]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/crypto.h
29c4257f9c5b14c3c66e2e57eef573f9a2ff7a10
[mirror_ubuntu-bionic-kernel.git] / include / linux / crypto.h
1 /*
2 * Scatterlist Cryptographic API.
3 *
4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
6 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
7 *
8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
9 * and Nettle, by Niels Möller.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 *
16 */
17 #ifndef _LINUX_CRYPTO_H
18 #define _LINUX_CRYPTO_H
19
20 #include <linux/atomic.h>
21 #include <linux/kernel.h>
22 #include <linux/list.h>
23 #include <linux/bug.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/completion.h>
28
29 /*
30 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
31 * arbitrary modules to be loaded. Loading from userspace may still need the
32 * unprefixed names, so retains those aliases as well.
33 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
34 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
35 * expands twice on the same line. Instead, use a separate base name for the
36 * alias.
37 */
38 #define MODULE_ALIAS_CRYPTO(name) \
39 __MODULE_INFO(alias, alias_userspace, name); \
40 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
41
42 /*
43 * Algorithm masks and types.
44 */
45 #define CRYPTO_ALG_TYPE_MASK 0x0000000f
46 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001
47 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
48 #define CRYPTO_ALG_TYPE_AEAD 0x00000003
49 #define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004
50 #define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005
51 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005
52 #define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006
53 #define CRYPTO_ALG_TYPE_KPP 0x00000008
54 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a
55 #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b
56 #define CRYPTO_ALG_TYPE_RNG 0x0000000c
57 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
58 #define CRYPTO_ALG_TYPE_DIGEST 0x0000000e
59 #define CRYPTO_ALG_TYPE_HASH 0x0000000e
60 #define CRYPTO_ALG_TYPE_SHASH 0x0000000e
61 #define CRYPTO_ALG_TYPE_AHASH 0x0000000f
62
63 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
64 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e
65 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c
66 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e
67
68 #define CRYPTO_ALG_LARVAL 0x00000010
69 #define CRYPTO_ALG_DEAD 0x00000020
70 #define CRYPTO_ALG_DYING 0x00000040
71 #define CRYPTO_ALG_ASYNC 0x00000080
72
73 /*
74 * Set this bit if and only if the algorithm requires another algorithm of
75 * the same type to handle corner cases.
76 */
77 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100
78
79 /*
80 * This bit is set for symmetric key ciphers that have already been wrapped
81 * with a generic IV generator to prevent them from being wrapped again.
82 */
83 #define CRYPTO_ALG_GENIV 0x00000200
84
85 /*
86 * Set if the algorithm has passed automated run-time testing. Note that
87 * if there is no run-time testing for a given algorithm it is considered
88 * to have passed.
89 */
90
91 #define CRYPTO_ALG_TESTED 0x00000400
92
93 /*
94 * Set if the algorithm is an instance that is built from templates.
95 */
96 #define CRYPTO_ALG_INSTANCE 0x00000800
97
98 /* Set this bit if the algorithm provided is hardware accelerated but
99 * not available to userspace via instruction set or so.
100 */
101 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
102
103 /*
104 * Mark a cipher as a service implementation only usable by another
105 * cipher and never by a normal user of the kernel crypto API
106 */
107 #define CRYPTO_ALG_INTERNAL 0x00002000
108
109 /*
110 * Set if the algorithm has a ->setkey() method but can be used without
111 * calling it first, i.e. there is a default key.
112 */
113 #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000
114
115 /*
116 * Transform masks and values (for crt_flags).
117 */
118 #define CRYPTO_TFM_NEED_KEY 0x00000001
119
120 #define CRYPTO_TFM_REQ_MASK 0x000fff00
121 #define CRYPTO_TFM_RES_MASK 0xfff00000
122
123 #define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100
124 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
125 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
126 #define CRYPTO_TFM_RES_WEAK_KEY 0x00100000
127 #define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000
128 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000
129 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000
130 #define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000
131
132 /*
133 * Miscellaneous stuff.
134 */
135 #define CRYPTO_MAX_ALG_NAME 128
136
137 /*
138 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
139 * declaration) is used to ensure that the crypto_tfm context structure is
140 * aligned correctly for the given architecture so that there are no alignment
141 * faults for C data types. In particular, this is required on platforms such
142 * as arm where pointers are 32-bit aligned but there are data types such as
143 * u64 which require 64-bit alignment.
144 */
145 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
146
147 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
148
149 struct scatterlist;
150 struct crypto_ablkcipher;
151 struct crypto_async_request;
152 struct crypto_blkcipher;
153 struct crypto_tfm;
154 struct crypto_type;
155 struct skcipher_givcrypt_request;
156
157 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
158
159 /**
160 * DOC: Block Cipher Context Data Structures
161 *
162 * These data structures define the operating context for each block cipher
163 * type.
164 */
165
166 struct crypto_async_request {
167 struct list_head list;
168 crypto_completion_t complete;
169 void *data;
170 struct crypto_tfm *tfm;
171
172 u32 flags;
173 };
174
175 struct ablkcipher_request {
176 struct crypto_async_request base;
177
178 unsigned int nbytes;
179
180 void *info;
181
182 struct scatterlist *src;
183 struct scatterlist *dst;
184
185 void *__ctx[] CRYPTO_MINALIGN_ATTR;
186 };
187
188 struct blkcipher_desc {
189 struct crypto_blkcipher *tfm;
190 void *info;
191 u32 flags;
192 };
193
194 struct cipher_desc {
195 struct crypto_tfm *tfm;
196 void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
197 unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
198 const u8 *src, unsigned int nbytes);
199 void *info;
200 };
201
202 /**
203 * DOC: Block Cipher Algorithm Definitions
204 *
205 * These data structures define modular crypto algorithm implementations,
206 * managed via crypto_register_alg() and crypto_unregister_alg().
207 */
208
209 /**
210 * struct ablkcipher_alg - asynchronous block cipher definition
211 * @min_keysize: Minimum key size supported by the transformation. This is the
212 * smallest key length supported by this transformation algorithm.
213 * This must be set to one of the pre-defined values as this is
214 * not hardware specific. Possible values for this field can be
215 * found via git grep "_MIN_KEY_SIZE" include/crypto/
216 * @max_keysize: Maximum key size supported by the transformation. This is the
217 * largest key length supported by this transformation algorithm.
