]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/namespace.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29
30 #include "pnode.h"
31 #include "internal.h"
32
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly = 100000;
35
36 static unsigned int m_hash_mask __read_mostly;
37 static unsigned int m_hash_shift __read_mostly;
38 static unsigned int mp_hash_mask __read_mostly;
39 static unsigned int mp_hash_shift __read_mostly;
40
41 static __initdata unsigned long mhash_entries;
42 static int __init set_mhash_entries(char *str)
43 {
44 if (!str)
45 return 0;
46 mhash_entries = simple_strtoul(str, &str, 0);
47 return 1;
48 }
49 __setup("mhash_entries=", set_mhash_entries);
50
51 static __initdata unsigned long mphash_entries;
52 static int __init set_mphash_entries(char *str)
53 {
54 if (!str)
55 return 0;
56 mphash_entries = simple_strtoul(str, &str, 0);
57 return 1;
58 }
59 __setup("mphash_entries=", set_mphash_entries);
60
61 static u64 event;
62 static DEFINE_IDA(mnt_id_ida);
63 static DEFINE_IDA(mnt_group_ida);
64 static DEFINE_SPINLOCK(mnt_id_lock);
65 static int mnt_id_start = 0;
66 static int mnt_group_start = 1;
67
68 static struct hlist_head *mount_hashtable __read_mostly;
69 static struct hlist_head *mountpoint_hashtable __read_mostly;
70 static struct kmem_cache *mnt_cache __read_mostly;
71 static DECLARE_RWSEM(namespace_sem);
72
73 /* /sys/fs */
74 struct kobject *fs_kobj;
75 EXPORT_SYMBOL_GPL(fs_kobj);
76
77 /*
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
80 * up the tree.
81 *
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
84 */
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
86
87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
88 {
89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
91 tmp = tmp + (tmp >> m_hash_shift);
92 return &mount_hashtable[tmp & m_hash_mask];
93 }
94
95 static inline struct hlist_head *mp_hash(struct dentry *dentry)
96 {
97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 tmp = tmp + (tmp >> mp_hash_shift);
99 return &mountpoint_hashtable[tmp & mp_hash_mask];
100 }
101
102 static int mnt_alloc_id(struct mount *mnt)
103 {
104 int res;
105
106 retry:
107 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
108 spin_lock(&mnt_id_lock);
109 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
110 if (!res)
111 mnt_id_start = mnt->mnt_id + 1;
112 spin_unlock(&mnt_id_lock);
113 if (res == -EAGAIN)
114 goto retry;
115
116 return res;
117 }
118
119 static void mnt_free_id(struct mount *mnt)
120 {
121 int id = mnt->mnt_id;
122 spin_lock(&mnt_id_lock);
123 ida_remove(&mnt_id_ida, id);
124 if (mnt_id_start > id)
125 mnt_id_start = id;
126 spin_unlock(&mnt_id_lock);
127 }
128
129 /*
130 * Allocate a new peer group ID
131 *
132 * mnt_group_ida is protected by namespace_sem
133 */
134 static int mnt_alloc_group_id(struct mount *mnt)
135 {
136 int res;
137
138 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 return -ENOMEM;
140
141 res = ida_get_new_above(&mnt_group_ida,
142 mnt_group_start,
143 &mnt->mnt_group_id);
144 if (!res)
145 mnt_group_start = mnt->mnt_group_id + 1;
146
147 return res;
148 }
149
150 /*
151 * Release a peer group ID
152 */
153 void mnt_release_group_id(struct mount *mnt)
154 {
155 int id = mnt->mnt_group_id;
156 ida_remove(&mnt_group_ida, id);
157 if (mnt_group_start > id)
158 mnt_group_start = id;
159 mnt->mnt_group_id = 0;
160 }
161
162 /*
163 * vfsmount lock must be held for read
164 */
165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 preempt_disable();
171 mnt->mnt_count += n;
172 preempt_enable();
173 #endif
174 }
175
176 /*
177 * vfsmount lock must be held for write
178 */
179 unsigned int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 unsigned int count = 0;
183 int cpu;
184
185 for_each_possible_cpu(cpu) {
186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 }
188
189 return count;
190 #else
191 return mnt->mnt_count;
192 #endif
193 }
194
195 static void drop_mountpoint(struct fs_pin *p)
196 {
197 struct mount *m = container_of(p, struct mount, mnt_umount);
198 dput(m->mnt_ex_mountpoint);
199 pin_remove(p);
200 mntput(&m->mnt);
201 }
202
203 static struct mount *alloc_vfsmnt(const char *name)
204 {
205 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
206 if (mnt) {
207 int err;
208
209 err = mnt_alloc_id(mnt);
210 if (err)
211 goto out_free_cache;
212
213 if (name) {
214 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
215 if (!mnt->mnt_devname)
216 goto out_free_id;
217 }
218
219 #ifdef CONFIG_SMP
220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 if (!mnt->mnt_pcp)
222 goto out_free_devname;
223
224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
225 #else
226 mnt->mnt_count = 1;
227 mnt->mnt_writers = 0;
228 #endif
229
230 INIT_HLIST_NODE(&mnt->mnt_hash);
231 INIT_LIST_HEAD(&mnt->mnt_child);
232 INIT_LIST_HEAD(&mnt->mnt_mounts);
233 INIT_LIST_HEAD(&mnt->mnt_list);
234 INIT_LIST_HEAD(&mnt->mnt_expire);
235 INIT_LIST_HEAD(&mnt->mnt_share);
236 INIT_LIST_HEAD(&mnt->mnt_slave_list);
237 INIT_LIST_HEAD(&mnt->mnt_slave);
238 INIT_HLIST_NODE(&mnt->mnt_mp_list);
239 INIT_LIST_HEAD(&mnt->mnt_umounting);
240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241 }
242 return mnt;
243
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 mnt_free_id(mnt);
250 out_free_cache:
251 kmem_cache_free(mnt_cache, mnt);
252 return NULL;
253 }
254
255 /*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263 /*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274 int __mnt_is_readonly(struct vfsmount *mnt)
275 {
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (sb_rdonly(mnt->mnt_sb))
279 return 1;
280 return 0;
281 }
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
284 static inline void mnt_inc_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 mnt->mnt_writers++;
290 #endif
291 }
292
293 static inline void mnt_dec_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 mnt->mnt_writers--;
299 #endif
300 }
301
302 static unsigned int mnt_get_writers(struct mount *mnt)
303 {
304 #ifdef CONFIG_SMP
305 unsigned int count = 0;
306 int cpu;
307
308 for_each_possible_cpu(cpu) {
309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310 }
311
312 return count;
313 #else
314 return mnt->mnt_writers;
315 #endif
316 }
317
318 static int mnt_is_readonly(struct vfsmount *mnt)
319 {
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325 }
326
327 /*
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
332 */
333 /**
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
342 */
343 int __mnt_want_write(struct vfsmount *m)
344 {
345 struct mount *mnt = real_mount(m);
346 int ret = 0;
347
348 preempt_disable();
349 mnt_inc_writers(mnt);
350 /*
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
356 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
364 if (mnt_is_readonly(m)) {
365 mnt_dec_writers(mnt);
366 ret = -EROFS;
367 }
368 preempt_enable();
369
370 return ret;
371 }
372
373 /**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382 int mnt_want_write(struct vfsmount *m)
383 {
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
390 return ret;
391 }
392 EXPORT_SYMBOL_GPL(mnt_want_write);
393
394 /**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406 int mnt_clone_write(struct vfsmount *mnt)
407 {
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
412 mnt_inc_writers(real_mount(mnt));
413 preempt_enable();
414 return 0;
415 }
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418 /**
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
421 *
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
424 */
425 int __mnt_want_write_file(struct file *file)
426 {
427 if (!(file->f_mode & FMODE_WRITER))
428 return __mnt_want_write(file->f_path.mnt);
429 else
430 return mnt_clone_write(file->f_path.mnt);
431 }
432
433 /**
434 * mnt_want_write_file_path - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 *
440 * Called by the vfs for cases when we have an open file at hand, but will do an
441 * inode operation on it (important distinction for files opened on overlayfs,
442 * since the file operations will come from the real underlying file, while
443 * inode operations come from the overlay).
444 */
445 int mnt_want_write_file_path(struct file *file)
446 {
447 int ret;
448
449 sb_start_write(file->f_path.mnt->mnt_sb);
450 ret = __mnt_want_write_file(file);
451 if (ret)
452 sb_end_write(file->f_path.mnt->mnt_sb);
453 return ret;
454 }
455
456 static inline int may_write_real(struct file *file)
457 {
458 struct dentry *dentry = file->f_path.dentry;
459 struct dentry *upperdentry;
460
461 /* Writable file? */
462 if (file->f_mode & FMODE_WRITER)
463 return 0;
464
465 /* Not overlayfs? */
466 if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
467 return 0;
468
469 /* File refers to upper, writable layer? */
470 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
471 if (upperdentry &&
472 (file_inode(file) == d_inode(upperdentry) ||
473 file_inode(file) == d_inode(dentry)))
474 return 0;
475
476 /* Lower layer: can't write to real file, sorry... */
477 return -EPERM;
478 }
479
480 /**
481 * mnt_want_write_file - get write access to a file's mount
482 * @file: the file who's mount on which to take a write
483 *
484 * This is like mnt_want_write, but it takes a file and can
485 * do some optimisations if the file is open for write already
486 *
487 * Mostly called by filesystems from their ioctl operation before performing
488 * modification. On overlayfs this needs to check if the file is on a read-only
489 * lower layer and deny access in that case.
490 */
491 int mnt_want_write_file(struct file *file)
492 {
493 int ret;
494
495 ret = may_write_real(file);
496 if (!ret) {
497 sb_start_write(file_inode(file)->i_sb);
498 ret = __mnt_want_write_file(file);
499 if (ret)
500 sb_end_write(file_inode(file)->i_sb);
501 }
502 return ret;
503 }
504 EXPORT_SYMBOL_GPL(mnt_want_write_file);
505
506 /**
507 * __mnt_drop_write - give up write access to a mount
508 * @mnt: the mount on which to give up write access
509 *
510 * Tells the low-level filesystem that we are done
511 * performing writes to it. Must be matched with
512 * __mnt_want_write() call above.
513 */
514 void __mnt_drop_write(struct vfsmount *mnt)
515 {
516 preempt_disable();
517 mnt_dec_writers(real_mount(mnt));
518 preempt_enable();
519 }
520 EXPORT_SYMBOL_GPL(__mnt_drop_write);
521
522 /**
523 * mnt_drop_write - give up write access to a mount
524 * @mnt: the mount on which to give up write access
525 *
526 * Tells the low-level filesystem that we are done performing writes to it and
527 * also allows filesystem to be frozen again. Must be matched with
528 * mnt_want_write() call above.
529 */
530 void mnt_drop_write(struct vfsmount *mnt)
531 {
532 __mnt_drop_write(mnt);
533 sb_end_write(mnt->mnt_sb);
534 }
535 EXPORT_SYMBOL_GPL(mnt_drop_write);
536
537 void __mnt_drop_write_file(struct file *file)
538 {
539 __mnt_drop_write(file->f_path.mnt);
540 }
541
542 void mnt_drop_write_file_path(struct file *file)
543 {
544 mnt_drop_write(file->f_path.mnt);
545 }
546
547 void mnt_drop_write_file(struct file *file)
548 {
549 __mnt_drop_write(file->f_path.mnt);
550 sb_end_write(file_inode(file)->i_sb);
551 }
552 EXPORT_SYMBOL(mnt_drop_write_file);
553
554 static int mnt_make_readonly(struct mount *mnt)
555 {
556 int ret = 0;
557
558 lock_mount_hash();
559 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
560 /*
561 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
562 * should be visible before we do.
563 */
564 smp_mb();
565
566 /*
567 * With writers on hold, if this value is zero, then there are
568 * definitely no active writers (although held writers may subsequently
569 * increment the count, they'll have to wait, and decrement it after
570 * seeing MNT_READONLY).
571 *
572 * It is OK to have counter incremented on one CPU and decremented on
573 * another: the sum will add up correctly. The danger would be when we
574 * sum up each counter, if we read a counter before it is incremented,
575 * but then read another CPU's count which it has been subsequently
576 * decremented from -- we would see more decrements than we should.
577 * MNT_WRITE_HOLD protects against this scenario, because
578 * mnt_want_write first increments count, then smp_mb, then spins on
579 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
580 * we're counting up here.
581 */
582 if (mnt_get_writers(mnt) > 0)
583 ret = -EBUSY;
584 else
585 mnt->mnt.mnt_flags |= MNT_READONLY;
586 /*
587 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
588 * that become unheld will see MNT_READONLY.
