) {
2641 struct list_head *tmp = next;
2642 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2643
2644 next = tmp->next;
2645 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2646 continue;
2647 /*
2648 * Descend a level if the d_mounts list is non-empty.
2649 */
2650 if (!list_empty(&mnt->mnt_mounts)) {
2651 this_parent = mnt;
2652 goto repeat;
2653 }
2654
2655 if (!propagate_mount_busy(mnt, 1)) {
2656 list_move_tail(&mnt->mnt_expire, graveyard);
2657 found++;
2658 }
2659 }
2660 /*
2661 * All done at this level ... ascend and resume the search
2662 */
2663 if (this_parent != parent) {
2664 next = this_parent->mnt_child.next;
2665 this_parent = this_parent->mnt_parent;
2666 goto resume;
2667 }
2668 return found;
2669 }
2670
2671 /*
2672 * process a list of expirable mountpoints with the intent of discarding any
2673 * submounts of a specific parent mountpoint
2674 *
2675 * mount_lock must be held for write
2676 */
2677 static void shrink_submounts(struct mount *mnt)
2678 {
2679 LIST_HEAD(graveyard);
2680 struct mount *m;
2681
2682 /* extract submounts of 'mountpoint' from the expiration list */
2683 while (select_submounts(mnt, &graveyard)) {
2684 while (!list_empty(&graveyard)) {
2685 m = list_first_entry(&graveyard, struct mount,
2686 mnt_expire);
2687 touch_mnt_namespace(m->mnt_ns);
2688 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2689 }
2690 }
2691 }
2692
2693 /*
2694 * Some copy_from_user() implementations do not return the exact number of
2695 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2696 * Note that this function differs from copy_from_user() in that it will oops
2697 * on bad values of `to', rather than returning a short copy.
2698 */
2699 static long exact_copy_from_user(void *to, const void __user * from,
2700 unsigned long n)
2701 {
2702 char *t = to;
2703 const char __user *f = from;
2704 char c;
2705
2706 if (!access_ok(VERIFY_READ, from, n))
2707 return n;
2708
2709 while (n) {
2710 if (__get_user(c, f)) {
2711 memset(t, 0, n);
2712 break;
2713 }
2714 *t++ = c;
2715 f++;
2716 n--;
2717 }
2718 return n;
2719 }
2720
2721 void *copy_mount_options(const void __user * data)
2722 {
2723 int i;
2724 unsigned long size;
2725 char *copy;
2726
2727 if (!data)
2728 return NULL;
2729
2730 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2731 if (!copy)
2732 return ERR_PTR(-ENOMEM);
2733
2734 /* We only care that *some* data at the address the user
2735 * gave us is valid. Just in case, we'll zero
2736 * the remainder of the page.
2737 */
2738 /* copy_from_user cannot cross TASK_SIZE ! */
2739 size = TASK_SIZE - (unsigned long)data;
2740 if (size > PAGE_SIZE)
2741 size = PAGE_SIZE;
2742
2743 i = size - exact_copy_from_user(copy, data, size);
2744 if (!i) {
2745 kfree(copy);
2746 return ERR_PTR(-EFAULT);
2747 }
2748 if (i != PAGE_SIZE)
2749 memset(copy + i, 0, PAGE_SIZE - i);
2750 return copy;
2751 }
2752
2753 char *copy_mount_string(const void __user *data)
2754 {
2755 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2756 }
2757
2758 /*
2759 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2760 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2761 *
2762 * data is a (void *) that can point to any structure up to
2763 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2764 * information (or be NULL).
2765 *
2766 * Pre-0.97 versions of mount() didn't have a flags word.
2767 * When the flags word was introduced its top half was required
2768 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2769 * Therefore, if this magic number is present, it carries no information
2770 * and must be discarded.