218 * This must be set to one of the pre-defined values as this is
219 * not hardware specific. Possible values for this field can be
220 * found via git grep "_MAX_KEY_SIZE" include/crypto/
221 * @setkey: Set key for the transformation. This function is used to either
222 * program a supplied key into the hardware or store the key in the
223 * transformation context for programming it later. Note that this
224 * function does modify the transformation context. This function can
225 * be called multiple times during the existence of the transformation
226 * object, so one must make sure the key is properly reprogrammed into
227 * the hardware. This function is also responsible for checking the key
228 * length for validity. In case a software fallback was put in place in
229 * the @cra_init call, this function might need to use the fallback if
230 * the algorithm doesn't support all of the key sizes.
231 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
232 * the supplied scatterlist containing the blocks of data. The crypto
233 * API consumer is responsible for aligning the entries of the
234 * scatterlist properly and making sure the chunks are correctly
235 * sized. In case a software fallback was put in place in the
236 * @cra_init call, this function might need to use the fallback if
237 * the algorithm doesn't support all of the key sizes. In case the
238 * key was stored in transformation context, the key might need to be
239 * re-programmed into the hardware in this function. This function
240 * shall not modify the transformation context, as this function may
241 * be called in parallel with the same transformation object.
242 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
243 * and the conditions are exactly the same.
244 * @givencrypt: Update the IV for encryption. With this function, a cipher
245 * implementation may provide the function on how to update the IV
246 * for encryption.
247 * @givdecrypt: Update the IV for decryption. This is the reverse of
248 * @givencrypt .
249 * @geniv: The transformation implementation may use an "IV generator" provided
250 * by the kernel crypto API. Several use cases have a predefined
251 * approach how IVs are to be updated. For such use cases, the kernel
252 * crypto API provides ready-to-use implementations that can be
253 * referenced with this variable.
254 * @ivsize: IV size applicable for transformation. The consumer must provide an
255 * IV of exactly that size to perform the encrypt or decrypt operation.
256 *
257 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
258 * mandatory and must be filled.
259 */
260 struct ablkcipher_alg {
261 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
262 unsigned int keylen);
263 int (*encrypt)(struct ablkcipher_request *req);
264 int (*decrypt)(struct ablkcipher_request *req);
265 int (*givencrypt)(struct skcipher_givcrypt_request *req);
266 int (*givdecrypt)(struct skcipher_givcrypt_request *req);
267
268 const char *geniv;
269
270 unsigned int min_keysize;
271 unsigned int max_keysize;
272 unsigned int ivsize;
273 };
274
275 /**
276 * struct blkcipher_alg - synchronous block cipher definition
277 * @min_keysize: see struct ablkcipher_alg
278 * @max_keysize: see struct ablkcipher_alg
279 * @setkey: see struct ablkcipher_alg
280 * @encrypt: see struct ablkcipher_alg
281 * @decrypt: see struct ablkcipher_alg
282 * @geniv: see struct ablkcipher_alg
283 * @ivsize: see struct ablkcipher_alg
284 *
285 * All fields except @geniv and @ivsize are mandatory and must be filled.
286 */
287 struct blkcipher_alg {
288 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
289 unsigned int keylen);
290 int (*encrypt)(struct blkcipher_desc *desc,
291 struct scatterlist *dst, struct scatterlist *src,
292 unsigned int nbytes);
293 int (*decrypt)(struct blkcipher_desc *desc,
294 struct scatterlist *dst, struct scatterlist *src,
295 unsigned int nbytes);
296
297 const char *geniv;
298
299 unsigned int min_keysize;
300 unsigned int max_keysize;
301 unsigned int ivsize;
302 };
303
304 /**
305 * struct cipher_alg - single-block symmetric ciphers definition
306 * @cia_min_keysize: Minimum key size supported by the transformation. This is
307 * the smallest key length supported by this transformation
308 * algorithm. This must be set to one of the pre-defined
309 * values as this is not hardware specific. Possible values
310 * for this field can be found via git grep "_MIN_KEY_SIZE"
311 * include/crypto/
312 * @cia_max_keysize: Maximum key size supported by the transformation. This is
313 * the largest key length supported by this transformation
314 * algorithm. This must be set to one of the pre-defined values
315 * as this is not hardware specific. Possible values for this
316 * field can be found via git grep "_MAX_KEY_SIZE"
317 * include/crypto/
318 * @cia_setkey: Set key for the transformation. This function is used to either
319 * program a supplied key into the hardware or store the key in the
320 * transformation context for programming it later. Note that this
321 * function does modify the transformation context. This function
322 * can be called multiple times during the existence of the
323 * transformation object, so one must make sure the key is properly
324 * reprogrammed into the hardware. This function is also
325 * responsible for checking the key length for validity.
326 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
327 * single block of data, which must be @cra_blocksize big. This
328 * always operates on a full @cra_blocksize and it is not possible
329 * to encrypt a block of smaller size. The supplied buffers must
330 * therefore also be at least of @cra_blocksize size. Both the
331 * input and output buffers are always aligned to @cra_alignmask.
332 * In case either of the input or output buffer supplied by user
333 * of the crypto API is not aligned to @cra_alignmask, the crypto
334 * API will re-align the buffers. The re-alignment means that a
335 * new buffer will be allocated, the data will be copied into the
336 * new buffer, then the processing will happen on the new buffer,
337 * then the data will be copied back into the original buffer and
338 * finally the new buffer will be freed. In case a software
339 * fallback was put in place in the @cra_init call, this function
340 * might need to use the fallback if the algorithm doesn't support
341 * all of the key sizes. In case the key was stored in
342 * transformation context, the key might need to be re-programmed
343 * into the hardware in this function. This function shall not
344 * modify the transformation context, as this function may be
345 * called in parallel with the same transformation object.
346 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
347 * @cia_encrypt, and the conditions are exactly the same.
348 *
349 * All fields are mandatory and must be filled.
350 */
351 struct cipher_alg {
352 unsigned int cia_min_keysize;
353 unsigned int cia_max_keysize;
354 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
355 unsigned int keylen);
356 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
357 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
358 };
359
360 struct compress_alg {
361 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
362 unsigned int slen, u8 *dst, unsigned int *dlen);
363 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
364 unsigned int slen, u8 *dst, unsigned int *dlen);
365 };
366
367
368 #define cra_ablkcipher cra_u.ablkcipher
369 #define cra_blkcipher cra_u.blkcipher
370 #define cra_cipher cra_u.cipher
371 #define cra_compress cra_u.compress
372
373 /**
374 * struct crypto_alg - definition of a cryptograpic cipher algorithm
375 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
376 * CRYPTO_ALG_* flags for the flags which go in here. Those are
377 * used for fine-tuning the description of the transformation
378 * algorithm.
