]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/super.c
Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-bionic-kernel.git] / fs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include "internal.h"
39
40
41 static LIST_HEAD(super_blocks);
42 static DEFINE_SPINLOCK(sb_lock);
43
44 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
45 "sb_writers",
46 "sb_pagefaults",
47 "sb_internal",
48 };
49
50 /*
51 * One thing we have to be careful of with a per-sb shrinker is that we don't
52 * drop the last active reference to the superblock from within the shrinker.
53 * If that happens we could trigger unregistering the shrinker from within the
54 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
55 * take a passive reference to the superblock to avoid this from occurring.
56 */
57 static unsigned long super_cache_scan(struct shrinker *shrink,
58 struct shrink_control *sc)
59 {
60 struct super_block *sb;
61 long fs_objects = 0;
62 long total_objects;
63 long freed = 0;
64 long dentries;
65 long inodes;
66
67 sb = container_of(shrink, struct super_block, s_shrink);
68
69 /*
70 * Deadlock avoidance. We may hold various FS locks, and we don't want
71 * to recurse into the FS that called us in clear_inode() and friends..
72 */
73 if (!(sc->gfp_mask & __GFP_FS))
74 return SHRINK_STOP;
75
76 if (!trylock_super(sb))
77 return SHRINK_STOP;
78
79 if (sb->s_op->nr_cached_objects)
80 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
81
82 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
83 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
84 total_objects = dentries + inodes + fs_objects + 1;
85 if (!total_objects)
86 total_objects = 1;
87
88 /* proportion the scan between the caches */
89 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
90 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
91 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
92
93 /*
94 * prune the dcache first as the icache is pinned by it, then
95 * prune the icache, followed by the filesystem specific caches
96 *
97 * Ensure that we always scan at least one object - memcg kmem
98 * accounting uses this to fully empty the caches.
99 */
100 sc->nr_to_scan = dentries + 1;
101 freed = prune_dcache_sb(sb, sc);
102 sc->nr_to_scan = inodes + 1;
103 freed += prune_icache_sb(sb, sc);
104
105 if (fs_objects) {
106 sc->nr_to_scan = fs_objects + 1;
107 freed += sb->s_op->free_cached_objects(sb, sc);
108 }
109
110 up_read(&sb->s_umount);
111 return freed;
112 }
113
114 static unsigned long super_cache_count(struct shrinker *shrink,
115 struct shrink_control *sc)
116 {
117 struct super_block *sb;
118 long total_objects = 0;
119
120 sb = container_of(shrink, struct super_block, s_shrink);
121
122 /*
123 * Don't call trylock_super as it is a potential
124 * scalability bottleneck. The counts could get updated
125 * between super_cache_count and super_cache_scan anyway.
126 * Call to super_cache_count with shrinker_rwsem held
127 * ensures the safety of call to list_lru_shrink_count() and
128 * s_op->nr_cached_objects().
129 */
130 if (sb->s_op && sb->s_op->nr_cached_objects)
131 total_objects = sb->s_op->nr_cached_objects(sb, sc);
132
133 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
134 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
135
136 total_objects = vfs_pressure_ratio(total_objects);
137 return total_objects;
138 }
139
140 static void destroy_super_work(struct work_struct *work)
141 {
142 struct super_block *s = container_of(work, struct super_block,
143 destroy_work);
144 int i;
145
146 for (i = 0; i < SB_FREEZE_LEVELS; i++)
147 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
148 kfree(s);
149 }
150
151 static void destroy_super_rcu(struct rcu_head *head)
152 {
153 struct super_block *s = container_of(head, struct super_block, rcu);
154 INIT_WORK(&s->destroy_work, destroy_super_work);
155 schedule_work(&s->destroy_work);
156 }
157
158 /* Free a superblock that has never been seen by anyone */
159 static void destroy_unused_super(struct super_block *s)
160 {
161 if (!s)
162 return;
163 up_write(&s->s_umount);
164 list_lru_destroy(&s->s_dentry_lru);
165 list_lru_destroy(&s->s_inode_lru);
166 security_sb_free(s);
167 put_user_ns(s->s_user_ns);
168 kfree(s->s_subtype);
169 /* no delays needed */
170 destroy_super_work(&s->destroy_work);
171 }
172
173 /**
174 * alloc_super - create new superblock
175 * @type: filesystem type superblock should belong to
176 * @flags: the mount flags
177 * @user_ns: User namespace for the super_block
178 *
179 * Allocates and initializes a new &struct super_block. alloc_super()
180 * returns a pointer new superblock or %NULL if allocation had failed.
181 */
182 static struct super_block *alloc_super(struct file_system_type *type, int flags,
183 struct user_namespace *user_ns)
184 {
185 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
186 static const struct super_operations default_op;
187 int i;
188
189 if (!s)
190 return NULL;
191
192 INIT_LIST_HEAD(&s->s_mounts);
193 s->s_user_ns = get_user_ns(user_ns);
194
195 if (security_sb_alloc(s))
196 goto fail;
197
198 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
199 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
200 sb_writers_name[i],
201 &type->s_writers_key[i]))
202 goto fail;
203 }
204 init_waitqueue_head(&s->s_writers.wait_unfrozen);
205 s->s_bdi = &noop_backing_dev_info;
206 s->s_flags = flags;
207 if (s->s_user_ns != &init_user_ns)
208 s->s_iflags |= SB_I_NODEV;
209 INIT_HLIST_NODE(&s->s_instances);
210 INIT_HLIST_BL_HEAD(&s->s_anon);
211 mutex_init(&s->s_sync_lock);
212 INIT_LIST_HEAD(&s->s_inodes);
213 spin_lock_init(&s->s_inode_list_lock);
214 INIT_LIST_HEAD(&s->s_inodes_wb);
215 spin_lock_init(&s->s_inode_wblist_lock);
216
217 if (list_lru_init_memcg(&s->s_dentry_lru))
218 goto fail;
219 if (list_lru_init_memcg(&s->s_inode_lru))
220 goto fail;
221
222 init_rwsem(&s->s_umount);
223 lockdep_set_class(&s->s_umount, &type->s_umount_key);
224 /*
225 * sget() can have s_umount recursion.