2771 */
2772 long do_mount(const char *dev_name, const char __user *dir_name,
2773 const char *type_page, unsigned long flags, void *data_page)
2774 {
2775 struct path path;
2776 unsigned int mnt_flags = 0, sb_flags;
2777 int retval = 0;
2778
2779 /* Discard magic */
2780 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2781 flags &= ~MS_MGC_MSK;
2782
2783 /* Basic sanity checks */
2784 if (data_page)
2785 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2786
2787 if (flags & MS_NOUSER)
2788 return -EINVAL;
2789
2790 /* ... and get the mountpoint */
2791 retval = user_path(dir_name, &path);
2792 if (retval)
2793 return retval;
2794
2795 retval = security_sb_mount(dev_name, &path,
2796 type_page, flags, data_page);
2797 if (!retval && !may_mount())
2798 retval = -EPERM;
2799 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2800 retval = -EPERM;
2801 if (retval)
2802 goto dput_out;
2803
2804 /* Default to relatime unless overriden */
2805 if (!(flags & MS_NOATIME))
2806 mnt_flags |= MNT_RELATIME;
2807
2808 /* Separate the per-mountpoint flags */
2809 if (flags & MS_NOSUID)
2810 mnt_flags |= MNT_NOSUID;
2811 if (flags & MS_NODEV)
2812 mnt_flags |= MNT_NODEV;
2813 if (flags & MS_NOEXEC)
2814 mnt_flags |= MNT_NOEXEC;
2815 if (flags & MS_NOATIME)
2816 mnt_flags |= MNT_NOATIME;
2817 if (flags & MS_NODIRATIME)
2818 mnt_flags |= MNT_NODIRATIME;
2819 if (flags & MS_STRICTATIME)
2820 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2821 if (flags & SB_RDONLY)
2822 mnt_flags |= MNT_READONLY;
2823
2824 /* The default atime for remount is preservation */
2825 if ((flags & MS_REMOUNT) &&
2826 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2827 MS_STRICTATIME)) == 0)) {
2828 mnt_flags &= ~MNT_ATIME_MASK;
2829 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2830 }
2831
2832 sb_flags = flags & (SB_RDONLY |
2833 SB_SYNCHRONOUS |
2834 SB_MANDLOCK |
2835 SB_DIRSYNC |
2836 SB_SILENT |
2837 SB_POSIXACL |
2838 SB_LAZYTIME |
2839 SB_I_VERSION);
2840
2841 if (flags & MS_REMOUNT)
2842 retval = do_remount(&path, flags, sb_flags, mnt_flags,
2843 data_page);
2844 else if (flags & MS_BIND)
2845 retval = do_loopback(&path, dev_name, flags & MS_REC);
2846 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2847 retval = do_change_type(&path, flags);
2848 else if (flags & MS_MOVE)
2849 retval = do_move_mount(&path, dev_name);
2850 else
2851 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2852 dev_name, data_page);
2853 dput_out:
2854 path_put(&path);
2855 return retval;
2856 }
2857
2858 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2859 {
2860 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2861 }
2862
2863 static void dec_mnt_namespaces(struct ucounts *ucounts)
2864 {
2865 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2866 }
2867
2868 static void free_mnt_ns(struct mnt_namespace *ns)
2869 {
2870 ns_free_inum(&ns->ns);
2871 dec_mnt_namespaces(ns->ucounts);
2872 put_user_ns(ns->user_ns);
2873 kfree(ns);
2874 }
2875
2876 /*
2877 * Assign a sequence number so we can detect when we attempt to bind
2878 * mount a reference to an older mount namespace into the current
2879 * mount namespace, preventing reference counting loops. A 64bit
2880 * number incrementing at 10Ghz will take 12,427 years to wrap which
2881 * is effectively never, so we can ignore the possibility.