379 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
380 * of the smallest possible unit which can be transformed with
381 * this algorithm. The users must respect this value.
382 * In case of HASH transformation, it is possible for a smaller
383 * block than @cra_blocksize to be passed to the crypto API for
384 * transformation, in case of any other transformation type, an
385 * error will be returned upon any attempt to transform smaller
386 * than @cra_blocksize chunks.
387 * @cra_ctxsize: Size of the operational context of the transformation. This
388 * value informs the kernel crypto API about the memory size
389 * needed to be allocated for the transformation context.
390 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
391 * buffer containing the input data for the algorithm must be
392 * aligned to this alignment mask. The data buffer for the
393 * output data must be aligned to this alignment mask. Note that
394 * the Crypto API will do the re-alignment in software, but
395 * only under special conditions and there is a performance hit.
396 * The re-alignment happens at these occasions for different
397 * @cra_u types: cipher -- For both input data and output data
398 * buffer; ahash -- For output hash destination buf; shash --
399 * For output hash destination buf.
400 * This is needed on hardware which is flawed by design and
401 * cannot pick data from arbitrary addresses.
402 * @cra_priority: Priority of this transformation implementation. In case
403 * multiple transformations with same @cra_name are available to
404 * the Crypto API, the kernel will use the one with highest
405 * @cra_priority.
406 * @cra_name: Generic name (usable by multiple implementations) of the
407 * transformation algorithm. This is the name of the transformation
408 * itself. This field is used by the kernel when looking up the
409 * providers of particular transformation.
410 * @cra_driver_name: Unique name of the transformation provider. This is the
411 * name of the provider of the transformation. This can be any
412 * arbitrary value, but in the usual case, this contains the
413 * name of the chip or provider and the name of the
414 * transformation algorithm.
415 * @cra_type: Type of the cryptographic transformation. This is a pointer to
416 * struct crypto_type, which implements callbacks common for all
417 * transformation types. There are multiple options:
418 * &crypto_blkcipher_type, &crypto_ablkcipher_type,
419 * &crypto_ahash_type, &crypto_rng_type.
420 * This field might be empty. In that case, there are no common
421 * callbacks. This is the case for: cipher, compress, shash.
422 * @cra_u: Callbacks implementing the transformation. This is a union of
423 * multiple structures. Depending on the type of transformation selected
424 * by @cra_type and @cra_flags above, the associated structure must be
425 * filled with callbacks. This field might be empty. This is the case
426 * for ahash, shash.
427 * @cra_init: Initialize the cryptographic transformation object. This function
428 * is used to initialize the cryptographic transformation object.
429 * This function is called only once at the instantiation time, right
430 * after the transformation context was allocated. In case the
431 * cryptographic hardware has some special requirements which need to
432 * be handled by software, this function shall check for the precise
433 * requirement of the transformation and put any software fallbacks
434 * in place.
435 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
436 * counterpart to @cra_init, used to remove various changes set in
437 * @cra_init.
438 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
439 * @cra_list: internally used
440 * @cra_users: internally used
441 * @cra_refcnt: internally used
442 * @cra_destroy: internally used
443 *
444 * The struct crypto_alg describes a generic Crypto API algorithm and is common
445 * for all of the transformations. Any variable not documented here shall not
446 * be used by a cipher implementation as it is internal to the Crypto API.
447 */
448 struct crypto_alg {
449 struct list_head cra_list;
450 struct list_head cra_users;
451
452 u32 cra_flags;
453 unsigned int cra_blocksize;
454 unsigned int cra_ctxsize;
455 unsigned int cra_alignmask;
456
457 int cra_priority;
458 atomic_t cra_refcnt;
459
460 char cra_name[CRYPTO_MAX_ALG_NAME];
461 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
462
463 const struct crypto_type *cra_type;
464
465 union {
466 struct ablkcipher_alg ablkcipher;
467 struct blkcipher_alg blkcipher;
468 struct cipher_alg cipher;
469 struct compress_alg compress;
470 } cra_u;
471
472 int (*cra_init)(struct crypto_tfm *tfm);
473 void (*cra_exit)(struct crypto_tfm *tfm);
474 void (*cra_destroy)(struct crypto_alg *alg);
475
476 struct module *cra_module;
477 } CRYPTO_MINALIGN_ATTR;
478
479 /*
480 * A helper struct for waiting for completion of async crypto ops
481 */
482 struct crypto_wait {
483 struct completion completion;
484 int err;
485 };
486
487 /*
488 * Macro for declaring a crypto op async wait object on stack
489 */
490 #define DECLARE_CRYPTO_WAIT(_wait) \
491 struct crypto_wait _wait = { \
492 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
493
494 /*
495 * Async ops completion helper functioons
496 */
497 void crypto_req_done(struct crypto_async_request *req, int err);
498
499 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
500 {
501 switch (err) {
502 case -EINPROGRESS:
503 case -EBUSY:
504 wait_for_completion(&wait->completion);
505 reinit_completion(&wait->completion);
506 err = wait->err;
507 break;
508 };
509
510 return err;
511 }
512
513 static inline void crypto_init_wait(struct crypto_wait *wait)
514 {
515 init_completion(&wait->completion);
516 }
517
518 /*
519 * Algorithm registration interface.
520 */
521 int crypto_register_alg(struct crypto_alg *alg);
522 int crypto_unregister_alg(struct crypto_alg *alg);
523 int crypto_register_algs(struct crypto_alg *algs, int count);
524 int crypto_unregister_algs(struct crypto_alg *algs, int count);
525
526 /*
527 * Algorithm query interface.
528 */
529 int crypto_has_alg(const char *name, u32 type, u32 mask);
530
531 /*
532 * Transforms: user-instantiated objects which encapsulate algorithms
533 * and core processing logic. Managed via crypto_alloc_*() and
534 * crypto_free_*(), as well as the various helpers below.
