]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/auditsc.c
x86/speculation/mds: Conditionally clear CPU buffers on idle entry
[mirror_ubuntu-bionic-kernel.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78
79 #include "audit.h"
80
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
85
86 /* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
89
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
92
93 /* number of audit rules */
94 int audit_n_rules;
95
96 /* determines whether we collect data for signals sent */
97 int audit_signals;
98
99 struct audit_aux_data {
100 struct audit_aux_data *next;
101 int type;
102 };
103
104 #define AUDIT_AUX_IPCPERM 0
105
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS 16
108
109 struct audit_aux_data_pids {
110 struct audit_aux_data d;
111 pid_t target_pid[AUDIT_AUX_PIDS];
112 kuid_t target_auid[AUDIT_AUX_PIDS];
113 kuid_t target_uid[AUDIT_AUX_PIDS];
114 unsigned int target_sessionid[AUDIT_AUX_PIDS];
115 u32 target_sid[AUDIT_AUX_PIDS];
116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 int pid_count;
118 };
119
120 struct audit_aux_data_bprm_fcaps {
121 struct audit_aux_data d;
122 struct audit_cap_data fcap;
123 unsigned int fcap_ver;
124 struct audit_cap_data old_pcap;
125 struct audit_cap_data new_pcap;
126 };
127
128 struct audit_tree_refs {
129 struct audit_tree_refs *next;
130 struct audit_chunk *c[31];
131 };
132
133 static int audit_match_perm(struct audit_context *ctx, int mask)
134 {
135 unsigned n;
136 if (unlikely(!ctx))
137 return 0;
138 n = ctx->major;
139
140 switch (audit_classify_syscall(ctx->arch, n)) {
141 case 0: /* native */
142 if ((mask & AUDIT_PERM_WRITE) &&
143 audit_match_class(AUDIT_CLASS_WRITE, n))
144 return 1;
145 if ((mask & AUDIT_PERM_READ) &&
146 audit_match_class(AUDIT_CLASS_READ, n))
147 return 1;
148 if ((mask & AUDIT_PERM_ATTR) &&
149 audit_match_class(AUDIT_CLASS_CHATTR, n))
150 return 1;
151 return 0;
152 case 1: /* 32bit on biarch */
153 if ((mask & AUDIT_PERM_WRITE) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_READ) &&
157 audit_match_class(AUDIT_CLASS_READ_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_ATTR) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 return 1;
162 return 0;
163 case 2: /* open */
164 return mask & ACC_MODE(ctx->argv[1]);
165 case 3: /* openat */
166 return mask & ACC_MODE(ctx->argv[2]);
167 case 4: /* socketcall */
168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 case 5: /* execve */
170 return mask & AUDIT_PERM_EXEC;
171 default:
172 return 0;
173 }
174 }
175
176 static int audit_match_filetype(struct audit_context *ctx, int val)
177 {
178 struct audit_names *n;
179 umode_t mode = (umode_t)val;
180
181 if (unlikely(!ctx))
182 return 0;
183
184 list_for_each_entry(n, &ctx->names_list, list) {
185 if ((n->ino != AUDIT_INO_UNSET) &&
186 ((n->mode & S_IFMT) == mode))
187 return 1;
188 }
189
190 return 0;
191 }
192
193 /*
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
201 */
202
203 #ifdef CONFIG_AUDIT_TREE
204 static void audit_set_auditable(struct audit_context *ctx)
205 {
206 if (!ctx->prio) {
207 ctx->prio = 1;
208 ctx->current_state = AUDIT_RECORD_CONTEXT;
209 }
210 }
211
212 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
213 {
214 struct audit_tree_refs *p = ctx->trees;
215 int left = ctx->tree_count;
216 if (likely(left)) {
217 p->c[--left] = chunk;
218 ctx->tree_count = left;
219 return 1;
220 }
221 if (!p)
222 return 0;
223 p = p->next;
224 if (p) {
225 p->c[30] = chunk;
226 ctx->trees = p;
227 ctx->tree_count = 30;
228 return 1;
229 }
230 return 0;
231 }
232
233 static int grow_tree_refs(struct audit_context *ctx)
234 {
235 struct audit_tree_refs *p = ctx->trees;
236 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
237 if (!ctx->trees) {
238 ctx->trees = p;
239 return 0;
240 }
241 if (p)
242 p->next = ctx->trees;
243 else
244 ctx->first_trees = ctx->trees;
245 ctx->tree_count = 31;
246 return 1;
247 }
248 #endif
249
250 static void unroll_tree_refs(struct audit_context *ctx,
251 struct audit_tree_refs *p, int count)
252 {
253 #ifdef CONFIG_AUDIT_TREE
254 struct audit_tree_refs *q;
255 int n;
256 if (!p) {
257 /* we started with empty chain */
258 p = ctx->first_trees;
259 count = 31;
260 /* if the very first allocation has failed, nothing to do */
261 if (!p)
262 return;
263 }
264 n = count;
265 for (q = p; q != ctx->trees; q = q->next, n = 31) {
266 while (n--) {
267 audit_put_chunk(q->c[n]);
268 q->c[n] = NULL;
269 }
270 }
271 while (n-- > ctx->tree_count) {
272 audit_put_chunk(q->c[n]);
273 q->c[n] = NULL;
274 }
275 ctx->trees = p;
276 ctx->tree_count = count;
277 #endif
278 }
279
280 static void free_tree_refs(struct audit_context *ctx)
281 {
282 struct audit_tree_refs *p, *q;
283 for (p = ctx->first_trees; p; p = q) {
284 q = p->next;
285 kfree(p);
286 }
287 }
288
289 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
290 {
291 #ifdef CONFIG_AUDIT_TREE
292 struct audit_tree_refs *p;
293 int n;
294 if (!tree)
295 return 0;
296 /* full ones */
297 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
298 for (n = 0; n < 31; n++)
299 if (audit_tree_match(p->c[n], tree))
300 return 1;
301 }
302 /* partial */
303 if (p) {
304 for (n = ctx->tree_count; n < 31; n++)
305 if (audit_tree_match(p->c[n], tree))
306 return 1;
307 }
308 #endif
309 return 0;
310 }
311
312 static int audit_compare_uid(kuid_t uid,
313 struct audit_names *name,
314 struct audit_field *f,
315 struct audit_context *ctx)
316 {
317 struct audit_names *n;
318 int rc;
319
320 if (name) {
321 rc = audit_uid_comparator(uid, f->op, name->uid);
322 if (rc)
323 return rc;
324 }
325
326 if (ctx) {
327 list_for_each_entry(n, &ctx->names_list, list) {
328 rc = audit_uid_comparator(uid, f->op, n->uid);
329 if (rc)
330 return rc;
331 }
332 }
333 return 0;
334 }
335
336 static int audit_compare_gid(kgid_t gid,
337 struct audit_names *name,
338 struct audit_field *f,
339 struct audit_context *ctx)
340 {
341 struct audit_names *n;
342 int rc;
343
344 if (name) {
345 rc = audit_gid_comparator(gid, f->op, name->gid);
346 if (rc)
347 return rc;
348 }
349
350 if (ctx) {
351 list_for_each_entry(n, &ctx->names_list, list) {
352 rc = audit_gid_comparator(gid, f->op, n->gid);
353 if (rc)
354 return rc;
355 }
356 }
357 return 0;
358 }
359
360 static int audit_field_compare(struct task_struct *tsk,
361 const struct cred *cred,
362 struct audit_field *f,
363 struct audit_context *ctx,
364 struct audit_names *name)
365 {
366 switch (f->val) {
367 /* process to file object comparisons */
368 case AUDIT_COMPARE_UID_TO_OBJ_UID:
369 return audit_compare_uid(cred->uid, name, f, ctx);
370 case AUDIT_COMPARE_GID_TO_OBJ_GID:
371 return audit_compare_gid(cred->gid, name, f, ctx);
372 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
373 return audit_compare_uid(cred->euid, name, f, ctx);
374 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
375 return audit_compare_gid(cred->egid, name, f, ctx);
376 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
377 return audit_compare_uid(tsk->loginuid, name, f, ctx);
378 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
379 return audit_compare_uid(cred->suid, name, f, ctx);
380 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
381 return audit_compare_gid(cred->sgid, name, f, ctx);
382 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
383 return audit_compare_uid(cred->fsuid, name, f, ctx);
384 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
385 return audit_compare_gid(cred->fsgid, name, f, ctx);
386 /* uid comparisons */
387 case AUDIT_COMPARE_UID_TO_AUID:
388 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
389 case AUDIT_COMPARE_UID_TO_EUID:
390 return audit_uid_comparator(cred->uid, f->op, cred->euid);
391 case AUDIT_COMPARE_UID_TO_SUID:
392 return audit_uid_comparator(cred->uid, f->op, cred->suid);
393 case AUDIT_COMPARE_UID_TO_FSUID:
394 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
395 /* auid comparisons */
396 case AUDIT_COMPARE_AUID_TO_EUID:
397 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
398 case AUDIT_COMPARE_AUID_TO_SUID:
399 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
400 case AUDIT_COMPARE_AUID_TO_FSUID:
401 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
402 /* euid comparisons */
403 case AUDIT_COMPARE_EUID_TO_SUID:
404 return audit_uid_comparator(cred->euid, f->op, cred->suid);
405 case AUDIT_COMPARE_EUID_TO_FSUID:
406 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
407 /* suid comparisons */
408 case AUDIT_COMPARE_SUID_TO_FSUID:
409 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
410 /* gid comparisons */
411 case AUDIT_COMPARE_GID_TO_EGID:
412 return audit_gid_comparator(cred->gid, f->op, cred->egid);
413 case AUDIT_COMPARE_GID_TO_SGID:
414 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
415 case AUDIT_COMPARE_GID_TO_FSGID:
416 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
417 /* egid comparisons */
418 case AUDIT_COMPARE_EGID_TO_SGID:
419 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
420 case AUDIT_COMPARE_EGID_TO_FSGID:
421 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
422 /* sgid comparison */
423 case AUDIT_COMPARE_SGID_TO_FSGID:
424 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
425 default:
426 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
427 return 0;
428 }
429 return 0;
430 }
431
432 /* Determine if any context name data matches a rule's watch data */
433 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
434 * otherwise.
