]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/mm_types.h
mm: migrate: fix barriers around tlb_flush_pending
[mirror_ubuntu-bionic-kernel.git] / include / linux / mm_types.h
1 #ifndef _LINUX_MM_TYPES_H
2 #define _LINUX_MM_TYPES_H
3
4 #include <linux/mm_types_task.h>
5
6 #include <linux/auxvec.h>
7 #include <linux/list.h>
8 #include <linux/spinlock.h>
9 #include <linux/rbtree.h>
10 #include <linux/rwsem.h>
11 #include <linux/completion.h>
12 #include <linux/cpumask.h>
13 #include <linux/uprobes.h>
14 #include <linux/page-flags-layout.h>
15 #include <linux/workqueue.h>
16
17 #include <asm/mmu.h>
18
19 #ifndef AT_VECTOR_SIZE_ARCH
20 #define AT_VECTOR_SIZE_ARCH 0
21 #endif
22 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
23
24 struct address_space;
25 struct mem_cgroup;
26
27 /*
28 * Each physical page in the system has a struct page associated with
29 * it to keep track of whatever it is we are using the page for at the
30 * moment. Note that we have no way to track which tasks are using
31 * a page, though if it is a pagecache page, rmap structures can tell us
32 * who is mapping it.
33 *
34 * The objects in struct page are organized in double word blocks in
35 * order to allows us to use atomic double word operations on portions
36 * of struct page. That is currently only used by slub but the arrangement
37 * allows the use of atomic double word operations on the flags/mapping
38 * and lru list pointers also.
39 */
40 struct page {
41 /* First double word block */
42 unsigned long flags; /* Atomic flags, some possibly
43 * updated asynchronously */
44 union {
45 struct address_space *mapping; /* If low bit clear, points to
46 * inode address_space, or NULL.
47 * If page mapped as anonymous
48 * memory, low bit is set, and
49 * it points to anon_vma object:
50 * see PAGE_MAPPING_ANON below.
51 */
52 void *s_mem; /* slab first object */
53 atomic_t compound_mapcount; /* first tail page */
54 /* page_deferred_list().next -- second tail page */
55 };
56
57 /* Second double word */
58 union {
59 pgoff_t index; /* Our offset within mapping. */
60 void *freelist; /* sl[aou]b first free object */
61 /* page_deferred_list().prev -- second tail page */
62 };
63
64 union {
65 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
66 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
67 /* Used for cmpxchg_double in slub */
68 unsigned long counters;
69 #else
70 /*
71 * Keep _refcount separate from slub cmpxchg_double data.
72 * As the rest of the double word is protected by slab_lock
73 * but _refcount is not.
74 */
75 unsigned counters;
76 #endif
77 struct {
78
79 union {
80 /*
81 * Count of ptes mapped in mms, to show when
82 * page is mapped & limit reverse map searches.
83 *
84 * Extra information about page type may be
85 * stored here for pages that are never mapped,
86 * in which case the value MUST BE <= -2.
87 * See page-flags.h for more details.
88 */
89 atomic_t _mapcount;
90
91 unsigned int active; /* SLAB */
92 struct { /* SLUB */
93 unsigned inuse:16;
94 unsigned objects:15;
95 unsigned frozen:1;
96 };
97 int units; /* SLOB */
98 };
99 /*
100 * Usage count, *USE WRAPPER FUNCTION* when manual
101 * accounting. See page_ref.h
102 */
103 atomic_t _refcount;
104 };
105 };
106
107 /*
108 * Third double word block
109 *
110 * WARNING: bit 0 of the first word encode PageTail(). That means
111 * the rest users of the storage space MUST NOT use the bit to
112 * avoid collision and false-positive PageTail().
113 */
114 union {
115 struct list_head lru; /* Pageout list, eg. active_list
116 * protected by zone_lru_lock !
117 * Can be used as a generic list
118 * by the page owner.
119 */
120 struct dev_pagemap *pgmap; /* ZONE_DEVICE pages are never on an
121 * lru or handled by a slab
122 * allocator, this points to the
123 * hosting device page map.