589 */
590 smp_wmb();
591 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
592 unlock_mount_hash();
593 return ret;
594 }
595
596 static void __mnt_unmake_readonly(struct mount *mnt)
597 {
598 lock_mount_hash();
599 mnt->mnt.mnt_flags &= ~MNT_READONLY;
600 unlock_mount_hash();
601 }
602
603 int sb_prepare_remount_readonly(struct super_block *sb)
604 {
605 struct mount *mnt;
606 int err = 0;
607
608 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
609 if (atomic_long_read(&sb->s_remove_count))
610 return -EBUSY;
611
612 lock_mount_hash();
613 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
614 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
615 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
616 smp_mb();
617 if (mnt_get_writers(mnt) > 0) {
618 err = -EBUSY;
619 break;
620 }
621 }
622 }
623 if (!err && atomic_long_read(&sb->s_remove_count))
624 err = -EBUSY;
625
626 if (!err) {
627 sb->s_readonly_remount = 1;
628 smp_wmb();
629 }
630 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
631 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
632 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
633 }
634 unlock_mount_hash();
635
636 return err;
637 }
638
639 static void free_vfsmnt(struct mount *mnt)
640 {
641 kfree_const(mnt->mnt_devname);
642 #ifdef CONFIG_SMP
643 free_percpu(mnt->mnt_pcp);
644 #endif
645 kmem_cache_free(mnt_cache, mnt);
646 }
647
648 static void delayed_free_vfsmnt(struct rcu_head *head)
649 {
650 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
651 }
652
653 /* call under rcu_read_lock */
654 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
655 {
656 struct mount *mnt;
657 if (read_seqretry(&mount_lock, seq))
658 return 1;
659 if (bastard == NULL)
660 return 0;
661 mnt = real_mount(bastard);
662 mnt_add_count(mnt, 1);
663 if (likely(!read_seqretry(&mount_lock, seq)))
664 return 0;
665 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
666 mnt_add_count(mnt, -1);
667 return 1;
668 }
669 return -1;
670 }
671
672 /* call under rcu_read_lock */
673 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
674 {
675 int res = __legitimize_mnt(bastard, seq);
676 if (likely(!res))
677 return true;
678 if (unlikely(res < 0)) {
679 rcu_read_unlock();
680 mntput(bastard);
681 rcu_read_lock();
682 }
683 return false;
684 }
685
686 /*
687 * find the first mount at @dentry on vfsmount @mnt.
688 * call under rcu_read_lock()
689 */
690 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
691 {
692 struct hlist_head *head = m_hash(mnt, dentry);
693 struct mount *p;
694
695 hlist_for_each_entry_rcu(p, head, mnt_hash)
696 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
697 return p;
698 return NULL;
699 }
700
701 /*
702 * lookup_mnt - Return the first child mount mounted at path
703 *
704 * "First" means first mounted chronologically. If you create the
705 * following mounts:
706 *
707 * mount /dev/sda1 /mnt
708 * mount /dev/sda2 /mnt
709 * mount /dev/sda3 /mnt
710 *
711 * Then lookup_mnt() on the base /mnt dentry in the root mount will
712 * return successively the root dentry and vfsmount of /dev/sda1, then
713 * /dev/sda2, then /dev/sda3, then NULL.
714 *
715 * lookup_mnt takes a reference to the found vfsmount.
716 */
717 struct vfsmount *lookup_mnt(const struct path *path)
718 {
719 struct mount *child_mnt;
720 struct vfsmount *m;
721 unsigned seq;
722
723 rcu_read_lock();
724 do {
725 seq = read_seqbegin(&mount_lock);
726 child_mnt = __lookup_mnt(path->mnt, path->dentry);
727 m = child_mnt ? &child_mnt->mnt : NULL;
728 } while (!legitimize_mnt(m, seq));
729 rcu_read_unlock();
730 return m;
731 }
732
733 /*
734 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
735 * current mount namespace.
736 *
737 * The common case is dentries are not mountpoints at all and that
738 * test is handled inline. For the slow case when we are actually
739 * dealing with a mountpoint of some kind, walk through all of the
740 * mounts in the current mount namespace and test to see if the dentry
741 * is a mountpoint.
742 *
743 * The mount_hashtable is not usable in the context because we
744 * need to identify all mounts that may be in the current mount
745 * namespace not just a mount that happens to have some specified
746 * parent mount.
747 */
748 bool __is_local_mountpoint(struct dentry *dentry)
749 {
750 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
751 struct mount *mnt;
752 bool is_covered = false;
753
754 if (!d_mountpoint(dentry))
755 goto out;
756
757 down_read(&namespace_sem);
758 list_for_each_entry(mnt, &ns->list, mnt_list) {
759 is_covered = (mnt->mnt_mountpoint == dentry);
760 if (is_covered)
761 break;
762 }
763 up_read(&namespace_sem);
764 out:
765 return is_covered;
766 }
767
768 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
769 {
770 struct hlist_head *chain = mp_hash(dentry);
771 struct mountpoint *mp;
772
773 hlist_for_each_entry(mp, chain, m_hash) {
774 if (mp->m_dentry == dentry) {
775 /* might be worth a WARN_ON() */
776 if (d_unlinked(dentry))
777 return ERR_PTR(-ENOENT);
778 mp->m_count++;
779 return mp;
780 }
781 }
782 return NULL;
783 }
784
785 static struct mountpoint *get_mountpoint(struct dentry *dentry)
786 {
787 struct mountpoint *mp, *new = NULL;
788 int ret;
789
790 if (d_mountpoint(dentry)) {
791 mountpoint:
792 read_seqlock_excl(&mount_lock);
793 mp = lookup_mountpoint(dentry);
794 read_sequnlock_excl(&mount_lock);
795 if (mp)
796 goto done;
797 }
798
799 if (!new)
800 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
801 if (!new)
802 return ERR_PTR(-ENOMEM);
803
804
805 /* Exactly one processes may set d_mounted */
806 ret = d_set_mounted(dentry);
807
808 /* Someone else set d_mounted? */
809 if (ret == -EBUSY)
810 goto mountpoint;
811
812 /* The dentry is not available as a mountpoint? */
813 mp = ERR_PTR(ret);
814 if (ret)
815 goto done;
816
817 /* Add the new mountpoint to the hash table */
818 read_seqlock_excl(&mount_lock);
819 new->m_dentry = dentry;
820 new->m_count = 1;
821 hlist_add_head(&new->m_hash, mp_hash(dentry));
822 INIT_HLIST_HEAD(&new->m_list);
823 read_sequnlock_excl(&mount_lock);
824
825 mp = new;
826 new = NULL;
827 done:
828 kfree(new);
829 return mp;
830 }
831
832 static void put_mountpoint(struct mountpoint *mp)
833 {
834 if (!--mp->m_count) {
835 struct dentry *dentry = mp->m_dentry;
836 BUG_ON(!hlist_empty(&mp->m_list));
837 spin_lock(&dentry->d_lock);
838 dentry->d_flags &= ~DCACHE_MOUNTED;
839 spin_unlock(&dentry->d_lock);
840 hlist_del(&mp->m_hash);
841 kfree(mp);
842 }
843 }
844
845 static inline int check_mnt(struct mount *mnt)
846 {
847 return mnt->mnt_ns == current->nsproxy->mnt_ns;
848 }
849
850 /* for aufs, CONFIG_AUFS_BR_FUSE */
851 int is_current_mnt_ns(struct vfsmount *mnt)
852 {
853 return check_mnt(real_mount(mnt));
854 }
855 EXPORT_SYMBOL_GPL(is_current_mnt_ns);
856
857 /*
858 * vfsmount lock must be held for write
859 */
860 static void touch_mnt_namespace(struct mnt_namespace *ns)
861 {
862 if (ns) {
863 ns->event = ++event;
864 wake_up_interruptible(&ns->poll);
865 }
866 }
867
868 /*
869 * vfsmount lock must be held for write
870 */
871 static void __touch_mnt_namespace(struct mnt_namespace *ns)
872 {
873 if (ns && ns->event != event) {
874 ns->event = event;
875 wake_up_interruptible(&ns->poll);
876 }
877 }
878
879 /*
880 * vfsmount lock must be held for write
881 */
882 static void unhash_mnt(struct mount *mnt)
883 {
884 mnt->mnt_parent = mnt;
885 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
886 list_del_init(&mnt->mnt_child);
887 hlist_del_init_rcu(&mnt->mnt_hash);
888 hlist_del_init(&mnt->mnt_mp_list);
889 put_mountpoint(mnt->mnt_mp);
890 mnt->mnt_mp = NULL;
891 }
892
893 /*
894 * vfsmount lock must be held for write
895 */
896 static void detach_mnt(struct mount *mnt, struct path *old_path)
897 {
898 old_path->dentry = mnt->mnt_mountpoint;
899 old_path->mnt = &mnt->mnt_parent->mnt;
900 unhash_mnt(mnt);
901 }
902
903 /*
904 * vfsmount lock must be held for write
905 */
906 static void umount_mnt(struct mount *mnt)
907 {
908 /* old mountpoint will be dropped when we can do that */
909 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
910 unhash_mnt(mnt);
911 }
912
913 /*
914 * vfsmount lock must be held for write
915 */
916 void mnt_set_mountpoint(struct mount *mnt,
917 struct mountpoint *mp,
918 struct mount *child_mnt)
919 {
920 mp->m_count++;
921 mnt_add_count(mnt, 1); /* essentially, that's mntget */
922 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
923 child_mnt->mnt_parent = mnt;
924 child_mnt->mnt_mp = mp;
925 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
926 }
927
928 static void __attach_mnt(struct mount *mnt, struct mount *parent)
929 {
930 hlist_add_head_rcu(&mnt->mnt_hash,
931 m_hash(&parent->mnt, mnt->mnt_mountpoint));
932 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
933 }
934
935 /*
936 * vfsmount lock must be held for write
937 */
938 static void attach_mnt(struct mount *mnt,
939 struct mount *parent,
940 struct mountpoint *mp)
941 {
942 mnt_set_mountpoint(parent, mp, mnt);
943 __attach_mnt(mnt, parent);
944 }
945
946 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
947 {
948 struct mountpoint *old_mp = mnt->mnt_mp;
949 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
950 struct mount *old_parent = mnt->mnt_parent;
951
952 list_del_init(&mnt->mnt_child);
953 hlist_del_init(&mnt->mnt_mp_list);
954 hlist_del_init_rcu(&mnt->mnt_hash);
955
956 attach_mnt(mnt, parent, mp);
957
958 put_mountpoint(old_mp);
959
960 /*
961 * Safely avoid even the suggestion this code might sleep or
962 * lock the mount hash by taking advantage of the knowledge that
963 * mnt_change_mountpoint will not release the final reference
964 * to a mountpoint.
965 *
966 * During mounting, the mount passed in as the parent mount will
967 * continue to use the old mountpoint and during unmounting, the
968 * old mountpoint will continue to exist until namespace_unlock,
969 * which happens well after mnt_change_mountpoint.