435 *
436 * If task_creation is true, this is an explicit indication that we are
437 * filtering a task rule at task creation time. This and tsk == current are
438 * the only situations where tsk->cred may be accessed without an rcu read lock.
439 */
440 static int audit_filter_rules(struct task_struct *tsk,
441 struct audit_krule *rule,
442 struct audit_context *ctx,
443 struct audit_names *name,
444 enum audit_state *state,
445 bool task_creation)
446 {
447 const struct cred *cred;
448 int i, need_sid = 1;
449 u32 sid;
450 unsigned int sessionid;
451
452 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
453
454 for (i = 0; i < rule->field_count; i++) {
455 struct audit_field *f = &rule->fields[i];
456 struct audit_names *n;
457 int result = 0;
458 pid_t pid;
459
460 switch (f->type) {
461 case AUDIT_PID:
462 pid = task_tgid_nr(tsk);
463 result = audit_comparator(pid, f->op, f->val);
464 break;
465 case AUDIT_PPID:
466 if (ctx) {
467 if (!ctx->ppid)
468 ctx->ppid = task_ppid_nr(tsk);
469 result = audit_comparator(ctx->ppid, f->op, f->val);
470 }
471 break;
472 case AUDIT_EXE:
473 result = audit_exe_compare(tsk, rule->exe);
474 if (f->op == Audit_not_equal)
475 result = !result;
476 break;
477 case AUDIT_UID:
478 result = audit_uid_comparator(cred->uid, f->op, f->uid);
479 break;
480 case AUDIT_EUID:
481 result = audit_uid_comparator(cred->euid, f->op, f->uid);
482 break;
483 case AUDIT_SUID:
484 result = audit_uid_comparator(cred->suid, f->op, f->uid);
485 break;
486 case AUDIT_FSUID:
487 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
488 break;
489 case AUDIT_GID:
490 result = audit_gid_comparator(cred->gid, f->op, f->gid);
491 if (f->op == Audit_equal) {
492 if (!result)
493 result = in_group_p(f->gid);
494 } else if (f->op == Audit_not_equal) {
495 if (result)
496 result = !in_group_p(f->gid);
497 }
498 break;
499 case AUDIT_EGID:
500 result = audit_gid_comparator(cred->egid, f->op, f->gid);
501 if (f->op == Audit_equal) {
502 if (!result)
503 result = in_egroup_p(f->gid);
504 } else if (f->op == Audit_not_equal) {
505 if (result)
506 result = !in_egroup_p(f->gid);
507 }
508 break;
509 case AUDIT_SGID:
510 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
511 break;
512 case AUDIT_FSGID:
513 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
514 break;
515 case AUDIT_SESSIONID:
516 sessionid = audit_get_sessionid(current);
517 result = audit_comparator(sessionid, f->op, f->val);
518 break;
519 case AUDIT_PERS:
520 result = audit_comparator(tsk->personality, f->op, f->val);
521 break;
522 case AUDIT_ARCH:
523 if (ctx)
524 result = audit_comparator(ctx->arch, f->op, f->val);
525 break;
526
527 case AUDIT_EXIT:
528 if (ctx && ctx->return_valid)
529 result = audit_comparator(ctx->return_code, f->op, f->val);
530 break;
531 case AUDIT_SUCCESS:
532 if (ctx && ctx->return_valid) {
533 if (f->val)
534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
535 else
536 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
537 }
538 break;
539 case AUDIT_DEVMAJOR:
540 if (name) {
541 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
542 audit_comparator(MAJOR(name->rdev), f->op, f->val))
543 ++result;
544 } else if (ctx) {
545 list_for_each_entry(n, &ctx->names_list, list) {
546 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
547 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
548 ++result;
549 break;
550 }
551 }
552 }
553 break;
554 case AUDIT_DEVMINOR:
555 if (name) {
556 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
557 audit_comparator(MINOR(name->rdev), f->op, f->val))
558 ++result;
559 } else if (ctx) {
560 list_for_each_entry(n, &ctx->names_list, list) {
561 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
562 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
563 ++result;
564 break;
565 }
566 }
567 }
568 break;
569 case AUDIT_INODE:
570 if (name)
571 result = audit_comparator(name->ino, f->op, f->val);
572 else if (ctx) {
573 list_for_each_entry(n, &ctx->names_list, list) {
574 if (audit_comparator(n->ino, f->op, f->val)) {
575 ++result;
576 break;
577 }
578 }
579 }
580 break;
581 case AUDIT_OBJ_UID:
582 if (name) {
583 result = audit_uid_comparator(name->uid, f->op, f->uid);
584 } else if (ctx) {
585 list_for_each_entry(n, &ctx->names_list, list) {
586 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
587 ++result;
588 break;
589 }
590 }
591 }
592 break;
593 case AUDIT_OBJ_GID:
594 if (name) {
595 result = audit_gid_comparator(name->gid, f->op, f->gid);
596 } else if (ctx) {
597 list_for_each_entry(n, &ctx->names_list, list) {
598 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
599 ++result;
600 break;
601 }
602 }
603 }
604 break;
605 case AUDIT_WATCH:
606 if (name)
607 result = audit_watch_compare(rule->watch, name->ino, name->dev);
608 break;
609 case AUDIT_DIR:
610 if (ctx)
611 result = match_tree_refs(ctx, rule->tree);
612 break;
613 case AUDIT_LOGINUID:
614 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
615 break;
616 case AUDIT_LOGINUID_SET:
617 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
618 break;
619 case AUDIT_SUBJ_USER:
620 case AUDIT_SUBJ_ROLE:
621 case AUDIT_SUBJ_TYPE:
622 case AUDIT_SUBJ_SEN:
623 case AUDIT_SUBJ_CLR:
624 /* NOTE: this may return negative values indicating
625 a temporary error. We simply treat this as a
626 match for now to avoid losing information that
627 may be wanted. An error message will also be
628 logged upon error */
629 if (f->lsm_rule) {
630 if (need_sid) {
631 security_task_getsecid(tsk, &sid);
632 need_sid = 0;
633 }
634 result = security_audit_rule_match(sid, f->type,
635 f->op,
636 f->lsm_rule,
637 ctx);
638 }
639 break;
640 case AUDIT_OBJ_USER:
641 case AUDIT_OBJ_ROLE:
642 case AUDIT_OBJ_TYPE:
643 case AUDIT_OBJ_LEV_LOW:
644 case AUDIT_OBJ_LEV_HIGH:
645 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
646 also applies here */
647 if (f->lsm_rule) {
648 /* Find files that match */
649 if (name) {
650 result = security_audit_rule_match(
651 name->osid, f->type, f->op,
652 f->lsm_rule, ctx);
653 } else if (ctx) {
654 list_for_each_entry(n, &ctx->names_list, list) {
655 if (security_audit_rule_match(n->osid, f->type,
656 f->op, f->lsm_rule,
657 ctx)) {
658 ++result;
659 break;
660 }
661 }
662 }
663 /* Find ipc objects that match */
664 if (!ctx || ctx->type != AUDIT_IPC)
665 break;
666 if (security_audit_rule_match(ctx->ipc.osid,
667 f->type, f->op,
668 f->lsm_rule, ctx))
669 ++result;
670 }
671 break;
672 case AUDIT_ARG0:
673 case AUDIT_ARG1:
674 case AUDIT_ARG2:
675 case AUDIT_ARG3:
676 if (ctx)
677 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
678 break;
679 case AUDIT_FILTERKEY:
680 /* ignore this field for filtering */
681 result = 1;
682 break;
683 case AUDIT_PERM:
684 result = audit_match_perm(ctx, f->val);
685 break;
686 case AUDIT_FILETYPE:
687 result = audit_match_filetype(ctx, f->val);
688 break;
689 case AUDIT_FIELD_COMPARE:
690 result = audit_field_compare(tsk, cred, f, ctx, name);
691 break;
692 }
693 if (!result)
694 return 0;
695 }
696
697 if (ctx) {
698 if (rule->prio <= ctx->prio)
699 return 0;
700 if (rule->filterkey) {
701 kfree(ctx->filterkey);
702 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
703 }
704 ctx->prio = rule->prio;
705 }
706 switch (rule->action) {
707 case AUDIT_NEVER:
708 *state = AUDIT_DISABLED;
709 break;
710 case AUDIT_ALWAYS:
711 *state = AUDIT_RECORD_CONTEXT;
712 break;
713 }
714 return 1;
715 }
716
717 /* At process creation time, we can determine if system-call auditing is
718 * completely disabled for this task. Since we only have the task
719 * structure at this point, we can only check uid and gid.