535 */
536
537 struct ablkcipher_tfm {
538 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
539 unsigned int keylen);
540 int (*encrypt)(struct ablkcipher_request *req);
541 int (*decrypt)(struct ablkcipher_request *req);
542
543 struct crypto_ablkcipher *base;
544
545 unsigned int ivsize;
546 unsigned int reqsize;
547 };
548
549 struct blkcipher_tfm {
550 void *iv;
551 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
552 unsigned int keylen);
553 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
554 struct scatterlist *src, unsigned int nbytes);
555 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
556 struct scatterlist *src, unsigned int nbytes);
557 };
558
559 struct cipher_tfm {
560 int (*cit_setkey)(struct crypto_tfm *tfm,
561 const u8 *key, unsigned int keylen);
562 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
563 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
564 };
565
566 struct compress_tfm {
567 int (*cot_compress)(struct crypto_tfm *tfm,
568 const u8 *src, unsigned int slen,
569 u8 *dst, unsigned int *dlen);
570 int (*cot_decompress)(struct crypto_tfm *tfm,
571 const u8 *src, unsigned int slen,
572 u8 *dst, unsigned int *dlen);
573 };
574
575 #define crt_ablkcipher crt_u.ablkcipher
576 #define crt_blkcipher crt_u.blkcipher
577 #define crt_cipher crt_u.cipher
578 #define crt_compress crt_u.compress
579
580 struct crypto_tfm {
581
582 u32 crt_flags;
583
584 union {
585 struct ablkcipher_tfm ablkcipher;
586 struct blkcipher_tfm blkcipher;
587 struct cipher_tfm cipher;
588 struct compress_tfm compress;
589 } crt_u;
590
591 void (*exit)(struct crypto_tfm *tfm);
592
593 struct crypto_alg *__crt_alg;
594
595 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
596 };
597
598 struct crypto_ablkcipher {
599 struct crypto_tfm base;
600 };
601
602 struct crypto_blkcipher {
603 struct crypto_tfm base;
604 };
605
606 struct crypto_cipher {
607 struct crypto_tfm base;
608 };
609
610 struct crypto_comp {
611 struct crypto_tfm base;
612 };
613
614 enum {
615 CRYPTOA_UNSPEC,
616 CRYPTOA_ALG,
617 CRYPTOA_TYPE,
618 CRYPTOA_U32,
619 __CRYPTOA_MAX,
620 };
621
622 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
623
624 /* Maximum number of (rtattr) parameters for each template. */
625 #define CRYPTO_MAX_ATTRS 32
626
627 struct crypto_attr_alg {
628 char name[CRYPTO_MAX_ALG_NAME];
629 };
630
631 struct crypto_attr_type {
632 u32 type;
633 u32 mask;
634 };
635
636 struct crypto_attr_u32 {
637 u32 num;
638 };
639
640 /*
641 * Transform user interface.
642 */
643
644 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
645 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
646
647 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
648 {
649 return crypto_destroy_tfm(tfm, tfm);
650 }
651
652 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
653
654 /*
655 * Transform helpers which query the underlying algorithm.
656 */
657 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
658 {
659 return tfm->__crt_alg->cra_name;
660 }
661
662 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
663 {
664 return tfm->__crt_alg->cra_driver_name;
665 }
666
667 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
668 {
669 return tfm->__crt_alg->cra_priority;
670 }
671
672 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
673 {
674 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
675 }
676
677 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
678 {
679 return tfm->__crt_alg->cra_blocksize;
680 }
681
682 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
683 {
684 return tfm->__crt_alg->cra_alignmask;
685 }
686
687 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
688 {
689 return tfm->crt_flags;
690 }
691
692 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
693 {
694 tfm->crt_flags |= flags;
695 }
696
697 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
698 {
699 tfm->crt_flags &= ~flags;
700 }
701
702 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
703 {
704 return tfm->__crt_ctx;
705 }
706
707 static inline unsigned int crypto_tfm_ctx_alignment(void)
708 {
709 struct crypto_tfm *tfm;
710 return __alignof__(tfm->__crt_ctx);
711 }
712
713 /*
714 * API wrappers.
715 */
716 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
717 struct crypto_tfm *tfm)
718 {
719 return (struct crypto_ablkcipher *)tfm;
720 }
721
722 static inline u32 crypto_skcipher_type(u32 type)
723 {
724 type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
725 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
726 return type;
727 }
728
729 static inline u32 crypto_skcipher_mask(u32 mask)
730 {
731 mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
732 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
733 return mask;
734 }
735
736 /**
737 * DOC: Asynchronous Block Cipher API
738 *
739 * Asynchronous block cipher API is used with the ciphers of type
740 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
741 *
742 * Asynchronous cipher operations imply that the function invocation for a
743 * cipher request returns immediately before the completion of the operation.
744 * The cipher request is scheduled as a separate kernel thread and therefore
745 * load-balanced on the different CPUs via the process scheduler. To allow
746 * the kernel crypto API to inform the caller about the completion of a cipher
747 * request, the caller must provide a callback function. That function is
748 * invoked with the cipher handle when the request completes.
749 *
750 * To support the asynchronous operation, additional information than just the
751 * cipher handle must be supplied to the kernel crypto API. That additional
752 * information is given by filling in the ablkcipher_request data structure.
753 *
754 * For the asynchronous block cipher API, the state is maintained with the tfm
755 * cipher handle. A single tfm can be used across multiple calls and in
756 * parallel. For asynchronous block cipher calls, context data supplied and
757 * only used by the caller can be referenced the request data structure in
758 * addition to the IV used for the cipher request. The maintenance of such
759 * state information would be important for a crypto driver implementer to
760 * have, because when calling the callback function upon completion of the
761 * cipher operation, that callback function may need some information about
762 * which operation just finished if it invoked multiple in parallel. This
763 * state information is unused by the kernel crypto API.
764 */
765
766 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
767 struct crypto_ablkcipher *tfm)
768 {
769 return &tfm->base;
770 }
771
772 /**
773 * crypto_free_ablkcipher() - zeroize and free cipher handle
774 * @tfm: cipher handle to be freed
775 */
776 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
777 {
778 crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
779 }
780
781 /**
782 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
783 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
784 * ablkcipher
785 * @type: specifies the type of the cipher
786 * @mask: specifies the mask for the cipher
787 *
788 * Return: true when the ablkcipher is known to the kernel crypto API; false
789 * otherwise
790 */
791 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
792 u32 mask)
793 {
794 return crypto_has_alg(alg_name, crypto_skcipher_type(type),
795 crypto_skcipher_mask(mask));
796 }
797
798 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
799 struct crypto_ablkcipher *tfm)
800 {
801 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
802 }
803
804 /**
805 * crypto_ablkcipher_ivsize() - obtain IV size
806 * @tfm: cipher handle
807 *
808 * The size of the IV for the ablkcipher referenced by the cipher handle is
809 * returned. This IV size may be zero if the cipher does not need an IV.
