]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/events/core.c
55f4bb5dcea9805952058ddb529d6ca86684c64b
[mirror_ubuntu-bionic-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61 struct task_struct *p;
62 remote_function_f func;
63 void *info;
64 int ret;
65 };
66
67 static void remote_function(void *data)
68 {
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 struct remote_function_call data = {
107 .p = p,
108 .func = func,
109 .info = info,
110 .ret = -EAGAIN,
111 };
112 int ret;
113
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
119
120 return ret;
121 }
122
123 /**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 struct remote_function_call data = {
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
154 {
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162 {
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197 struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201 };
202
203 static int event_function(void *info)
204 {
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
207 struct perf_event_context *ctx = event->ctx;
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 int ret = 0;
211
212 lockdep_assert_irqs_disabled();
213
214 perf_ctx_lock(cpuctx, task_ctx);
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
218 */
219 if (ctx->task) {
220 if (ctx->task != current) {
221 ret = -ESRCH;
222 goto unlock;
223 }
224
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 }
241
242 efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 perf_ctx_unlock(cpuctx, task_ctx);
245
246 return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 struct perf_event_context *ctx = event->ctx;
252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
258
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
267
268 if (!task) {
269 cpu_function_call(event->cpu, event_function, &efs);
270 return;
271 }
272
273 if (task == TASK_TOMBSTONE)
274 return;
275
276 again:
277 if (!task_function_call(task, event_function, &efs))
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
289 }
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
295 raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 lockdep_assert_irqs_disabled();
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342 unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
350
351 /*
352 * branch priv levels that need permission checks
353 */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
361 EVENT_TIME = 0x4,
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395 * perf event paranoia level:
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
398 * 1 - disallow cpu events for unpriv
399 * 2 - disallow kernel profiling for unpriv
400 * 3 - disallow all unpriv perf event use
401 */
402 #ifdef CONFIG_SECURITY_PERF_EVENTS_RESTRICT
403 int sysctl_perf_event_paranoid __read_mostly = 3;
404 #else
405 int sysctl_perf_event_paranoid __read_mostly = 1;
406 #endif
407
408 /* Minimum for 512 kiB + 1 user control page */
409 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
410
411 /*
412 * max perf event sample rate
413 */
414 #define DEFAULT_MAX_SAMPLE_RATE 100000
415 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
416 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
417
418 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
419
420 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
421 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
422
423 static int perf_sample_allowed_ns __read_mostly =
424 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
425
426 static void update_perf_cpu_limits(void)
427 {
428 u64 tmp = perf_sample_period_ns;
429
430 tmp *= sysctl_perf_cpu_time_max_percent;
431 tmp = div_u64(tmp, 100);
432 if (!tmp)
433 tmp = 1;
434
435 WRITE_ONCE(perf_sample_allowed_ns, tmp);
436 }
437
438 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
439
440 int perf_proc_update_handler(struct ctl_table *table, int write,
441 void __user *buffer, size_t *lenp,
442 loff_t *ppos)
443 {
444 int ret;
445 int perf_cpu = sysctl_perf_cpu_time_max_percent;
446 /*
447 * If throttling is disabled don't allow the write:
448 */
449 if (write && (perf_cpu == 100 || perf_cpu == 0))
450 return -EINVAL;
451
452 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
453 if (ret || !write)
454 return ret;
455
456 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
457 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
458 update_perf_cpu_limits();
459
460 return 0;
461 }
462
463 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
464
465 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
466 void __user *buffer, size_t *lenp,
467 loff_t *ppos)
468 {
469 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
470
471 if (ret || !write)
472 return ret;
473
474 if (sysctl_perf_cpu_time_max_percent == 100 ||
475 sysctl_perf_cpu_time_max_percent == 0) {
476 printk(KERN_WARNING
477 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
478 WRITE_ONCE(perf_sample_allowed_ns, 0);
479 } else {
480 update_perf_cpu_limits();
481 }
482
483 return 0;
484 }
485
486 /*
487 * perf samples are done in some very critical code paths (NMIs).
488 * If they take too much CPU time, the system can lock up and not
489 * get any real work done. This will drop the sample rate when
490 * we detect that events are taking too long.
491 */
492 #define NR_ACCUMULATED_SAMPLES 128
493 static DEFINE_PER_CPU(u64, running_sample_length);
494
495 static u64 __report_avg;
496 static u64 __report_allowed;
497
498 static void perf_duration_warn(struct irq_work *w)
499 {
500 printk_ratelimited(KERN_INFO
501 "perf: interrupt took too long (%lld > %lld), lowering "
502 "kernel.perf_event_max_sample_rate to %d\n",
503 __report_avg, __report_allowed,
504 sysctl_perf_event_sample_rate);
505 }
506
507 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
508
509 void perf_sample_event_took(u64 sample_len_ns)
510 {
511 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
512 u64 running_len;
513 u64 avg_len;
514 u32 max;
515
516 if (max_len == 0)
517 return;
518
519 /* Decay the counter by 1 average sample. */
520 running_len = __this_cpu_read(running_sample_length);
521 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
522 running_len += sample_len_ns;
523 __this_cpu_write(running_sample_length, running_len);
524
525 /*
526 * Note: this will be biased artifically low until we have
527 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
528 * from having to maintain a count.
529 */
530 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
531 if (avg_len <= max_len)
532 return;
533
534 __report_avg = avg_len;
535 __report_allowed = max_len;
536
537 /*
538 * Compute a throttle threshold 25% below the current duration.
539 */
540 avg_len += avg_len / 4;
541 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
542 if (avg_len < max)
543 max /= (u32)avg_len;
544 else
545 max = 1;
546
547 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
548 WRITE_ONCE(max_samples_per_tick, max);
549
550 sysctl_perf_event_sample_rate = max * HZ;
551 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
552
553 if (!irq_work_queue(&perf_duration_work)) {
554 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
555 "kernel.perf_event_max_sample_rate to %d\n",
556 __report_avg, __report_allowed,
557 sysctl_perf_event_sample_rate);
558 }
559 }
560
561 static atomic64_t perf_event_id;
562
563 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
564 enum event_type_t event_type);
565
566 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
567 enum event_type_t event_type,
568 struct task_struct *task);
569
570 static void update_context_time(struct perf_event_context *ctx);
571 static u64 perf_event_time(struct perf_event *event);
572
573 void __weak perf_event_print_debug(void) { }
574
575 extern __weak const char *perf_pmu_name(void)
576 {
577 return "pmu";
578 }
579
580 static inline u64 perf_clock(void)
581 {
582 return local_clock();
583 }
584
585 static inline u64 perf_event_clock(struct perf_event *event)
586 {
587 return event->clock();
588 }
589
590 /*
591 * State based event timekeeping...