2882 */
2883 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2884
2885 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2886 {
2887 struct mnt_namespace *new_ns;
2888 struct ucounts *ucounts;
2889 int ret;
2890
2891 ucounts = inc_mnt_namespaces(user_ns);
2892 if (!ucounts)
2893 return ERR_PTR(-ENOSPC);
2894
2895 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2896 if (!new_ns) {
2897 dec_mnt_namespaces(ucounts);
2898 return ERR_PTR(-ENOMEM);
2899 }
2900 ret = ns_alloc_inum(&new_ns->ns);
2901 if (ret) {
2902 kfree(new_ns);
2903 dec_mnt_namespaces(ucounts);
2904 return ERR_PTR(ret);
2905 }
2906 new_ns->ns.ops = &mntns_operations;
2907 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2908 atomic_set(&new_ns->count, 1);
2909 new_ns->root = NULL;
2910 INIT_LIST_HEAD(&new_ns->list);
2911 init_waitqueue_head(&new_ns->poll);
2912 new_ns->event = 0;
2913 new_ns->user_ns = get_user_ns(user_ns);
2914 new_ns->ucounts = ucounts;
2915 new_ns->mounts = 0;
2916 new_ns->pending_mounts = 0;
2917 return new_ns;
2918 }
2919
2920 __latent_entropy
2921 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2922 struct user_namespace *user_ns, struct fs_struct *new_fs)
2923 {
2924 struct mnt_namespace *new_ns;
2925 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2926 struct mount *p, *q;
2927 struct mount *old;
2928 struct mount *new;
2929 int copy_flags;
2930
2931 BUG_ON(!ns);
2932
2933 if (likely(!(flags & CLONE_NEWNS))) {
2934 get_mnt_ns(ns);
2935 return ns;
2936 }
2937
2938 old = ns->root;
2939
2940 new_ns = alloc_mnt_ns(user_ns);
2941 if (IS_ERR(new_ns))
2942 return new_ns;
2943
2944 namespace_lock();
2945 /* First pass: copy the tree topology */
2946 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2947 if (user_ns != ns->user_ns)
2948 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2949 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2950 if (IS_ERR(new)) {
2951 namespace_unlock();
2952 free_mnt_ns(new_ns);
2953 return ERR_CAST(new);
2954 }
2955 new_ns->root = new;
2956 list_add_tail(&new_ns->list, &new->mnt_list);
2957
2958 /*
2959 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2960 * as belonging to new namespace. We have already acquired a private
2961 * fs_struct, so tsk->fs->lock is not needed.
2962 */
2963 p = old;
2964 q = new;
2965 while (p) {
2966 q->mnt_ns = new_ns;
2967 new_ns->mounts++;
2968 if (new_fs) {
2969 if (&p->mnt == new_fs->root.mnt) {
2970 new_fs->root.mnt = mntget(&q->mnt);
2971 rootmnt = &p->mnt;
2972 }
2973 if (&p->mnt == new_fs->pwd.mnt) {
2974 new_fs->pwd.mnt = mntget(&q->mnt);
2975 pwdmnt = &p->mnt;
2976 }
2977 }
2978 p = next_mnt(p, old);
2979 q = next_mnt(q, new);
2980 if (!q)
2981 break;
2982 while (p->mnt.mnt_root != q->mnt.mnt_root)
2983 p = next_mnt(p, old);
2984 }
2985 namespace_unlock();
2986
2987 if (rootmnt)
2988 mntput(rootmnt);
2989 if (pwdmnt)
2990 mntput(pwdmnt);
2991
2992 return new_ns;
2993 }
2994
2995 /**
2996 * create_mnt_ns - creates a private namespace and adds a root filesystem
2997 * @mnt: pointer to the new root filesystem mountpoint
2998 */
2999 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
3000 {
3001 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
3002 if (!IS_ERR(new_ns)) {
3003 struct mount *mnt = real_mount(m);
3004 mnt->mnt_ns = new_ns;
3005 new_ns->root = mnt;
3006 new_ns->mounts++;
3007 list_add(&mnt->mnt_list, &new_ns->list);
3008 } else {
3009 mntput(m);
3010 }
3011 return new_ns;
3012 }
3013