810 *
811 * Return: IV size in bytes
812 */
813 static inline unsigned int crypto_ablkcipher_ivsize(
814 struct crypto_ablkcipher *tfm)
815 {
816 return crypto_ablkcipher_crt(tfm)->ivsize;
817 }
818
819 /**
820 * crypto_ablkcipher_blocksize() - obtain block size of cipher
821 * @tfm: cipher handle
822 *
823 * The block size for the ablkcipher referenced with the cipher handle is
824 * returned. The caller may use that information to allocate appropriate
825 * memory for the data returned by the encryption or decryption operation
826 *
827 * Return: block size of cipher
828 */
829 static inline unsigned int crypto_ablkcipher_blocksize(
830 struct crypto_ablkcipher *tfm)
831 {
832 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
833 }
834
835 static inline unsigned int crypto_ablkcipher_alignmask(
836 struct crypto_ablkcipher *tfm)
837 {
838 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
839 }
840
841 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
842 {
843 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
844 }
845
846 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
847 u32 flags)
848 {
849 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
850 }
851
852 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
853 u32 flags)
854 {
855 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
856 }
857
858 /**
859 * crypto_ablkcipher_setkey() - set key for cipher
860 * @tfm: cipher handle
861 * @key: buffer holding the key
862 * @keylen: length of the key in bytes
863 *
864 * The caller provided key is set for the ablkcipher referenced by the cipher
865 * handle.
866 *
867 * Note, the key length determines the cipher type. Many block ciphers implement
868 * different cipher modes depending on the key size, such as AES-128 vs AES-192
869 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
870 * is performed.
871 *
872 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
873 */
874 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
875 const u8 *key, unsigned int keylen)
876 {
877 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
878
879 return crt->setkey(crt->base, key, keylen);
880 }
881
882 /**
883 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
884 * @req: ablkcipher_request out of which the cipher handle is to be obtained
885 *
886 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
887 * data structure.
888 *
889 * Return: crypto_ablkcipher handle
890 */
891 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
892 struct ablkcipher_request *req)
893 {
894 return __crypto_ablkcipher_cast(req->base.tfm);
895 }
896
897 /**
898 * crypto_ablkcipher_encrypt() - encrypt plaintext
899 * @req: reference to the ablkcipher_request handle that holds all information
900 * needed to perform the cipher operation
901 *
902 * Encrypt plaintext data using the ablkcipher_request handle. That data
903 * structure and how it is filled with data is discussed with the
904 * ablkcipher_request_* functions.
905 *
906 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
907 */
908 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
909 {
910 struct ablkcipher_tfm *crt =
911 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
912 return crt->encrypt(req);
913 }
914
915 /**
916 * crypto_ablkcipher_decrypt() - decrypt ciphertext
917 * @req: reference to the ablkcipher_request handle that holds all information
918 * needed to perform the cipher operation
919 *
920 * Decrypt ciphertext data using the ablkcipher_request handle. That data
921 * structure and how it is filled with data is discussed with the
922 * ablkcipher_request_* functions.
923 *
924 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
925 */
926 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
927 {
928 struct ablkcipher_tfm *crt =
929 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
930 return crt->decrypt(req);
931 }
932
933 /**
934 * DOC: Asynchronous Cipher Request Handle
935 *
936 * The ablkcipher_request data structure contains all pointers to data
937 * required for the asynchronous cipher operation. This includes the cipher
938 * handle (which can be used by multiple ablkcipher_request instances), pointer
939 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
940 * as a handle to the ablkcipher_request_* API calls in a similar way as
941 * ablkcipher handle to the crypto_ablkcipher_* API calls.
942 */
943
944 /**
945 * crypto_ablkcipher_reqsize() - obtain size of the request data structure
946 * @tfm: cipher handle
947 *
948 * Return: number of bytes
949 */
950 static inline unsigned int crypto_ablkcipher_reqsize(
951 struct crypto_ablkcipher *tfm)
952 {
953 return crypto_ablkcipher_crt(tfm)->reqsize;
954 }
955
956 /**
957 * ablkcipher_request_set_tfm() - update cipher handle reference in request
958 * @req: request handle to be modified
959 * @tfm: cipher handle that shall be added to the request handle
960 *
961 * Allow the caller to replace the existing ablkcipher handle in the request
962 * data structure with a different one.
963 */
964 static inline void ablkcipher_request_set_tfm(
965 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
966 {
967 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
968 }
969
970 static inline struct ablkcipher_request *ablkcipher_request_cast(
971 struct crypto_async_request *req)
972 {
973 return container_of(req, struct ablkcipher_request, base);
974 }
975
976 /**
977 * ablkcipher_request_alloc() - allocate request data structure
978 * @tfm: cipher handle to be registered with the request
979 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
980 *
981 * Allocate the request data structure that must be used with the ablkcipher
982 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
983 * handle is registered in the request data structure.
984 *
985 * Return: allocated request handle in case of success, or NULL if out of memory
986 */
987 static inline struct ablkcipher_request *ablkcipher_request_alloc(
988 struct crypto_ablkcipher *tfm, gfp_t gfp)
989 {
990 struct ablkcipher_request *req;
991
992 req = kmalloc(sizeof(struct ablkcipher_request) +
993 crypto_ablkcipher_reqsize(tfm), gfp);
994
995 if (likely(req))
996 ablkcipher_request_set_tfm(req, tfm);
997
998 return req;
999 }
1000
1001 /**
1002 * ablkcipher_request_free() - zeroize and free request data structure
1003 * @req: request data structure cipher handle to be freed
1004 */
1005 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1006 {
1007 kzfree(req);
1008 }
1009
1010 /**
1011 * ablkcipher_request_set_callback() - set asynchronous callback function
1012 * @req: request handle
1013 * @flags: specify zero or an ORing of the flags
1014 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1015 * increase the wait queue beyond the initial maximum size;
1016 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1017 * @compl: callback function pointer to be registered with the request handle
1018 * @data: The data pointer refers to memory that is not used by the kernel
1019 * crypto API, but provided to the callback function for it to use. Here,
1020 * the caller can provide a reference to memory the callback function can
1021 * operate on. As the callback function is invoked asynchronously to the
1022 * related functionality, it may need to access data structures of the
1023 * related functionality which can be referenced using this pointer. The
1024 * callback function can access the memory via the "data" field in the
1025 * crypto_async_request data structure provided to the callback function.