970 */
971 spin_lock(&old_mountpoint->d_lock);
972 old_mountpoint->d_lockref.count--;
973 spin_unlock(&old_mountpoint->d_lock);
974
975 mnt_add_count(old_parent, -1);
976 }
977
978 /*
979 * vfsmount lock must be held for write
980 */
981 static void commit_tree(struct mount *mnt)
982 {
983 struct mount *parent = mnt->mnt_parent;
984 struct mount *m;
985 LIST_HEAD(head);
986 struct mnt_namespace *n = parent->mnt_ns;
987
988 BUG_ON(parent == mnt);
989
990 list_add_tail(&head, &mnt->mnt_list);
991 list_for_each_entry(m, &head, mnt_list)
992 m->mnt_ns = n;
993
994 list_splice(&head, n->list.prev);
995
996 n->mounts += n->pending_mounts;
997 n->pending_mounts = 0;
998
999 __attach_mnt(mnt, parent);
1000 touch_mnt_namespace(n);
1001 }
1002
1003 static struct mount *next_mnt(struct mount *p, struct mount *root)
1004 {
1005 struct list_head *next = p->mnt_mounts.next;
1006 if (next == &p->mnt_mounts) {
1007 while (1) {
1008 if (p == root)
1009 return NULL;
1010 next = p->mnt_child.next;
1011 if (next != &p->mnt_parent->mnt_mounts)
1012 break;
1013 p = p->mnt_parent;
1014 }
1015 }
1016 return list_entry(next, struct mount, mnt_child);
1017 }
1018
1019 static struct mount *skip_mnt_tree(struct mount *p)
1020 {
1021 struct list_head *prev = p->mnt_mounts.prev;
1022 while (prev != &p->mnt_mounts) {
1023 p = list_entry(prev, struct mount, mnt_child);
1024 prev = p->mnt_mounts.prev;
1025 }
1026 return p;
1027 }
1028
1029 struct vfsmount *
1030 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
1031 {
1032 struct mount *mnt;
1033 struct dentry *root;
1034
1035 if (!type)
1036 return ERR_PTR(-ENODEV);
1037
1038 mnt = alloc_vfsmnt(name);
1039 if (!mnt)
1040 return ERR_PTR(-ENOMEM);
1041
1042 if (flags & SB_KERNMOUNT)
1043 mnt->mnt.mnt_flags = MNT_INTERNAL;
1044
1045 root = mount_fs(type, flags, name, data);
1046 if (IS_ERR(root)) {
1047 mnt_free_id(mnt);
1048 free_vfsmnt(mnt);
1049 return ERR_CAST(root);
1050 }
1051
1052 mnt->mnt.mnt_root = root;
1053 mnt->mnt.mnt_sb = root->d_sb;
1054 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1055 mnt->mnt_parent = mnt;
1056 lock_mount_hash();
1057 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1058 unlock_mount_hash();
1059 return &mnt->mnt;
1060 }
1061 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1062
1063 struct vfsmount *
1064 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1065 const char *name, void *data)
1066 {
1067 /* Until it is worked out how to pass the user namespace
1068 * through from the parent mount to the submount don't support
1069 * unprivileged mounts with submounts.
1070 */
1071 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1072 return ERR_PTR(-EPERM);
1073
1074 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1075 }
1076 EXPORT_SYMBOL_GPL(vfs_submount);
1077
1078 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1079 int flag)
1080 {
1081 struct super_block *sb = old->mnt.mnt_sb;
1082 struct mount *mnt;
1083 int err;
1084
1085 mnt = alloc_vfsmnt(old->mnt_devname);
1086 if (!mnt)
1087 return ERR_PTR(-ENOMEM);
1088
1089 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1090 mnt->mnt_group_id = 0; /* not a peer of original */
1091 else
1092 mnt->mnt_group_id = old->mnt_group_id;
1093
1094 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1095 err = mnt_alloc_group_id(mnt);
1096 if (err)
1097 goto out_free;
1098 }
1099
1100 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1101 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1102 /* Don't allow unprivileged users to change mount flags */
1103 if (flag & CL_UNPRIVILEGED) {
1104 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1105
1106 if (mnt->mnt.mnt_flags & MNT_READONLY)
1107 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1108
1109 if (mnt->mnt.mnt_flags & MNT_NODEV)
1110 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1111
1112 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1113 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1114
1115 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1116 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1117 }
1118
1119 /* Don't allow unprivileged users to reveal what is under a mount */
1120 if ((flag & CL_UNPRIVILEGED) &&
1121 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1122 mnt->mnt.mnt_flags |= MNT_LOCKED;
1123
1124 atomic_inc(&sb->s_active);
1125 mnt->mnt.mnt_sb = sb;
1126 mnt->mnt.mnt_root = dget(root);
1127 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1128 mnt->mnt_parent = mnt;
1129 lock_mount_hash();
1130 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1131 unlock_mount_hash();
1132
1133 if ((flag & CL_SLAVE) ||
1134 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1135 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1136 mnt->mnt_master = old;
1137 CLEAR_MNT_SHARED(mnt);
1138 } else if (!(flag & CL_PRIVATE)) {
1139 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1140 list_add(&mnt->mnt_share, &old->mnt_share);
1141 if (IS_MNT_SLAVE(old))
1142 list_add(&mnt->mnt_slave, &old->mnt_slave);
1143 mnt->mnt_master = old->mnt_master;
1144 } else {
1145 CLEAR_MNT_SHARED(mnt);
1146 }
1147 if (flag & CL_MAKE_SHARED)
1148 set_mnt_shared(mnt);
1149
1150 /* stick the duplicate mount on the same expiry list
1151 * as the original if that was on one */
1152 if (flag & CL_EXPIRE) {
1153 if (!list_empty(&old->mnt_expire))
1154 list_add(&mnt->mnt_expire, &old->mnt_expire);
1155 }
1156
1157 return mnt;
1158
1159 out_free:
1160 mnt_free_id(mnt);
1161 free_vfsmnt(mnt);
1162 return ERR_PTR(err);
1163 }
1164
1165 static void cleanup_mnt(struct mount *mnt)
1166 {
1167 /*
1168 * This probably indicates that somebody messed
1169 * up a mnt_want/drop_write() pair. If this
1170 * happens, the filesystem was probably unable
1171 * to make r/w->r/o transitions.
1172 */
1173 /*
1174 * The locking used to deal with mnt_count decrement provides barriers,
1175 * so mnt_get_writers() below is safe.
1176 */
1177 WARN_ON(mnt_get_writers(mnt));
1178 if (unlikely(mnt->mnt_pins.first))
1179 mnt_pin_kill(mnt);
1180 fsnotify_vfsmount_delete(&mnt->mnt);
1181 dput(mnt->mnt.mnt_root);
1182 deactivate_super(mnt->mnt.mnt_sb);
1183 mnt_free_id(mnt);
1184 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1185 }
1186
1187 static void __cleanup_mnt(struct rcu_head *head)
1188 {
1189 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1190 }
1191
1192 static LLIST_HEAD(delayed_mntput_list);
1193 static void delayed_mntput(struct work_struct *unused)
1194 {
1195 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1196 struct mount *m, *t;
1197
1198 llist_for_each_entry_safe(m, t, node, mnt_llist)
1199 cleanup_mnt(m);
1200 }
1201 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1202
1203 static void mntput_no_expire(struct mount *mnt)
1204 {
1205 rcu_read_lock();
1206 mnt_add_count(mnt, -1);
1207 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1208 rcu_read_unlock();
1209 return;
1210 }
1211 lock_mount_hash();
1212 if (mnt_get_count(mnt)) {
1213 rcu_read_unlock();
1214 unlock_mount_hash();
1215 return;
1216 }
1217 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1218 rcu_read_unlock();
1219 unlock_mount_hash();
1220 return;
1221 }
1222 mnt->mnt.mnt_flags |= MNT_DOOMED;
1223 rcu_read_unlock();
1224
1225 list_del(&mnt->mnt_instance);
1226
1227 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1228 struct mount *p, *tmp;
1229 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1230 umount_mnt(p);
1231 }
1232 }
1233 unlock_mount_hash();
1234
1235 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1236 struct task_struct *task = current;
1237 if (likely(!(task->flags & PF_KTHREAD))) {
1238 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1239 if (!task_work_add(task, &mnt->mnt_rcu, true))
1240 return;
1241 }
1242 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1243 schedule_delayed_work(&delayed_mntput_work, 1);
1244 return;
1245 }
1246 cleanup_mnt(mnt);
1247 }
1248
1249 void mntput(struct vfsmount *mnt)
1250 {
1251 if (mnt) {
1252 struct mount *m = real_mount(mnt);
1253 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1254 if (unlikely(m->mnt_expiry_mark))
1255 m->mnt_expiry_mark = 0;
1256 mntput_no_expire(m);
1257 }
1258 }
1259 EXPORT_SYMBOL(mntput);
1260
1261 struct vfsmount *mntget(struct vfsmount *mnt)
1262 {
1263 if (mnt)
1264 mnt_add_count(real_mount(mnt), 1);
1265 return mnt;
1266 }
1267 EXPORT_SYMBOL(mntget);
1268
1269 /* path_is_mountpoint() - Check if path is a mount in the current
1270 * namespace.
1271 *
1272 * d_mountpoint() can only be used reliably to establish if a dentry is
1273 * not mounted in any namespace and that common case is handled inline.
1274 * d_mountpoint() isn't aware of the possibility there may be multiple
1275 * mounts using a given dentry in a different namespace. This function
1276 * checks if the passed in path is a mountpoint rather than the dentry
1277 * alone.
1278 */
1279 bool path_is_mountpoint(const struct path *path)
1280 {
1281 unsigned seq;
1282 bool res;
1283
1284 if (!d_mountpoint(path->dentry))
1285 return false;
1286
1287 rcu_read_lock();
1288 do {
1289 seq = read_seqbegin(&mount_lock);
1290 res = __path_is_mountpoint(path);
1291 } while (read_seqretry(&mount_lock, seq));
1292 rcu_read_unlock();
1293
1294 return res;
1295 }
1296 EXPORT_SYMBOL(path_is_mountpoint);
1297
1298 struct vfsmount *mnt_clone_internal(const struct path *path)
1299 {
1300 struct mount *p;
1301 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1302 if (IS_ERR(p))
1303 return ERR_CAST(p);
1304 p->mnt.mnt_flags |= MNT_INTERNAL;
1305 return &p->mnt;
1306 }
1307
1308 #ifdef CONFIG_PROC_FS
1309 /* iterator; we want it to have access to namespace_sem, thus here... */
1310 static void *m_start(struct seq_file *m, loff_t *pos)
1311 {
1312 struct proc_mounts *p = m->private;
1313
1314 down_read(&namespace_sem);
1315 if (p->cached_event == p->ns->event) {
1316 void *v = p->cached_mount;
1317 if (*pos == p->cached_index)
1318 return v;
1319 if (*pos == p->cached_index + 1) {
1320 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1321 return p->cached_mount = v;
1322 }
1323 }
1324
1325 p->cached_event = p->ns->event;
1326 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1327 p->cached_index = *pos;
1328 return p->cached_mount;
1329 }
1330
1331 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1332 {
1333 struct proc_mounts *p = m->private;
1334
1335 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1336 p->cached_index = *pos;
1337 return p->cached_mount;
1338 }
1339
1340 static void m_stop(struct seq_file *m, void *v)
1341 {
1342 up_read(&namespace_sem);
1343 }
1344
1345 static int m_show(struct seq_file *m, void *v)
1346 {
1347 struct proc_mounts *p = m->private;
1348 struct mount *r = list_entry(v, struct mount, mnt_list);
1349 return p->show(m, &r->mnt);
1350 }
1351
1352 const struct seq_operations mounts_op = {
1353 .start = m_start,
1354 .next = m_next,
1355 .stop = m_stop,
1356 .show = m_show,
1357 };
1358 #endif /* CONFIG_PROC_FS */
1359
1360 /**
1361 * may_umount_tree - check if a mount tree is busy
1362 * @mnt: root of mount tree
1363 *
1364 * This is called to check if a tree of mounts has any
1365 * open files, pwds, chroots or sub mounts that are
1366 * busy.
1367 */
1368 int may_umount_tree(struct vfsmount *m)
1369 {
1370 struct mount *mnt = real_mount(m);
1371 int actual_refs = 0;
1372 int minimum_refs = 0;
1373 struct mount *p;
1374 BUG_ON(!m);
1375
1376 /* write lock needed for mnt_get_count */
1377 lock_mount_hash();
1378 for (p = mnt; p; p = next_mnt(p, mnt)) {
1379 actual_refs += mnt_get_count(p);
1380 minimum_refs += 2;
1381 }
1382 unlock_mount_hash();
1383
1384 if (actual_refs > minimum_refs)
1385 return 0;
1386
1387 return 1;
1388 }
1389
1390 EXPORT_SYMBOL(may_umount_tree);
1391
1392 /**
1393 * may_umount - check if a mount point is busy
1394 * @mnt: root of mount
1395 *
1396 * This is called to check if a mount point has any
1397 * open files, pwds, chroots or sub mounts. If the
1398 * mount has sub mounts this will return busy
1399 * regardless of whether the sub mounts are busy.
1400 *
1401 * Doesn't take quota and stuff into account. IOW, in some cases it will
1402 * give false negatives. The main reason why it's here is that we need
1403 * a non-destructive way to look for easily umountable filesystems.