226 *
227 * When it cannot find a suitable sb, it allocates a new
228 * one (this one), and tries again to find a suitable old
229 * one.
230 *
231 * In case that succeeds, it will acquire the s_umount
232 * lock of the old one. Since these are clearly distrinct
233 * locks, and this object isn't exposed yet, there's no
234 * risk of deadlocks.
235 *
236 * Annotate this by putting this lock in a different
237 * subclass.
238 */
239 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
240 s->s_count = 1;
241 atomic_set(&s->s_active, 1);
242 mutex_init(&s->s_vfs_rename_mutex);
243 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
244 init_rwsem(&s->s_dquot.dqio_sem);
245 s->s_maxbytes = MAX_NON_LFS;
246 s->s_op = &default_op;
247 s->s_time_gran = 1000000000;
248 s->cleancache_poolid = CLEANCACHE_NO_POOL;
249
250 s->s_shrink.seeks = DEFAULT_SEEKS;
251 s->s_shrink.scan_objects = super_cache_scan;
252 s->s_shrink.count_objects = super_cache_count;
253 s->s_shrink.batch = 1024;
254 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
255 return s;
256
257 fail:
258 destroy_unused_super(s);
259 return NULL;
260 }
261
262 /* Superblock refcounting */
263
264 /*
265 * Drop a superblock's refcount. The caller must hold sb_lock.
266 */
267 static void __put_super(struct super_block *s)
268 {
269 if (!--s->s_count) {
270 list_del_init(&s->s_list);
271 WARN_ON(s->s_dentry_lru.node);
272 WARN_ON(s->s_inode_lru.node);
273 WARN_ON(!list_empty(&s->s_mounts));
274 security_sb_free(s);
275 put_user_ns(s->s_user_ns);
276 kfree(s->s_subtype);
277 call_rcu(&s->rcu, destroy_super_rcu);
278 }
279 }
280
281 /**
282 * put_super - drop a temporary reference to superblock
283 * @sb: superblock in question
284 *
285 * Drops a temporary reference, frees superblock if there's no
286 * references left.
287 */
288 static void put_super(struct super_block *sb)
289 {
290 spin_lock(&sb_lock);
291 __put_super(sb);
292 spin_unlock(&sb_lock);
293 }
294
295
296 /**
297 * deactivate_locked_super - drop an active reference to superblock
298 * @s: superblock to deactivate
299 *
300 * Drops an active reference to superblock, converting it into a temporary
301 * one if there is no other active references left. In that case we
302 * tell fs driver to shut it down and drop the temporary reference we
303 * had just acquired.
304 *
305 * Caller holds exclusive lock on superblock; that lock is released.
306 */
307 void deactivate_locked_super(struct super_block *s)
308 {
309 struct file_system_type *fs = s->s_type;
310 if (atomic_dec_and_test(&s->s_active)) {
311 cleancache_invalidate_fs(s);
312 unregister_shrinker(&s->s_shrink);
313 fs->kill_sb(s);
314
315 /*
316 * Since list_lru_destroy() may sleep, we cannot call it from
317 * put_super(), where we hold the sb_lock. Therefore we destroy
318 * the lru lists right now.
319 */
320 list_lru_destroy(&s->s_dentry_lru);
321 list_lru_destroy(&s->s_inode_lru);
322
323 put_filesystem(fs);
324 put_super(s);
325 } else {
326 up_write(&s->s_umount);
327 }
328 }
329
330 EXPORT_SYMBOL(deactivate_locked_super);
331
332 /**
333 * deactivate_super - drop an active reference to superblock
334 * @s: superblock to deactivate
335 *
336 * Variant of deactivate_locked_super(), except that superblock is *not*
337 * locked by caller. If we are going to drop the final active reference,
338 * lock will be acquired prior to that.
339 */
340 void deactivate_super(struct super_block *s)
341 {
342 if (!atomic_add_unless(&s->s_active, -1, 1)) {
343 down_write(&s->s_umount);
344 deactivate_locked_super(s);
345 }
346 }
347
348 EXPORT_SYMBOL(deactivate_super);
349
350 /**
351 * grab_super - acquire an active reference
352 * @s: reference we are trying to make active
353 *
354 * Tries to acquire an active reference. grab_super() is used when we
355 * had just found a superblock in super_blocks or fs_type->fs_supers
356 * and want to turn it into a full-blown active reference. grab_super()
357 * is called with sb_lock held and drops it. Returns 1 in case of
358 * success, 0 if we had failed (superblock contents was already dead or
359 * dying when grab_super() had been called). Note that this is only
360 * called for superblocks not in rundown mode (== ones still on ->fs_supers
361 * of their type), so increment of ->s_count is OK here.
362 */
363 static int grab_super(struct super_block *s) __releases(sb_lock)
364 {
365 s->s_count++;
366 spin_unlock(&sb_lock);
367 down_write(&s->s_umount);
368 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
369 put_super(s);
370 return 1;
371 }
372 up_write(&s->s_umount);
373 put_super(s);
374 return 0;
375 }
376
377 /*
378 * trylock_super - try to grab ->s_umount shared
379 * @sb: reference we are trying to grab
380 *
381 * Try to prevent fs shutdown. This is used in places where we
382 * cannot take an active reference but we need to ensure that the
383 * filesystem is not shut down while we are working on it. It returns
384 * false if we cannot acquire s_umount or if we lose the race and
385 * filesystem already got into shutdown, and returns true with the s_umount
386 * lock held in read mode in case of success. On successful return,
387 * the caller must drop the s_umount lock when done.
