]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/ptr_ring.h
ptr_ring: prevent integer overflow when calculating size
[mirror_ubuntu-bionic-kernel.git] / include / linux / ptr_ring.h
1 /*
2 * Definitions for the 'struct ptr_ring' datastructure.
3 *
4 * Author:
5 * Michael S. Tsirkin <mst@redhat.com>
6 *
7 * Copyright (C) 2016 Red Hat, Inc.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 * This is a limited-size FIFO maintaining pointers in FIFO order, with
15 * one CPU producing entries and another consuming entries from a FIFO.
16 *
17 * This implementation tries to minimize cache-contention when there is a
18 * single producer and a single consumer CPU.
19 */
20
21 #ifndef _LINUX_PTR_RING_H
22 #define _LINUX_PTR_RING_H 1
23
24 #ifdef __KERNEL__
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/types.h>
28 #include <linux/compiler.h>
29 #include <linux/cache.h>
30 #include <linux/slab.h>
31 #include <asm/errno.h>
32 #endif
33
34 struct ptr_ring {
35 int producer ____cacheline_aligned_in_smp;
36 spinlock_t producer_lock;
37 int consumer_head ____cacheline_aligned_in_smp; /* next valid entry */
38 int consumer_tail; /* next entry to invalidate */
39 spinlock_t consumer_lock;
40 /* Shared consumer/producer data */
41 /* Read-only by both the producer and the consumer */
42 int size ____cacheline_aligned_in_smp; /* max entries in queue */
43 int batch; /* number of entries to consume in a batch */
44 void **queue;
45 };
46
47 /* Note: callers invoking this in a loop must use a compiler barrier,
48 * for example cpu_relax(). If ring is ever resized, callers must hold
49 * producer_lock - see e.g. ptr_ring_full. Otherwise, if callers don't hold
50 * producer_lock, the next call to __ptr_ring_produce may fail.
51 */
52 static inline bool __ptr_ring_full(struct ptr_ring *r)
53 {
54 return r->queue[r->producer];
55 }
56
57 static inline bool ptr_ring_full(struct ptr_ring *r)
58 {
59 bool ret;
60
61 spin_lock(&r->producer_lock);
62 ret = __ptr_ring_full(r);
63 spin_unlock(&r->producer_lock);
64
65 return ret;
66 }
67
68 static inline bool ptr_ring_full_irq(struct ptr_ring *r)
69 {
70 bool ret;
71
72 spin_lock_irq(&r->producer_lock);
73 ret = __ptr_ring_full(r);
74 spin_unlock_irq(&r->producer_lock);
75
76 return ret;
77 }
78
79 static inline bool ptr_ring_full_any(struct ptr_ring *r)
80 {
81 unsigned long flags;
82 bool ret;
83
84 spin_lock_irqsave(&r->producer_lock, flags);
85 ret = __ptr_ring_full(r);
86 spin_unlock_irqrestore(&r->producer_lock, flags);
87
88 return ret;
89 }
90
91 static inline bool ptr_ring_full_bh(struct ptr_ring *r)
92 {
93 bool ret;
94
95 spin_lock_bh(&r->producer_lock);
96 ret = __ptr_ring_full(r);
97 spin_unlock_bh(&r->producer_lock);
98
99 return ret;
100 }
101
102 /* Note: callers invoking this in a loop must use a compiler barrier,
103 * for example cpu_relax(). Callers must hold producer_lock.
104 * Callers are responsible for making sure pointer that is being queued
105 * points to a valid data.
106 */
107 static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr)
108 {
109 if (unlikely(!r->size) || r->queue[r->producer])
110 return -ENOSPC;
111
112 /* Make sure the pointer we are storing points to a valid data. */
113 /* Pairs with smp_read_barrier_depends in __ptr_ring_consume. */
114 smp_wmb();
115
116 r->queue[r->producer++] = ptr;
117 if (unlikely(r->producer >= r->size))
118 r->producer = 0;
119 return 0;
120 }
121
122 /*
123 * Note: resize (below) nests producer lock within consumer lock, so if you
124 * consume in interrupt or BH context, you must disable interrupts/BH when
125 * calling this.