1404 */
1405 int may_umount(struct vfsmount *mnt)
1406 {
1407 int ret = 1;
1408 down_read(&namespace_sem);
1409 lock_mount_hash();
1410 if (propagate_mount_busy(real_mount(mnt), 2))
1411 ret = 0;
1412 unlock_mount_hash();
1413 up_read(&namespace_sem);
1414 return ret;
1415 }
1416
1417 EXPORT_SYMBOL(may_umount);
1418
1419 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1420
1421 static void namespace_unlock(void)
1422 {
1423 struct hlist_head head;
1424
1425 hlist_move_list(&unmounted, &head);
1426
1427 up_write(&namespace_sem);
1428
1429 if (likely(hlist_empty(&head)))
1430 return;
1431
1432 synchronize_rcu();
1433
1434 group_pin_kill(&head);
1435 }
1436
1437 static inline void namespace_lock(void)
1438 {
1439 down_write(&namespace_sem);
1440 }
1441
1442 enum umount_tree_flags {
1443 UMOUNT_SYNC = 1,
1444 UMOUNT_PROPAGATE = 2,
1445 UMOUNT_CONNECTED = 4,
1446 };
1447
1448 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1449 {
1450 /* Leaving mounts connected is only valid for lazy umounts */
1451 if (how & UMOUNT_SYNC)
1452 return true;
1453
1454 /* A mount without a parent has nothing to be connected to */
1455 if (!mnt_has_parent(mnt))
1456 return true;
1457
1458 /* Because the reference counting rules change when mounts are
1459 * unmounted and connected, umounted mounts may not be
1460 * connected to mounted mounts.
1461 */
1462 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1463 return true;
1464
1465 /* Has it been requested that the mount remain connected? */
1466 if (how & UMOUNT_CONNECTED)
1467 return false;
1468
1469 /* Is the mount locked such that it needs to remain connected? */
1470 if (IS_MNT_LOCKED(mnt))
1471 return false;
1472
1473 /* By default disconnect the mount */
1474 return true;
1475 }
1476
1477 /*
1478 * mount_lock must be held
1479 * namespace_sem must be held for write
1480 */
1481 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1482 {
1483 LIST_HEAD(tmp_list);
1484 struct mount *p;
1485
1486 if (how & UMOUNT_PROPAGATE)
1487 propagate_mount_unlock(mnt);
1488
1489 /* Gather the mounts to umount */
1490 for (p = mnt; p; p = next_mnt(p, mnt)) {
1491 p->mnt.mnt_flags |= MNT_UMOUNT;
1492 list_move(&p->mnt_list, &tmp_list);
1493 }
1494
1495 /* Hide the mounts from mnt_mounts */
1496 list_for_each_entry(p, &tmp_list, mnt_list) {
1497 list_del_init(&p->mnt_child);
1498 }
1499
1500 /* Add propogated mounts to the tmp_list */
1501 if (how & UMOUNT_PROPAGATE)
1502 propagate_umount(&tmp_list);
1503
1504 while (!list_empty(&tmp_list)) {
1505 struct mnt_namespace *ns;
1506 bool disconnect;
1507 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1508 list_del_init(&p->mnt_expire);
1509 list_del_init(&p->mnt_list);
1510 ns = p->mnt_ns;
1511 if (ns) {
1512 ns->mounts--;
1513 __touch_mnt_namespace(ns);
1514 }
1515 p->mnt_ns = NULL;
1516 if (how & UMOUNT_SYNC)
1517 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1518
1519 disconnect = disconnect_mount(p, how);
1520
1521 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1522 disconnect ? &unmounted : NULL);
1523 if (mnt_has_parent(p)) {
1524 mnt_add_count(p->mnt_parent, -1);
1525 if (!disconnect) {
1526 /* Don't forget about p */
1527 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1528 } else {
1529 umount_mnt(p);
1530 }
1531 }
1532 change_mnt_propagation(p, MS_PRIVATE);
1533 }
1534 }
1535
1536 static void shrink_submounts(struct mount *mnt);
1537
1538 static int do_umount(struct mount *mnt, int flags)
1539 {
1540 struct super_block *sb = mnt->mnt.mnt_sb;
1541 int retval;
1542
1543 retval = security_sb_umount(&mnt->mnt, flags);
1544 if (retval)
1545 return retval;
1546
1547 /*
1548 * Allow userspace to request a mountpoint be expired rather than
1549 * unmounting unconditionally. Unmount only happens if:
1550 * (1) the mark is already set (the mark is cleared by mntput())
1551 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1552 */
1553 if (flags & MNT_EXPIRE) {
1554 if (&mnt->mnt == current->fs->root.mnt ||
1555 flags & (MNT_FORCE | MNT_DETACH))
1556 return -EINVAL;
1557
1558 /*
1559 * probably don't strictly need the lock here if we examined
1560 * all race cases, but it's a slowpath.
1561 */
1562 lock_mount_hash();
1563 if (mnt_get_count(mnt) != 2) {
1564 unlock_mount_hash();
1565 return -EBUSY;
1566 }
1567 unlock_mount_hash();
1568
1569 if (!xchg(&mnt->mnt_expiry_mark, 1))
1570 return -EAGAIN;
1571 }
1572
1573 /*
1574 * If we may have to abort operations to get out of this
1575 * mount, and they will themselves hold resources we must
1576 * allow the fs to do things. In the Unix tradition of
1577 * 'Gee thats tricky lets do it in userspace' the umount_begin
1578 * might fail to complete on the first run through as other tasks
1579 * must return, and the like. Thats for the mount program to worry
1580 * about for the moment.
1581 */
1582
1583 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1584 sb->s_op->umount_begin(sb);
1585 }
1586
1587 /*
1588 * No sense to grab the lock for this test, but test itself looks
1589 * somewhat bogus. Suggestions for better replacement?
1590 * Ho-hum... In principle, we might treat that as umount + switch
1591 * to rootfs. GC would eventually take care of the old vfsmount.
1592 * Actually it makes sense, especially if rootfs would contain a
1593 * /reboot - static binary that would close all descriptors and
1594 * call reboot(9). Then init(8) could umount root and exec /reboot.
1595 */
1596 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1597 /*
1598 * Special case for "unmounting" root ...
1599 * we just try to remount it readonly.
1600 */
1601 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1602 return -EPERM;
1603 down_write(&sb->s_umount);
1604 if (!sb_rdonly(sb))
1605 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1606 up_write(&sb->s_umount);
1607 return retval;
1608 }
1609
1610 namespace_lock();
1611 lock_mount_hash();
1612
1613 /* Recheck MNT_LOCKED with the locks held */
1614 retval = -EINVAL;
1615 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1616 goto out;
1617
1618 event++;
1619 if (flags & MNT_DETACH) {
1620 if (!list_empty(&mnt->mnt_list))
1621 umount_tree(mnt, UMOUNT_PROPAGATE);
1622 retval = 0;
1623 } else {
1624 shrink_submounts(mnt);
1625 retval = -EBUSY;
1626 if (!propagate_mount_busy(mnt, 2)) {
1627 if (!list_empty(&mnt->mnt_list))
1628 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1629 retval = 0;
1630 }
1631 }
1632 out:
1633 unlock_mount_hash();
1634 namespace_unlock();
1635 return retval;
1636 }
1637
1638 /*
1639 * __detach_mounts - lazily unmount all mounts on the specified dentry
1640 *
1641 * During unlink, rmdir, and d_drop it is possible to loose the path
1642 * to an existing mountpoint, and wind up leaking the mount.
1643 * detach_mounts allows lazily unmounting those mounts instead of
1644 * leaking them.
1645 *
1646 * The caller may hold dentry->d_inode->i_mutex.
1647 */
1648 void __detach_mounts(struct dentry *dentry)
1649 {
1650 struct mountpoint *mp;
1651 struct mount *mnt;
1652
1653 namespace_lock();
1654 lock_mount_hash();
1655 mp = lookup_mountpoint(dentry);
1656 if (IS_ERR_OR_NULL(mp))
1657 goto out_unlock;
1658
1659 event++;
1660 while (!hlist_empty(&mp->m_list)) {
1661 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1662 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1663 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1664 umount_mnt(mnt);
1665 }
1666 else umount_tree(mnt, UMOUNT_CONNECTED);
1667 }
1668 put_mountpoint(mp);
1669 out_unlock:
1670 unlock_mount_hash();
1671 namespace_unlock();
1672 }
1673
1674 /*
1675 * Is the caller allowed to modify his namespace?
1676 */
1677 static inline bool may_mount(void)
1678 {
1679 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1680 }
1681
1682 static inline bool may_mandlock(void)
1683 {
1684 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1685 return false;
1686 #endif
1687 return capable(CAP_SYS_ADMIN);
1688 }
1689
1690 /*
1691 * Now umount can handle mount points as well as block devices.
1692 * This is important for filesystems which use unnamed block devices.
1693 *
1694 * We now support a flag for forced unmount like the other 'big iron'
1695 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1696 */
1697
1698 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1699 {
1700 struct path path;
1701 struct mount *mnt;
1702 int retval;
1703 int lookup_flags = 0;
1704
1705 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1706 return -EINVAL;
1707
1708 if (!may_mount())
1709 return -EPERM;
1710
1711 if (!(flags & UMOUNT_NOFOLLOW))
1712 lookup_flags |= LOOKUP_FOLLOW;
1713
1714 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1715 if (retval)
1716 goto out;
1717 mnt = real_mount(path.mnt);
1718 retval = -EINVAL;
1719 if (path.dentry != path.mnt->mnt_root)
1720 goto dput_and_out;
1721 if (!check_mnt(mnt))
1722 goto dput_and_out;
1723 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1724 goto dput_and_out;
1725 retval = -EPERM;
1726 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1727 goto dput_and_out;
1728
1729 retval = do_umount(mnt, flags);
1730 dput_and_out:
1731 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1732 dput(path.dentry);
1733 mntput_no_expire(mnt);
1734 out:
1735 return retval;
1736 }
1737
1738 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1739
1740 /*
1741 * The 2.0 compatible umount. No flags.
1742 */
1743 SYSCALL_DEFINE1(oldumount, char __user *, name)
1744 {
1745 return sys_umount(name, 0);
1746 }
1747
1748 #endif
1749
1750 static bool is_mnt_ns_file(struct dentry *dentry)
1751 {
1752 /* Is this a proxy for a mount namespace? */
1753 return dentry->d_op == &ns_dentry_operations &&
1754 dentry->d_fsdata == &mntns_operations;
1755 }
1756
1757 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1758 {
1759 return container_of(ns, struct mnt_namespace, ns);
1760 }
1761
1762 static bool mnt_ns_loop(struct dentry *dentry)
1763 {
1764 /* Could bind mounting the mount namespace inode cause a
1765 * mount namespace loop?
1766 */
1767 struct mnt_namespace *mnt_ns;
1768 if (!is_mnt_ns_file(dentry))
1769 return false;
1770
1771 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1772 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1773 }
1774
1775 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1776 int flag)
1777 {
1778 struct mount *res, *p, *q, *r, *parent;
1779
1780 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1781 return ERR_PTR(-EINVAL);
1782
1783 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1784 return ERR_PTR(-EINVAL);
1785
1786 res = q = clone_mnt(mnt, dentry, flag);
1787 if (IS_ERR(q))
1788 return q;
1789
1790 q->mnt_mountpoint = mnt->mnt_mountpoint;
1791
1792 p = mnt;
1793 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1794 struct mount *s;
1795 if (!is_subdir(r->mnt_mountpoint, dentry))
1796 continue;
1797
1798 for (s = r; s; s = next_mnt(s, r)) {
1799 if (!(flag & CL_COPY_UNBINDABLE) &&
1800 IS_MNT_UNBINDABLE(s)) {
1801 if (s->mnt.mnt_flags & MNT_LOCKED) {
1802 /* Both unbindable and locked. */
1803 q = ERR_PTR(-EPERM);
1804 goto out;
1805 } else {
1806 s = skip_mnt_tree(s);
1807 continue;
1808 }
1809 }
1810 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1811 is_mnt_ns_file(s->mnt.mnt_root)) {
1812 s = skip_mnt_tree(s);
1813 continue;
1814 }
1815 while (p != s->mnt_parent) {
1816 p = p->mnt_parent;
1817 q = q->mnt_parent;
1818 }
1819 p = s;
1820 parent = q;
1821 q = clone_mnt(p, p->mnt.mnt_root, flag);
1822 if (IS_ERR(q))
1823 goto out;
1824 lock_mount_hash();
1825 list_add_tail(&q->mnt_list, &res->mnt_list);
1826 attach_mnt(q, parent, p->mnt_mp);
1827 unlock_mount_hash();
1828 }
1829 }
1830 return res;
1831 out:
1832 if (res) {
1833 lock_mount_hash();
1834 umount_tree(res, UMOUNT_SYNC);
1835 unlock_mount_hash();
1836 }
1837 return q;
1838 }
1839
1840 /* Caller should check returned pointer for errors */
1841
1842 struct vfsmount *collect_mounts(const struct path *path)
1843 {
1844 struct mount *tree;
1845 namespace_lock();
1846 if (!check_mnt(real_mount(path->mnt)))
1847 tree = ERR_PTR(-EINVAL);
1848 else
1849 tree = copy_tree(real_mount(path->mnt), path->dentry,
1850 CL_COPY_ALL | CL_PRIVATE);
1851 namespace_unlock();
1852 if (IS_ERR(tree))
1853 return ERR_CAST(tree);
1854 return &tree->mnt;
1855 }
1856
1857 void drop_collected_mounts(struct vfsmount *mnt)
1858 {
1859 namespace_lock();
1860 lock_mount_hash();
1861 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1862 unlock_mount_hash();
1863 namespace_unlock();
1864 }
1865
1866 /**
1867 * clone_private_mount - create a private clone of a path
1868 *
1869 * This creates a new vfsmount, which will be the clone of @path. The new will
1870 * not be attached anywhere in the namespace and will be private (i.e. changes
1871 * to the originating mount won't be propagated into this).