388 *
389 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
390 * The reason why it's safe is that we are OK with doing trylock instead
391 * of down_read(). There's a couple of places that are OK with that, but
392 * it's very much not a general-purpose interface.
393 */
394 bool trylock_super(struct super_block *sb)
395 {
396 if (down_read_trylock(&sb->s_umount)) {
397 if (!hlist_unhashed(&sb->s_instances) &&
398 sb->s_root && (sb->s_flags & SB_BORN))
399 return true;
400 up_read(&sb->s_umount);
401 }
402
403 return false;
404 }
405
406 /**
407 * generic_shutdown_super - common helper for ->kill_sb()
408 * @sb: superblock to kill
409 *
410 * generic_shutdown_super() does all fs-independent work on superblock
411 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
412 * that need destruction out of superblock, call generic_shutdown_super()
413 * and release aforementioned objects. Note: dentries and inodes _are_
414 * taken care of and do not need specific handling.
415 *
416 * Upon calling this function, the filesystem may no longer alter or
417 * rearrange the set of dentries belonging to this super_block, nor may it
418 * change the attachments of dentries to inodes.
419 */
420 void generic_shutdown_super(struct super_block *sb)
421 {
422 const struct super_operations *sop = sb->s_op;
423
424 if (sb->s_root) {
425 shrink_dcache_for_umount(sb);
426 sync_filesystem(sb);
427 sb->s_flags &= ~SB_ACTIVE;
428
429 fsnotify_unmount_inodes(sb);
430 cgroup_writeback_umount();
431
432 evict_inodes(sb);
433
434 if (sb->s_dio_done_wq) {
435 destroy_workqueue(sb->s_dio_done_wq);
436 sb->s_dio_done_wq = NULL;
437 }
438
439 if (sop->put_super)
440 sop->put_super(sb);
441
442 if (!list_empty(&sb->s_inodes)) {
443 printk("VFS: Busy inodes after unmount of %s. "
444 "Self-destruct in 5 seconds. Have a nice day...\n",
445 sb->s_id);
446 }
447 }
448 spin_lock(&sb_lock);
449 /* should be initialized for __put_super_and_need_restart() */
450 hlist_del_init(&sb->s_instances);
451 spin_unlock(&sb_lock);
452 up_write(&sb->s_umount);
453 if (sb->s_bdi != &noop_backing_dev_info) {
454 bdi_put(sb->s_bdi);
455 sb->s_bdi = &noop_backing_dev_info;
456 }
457 }
458
459 EXPORT_SYMBOL(generic_shutdown_super);
460
461 /**
462 * sget_userns - find or create a superblock
463 * @type: filesystem type superblock should belong to
464 * @test: comparison callback
465 * @set: setup callback
466 * @flags: mount flags
467 * @user_ns: User namespace for the super_block
468 * @data: argument to each of them
469 */
470 struct super_block *sget_userns(struct file_system_type *type,
471 int (*test)(struct super_block *,void *),
472 int (*set)(struct super_block *,void *),
473 int flags, struct user_namespace *user_ns,
474 void *data)
475 {
476 struct super_block *s = NULL;
477 struct super_block *old;
478 int err;
479
480 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
481 !(type->fs_flags & FS_USERNS_MOUNT) &&
482 !capable(CAP_SYS_ADMIN))
483 return ERR_PTR(-EPERM);
484 retry:
485 spin_lock(&sb_lock);
486 if (test) {
487 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
488 if (!test(old, data))
489 continue;
490 if (user_ns != old->s_user_ns) {
491 spin_unlock(&sb_lock);
492 destroy_unused_super(s);
493 return ERR_PTR(-EBUSY);
494 }
495 if (!grab_super(old))
496 goto retry;
497 destroy_unused_super(s);
498 return old;
499 }
500 }
501 if (!s) {
502 spin_unlock(&sb_lock);
503 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
504 if (!s)
505 return ERR_PTR(-ENOMEM);
506 goto retry;
507 }
508
509 err = set(s, data);
510 if (err) {
511 spin_unlock(&sb_lock);
512 destroy_unused_super(s);
513 return ERR_PTR(err);
514 }
515 s->s_type = type;
516 strlcpy(s->s_id, type->name, sizeof(s->s_id));
517 list_add_tail(&s->s_list, &super_blocks);
518 hlist_add_head(&s->s_instances, &type->fs_supers);
519 spin_unlock(&sb_lock);
520 get_filesystem(type);
521 register_shrinker(&s->s_shrink);
522 return s;
523 }
524
525 EXPORT_SYMBOL(sget_userns);
526
527 /**
528 * sget - find or create a superblock
529 * @type: filesystem type superblock should belong to
530 * @test: comparison callback
531 * @set: setup callback
532 * @flags: mount flags
533 * @data: argument to each of them
534 */
535 struct super_block *sget(struct file_system_type *type,
536 int (*test)(struct super_block *,void *),
537 int (*set)(struct super_block *,void *),
538 int flags,
539 void *data)
540 {
541 struct user_namespace *user_ns = current_user_ns();
542
543 /* We don't yet pass the user namespace of the parent
544 * mount through to here so always use &init_user_ns
545 * until that changes.
546 */
547 if (flags & SB_SUBMOUNT)
548 user_ns = &init_user_ns;
549
550 /* Ensure the requestor has permissions over the target filesystem */
551 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
552 return ERR_PTR(-EPERM);
553
554 return sget_userns(type, test, set, flags, user_ns, data);
555 }
556
557 EXPORT_SYMBOL(sget);
558
559 void drop_super(struct super_block *sb)
560 {
561 up_read(&sb->s_umount);
562 put_super(sb);
563 }
564
565 EXPORT_SYMBOL(drop_super);
566
567 void drop_super_exclusive(struct super_block *sb)
568 {
569 up_write(&sb->s_umount);
570 put_super(sb);
571 }
572 EXPORT_SYMBOL(drop_super_exclusive);
573
574 /**
575 * iterate_supers - call function for all active superblocks
576 * @f: function to call
577 * @arg: argument to pass to it
578 *
579 * Scans the superblock list and calls given function, passing it
580 * locked superblock and given argument.