126 */
127 static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr)
128 {
129 int ret;
130
131 spin_lock(&r->producer_lock);
132 ret = __ptr_ring_produce(r, ptr);
133 spin_unlock(&r->producer_lock);
134
135 return ret;
136 }
137
138 static inline int ptr_ring_produce_irq(struct ptr_ring *r, void *ptr)
139 {
140 int ret;
141
142 spin_lock_irq(&r->producer_lock);
143 ret = __ptr_ring_produce(r, ptr);
144 spin_unlock_irq(&r->producer_lock);
145
146 return ret;
147 }
148
149 static inline int ptr_ring_produce_any(struct ptr_ring *r, void *ptr)
150 {
151 unsigned long flags;
152 int ret;
153
154 spin_lock_irqsave(&r->producer_lock, flags);
155 ret = __ptr_ring_produce(r, ptr);
156 spin_unlock_irqrestore(&r->producer_lock, flags);
157
158 return ret;
159 }
160
161 static inline int ptr_ring_produce_bh(struct ptr_ring *r, void *ptr)
162 {
163 int ret;
164
165 spin_lock_bh(&r->producer_lock);
166 ret = __ptr_ring_produce(r, ptr);
167 spin_unlock_bh(&r->producer_lock);
168
169 return ret;
170 }
171
172 /* Note: callers invoking this in a loop must use a compiler barrier,
173 * for example cpu_relax(). Callers must take consumer_lock
174 * if they dereference the pointer - see e.g. PTR_RING_PEEK_CALL.
175 * If ring is never resized, and if the pointer is merely
176 * tested, there's no need to take the lock - see e.g. __ptr_ring_empty.
177 * However, if called outside the lock, and if some other CPU
178 * consumes ring entries at the same time, the value returned
179 * is not guaranteed to be correct.
180 * In this case - to avoid incorrectly detecting the ring
181 * as empty - the CPU consuming the ring entries is responsible
182 * for either consuming all ring entries until the ring is empty,
183 * or synchronizing with some other CPU and causing it to
184 * execute __ptr_ring_peek and/or consume the ring enteries
185 * after the synchronization point.
186 */
187 static inline void *__ptr_ring_peek(struct ptr_ring *r)
188 {
189 if (likely(r->size))
190 return r->queue[r->consumer_head];
191 return NULL;
192 }
193
194 /* See __ptr_ring_peek above for locking rules. */
195 static inline bool __ptr_ring_empty(struct ptr_ring *r)
196 {
197 return !__ptr_ring_peek(r);
198 }
199
200 static inline bool ptr_ring_empty(struct ptr_ring *r)
201 {
202 bool ret;
203
204 spin_lock(&r->consumer_lock);
205 ret = __ptr_ring_empty(r);
206 spin_unlock(&r->consumer_lock);
207
208 return ret;
209 }
210
211 static inline bool ptr_ring_empty_irq(struct ptr_ring *r)
212 {
213 bool ret;
214
215 spin_lock_irq(&r->consumer_lock);
216 ret = __ptr_ring_empty(r);
217 spin_unlock_irq(&r->consumer_lock);
218
219 return ret;
220 }
221
222 static inline bool ptr_ring_empty_any(struct ptr_ring *r)
223 {
224 unsigned long flags;
225 bool ret;
226
227 spin_lock_irqsave(&r->consumer_lock, flags);
228 ret = __ptr_ring_empty(r);
229 spin_unlock_irqrestore(&r->consumer_lock, flags);
230
231 return ret;
232 }
233
234 static inline bool ptr_ring_empty_bh(struct ptr_ring *r)
235 {
236 bool ret;
237
238 spin_lock_bh(&r->consumer_lock);
239 ret = __ptr_ring_empty(r);
240 spin_unlock_bh(&r->consumer_lock);
241
242 return ret;
243 }
244
245 /* Must only be called after __ptr_ring_peek returned !NULL */
246 static inline void __ptr_ring_discard_one(struct ptr_ring *r)
247 {
248 /* Fundamentally, what we want to do is update consumer
249 * index and zero out the entry so producer can reuse it.
250 * Doing it naively at each consume would be as simple as:
251 * r->queue[r->consumer++] = NULL;
252 * if (unlikely(r->consumer >= r->size))
253 * r->consumer = 0;
254 * but that is suboptimal when the ring is full as producer is writing
255 * out new entries in the same cache line. Defer these updates until a
256 * batch of entries has been consumed.