3014 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3015 {
3016 struct mnt_namespace *ns;
3017 struct super_block *s;
3018 struct path path;
3019 int err;
3020
3021 ns = create_mnt_ns(mnt);
3022 if (IS_ERR(ns))
3023 return ERR_CAST(ns);
3024
3025 err = vfs_path_lookup(mnt->mnt_root, mnt,
3026 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3027
3028 put_mnt_ns(ns);
3029
3030 if (err)
3031 return ERR_PTR(err);
3032
3033 /* trade a vfsmount reference for active sb one */
3034 s = path.mnt->mnt_sb;
3035 atomic_inc(&s->s_active);
3036 mntput(path.mnt);
3037 /* lock the sucker */
3038 down_write(&s->s_umount);
3039 /* ... and return the root of (sub)tree on it */
3040 return path.dentry;
3041 }
3042 EXPORT_SYMBOL(mount_subtree);
3043
3044 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3045 char __user *, type, unsigned long, flags, void __user *, data)
3046 {
3047 int ret;
3048 char *kernel_type;
3049 char *kernel_dev;
3050 void *options;
3051
3052 kernel_type = copy_mount_string(type);
3053 ret = PTR_ERR(kernel_type);
3054 if (IS_ERR(kernel_type))
3055 goto out_type;
3056
3057 kernel_dev = copy_mount_string(dev_name);
3058 ret = PTR_ERR(kernel_dev);
3059 if (IS_ERR(kernel_dev))
3060 goto out_dev;
3061
3062 options = copy_mount_options(data);
3063 ret = PTR_ERR(options);
3064 if (IS_ERR(options))
3065 goto out_data;
3066
3067 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3068
3069 kfree(options);
3070 out_data:
3071 kfree(kernel_dev);
3072 out_dev:
3073 kfree(kernel_type);
3074 out_type:
3075 return ret;
3076 }
3077
3078 /*
3079 * Return true if path is reachable from root
3080 *
3081 * namespace_sem or mount_lock is held
3082 */
3083 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3084 const struct path *root)
3085 {
3086 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3087 dentry = mnt->mnt_mountpoint;
3088 mnt = mnt->mnt_parent;
3089 }
3090 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3091 }
3092
3093 bool path_is_under(const struct path *path1, const struct path *path2)
3094 {
3095 bool res;
3096 read_seqlock_excl(&mount_lock);
3097 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3098 read_sequnlock_excl(&mount_lock);
3099 return res;
3100 }
3101 EXPORT_SYMBOL(path_is_under);
3102
3103 /*
3104 * pivot_root Semantics:
3105 * Moves the root file system of the current process to the directory put_old,
3106 * makes new_root as the new root file system of the current process, and sets
3107 * root/cwd of all processes which had them on the current root to new_root.
3108 *
3109 * Restrictions:
3110 * The new_root and put_old must be directories, and must not be on the
3111 * same file system as the current process root. The put_old must be
3112 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3113 * pointed to by put_old must yield the same directory as new_root. No other
3114 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3115 *
3116 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3117 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3118 * in this situation.
3119 *
3120 * Notes:
3121 * - we don't move root/cwd if they are not at the root (reason: if something
3122 * cared enough to change them, it's probably wrong to force them elsewhere)
3123 * - it's okay to pick a root that isn't the root of a file system, e.g.
3124 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3125 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3126 * first.