124 */
125 struct { /* slub per cpu partial pages */
126 struct page *next; /* Next partial slab */
127 #ifdef CONFIG_64BIT
128 int pages; /* Nr of partial slabs left */
129 int pobjects; /* Approximate # of objects */
130 #else
131 short int pages;
132 short int pobjects;
133 #endif
134 };
135
136 struct rcu_head rcu_head; /* Used by SLAB
137 * when destroying via RCU
138 */
139 /* Tail pages of compound page */
140 struct {
141 unsigned long compound_head; /* If bit zero is set */
142
143 /* First tail page only */
144 #ifdef CONFIG_64BIT
145 /*
146 * On 64 bit system we have enough space in struct page
147 * to encode compound_dtor and compound_order with
148 * unsigned int. It can help compiler generate better or
149 * smaller code on some archtectures.
150 */
151 unsigned int compound_dtor;
152 unsigned int compound_order;
153 #else
154 unsigned short int compound_dtor;
155 unsigned short int compound_order;
156 #endif
157 };
158
159 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
160 struct {
161 unsigned long __pad; /* do not overlay pmd_huge_pte
162 * with compound_head to avoid
163 * possible bit 0 collision.
164 */
165 pgtable_t pmd_huge_pte; /* protected by page->ptl */
166 };
167 #endif
168 };
169
170 /* Remainder is not double word aligned */
171 union {
172 unsigned long private; /* Mapping-private opaque data:
173 * usually used for buffer_heads
174 * if PagePrivate set; used for
175 * swp_entry_t if PageSwapCache;
176 * indicates order in the buddy
177 * system if PG_buddy is set.
178 */
179 #if USE_SPLIT_PTE_PTLOCKS
180 #if ALLOC_SPLIT_PTLOCKS
181 spinlock_t *ptl;
182 #else
183 spinlock_t ptl;
184 #endif
185 #endif
186 struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */
187 };
188
189 #ifdef CONFIG_MEMCG
190 struct mem_cgroup *mem_cgroup;
191 #endif
192
193 /*
194 * On machines where all RAM is mapped into kernel address space,
195 * we can simply calculate the virtual address. On machines with
196 * highmem some memory is mapped into kernel virtual memory
197 * dynamically, so we need a place to store that address.
198 * Note that this field could be 16 bits on x86 ... ;)
199 *
200 * Architectures with slow multiplication can define
201 * WANT_PAGE_VIRTUAL in asm/page.h
202 */
203 #if defined(WANT_PAGE_VIRTUAL)
204 void *virtual; /* Kernel virtual address (NULL if
205 not kmapped, ie. highmem) */
206 #endif /* WANT_PAGE_VIRTUAL */
207
208 #ifdef CONFIG_KMEMCHECK
209 /*
210 * kmemcheck wants to track the status of each byte in a page; this
211 * is a pointer to such a status block. NULL if not tracked.
212 */
213 void *shadow;
214 #endif
215
216 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
217 int _last_cpupid;
218 #endif
219 }
220 /*
221 * The struct page can be forced to be double word aligned so that atomic ops
222 * on double words work. The SLUB allocator can make use of such a feature.
223 */
224 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
225 __aligned(2 * sizeof(unsigned long))
226 #endif
227 ;
228
229 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK)
230 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE)
231
232 struct page_frag_cache {
233 void * va;
234 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
235 __u16 offset;
236 __u16 size;
237 #else
238 __u32 offset;
239 #endif
240 /* we maintain a pagecount bias, so that we dont dirty cache line
241 * containing page->_refcount every time we allocate a fragment.
242 */
243 unsigned int pagecnt_bias;
244 bool pfmemalloc;
245 };
246
247 typedef unsigned long vm_flags_t;
248
249 /*
250 * A region containing a mapping of a non-memory backed file under NOMMU
251 * conditions. These are held in a global tree and are pinned by the VMAs that
252 * map parts of them.