720 */
721 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
722 {
723 struct audit_entry *e;
724 enum audit_state state;
725
726 rcu_read_lock();
727 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
728 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
729 &state, true)) {
730 if (state == AUDIT_RECORD_CONTEXT)
731 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
732 rcu_read_unlock();
733 return state;
734 }
735 }
736 rcu_read_unlock();
737 return AUDIT_BUILD_CONTEXT;
738 }
739
740 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
741 {
742 int word, bit;
743
744 if (val > 0xffffffff)
745 return false;
746
747 word = AUDIT_WORD(val);
748 if (word >= AUDIT_BITMASK_SIZE)
749 return false;
750
751 bit = AUDIT_BIT(val);
752
753 return rule->mask[word] & bit;
754 }
755
756 /* At syscall entry and exit time, this filter is called if the
757 * audit_state is not low enough that auditing cannot take place, but is
758 * also not high enough that we already know we have to write an audit
759 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
760 */
761 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
762 struct audit_context *ctx,
763 struct list_head *list)
764 {
765 struct audit_entry *e;
766 enum audit_state state;
767
768 if (auditd_test_task(tsk))
769 return AUDIT_DISABLED;
770
771 rcu_read_lock();
772 if (!list_empty(list)) {
773 list_for_each_entry_rcu(e, list, list) {
774 if (audit_in_mask(&e->rule, ctx->major) &&
775 audit_filter_rules(tsk, &e->rule, ctx, NULL,
776 &state, false)) {
777 rcu_read_unlock();
778 ctx->current_state = state;
779 return state;
780 }
781 }
782 }
783 rcu_read_unlock();
784 return AUDIT_BUILD_CONTEXT;
785 }
786
787 /*
788 * Given an audit_name check the inode hash table to see if they match.
789 * Called holding the rcu read lock to protect the use of audit_inode_hash
790 */
791 static int audit_filter_inode_name(struct task_struct *tsk,
792 struct audit_names *n,
793 struct audit_context *ctx) {
794 int h = audit_hash_ino((u32)n->ino);
795 struct list_head *list = &audit_inode_hash[h];
796 struct audit_entry *e;
797 enum audit_state state;
798
799 if (list_empty(list))
800 return 0;
801
802 list_for_each_entry_rcu(e, list, list) {
803 if (audit_in_mask(&e->rule, ctx->major) &&
804 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
805 ctx->current_state = state;
806 return 1;
807 }
808 }
809
810 return 0;
811 }
812
813 /* At syscall exit time, this filter is called if any audit_names have been
814 * collected during syscall processing. We only check rules in sublists at hash
815 * buckets applicable to the inode numbers in audit_names.
816 * Regarding audit_state, same rules apply as for audit_filter_syscall().
817 */
818 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
819 {
820 struct audit_names *n;
821
822 if (auditd_test_task(tsk))
823 return;
824
825 rcu_read_lock();
826
827 list_for_each_entry(n, &ctx->names_list, list) {
828 if (audit_filter_inode_name(tsk, n, ctx))
829 break;
830 }
831 rcu_read_unlock();
832 }
833
834 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
835 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
836 int return_valid,
837 long return_code)
838 {
839 struct audit_context *context = tsk->audit_context;
840
841 if (!context)
842 return NULL;
843 context->return_valid = return_valid;
844
845 /*
846 * we need to fix up the return code in the audit logs if the actual
847 * return codes are later going to be fixed up by the arch specific
848 * signal handlers
849 *
850 * This is actually a test for:
851 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
852 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
853 *
854 * but is faster than a bunch of ||
855 */
856 if (unlikely(return_code <= -ERESTARTSYS) &&
857 (return_code >= -ERESTART_RESTARTBLOCK) &&
858 (return_code != -ENOIOCTLCMD))
859 context->return_code = -EINTR;
860 else
861 context->return_code = return_code;
862
863 if (context->in_syscall && !context->dummy) {
864 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
865 audit_filter_inodes(tsk, context);
866 }
867
868 tsk->audit_context = NULL;
869 return context;
870 }
871
872 static inline void audit_proctitle_free(struct audit_context *context)
873 {
874 kfree(context->proctitle.value);
875 context->proctitle.value = NULL;
876 context->proctitle.len = 0;
877 }
878
879 static inline void audit_free_names(struct audit_context *context)
880 {
881 struct audit_names *n, *next;
882
883 list_for_each_entry_safe(n, next, &context->names_list, list) {
884 list_del(&n->list);
885 if (n->name)
886 putname(n->name);
887 if (n->should_free)
888 kfree(n);
889 }
890 context->name_count = 0;
891 path_put(&context->pwd);
892 context->pwd.dentry = NULL;
893 context->pwd.mnt = NULL;
894 }
895
896 static inline void audit_free_aux(struct audit_context *context)
897 {
898 struct audit_aux_data *aux;
899
900 while ((aux = context->aux)) {
901 context->aux = aux->next;
902 kfree(aux);
903 }
904 while ((aux = context->aux_pids)) {
905 context->aux_pids = aux->next;
906 kfree(aux);
907 }
908 }
909
910 static inline struct audit_context *audit_alloc_context(enum audit_state state)
911 {
912 struct audit_context *context;
913
914 context = kzalloc(sizeof(*context), GFP_KERNEL);
915 if (!context)
916 return NULL;
917 context->state = state;
918 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
919 INIT_LIST_HEAD(&context->killed_trees);
920 INIT_LIST_HEAD(&context->names_list);
921 return context;
922 }
923
924 /**
925 * audit_alloc - allocate an audit context block for a task
926 * @tsk: task
927 *
928 * Filter on the task information and allocate a per-task audit context
929 * if necessary. Doing so turns on system call auditing for the
930 * specified task. This is called from copy_process, so no lock is
931 * needed.
932 */
933 int audit_alloc(struct task_struct *tsk)
934 {
935 struct audit_context *context;
936 enum audit_state state;
937 char *key = NULL;
938
939 if (likely(!audit_ever_enabled))
940 return 0; /* Return if not auditing. */
941
942 state = audit_filter_task(tsk, &key);
943 if (state == AUDIT_DISABLED) {
944 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
945 return 0;
946 }
947
948 if (!(context = audit_alloc_context(state))) {
949 kfree(key);
950 audit_log_lost("out of memory in audit_alloc");
951 return -ENOMEM;
952 }
953 context->filterkey = key;
954
955 tsk->audit_context = context;
956 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
957 return 0;
958 }
959
960 static inline void audit_free_context(struct audit_context *context)
961 {
962 audit_free_names(context);
963 unroll_tree_refs(context, NULL, 0);
964 free_tree_refs(context);
965 audit_free_aux(context);
966 kfree(context->filterkey);
967 kfree(context->sockaddr);
968 audit_proctitle_free(context);
969 kfree(context);
970 }
971
972 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
973 kuid_t auid, kuid_t uid, unsigned int sessionid,
974 u32 sid, char *comm)
975 {
976 struct audit_buffer *ab;
977 char *ctx = NULL;
978 u32 len;
979 int rc = 0;
980
981 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
982 if (!ab)
983 return rc;
984
985 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
986 from_kuid(&init_user_ns, auid),
987 from_kuid(&init_user_ns, uid), sessionid);
988 if (sid) {
989 if (security_secid_to_secctx(sid, &ctx, &len)) {
990 audit_log_format(ab, " obj=(none)");
991 rc = 1;
992 } else {
993 audit_log_format(ab, " obj=%s", ctx);
994 security_release_secctx(ctx, len);
995 }
996 }
997 audit_log_format(ab, " ocomm=");
998 audit_log_untrustedstring(ab, comm);
999 audit_log_end(ab);
1000
1001 return rc;
1002 }
1003
1004 static void audit_log_execve_info(struct audit_context *context,
1005 struct audit_buffer **ab)
1006 {
1007 long len_max;
1008 long len_rem;
1009 long len_full;
1010 long len_buf;
1011 long len_abuf = 0;
1012 long len_tmp;
1013 bool require_data;
1014 bool encode;
1015 unsigned int iter;
1016 unsigned int arg;
1017 char *buf_head;
1018 char *buf;
1019 const char __user *p = (const char __user *)current->mm->arg_start;
1020
1021 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1022 * data we put in the audit record for this argument (see the
1023 * code below) ... at this point in time 96 is plenty */
1024 char abuf[96];
1025
1026 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1027 * current value of 7500 is not as important as the fact that it
1028 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1029 * room if we go over a little bit in the logging below */
1030 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1031 len_max = MAX_EXECVE_AUDIT_LEN;
1032
1033 /* scratch buffer to hold the userspace args */
1034 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1035 if (!buf_head) {
1036 audit_panic("out of memory for argv string");
1037 return;
1038 }
1039 buf = buf_head;
1040
1041 audit_log_format(*ab, "argc=%d", context->execve.argc);
1042
1043 len_rem = len_max;
1044 len_buf = 0;
1045 len_full = 0;
1046 require_data = true;
1047 encode = false;
1048 iter = 0;
1049 arg = 0;
1050 do {
1051 /* NOTE: we don't ever want to trust this value for anything
1052 * serious, but the audit record format insists we
1053 * provide an argument length for really long arguments,
1054 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1055 * to use strncpy_from_user() to obtain this value for
1056 * recording in the log, although we don't use it
1057 * anywhere here to avoid a double-fetch problem */
1058 if (len_full == 0)
1059 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1060
1061 /* read more data from userspace */
1062 if (require_data) {
1063 /* can we make more room in the buffer? */
1064 if (buf != buf_head) {
1065 memmove(buf_head, buf, len_buf);
1066 buf = buf_head;
1067 }
1068
1069 /* fetch as much as we can of the argument */
1070 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1071 len_max - len_buf);
1072 if (len_tmp == -EFAULT) {
1073 /* unable to copy from userspace */
1074 send_sig(SIGKILL, current, 0);
1075 goto out;
1076 } else if (len_tmp == (len_max - len_buf)) {
1077 /* buffer is not large enough */
1078 require_data = true;
1079 /* NOTE: if we are going to span multiple
1080 * buffers force the encoding so we stand
1081 * a chance at a sane len_full value and
1082 * consistent record encoding */
1083 encode = true;
1084 len_full = len_full * 2;
1085 p += len_tmp;
1086 } else {
1087 require_data = false;
1088 if (!encode)
1089 encode = audit_string_contains_control(
1090 buf, len_tmp);
1091 /* try to use a trusted value for len_full */
1092 if (len_full < len_max)
1093 len_full = (encode ?