257 */
258 int head = r->consumer_head++;
259
260 /* Once we have processed enough entries invalidate them in
261 * the ring all at once so producer can reuse their space in the ring.
262 * We also do this when we reach end of the ring - not mandatory
263 * but helps keep the implementation simple.
264 */
265 if (unlikely(r->consumer_head - r->consumer_tail >= r->batch ||
266 r->consumer_head >= r->size)) {
267 /* Zero out entries in the reverse order: this way we touch the
268 * cache line that producer might currently be reading the last;
269 * producer won't make progress and touch other cache lines
270 * besides the first one until we write out all entries.
271 */
272 while (likely(head >= r->consumer_tail))
273 r->queue[head--] = NULL;
274 r->consumer_tail = r->consumer_head;
275 }
276 if (unlikely(r->consumer_head >= r->size)) {
277 r->consumer_head = 0;
278 r->consumer_tail = 0;
279 }
280 }
281
282 static inline void *__ptr_ring_consume(struct ptr_ring *r)
283 {
284 void *ptr;
285
286 ptr = __ptr_ring_peek(r);
287 if (ptr)
288 __ptr_ring_discard_one(r);
289
290 /* Make sure anyone accessing data through the pointer is up to date. */
291 /* Pairs with smp_wmb in __ptr_ring_produce. */
292 smp_read_barrier_depends();
293 return ptr;
294 }
295
296 static inline int __ptr_ring_consume_batched(struct ptr_ring *r,
297 void **array, int n)
298 {
299 void *ptr;
300 int i;
301
302 for (i = 0; i < n; i++) {
303 ptr = __ptr_ring_consume(r);
304 if (!ptr)
305 break;
306 array[i] = ptr;
307 }
308
309 return i;
310 }
311
312 /*
313 * Note: resize (below) nests producer lock within consumer lock, so if you
314 * call this in interrupt or BH context, you must disable interrupts/BH when
315 * producing.
316 */
317 static inline void *ptr_ring_consume(struct ptr_ring *r)
318 {
319 void *ptr;
320
321 spin_lock(&r->consumer_lock);
322 ptr = __ptr_ring_consume(r);
323 spin_unlock(&r->consumer_lock);
324
325 return ptr;
326 }
327
328 static inline void *ptr_ring_consume_irq(struct ptr_ring *r)
329 {
330 void *ptr;
331
332 spin_lock_irq(&r->consumer_lock);
333 ptr = __ptr_ring_consume(r);
334 spin_unlock_irq(&r->consumer_lock);
335
336 return ptr;
337 }
338
339 static inline void *ptr_ring_consume_any(struct ptr_ring *r)
340 {
341 unsigned long flags;
342 void *ptr;
343
344 spin_lock_irqsave(&r->consumer_lock, flags);
345 ptr = __ptr_ring_consume(r);
346 spin_unlock_irqrestore(&r->consumer_lock, flags);
347
348 return ptr;
349 }
350
351 static inline void *ptr_ring_consume_bh(struct ptr_ring *r)
352 {
353 void *ptr;
354
355 spin_lock_bh(&r->consumer_lock);
356 ptr = __ptr_ring_consume(r);
357 spin_unlock_bh(&r->consumer_lock);
358
359 return ptr;
360 }
361
362 static inline int ptr_ring_consume_batched(struct ptr_ring *r,
363 void **array, int n)
364 {
365 int ret;
366
367 spin_lock(&r->consumer_lock);
368 ret = __ptr_ring_consume_batched(r, array, n);
369 spin_unlock(&r->consumer_lock);
370
371 return ret;
372 }
373
374 static inline int ptr_ring_consume_batched_irq(struct ptr_ring *r,
375 void **array, int n)
376 {
377 int ret;
378
379 spin_lock_irq(&r->consumer_lock);
380 ret = __ptr_ring_consume_batched(r, array, n);
381 spin_unlock_irq(&r->consumer_lock);
382
383 return ret;
384 }
385
386 static inline int ptr_ring_consume_batched_any(struct ptr_ring *r,
387 void **array, int n)
388 {
389 unsigned long flags;
390 int ret;
391
392 spin_lock_irqsave(&r->consumer_lock, flags);
393 ret = __ptr_ring_consume_batched(r, array, n);
394 spin_unlock_irqrestore(&r->consumer_lock, flags);
395
396 return ret;
397 }
398
399 static inline int ptr_ring_consume_batched_bh(struct ptr_ring *r,
400 void **array, int n)
401 {
402 int ret;
403
404 spin_lock_bh(&r->consumer_lock);
405 ret = __ptr_ring_consume_batched(r, array, n);
406 spin_unlock_bh(&r->consumer_lock);
407
408 return ret;
409 }
410
411 /* Cast to structure type and call a function without discarding from FIFO.