581 */
582 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
583 {
584 struct super_block *sb, *p = NULL;
585
586 spin_lock(&sb_lock);
587 list_for_each_entry(sb, &super_blocks, s_list) {
588 if (hlist_unhashed(&sb->s_instances))
589 continue;
590 sb->s_count++;
591 spin_unlock(&sb_lock);
592
593 down_read(&sb->s_umount);
594 if (sb->s_root && (sb->s_flags & SB_BORN))
595 f(sb, arg);
596 up_read(&sb->s_umount);
597
598 spin_lock(&sb_lock);
599 if (p)
600 __put_super(p);
601 p = sb;
602 }
603 if (p)
604 __put_super(p);
605 spin_unlock(&sb_lock);
606 }
607
608 /**
609 * iterate_supers_type - call function for superblocks of given type
610 * @type: fs type
611 * @f: function to call
612 * @arg: argument to pass to it
613 *
614 * Scans the superblock list and calls given function, passing it
615 * locked superblock and given argument.
616 */
617 void iterate_supers_type(struct file_system_type *type,
618 void (*f)(struct super_block *, void *), void *arg)
619 {
620 struct super_block *sb, *p = NULL;
621
622 spin_lock(&sb_lock);
623 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
624 sb->s_count++;
625 spin_unlock(&sb_lock);
626
627 down_read(&sb->s_umount);
628 if (sb->s_root && (sb->s_flags & SB_BORN))
629 f(sb, arg);
630 up_read(&sb->s_umount);
631
632 spin_lock(&sb_lock);
633 if (p)
634 __put_super(p);
635 p = sb;
636 }
637 if (p)
638 __put_super(p);
639 spin_unlock(&sb_lock);
640 }
641
642 EXPORT_SYMBOL(iterate_supers_type);
643
644 static struct super_block *__get_super(struct block_device *bdev, bool excl)
645 {
646 struct super_block *sb;
647
648 if (!bdev)
649 return NULL;
650
651 spin_lock(&sb_lock);
652 rescan:
653 list_for_each_entry(sb, &super_blocks, s_list) {
654 if (hlist_unhashed(&sb->s_instances))
655 continue;
656 if (sb->s_bdev == bdev) {
657 sb->s_count++;
658 spin_unlock(&sb_lock);
659 if (!excl)
660 down_read(&sb->s_umount);
661 else
662 down_write(&sb->s_umount);
663 /* still alive? */
664 if (sb->s_root && (sb->s_flags & SB_BORN))
665 return sb;
666 if (!excl)
667 up_read(&sb->s_umount);
668 else
669 up_write(&sb->s_umount);
670 /* nope, got unmounted */
671 spin_lock(&sb_lock);
672 __put_super(sb);
673 goto rescan;
674 }
675 }
676 spin_unlock(&sb_lock);
677 return NULL;
678 }
679
680 /**
681 * get_super - get the superblock of a device
682 * @bdev: device to get the superblock for
683 *
684 * Scans the superblock list and finds the superblock of the file system
685 * mounted on the device given. %NULL is returned if no match is found.
686 */
687 struct super_block *get_super(struct block_device *bdev)
688 {
689 return __get_super(bdev, false);
690 }
691 EXPORT_SYMBOL(get_super);
692
693 static struct super_block *__get_super_thawed(struct block_device *bdev,
694 bool excl)
695 {
696 while (1) {
697 struct super_block *s = __get_super(bdev, excl);
698 if (!s || s->s_writers.frozen == SB_UNFROZEN)
699 return s;
700 if (!excl)
701 up_read(&s->s_umount);
702 else
703 up_write(&s->s_umount);
704 wait_event(s->s_writers.wait_unfrozen,
705 s->s_writers.frozen == SB_UNFROZEN);
706 put_super(s);
707 }
708 }
709
710 /**
711 * get_super_thawed - get thawed superblock of a device
712 * @bdev: device to get the superblock for
713 *
714 * Scans the superblock list and finds the superblock of the file system
715 * mounted on the device. The superblock is returned once it is thawed
716 * (or immediately if it was not frozen). %NULL is returned if no match
717 * is found.
718 */
719 struct super_block *get_super_thawed(struct block_device *bdev)
720 {
721 return __get_super_thawed(bdev, false);
722 }
723 EXPORT_SYMBOL(get_super_thawed);
724
725 /**
726 * get_super_exclusive_thawed - get thawed superblock of a device
727 * @bdev: device to get the superblock for
728 *
729 * Scans the superblock list and finds the superblock of the file system
730 * mounted on the device. The superblock is returned once it is thawed
731 * (or immediately if it was not frozen) and s_umount semaphore is held
732 * in exclusive mode. %NULL is returned if no match is found.
733 */
734 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
735 {
736 return __get_super_thawed(bdev, true);
737 }
738 EXPORT_SYMBOL(get_super_exclusive_thawed);
739
740 /**
741 * get_active_super - get an active reference to the superblock of a device
742 * @bdev: device to get the superblock for
743 *
744 * Scans the superblock list and finds the superblock of the file system
745 * mounted on the device given. Returns the superblock with an active
746 * reference or %NULL if none was found.