592 *
593 * The basic idea is to use event->state to determine which (if any) time
594 * fields to increment with the current delta. This means we only need to
595 * update timestamps when we change state or when they are explicitly requested
596 * (read).
597 *
598 * Event groups make things a little more complicated, but not terribly so. The
599 * rules for a group are that if the group leader is OFF the entire group is
600 * OFF, irrespecive of what the group member states are. This results in
601 * __perf_effective_state().
602 *
603 * A futher ramification is that when a group leader flips between OFF and
604 * !OFF, we need to update all group member times.
605 *
606 *
607 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
608 * need to make sure the relevant context time is updated before we try and
609 * update our timestamps.
610 */
611
612 static __always_inline enum perf_event_state
613 __perf_effective_state(struct perf_event *event)
614 {
615 struct perf_event *leader = event->group_leader;
616
617 if (leader->state <= PERF_EVENT_STATE_OFF)
618 return leader->state;
619
620 return event->state;
621 }
622
623 static __always_inline void
624 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
625 {
626 enum perf_event_state state = __perf_effective_state(event);
627 u64 delta = now - event->tstamp;
628
629 *enabled = event->total_time_enabled;
630 if (state >= PERF_EVENT_STATE_INACTIVE)
631 *enabled += delta;
632
633 *running = event->total_time_running;
634 if (state >= PERF_EVENT_STATE_ACTIVE)
635 *running += delta;
636 }
637
638 static void perf_event_update_time(struct perf_event *event)
639 {
640 u64 now = perf_event_time(event);
641
642 __perf_update_times(event, now, &event->total_time_enabled,
643 &event->total_time_running);
644 event->tstamp = now;
645 }
646
647 static void perf_event_update_sibling_time(struct perf_event *leader)
648 {
649 struct perf_event *sibling;
650
651 list_for_each_entry(sibling, &leader->sibling_list, group_entry)
652 perf_event_update_time(sibling);
653 }
654
655 static void
656 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
657 {
658 if (event->state == state)
659 return;
660
661 perf_event_update_time(event);
662 /*
663 * If a group leader gets enabled/disabled all its siblings
664 * are affected too.
665 */
666 if ((event->state < 0) ^ (state < 0))
667 perf_event_update_sibling_time(event);
668
669 WRITE_ONCE(event->state, state);
670 }
671
672 #ifdef CONFIG_CGROUP_PERF
673
674 static inline bool
675 perf_cgroup_match(struct perf_event *event)
676 {
677 struct perf_event_context *ctx = event->ctx;
678 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
679
680 /* @event doesn't care about cgroup */
681 if (!event->cgrp)
682 return true;
683
684 /* wants specific cgroup scope but @cpuctx isn't associated with any */
685 if (!cpuctx->cgrp)
686 return false;
687
688 /*
689 * Cgroup scoping is recursive. An event enabled for a cgroup is
690 * also enabled for all its descendant cgroups. If @cpuctx's
691 * cgroup is a descendant of @event's (the test covers identity
692 * case), it's a match.
693 */
694 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
695 event->cgrp->css.cgroup);
696 }
697
698 static inline void perf_detach_cgroup(struct perf_event *event)
699 {
700 css_put(&event->cgrp->css);
701 event->cgrp = NULL;
702 }
703
704 static inline int is_cgroup_event(struct perf_event *event)
705 {
706 return event->cgrp != NULL;
707 }
708
709 static inline u64 perf_cgroup_event_time(struct perf_event *event)
710 {
711 struct perf_cgroup_info *t;
712
713 t = per_cpu_ptr(event->cgrp->info, event->cpu);
714 return t->time;
715 }
716
717 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
718 {
719 struct perf_cgroup_info *info;
720 u64 now;
721
722 now = perf_clock();
723
724 info = this_cpu_ptr(cgrp->info);
725
726 info->time += now - info->timestamp;
727 info->timestamp = now;
728 }
729
730 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
731 {
732 struct perf_cgroup *cgrp = cpuctx->cgrp;
733 struct cgroup_subsys_state *css;
734
735 if (cgrp) {
736 for (css = &cgrp->css; css; css = css->parent) {
737 cgrp = container_of(css, struct perf_cgroup, css);
738 __update_cgrp_time(cgrp);
739 }
740 }
741 }
742
743 static inline void update_cgrp_time_from_event(struct perf_event *event)
744 {
745 struct perf_cgroup *cgrp;
746
747 /*
748 * ensure we access cgroup data only when needed and
749 * when we know the cgroup is pinned (css_get)
750 */
751 if (!is_cgroup_event(event))
752 return;
753
754 cgrp = perf_cgroup_from_task(current, event->ctx);
755 /*
756 * Do not update time when cgroup is not active
757 */
758 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
759 __update_cgrp_time(event->cgrp);
760 }
761
762 static inline void
763 perf_cgroup_set_timestamp(struct task_struct *task,
764 struct perf_event_context *ctx)
765 {
766 struct perf_cgroup *cgrp;
767 struct perf_cgroup_info *info;
768 struct cgroup_subsys_state *css;
769
770 /*
771 * ctx->lock held by caller
772 * ensure we do not access cgroup data
773 * unless we have the cgroup pinned (css_get)
774 */
775 if (!task || !ctx->nr_cgroups)
776 return;
777
778 cgrp = perf_cgroup_from_task(task, ctx);
779
780 for (css = &cgrp->css; css; css = css->parent) {
781 cgrp = container_of(css, struct perf_cgroup, css);
782 info = this_cpu_ptr(cgrp->info);
783 info->timestamp = ctx->timestamp;
784 }
785 }
786
787 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
788
789 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
790 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
791
792 /*
793 * reschedule events based on the cgroup constraint of task.