1872 *
1873 * Release with mntput().
1874 */
1875 struct vfsmount *clone_private_mount(const struct path *path)
1876 {
1877 struct mount *old_mnt = real_mount(path->mnt);
1878 struct mount *new_mnt;
1879
1880 if (IS_MNT_UNBINDABLE(old_mnt))
1881 return ERR_PTR(-EINVAL);
1882
1883 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1884 if (IS_ERR(new_mnt))
1885 return ERR_CAST(new_mnt);
1886
1887 return &new_mnt->mnt;
1888 }
1889 EXPORT_SYMBOL_GPL(clone_private_mount);
1890
1891 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1892 struct vfsmount *root)
1893 {
1894 struct mount *mnt;
1895 int res = f(root, arg);
1896 if (res)
1897 return res;
1898 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1899 res = f(&mnt->mnt, arg);
1900 if (res)
1901 return res;
1902 }
1903 return 0;
1904 }
1905 EXPORT_SYMBOL_GPL(iterate_mounts);
1906
1907 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1908 {
1909 struct mount *p;
1910
1911 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1912 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1913 mnt_release_group_id(p);
1914 }
1915 }
1916
1917 static int invent_group_ids(struct mount *mnt, bool recurse)
1918 {
1919 struct mount *p;
1920
1921 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1922 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1923 int err = mnt_alloc_group_id(p);
1924 if (err) {
1925 cleanup_group_ids(mnt, p);
1926 return err;
1927 }
1928 }
1929 }
1930
1931 return 0;
1932 }
1933
1934 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1935 {
1936 unsigned int max = READ_ONCE(sysctl_mount_max);
1937 unsigned int mounts = 0, old, pending, sum;
1938 struct mount *p;
1939
1940 for (p = mnt; p; p = next_mnt(p, mnt))
1941 mounts++;
1942
1943 old = ns->mounts;
1944 pending = ns->pending_mounts;
1945 sum = old + pending;
1946 if ((old > sum) ||
1947 (pending > sum) ||
1948 (max < sum) ||
1949 (mounts > (max - sum)))
1950 return -ENOSPC;
1951
1952 ns->pending_mounts = pending + mounts;
1953 return 0;
1954 }
1955
1956 /*
1957 * @source_mnt : mount tree to be attached
1958 * @nd : place the mount tree @source_mnt is attached
1959 * @parent_nd : if non-null, detach the source_mnt from its parent and
1960 * store the parent mount and mountpoint dentry.
1961 * (done when source_mnt is moved)
1962 *
1963 * NOTE: in the table below explains the semantics when a source mount
1964 * of a given type is attached to a destination mount of a given type.
1965 * ---------------------------------------------------------------------------
1966 * | BIND MOUNT OPERATION |
1967 * |**************************************************************************
1968 * | source-->| shared | private | slave | unbindable |
1969 * | dest | | | | |
1970 * | | | | | | |
1971 * | v | | | | |
1972 * |**************************************************************************
1973 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1974 * | | | | | |
1975 * |non-shared| shared (+) | private | slave (*) | invalid |
1976 * ***************************************************************************
1977 * A bind operation clones the source mount and mounts the clone on the
1978 * destination mount.
1979 *
1980 * (++) the cloned mount is propagated to all the mounts in the propagation
1981 * tree of the destination mount and the cloned mount is added to
1982 * the peer group of the source mount.
1983 * (+) the cloned mount is created under the destination mount and is marked
1984 * as shared. The cloned mount is added to the peer group of the source
1985 * mount.
1986 * (+++) the mount is propagated to all the mounts in the propagation tree
1987 * of the destination mount and the cloned mount is made slave
1988 * of the same master as that of the source mount. The cloned mount
1989 * is marked as 'shared and slave'.
1990 * (*) the cloned mount is made a slave of the same master as that of the
1991 * source mount.
1992 *
1993 * ---------------------------------------------------------------------------
1994 * | MOVE MOUNT OPERATION |
1995 * |**************************************************************************
1996 * | source-->| shared | private | slave | unbindable |
1997 * | dest | | | | |
1998 * | | | | | | |
1999 * | v | | | | |
2000 * |**************************************************************************
2001 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2002 * | | | | | |
2003 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2004 * ***************************************************************************
2005 *
2006 * (+) the mount is moved to the destination. And is then propagated to
2007 * all the mounts in the propagation tree of the destination mount.
2008 * (+*) the mount is moved to the destination.
2009 * (+++) the mount is moved to the destination and is then propagated to
2010 * all the mounts belonging to the destination mount's propagation tree.
2011 * the mount is marked as 'shared and slave'.
2012 * (*) the mount continues to be a slave at the new location.
2013 *
2014 * if the source mount is a tree, the operations explained above is
2015 * applied to each mount in the tree.
2016 * Must be called without spinlocks held, since this function can sleep
2017 * in allocations.
2018 */
2019 static int attach_recursive_mnt(struct mount *source_mnt,
2020 struct mount *dest_mnt,
2021 struct mountpoint *dest_mp,
2022 struct path *parent_path)
2023 {
2024 HLIST_HEAD(tree_list);
2025 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2026 struct mountpoint *smp;
2027 struct mount *child, *p;
2028 struct hlist_node *n;
2029 int err;
2030
2031 /* Preallocate a mountpoint in case the new mounts need
2032 * to be tucked under other mounts.
2033 */
2034 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2035 if (IS_ERR(smp))
2036 return PTR_ERR(smp);
2037
2038 /* Is there space to add these mounts to the mount namespace? */
2039 if (!parent_path) {
2040 err = count_mounts(ns, source_mnt);
2041 if (err)
2042 goto out;
2043 }
2044
2045 if (IS_MNT_SHARED(dest_mnt)) {
2046 err = invent_group_ids(source_mnt, true);
2047 if (err)
2048 goto out;
2049 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2050 lock_mount_hash();
2051 if (err)
2052 goto out_cleanup_ids;
2053 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2054 set_mnt_shared(p);
2055 } else {
2056 lock_mount_hash();
2057 }
2058 if (parent_path) {
2059 detach_mnt(source_mnt, parent_path);
2060 attach_mnt(source_mnt, dest_mnt, dest_mp);
2061 touch_mnt_namespace(source_mnt->mnt_ns);
2062 } else {
2063 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2064 commit_tree(source_mnt);
2065 }
2066
2067 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2068 struct mount *q;
2069 hlist_del_init(&child->mnt_hash);
2070 q = __lookup_mnt(&child->mnt_parent->mnt,
2071 child->mnt_mountpoint);
2072 if (q)
2073 mnt_change_mountpoint(child, smp, q);
2074 commit_tree(child);
2075 }
2076 put_mountpoint(smp);
2077 unlock_mount_hash();
2078
2079 return 0;
2080
2081 out_cleanup_ids:
2082 while (!hlist_empty(&tree_list)) {
2083 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2084 child->mnt_parent->mnt_ns->pending_mounts = 0;
2085 umount_tree(child, UMOUNT_SYNC);
2086 }
2087 unlock_mount_hash();
2088 cleanup_group_ids(source_mnt, NULL);
2089 out:
2090 ns->pending_mounts = 0;
2091
2092 read_seqlock_excl(&mount_lock);
2093 put_mountpoint(smp);
2094 read_sequnlock_excl(&mount_lock);
2095
2096 return err;
2097 }
2098
2099 static struct mountpoint *lock_mount(struct path *path)
2100 {
2101 struct vfsmount *mnt;
2102 struct dentry *dentry = path->dentry;
2103 retry:
2104 inode_lock(dentry->d_inode);
2105 if (unlikely(cant_mount(dentry))) {
2106 inode_unlock(dentry->d_inode);
2107 return ERR_PTR(-ENOENT);
2108 }
2109 namespace_lock();
2110 mnt = lookup_mnt(path);
2111 if (likely(!mnt)) {
2112 struct mountpoint *mp = get_mountpoint(dentry);
2113 if (IS_ERR(mp)) {
2114 namespace_unlock();
2115 inode_unlock(dentry->d_inode);
2116 return mp;
2117 }
2118 return mp;
2119 }
2120 namespace_unlock();
2121 inode_unlock(path->dentry->d_inode);
2122 path_put(path);
2123 path->mnt = mnt;
2124 dentry = path->dentry = dget(mnt->mnt_root);
2125 goto retry;
2126 }
2127
2128 static void unlock_mount(struct mountpoint *where)
2129 {
2130 struct dentry *dentry = where->m_dentry;
2131
2132 read_seqlock_excl(&mount_lock);
2133 put_mountpoint(where);
2134 read_sequnlock_excl(&mount_lock);
2135
2136 namespace_unlock();
2137 inode_unlock(dentry->d_inode);
2138 }
2139
2140 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2141 {
2142 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2143 return -EINVAL;
2144
2145 if (d_is_dir(mp->m_dentry) !=
2146 d_is_dir(mnt->mnt.mnt_root))
2147 return -ENOTDIR;
2148
2149 return attach_recursive_mnt(mnt, p, mp, NULL);
2150 }
2151
2152 /*
2153 * Sanity check the flags to change_mnt_propagation.
2154 */
2155
2156 static int flags_to_propagation_type(int ms_flags)
2157 {
2158 int type = ms_flags & ~(MS_REC | MS_SILENT);
2159
2160 /* Fail if any non-propagation flags are set */
2161 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2162 return 0;
2163 /* Only one propagation flag should be set */
2164 if (!is_power_of_2(type))
2165 return 0;
2166 return type;
2167 }
2168
2169 /*
2170 * recursively change the type of the mountpoint.
2171 */
2172 static int do_change_type(struct path *path, int ms_flags)
2173 {
2174 struct mount *m;
2175 struct mount *mnt = real_mount(path->mnt);
2176 int recurse = ms_flags & MS_REC;
2177 int type;
2178 int err = 0;
2179
2180 if (path->dentry != path->mnt->mnt_root)
2181 return -EINVAL;
2182
2183 type = flags_to_propagation_type(ms_flags);
2184 if (!type)
2185 return -EINVAL;
2186
2187 namespace_lock();
2188 if (type == MS_SHARED) {
2189 err = invent_group_ids(mnt, recurse);
2190 if (err)
2191 goto out_unlock;
2192 }
2193
2194 lock_mount_hash();
2195 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2196 change_mnt_propagation(m, type);
2197 unlock_mount_hash();
2198
2199 out_unlock:
2200 namespace_unlock();
2201 return err;
2202 }
2203
2204 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2205 {
2206 struct mount *child;
2207 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2208 if (!is_subdir(child->mnt_mountpoint, dentry))
2209 continue;
2210
2211 if (child->mnt.mnt_flags & MNT_LOCKED)
2212 return true;
2213 }
2214 return false;
2215 }
2216
2217 /*
2218 * do loopback mount.
2219 */
2220 static int do_loopback(struct path *path, const char *old_name,
2221 int recurse)
2222 {
2223 struct path old_path;
2224 struct mount *mnt = NULL, *old, *parent;
2225 struct mountpoint *mp;
2226 int err;
2227 if (!old_name || !*old_name)
2228 return -EINVAL;
2229 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2230 if (err)
2231 return err;
2232
2233 err = -EINVAL;
2234 if (mnt_ns_loop(old_path.dentry))
2235 goto out;
2236
2237 mp = lock_mount(path);
2238 err = PTR_ERR(mp);
2239 if (IS_ERR(mp))
2240 goto out;
2241
2242 old = real_mount(old_path.mnt);
2243 parent = real_mount(path->mnt);
2244
2245 err = -EINVAL;
2246 if (IS_MNT_UNBINDABLE(old))
2247 goto out2;
2248
2249 if (!check_mnt(parent))
2250 goto out2;
2251
2252 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2253 goto out2;
2254
2255 if (!recurse && has_locked_children(old, old_path.dentry))
2256 goto out2;
2257
2258 if (recurse)
2259 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2260 else
2261 mnt = clone_mnt(old, old_path.dentry, 0);
2262
2263 if (IS_ERR(mnt)) {
2264 err = PTR_ERR(mnt);
2265 goto out2;
2266 }
2267
2268 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2269
2270 err = graft_tree(mnt, parent, mp);
2271 if (err) {
2272 lock_mount_hash();
2273 umount_tree(mnt, UMOUNT_SYNC);
2274 unlock_mount_hash();
2275 }
2276 out2:
2277 unlock_mount(mp);
2278 out:
2279 path_put(&old_path);
2280 return err;
2281 }
2282
2283 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2284 {
2285 int error = 0;
2286 int readonly_request = 0;
2287
2288 if (ms_flags & MS_RDONLY)
2289 readonly_request = 1;
2290 if (readonly_request == __mnt_is_readonly(mnt))
2291 return 0;
2292
2293 if (readonly_request)
2294 error = mnt_make_readonly(real_mount(mnt));
2295 else
2296 __mnt_unmake_readonly(real_mount(mnt));
2297 return error;
2298 }
2299
2300 /*
2301 * change filesystem flags. dir should be a physical root of filesystem.