1026 *
1027 * This function allows setting the callback function that is triggered once the
1028 * cipher operation completes.
1029 *
1030 * The callback function is registered with the ablkcipher_request handle and
1031 * must comply with the following template::
1032 *
1033 * void callback_function(struct crypto_async_request *req, int error)
1034 */
1035 static inline void ablkcipher_request_set_callback(
1036 struct ablkcipher_request *req,
1037 u32 flags, crypto_completion_t compl, void *data)
1038 {
1039 req->base.complete = compl;
1040 req->base.data = data;
1041 req->base.flags = flags;
1042 }
1043
1044 /**
1045 * ablkcipher_request_set_crypt() - set data buffers
1046 * @req: request handle
1047 * @src: source scatter / gather list
1048 * @dst: destination scatter / gather list
1049 * @nbytes: number of bytes to process from @src
1050 * @iv: IV for the cipher operation which must comply with the IV size defined
1051 * by crypto_ablkcipher_ivsize
1052 *
1053 * This function allows setting of the source data and destination data
1054 * scatter / gather lists.
1055 *
1056 * For encryption, the source is treated as the plaintext and the
1057 * destination is the ciphertext. For a decryption operation, the use is
1058 * reversed - the source is the ciphertext and the destination is the plaintext.
1059 */
1060 static inline void ablkcipher_request_set_crypt(
1061 struct ablkcipher_request *req,
1062 struct scatterlist *src, struct scatterlist *dst,
1063 unsigned int nbytes, void *iv)
1064 {
1065 req->src = src;
1066 req->dst = dst;
1067 req->nbytes = nbytes;
1068 req->info = iv;
1069 }
1070
1071 /**
1072 * DOC: Synchronous Block Cipher API
1073 *
1074 * The synchronous block cipher API is used with the ciphers of type
1075 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1076 *
1077 * Synchronous calls, have a context in the tfm. But since a single tfm can be
1078 * used in multiple calls and in parallel, this info should not be changeable
1079 * (unless a lock is used). This applies, for example, to the symmetric key.
1080 * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1081 * structure for synchronous blkcipher api. So, its the only state info that can
1082 * be kept for synchronous calls without using a big lock across a tfm.
1083 *
1084 * The block cipher API allows the use of a complete cipher, i.e. a cipher
1085 * consisting of a template (a block chaining mode) and a single block cipher
1086 * primitive (e.g. AES).
1087 *
1088 * The plaintext data buffer and the ciphertext data buffer are pointed to
1089 * by using scatter/gather lists. The cipher operation is performed
1090 * on all segments of the provided scatter/gather lists.
1091 *
1092 * The kernel crypto API supports a cipher operation "in-place" which means that
1093 * the caller may provide the same scatter/gather list for the plaintext and
1094 * cipher text. After the completion of the cipher operation, the plaintext
1095 * data is replaced with the ciphertext data in case of an encryption and vice
1096 * versa for a decryption. The caller must ensure that the scatter/gather lists
1097 * for the output data point to sufficiently large buffers, i.e. multiples of
1098 * the block size of the cipher.
1099 */
1100
1101 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1102 struct crypto_tfm *tfm)
1103 {
1104 return (struct crypto_blkcipher *)tfm;
1105 }
1106
1107 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1108 struct crypto_tfm *tfm)
1109 {
1110 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1111 return __crypto_blkcipher_cast(tfm);
1112 }
1113
1114 /**
1115 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1116 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1117 * blkcipher cipher
1118 * @type: specifies the type of the cipher
1119 * @mask: specifies the mask for the cipher
1120 *
1121 * Allocate a cipher handle for a block cipher. The returned struct
1122 * crypto_blkcipher is the cipher handle that is required for any subsequent
1123 * API invocation for that block cipher.
1124 *
1125 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1126 * of an error, PTR_ERR() returns the error code.
1127 */
1128 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1129 const char *alg_name, u32 type, u32 mask)
1130 {
1131 type &= ~CRYPTO_ALG_TYPE_MASK;
1132 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1133 mask |= CRYPTO_ALG_TYPE_MASK;
1134
1135 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1136 }
1137
1138 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1139 struct crypto_blkcipher *tfm)
1140 {
1141 return &tfm->base;
1142 }
1143
1144 /**
1145 * crypto_free_blkcipher() - zeroize and free the block cipher handle
1146 * @tfm: cipher handle to be freed
1147 */
1148 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1149 {
1150 crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1151 }
1152
1153 /**
1154 * crypto_has_blkcipher() - Search for the availability of a block cipher
1155 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1156 * block cipher
1157 * @type: specifies the type of the cipher
1158 * @mask: specifies the mask for the cipher
1159 *
1160 * Return: true when the block cipher is known to the kernel crypto API; false
1161 * otherwise
1162 */
1163 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1164 {
1165 type &= ~CRYPTO_ALG_TYPE_MASK;
1166 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1167 mask |= CRYPTO_ALG_TYPE_MASK;
1168
1169 return crypto_has_alg(alg_name, type, mask);
1170 }
1171
1172 /**
1173 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1174 * @tfm: cipher handle
1175 *
1176 * Return: The character string holding the name of the cipher
1177 */
1178 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1179 {
1180 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1181 }
1182
1183 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1184 struct crypto_blkcipher *tfm)
1185 {
1186 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1187 }
1188
1189 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1190 struct crypto_blkcipher *tfm)
1191 {
1192 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1193 }
1194
1195 /**
1196 * crypto_blkcipher_ivsize() - obtain IV size
1197 * @tfm: cipher handle
1198 *
1199 * The size of the IV for the block cipher referenced by the cipher handle is
1200 * returned. This IV size may be zero if the cipher does not need an IV.