412 * Function must return a value.
413 * Callers must take consumer_lock.
414 */
415 #define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r)))
416
417 #define PTR_RING_PEEK_CALL(r, f) ({ \
418 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
419 \
420 spin_lock(&(r)->consumer_lock); \
421 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
422 spin_unlock(&(r)->consumer_lock); \
423 __PTR_RING_PEEK_CALL_v; \
424 })
425
426 #define PTR_RING_PEEK_CALL_IRQ(r, f) ({ \
427 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
428 \
429 spin_lock_irq(&(r)->consumer_lock); \
430 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
431 spin_unlock_irq(&(r)->consumer_lock); \
432 __PTR_RING_PEEK_CALL_v; \
433 })
434
435 #define PTR_RING_PEEK_CALL_BH(r, f) ({ \
436 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
437 \
438 spin_lock_bh(&(r)->consumer_lock); \
439 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
440 spin_unlock_bh(&(r)->consumer_lock); \
441 __PTR_RING_PEEK_CALL_v; \
442 })
443
444 #define PTR_RING_PEEK_CALL_ANY(r, f) ({ \
445 typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
446 unsigned long __PTR_RING_PEEK_CALL_f;\
447 \
448 spin_lock_irqsave(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
449 __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
450 spin_unlock_irqrestore(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
451 __PTR_RING_PEEK_CALL_v; \
452 })
453
454 /* Not all gfp_t flags (besides GFP_KERNEL) are allowed. See
455 * documentation for vmalloc for which of them are legal.
456 */
457 static inline void **__ptr_ring_init_queue_alloc(unsigned int size, gfp_t gfp)
458 {
459 if (size > KMALLOC_MAX_SIZE / sizeof(void *))
460 return NULL;
461 return kvmalloc_array(size, sizeof(void *), gfp | __GFP_ZERO);
462 }
463
464 static inline void __ptr_ring_set_size(struct ptr_ring *r, int size)
465 {
466 r->size = size;
467 r->batch = SMP_CACHE_BYTES * 2 / sizeof(*(r->queue));
468 /* We need to set batch at least to 1 to make logic
469 * in __ptr_ring_discard_one work correctly.
470 * Batching too much (because ring is small) would cause a lot of
471 * burstiness. Needs tuning, for now disable batching.
472 */
473 if (r->batch > r->size / 2 || !r->batch)
474 r->batch = 1;
475 }
476
477 static inline int ptr_ring_init(struct ptr_ring *r, int size, gfp_t gfp)
478 {
479 r->queue = __ptr_ring_init_queue_alloc(size, gfp);
480 if (!r->queue)
481 return -ENOMEM;
482
483 __ptr_ring_set_size(r, size);
484 r->producer = r->consumer_head = r->consumer_tail = 0;
485 spin_lock_init(&r->producer_lock);
486 spin_lock_init(&r->consumer_lock);
487
488 return 0;
489 }
490
491 /*
492 * Return entries into ring. Destroy entries that don't fit.
493 *
494 * Note: this is expected to be a rare slow path operation.
495 *
496 * Note: producer lock is nested within consumer lock, so if you
497 * resize you must make sure all uses nest correctly.
498 * In particular if you consume ring in interrupt or BH context, you must
499 * disable interrupts/BH when doing so.
500 */
501 static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n,
502 void (*destroy)(void *))
503 {
504 unsigned long flags;
505 int head;
506
507 spin_lock_irqsave(&r->consumer_lock, flags);
508 spin_lock(&r->producer_lock);
509
510 if (!r->size)
511 goto done;
512
513 /*
514 * Clean out buffered entries (for simplicity). This way following code
515 * can test entries for NULL and if not assume they are valid.