1094 len_tmp * 2 : len_tmp);
1095 p += len_tmp + 1;
1096 }
1097 len_buf += len_tmp;
1098 buf_head[len_buf] = '\0';
1099
1100 /* length of the buffer in the audit record? */
1101 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1102 }
1103
1104 /* write as much as we can to the audit log */
1105 if (len_buf > 0) {
1106 /* NOTE: some magic numbers here - basically if we
1107 * can't fit a reasonable amount of data into the
1108 * existing audit buffer, flush it and start with
1109 * a new buffer */
1110 if ((sizeof(abuf) + 8) > len_rem) {
1111 len_rem = len_max;
1112 audit_log_end(*ab);
1113 *ab = audit_log_start(context,
1114 GFP_KERNEL, AUDIT_EXECVE);
1115 if (!*ab)
1116 goto out;
1117 }
1118
1119 /* create the non-arg portion of the arg record */
1120 len_tmp = 0;
1121 if (require_data || (iter > 0) ||
1122 ((len_abuf + sizeof(abuf)) > len_rem)) {
1123 if (iter == 0) {
1124 len_tmp += snprintf(&abuf[len_tmp],
1125 sizeof(abuf) - len_tmp,
1126 " a%d_len=%lu",
1127 arg, len_full);
1128 }
1129 len_tmp += snprintf(&abuf[len_tmp],
1130 sizeof(abuf) - len_tmp,
1131 " a%d[%d]=", arg, iter++);
1132 } else
1133 len_tmp += snprintf(&abuf[len_tmp],
1134 sizeof(abuf) - len_tmp,
1135 " a%d=", arg);
1136 WARN_ON(len_tmp >= sizeof(abuf));
1137 abuf[sizeof(abuf) - 1] = '\0';
1138
1139 /* log the arg in the audit record */
1140 audit_log_format(*ab, "%s", abuf);
1141 len_rem -= len_tmp;
1142 len_tmp = len_buf;
1143 if (encode) {
1144 if (len_abuf > len_rem)
1145 len_tmp = len_rem / 2; /* encoding */
1146 audit_log_n_hex(*ab, buf, len_tmp);
1147 len_rem -= len_tmp * 2;
1148 len_abuf -= len_tmp * 2;
1149 } else {
1150 if (len_abuf > len_rem)
1151 len_tmp = len_rem - 2; /* quotes */
1152 audit_log_n_string(*ab, buf, len_tmp);
1153 len_rem -= len_tmp + 2;
1154 /* don't subtract the "2" because we still need
1155 * to add quotes to the remaining string */
1156 len_abuf -= len_tmp;
1157 }
1158 len_buf -= len_tmp;
1159 buf += len_tmp;
1160 }
1161
1162 /* ready to move to the next argument? */
1163 if ((len_buf == 0) && !require_data) {
1164 arg++;
1165 iter = 0;
1166 len_full = 0;
1167 require_data = true;
1168 encode = false;
1169 }
1170 } while (arg < context->execve.argc);
1171
1172 /* NOTE: the caller handles the final audit_log_end() call */
1173
1174 out:
1175 kfree(buf_head);
1176 }
1177
1178 static void show_special(struct audit_context *context, int *call_panic)
1179 {
1180 struct audit_buffer *ab;
1181 int i;
1182
1183 ab = audit_log_start(context, GFP_KERNEL, context->type);
1184 if (!ab)
1185 return;
1186
1187 switch (context->type) {
1188 case AUDIT_SOCKETCALL: {
1189 int nargs = context->socketcall.nargs;
1190 audit_log_format(ab, "nargs=%d", nargs);
1191 for (i = 0; i < nargs; i++)
1192 audit_log_format(ab, " a%d=%lx", i,
1193 context->socketcall.args[i]);
1194 break; }
1195 case AUDIT_IPC: {
1196 u32 osid = context->ipc.osid;
1197
1198 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1199 from_kuid(&init_user_ns, context->ipc.uid),
1200 from_kgid(&init_user_ns, context->ipc.gid),
1201 context->ipc.mode);
1202 if (osid) {
1203 char *ctx = NULL;
1204 u32 len;
1205 if (security_secid_to_secctx(osid, &ctx, &len)) {
1206 audit_log_format(ab, " osid=%u", osid);
1207 *call_panic = 1;
1208 } else {
1209 audit_log_format(ab, " obj=%s", ctx);
1210 security_release_secctx(ctx, len);
1211 }
1212 }
1213 if (context->ipc.has_perm) {
1214 audit_log_end(ab);
1215 ab = audit_log_start(context, GFP_KERNEL,
1216 AUDIT_IPC_SET_PERM);
1217 if (unlikely(!ab))
1218 return;
1219 audit_log_format(ab,
1220 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1221 context->ipc.qbytes,
1222 context->ipc.perm_uid,
1223 context->ipc.perm_gid,
1224 context->ipc.perm_mode);
1225 }
1226 break; }
1227 case AUDIT_MQ_OPEN:
1228 audit_log_format(ab,
1229 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1230 "mq_msgsize=%ld mq_curmsgs=%ld",
1231 context->mq_open.oflag, context->mq_open.mode,
1232 context->mq_open.attr.mq_flags,
1233 context->mq_open.attr.mq_maxmsg,
1234 context->mq_open.attr.mq_msgsize,
1235 context->mq_open.attr.mq_curmsgs);
1236 break;
1237 case AUDIT_MQ_SENDRECV:
1238 audit_log_format(ab,
1239 "mqdes=%d msg_len=%zd msg_prio=%u "
1240 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1241 context->mq_sendrecv.mqdes,
1242 context->mq_sendrecv.msg_len,
1243 context->mq_sendrecv.msg_prio,
1244 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1245 context->mq_sendrecv.abs_timeout.tv_nsec);
1246 break;
1247 case AUDIT_MQ_NOTIFY:
1248 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1249 context->mq_notify.mqdes,
1250 context->mq_notify.sigev_signo);
1251 break;
1252 case AUDIT_MQ_GETSETATTR: {
1253 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1254 audit_log_format(ab,
1255 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1256 "mq_curmsgs=%ld ",
1257 context->mq_getsetattr.mqdes,
1258 attr->mq_flags, attr->mq_maxmsg,
1259 attr->mq_msgsize, attr->mq_curmsgs);
1260 break; }
1261 case AUDIT_CAPSET:
1262 audit_log_format(ab, "pid=%d", context->capset.pid);
1263 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1264 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1265 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1266 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1267 break;
1268 case AUDIT_MMAP:
1269 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1270 context->mmap.flags);
1271 break;
1272 case AUDIT_EXECVE:
1273 audit_log_execve_info(context, &ab);
1274 break;
1275 case AUDIT_KERN_MODULE:
1276 audit_log_format(ab, "name=");
1277 audit_log_untrustedstring(ab, context->module.name);
1278 kfree(context->module.name);
1279 break;
1280 }
1281 audit_log_end(ab);
1282 }
1283
1284 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1285 {
1286 char *end = proctitle + len - 1;
1287 while (end > proctitle && !isprint(*end))
1288 end--;
1289
1290 /* catch the case where proctitle is only 1 non-print character */
1291 len = end - proctitle + 1;
1292 len -= isprint(proctitle[len-1]) == 0;
1293 return len;
1294 }
1295
1296 static void audit_log_proctitle(struct task_struct *tsk,
1297 struct audit_context *context)
1298 {
1299 int res;
1300 char *buf;
1301 char *msg = "(null)";
1302 int len = strlen(msg);
1303 struct audit_buffer *ab;
1304
1305 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1306 if (!ab)
1307 return; /* audit_panic or being filtered */
1308
1309 audit_log_format(ab, "proctitle=");
1310
1311 /* Not cached */
1312 if (!context->proctitle.value) {
1313 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1314 if (!buf)
1315 goto out;
1316 /* Historically called this from procfs naming */
1317 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1318 if (res == 0) {
1319 kfree(buf);
1320 goto out;
1321 }
1322 res = audit_proctitle_rtrim(buf, res);
1323 if (res == 0) {
1324 kfree(buf);
1325 goto out;
1326 }
1327 context->proctitle.value = buf;
1328 context->proctitle.len = res;
1329 }
1330 msg = context->proctitle.value;
1331 len = context->proctitle.len;
1332 out:
1333 audit_log_n_untrustedstring(ab, msg, len);
1334 audit_log_end(ab);
1335 }
1336