794 *
795 * mode SWOUT : schedule out everything
796 * mode SWIN : schedule in based on cgroup for next
797 */
798 static void perf_cgroup_switch(struct task_struct *task, int mode)
799 {
800 struct perf_cpu_context *cpuctx;
801 struct list_head *list;
802 unsigned long flags;
803
804 /*
805 * Disable interrupts and preemption to avoid this CPU's
806 * cgrp_cpuctx_entry to change under us.
807 */
808 local_irq_save(flags);
809
810 list = this_cpu_ptr(&cgrp_cpuctx_list);
811 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
812 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
813
814 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
815 perf_pmu_disable(cpuctx->ctx.pmu);
816
817 if (mode & PERF_CGROUP_SWOUT) {
818 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
819 /*
820 * must not be done before ctxswout due
821 * to event_filter_match() in event_sched_out()
822 */
823 cpuctx->cgrp = NULL;
824 }
825
826 if (mode & PERF_CGROUP_SWIN) {
827 WARN_ON_ONCE(cpuctx->cgrp);
828 /*
829 * set cgrp before ctxsw in to allow
830 * event_filter_match() to not have to pass
831 * task around
832 * we pass the cpuctx->ctx to perf_cgroup_from_task()
833 * because cgorup events are only per-cpu
834 */
835 cpuctx->cgrp = perf_cgroup_from_task(task,
836 &cpuctx->ctx);
837 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
838 }
839 perf_pmu_enable(cpuctx->ctx.pmu);
840 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
841 }
842
843 local_irq_restore(flags);
844 }
845
846 static inline void perf_cgroup_sched_out(struct task_struct *task,
847 struct task_struct *next)
848 {
849 struct perf_cgroup *cgrp1;
850 struct perf_cgroup *cgrp2 = NULL;
851
852 rcu_read_lock();
853 /*
854 * we come here when we know perf_cgroup_events > 0
855 * we do not need to pass the ctx here because we know
856 * we are holding the rcu lock
857 */
858 cgrp1 = perf_cgroup_from_task(task, NULL);
859 cgrp2 = perf_cgroup_from_task(next, NULL);
860
861 /*
862 * only schedule out current cgroup events if we know
863 * that we are switching to a different cgroup. Otherwise,
864 * do no touch the cgroup events.
865 */
866 if (cgrp1 != cgrp2)
867 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
868
869 rcu_read_unlock();
870 }
871
872 static inline void perf_cgroup_sched_in(struct task_struct *prev,
873 struct task_struct *task)
874 {
875 struct perf_cgroup *cgrp1;
876 struct perf_cgroup *cgrp2 = NULL;
877
878 rcu_read_lock();
879 /*
880 * we come here when we know perf_cgroup_events > 0
881 * we do not need to pass the ctx here because we know
882 * we are holding the rcu lock
883 */
884 cgrp1 = perf_cgroup_from_task(task, NULL);
885 cgrp2 = perf_cgroup_from_task(prev, NULL);
886
887 /*
888 * only need to schedule in cgroup events if we are changing
889 * cgroup during ctxsw. Cgroup events were not scheduled
890 * out of ctxsw out if that was not the case.
891 */
892 if (cgrp1 != cgrp2)
893 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
894
895 rcu_read_unlock();
896 }
897
898 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
899 struct perf_event_attr *attr,
900 struct perf_event *group_leader)
901 {
902 struct perf_cgroup *cgrp;
903 struct cgroup_subsys_state *css;
904 struct fd f = fdget(fd);
905 int ret = 0;
906
907 if (!f.file)
908 return -EBADF;
909
910 css = css_tryget_online_from_dir(f.file->f_path.dentry,
911 &perf_event_cgrp_subsys);
912 if (IS_ERR(css)) {
913 ret = PTR_ERR(css);
914 goto out;
915 }
916
917 cgrp = container_of(css, struct perf_cgroup, css);
918 event->cgrp = cgrp;
919
920 /*
921 * all events in a group must monitor
922 * the same cgroup because a task belongs
923 * to only one perf cgroup at a time
924 */
925 if (group_leader && group_leader->cgrp != cgrp) {
926 perf_detach_cgroup(event);
927 ret = -EINVAL;
928 }
929 out:
930 fdput(f);
931 return ret;
932 }
933
934 static inline void
935 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
936 {
937 struct perf_cgroup_info *t;
938 t = per_cpu_ptr(event->cgrp->info, event->cpu);
939 event->shadow_ctx_time = now - t->timestamp;
940 }
941
942 /*
943 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
944 * cleared when last cgroup event is removed.
945 */
946 static inline void
947 list_update_cgroup_event(struct perf_event *event,
948 struct perf_event_context *ctx, bool add)
949 {
950 struct perf_cpu_context *cpuctx;
951 struct list_head *cpuctx_entry;
952
953 if (!is_cgroup_event(event))
954 return;
955
956 /*
957 * Because cgroup events are always per-cpu events,
958 * this will always be called from the right CPU.
959 */
960 cpuctx = __get_cpu_context(ctx);
961
962 /*
963 * Since setting cpuctx->cgrp is conditional on the current @cgrp
964 * matching the event's cgroup, we must do this for every new event,
965 * because if the first would mismatch, the second would not try again
966 * and we would leave cpuctx->cgrp unset.