2302 * If you've mounted a non-root directory somewhere and want to do remount
2303 * on it - tough luck.
2304 */
2305 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2306 int mnt_flags, void *data)
2307 {
2308 int err;
2309 struct super_block *sb = path->mnt->mnt_sb;
2310 struct mount *mnt = real_mount(path->mnt);
2311
2312 if (!check_mnt(mnt))
2313 return -EINVAL;
2314
2315 if (path->dentry != path->mnt->mnt_root)
2316 return -EINVAL;
2317
2318 /* Don't allow changing of locked mnt flags.
2319 *
2320 * No locks need to be held here while testing the various
2321 * MNT_LOCK flags because those flags can never be cleared
2322 * once they are set.
2323 */
2324 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2325 !(mnt_flags & MNT_READONLY)) {
2326 return -EPERM;
2327 }
2328 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2329 !(mnt_flags & MNT_NODEV)) {
2330 return -EPERM;
2331 }
2332 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2333 !(mnt_flags & MNT_NOSUID)) {
2334 return -EPERM;
2335 }
2336 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2337 !(mnt_flags & MNT_NOEXEC)) {
2338 return -EPERM;
2339 }
2340 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2341 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2342 return -EPERM;
2343 }
2344
2345 err = security_sb_remount(sb, data);
2346 if (err)
2347 return err;
2348
2349 down_write(&sb->s_umount);
2350 if (ms_flags & MS_BIND)
2351 err = change_mount_flags(path->mnt, ms_flags);
2352 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2353 err = -EPERM;
2354 else
2355 err = do_remount_sb(sb, sb_flags, data, 0);
2356 if (!err) {
2357 lock_mount_hash();
2358 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2359 mnt->mnt.mnt_flags = mnt_flags;
2360 touch_mnt_namespace(mnt->mnt_ns);
2361 unlock_mount_hash();
2362 }
2363 up_write(&sb->s_umount);
2364 return err;
2365 }
2366
2367 static inline int tree_contains_unbindable(struct mount *mnt)
2368 {
2369 struct mount *p;
2370 for (p = mnt; p; p = next_mnt(p, mnt)) {
2371 if (IS_MNT_UNBINDABLE(p))
2372 return 1;
2373 }
2374 return 0;
2375 }
2376
2377 static int do_move_mount(struct path *path, const char *old_name)
2378 {
2379 struct path old_path, parent_path;
2380 struct mount *p;
2381 struct mount *old;
2382 struct mountpoint *mp;
2383 int err;
2384 if (!old_name || !*old_name)
2385 return -EINVAL;
2386 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2387 if (err)
2388 return err;
2389
2390 mp = lock_mount(path);
2391 err = PTR_ERR(mp);
2392 if (IS_ERR(mp))
2393 goto out;
2394
2395 old = real_mount(old_path.mnt);
2396 p = real_mount(path->mnt);
2397
2398 err = -EINVAL;
2399 if (!check_mnt(p) || !check_mnt(old))
2400 goto out1;
2401
2402 if (old->mnt.mnt_flags & MNT_LOCKED)
2403 goto out1;
2404
2405 err = -EINVAL;
2406 if (old_path.dentry != old_path.mnt->mnt_root)
2407 goto out1;
2408
2409 if (!mnt_has_parent(old))
2410 goto out1;
2411
2412 if (d_is_dir(path->dentry) !=
2413 d_is_dir(old_path.dentry))
2414 goto out1;
2415 /*
2416 * Don't move a mount residing in a shared parent.
2417 */
2418 if (IS_MNT_SHARED(old->mnt_parent))
2419 goto out1;
2420 /*
2421 * Don't move a mount tree containing unbindable mounts to a destination
2422 * mount which is shared.
2423 */
2424 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2425 goto out1;
2426 err = -ELOOP;
2427 for (; mnt_has_parent(p); p = p->mnt_parent)
2428 if (p == old)
2429 goto out1;
2430
2431 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2432 if (err)
2433 goto out1;
2434
2435 /* if the mount is moved, it should no longer be expire
2436 * automatically */
2437 list_del_init(&old->mnt_expire);
2438 out1:
2439 unlock_mount(mp);
2440 out:
2441 if (!err)
2442 path_put(&parent_path);
2443 path_put(&old_path);
2444 return err;
2445 }
2446
2447 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2448 {
2449 int err;
2450 const char *subtype = strchr(fstype, '.');
2451 if (subtype) {
2452 subtype++;
2453 err = -EINVAL;
2454 if (!subtype[0])
2455 goto err;
2456 } else
2457 subtype = "";
2458
2459 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2460 err = -ENOMEM;
2461 if (!mnt->mnt_sb->s_subtype)
2462 goto err;
2463 return mnt;
2464
2465 err:
2466 mntput(mnt);
2467 return ERR_PTR(err);
2468 }
2469
2470 /*
2471 * add a mount into a namespace's mount tree
2472 */
2473 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2474 {
2475 struct mountpoint *mp;
2476 struct mount *parent;
2477 int err;
2478
2479 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2480
2481 mp = lock_mount(path);
2482 if (IS_ERR(mp))
2483 return PTR_ERR(mp);
2484
2485 parent = real_mount(path->mnt);
2486 err = -EINVAL;
2487 if (unlikely(!check_mnt(parent))) {
2488 /* that's acceptable only for automounts done in private ns */
2489 if (!(mnt_flags & MNT_SHRINKABLE))
2490 goto unlock;
2491 /* ... and for those we'd better have mountpoint still alive */
2492 if (!parent->mnt_ns)
2493 goto unlock;
2494 }
2495
2496 /* Refuse the same filesystem on the same mount point */
2497 err = -EBUSY;
2498 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2499 path->mnt->mnt_root == path->dentry)
2500 goto unlock;
2501
2502 err = -EINVAL;
2503 if (d_is_symlink(newmnt->mnt.mnt_root))
2504 goto unlock;
2505
2506 newmnt->mnt.mnt_flags = mnt_flags;
2507 err = graft_tree(newmnt, parent, mp);
2508
2509 unlock:
2510 unlock_mount(mp);
2511 return err;
2512 }
2513
2514 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2515
2516 /*
2517 * create a new mount for userspace and request it to be added into the
2518 * namespace's tree
2519 */
2520 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2521 int mnt_flags, const char *name, void *data)
2522 {
2523 struct file_system_type *type;
2524 struct vfsmount *mnt;
2525 int err;
2526
2527 if (!fstype)
2528 return -EINVAL;
2529
2530 type = get_fs_type(fstype);
2531 if (!type)
2532 return -ENODEV;
2533
2534 mnt = vfs_kern_mount(type, sb_flags, name, data);
2535 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2536 !mnt->mnt_sb->s_subtype)
2537 mnt = fs_set_subtype(mnt, fstype);
2538
2539 put_filesystem(type);
2540 if (IS_ERR(mnt))
2541 return PTR_ERR(mnt);
2542
2543 if (mount_too_revealing(mnt, &mnt_flags)) {
2544 mntput(mnt);
2545 return -EPERM;
2546 }
2547
2548 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2549 if (err)
2550 mntput(mnt);
2551 return err;
2552 }
2553
2554 int finish_automount(struct vfsmount *m, struct path *path)
2555 {
2556 struct mount *mnt = real_mount(m);
2557 int err;
2558 /* The new mount record should have at least 2 refs to prevent it being
2559 * expired before we get a chance to add it
2560 */
2561 BUG_ON(mnt_get_count(mnt) < 2);
2562
2563 if (m->mnt_sb == path->mnt->mnt_sb &&
2564 m->mnt_root == path->dentry) {
2565 err = -ELOOP;
2566 goto fail;
2567 }
2568
2569 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2570 if (!err)
2571 return 0;
2572 fail:
2573 /* remove m from any expiration list it may be on */
2574 if (!list_empty(&mnt->mnt_expire)) {
2575 namespace_lock();
2576 list_del_init(&mnt->mnt_expire);
2577 namespace_unlock();
2578 }
2579 mntput(m);
2580 mntput(m);
2581 return err;
2582 }
2583
2584 /**
2585 * mnt_set_expiry - Put a mount on an expiration list
2586 * @mnt: The mount to list.
2587 * @expiry_list: The list to add the mount to.
2588 */
2589 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2590 {
2591 namespace_lock();
2592
2593 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2594
2595 namespace_unlock();
2596 }
2597 EXPORT_SYMBOL(mnt_set_expiry);
2598
2599 /*
2600 * process a list of expirable mountpoints with the intent of discarding any
2601 * mountpoints that aren't in use and haven't been touched since last we came
2602 * here
2603 */
2604 void mark_mounts_for_expiry(struct list_head *mounts)
2605 {
2606 struct mount *mnt, *next;
2607 LIST_HEAD(graveyard);
2608
2609 if (list_empty(mounts))
2610 return;
2611
2612 namespace_lock();
2613 lock_mount_hash();
2614
2615 /* extract from the expiration list every vfsmount that matches the
2616 * following criteria:
2617 * - only referenced by its parent vfsmount
2618 * - still marked for expiry (marked on the last call here; marks are
2619 * cleared by mntput())
2620 */
2621 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2622 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2623 propagate_mount_busy(mnt, 1))
2624 continue;
2625 list_move(&mnt->mnt_expire, &graveyard);
2626 }
2627 while (!list_empty(&graveyard)) {
2628 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2629 touch_mnt_namespace(mnt->mnt_ns);
2630 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2631 }
2632 unlock_mount_hash();
2633 namespace_unlock();
2634 }
2635
2636 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2637
2638 /*
2639 * Ripoff of 'select_parent()'
2640 *
2641 * search the list of submounts for a given mountpoint, and move any
2642 * shrinkable submounts to the 'graveyard' list.
2643 */
2644 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2645 {
2646 struct mount *this_parent = parent;
2647 struct list_head *next;
2648 int found = 0;
2649
2650 repeat:
2651 next = this_parent->mnt_mounts.next;
2652 resume:
2653 while (next != &this_parent->mnt_mounts) {
2654 struct list_head *tmp = next;
2655 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2656
2657 next = tmp->next;
2658 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2659 continue;
2660 /*
2661 * Descend a level if the d_mounts list is non-empty.
2662 */
2663 if (!list_empty(&mnt->mnt_mounts)) {
2664 this_parent = mnt;
2665 goto repeat;
2666 }
2667
2668 if (!propagate_mount_busy(mnt, 1)) {
2669 list_move_tail(&mnt->mnt_expire, graveyard);
2670 found++;
2671 }
2672 }
2673 /*
2674 * All done at this level ... ascend and resume the search
2675 */
2676 if (this_parent != parent) {
2677 next = this_parent->mnt_child.next;
2678 this_parent = this_parent->mnt_parent;
2679 goto resume;
2680 }
2681 return found;
2682 }
2683
2684 /*
2685 * process a list of expirable mountpoints with the intent of discarding any
2686 * submounts of a specific parent mountpoint
2687 *
2688 * mount_lock must be held for write
2689 */
2690 static void shrink_submounts(struct mount *mnt)
2691 {
2692 LIST_HEAD(graveyard);
2693 struct mount *m;
2694
2695 /* extract submounts of 'mountpoint' from the expiration list */
2696 while (select_submounts(mnt, &graveyard)) {
2697 while (!list_empty(&graveyard)) {
2698 m = list_first_entry(&graveyard, struct mount,
2699 mnt_expire);
2700 touch_mnt_namespace(m->mnt_ns);
2701 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2702 }
2703 }
2704 }
2705
2706 /*
2707 * Some copy_from_user() implementations do not return the exact number of
2708 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2709 * Note that this function differs from copy_from_user() in that it will oops
2710 * on bad values of `to', rather than returning a short copy.