1201 *
1202 * Return: IV size in bytes
1203 */
1204 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1205 {
1206 return crypto_blkcipher_alg(tfm)->ivsize;
1207 }
1208
1209 /**
1210 * crypto_blkcipher_blocksize() - obtain block size of cipher
1211 * @tfm: cipher handle
1212 *
1213 * The block size for the block cipher referenced with the cipher handle is
1214 * returned. The caller may use that information to allocate appropriate
1215 * memory for the data returned by the encryption or decryption operation.
1216 *
1217 * Return: block size of cipher
1218 */
1219 static inline unsigned int crypto_blkcipher_blocksize(
1220 struct crypto_blkcipher *tfm)
1221 {
1222 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1223 }
1224
1225 static inline unsigned int crypto_blkcipher_alignmask(
1226 struct crypto_blkcipher *tfm)
1227 {
1228 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1229 }
1230
1231 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1232 {
1233 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1234 }
1235
1236 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1237 u32 flags)
1238 {
1239 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1240 }
1241
1242 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1243 u32 flags)
1244 {
1245 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1246 }
1247
1248 /**
1249 * crypto_blkcipher_setkey() - set key for cipher
1250 * @tfm: cipher handle
1251 * @key: buffer holding the key
1252 * @keylen: length of the key in bytes
1253 *
1254 * The caller provided key is set for the block cipher referenced by the cipher
1255 * handle.
1256 *
1257 * Note, the key length determines the cipher type. Many block ciphers implement
1258 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1259 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1260 * is performed.
1261 *
1262 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1263 */
1264 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1265 const u8 *key, unsigned int keylen)
1266 {
1267 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1268 key, keylen);
1269 }
1270
1271 /**
1272 * crypto_blkcipher_encrypt() - encrypt plaintext
1273 * @desc: reference to the block cipher handle with meta data
1274 * @dst: scatter/gather list that is filled by the cipher operation with the
1275 * ciphertext
1276 * @src: scatter/gather list that holds the plaintext
1277 * @nbytes: number of bytes of the plaintext to encrypt.
1278 *
1279 * Encrypt plaintext data using the IV set by the caller with a preceding
1280 * call of crypto_blkcipher_set_iv.
1281 *
1282 * The blkcipher_desc data structure must be filled by the caller and can
1283 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1284 * with the block cipher handle; desc.flags is filled with either
1285 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1286 *
1287 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1288 */
1289 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1290 struct scatterlist *dst,
1291 struct scatterlist *src,
1292 unsigned int nbytes)
1293 {
1294 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1295 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1296 }
1297
1298 /**
1299 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1300 * @desc: reference to the block cipher handle with meta data
1301 * @dst: scatter/gather list that is filled by the cipher operation with the
1302 * ciphertext
1303 * @src: scatter/gather list that holds the plaintext
1304 * @nbytes: number of bytes of the plaintext to encrypt.
1305 *
1306 * Encrypt plaintext data with the use of an IV that is solely used for this
1307 * cipher operation. Any previously set IV is not used.
1308 *
1309 * The blkcipher_desc data structure must be filled by the caller and can
1310 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1311 * with the block cipher handle; desc.info is filled with the IV to be used for
1312 * the current operation; desc.flags is filled with either
1313 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1314 *
1315 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1316 */
1317 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1318 struct scatterlist *dst,
1319 struct scatterlist *src,
1320 unsigned int nbytes)
1321 {
1322 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1323 }
1324
1325 /**
1326 * crypto_blkcipher_decrypt() - decrypt ciphertext
1327 * @desc: reference to the block cipher handle with meta data
1328 * @dst: scatter/gather list that is filled by the cipher operation with the
1329 * plaintext
1330 * @src: scatter/gather list that holds the ciphertext
1331 * @nbytes: number of bytes of the ciphertext to decrypt.
1332 *
1333 * Decrypt ciphertext data using the IV set by the caller with a preceding
1334 * call of crypto_blkcipher_set_iv.
1335 *
1336 * The blkcipher_desc data structure must be filled by the caller as documented
1337 * for the crypto_blkcipher_encrypt call above.
1338 *
1339 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1340 *
1341 */
1342 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1343 struct scatterlist *dst,
1344 struct scatterlist *src,
1345 unsigned int nbytes)
1346 {
1347 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1348 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1349 }
1350
1351 /**
1352 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1353 * @desc: reference to the block cipher handle with meta data
1354 * @dst: scatter/gather list that is filled by the cipher operation with the
1355 * plaintext
1356 * @src: scatter/gather list that holds the ciphertext
1357 * @nbytes: number of bytes of the ciphertext to decrypt.
1358 *
1359 * Decrypt ciphertext data with the use of an IV that is solely used for this
1360 * cipher operation. Any previously set IV is not used.
1361 *
1362 * The blkcipher_desc data structure must be filled by the caller as documented
1363 * for the crypto_blkcipher_encrypt_iv call above.
1364 *
1365 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1366 */
1367 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1368 struct scatterlist *dst,
1369 struct scatterlist *src,
1370 unsigned int nbytes)
1371 {
1372 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1373 }
1374
1375 /**
1376 * crypto_blkcipher_set_iv() - set IV for cipher
1377 * @tfm: cipher handle
1378 * @src: buffer holding the IV
1379 * @len: length of the IV in bytes
1380 *
1381 * The caller provided IV is set for the block cipher referenced by the cipher
1382 * handle.
1383 */
1384 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1385 const u8 *src, unsigned int len)
1386 {
1387 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1388 }
1389
1390 /**
1391 * crypto_blkcipher_get_iv() - obtain IV from cipher
1392 * @tfm: cipher handle
1393 * @dst: buffer filled with the IV
1394 * @len: length of the buffer dst
1395 *
1396 * The caller can obtain the IV set for the block cipher referenced by the
1397 * cipher handle and store it into the user-provided buffer. If the buffer
1398 * has an insufficient space, the IV is truncated to fit the buffer.
1399 */
1400 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1401 u8 *dst, unsigned int len)
1402 {
1403 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1404 }
1405
1406 /**
1407 * DOC: Single Block Cipher API
1408 *
1409 * The single block cipher API is used with the ciphers of type
1410 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1411 *
1412 * Using the single block cipher API calls, operations with the basic cipher
1413 * primitive can be implemented. These cipher primitives exclude any block
1414 * chaining operations including IV handling.