747 */
748 struct super_block *get_active_super(struct block_device *bdev)
749 {
750 struct super_block *sb;
751
752 if (!bdev)
753 return NULL;
754
755 restart:
756 spin_lock(&sb_lock);
757 list_for_each_entry(sb, &super_blocks, s_list) {
758 if (hlist_unhashed(&sb->s_instances))
759 continue;
760 if (sb->s_bdev == bdev) {
761 if (!grab_super(sb))
762 goto restart;
763 up_write(&sb->s_umount);
764 return sb;
765 }
766 }
767 spin_unlock(&sb_lock);
768 return NULL;
769 }
770
771 struct super_block *user_get_super(dev_t dev)
772 {
773 struct super_block *sb;
774
775 spin_lock(&sb_lock);
776 rescan:
777 list_for_each_entry(sb, &super_blocks, s_list) {
778 if (hlist_unhashed(&sb->s_instances))
779 continue;
780 if (sb->s_dev == dev) {
781 sb->s_count++;
782 spin_unlock(&sb_lock);
783 down_read(&sb->s_umount);
784 /* still alive? */
785 if (sb->s_root && (sb->s_flags & SB_BORN))
786 return sb;
787 up_read(&sb->s_umount);
788 /* nope, got unmounted */
789 spin_lock(&sb_lock);
790 __put_super(sb);
791 goto rescan;
792 }
793 }
794 spin_unlock(&sb_lock);
795 return NULL;
796 }
797
798 /**
799 * do_remount_sb - asks filesystem to change mount options.
800 * @sb: superblock in question
801 * @sb_flags: revised superblock flags
802 * @data: the rest of options
803 * @force: whether or not to force the change
804 *
805 * Alters the mount options of a mounted file system.
806 */
807 int do_remount_sb(struct super_block *sb, int sb_flags, void *data, int force)
808 {
809 int retval;
810 int remount_ro;
811
812 if (sb->s_writers.frozen != SB_UNFROZEN)
813 return -EBUSY;
814
815 #ifdef CONFIG_BLOCK
816 if (!(sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
817 return -EACCES;
818 #endif
819
820 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
821
822 if (remount_ro) {
823 if (!hlist_empty(&sb->s_pins)) {
824 up_write(&sb->s_umount);
825 group_pin_kill(&sb->s_pins);
826 down_write(&sb->s_umount);
827 if (!sb->s_root)
828 return 0;
829 if (sb->s_writers.frozen != SB_UNFROZEN)
830 return -EBUSY;
831 remount_ro = (sb_flags & SB_RDONLY) && !sb_rdonly(sb);
832 }
833 }
834 shrink_dcache_sb(sb);
835
836 /* If we are remounting RDONLY and current sb is read/write,
837 make sure there are no rw files opened */
838 if (remount_ro) {
839 if (force) {
840 sb->s_readonly_remount = 1;
841 smp_wmb();
842 } else {
843 retval = sb_prepare_remount_readonly(sb);
844 if (retval)
845 return retval;
846 }
847 }
848
849 if (sb->s_op->remount_fs) {
850 retval = sb->s_op->remount_fs(sb, &sb_flags, data);
851 if (retval) {
852 if (!force)
853 goto cancel_readonly;
854 /* If forced remount, go ahead despite any errors */
855 WARN(1, "forced remount of a %s fs returned %i\n",
856 sb->s_type->name, retval);
857 }
858 }
859 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (sb_flags & MS_RMT_MASK);
860 /* Needs to be ordered wrt mnt_is_readonly() */
861 smp_wmb();
862 sb->s_readonly_remount = 0;
863
864 /*
865 * Some filesystems modify their metadata via some other path than the
866 * bdev buffer cache (eg. use a private mapping, or directories in
867 * pagecache, etc). Also file data modifications go via their own
868 * mappings. So If we try to mount readonly then copy the filesystem
869 * from bdev, we could get stale data, so invalidate it to give a best
870 * effort at coherency.
871 */
872 if (remount_ro && sb->s_bdev)
873 invalidate_bdev(sb->s_bdev);
874 return 0;
875
876 cancel_readonly:
877 sb->s_readonly_remount = 0;
878 return retval;
879 }
880
881 static void do_emergency_remount(struct work_struct *work)
882 {
883 struct super_block *sb, *p = NULL;
884
885 spin_lock(&sb_lock);
886 list_for_each_entry(sb, &super_blocks, s_list) {
887 if (hlist_unhashed(&sb->s_instances))
888 continue;
889 sb->s_count++;
890 spin_unlock(&sb_lock);
891 down_write(&sb->s_umount);
892 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
893 !sb_rdonly(sb)) {
894 /*
895 * What lock protects sb->s_flags??
896 */
897 do_remount_sb(sb, SB_RDONLY, NULL, 1);
898 }
899 up_write(&sb->s_umount);
900 spin_lock(&sb_lock);
901 if (p)
902 __put_super(p);
903 p = sb;
904 }
905 if (p)
906 __put_super(p);
907 spin_unlock(&sb_lock);
908 kfree(work);
909 printk("Emergency Remount complete\n");
910 }
911
912 void emergency_remount(void)
913 {
914 struct work_struct *work;
915
916 work = kmalloc(sizeof(*work), GFP_ATOMIC);
917 if (work) {
918 INIT_WORK(work, do_emergency_remount);
919 schedule_work(work);
920 }
921 }
922
923 /*
924 * Unnamed block devices are dummy devices used by virtual
925 * filesystems which don't use real block-devices. -- jrs
926 */
927
928 static DEFINE_IDA(unnamed_dev_ida);
929 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
930 /* Many userspace utilities consider an FSID of 0 invalid.
931 * Always return at least 1 from get_anon_bdev.