3127 */
3128 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3129 const char __user *, put_old)
3130 {
3131 struct path new, old, parent_path, root_parent, root;
3132 struct mount *new_mnt, *root_mnt, *old_mnt;
3133 struct mountpoint *old_mp, *root_mp;
3134 int error;
3135
3136 if (!may_mount())
3137 return -EPERM;
3138
3139 error = user_path_dir(new_root, &new);
3140 if (error)
3141 goto out0;
3142
3143 error = user_path_dir(put_old, &old);
3144 if (error)
3145 goto out1;
3146
3147 error = security_sb_pivotroot(&old, &new);
3148 if (error)
3149 goto out2;
3150
3151 get_fs_root(current->fs, &root);
3152 old_mp = lock_mount(&old);
3153 error = PTR_ERR(old_mp);
3154 if (IS_ERR(old_mp))
3155 goto out3;
3156
3157 error = -EINVAL;
3158 new_mnt = real_mount(new.mnt);
3159 root_mnt = real_mount(root.mnt);
3160 old_mnt = real_mount(old.mnt);
3161 if (IS_MNT_SHARED(old_mnt) ||
3162 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3163 IS_MNT_SHARED(root_mnt->mnt_parent))
3164 goto out4;
3165 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3166 goto out4;
3167 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3168 goto out4;
3169 error = -ENOENT;
3170 if (d_unlinked(new.dentry))
3171 goto out4;
3172 error = -EBUSY;
3173 if (new_mnt == root_mnt || old_mnt == root_mnt)
3174 goto out4; /* loop, on the same file system */
3175 error = -EINVAL;
3176 if (root.mnt->mnt_root != root.dentry)
3177 goto out4; /* not a mountpoint */
3178 if (!mnt_has_parent(root_mnt))
3179 goto out4; /* not attached */
3180 root_mp = root_mnt->mnt_mp;
3181 if (new.mnt->mnt_root != new.dentry)
3182 goto out4; /* not a mountpoint */
3183 if (!mnt_has_parent(new_mnt))
3184 goto out4; /* not attached */
3185 /* make sure we can reach put_old from new_root */
3186 if (!is_path_reachable(old_mnt, old.dentry, &new))
3187 goto out4;
3188 /* make certain new is below the root */
3189 if (!is_path_reachable(new_mnt, new.dentry, &root))
3190 goto out4;
3191 root_mp->m_count++; /* pin it so it won't go away */
3192 lock_mount_hash();
3193 detach_mnt(new_mnt, &parent_path);
3194 detach_mnt(root_mnt, &root_parent);
3195 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3196 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3197 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3198 }
3199 /* mount old root on put_old */
3200 attach_mnt(root_mnt, old_mnt, old_mp);
3201 /* mount new_root on / */
3202 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3203 touch_mnt_namespace(current->nsproxy->mnt_ns);
3204 /* A moved mount should not expire automatically */
3205 list_del_init(&new_mnt->mnt_expire);
3206 put_mountpoint(root_mp);
3207 unlock_mount_hash();
3208 chroot_fs_refs(&root, &new);
3209 error = 0;
3210 out4:
3211 unlock_mount(old_mp);
3212 if (!error) {
3213 path_put(&root_parent);
3214 path_put(&parent_path);
3215 }
3216 out3:
3217 path_put(&root);
3218 out2:
3219 path_put(&old);
3220 out1:
3221 path_put(&new);
3222 out0:
3223 return error;
3224 }
3225
3226 static void __init init_mount_tree(void)
3227 {
3228 struct vfsmount *mnt;
3229 struct mnt_namespace *ns;
3230 struct path root;
3231 struct file_system_type *type;
3232
3233 type = get_fs_type("rootfs");
3234 if (!type)
3235 panic("Can't find rootfs type");
3236 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3237 put_filesystem(type);
3238 if (IS_ERR(mnt))
3239 panic("Can't create rootfs");
3240
3241 ns = create_mnt_ns(mnt);
3242 if (IS_ERR(ns))
3243 panic("Can't allocate initial namespace");
3244
3245 init_task.nsproxy->mnt_ns = ns;
3246 get_mnt_ns(ns);
3247
3248 root.mnt = mnt;
3249 root.dentry = mnt->mnt_root;