967 */
968 if (add && !cpuctx->cgrp) {
969 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
970
971 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
972 cpuctx->cgrp = cgrp;
973 }
974
975 if (add && ctx->nr_cgroups++)
976 return;
977 else if (!add && --ctx->nr_cgroups)
978 return;
979
980 /* no cgroup running */
981 if (!add)
982 cpuctx->cgrp = NULL;
983
984 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
985 if (add)
986 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
987 else
988 list_del(cpuctx_entry);
989 }
990
991 #else /* !CONFIG_CGROUP_PERF */
992
993 static inline bool
994 perf_cgroup_match(struct perf_event *event)
995 {
996 return true;
997 }
998
999 static inline void perf_detach_cgroup(struct perf_event *event)
1000 {}
1001
1002 static inline int is_cgroup_event(struct perf_event *event)
1003 {
1004 return 0;
1005 }
1006
1007 static inline void update_cgrp_time_from_event(struct perf_event *event)
1008 {
1009 }
1010
1011 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1012 {
1013 }
1014
1015 static inline void perf_cgroup_sched_out(struct task_struct *task,
1016 struct task_struct *next)
1017 {
1018 }
1019
1020 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1021 struct task_struct *task)
1022 {
1023 }
1024
1025 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1026 struct perf_event_attr *attr,
1027 struct perf_event *group_leader)
1028 {
1029 return -EINVAL;
1030 }
1031
1032 static inline void
1033 perf_cgroup_set_timestamp(struct task_struct *task,
1034 struct perf_event_context *ctx)
1035 {
1036 }
1037
1038 void
1039 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1040 {
1041 }
1042
1043 static inline void
1044 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1045 {
1046 }
1047
1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050 return 0;
1051 }
1052
1053 static inline void
1054 list_update_cgroup_event(struct perf_event *event,
1055 struct perf_event_context *ctx, bool add)
1056 {
1057 }
1058
1059 #endif
1060
1061 /*
1062 * set default to be dependent on timer tick just
1063 * like original code
1064 */
1065 #define PERF_CPU_HRTIMER (1000 / HZ)
1066 /*
1067 * function must be called with interrupts disabled
1068 */
1069 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1070 {
1071 struct perf_cpu_context *cpuctx;
1072 int rotations = 0;
1073
1074 lockdep_assert_irqs_disabled();
1075
1076 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1077 rotations = perf_rotate_context(cpuctx);
1078
1079 raw_spin_lock(&cpuctx->hrtimer_lock);
1080 if (rotations)
1081 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1082 else
1083 cpuctx->hrtimer_active = 0;
1084 raw_spin_unlock(&cpuctx->hrtimer_lock);
1085
1086 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1087 }
1088
1089 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1090 {
1091 struct hrtimer *timer = &cpuctx->hrtimer;
1092 struct pmu *pmu = cpuctx->ctx.pmu;
1093 u64 interval;
1094
1095 /* no multiplexing needed for SW PMU */
1096 if (pmu->task_ctx_nr == perf_sw_context)
1097 return;
1098
1099 /*
1100 * check default is sane, if not set then force to
1101 * default interval (1/tick)
1102 */
1103 interval = pmu->hrtimer_interval_ms;
1104 if (interval < 1)
1105 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1106
1107 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1108
1109 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1110 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1111 timer->function = perf_mux_hrtimer_handler;
1112 }
1113
1114 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1115 {
1116 struct hrtimer *timer = &cpuctx->hrtimer;
1117 struct pmu *pmu = cpuctx->ctx.pmu;
1118 unsigned long flags;
1119
1120 /* not for SW PMU */
1121 if (pmu->task_ctx_nr == perf_sw_context)
1122 return 0;
1123
1124 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1125 if (!cpuctx->hrtimer_active) {
1126 cpuctx->hrtimer_active = 1;
1127 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1128 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1129 }
1130 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1131
1132 return 0;
1133 }
1134
1135 void perf_pmu_disable(struct pmu *pmu)
1136 {
1137 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1138 if (!(*count)++)
1139 pmu->pmu_disable(pmu);
1140 }
1141
1142 void perf_pmu_enable(struct pmu *pmu)
1143 {
1144 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1145 if (!--(*count))
1146 pmu->pmu_enable(pmu);
1147 }
1148
1149 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1150
1151 /*
1152 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1153 * perf_event_task_tick() are fully serialized because they're strictly cpu
1154 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1155 * disabled, while perf_event_task_tick is called from IRQ context.
1156 */
1157 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1158 {
1159 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1160
1161 lockdep_assert_irqs_disabled();
1162
1163 WARN_ON(!list_empty(&ctx->active_ctx_list));
1164
1165 list_add(&ctx->active_ctx_list, head);
1166 }
1167
1168 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1169 {
1170 lockdep_assert_irqs_disabled();
1171
1172 WARN_ON(list_empty(&ctx->active_ctx_list));
1173
1174 list_del_init(&ctx->active_ctx_list);
1175 }
1176
1177 static void get_ctx(struct perf_event_context *ctx)
1178 {
1179 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1180 }
1181
1182 static void free_ctx(struct rcu_head *head)
1183 {
1184 struct perf_event_context *ctx;
1185
1186 ctx = container_of(head, struct perf_event_context, rcu_head);
1187 kfree(ctx->task_ctx_data);
1188 kfree(ctx);
1189 }
1190
1191 static void put_ctx(struct perf_event_context *ctx)
1192 {
1193 if (atomic_dec_and_test(&ctx->refcount)) {
1194 if (ctx->parent_ctx)
1195 put_ctx(ctx->parent_ctx);
1196 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1197 put_task_struct(ctx->task);
1198 call_rcu(&ctx->rcu_head, free_ctx);
1199 }
1200 }
1201
1202 /*
1203 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1204 * perf_pmu_migrate_context() we need some magic.
1205 *
1206 * Those places that change perf_event::ctx will hold both
1207 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1208 *
1209 * Lock ordering is by mutex address. There are two other sites where
1210 * perf_event_context::mutex nests and those are:
1211 *
1212 * - perf_event_exit_task_context() [ child , 0 ]
1213 * perf_event_exit_event()
1214 * put_event() [ parent, 1 ]
1215 *
1216 * - perf_event_init_context() [ parent, 0 ]
1217 * inherit_task_group()
1218 * inherit_group()
1219 * inherit_event()
1220 * perf_event_alloc()
1221 * perf_init_event()
1222 * perf_try_init_event() [ child , 1 ]
1223 *
1224 * While it appears there is an obvious deadlock here -- the parent and child
1225 * nesting levels are inverted between the two. This is in fact safe because
1226 * life-time rules separate them. That is an exiting task cannot fork, and a
1227 * spawning task cannot (yet) exit.
1228 *
1229 * But remember that that these are parent<->child context relations, and
1230 * migration does not affect children, therefore these two orderings should not
1231 * interact.
1232 *
1233 * The change in perf_event::ctx does not affect children (as claimed above)
1234 * because the sys_perf_event_open() case will install a new event and break
1235 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1236 * concerned with cpuctx and that doesn't have children.
1237 *
1238 * The places that change perf_event::ctx will issue:
1239 *
1240 * perf_remove_from_context();
1241 * synchronize_rcu();
1242 * perf_install_in_context();
1243 *
1244 * to affect the change. The remove_from_context() + synchronize_rcu() should
1245 * quiesce the event, after which we can install it in the new location. This
1246 * means that only external vectors (perf_fops, prctl) can perturb the event
1247 * while in transit. Therefore all such accessors should also acquire
1248 * perf_event_context::mutex to serialize against this.