1337 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1338 {
1339 int i, call_panic = 0;
1340 struct audit_buffer *ab;
1341 struct audit_aux_data *aux;
1342 struct audit_names *n;
1343
1344 /* tsk == current */
1345 context->personality = tsk->personality;
1346
1347 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1348 if (!ab)
1349 return; /* audit_panic has been called */
1350 audit_log_format(ab, "arch=%x syscall=%d",
1351 context->arch, context->major);
1352 if (context->personality != PER_LINUX)
1353 audit_log_format(ab, " per=%lx", context->personality);
1354 if (context->return_valid)
1355 audit_log_format(ab, " success=%s exit=%ld",
1356 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1357 context->return_code);
1358
1359 audit_log_format(ab,
1360 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1361 context->argv[0],
1362 context->argv[1],
1363 context->argv[2],
1364 context->argv[3],
1365 context->name_count);
1366
1367 audit_log_task_info(ab, tsk);
1368 audit_log_key(ab, context->filterkey);
1369 audit_log_end(ab);
1370
1371 for (aux = context->aux; aux; aux = aux->next) {
1372
1373 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1374 if (!ab)
1375 continue; /* audit_panic has been called */
1376
1377 switch (aux->type) {
1378
1379 case AUDIT_BPRM_FCAPS: {
1380 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1381 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1382 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1383 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1384 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1385 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1386 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1387 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1388 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1389 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1390 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1391 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1392 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1393 break; }
1394
1395 }
1396 audit_log_end(ab);
1397 }
1398
1399 if (context->type)
1400 show_special(context, &call_panic);
1401
1402 if (context->fds[0] >= 0) {
1403 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1404 if (ab) {
1405 audit_log_format(ab, "fd0=%d fd1=%d",
1406 context->fds[0], context->fds[1]);
1407 audit_log_end(ab);
1408 }
1409 }
1410
1411 if (context->sockaddr_len) {
1412 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1413 if (ab) {
1414 audit_log_format(ab, "saddr=");
1415 audit_log_n_hex(ab, (void *)context->sockaddr,
1416 context->sockaddr_len);
1417 audit_log_end(ab);
1418 }
1419 }
1420
1421 for (aux = context->aux_pids; aux; aux = aux->next) {
1422 struct audit_aux_data_pids *axs = (void *)aux;
1423
1424 for (i = 0; i < axs->pid_count; i++)
1425 if (audit_log_pid_context(context, axs->target_pid[i],
1426 axs->target_auid[i],
1427 axs->target_uid[i],
1428 axs->target_sessionid[i],
1429 axs->target_sid[i],
1430 axs->target_comm[i]))
1431 call_panic = 1;
1432 }
1433
1434 if (context->target_pid &&
1435 audit_log_pid_context(context, context->target_pid,
1436 context->target_auid, context->target_uid,
1437 context->target_sessionid,
1438 context->target_sid, context->target_comm))
1439 call_panic = 1;
1440
1441 if (context->pwd.dentry && context->pwd.mnt) {
1442 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1443 if (ab) {
1444 audit_log_d_path(ab, "cwd=", &context->pwd);
1445 audit_log_end(ab);
1446 }
1447 }
1448
1449 i = 0;
1450 list_for_each_entry(n, &context->names_list, list) {
1451 if (n->hidden)
1452 continue;
1453 audit_log_name(context, n, NULL, i++, &call_panic);
1454 }
1455
1456 audit_log_proctitle(tsk, context);
1457
1458 /* Send end of event record to help user space know we are finished */
1459 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1460 if (ab)
1461 audit_log_end(ab);
1462 if (call_panic)
1463 audit_panic("error converting sid to string");
1464 }
1465
1466 /**
1467 * __audit_free - free a per-task audit context
1468 * @tsk: task whose audit context block to free
1469 *
1470 * Called from copy_process and do_exit
1471 */
1472 void __audit_free(struct task_struct *tsk)
1473 {
1474 struct audit_context *context;
1475
1476 context = audit_take_context(tsk, 0, 0);
1477 if (!context)
1478 return;
1479
1480 /* Check for system calls that do not go through the exit
1481 * function (e.g., exit_group), then free context block.
1482 * We use GFP_ATOMIC here because we might be doing this
1483 * in the context of the idle thread */
1484 /* that can happen only if we are called from do_exit() */
1485 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1486 audit_log_exit(context, tsk);
1487 if (!list_empty(&context->killed_trees))
1488 audit_kill_trees(&context->killed_trees);
1489
1490 audit_free_context(context);
1491 }
1492
1493 /**
1494 * __audit_syscall_entry - fill in an audit record at syscall entry
1495 * @major: major syscall type (function)
1496 * @a1: additional syscall register 1
1497 * @a2: additional syscall register 2
1498 * @a3: additional syscall register 3
1499 * @a4: additional syscall register 4
1500 *
1501 * Fill in audit context at syscall entry. This only happens if the
1502 * audit context was created when the task was created and the state or
1503 * filters demand the audit context be built. If the state from the
1504 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1505 * then the record will be written at syscall exit time (otherwise, it
1506 * will only be written if another part of the kernel requests that it
1507 * be written).
1508 */
1509 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1510 unsigned long a3, unsigned long a4)
1511 {
1512 struct task_struct *tsk = current;
1513 struct audit_context *context = tsk->audit_context;
1514 enum audit_state state;
1515
1516 if (!context)
1517 return;
1518
1519 BUG_ON(context->in_syscall || context->name_count);
1520
1521 if (!audit_enabled)
1522 return;
1523
1524 context->arch = syscall_get_arch();
1525 context->major = major;
1526 context->argv[0] = a1;
1527 context->argv[1] = a2;
1528 context->argv[2] = a3;
1529 context->argv[3] = a4;
1530
1531 state = context->state;
1532 context->dummy = !audit_n_rules;
1533 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1534 context->prio = 0;
1535 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1536 }
1537 if (state == AUDIT_DISABLED)
1538 return;
1539
1540 context->serial = 0;
1541 context->ctime = current_kernel_time64();
1542 context->in_syscall = 1;
1543 context->current_state = state;
1544 context->ppid = 0;
1545 }
1546
1547 /**
1548 * __audit_syscall_exit - deallocate audit context after a system call
1549 * @success: success value of the syscall
1550 * @return_code: return value of the syscall
1551 *
1552 * Tear down after system call. If the audit context has been marked as
1553 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1554 * filtering, or because some other part of the kernel wrote an audit
1555 * message), then write out the syscall information. In call cases,
1556 * free the names stored from getname().