2711 */
2712 static long exact_copy_from_user(void *to, const void __user * from,
2713 unsigned long n)
2714 {
2715 char *t = to;
2716 const char __user *f = from;
2717 char c;
2718
2719 if (!access_ok(VERIFY_READ, from, n))
2720 return n;
2721
2722 while (n) {
2723 if (__get_user(c, f)) {
2724 memset(t, 0, n);
2725 break;
2726 }
2727 *t++ = c;
2728 f++;
2729 n--;
2730 }
2731 return n;
2732 }
2733
2734 void *copy_mount_options(const void __user * data)
2735 {
2736 int i;
2737 unsigned long size;
2738 char *copy;
2739
2740 if (!data)
2741 return NULL;
2742
2743 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2744 if (!copy)
2745 return ERR_PTR(-ENOMEM);
2746
2747 /* We only care that *some* data at the address the user
2748 * gave us is valid. Just in case, we'll zero
2749 * the remainder of the page.
2750 */
2751 /* copy_from_user cannot cross TASK_SIZE ! */
2752 size = TASK_SIZE - (unsigned long)data;
2753 if (size > PAGE_SIZE)
2754 size = PAGE_SIZE;
2755
2756 i = size - exact_copy_from_user(copy, data, size);
2757 if (!i) {
2758 kfree(copy);
2759 return ERR_PTR(-EFAULT);
2760 }
2761 if (i != PAGE_SIZE)
2762 memset(copy + i, 0, PAGE_SIZE - i);
2763 return copy;
2764 }
2765
2766 char *copy_mount_string(const void __user *data)
2767 {
2768 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2769 }
2770
2771 /*
2772 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2773 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2774 *
2775 * data is a (void *) that can point to any structure up to
2776 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2777 * information (or be NULL).
2778 *
2779 * Pre-0.97 versions of mount() didn't have a flags word.
2780 * When the flags word was introduced its top half was required
2781 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2782 * Therefore, if this magic number is present, it carries no information
2783 * and must be discarded.
2784 */
2785 long do_mount(const char *dev_name, const char __user *dir_name,
2786 const char *type_page, unsigned long flags, void *data_page)
2787 {
2788 struct path path;
2789 unsigned int mnt_flags = 0, sb_flags;
2790 int retval = 0;
2791
2792 /* Discard magic */
2793 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2794 flags &= ~MS_MGC_MSK;
2795
2796 /* Basic sanity checks */
2797 if (data_page)
2798 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2799
2800 if (flags & MS_NOUSER)
2801 return -EINVAL;
2802
2803 /* ... and get the mountpoint */
2804 retval = user_path(dir_name, &path);
2805 if (retval)
2806 return retval;
2807
2808 retval = security_sb_mount(dev_name, &path,
2809 type_page, flags, data_page);
2810 if (!retval && !may_mount())
2811 retval = -EPERM;
2812 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2813 retval = -EPERM;
2814 if (retval)
2815 goto dput_out;
2816
2817 /* Default to relatime unless overriden */
2818 if (!(flags & MS_NOATIME))
2819 mnt_flags |= MNT_RELATIME;
2820
2821 /* Separate the per-mountpoint flags */
2822 if (flags & MS_NOSUID)
2823 mnt_flags |= MNT_NOSUID;
2824 if (flags & MS_NODEV)
2825 mnt_flags |= MNT_NODEV;
2826 if (flags & MS_NOEXEC)
2827 mnt_flags |= MNT_NOEXEC;
2828 if (flags & MS_NOATIME)
2829 mnt_flags |= MNT_NOATIME;
2830 if (flags & MS_NODIRATIME)
2831 mnt_flags |= MNT_NODIRATIME;
2832 if (flags & MS_STRICTATIME)
2833 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2834 if (flags & MS_RDONLY)
2835 mnt_flags |= MNT_READONLY;
2836
2837 /* The default atime for remount is preservation */
2838 if ((flags & MS_REMOUNT) &&
2839 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2840 MS_STRICTATIME)) == 0)) {
2841 mnt_flags &= ~MNT_ATIME_MASK;
2842 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2843 }
2844
2845 sb_flags = flags & (SB_RDONLY |
2846 SB_SYNCHRONOUS |
2847 SB_MANDLOCK |
2848 SB_DIRSYNC |
2849 SB_SILENT |
2850 SB_POSIXACL |
2851 SB_LAZYTIME |
2852 SB_I_VERSION);
2853
2854 if (flags & MS_REMOUNT)
2855 retval = do_remount(&path, flags, sb_flags, mnt_flags,
2856 data_page);
2857 else if (flags & MS_BIND)
2858 retval = do_loopback(&path, dev_name, flags & MS_REC);
2859 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2860 retval = do_change_type(&path, flags);
2861 else if (flags & MS_MOVE)
2862 retval = do_move_mount(&path, dev_name);
2863 else
2864 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2865 dev_name, data_page);
2866 dput_out:
2867 path_put(&path);
2868 return retval;
2869 }
2870
2871 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2872 {
2873 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2874 }
2875
2876 static void dec_mnt_namespaces(struct ucounts *ucounts)
2877 {
2878 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2879 }
2880
2881 static void free_mnt_ns(struct mnt_namespace *ns)
2882 {
2883 ns_free_inum(&ns->ns);
2884 dec_mnt_namespaces(ns->ucounts);
2885 put_user_ns(ns->user_ns);
2886 kfree(ns);
2887 }
2888
2889 /*
2890 * Assign a sequence number so we can detect when we attempt to bind
2891 * mount a reference to an older mount namespace into the current
2892 * mount namespace, preventing reference counting loops. A 64bit
2893 * number incrementing at 10Ghz will take 12,427 years to wrap which
2894 * is effectively never, so we can ignore the possibility.
2895 */
2896 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2897
2898 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2899 {
2900 struct mnt_namespace *new_ns;
2901 struct ucounts *ucounts;
2902 int ret;
2903
2904 ucounts = inc_mnt_namespaces(user_ns);
2905 if (!ucounts)
2906 return ERR_PTR(-ENOSPC);
2907
2908 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2909 if (!new_ns) {
2910 dec_mnt_namespaces(ucounts);
2911 return ERR_PTR(-ENOMEM);
2912 }
2913 ret = ns_alloc_inum(&new_ns->ns);
2914 if (ret) {
2915 kfree(new_ns);
2916 dec_mnt_namespaces(ucounts);
2917 return ERR_PTR(ret);
2918 }
2919 new_ns->ns.ops = &mntns_operations;
2920 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2921 atomic_set(&new_ns->count, 1);
2922 new_ns->root = NULL;
2923 INIT_LIST_HEAD(&new_ns->list);
2924 init_waitqueue_head(&new_ns->poll);
2925 new_ns->event = 0;
2926 new_ns->user_ns = get_user_ns(user_ns);
2927 new_ns->ucounts = ucounts;
2928 new_ns->mounts = 0;
2929 new_ns->pending_mounts = 0;
2930 return new_ns;
2931 }
2932
2933 __latent_entropy
2934 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2935 struct user_namespace *user_ns, struct fs_struct *new_fs)
2936 {
2937 struct mnt_namespace *new_ns;
2938 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2939 struct mount *p, *q;
2940 struct mount *old;
2941 struct mount *new;
2942 int copy_flags;
2943
2944 BUG_ON(!ns);
2945
2946 if (likely(!(flags & CLONE_NEWNS))) {
2947 get_mnt_ns(ns);
2948 return ns;
2949 }
2950
2951 old = ns->root;
2952
2953 new_ns = alloc_mnt_ns(user_ns);
2954 if (IS_ERR(new_ns))
2955 return new_ns;
2956
2957 namespace_lock();
2958 /* First pass: copy the tree topology */
2959 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2960 if (user_ns != ns->user_ns)
2961 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2962 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2963 if (IS_ERR(new)) {
2964 namespace_unlock();
2965 free_mnt_ns(new_ns);
2966 return ERR_CAST(new);
2967 }
2968 new_ns->root = new;
2969 list_add_tail(&new_ns->list, &new->mnt_list);
2970
2971 /*
2972 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2973 * as belonging to new namespace. We have already acquired a private
2974 * fs_struct, so tsk->fs->lock is not needed.
2975 */
2976 p = old;
2977 q = new;
2978 while (p) {
2979 q->mnt_ns = new_ns;
2980 new_ns->mounts++;
2981 if (new_fs) {
2982 if (&p->mnt == new_fs->root.mnt) {
2983 new_fs->root.mnt = mntget(&q->mnt);
2984 rootmnt = &p->mnt;
2985 }
2986 if (&p->mnt == new_fs->pwd.mnt) {
2987 new_fs->pwd.mnt = mntget(&q->mnt);
2988 pwdmnt = &p->mnt;
2989 }
2990 }
2991 p = next_mnt(p, old);
2992 q = next_mnt(q, new);
2993 if (!q)
2994 break;
2995 while (p->mnt.mnt_root != q->mnt.mnt_root)
2996 p = next_mnt(p, old);
2997 }
2998 namespace_unlock();
2999
3000 if (rootmnt)
3001 mntput(rootmnt);
3002 if (pwdmnt)
3003 mntput(pwdmnt);
3004
3005 return new_ns;
3006 }
3007
3008 /**
3009 * create_mnt_ns - creates a private namespace and adds a root filesystem
3010 * @mnt: pointer to the new root filesystem mountpoint
3011 */
3012 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
3013 {
3014 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
3015 if (!IS_ERR(new_ns)) {
3016 struct mount *mnt = real_mount(m);
3017 mnt->mnt_ns = new_ns;
3018 new_ns->root = mnt;
3019 new_ns->mounts++;
3020 list_add(&mnt->mnt_list, &new_ns->list);
3021 } else {
3022 mntput(m);
3023 }
3024 return new_ns;
3025 }
3026
3027 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3028 {
3029 struct mnt_namespace *ns;
3030 struct super_block *s;
3031 struct path path;
3032 int err;
3033
3034 ns = create_mnt_ns(mnt);
3035 if (IS_ERR(ns))
3036 return ERR_CAST(ns);
3037
3038 err = vfs_path_lookup(mnt->mnt_root, mnt,
3039 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3040
3041 put_mnt_ns(ns);
3042
3043 if (err)
3044 return ERR_PTR(err);
3045
3046 /* trade a vfsmount reference for active sb one */
3047 s = path.mnt->mnt_sb;
3048 atomic_inc(&s->s_active);
3049 mntput(path.mnt);
3050 /* lock the sucker */
3051 down_write(&s->s_umount);
3052 /* ... and return the root of (sub)tree on it */
3053 return path.dentry;
3054 }
3055 EXPORT_SYMBOL(mount_subtree);
3056
3057 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3058 char __user *, type, unsigned long, flags, void __user *, data)
3059 {
3060 int ret;
3061 char *kernel_type;
3062 char *kernel_dev;
3063 void *options;
3064
3065 kernel_type = copy_mount_string(type);
3066 ret = PTR_ERR(kernel_type);
3067 if (IS_ERR(kernel_type))
3068 goto out_type;
3069
3070 kernel_dev = copy_mount_string(dev_name);
3071 ret = PTR_ERR(kernel_dev);
3072 if (IS_ERR(kernel_dev))
3073 goto out_dev;
3074
3075 options = copy_mount_options(data);
3076 ret = PTR_ERR(options);
3077 if (IS_ERR(options))
3078 goto out_data;
3079
3080 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3081
3082 kfree(options);
3083 out_data:
3084 kfree(kernel_dev);
3085 out_dev:
3086 kfree(kernel_type);
3087 out_type:
3088 return ret;
3089 }
3090
3091 /*
3092 * Return true if path is reachable from root
3093 *
3094 * namespace_sem or mount_lock is held
3095 */
3096 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3097 const struct path *root)
3098 {
3099 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3100 dentry = mnt->mnt_mountpoint;
3101 mnt = mnt->mnt_parent;
3102 }
3103 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3104 }
3105
3106 bool path_is_under(const struct path *path1, const struct path *path2)
3107 {
3108 bool res;
3109 read_seqlock_excl(&mount_lock);
3110 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3111 read_sequnlock_excl(&mount_lock);
3112 return res;
3113 }
3114 EXPORT_SYMBOL(path_is_under);
3115
3116 /*
3117 * pivot_root Semantics:
3118 * Moves the root file system of the current process to the directory put_old,
3119 * makes new_root as the new root file system of the current process, and sets
3120 * root/cwd of all processes which had them on the current root to new_root.