516 */
517 head = r->consumer_head - 1;
518 while (likely(head >= r->consumer_tail))
519 r->queue[head--] = NULL;
520 r->consumer_tail = r->consumer_head;
521
522 /*
523 * Go over entries in batch, start moving head back and copy entries.
524 * Stop when we run into previously unconsumed entries.
525 */
526 while (n) {
527 head = r->consumer_head - 1;
528 if (head < 0)
529 head = r->size - 1;
530 if (r->queue[head]) {
531 /* This batch entry will have to be destroyed. */
532 goto done;
533 }
534 r->queue[head] = batch[--n];
535 r->consumer_tail = r->consumer_head = head;
536 }
537
538 done:
539 /* Destroy all entries left in the batch. */
540 while (n)
541 destroy(batch[--n]);
542 spin_unlock(&r->producer_lock);
543 spin_unlock_irqrestore(&r->consumer_lock, flags);
544 }
545
546 static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue,
547 int size, gfp_t gfp,
548 void (*destroy)(void *))
549 {
550 int producer = 0;
551 void **old;
552 void *ptr;
553
554 while ((ptr = __ptr_ring_consume(r)))
555 if (producer < size)
556 queue[producer++] = ptr;
557 else if (destroy)
558 destroy(ptr);
559
560 __ptr_ring_set_size(r, size);
561 r->producer = producer;
562 r->consumer_head = 0;
563 r->consumer_tail = 0;
564 old = r->queue;
565 r->queue = queue;
566
567 return old;
568 }
569
570 /*
571 * Note: producer lock is nested within consumer lock, so if you
572 * resize you must make sure all uses nest correctly.
573 * In particular if you consume ring in interrupt or BH context, you must
574 * disable interrupts/BH when doing so.
575 */
576 static inline int ptr_ring_resize(struct ptr_ring *r, int size, gfp_t gfp,
577 void (*destroy)(void *))
578 {
579 unsigned long flags;
580 void **queue = __ptr_ring_init_queue_alloc(size, gfp);
581 void **old;
582
583 if (!queue)
584 return -ENOMEM;
585
586 spin_lock_irqsave(&(r)->consumer_lock, flags);
587 spin_lock(&(r)->producer_lock);
588
589 old = __ptr_ring_swap_queue(r, queue, size, gfp, destroy);
590
591 spin_unlock(&(r)->producer_lock);
592 spin_unlock_irqrestore(&(r)->consumer_lock, flags);
593
594 kvfree(old);
595
596 return 0;
597 }
598
599 /*
600 * Note: producer lock is nested within consumer lock, so if you
601 * resize you must make sure all uses nest correctly.
602 * In particular if you consume ring in interrupt or BH context, you must
603 * disable interrupts/BH when doing so.
604 */
605 static inline int ptr_ring_resize_multiple(struct ptr_ring **rings,
606 unsigned int nrings,
607 int size,
608 gfp_t gfp, void (*destroy)(void *))
609 {
610 unsigned long flags;
611 void ***queues;
612 int i;
613
614 queues = kmalloc_array(nrings, sizeof(*queues), gfp);
615 if (!queues)
616 goto noqueues;
617
618 for (i = 0; i < nrings; ++i) {
619 queues[i] = __ptr_ring_init_queue_alloc(size, gfp);
620 if (!queues[i])
621 goto nomem;
622 }
623
624 for (i = 0; i < nrings; ++i) {
625 spin_lock_irqsave(&(rings[i])->consumer_lock, flags);
626 spin_lock(&(rings[i])->producer_lock);
627 queues[i] = __ptr_ring_swap_queue(rings[i], queues[i],
628 size, gfp, destroy);
629 spin_unlock(&(rings[i])->producer_lock);
630 spin_unlock_irqrestore(&(rings[i])->consumer_lock, flags);
631 }
632
633 for (i = 0; i < nrings; ++i)
634 kvfree(queues[i]);
635
636 kfree(queues);
637
638 return 0;
639
640 nomem:
641 while (--i >= 0)
642 kvfree(queues[i]);
643
644 kfree(queues);
645
646 noqueues:
647 return -ENOMEM;
648 }
649
650 static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void *))
651 {
652 void *ptr;
653
654 if (destroy)
655 while ((ptr = ptr_ring_consume(r)))
656 destroy(ptr);
657 kvfree(r->queue);
658 }
659
660 #endif /* _LINUX_PTR_RING_H */