253 */
254 struct vm_region {
255 struct rb_node vm_rb; /* link in global region tree */
256 vm_flags_t vm_flags; /* VMA vm_flags */
257 unsigned long vm_start; /* start address of region */
258 unsigned long vm_end; /* region initialised to here */
259 unsigned long vm_top; /* region allocated to here */
260 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
261 struct file *vm_file; /* the backing file or NULL */
262
263 int vm_usage; /* region usage count (access under nommu_region_sem) */
264 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
265 * this region */
266 };
267
268 #ifdef CONFIG_USERFAULTFD
269 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
270 struct vm_userfaultfd_ctx {
271 struct userfaultfd_ctx *ctx;
272 };
273 #else /* CONFIG_USERFAULTFD */
274 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
275 struct vm_userfaultfd_ctx {};
276 #endif /* CONFIG_USERFAULTFD */
277
278 /*
279 * This struct defines a memory VMM memory area. There is one of these
280 * per VM-area/task. A VM area is any part of the process virtual memory
281 * space that has a special rule for the page-fault handlers (ie a shared
282 * library, the executable area etc).
283 */
284 struct vm_area_struct {
285 /* The first cache line has the info for VMA tree walking. */
286
287 unsigned long vm_start; /* Our start address within vm_mm. */
288 unsigned long vm_end; /* The first byte after our end address
289 within vm_mm. */
290
291 /* linked list of VM areas per task, sorted by address */
292 struct vm_area_struct *vm_next, *vm_prev;
293
294 struct rb_node vm_rb;
295
296 /*
297 * Largest free memory gap in bytes to the left of this VMA.
298 * Either between this VMA and vma->vm_prev, or between one of the
299 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
300 * get_unmapped_area find a free area of the right size.
301 */
302 unsigned long rb_subtree_gap;
303
304 /* Second cache line starts here. */
305
306 struct mm_struct *vm_mm; /* The address space we belong to. */
307 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
308 unsigned long vm_flags; /* Flags, see mm.h. */
309
310 /*
311 * For areas with an address space and backing store,
312 * linkage into the address_space->i_mmap interval tree.
313 */
314 struct {
315 struct rb_node rb;
316 unsigned long rb_subtree_last;
317 } shared;
318
319 /*
320 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
321 * list, after a COW of one of the file pages. A MAP_SHARED vma
322 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
323 * or brk vma (with NULL file) can only be in an anon_vma list.
324 */
325 struct list_head anon_vma_chain; /* Serialized by mmap_sem &
326 * page_table_lock */
327 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
328
329 /* Function pointers to deal with this struct. */
330 const struct vm_operations_struct *vm_ops;
331
332 /* Information about our backing store: */
333 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
334 units */
335 struct file * vm_file; /* File we map to (can be NULL). */
336 void * vm_private_data; /* was vm_pte (shared mem) */
337
338 #ifndef CONFIG_MMU
339 struct vm_region *vm_region; /* NOMMU mapping region */
340 #endif
341 #ifdef CONFIG_NUMA
342 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
343 #endif
344 struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
345 } __randomize_layout;
346
347 struct core_thread {
348 struct task_struct *task;
349 struct core_thread *next;
350 };
351
352 struct core_state {
353 atomic_t nr_threads;
354 struct core_thread dumper;
355 struct completion startup;
356 };
357
358 struct kioctx_table;
359 struct mm_struct {
360 struct vm_area_struct *mmap; /* list of VMAs */
361 struct rb_root mm_rb;
362 u32 vmacache_seqnum; /* per-thread vmacache */
363 #ifdef CONFIG_MMU
364 unsigned long (*get_unmapped_area) (struct file *filp,
365 unsigned long addr, unsigned long len,
366 unsigned long pgoff, unsigned long flags);
367 #endif
368 unsigned long mmap_base; /* base of mmap area */
369 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
370 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
371 /* Base adresses for compatible mmap() */
372 unsigned long mmap_compat_base;
373 unsigned long mmap_compat_legacy_base;
374 #endif
375 unsigned long task_size; /* size of task vm space */
376 unsigned long highest_vm_end; /* highest vma end address */
377 pgd_t * pgd;
378
379 /**
380 * @mm_users: The number of users including userspace.