1415 *
1416 * The purpose of this single block cipher API is to support the implementation
1417 * of templates or other concepts that only need to perform the cipher operation
1418 * on one block at a time. Templates invoke the underlying cipher primitive
1419 * block-wise and process either the input or the output data of these cipher
1420 * operations.
1421 */
1422
1423 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1424 {
1425 return (struct crypto_cipher *)tfm;
1426 }
1427
1428 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1429 {
1430 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1431 return __crypto_cipher_cast(tfm);
1432 }
1433
1434 /**
1435 * crypto_alloc_cipher() - allocate single block cipher handle
1436 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1437 * single block cipher
1438 * @type: specifies the type of the cipher
1439 * @mask: specifies the mask for the cipher
1440 *
1441 * Allocate a cipher handle for a single block cipher. The returned struct
1442 * crypto_cipher is the cipher handle that is required for any subsequent API
1443 * invocation for that single block cipher.
1444 *
1445 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1446 * of an error, PTR_ERR() returns the error code.
1447 */
1448 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1449 u32 type, u32 mask)
1450 {
1451 type &= ~CRYPTO_ALG_TYPE_MASK;
1452 type |= CRYPTO_ALG_TYPE_CIPHER;
1453 mask |= CRYPTO_ALG_TYPE_MASK;
1454
1455 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1456 }
1457
1458 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1459 {
1460 return &tfm->base;
1461 }
1462
1463 /**
1464 * crypto_free_cipher() - zeroize and free the single block cipher handle
1465 * @tfm: cipher handle to be freed
1466 */
1467 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1468 {
1469 crypto_free_tfm(crypto_cipher_tfm(tfm));
1470 }
1471
1472 /**
1473 * crypto_has_cipher() - Search for the availability of a single block cipher
1474 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1475 * single block cipher
1476 * @type: specifies the type of the cipher
1477 * @mask: specifies the mask for the cipher
1478 *
1479 * Return: true when the single block cipher is known to the kernel crypto API;
1480 * false otherwise
1481 */
1482 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1483 {
1484 type &= ~CRYPTO_ALG_TYPE_MASK;
1485 type |= CRYPTO_ALG_TYPE_CIPHER;
1486 mask |= CRYPTO_ALG_TYPE_MASK;
1487
1488 return crypto_has_alg(alg_name, type, mask);
1489 }
1490
1491 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1492 {
1493 return &crypto_cipher_tfm(tfm)->crt_cipher;
1494 }
1495
1496 /**
1497 * crypto_cipher_blocksize() - obtain block size for cipher
1498 * @tfm: cipher handle
1499 *
1500 * The block size for the single block cipher referenced with the cipher handle
1501 * tfm is returned. The caller may use that information to allocate appropriate
1502 * memory for the data returned by the encryption or decryption operation
1503 *
1504 * Return: block size of cipher
1505 */
1506 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1507 {
1508 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1509 }
1510
1511 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1512 {
1513 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1514 }
1515
1516 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1517 {
1518 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1519 }
1520
1521 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1522 u32 flags)
1523 {
1524 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1525 }
1526
1527 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1528 u32 flags)
1529 {
1530 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1531 }
1532
1533 /**
1534 * crypto_cipher_setkey() - set key for cipher
1535 * @tfm: cipher handle
1536 * @key: buffer holding the key
1537 * @keylen: length of the key in bytes
1538 *
1539 * The caller provided key is set for the single block cipher referenced by the
1540 * cipher handle.
1541 *
1542 * Note, the key length determines the cipher type. Many block ciphers implement
1543 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1544 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1545 * is performed.
1546 *
1547 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1548 */
1549 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1550 const u8 *key, unsigned int keylen)
1551 {
1552 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1553 key, keylen);
1554 }
1555
1556 /**
1557 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1558 * @tfm: cipher handle
1559 * @dst: points to the buffer that will be filled with the ciphertext
1560 * @src: buffer holding the plaintext to be encrypted
1561 *
1562 * Invoke the encryption operation of one block. The caller must ensure that
1563 * the plaintext and ciphertext buffers are at least one block in size.
1564 */
1565 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1566 u8 *dst, const u8 *src)
1567 {
1568 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1569 dst, src);
1570 }
1571
1572 /**
1573 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1574 * @tfm: cipher handle
1575 * @dst: points to the buffer that will be filled with the plaintext
1576 * @src: buffer holding the ciphertext to be decrypted
1577 *
1578 * Invoke the decryption operation of one block. The caller must ensure that
1579 * the plaintext and ciphertext buffers are at least one block in size.
1580 */
1581 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1582 u8 *dst, const u8 *src)
1583 {
1584 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1585 dst, src);
1586 }
1587
1588 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1589 {
1590 return (struct crypto_comp *)tfm;
1591 }
1592
1593 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1594 {
1595 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1596 CRYPTO_ALG_TYPE_MASK);
1597 return __crypto_comp_cast(tfm);
1598 }
1599
1600 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1601 u32 type, u32 mask)
1602 {
1603 type &= ~CRYPTO_ALG_TYPE_MASK;
1604 type |= CRYPTO_ALG_TYPE_COMPRESS;
1605 mask |= CRYPTO_ALG_TYPE_MASK;
1606
1607 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1608 }
1609
1610 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1611 {
1612 return &tfm->base;
1613 }
1614
1615 static inline void crypto_free_comp(struct crypto_comp *tfm)
1616 {
1617 crypto_free_tfm(crypto_comp_tfm(tfm));
1618 }
1619
1620 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1621 {
1622 type &= ~CRYPTO_ALG_TYPE_MASK;
1623 type |= CRYPTO_ALG_TYPE_COMPRESS;
1624 mask |= CRYPTO_ALG_TYPE_MASK;
1625
1626 return crypto_has_alg(alg_name, type, mask);
1627 }
1628
1629 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1630 {
1631 return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1632 }
1633
1634 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1635 {
1636 return &crypto_comp_tfm(tfm)->crt_compress;
1637 }
1638
1639 static inline int crypto_comp_compress(struct crypto_comp *tfm,
1640 const u8 *src, unsigned int slen,
1641 u8 *dst, unsigned int *dlen)
1642 {
1643 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1644 src, slen, dst, dlen);
1645 }
1646
1647 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1648 const u8 *src, unsigned int slen,
1649 u8 *dst, unsigned int *dlen)
1650 {
1651 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1652 src, slen, dst, dlen);
1653 }
1654
1655 #endif /* _LINUX_CRYPTO_H */
1656