1249 *
1250 * However; because event->ctx can change while we're waiting to acquire
1251 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1252 * function.
1253 *
1254 * Lock order:
1255 * cred_guard_mutex
1256 * task_struct::perf_event_mutex
1257 * perf_event_context::mutex
1258 * perf_event::child_mutex;
1259 * perf_event_context::lock
1260 * perf_event::mmap_mutex
1261 * mmap_sem
1262 *
1263 * cpu_hotplug_lock
1264 * pmus_lock
1265 * cpuctx->mutex / perf_event_context::mutex
1266 */
1267 static struct perf_event_context *
1268 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1269 {
1270 struct perf_event_context *ctx;
1271
1272 again:
1273 rcu_read_lock();
1274 ctx = READ_ONCE(event->ctx);
1275 if (!atomic_inc_not_zero(&ctx->refcount)) {
1276 rcu_read_unlock();
1277 goto again;
1278 }
1279 rcu_read_unlock();
1280
1281 mutex_lock_nested(&ctx->mutex, nesting);
1282 if (event->ctx != ctx) {
1283 mutex_unlock(&ctx->mutex);
1284 put_ctx(ctx);
1285 goto again;
1286 }
1287
1288 return ctx;
1289 }
1290
1291 static inline struct perf_event_context *
1292 perf_event_ctx_lock(struct perf_event *event)
1293 {
1294 return perf_event_ctx_lock_nested(event, 0);
1295 }
1296
1297 static void perf_event_ctx_unlock(struct perf_event *event,
1298 struct perf_event_context *ctx)
1299 {
1300 mutex_unlock(&ctx->mutex);
1301 put_ctx(ctx);
1302 }
1303
1304 /*
1305 * This must be done under the ctx->lock, such as to serialize against
1306 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1307 * calling scheduler related locks and ctx->lock nests inside those.
1308 */
1309 static __must_check struct perf_event_context *
1310 unclone_ctx(struct perf_event_context *ctx)
1311 {
1312 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1313
1314 lockdep_assert_held(&ctx->lock);
1315
1316 if (parent_ctx)
1317 ctx->parent_ctx = NULL;
1318 ctx->generation++;
1319
1320 return parent_ctx;
1321 }
1322
1323 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1324 enum pid_type type)
1325 {
1326 u32 nr;
1327 /*
1328 * only top level events have the pid namespace they were created in
1329 */
1330 if (event->parent)
1331 event = event->parent;
1332
1333 nr = __task_pid_nr_ns(p, type, event->ns);
1334 /* avoid -1 if it is idle thread or runs in another ns */
1335 if (!nr && !pid_alive(p))
1336 nr = -1;
1337 return nr;
1338 }
1339
1340 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1341 {
1342 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1343 }
1344
1345 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1346 {
1347 return perf_event_pid_type(event, p, PIDTYPE_PID);
1348 }
1349
1350 /*
1351 * If we inherit events we want to return the parent event id
1352 * to userspace.
1353 */
1354 static u64 primary_event_id(struct perf_event *event)
1355 {
1356 u64 id = event->id;
1357
1358 if (event->parent)
1359 id = event->parent->id;
1360
1361 return id;
1362 }
1363
1364 /*
1365 * Get the perf_event_context for a task and lock it.
1366 *
1367 * This has to cope with with the fact that until it is locked,
1368 * the context could get moved to another task.
1369 */
1370 static struct perf_event_context *
1371 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1372 {
1373 struct perf_event_context *ctx;
1374
1375 retry:
1376 /*
1377 * One of the few rules of preemptible RCU is that one cannot do
1378 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1379 * part of the read side critical section was irqs-enabled -- see
1380 * rcu_read_unlock_special().
1381 *
1382 * Since ctx->lock nests under rq->lock we must ensure the entire read
1383 * side critical section has interrupts disabled.
1384 */
1385 local_irq_save(*flags);
1386 rcu_read_lock();
1387 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1388 if (ctx) {
1389 /*
1390 * If this context is a clone of another, it might
1391 * get swapped for another underneath us by
1392 * perf_event_task_sched_out, though the
1393 * rcu_read_lock() protects us from any context
1394 * getting freed. Lock the context and check if it
1395 * got swapped before we could get the lock, and retry
1396 * if so. If we locked the right context, then it
1397 * can't get swapped on us any more.
1398 */
1399 raw_spin_lock(&ctx->lock);
1400 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1401 raw_spin_unlock(&ctx->lock);
1402 rcu_read_unlock();
1403 local_irq_restore(*flags);
1404 goto retry;
1405 }
1406
1407 if (ctx->task == TASK_TOMBSTONE ||
1408 !atomic_inc_not_zero(&ctx->refcount)) {
1409 raw_spin_unlock(&ctx->lock);
1410 ctx = NULL;
1411 } else {
1412 WARN_ON_ONCE(ctx->task != task);
1413 }
1414 }
1415 rcu_read_unlock();
1416 if (!ctx)
1417 local_irq_restore(*flags);
1418 return ctx;
1419 }
1420
1421 /*
1422 * Get the context for a task and increment its pin_count so it
1423 * can't get swapped to another task. This also increments its
1424 * reference count so that the context can't get freed.
1425 */
1426 static struct perf_event_context *
1427 perf_pin_task_context(struct task_struct *task, int ctxn)
1428 {
1429 struct perf_event_context *ctx;
1430 unsigned long flags;
1431
1432 ctx = perf_lock_task_context(task, ctxn, &flags);
1433 if (ctx) {
1434 ++ctx->pin_count;
1435 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1436 }
1437 return ctx;
1438 }
1439
1440 static void perf_unpin_context(struct perf_event_context *ctx)
1441 {
1442 unsigned long flags;
1443
1444 raw_spin_lock_irqsave(&ctx->lock, flags);
1445 --ctx->pin_count;
1446 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1447 }
1448
1449 /*
1450 * Update the record of the current time in a context.