381 *
382 * Use mmget()/mmget_not_zero()/mmput() to modify. When this drops
383 * to 0 (i.e. when the task exits and there are no other temporary
384 * reference holders), we also release a reference on @mm_count
385 * (which may then free the &struct mm_struct if @mm_count also
386 * drops to 0).
387 */
388 atomic_t mm_users;
389
390 /**
391 * @mm_count: The number of references to &struct mm_struct
392 * (@mm_users count as 1).
393 *
394 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
395 * &struct mm_struct is freed.
396 */
397 atomic_t mm_count;
398
399 atomic_long_t nr_ptes; /* PTE page table pages */
400 #if CONFIG_PGTABLE_LEVELS > 2
401 atomic_long_t nr_pmds; /* PMD page table pages */
402 #endif
403 int map_count; /* number of VMAs */
404
405 spinlock_t page_table_lock; /* Protects page tables and some counters */
406 struct rw_semaphore mmap_sem;
407
408 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
409 * together off init_mm.mmlist, and are protected
410 * by mmlist_lock
411 */
412
413
414 unsigned long hiwater_rss; /* High-watermark of RSS usage */
415 unsigned long hiwater_vm; /* High-water virtual memory usage */
416
417 unsigned long total_vm; /* Total pages mapped */
418 unsigned long locked_vm; /* Pages that have PG_mlocked set */
419 unsigned long pinned_vm; /* Refcount permanently increased */
420 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
421 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
422 unsigned long stack_vm; /* VM_STACK */
423 unsigned long def_flags;
424 unsigned long start_code, end_code, start_data, end_data;
425 unsigned long start_brk, brk, start_stack;
426 unsigned long arg_start, arg_end, env_start, env_end;
427
428 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
429
430 /*
431 * Special counters, in some configurations protected by the
432 * page_table_lock, in other configurations by being atomic.
433 */
434 struct mm_rss_stat rss_stat;
435
436 struct linux_binfmt *binfmt;
437
438 cpumask_var_t cpu_vm_mask_var;
439
440 /* Architecture-specific MM context */
441 mm_context_t context;
442
443 unsigned long flags; /* Must use atomic bitops to access the bits */
444
445 struct core_state *core_state; /* coredumping support */
446 #ifdef CONFIG_AIO
447 spinlock_t ioctx_lock;
448 struct kioctx_table __rcu *ioctx_table;
449 #endif
450 #ifdef CONFIG_MEMCG
451 /*
452 * "owner" points to a task that is regarded as the canonical
453 * user/owner of this mm. All of the following must be true in
454 * order for it to be changed:
455 *
456 * current == mm->owner
457 * current->mm != mm
458 * new_owner->mm == mm
459 * new_owner->alloc_lock is held
460 */
461 struct task_struct __rcu *owner;
462 #endif
463 struct user_namespace *user_ns;
464
465 /* store ref to file /proc/<pid>/exe symlink points to */
466 struct file __rcu *exe_file;
467 #ifdef CONFIG_MMU_NOTIFIER
468 struct mmu_notifier_mm *mmu_notifier_mm;
469 #endif
470 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
471 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
472 #endif
473 #ifdef CONFIG_CPUMASK_OFFSTACK
474 struct cpumask cpumask_allocation;
475 #endif
476 #ifdef CONFIG_NUMA_BALANCING
477 /*
478 * numa_next_scan is the next time that the PTEs will be marked
479 * pte_numa. NUMA hinting faults will gather statistics and migrate
480 * pages to new nodes if necessary.
481 */
482 unsigned long numa_next_scan;
483
484 /* Restart point for scanning and setting pte_numa */
485 unsigned long numa_scan_offset;
486
487 /* numa_scan_seq prevents two threads setting pte_numa */
488 int numa_scan_seq;
489 #endif
490 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
491 /*
492 * An operation with batched TLB flushing is going on. Anything that
493 * can move process memory needs to flush the TLB when moving a
494 * PROT_NONE or PROT_NUMA mapped page.