932 */
933 static int unnamed_dev_start = 1;
934
935 int get_anon_bdev(dev_t *p)
936 {
937 int dev;
938 int error;
939
940 retry:
941 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
942 return -ENOMEM;
943 spin_lock(&unnamed_dev_lock);
944 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
945 if (!error)
946 unnamed_dev_start = dev + 1;
947 spin_unlock(&unnamed_dev_lock);
948 if (error == -EAGAIN)
949 /* We raced and lost with another CPU. */
950 goto retry;
951 else if (error)
952 return -EAGAIN;
953
954 if (dev >= (1 << MINORBITS)) {
955 spin_lock(&unnamed_dev_lock);
956 ida_remove(&unnamed_dev_ida, dev);
957 if (unnamed_dev_start > dev)
958 unnamed_dev_start = dev;
959 spin_unlock(&unnamed_dev_lock);
960 return -EMFILE;
961 }
962 *p = MKDEV(0, dev & MINORMASK);
963 return 0;
964 }
965 EXPORT_SYMBOL(get_anon_bdev);
966
967 void free_anon_bdev(dev_t dev)
968 {
969 int slot = MINOR(dev);
970 spin_lock(&unnamed_dev_lock);
971 ida_remove(&unnamed_dev_ida, slot);
972 if (slot < unnamed_dev_start)
973 unnamed_dev_start = slot;
974 spin_unlock(&unnamed_dev_lock);
975 }
976 EXPORT_SYMBOL(free_anon_bdev);
977
978 int set_anon_super(struct super_block *s, void *data)
979 {
980 return get_anon_bdev(&s->s_dev);
981 }
982
983 EXPORT_SYMBOL(set_anon_super);
984
985 void kill_anon_super(struct super_block *sb)
986 {
987 dev_t dev = sb->s_dev;
988 generic_shutdown_super(sb);
989 free_anon_bdev(dev);
990 }
991
992 EXPORT_SYMBOL(kill_anon_super);
993
994 void kill_litter_super(struct super_block *sb)
995 {
996 if (sb->s_root)
997 d_genocide(sb->s_root);
998 kill_anon_super(sb);
999 }
1000
1001 EXPORT_SYMBOL(kill_litter_super);
1002
1003 static int ns_test_super(struct super_block *sb, void *data)
1004 {
1005 return sb->s_fs_info == data;
1006 }
1007
1008 static int ns_set_super(struct super_block *sb, void *data)
1009 {
1010 sb->s_fs_info = data;
1011 return set_anon_super(sb, NULL);
1012 }
1013
1014 struct dentry *mount_ns(struct file_system_type *fs_type,
1015 int flags, void *data, void *ns, struct user_namespace *user_ns,
1016 int (*fill_super)(struct super_block *, void *, int))
1017 {
1018 struct super_block *sb;
1019
1020 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1021 * over the namespace.
1022 */
1023 if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1024 return ERR_PTR(-EPERM);
1025
1026 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1027 user_ns, ns);
1028 if (IS_ERR(sb))
1029 return ERR_CAST(sb);
1030
1031 if (!sb->s_root) {
1032 int err;
1033 err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1034 if (err) {
1035 deactivate_locked_super(sb);
1036 return ERR_PTR(err);
1037 }
1038
1039 sb->s_flags |= SB_ACTIVE;
1040 }
1041
1042 return dget(sb->s_root);
1043 }
1044
1045 EXPORT_SYMBOL(mount_ns);
1046
1047 #ifdef CONFIG_BLOCK
1048 static int set_bdev_super(struct super_block *s, void *data)
1049 {
1050 s->s_bdev = data;
1051 s->s_dev = s->s_bdev->bd_dev;
1052 s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1053
1054 return 0;
1055 }
1056
1057 static int test_bdev_super(struct super_block *s, void *data)
1058 {
1059 return (void *)s->s_bdev == data;
1060 }
1061
1062 struct dentry *mount_bdev(struct file_system_type *fs_type,
1063 int flags, const char *dev_name, void *data,
1064 int (*fill_super)(struct super_block *, void *, int))
1065 {
1066 struct block_device *bdev;
1067 struct super_block *s;
1068 fmode_t mode = FMODE_READ | FMODE_EXCL;
1069 int error = 0;
1070
1071 if (!(flags & SB_RDONLY))
1072 mode |= FMODE_WRITE;
1073
1074 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1075 if (IS_ERR(bdev))
1076 return ERR_CAST(bdev);
1077
1078 /*
1079 * once the super is inserted into the list by sget, s_umount
1080 * will protect the lockfs code from trying to start a snapshot
1081 * while we are mounting
1082 */
1083 mutex_lock(&bdev->bd_fsfreeze_mutex);
1084 if (bdev->bd_fsfreeze_count > 0) {
1085 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1086 error = -EBUSY;
1087 goto error_bdev;
1088 }
1089 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1090 bdev);
1091 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1092 if (IS_ERR(s))
1093 goto error_s;
1094
1095 if (s->s_root) {
1096 if ((flags ^ s->s_flags) & SB_RDONLY) {
1097 deactivate_locked_super(s);
1098 error = -EBUSY;
1099 goto error_bdev;
1100 }
1101
1102 /*
1103 * s_umount nests inside bd_mutex during
1104 * __invalidate_device(). blkdev_put() acquires
1105 * bd_mutex and can't be called under s_umount. Drop
1106 * s_umount temporarily. This is safe as we're
1107 * holding an active reference.