1451 */
1452 static void update_context_time(struct perf_event_context *ctx)
1453 {
1454 u64 now = perf_clock();
1455
1456 ctx->time += now - ctx->timestamp;
1457 ctx->timestamp = now;
1458 }
1459
1460 static u64 perf_event_time(struct perf_event *event)
1461 {
1462 struct perf_event_context *ctx = event->ctx;
1463
1464 if (is_cgroup_event(event))
1465 return perf_cgroup_event_time(event);
1466
1467 return ctx ? ctx->time : 0;
1468 }
1469
1470 static enum event_type_t get_event_type(struct perf_event *event)
1471 {
1472 struct perf_event_context *ctx = event->ctx;
1473 enum event_type_t event_type;
1474
1475 lockdep_assert_held(&ctx->lock);
1476
1477 /*
1478 * It's 'group type', really, because if our group leader is
1479 * pinned, so are we.
1480 */
1481 if (event->group_leader != event)
1482 event = event->group_leader;
1483
1484 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1485 if (!ctx->task)
1486 event_type |= EVENT_CPU;
1487
1488 return event_type;
1489 }
1490
1491 static struct list_head *
1492 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1493 {
1494 if (event->attr.pinned)
1495 return &ctx->pinned_groups;
1496 else
1497 return &ctx->flexible_groups;
1498 }
1499
1500 /*
1501 * Add a event from the lists for its context.
1502 * Must be called with ctx->mutex and ctx->lock held.
1503 */
1504 static void
1505 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1506 {
1507 lockdep_assert_held(&ctx->lock);
1508
1509 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1510 event->attach_state |= PERF_ATTACH_CONTEXT;
1511
1512 event->tstamp = perf_event_time(event);
1513
1514 /*
1515 * If we're a stand alone event or group leader, we go to the context
1516 * list, group events are kept attached to the group so that
1517 * perf_group_detach can, at all times, locate all siblings.
1518 */
1519 if (event->group_leader == event) {
1520 struct list_head *list;
1521
1522 event->group_caps = event->event_caps;
1523
1524 list = ctx_group_list(event, ctx);
1525 list_add_tail(&event->group_entry, list);
1526 }
1527
1528 list_update_cgroup_event(event, ctx, true);
1529
1530 list_add_rcu(&event->event_entry, &ctx->event_list);
1531 ctx->nr_events++;
1532 if (event->attr.inherit_stat)
1533 ctx->nr_stat++;
1534
1535 ctx->generation++;
1536 }
1537
1538 /*
1539 * Initialize event state based on the perf_event_attr::disabled.
1540 */
1541 static inline void perf_event__state_init(struct perf_event *event)
1542 {
1543 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1544 PERF_EVENT_STATE_INACTIVE;
1545 }
1546
1547 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1548 {
1549 int entry = sizeof(u64); /* value */
1550 int size = 0;
1551 int nr = 1;
1552
1553 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1554 size += sizeof(u64);
1555
1556 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1557 size += sizeof(u64);
1558
1559 if (event->attr.read_format & PERF_FORMAT_ID)
1560 entry += sizeof(u64);
1561
1562 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1563 nr += nr_siblings;
1564 size += sizeof(u64);
1565 }
1566
1567 size += entry * nr;
1568 event->read_size = size;
1569 }
1570
1571 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1572 {
1573 struct perf_sample_data *data;
1574 u16 size = 0;
1575
1576 if (sample_type & PERF_SAMPLE_IP)
1577 size += sizeof(data->ip);
1578
1579 if (sample_type & PERF_SAMPLE_ADDR)
1580 size += sizeof(data->addr);
1581
1582 if (sample_type & PERF_SAMPLE_PERIOD)
1583 size += sizeof(data->period);
1584
1585 if (sample_type & PERF_SAMPLE_WEIGHT)
1586 size += sizeof(data->weight);
1587
1588 if (sample_type & PERF_SAMPLE_READ)
1589 size += event->read_size;
1590
1591 if (sample_type & PERF_SAMPLE_DATA_SRC)
1592 size += sizeof(data->data_src.val);
1593
1594 if (sample_type & PERF_SAMPLE_TRANSACTION)
1595 size += sizeof(data->txn);
1596
1597 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1598 size += sizeof(data->phys_addr);
1599
1600 event->header_size = size;
1601 }
1602
1603 /*
1604 * Called at perf_event creation and when events are attached/detached from a
1605 * group.
1606 */
1607 static void perf_event__header_size(struct perf_event *event)
1608 {
1609 __perf_event_read_size(event,
1610 event->group_leader->nr_siblings);
1611 __perf_event_header_size(event, event->attr.sample_type);
1612 }
1613
1614 static void perf_event__id_header_size(struct perf_event *event)
1615 {
1616 struct perf_sample_data *data;
1617 u64 sample_type = event->attr.sample_type;
1618 u16 size = 0;
1619
1620 if (sample_type & PERF_SAMPLE_TID)
1621 size += sizeof(data->tid_entry);
1622
1623 if (sample_type & PERF_SAMPLE_TIME)
1624 size += sizeof(data->time);
1625
1626 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1627 size += sizeof(data->id);
1628
1629 if (sample_type & PERF_SAMPLE_ID)
1630 size += sizeof(data->id);
1631
1632 if (sample_type & PERF_SAMPLE_STREAM_ID)
1633 size += sizeof(data->stream_id);
1634
1635 if (sample_type & PERF_SAMPLE_CPU)
1636 size += sizeof(data->cpu_entry);
1637
1638 event->id_header_size = size;
1639 }
1640
1641 static bool perf_event_validate_size(struct perf_event *event)
1642 {
1643 /*
1644 * The values computed here will be over-written when we actually
1645 * attach the event.
1646 */
1647 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1648 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1649 perf_event__id_header_size(event);
1650
1651 /*
1652 * Sum the lot; should not exceed the 64k limit we have on records.
1653 * Conservative limit to allow for callchains and other variable fields.
1654 */
1655 if (event->read_size + event->header_size +
1656 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1657 return false;
1658
1659 return true;
1660 }
1661
1662 static void perf_group_attach(struct perf_event *event)
1663 {
1664 struct perf_event *group_leader = event->group_leader, *pos;
1665
1666 lockdep_assert_held(&event->ctx->lock);
1667
1668 /*
1669 * We can have double attach due to group movement in perf_event_open.