3250 mnt->mnt_flags |= MNT_LOCKED;
3251
3252 set_fs_pwd(current->fs, &root);
3253 set_fs_root(current->fs, &root);
3254 }
3255
3256 void __init mnt_init(void)
3257 {
3258 int err;
3259
3260 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3261 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3262
3263 mount_hashtable = alloc_large_system_hash("Mount-cache",
3264 sizeof(struct hlist_head),
3265 mhash_entries, 19,
3266 HASH_ZERO,
3267 &m_hash_shift, &m_hash_mask, 0, 0);
3268 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3269 sizeof(struct hlist_head),
3270 mphash_entries, 19,
3271 HASH_ZERO,
3272 &mp_hash_shift, &mp_hash_mask, 0, 0);
3273
3274 if (!mount_hashtable || !mountpoint_hashtable)
3275 panic("Failed to allocate mount hash table\n");
3276
3277 kernfs_init();
3278
3279 err = sysfs_init();
3280 if (err)
3281 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3282 __func__, err);
3283 fs_kobj = kobject_create_and_add("fs", NULL);
3284 if (!fs_kobj)
3285 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3286 init_rootfs();
3287 init_mount_tree();
3288 }
3289
3290 void put_mnt_ns(struct mnt_namespace *ns)
3291 {
3292 if (!atomic_dec_and_test(&ns->count))
3293 return;
3294 drop_collected_mounts(&ns->root->mnt);
3295 free_mnt_ns(ns);
3296 }
3297
3298 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3299 {
3300 struct vfsmount *mnt;
3301 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3302 if (!IS_ERR(mnt)) {
3303 /*
3304 * it is a longterm mount, don't release mnt until
3305 * we unmount before file sys is unregistered
3306 */
3307 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3308 }
3309 return mnt;
3310 }
3311 EXPORT_SYMBOL_GPL(kern_mount_data);
3312
3313 void kern_unmount(struct vfsmount *mnt)
3314 {
3315 /* release long term mount so mount point can be released */
3316 if (!IS_ERR_OR_NULL(mnt)) {
3317 real_mount(mnt)->mnt_ns = NULL;
3318 synchronize_rcu(); /* yecchhh... */
3319 mntput(mnt);
3320 }
3321 }
3322 EXPORT_SYMBOL(kern_unmount);
3323
3324 bool our_mnt(struct vfsmount *mnt)
3325 {
3326 return check_mnt(real_mount(mnt));
3327 }
3328
3329 bool current_chrooted(void)
3330 {
3331 /* Does the current process have a non-standard root */
3332 struct path ns_root;
3333 struct path fs_root;
3334 bool chrooted;
3335
3336 /* Find the namespace root */
3337 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3338 ns_root.dentry = ns_root.mnt->mnt_root;
3339 path_get(&ns_root);
3340 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3341 ;
3342
3343 get_fs_root(current->fs, &fs_root);
3344
3345 chrooted = !path_equal(&fs_root, &ns_root);
3346
3347 path_put(&fs_root);
3348 path_put(&ns_root);
3349
3350 return chrooted;
3351 }
3352
3353 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3354 int *new_mnt_flags)
3355 {
3356 int new_flags = *new_mnt_flags;
3357 struct mount *mnt;
3358 bool visible = false;
3359
3360 down_read(&namespace_sem);
3361 list_for_each_entry(mnt, &ns->list, mnt_list) {
3362 struct mount *child;
3363 int mnt_flags;
3364
3365 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3366 continue;
3367
3368 /* This mount is not fully visible if it's root directory
3369 * is not the root directory of the filesystem.
3370 */
3371 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3372 continue;
3373
3374 /* A local view of the mount flags */
3375 mnt_flags = mnt->mnt.mnt_flags;
3376
3377 /* Don't miss readonly hidden in the superblock flags */
3378 if (sb_rdonly(mnt->mnt.mnt_sb))
3379 mnt_flags |= MNT_LOCK_READONLY;
3380
3381 /* Verify the mount flags are equal to or more permissive
3382 * than the proposed new mount.