1108 */
1109 up_write(&s->s_umount);
1110 blkdev_put(bdev, mode);
1111 down_write(&s->s_umount);
1112 } else {
1113 s->s_mode = mode;
1114 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1115 sb_set_blocksize(s, block_size(bdev));
1116 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1117 if (error) {
1118 deactivate_locked_super(s);
1119 goto error;
1120 }
1121
1122 s->s_flags |= SB_ACTIVE;
1123 bdev->bd_super = s;
1124 }
1125
1126 return dget(s->s_root);
1127
1128 error_s:
1129 error = PTR_ERR(s);
1130 error_bdev:
1131 blkdev_put(bdev, mode);
1132 error:
1133 return ERR_PTR(error);
1134 }
1135 EXPORT_SYMBOL(mount_bdev);
1136
1137 void kill_block_super(struct super_block *sb)
1138 {
1139 struct block_device *bdev = sb->s_bdev;
1140 fmode_t mode = sb->s_mode;
1141
1142 bdev->bd_super = NULL;
1143 generic_shutdown_super(sb);
1144 sync_blockdev(bdev);
1145 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1146 blkdev_put(bdev, mode | FMODE_EXCL);
1147 }
1148
1149 EXPORT_SYMBOL(kill_block_super);
1150 #endif
1151
1152 struct dentry *mount_nodev(struct file_system_type *fs_type,
1153 int flags, void *data,
1154 int (*fill_super)(struct super_block *, void *, int))
1155 {
1156 int error;
1157 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1158
1159 if (IS_ERR(s))
1160 return ERR_CAST(s);
1161
1162 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1163 if (error) {
1164 deactivate_locked_super(s);
1165 return ERR_PTR(error);
1166 }
1167 s->s_flags |= SB_ACTIVE;
1168 return dget(s->s_root);
1169 }
1170 EXPORT_SYMBOL(mount_nodev);
1171
1172 static int compare_single(struct super_block *s, void *p)
1173 {
1174 return 1;
1175 }
1176
1177 struct dentry *mount_single(struct file_system_type *fs_type,
1178 int flags, void *data,
1179 int (*fill_super)(struct super_block *, void *, int))
1180 {
1181 struct super_block *s;
1182 int error;
1183
1184 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1185 if (IS_ERR(s))
1186 return ERR_CAST(s);
1187 if (!s->s_root) {
1188 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1189 if (error) {
1190 deactivate_locked_super(s);
1191 return ERR_PTR(error);
1192 }
1193 s->s_flags |= SB_ACTIVE;
1194 } else {
1195 do_remount_sb(s, flags, data, 0);
1196 }
1197 return dget(s->s_root);
1198 }
1199 EXPORT_SYMBOL(mount_single);
1200
1201 struct dentry *
1202 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1203 {
1204 struct dentry *root;
1205 struct super_block *sb;
1206 char *secdata = NULL;
1207 int error = -ENOMEM;
1208
1209 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1210 secdata = alloc_secdata();
1211 if (!secdata)
1212 goto out;
1213
1214 error = security_sb_copy_data(data, secdata);
1215 if (error)
1216 goto out_free_secdata;
1217 }
1218
1219 root = type->mount(type, flags, name, data);
1220 if (IS_ERR(root)) {
1221 error = PTR_ERR(root);
1222 goto out_free_secdata;
1223 }
1224 sb = root->d_sb;
1225 BUG_ON(!sb);
1226 WARN_ON(!sb->s_bdi);
1227 sb->s_flags |= SB_BORN;
1228
1229 error = security_sb_kern_mount(sb, flags, secdata);
1230 if (error)
1231 goto out_sb;
1232
1233 /*
1234 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1235 * but s_maxbytes was an unsigned long long for many releases. Throw
1236 * this warning for a little while to try and catch filesystems that
1237 * violate this rule.
1238 */
1239 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1240 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1241
1242 up_write(&sb->s_umount);
1243 free_secdata(secdata);
1244 return root;
1245 out_sb:
1246 dput(root);
1247 deactivate_locked_super(sb);
1248 out_free_secdata:
1249 free_secdata(secdata);
1250 out:
1251 return ERR_PTR(error);
1252 }
1253
1254 /*
1255 * Setup private BDI for given superblock. It gets automatically cleaned up
1256 * in generic_shutdown_super().
1257 */
1258 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1259 {
1260 struct backing_dev_info *bdi;
1261 int err;
1262 va_list args;
1263
1264 bdi = bdi_alloc(GFP_KERNEL);
1265 if (!bdi)
1266 return -ENOMEM;
1267
1268 bdi->name = sb->s_type->name;
1269
1270 va_start(args, fmt);
1271 err = bdi_register_va(bdi, fmt, args);
1272 va_end(args);
1273 if (err) {
1274 bdi_put(bdi);
1275 return err;
1276 }
1277 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1278 sb->s_bdi = bdi;
1279
1280 return 0;
1281 }
1282 EXPORT_SYMBOL(super_setup_bdi_name);
1283
1284 /*
1285 * Setup private BDI for given superblock. I gets automatically cleaned up
1286 * in generic_shutdown_super().
1287 */
1288 int super_setup_bdi(struct super_block *sb)
1289 {
1290 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1291
1292 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1293 atomic_long_inc_return(&bdi_seq));
1294 }
1295 EXPORT_SYMBOL(super_setup_bdi);
1296
1297 /*
1298 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1299 * instead.
1300 */
1301 void __sb_end_write(struct super_block *sb, int level)
1302 {
1303 percpu_up_read(sb->s_writers.rw_sem + level-1);
1304 }
1305 EXPORT_SYMBOL(__sb_end_write);
1306
1307 /*
1308 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1309 * instead.
1310 */
1311 int __sb_start_write(struct super_block *sb, int level, bool wait)
1312 {
1313 bool force_trylock = false;
1314 int ret = 1;
1315
1316 #ifdef CONFIG_LOCKDEP
1317 /*
1318 * We want lockdep to tell us about possible deadlocks with freezing
1319 * but it's it bit tricky to properly instrument it. Getting a freeze
1320 * protection works as getting a read lock but there are subtle
1321 * problems. XFS for example gets freeze protection on internal level
1322 * twice in some cases, which is OK only because we already hold a
1323 * freeze protection also on higher level. Due to these cases we have
1324 * to use wait == F (trylock mode) which must not fail.
1325 */
1326 if (wait) {
1327 int i;
1328
1329 for (i = 0; i < level - 1; i++)
1330 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1331 force_trylock = true;
1332 break;
1333 }
1334 }
1335 #endif
1336 if (wait && !force_trylock)
1337 percpu_down_read(sb->s_writers.rw_sem + level-1);
1338 else
1339 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1340
1341 WARN_ON(force_trylock && !ret);
1342 return ret;
1343 }
1344 EXPORT_SYMBOL(__sb_start_write);
1345
1346 /**
1347 * sb_wait_write - wait until all writers to given file system finish
1348 * @sb: the super for which we wait
1349 * @level: type of writers we wait for (normal vs page fault)
1350 *
1351 * This function waits until there are no writers of given type to given file
1352 * system.