1557 */
1558 void __audit_syscall_exit(int success, long return_code)
1559 {
1560 struct task_struct *tsk = current;
1561 struct audit_context *context;
1562
1563 if (success)
1564 success = AUDITSC_SUCCESS;
1565 else
1566 success = AUDITSC_FAILURE;
1567
1568 context = audit_take_context(tsk, success, return_code);
1569 if (!context)
1570 return;
1571
1572 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1573 audit_log_exit(context, tsk);
1574
1575 context->in_syscall = 0;
1576 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1577
1578 if (!list_empty(&context->killed_trees))
1579 audit_kill_trees(&context->killed_trees);
1580
1581 audit_free_names(context);
1582 unroll_tree_refs(context, NULL, 0);
1583 audit_free_aux(context);
1584 context->aux = NULL;
1585 context->aux_pids = NULL;
1586 context->target_pid = 0;
1587 context->target_sid = 0;
1588 context->sockaddr_len = 0;
1589 context->type = 0;
1590 context->fds[0] = -1;
1591 if (context->state != AUDIT_RECORD_CONTEXT) {
1592 kfree(context->filterkey);
1593 context->filterkey = NULL;
1594 }
1595 tsk->audit_context = context;
1596 }
1597
1598 static inline void handle_one(const struct inode *inode)
1599 {
1600 #ifdef CONFIG_AUDIT_TREE
1601 struct audit_context *context;
1602 struct audit_tree_refs *p;
1603 struct audit_chunk *chunk;
1604 int count;
1605 if (likely(!inode->i_fsnotify_marks))
1606 return;
1607 context = current->audit_context;
1608 p = context->trees;
1609 count = context->tree_count;
1610 rcu_read_lock();
1611 chunk = audit_tree_lookup(inode);
1612 rcu_read_unlock();
1613 if (!chunk)
1614 return;
1615 if (likely(put_tree_ref(context, chunk)))
1616 return;
1617 if (unlikely(!grow_tree_refs(context))) {
1618 pr_warn("out of memory, audit has lost a tree reference\n");
1619 audit_set_auditable(context);
1620 audit_put_chunk(chunk);
1621 unroll_tree_refs(context, p, count);
1622 return;
1623 }
1624 put_tree_ref(context, chunk);
1625 #endif
1626 }
1627
1628 static void handle_path(const struct dentry *dentry)
1629 {
1630 #ifdef CONFIG_AUDIT_TREE
1631 struct audit_context *context;
1632 struct audit_tree_refs *p;
1633 const struct dentry *d, *parent;
1634 struct audit_chunk *drop;
1635 unsigned long seq;
1636 int count;
1637
1638 context = current->audit_context;
1639 p = context->trees;
1640 count = context->tree_count;
1641 retry:
1642 drop = NULL;
1643 d = dentry;
1644 rcu_read_lock();
1645 seq = read_seqbegin(&rename_lock);
1646 for(;;) {
1647 struct inode *inode = d_backing_inode(d);
1648 if (inode && unlikely(inode->i_fsnotify_marks)) {
1649 struct audit_chunk *chunk;
1650 chunk = audit_tree_lookup(inode);
1651 if (chunk) {
1652 if (unlikely(!put_tree_ref(context, chunk))) {
1653 drop = chunk;
1654 break;
1655 }
1656 }
1657 }
1658 parent = d->d_parent;
1659 if (parent == d)
1660 break;
1661 d = parent;
1662 }
1663 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1664 rcu_read_unlock();
1665 if (!drop) {
1666 /* just a race with rename */
1667 unroll_tree_refs(context, p, count);
1668 goto retry;
1669 }
1670 audit_put_chunk(drop);
1671 if (grow_tree_refs(context)) {
1672 /* OK, got more space */
1673 unroll_tree_refs(context, p, count);
1674 goto retry;
1675 }
1676 /* too bad */
1677 pr_warn("out of memory, audit has lost a tree reference\n");
1678 unroll_tree_refs(context, p, count);
1679 audit_set_auditable(context);
1680 return;
1681 }
1682 rcu_read_unlock();
1683 #endif
1684 }
1685
1686 static struct audit_names *audit_alloc_name(struct audit_context *context,
1687 unsigned char type)
1688 {
1689 struct audit_names *aname;
1690
1691 if (context->name_count < AUDIT_NAMES) {
1692 aname = &context->preallocated_names[context->name_count];
1693 memset(aname, 0, sizeof(*aname));
1694 } else {
1695 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1696 if (!aname)
1697 return NULL;
1698 aname->should_free = true;
1699 }
1700
1701 aname->ino = AUDIT_INO_UNSET;
1702 aname->type = type;
1703 list_add_tail(&aname->list, &context->names_list);
1704
1705 context->name_count++;
1706 return aname;
1707 }
1708
1709 /**
1710 * __audit_reusename - fill out filename with info from existing entry
1711 * @uptr: userland ptr to pathname
1712 *
1713 * Search the audit_names list for the current audit context. If there is an
1714 * existing entry with a matching "uptr" then return the filename
1715 * associated with that audit_name. If not, return NULL.
1716 */
1717 struct filename *
1718 __audit_reusename(const __user char *uptr)
1719 {
1720 struct audit_context *context = current->audit_context;
1721 struct audit_names *n;
1722
1723 list_for_each_entry(n, &context->names_list, list) {
1724 if (!n->name)
1725 continue;
1726 if (n->name->uptr == uptr) {
1727 n->name->refcnt++;
1728 return n->name;
1729 }
1730 }
1731 return NULL;
1732 }
1733
1734 /**
1735 * __audit_getname - add a name to the list
1736 * @name: name to add
1737 *
1738 * Add a name to the list of audit names for this context.
1739 * Called from fs/namei.c:getname().
1740 */
1741 void __audit_getname(struct filename *name)
1742 {
1743 struct audit_context *context = current->audit_context;
1744 struct audit_names *n;
1745
1746 if (!context->in_syscall)
1747 return;
1748
1749 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1750 if (!n)
1751 return;
1752
1753 n->name = name;
1754 n->name_len = AUDIT_NAME_FULL;
1755 name->aname = n;
1756 name->refcnt++;
1757
1758 if (!context->pwd.dentry)
1759 get_fs_pwd(current->fs, &context->pwd);
1760 }
1761
1762 /**
1763 * __audit_inode - store the inode and device from a lookup
1764 * @name: name being audited
1765 * @dentry: dentry being audited
1766 * @flags: attributes for this particular entry
1767 */
1768 void __audit_inode(struct filename *name, const struct dentry *dentry,
1769 unsigned int flags)
1770 {
1771 struct audit_context *context = current->audit_context;
1772 struct inode *inode = d_backing_inode(dentry);
1773 struct audit_names *n;
1774 bool parent = flags & AUDIT_INODE_PARENT;
1775
1776 if (!context->in_syscall)
1777 return;
1778
1779 if (!name)
1780 goto out_alloc;
1781
1782 /*
1783 * If we have a pointer to an audit_names entry already, then we can
1784 * just use it directly if the type is correct.
1785 */
1786 n = name->aname;
1787 if (n) {
1788 if (parent) {
1789 if (n->type == AUDIT_TYPE_PARENT ||
1790 n->type == AUDIT_TYPE_UNKNOWN)
1791 goto out;
1792 } else {
1793 if (n->type != AUDIT_TYPE_PARENT)
1794 goto out;
1795 }
1796 }
1797
1798 list_for_each_entry_reverse(n, &context->names_list, list) {
1799 if (n->ino) {
1800 /* valid inode number, use that for the comparison */
1801 if (n->ino != inode->i_ino ||
1802 n->dev != inode->i_sb->s_dev)
1803 continue;
1804 } else if (n->name) {
1805 /* inode number has not been set, check the name */
1806 if (strcmp(n->name->name, name->name))
1807 continue;
1808 } else
1809 /* no inode and no name (?!) ... this is odd ... */
1810 continue;
1811
1812 /* match the correct record type */
1813 if (parent) {
1814 if (n->type == AUDIT_TYPE_PARENT ||
1815 n->type == AUDIT_TYPE_UNKNOWN)
1816 goto out;
1817 } else {
1818 if (n->type != AUDIT_TYPE_PARENT)
1819 goto out;
1820 }
1821 }
1822
1823 out_alloc:
1824 /* unable to find an entry with both a matching name and type */
1825 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1826 if (!n)
1827 return;
1828 if (name) {
1829 n->name = name;
1830 name->refcnt++;
1831 }
1832
1833 out:
1834 if (parent) {
1835 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1836 n->type = AUDIT_TYPE_PARENT;
1837 if (flags & AUDIT_INODE_HIDDEN)
1838 n->hidden = true;
1839 } else {
1840 n->name_len = AUDIT_NAME_FULL;
1841 n->type = AUDIT_TYPE_NORMAL;
1842 }
1843 handle_path(dentry);
1844 audit_copy_inode(n, dentry, inode);
1845 }
1846
1847 void __audit_file(const struct file *file)
1848 {
1849 __audit_inode(NULL, file->f_path.dentry, 0);
1850 }
1851
1852 /**
1853 * __audit_inode_child - collect inode info for created/removed objects
1854 * @parent: inode of dentry parent
1855 * @dentry: dentry being audited
1856 * @type: AUDIT_TYPE_* value that we're looking for
1857 *
1858 * For syscalls that create or remove filesystem objects, audit_inode
1859 * can only collect information for the filesystem object's parent.
1860 * This call updates the audit context with the child's information.
1861 * Syscalls that create a new filesystem object must be hooked after
1862 * the object is created. Syscalls that remove a filesystem object
1863 * must be hooked prior, in order to capture the target inode during
1864 * unsuccessful attempts.
1865 */
1866 void __audit_inode_child(struct inode *parent,
1867 const struct dentry *dentry,
1868 const unsigned char type)
1869 {
1870 struct audit_context *context = current->audit_context;
1871 struct inode *inode = d_backing_inode(dentry);
1872 const char *dname = dentry->d_name.name;
1873 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1874 struct audit_entry *e;
1875 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1876 int i;
1877
1878 if (!context->in_syscall)
1879 return;
1880
1881 rcu_read_lock();
1882 if (!list_empty(list)) {
1883 list_for_each_entry_rcu(e, list, list) {
1884 for (i = 0; i < e->rule.field_count; i++) {
1885 struct audit_field *f = &e->rule.fields[i];
1886
1887 if (f->type == AUDIT_FSTYPE) {
1888 if (audit_comparator(parent->i_sb->s_magic,
1889 f->op, f->val)) {
1890 if (e->rule.action == AUDIT_NEVER) {
1891 rcu_read_unlock();
1892 return;
1893 }
1894 }
1895 }
1896 }
1897 }
1898 }
1899 rcu_read_unlock();
1900
1901 if (inode)
1902 handle_one(inode);
1903
1904 /* look for a parent entry first */
1905 list_for_each_entry(n, &context->names_list, list) {
1906 if (!n->name ||
1907 (n->type != AUDIT_TYPE_PARENT &&
1908 n->type != AUDIT_TYPE_UNKNOWN))
1909 continue;
1910
1911 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1912 !audit_compare_dname_path(dname,
1913 n->name->name, n->name_len)) {
1914 if (n->type == AUDIT_TYPE_UNKNOWN)
1915 n->type = AUDIT_TYPE_PARENT;
1916 found_parent = n;
1917 break;
1918 }
1919 }
1920
1921 /* is there a matching child entry? */
1922 list_for_each_entry(n, &context->names_list, list) {
1923 /* can only match entries that have a name */
1924 if (!n->name ||
1925 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1926 continue;
1927
1928 if (!strcmp(dname, n->name->name) ||
1929 !audit_compare_dname_path(dname, n->name->name,
1930 found_parent ?