495 */
496 atomic_t tlb_flush_pending;
497 #endif
498 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
499 /* See flush_tlb_batched_pending() */
500 bool tlb_flush_batched;
501 #endif
502 struct uprobes_state uprobes_state;
503 #ifdef CONFIG_HUGETLB_PAGE
504 atomic_long_t hugetlb_usage;
505 #endif
506 struct work_struct async_put_work;
507 } __randomize_layout;
508
509 extern struct mm_struct init_mm;
510
511 static inline void mm_init_cpumask(struct mm_struct *mm)
512 {
513 #ifdef CONFIG_CPUMASK_OFFSTACK
514 mm->cpu_vm_mask_var = &mm->cpumask_allocation;
515 #endif
516 cpumask_clear(mm->cpu_vm_mask_var);
517 }
518
519 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
520 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
521 {
522 return mm->cpu_vm_mask_var;
523 }
524
525 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
526 /*
527 * Memory barriers to keep this state in sync are graciously provided by
528 * the page table locks, outside of which no page table modifications happen.
529 * The barriers are used to ensure the order between tlb_flush_pending updates,
530 * which happen while the lock is not taken, and the PTE updates, which happen
531 * while the lock is taken, are serialized.
532 */
533 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
534 {
535 return atomic_read(&mm->tlb_flush_pending) > 0;
536 }
537
538 static inline void init_tlb_flush_pending(struct mm_struct *mm)
539 {
540 atomic_set(&mm->tlb_flush_pending, 0);
541 }
542
543 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
544 {
545 atomic_inc(&mm->tlb_flush_pending);
546
547 /*
548 * Guarantee that the tlb_flush_pending increase does not leak into the
549 * critical section updating the page tables
550 */
551 smp_mb__before_spinlock();
552 }
553
554 /* Clearing is done after a TLB flush, which also provides a barrier. */
555 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
556 {
557 /*
558 * Guarantee that the tlb_flush_pending does not not leak into the
559 * critical section, since we must order the PTE change and changes to
560 * the pending TLB flush indication. We could have relied on TLB flush
561 * as a memory barrier, but this behavior is not clearly documented.
562 */
563 smp_mb__before_atomic();
564 atomic_dec(&mm->tlb_flush_pending);
565 }
566 #else
567 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
568 {
569 return false;
570 }
571
572 static inline void init_tlb_flush_pending(struct mm_struct *mm)
573 {
574 }
575
576 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
577 {
578 }
579
580 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
581 {
582 }
583 #endif
584
585 struct vm_fault;
586
587 struct vm_special_mapping {
588 const char *name; /* The name, e.g. "[vdso]". */
589
590 /*
591 * If .fault is not provided, this points to a
592 * NULL-terminated array of pages that back the special mapping.
593 *
594 * This must not be NULL unless .fault is provided.
595 */
596 struct page **pages;
597
598 /*
599 * If non-NULL, then this is called to resolve page faults
600 * on the special mapping. If used, .pages is not checked.
601 */
602 int (*fault)(const struct vm_special_mapping *sm,
603 struct vm_area_struct *vma,
604 struct vm_fault *vmf);
605
606 int (*mremap)(const struct vm_special_mapping *sm,
607 struct vm_area_struct *new_vma);
608 };
609
610 enum tlb_flush_reason {
611 TLB_FLUSH_ON_TASK_SWITCH,
612 TLB_REMOTE_SHOOTDOWN,
613 TLB_LOCAL_SHOOTDOWN,
614 TLB_LOCAL_MM_SHOOTDOWN,
615 TLB_REMOTE_SEND_IPI,
616 NR_TLB_FLUSH_REASONS,
617 };
618
619 /*
620 * A swap entry has to fit into a "unsigned long", as the entry is hidden
621 * in the "index" field of the swapper address space.
622 */
623 typedef struct {
624 unsigned long val;
625 } swp_entry_t;
626
627 #endif /* _LINUX_MM_TYPES_H */