1353 */
1354 static void sb_wait_write(struct super_block *sb, int level)
1355 {
1356 percpu_down_write(sb->s_writers.rw_sem + level-1);
1357 }
1358
1359 /*
1360 * We are going to return to userspace and forget about these locks, the
1361 * ownership goes to the caller of thaw_super() which does unlock().
1362 */
1363 static void lockdep_sb_freeze_release(struct super_block *sb)
1364 {
1365 int level;
1366
1367 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1368 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1369 }
1370
1371 /*
1372 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1373 */
1374 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1375 {
1376 int level;
1377
1378 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1379 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1380 }
1381
1382 static void sb_freeze_unlock(struct super_block *sb)
1383 {
1384 int level;
1385
1386 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1387 percpu_up_write(sb->s_writers.rw_sem + level);
1388 }
1389
1390 /**
1391 * freeze_super - lock the filesystem and force it into a consistent state
1392 * @sb: the super to lock
1393 *
1394 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1395 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1396 * -EBUSY.
1397 *
1398 * During this function, sb->s_writers.frozen goes through these values:
1399 *
1400 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1401 *
1402 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1403 * writes should be blocked, though page faults are still allowed. We wait for
1404 * all writes to complete and then proceed to the next stage.
1405 *
1406 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1407 * but internal fs threads can still modify the filesystem (although they
1408 * should not dirty new pages or inodes), writeback can run etc. After waiting
1409 * for all running page faults we sync the filesystem which will clean all
1410 * dirty pages and inodes (no new dirty pages or inodes can be created when
1411 * sync is running).
1412 *
1413 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1414 * modification are blocked (e.g. XFS preallocation truncation on inode
1415 * reclaim). This is usually implemented by blocking new transactions for
1416 * filesystems that have them and need this additional guard. After all
1417 * internal writers are finished we call ->freeze_fs() to finish filesystem
1418 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1419 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1420 *
1421 * sb->s_writers.frozen is protected by sb->s_umount.
1422 */
1423 int freeze_super(struct super_block *sb)
1424 {
1425 int ret;
1426
1427 atomic_inc(&sb->s_active);
1428 down_write(&sb->s_umount);
1429 if (sb->s_writers.frozen != SB_UNFROZEN) {
1430 deactivate_locked_super(sb);
1431 return -EBUSY;
1432 }
1433
1434 if (!(sb->s_flags & SB_BORN)) {
1435 up_write(&sb->s_umount);
1436 return 0; /* sic - it's "nothing to do" */
1437 }
1438
1439 if (sb_rdonly(sb)) {
1440 /* Nothing to do really... */
1441 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1442 up_write(&sb->s_umount);
1443 return 0;
1444 }
1445
1446 sb->s_writers.frozen = SB_FREEZE_WRITE;
1447 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1448 up_write(&sb->s_umount);
1449 sb_wait_write(sb, SB_FREEZE_WRITE);
1450 down_write(&sb->s_umount);
1451
1452 /* Now we go and block page faults... */
1453 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1454 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1455
1456 /* All writers are done so after syncing there won't be dirty data */
1457 sync_filesystem(sb);
1458
1459 /* Now wait for internal filesystem counter */
1460 sb->s_writers.frozen = SB_FREEZE_FS;
1461 sb_wait_write(sb, SB_FREEZE_FS);
1462
1463 if (sb->s_op->freeze_fs) {
1464 ret = sb->s_op->freeze_fs(sb);
1465 if (ret) {
1466 printk(KERN_ERR
1467 "VFS:Filesystem freeze failed\n");
1468 sb->s_writers.frozen = SB_UNFROZEN;
1469 sb_freeze_unlock(sb);
1470 wake_up(&sb->s_writers.wait_unfrozen);
1471 deactivate_locked_super(sb);
1472 return ret;
1473 }
1474 }
1475 /*
1476 * For debugging purposes so that fs can warn if it sees write activity
1477 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1478 */
1479 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1480 lockdep_sb_freeze_release(sb);
1481 up_write(&sb->s_umount);
1482 return 0;
1483 }
1484 EXPORT_SYMBOL(freeze_super);
1485
1486 /**
1487 * thaw_super -- unlock filesystem
1488 * @sb: the super to thaw
1489 *
1490 * Unlocks the filesystem and marks it writeable again after freeze_super().
1491 */
1492 int thaw_super(struct super_block *sb)
1493 {
1494 int error;
1495
1496 down_write(&sb->s_umount);
1497 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1498 up_write(&sb->s_umount);
1499 return -EINVAL;
1500 }
1501
1502 if (sb_rdonly(sb)) {
1503 sb->s_writers.frozen = SB_UNFROZEN;
1504 goto out;
1505 }
1506
1507 lockdep_sb_freeze_acquire(sb);
1508
1509 if (sb->s_op->unfreeze_fs) {
1510 error = sb->s_op->unfreeze_fs(sb);
1511 if (error) {
1512 printk(KERN_ERR
1513 "VFS:Filesystem thaw failed\n");
1514 lockdep_sb_freeze_release(sb);
1515 up_write(&sb->s_umount);
1516 return error;
1517 }
1518 }
1519
1520 sb->s_writers.frozen = SB_UNFROZEN;
1521 sb_freeze_unlock(sb);
1522 out:
1523 wake_up(&sb->s_writers.wait_unfrozen);
1524 deactivate_locked_super(sb);
1525 return 0;
1526 }
1527 EXPORT_SYMBOL(thaw_super);