1931 found_parent->name_len :
1932 AUDIT_NAME_FULL)) {
1933 if (n->type == AUDIT_TYPE_UNKNOWN)
1934 n->type = type;
1935 found_child = n;
1936 break;
1937 }
1938 }
1939
1940 if (!found_parent) {
1941 /* create a new, "anonymous" parent record */
1942 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1943 if (!n)
1944 return;
1945 audit_copy_inode(n, NULL, parent);
1946 }
1947
1948 if (!found_child) {
1949 found_child = audit_alloc_name(context, type);
1950 if (!found_child)
1951 return;
1952
1953 /* Re-use the name belonging to the slot for a matching parent
1954 * directory. All names for this context are relinquished in
1955 * audit_free_names() */
1956 if (found_parent) {
1957 found_child->name = found_parent->name;
1958 found_child->name_len = AUDIT_NAME_FULL;
1959 found_child->name->refcnt++;
1960 }
1961 }
1962
1963 if (inode)
1964 audit_copy_inode(found_child, dentry, inode);
1965 else
1966 found_child->ino = AUDIT_INO_UNSET;
1967 }
1968 EXPORT_SYMBOL_GPL(__audit_inode_child);
1969
1970 /**
1971 * auditsc_get_stamp - get local copies of audit_context values
1972 * @ctx: audit_context for the task
1973 * @t: timespec64 to store time recorded in the audit_context
1974 * @serial: serial value that is recorded in the audit_context
1975 *
1976 * Also sets the context as auditable.
1977 */
1978 int auditsc_get_stamp(struct audit_context *ctx,
1979 struct timespec64 *t, unsigned int *serial)
1980 {
1981 if (!ctx->in_syscall)
1982 return 0;
1983 if (!ctx->serial)
1984 ctx->serial = audit_serial();
1985 t->tv_sec = ctx->ctime.tv_sec;
1986 t->tv_nsec = ctx->ctime.tv_nsec;
1987 *serial = ctx->serial;
1988 if (!ctx->prio) {
1989 ctx->prio = 1;
1990 ctx->current_state = AUDIT_RECORD_CONTEXT;
1991 }
1992 return 1;
1993 }
1994
1995 /* global counter which is incremented every time something logs in */
1996 static atomic_t session_id = ATOMIC_INIT(0);
1997
1998 static int audit_set_loginuid_perm(kuid_t loginuid)
1999 {
2000 /* if we are unset, we don't need privs */
2001 if (!audit_loginuid_set(current))
2002 return 0;
2003 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2004 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2005 return -EPERM;
2006 /* it is set, you need permission */
2007 if (!capable(CAP_AUDIT_CONTROL))
2008 return -EPERM;
2009 /* reject if this is not an unset and we don't allow that */
2010 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2011 return -EPERM;
2012 return 0;
2013 }
2014
2015 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2016 unsigned int oldsessionid, unsigned int sessionid,
2017 int rc)
2018 {
2019 struct audit_buffer *ab;
2020 uid_t uid, oldloginuid, loginuid;
2021 struct tty_struct *tty;
2022
2023 if (!audit_enabled)
2024 return;
2025
2026 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2027 if (!ab)
2028 return;
2029
2030 uid = from_kuid(&init_user_ns, task_uid(current));
2031 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2032 loginuid = from_kuid(&init_user_ns, kloginuid),
2033 tty = audit_get_tty(current);
2034
2035 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2036 audit_log_task_context(ab);
2037 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2038 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2039 oldsessionid, sessionid, !rc);
2040 audit_put_tty(tty);
2041 audit_log_end(ab);
2042 }
2043
2044 /**
2045 * audit_set_loginuid - set current task's audit_context loginuid
2046 * @loginuid: loginuid value
2047 *
2048 * Returns 0.
2049 *
2050 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2051 */
2052 int audit_set_loginuid(kuid_t loginuid)
2053 {
2054 struct task_struct *task = current;
2055 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2056 kuid_t oldloginuid;
2057 int rc;
2058
2059 oldloginuid = audit_get_loginuid(current);
2060 oldsessionid = audit_get_sessionid(current);
2061
2062 rc = audit_set_loginuid_perm(loginuid);
2063 if (rc)
2064 goto out;
2065
2066 /* are we setting or clearing? */
2067 if (uid_valid(loginuid)) {
2068 sessionid = (unsigned int)atomic_inc_return(&session_id);
2069 if (unlikely(sessionid == (unsigned int)-1))
2070 sessionid = (unsigned int)atomic_inc_return(&session_id);
2071 }
2072
2073 task->sessionid = sessionid;
2074 task->loginuid = loginuid;
2075 out:
2076 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2077 return rc;
2078 }
2079
2080 /**
2081 * __audit_mq_open - record audit data for a POSIX MQ open
2082 * @oflag: open flag
2083 * @mode: mode bits
2084 * @attr: queue attributes
2085 *
2086 */
2087 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2088 {
2089 struct audit_context *context = current->audit_context;
2090
2091 if (attr)
2092 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2093 else
2094 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2095
2096 context->mq_open.oflag = oflag;
2097 context->mq_open.mode = mode;
2098
2099 context->type = AUDIT_MQ_OPEN;
2100 }
2101
2102 /**
2103 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2104 * @mqdes: MQ descriptor
2105 * @msg_len: Message length
2106 * @msg_prio: Message priority
2107 * @abs_timeout: Message timeout in absolute time
2108 *
2109 */
2110 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2111 const struct timespec64 *abs_timeout)
2112 {
2113 struct audit_context *context = current->audit_context;
2114 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2115
2116 if (abs_timeout)
2117 memcpy(p, abs_timeout, sizeof(*p));
2118 else
2119 memset(p, 0, sizeof(*p));
2120
2121 context->mq_sendrecv.mqdes = mqdes;
2122 context->mq_sendrecv.msg_len = msg_len;
2123 context->mq_sendrecv.msg_prio = msg_prio;
2124
2125 context->type = AUDIT_MQ_SENDRECV;
2126 }
2127
2128 /**
2129 * __audit_mq_notify - record audit data for a POSIX MQ notify
2130 * @mqdes: MQ descriptor
2131 * @notification: Notification event
2132 *
2133 */
2134
2135 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2136 {
2137 struct audit_context *context = current->audit_context;
2138
2139 if (notification)
2140 context->mq_notify.sigev_signo = notification->sigev_signo;
2141 else
2142 context->mq_notify.sigev_signo = 0;
2143
2144 context->mq_notify.mqdes = mqdes;
2145 context->type = AUDIT_MQ_NOTIFY;
2146 }
2147
2148 /**
2149 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2150 * @mqdes: MQ descriptor
2151 * @mqstat: MQ flags
2152 *
2153 */
2154 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2155 {
2156 struct audit_context *context = current->audit_context;
2157 context->mq_getsetattr.mqdes = mqdes;
2158 context->mq_getsetattr.mqstat = *mqstat;
2159 context->type = AUDIT_MQ_GETSETATTR;
2160 }
2161
2162 /**
2163 * __audit_ipc_obj - record audit data for ipc object
2164 * @ipcp: ipc permissions
2165 *
2166 */
2167 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2168 {
2169 struct audit_context *context = current->audit_context;
2170 context->ipc.uid = ipcp->uid;
2171 context->ipc.gid = ipcp->gid;
2172 context->ipc.mode = ipcp->mode;
2173 context->ipc.has_perm = 0;
2174 security_ipc_getsecid(ipcp, &context->ipc.osid);
2175 context->type = AUDIT_IPC;
2176 }
2177
2178 /**
2179 * __audit_ipc_set_perm - record audit data for new ipc permissions
2180 * @qbytes: msgq bytes
2181 * @uid: msgq user id
2182 * @gid: msgq group id
2183 * @mode: msgq mode (permissions)
2184 *
2185 * Called only after audit_ipc_obj().