1670 */
1671 if (event->attach_state & PERF_ATTACH_GROUP)
1672 return;
1673
1674 event->attach_state |= PERF_ATTACH_GROUP;
1675
1676 if (group_leader == event)
1677 return;
1678
1679 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1680
1681 group_leader->group_caps &= event->event_caps;
1682
1683 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1684 group_leader->nr_siblings++;
1685
1686 perf_event__header_size(group_leader);
1687
1688 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1689 perf_event__header_size(pos);
1690 }
1691
1692 /*
1693 * Remove a event from the lists for its context.
1694 * Must be called with ctx->mutex and ctx->lock held.
1695 */
1696 static void
1697 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1698 {
1699 WARN_ON_ONCE(event->ctx != ctx);
1700 lockdep_assert_held(&ctx->lock);
1701
1702 /*
1703 * We can have double detach due to exit/hot-unplug + close.
1704 */
1705 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1706 return;
1707
1708 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1709
1710 list_update_cgroup_event(event, ctx, false);
1711
1712 ctx->nr_events--;
1713 if (event->attr.inherit_stat)
1714 ctx->nr_stat--;
1715
1716 list_del_rcu(&event->event_entry);
1717
1718 if (event->group_leader == event)
1719 list_del_init(&event->group_entry);
1720
1721 /*
1722 * If event was in error state, then keep it
1723 * that way, otherwise bogus counts will be
1724 * returned on read(). The only way to get out
1725 * of error state is by explicit re-enabling
1726 * of the event
1727 */
1728 if (event->state > PERF_EVENT_STATE_OFF)
1729 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1730
1731 ctx->generation++;
1732 }
1733
1734 static void perf_group_detach(struct perf_event *event)
1735 {
1736 struct perf_event *sibling, *tmp;
1737 struct list_head *list = NULL;
1738
1739 lockdep_assert_held(&event->ctx->lock);
1740
1741 /*
1742 * We can have double detach due to exit/hot-unplug + close.
1743 */
1744 if (!(event->attach_state & PERF_ATTACH_GROUP))
1745 return;
1746
1747 event->attach_state &= ~PERF_ATTACH_GROUP;
1748
1749 /*
1750 * If this is a sibling, remove it from its group.
1751 */
1752 if (event->group_leader != event) {
1753 list_del_init(&event->group_entry);
1754 event->group_leader->nr_siblings--;
1755 goto out;
1756 }
1757
1758 if (!list_empty(&event->group_entry))
1759 list = &event->group_entry;
1760
1761 /*
1762 * If this was a group event with sibling events then
1763 * upgrade the siblings to singleton events by adding them
1764 * to whatever list we are on.
1765 */
1766 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1767 if (list)
1768 list_move_tail(&sibling->group_entry, list);
1769 sibling->group_leader = sibling;
1770
1771 /* Inherit group flags from the previous leader */
1772 sibling->group_caps = event->group_caps;
1773
1774 WARN_ON_ONCE(sibling->ctx != event->ctx);
1775 }
1776
1777 out:
1778 perf_event__header_size(event->group_leader);
1779
1780 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1781 perf_event__header_size(tmp);
1782 }
1783
1784 static bool is_orphaned_event(struct perf_event *event)
1785 {
1786 return event->state == PERF_EVENT_STATE_DEAD;
1787 }
1788
1789 static inline int __pmu_filter_match(struct perf_event *event)
1790 {
1791 struct pmu *pmu = event->pmu;
1792 return pmu->filter_match ? pmu->filter_match(event) : 1;
1793 }
1794
1795 /*
1796 * Check whether we should attempt to schedule an event group based on
1797 * PMU-specific filtering. An event group can consist of HW and SW events,
1798 * potentially with a SW leader, so we must check all the filters, to
1799 * determine whether a group is schedulable:
1800 */
1801 static inline int pmu_filter_match(struct perf_event *event)
1802 {
1803 struct perf_event *child;
1804
1805 if (!__pmu_filter_match(event))
1806 return 0;
1807
1808 list_for_each_entry(child, &event->sibling_list, group_entry) {
1809 if (!__pmu_filter_match(child))
1810 return 0;
1811 }
1812
1813 return 1;
1814 }
1815
1816 static inline int
1817 event_filter_match(struct perf_event *event)
1818 {
1819 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1820 perf_cgroup_match(event) && pmu_filter_match(event);
1821 }
1822
1823 static void
1824 event_sched_out(struct perf_event *event,
1825 struct perf_cpu_context *cpuctx,
1826 struct perf_event_context *ctx)
1827 {
1828 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1829
1830 WARN_ON_ONCE(event->ctx != ctx);
1831 lockdep_assert_held(&ctx->lock);
1832
1833 if (event->state != PERF_EVENT_STATE_ACTIVE)
1834 return;
1835
1836 perf_pmu_disable(event->pmu);
1837
1838 event->pmu->del(event, 0);
1839 event->oncpu = -1;
1840
1841 if (READ_ONCE(event->pending_disable) >= 0) {
1842 WRITE_ONCE(event->pending_disable, -1);
1843 state = PERF_EVENT_STATE_OFF;
1844 }
1845 perf_event_set_state(event, state);
1846
1847 if (!is_software_event(event))
1848 cpuctx->active_oncpu--;
1849 if (!--ctx->nr_active)
1850 perf_event_ctx_deactivate(ctx);
1851 if (event->attr.freq && event->attr.sample_freq)
1852 ctx->nr_freq--;
1853 if (event->attr.exclusive || !cpuctx->active_oncpu)
1854 cpuctx->exclusive = 0;
1855
1856 perf_pmu_enable(event->pmu);
1857 }
1858
1859 static void
1860 group_sched_out(struct perf_event *group_event,
1861 struct perf_cpu_context *cpuctx,
1862 struct perf_event_context *ctx)
1863 {
1864 struct perf_event *event;
1865
1866 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1867 return;
1868
1869 perf_pmu_disable(ctx->pmu);
1870
1871 event_sched_out(group_event, cpuctx, ctx);
1872
1873 /*
1874 * Schedule out siblings (if any):
1875 */
1876 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1877 event_sched_out(event, cpuctx, ctx);
1878
1879 perf_pmu_enable(ctx->pmu);
1880
1881 if (group_event->attr.exclusive)
1882 cpuctx->exclusive = 0;
1883 }
1884
1885 #define DETACH_GROUP 0x01UL
1886
1887 /*
1888 * Cross CPU call to remove a performance event
1889 *
1890 * We disable the event on the hardware level first. After that we
1891 * remove it from the context list.