3383 */
3384 if ((mnt_flags & MNT_LOCK_READONLY) &&
3385 !(new_flags & MNT_READONLY))
3386 continue;
3387 if ((mnt_flags & MNT_LOCK_ATIME) &&
3388 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3389 continue;
3390
3391 /* This mount is not fully visible if there are any
3392 * locked child mounts that cover anything except for
3393 * empty directories.
3394 */
3395 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3396 struct inode *inode = child->mnt_mountpoint->d_inode;
3397 /* Only worry about locked mounts */
3398 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3399 continue;
3400 /* Is the directory permanetly empty? */
3401 if (!is_empty_dir_inode(inode))
3402 goto next;
3403 }
3404 /* Preserve the locked attributes */
3405 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3406 MNT_LOCK_ATIME);
3407 visible = true;
3408 goto found;
3409 next: ;
3410 }
3411 found:
3412 up_read(&namespace_sem);
3413 return visible;
3414 }
3415
3416 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3417 {
3418 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3419 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3420 unsigned long s_iflags;
3421
3422 if (ns->user_ns == &init_user_ns)
3423 return false;
3424
3425 /* Can this filesystem be too revealing? */
3426 s_iflags = mnt->mnt_sb->s_iflags;
3427 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3428 return false;
3429
3430 if ((s_iflags & required_iflags) != required_iflags) {
3431 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3432 required_iflags);
3433 return true;
3434 }
3435
3436 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3437 }
3438
3439 bool mnt_may_suid(struct vfsmount *mnt)
3440 {
3441 /*
3442 * Foreign mounts (accessed via fchdir or through /proc
3443 * symlinks) are always treated as if they are nosuid. This
3444 * prevents namespaces from trusting potentially unsafe
3445 * suid/sgid bits, file caps, or security labels that originate
3446 * in other namespaces.
3447 */
3448 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3449 current_in_userns(mnt->mnt_sb->s_user_ns);
3450 }
3451
3452 static struct ns_common *mntns_get(struct task_struct *task)
3453 {
3454 struct ns_common *ns = NULL;
3455 struct nsproxy *nsproxy;
3456
3457 task_lock(task);
3458 nsproxy = task->nsproxy;
3459 if (nsproxy) {
3460 ns = &nsproxy->mnt_ns->ns;
3461 get_mnt_ns(to_mnt_ns(ns));
3462 }
3463 task_unlock(task);
3464
3465 return ns;
3466 }
3467
3468 static void mntns_put(struct ns_common *ns)
3469 {
3470 put_mnt_ns(to_mnt_ns(ns));
3471 }
3472
3473 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3474 {
3475 struct fs_struct *fs = current->fs;
3476 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3477 struct path root;
3478 int err;
3479
3480 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3481 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3482 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3483 return -EPERM;
3484
3485 if (fs->users != 1)
3486 return -EINVAL;
3487
3488 get_mnt_ns(mnt_ns);
3489 old_mnt_ns = nsproxy->mnt_ns;
3490 nsproxy->mnt_ns = mnt_ns;
3491
3492 /* Find the root */
3493 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3494 "/", LOOKUP_DOWN, &root);
3495 if (err) {
3496 /* revert to old namespace */
3497 nsproxy->mnt_ns = old_mnt_ns;
3498 put_mnt_ns(mnt_ns);
3499 return err;
3500 }
3501
3502 put_mnt_ns(old_mnt_ns);
3503
3504 /* Update the pwd and root */
3505 set_fs_pwd(fs, &root);
3506 set_fs_root(fs, &root);
3507
3508 path_put(&root);
3509 return 0;
3510 }
3511
3512 static struct user_namespace *mntns_owner(struct ns_common *ns)
3513 {
3514 return to_mnt_ns(ns)->user_ns;
3515 }
3516
3517 const struct proc_ns_operations mntns_operations = {
3518 .name = "mnt",
3519 .type = CLONE_NEWNS,
3520 .get = mntns_get,
3521 .put = mntns_put,
3522 .install = mntns_install,
3523 .owner = mntns_owner,
3524 };