2186 */
2187 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2188 {
2189 struct audit_context *context = current->audit_context;
2190
2191 context->ipc.qbytes = qbytes;
2192 context->ipc.perm_uid = uid;
2193 context->ipc.perm_gid = gid;
2194 context->ipc.perm_mode = mode;
2195 context->ipc.has_perm = 1;
2196 }
2197
2198 void __audit_bprm(struct linux_binprm *bprm)
2199 {
2200 struct audit_context *context = current->audit_context;
2201
2202 context->type = AUDIT_EXECVE;
2203 context->execve.argc = bprm->argc;
2204 }
2205
2206
2207 /**
2208 * __audit_socketcall - record audit data for sys_socketcall
2209 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2210 * @args: args array
2211 *
2212 */
2213 int __audit_socketcall(int nargs, unsigned long *args)
2214 {
2215 struct audit_context *context = current->audit_context;
2216
2217 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2218 return -EINVAL;
2219 context->type = AUDIT_SOCKETCALL;
2220 context->socketcall.nargs = nargs;
2221 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2222 return 0;
2223 }
2224
2225 /**
2226 * __audit_fd_pair - record audit data for pipe and socketpair
2227 * @fd1: the first file descriptor
2228 * @fd2: the second file descriptor
2229 *
2230 */
2231 void __audit_fd_pair(int fd1, int fd2)
2232 {
2233 struct audit_context *context = current->audit_context;
2234 context->fds[0] = fd1;
2235 context->fds[1] = fd2;
2236 }
2237
2238 /**
2239 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2240 * @len: data length in user space
2241 * @a: data address in kernel space
2242 *
2243 * Returns 0 for success or NULL context or < 0 on error.
2244 */
2245 int __audit_sockaddr(int len, void *a)
2246 {
2247 struct audit_context *context = current->audit_context;
2248
2249 if (!context->sockaddr) {
2250 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2251 if (!p)
2252 return -ENOMEM;
2253 context->sockaddr = p;
2254 }
2255
2256 context->sockaddr_len = len;
2257 memcpy(context->sockaddr, a, len);
2258 return 0;
2259 }
2260
2261 void __audit_ptrace(struct task_struct *t)
2262 {
2263 struct audit_context *context = current->audit_context;
2264
2265 context->target_pid = task_tgid_nr(t);
2266 context->target_auid = audit_get_loginuid(t);
2267 context->target_uid = task_uid(t);
2268 context->target_sessionid = audit_get_sessionid(t);
2269 security_task_getsecid(t, &context->target_sid);
2270 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2271 }
2272
2273 /**
2274 * audit_signal_info - record signal info for shutting down audit subsystem
2275 * @sig: signal value
2276 * @t: task being signaled
2277 *
2278 * If the audit subsystem is being terminated, record the task (pid)
2279 * and uid that is doing that.
2280 */
2281 int audit_signal_info(int sig, struct task_struct *t)
2282 {
2283 struct audit_aux_data_pids *axp;
2284 struct task_struct *tsk = current;
2285 struct audit_context *ctx = tsk->audit_context;
2286 kuid_t uid = current_uid(), t_uid = task_uid(t);
2287
2288 if (auditd_test_task(t) &&
2289 (sig == SIGTERM || sig == SIGHUP ||
2290 sig == SIGUSR1 || sig == SIGUSR2)) {
2291 audit_sig_pid = task_tgid_nr(tsk);
2292 if (uid_valid(tsk->loginuid))
2293 audit_sig_uid = tsk->loginuid;
2294 else
2295 audit_sig_uid = uid;
2296 security_task_getsecid(tsk, &audit_sig_sid);
2297 }
2298
2299 if (!audit_signals || audit_dummy_context())
2300 return 0;
2301
2302 /* optimize the common case by putting first signal recipient directly
2303 * in audit_context */
2304 if (!ctx->target_pid) {
2305 ctx->target_pid = task_tgid_nr(t);
2306 ctx->target_auid = audit_get_loginuid(t);
2307 ctx->target_uid = t_uid;
2308 ctx->target_sessionid = audit_get_sessionid(t);
2309 security_task_getsecid(t, &ctx->target_sid);
2310 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2311 return 0;
2312 }
2313
2314 axp = (void *)ctx->aux_pids;
2315 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2316 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2317 if (!axp)
2318 return -ENOMEM;
2319
2320 axp->d.type = AUDIT_OBJ_PID;
2321 axp->d.next = ctx->aux_pids;
2322 ctx->aux_pids = (void *)axp;
2323 }
2324 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2325
2326 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2327 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2328 axp->target_uid[axp->pid_count] = t_uid;
2329 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2330 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2331 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2332 axp->pid_count++;
2333
2334 return 0;
2335 }
2336
2337 /**
2338 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2339 * @bprm: pointer to the bprm being processed
2340 * @new: the proposed new credentials
2341 * @old: the old credentials
2342 *
2343 * Simply check if the proc already has the caps given by the file and if not
2344 * store the priv escalation info for later auditing at the end of the syscall
2345 *
2346 * -Eric
2347 */
2348 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2349 const struct cred *new, const struct cred *old)
2350 {
2351 struct audit_aux_data_bprm_fcaps *ax;
2352 struct audit_context *context = current->audit_context;
2353 struct cpu_vfs_cap_data vcaps;
2354
2355 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2356 if (!ax)
2357 return -ENOMEM;
2358
2359 ax->d.type = AUDIT_BPRM_FCAPS;
2360 ax->d.next = context->aux;
2361 context->aux = (void *)ax;
2362
2363 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2364
2365 ax->fcap.permitted = vcaps.permitted;
2366 ax->fcap.inheritable = vcaps.inheritable;
2367 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2368 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2369
2370 ax->old_pcap.permitted = old->cap_permitted;
2371 ax->old_pcap.inheritable = old->cap_inheritable;
2372 ax->old_pcap.effective = old->cap_effective;
2373 ax->old_pcap.ambient = old->cap_ambient;
2374
2375 ax->new_pcap.permitted = new->cap_permitted;
2376 ax->new_pcap.inheritable = new->cap_inheritable;
2377 ax->new_pcap.effective = new->cap_effective;
2378 ax->new_pcap.ambient = new->cap_ambient;
2379 return 0;
2380 }
2381
2382 /**
2383 * __audit_log_capset - store information about the arguments to the capset syscall
2384 * @new: the new credentials
2385 * @old: the old (current) credentials
2386 *
2387 * Record the arguments userspace sent to sys_capset for later printing by the
2388 * audit system if applicable
2389 */
2390 void __audit_log_capset(const struct cred *new, const struct cred *old)
2391 {
2392 struct audit_context *context = current->audit_context;
2393 context->capset.pid = task_tgid_nr(current);
2394 context->capset.cap.effective = new->cap_effective;
2395 context->capset.cap.inheritable = new->cap_effective;
2396 context->capset.cap.permitted = new->cap_permitted;
2397 context->capset.cap.ambient = new->cap_ambient;
2398 context->type = AUDIT_CAPSET;
2399 }
2400
2401 void __audit_mmap_fd(int fd, int flags)
2402 {
2403 struct audit_context *context = current->audit_context;
2404 context->mmap.fd = fd;
2405 context->mmap.flags = flags;
2406 context->type = AUDIT_MMAP;
2407 }
2408
2409 void __audit_log_kern_module(char *name)
2410 {
2411 struct audit_context *context = current->audit_context;
2412
2413 context->module.name = kmalloc(strlen(name) + 1, GFP_KERNEL);
2414 strcpy(context->module.name, name);
2415 context->type = AUDIT_KERN_MODULE;
2416 }
2417
2418 void __audit_fanotify(unsigned int response)
2419 {
2420 audit_log(current->audit_context, GFP_KERNEL,
2421 AUDIT_FANOTIFY, "resp=%u", response);
2422 }
2423
2424 static void audit_log_task(struct audit_buffer *ab)
2425 {
2426 kuid_t auid, uid;
2427 kgid_t gid;
2428 unsigned int sessionid;
2429 char comm[sizeof(current->comm)];
2430
2431 auid = audit_get_loginuid(current);
2432 sessionid = audit_get_sessionid(current);
2433 current_uid_gid(&uid, &gid);
2434
2435 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2436 from_kuid(&init_user_ns, auid),
2437 from_kuid(&init_user_ns, uid),
2438 from_kgid(&init_user_ns, gid),
2439 sessionid);
2440 audit_log_task_context(ab);
2441 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2442 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2443 audit_log_d_path_exe(ab, current->mm);
2444 }
2445
2446 /**
2447 * audit_core_dumps - record information about processes that end abnormally
2448 * @signr: signal value
2449 *
2450 * If a process ends with a core dump, something fishy is going on and we
2451 * should record the event for investigation.
2452 */
2453 void audit_core_dumps(long signr)
2454 {
2455 struct audit_buffer *ab;
2456
2457 if (!audit_enabled)
2458 return;
2459
2460 if (signr == SIGQUIT) /* don't care for those */
2461 return;
2462
2463 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2464 if (unlikely(!ab))
2465 return;
2466 audit_log_task(ab);
2467 audit_log_format(ab, " sig=%ld res=1", signr);
2468 audit_log_end(ab);
2469 }
2470
2471 void __audit_seccomp(unsigned long syscall, long signr, int code)
2472 {
2473 struct audit_buffer *ab;
2474
2475 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2476 if (unlikely(!ab))
2477 return;
2478 audit_log_task(ab);
2479 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2480 signr, syscall_get_arch(), syscall,
2481 in_compat_syscall(), KSTK_EIP(current), code);
2482 audit_log_end(ab);
2483 }
2484
2485 struct list_head *audit_killed_trees(void)
2486 {
2487 struct audit_context *ctx = current->audit_context;
2488 if (likely(!ctx || !ctx->in_syscall))
2489 return NULL;
2490 return &ctx->killed_trees;
2491 }