3121 *
3122 * Restrictions:
3123 * The new_root and put_old must be directories, and must not be on the
3124 * same file system as the current process root. The put_old must be
3125 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3126 * pointed to by put_old must yield the same directory as new_root. No other
3127 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3128 *
3129 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3130 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3131 * in this situation.
3132 *
3133 * Notes:
3134 * - we don't move root/cwd if they are not at the root (reason: if something
3135 * cared enough to change them, it's probably wrong to force them elsewhere)
3136 * - it's okay to pick a root that isn't the root of a file system, e.g.
3137 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3138 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3139 * first.
3140 */
3141 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3142 const char __user *, put_old)
3143 {
3144 struct path new, old, parent_path, root_parent, root;
3145 struct mount *new_mnt, *root_mnt, *old_mnt;
3146 struct mountpoint *old_mp, *root_mp;
3147 int error;
3148
3149 if (!may_mount())
3150 return -EPERM;
3151
3152 error = user_path_dir(new_root, &new);
3153 if (error)
3154 goto out0;
3155
3156 error = user_path_dir(put_old, &old);
3157 if (error)
3158 goto out1;
3159
3160 error = security_sb_pivotroot(&old, &new);
3161 if (error)
3162 goto out2;
3163
3164 get_fs_root(current->fs, &root);
3165 old_mp = lock_mount(&old);
3166 error = PTR_ERR(old_mp);
3167 if (IS_ERR(old_mp))
3168 goto out3;
3169
3170 error = -EINVAL;
3171 new_mnt = real_mount(new.mnt);
3172 root_mnt = real_mount(root.mnt);
3173 old_mnt = real_mount(old.mnt);
3174 if (IS_MNT_SHARED(old_mnt) ||
3175 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3176 IS_MNT_SHARED(root_mnt->mnt_parent))
3177 goto out4;
3178 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3179 goto out4;
3180 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3181 goto out4;
3182 error = -ENOENT;
3183 if (d_unlinked(new.dentry))
3184 goto out4;
3185 error = -EBUSY;
3186 if (new_mnt == root_mnt || old_mnt == root_mnt)
3187 goto out4; /* loop, on the same file system */
3188 error = -EINVAL;
3189 if (root.mnt->mnt_root != root.dentry)
3190 goto out4; /* not a mountpoint */
3191 if (!mnt_has_parent(root_mnt))
3192 goto out4; /* not attached */
3193 root_mp = root_mnt->mnt_mp;
3194 if (new.mnt->mnt_root != new.dentry)
3195 goto out4; /* not a mountpoint */
3196 if (!mnt_has_parent(new_mnt))
3197 goto out4; /* not attached */
3198 /* make sure we can reach put_old from new_root */
3199 if (!is_path_reachable(old_mnt, old.dentry, &new))
3200 goto out4;
3201 /* make certain new is below the root */
3202 if (!is_path_reachable(new_mnt, new.dentry, &root))
3203 goto out4;
3204 root_mp->m_count++; /* pin it so it won't go away */
3205 lock_mount_hash();
3206 detach_mnt(new_mnt, &parent_path);
3207 detach_mnt(root_mnt, &root_parent);
3208 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3209 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3210 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3211 }
3212 /* mount old root on put_old */
3213 attach_mnt(root_mnt, old_mnt, old_mp);
3214 /* mount new_root on / */
3215 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3216 touch_mnt_namespace(current->nsproxy->mnt_ns);
3217 /* A moved mount should not expire automatically */
3218 list_del_init(&new_mnt->mnt_expire);
3219 put_mountpoint(root_mp);
3220 unlock_mount_hash();
3221 chroot_fs_refs(&root, &new);
3222 error = 0;
3223 out4:
3224 unlock_mount(old_mp);
3225 if (!error) {
3226 path_put(&root_parent);
3227 path_put(&parent_path);
3228 }
3229 out3:
3230 path_put(&root);
3231 out2:
3232 path_put(&old);
3233 out1:
3234 path_put(&new);
3235 out0:
3236 return error;
3237 }
3238
3239 static void __init init_mount_tree(void)
3240 {
3241 struct vfsmount *mnt;
3242 struct mnt_namespace *ns;
3243 struct path root;
3244 struct file_system_type *type;
3245
3246 type = get_fs_type("rootfs");
3247 if (!type)
3248 panic("Can't find rootfs type");
3249 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3250 put_filesystem(type);
3251 if (IS_ERR(mnt))
3252 panic("Can't create rootfs");
3253
3254 ns = create_mnt_ns(mnt);
3255 if (IS_ERR(ns))
3256 panic("Can't allocate initial namespace");
3257
3258 init_task.nsproxy->mnt_ns = ns;
3259 get_mnt_ns(ns);
3260
3261 root.mnt = mnt;
3262 root.dentry = mnt->mnt_root;
3263 mnt->mnt_flags |= MNT_LOCKED;
3264
3265 set_fs_pwd(current->fs, &root);
3266 set_fs_root(current->fs, &root);
3267 }
3268
3269 void __init mnt_init(void)
3270 {
3271 int err;
3272
3273 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3274 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3275
3276 mount_hashtable = alloc_large_system_hash("Mount-cache",
3277 sizeof(struct hlist_head),
3278 mhash_entries, 19,
3279 HASH_ZERO,
3280 &m_hash_shift, &m_hash_mask, 0, 0);
3281 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3282 sizeof(struct hlist_head),
3283 mphash_entries, 19,
3284 HASH_ZERO,
3285 &mp_hash_shift, &mp_hash_mask, 0, 0);
3286
3287 if (!mount_hashtable || !mountpoint_hashtable)
3288 panic("Failed to allocate mount hash table\n");
3289
3290 kernfs_init();
3291
3292 err = sysfs_init();
3293 if (err)
3294 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3295 __func__, err);
3296 fs_kobj = kobject_create_and_add("fs", NULL);
3297 if (!fs_kobj)
3298 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3299 init_rootfs();
3300 init_mount_tree();
3301 }
3302
3303 void put_mnt_ns(struct mnt_namespace *ns)
3304 {
3305 if (!atomic_dec_and_test(&ns->count))
3306 return;
3307 drop_collected_mounts(&ns->root->mnt);
3308 free_mnt_ns(ns);
3309 }
3310
3311 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3312 {
3313 struct vfsmount *mnt;
3314 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3315 if (!IS_ERR(mnt)) {
3316 /*
3317 * it is a longterm mount, don't release mnt until
3318 * we unmount before file sys is unregistered
3319 */
3320 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3321 }
3322 return mnt;
3323 }
3324 EXPORT_SYMBOL_GPL(kern_mount_data);
3325
3326 void kern_unmount(struct vfsmount *mnt)
3327 {
3328 /* release long term mount so mount point can be released */
3329 if (!IS_ERR_OR_NULL(mnt)) {
3330 real_mount(mnt)->mnt_ns = NULL;
3331 synchronize_rcu(); /* yecchhh... */
3332 mntput(mnt);
3333 }
3334 }
3335 EXPORT_SYMBOL(kern_unmount);
3336
3337 bool our_mnt(struct vfsmount *mnt)
3338 {
3339 return check_mnt(real_mount(mnt));
3340 }
3341
3342 bool current_chrooted(void)
3343 {
3344 /* Does the current process have a non-standard root */
3345 struct path ns_root;
3346 struct path fs_root;
3347 bool chrooted;
3348
3349 /* Find the namespace root */
3350 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3351 ns_root.dentry = ns_root.mnt->mnt_root;
3352 path_get(&ns_root);
3353 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3354 ;
3355
3356 get_fs_root(current->fs, &fs_root);
3357
3358 chrooted = !path_equal(&fs_root, &ns_root);
3359
3360 path_put(&fs_root);
3361 path_put(&ns_root);
3362
3363 return chrooted;
3364 }
3365
3366 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3367 int *new_mnt_flags)
3368 {
3369 int new_flags = *new_mnt_flags;
3370 struct mount *mnt;
3371 bool visible = false;
3372
3373 down_read(&namespace_sem);
3374 list_for_each_entry(mnt, &ns->list, mnt_list) {
3375 struct mount *child;
3376 int mnt_flags;
3377
3378 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3379 continue;
3380
3381 /* This mount is not fully visible if it's root directory
3382 * is not the root directory of the filesystem.
3383 */
3384 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3385 continue;
3386
3387 /* A local view of the mount flags */
3388 mnt_flags = mnt->mnt.mnt_flags;
3389
3390 /* Don't miss readonly hidden in the superblock flags */
3391 if (sb_rdonly(mnt->mnt.mnt_sb))
3392 mnt_flags |= MNT_LOCK_READONLY;
3393
3394 /* Verify the mount flags are equal to or more permissive
3395 * than the proposed new mount.
3396 */
3397 if ((mnt_flags & MNT_LOCK_READONLY) &&
3398 !(new_flags & MNT_READONLY))
3399 continue;
3400 if ((mnt_flags & MNT_LOCK_ATIME) &&
3401 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3402 continue;
3403
3404 /* This mount is not fully visible if there are any
3405 * locked child mounts that cover anything except for
3406 * empty directories.
3407 */
3408 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3409 struct inode *inode = child->mnt_mountpoint->d_inode;
3410 /* Only worry about locked mounts */
3411 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3412 continue;
3413 /* Is the directory permanetly empty? */
3414 if (!is_empty_dir_inode(inode))
3415 goto next;
3416 }
3417 /* Preserve the locked attributes */
3418 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3419 MNT_LOCK_ATIME);
3420 visible = true;
3421 goto found;
3422 next: ;
3423 }
3424 found:
3425 up_read(&namespace_sem);
3426 return visible;
3427 }
3428
3429 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3430 {
3431 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3432 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3433 unsigned long s_iflags;
3434
3435 if (ns->user_ns == &init_user_ns)
3436 return false;
3437
3438 /* Can this filesystem be too revealing? */
3439 s_iflags = mnt->mnt_sb->s_iflags;
3440 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3441 return false;
3442
3443 if ((s_iflags & required_iflags) != required_iflags) {
3444 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3445 required_iflags);
3446 return true;
3447 }
3448
3449 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3450 }
3451
3452 bool mnt_may_suid(struct vfsmount *mnt)
3453 {
3454 /*
3455 * Foreign mounts (accessed via fchdir or through /proc
3456 * symlinks) are always treated as if they are nosuid. This
3457 * prevents namespaces from trusting potentially unsafe
3458 * suid/sgid bits, file caps, or security labels that originate
3459 * in other namespaces.
3460 */
3461 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3462 current_in_userns(mnt->mnt_sb->s_user_ns);
3463 }
3464
3465 static struct ns_common *mntns_get(struct task_struct *task)
3466 {
3467 struct ns_common *ns = NULL;
3468 struct nsproxy *nsproxy;
3469
3470 task_lock(task);
3471 nsproxy = task->nsproxy;
3472 if (nsproxy) {
3473 ns = &nsproxy->mnt_ns->ns;
3474 get_mnt_ns(to_mnt_ns(ns));
3475 }
3476 task_unlock(task);
3477
3478 return ns;
3479 }
3480
3481 static void mntns_put(struct ns_common *ns)
3482 {
3483 put_mnt_ns(to_mnt_ns(ns));
3484 }
3485
3486 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3487 {
3488 struct fs_struct *fs = current->fs;
3489 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3490 struct path root;
3491 int err;
3492
3493 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3494 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3495 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3496 return -EPERM;
3497
3498 if (fs->users != 1)
3499 return -EINVAL;
3500
3501 get_mnt_ns(mnt_ns);
3502 old_mnt_ns = nsproxy->mnt_ns;
3503 nsproxy->mnt_ns = mnt_ns;
3504
3505 /* Find the root */
3506 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3507 "/", LOOKUP_DOWN, &root);
3508 if (err) {
3509 /* revert to old namespace */
3510 nsproxy->mnt_ns = old_mnt_ns;
3511 put_mnt_ns(mnt_ns);
3512 return err;
3513 }
3514
3515 put_mnt_ns(old_mnt_ns);
3516
3517 /* Update the pwd and root */
3518 set_fs_pwd(fs, &root);
3519 set_fs_root(fs, &root);
3520
3521 path_put(&root);
3522 return 0;
3523 }
3524
3525 static struct user_namespace *mntns_owner(struct ns_common *ns)
3526 {
3527 return to_mnt_ns(ns)->user_ns;
3528 }
3529
3530 const struct proc_ns_operations mntns_operations = {
3531 .name = "mnt",
3532 .type = CLONE_NEWNS,
3533 .get = mntns_get,
3534 .put = mntns_put,
3535 .install = mntns_install,
3536 .owner = mntns_owner,
3537 };