1892 */
1893 static void
1894 __perf_remove_from_context(struct perf_event *event,
1895 struct perf_cpu_context *cpuctx,
1896 struct perf_event_context *ctx,
1897 void *info)
1898 {
1899 unsigned long flags = (unsigned long)info;
1900
1901 if (ctx->is_active & EVENT_TIME) {
1902 update_context_time(ctx);
1903 update_cgrp_time_from_cpuctx(cpuctx);
1904 }
1905
1906 event_sched_out(event, cpuctx, ctx);
1907 if (flags & DETACH_GROUP)
1908 perf_group_detach(event);
1909 list_del_event(event, ctx);
1910
1911 if (!ctx->nr_events && ctx->is_active) {
1912 ctx->is_active = 0;
1913 if (ctx->task) {
1914 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1915 cpuctx->task_ctx = NULL;
1916 }
1917 }
1918 }
1919
1920 /*
1921 * Remove the event from a task's (or a CPU's) list of events.
1922 *
1923 * If event->ctx is a cloned context, callers must make sure that
1924 * every task struct that event->ctx->task could possibly point to
1925 * remains valid. This is OK when called from perf_release since
1926 * that only calls us on the top-level context, which can't be a clone.
1927 * When called from perf_event_exit_task, it's OK because the
1928 * context has been detached from its task.
1929 */
1930 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1931 {
1932 struct perf_event_context *ctx = event->ctx;
1933
1934 lockdep_assert_held(&ctx->mutex);
1935
1936 event_function_call(event, __perf_remove_from_context, (void *)flags);
1937
1938 /*
1939 * The above event_function_call() can NO-OP when it hits
1940 * TASK_TOMBSTONE. In that case we must already have been detached
1941 * from the context (by perf_event_exit_event()) but the grouping
1942 * might still be in-tact.
1943 */
1944 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1945 if ((flags & DETACH_GROUP) &&
1946 (event->attach_state & PERF_ATTACH_GROUP)) {
1947 /*
1948 * Since in that case we cannot possibly be scheduled, simply
1949 * detach now.
1950 */
1951 raw_spin_lock_irq(&ctx->lock);
1952 perf_group_detach(event);
1953 raw_spin_unlock_irq(&ctx->lock);
1954 }
1955 }
1956
1957 /*
1958 * Cross CPU call to disable a performance event
1959 */
1960 static void __perf_event_disable(struct perf_event *event,
1961 struct perf_cpu_context *cpuctx,
1962 struct perf_event_context *ctx,
1963 void *info)
1964 {
1965 if (event->state < PERF_EVENT_STATE_INACTIVE)
1966 return;
1967
1968 if (ctx->is_active & EVENT_TIME) {
1969 update_context_time(ctx);
1970 update_cgrp_time_from_event(event);
1971 }
1972
1973 if (event == event->group_leader)
1974 group_sched_out(event, cpuctx, ctx);
1975 else
1976 event_sched_out(event, cpuctx, ctx);
1977
1978 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1979 }
1980
1981 /*
1982 * Disable a event.
1983 *
1984 * If event->ctx is a cloned context, callers must make sure that
1985 * every task struct that event->ctx->task could possibly point to
1986 * remains valid. This condition is satisifed when called through
1987 * perf_event_for_each_child or perf_event_for_each because they
1988 * hold the top-level event's child_mutex, so any descendant that
1989 * goes to exit will block in perf_event_exit_event().
1990 *
1991 * When called from perf_pending_event it's OK because event->ctx
1992 * is the current context on this CPU and preemption is disabled,
1993 * hence we can't get into perf_event_task_sched_out for this context.
1994 */
1995 static void _perf_event_disable(struct perf_event *event)
1996 {
1997 struct perf_event_context *ctx = event->ctx;
1998
1999 raw_spin_lock_irq(&ctx->lock);
2000 if (event->state <= PERF_EVENT_STATE_OFF) {
2001 raw_spin_unlock_irq(&ctx->lock);
2002 return;
2003 }
2004 raw_spin_unlock_irq(&ctx->lock);
2005
2006 event_function_call(event, __perf_event_disable, NULL);
2007 }
2008
2009 void perf_event_disable_local(struct perf_event *event)
2010 {
2011 event_function_local(event, __perf_event_disable, NULL);
2012 }
2013
2014 /*
2015 * Strictly speaking kernel users cannot create groups and therefore this
2016 * interface does not need the perf_event_ctx_lock() magic.
2017 */
2018 void perf_event_disable(struct perf_event *event)
2019 {
2020 struct perf_event_context *ctx;
2021
2022 ctx = perf_event_ctx_lock(event);
2023 _perf_event_disable(event);
2024 perf_event_ctx_unlock(event, ctx);
2025 }
2026 EXPORT_SYMBOL_GPL(perf_event_disable);
2027
2028 void perf_event_disable_inatomic(struct perf_event *event)
2029 {
2030 WRITE_ONCE(event->pending_disable, smp_processor_id());
2031 /* can fail, see perf_pending_event_disable() */
2032 irq_work_queue(&event->pending);
2033 }
2034
2035 static void perf_set_shadow_time(struct perf_event *event,
2036 struct perf_event_context *ctx)
2037 {
2038 /*
2039 * use the correct time source for the time snapshot
2040 *
2041 * We could get by without this by leveraging the
2042 * fact that to get to this function, the caller
2043 * has most likely already called update_context_time()
2044 * and update_cgrp_time_xx() and thus both timestamp
2045 * are identical (or very close). Given that tstamp is,
2046 * already adjusted for cgroup, we could say that:
2047 * tstamp - ctx->timestamp
2048 * is equivalent to
2049 * tstamp - cgrp->timestamp.
2050 *
2051 * Then, in perf_output_read(), the calculation would
2052 * work with no changes because:
2053 * - event is guaranteed scheduled in
2054 * - no scheduled out in between
2055 * - thus the timestamp would be the same
2056 *
2057 * But this is a bit hairy.
2058 *
2059 * So instead, we have an explicit cgroup call to remain
2060 * within the time time source all along. We believe it
2061 * is cleaner and simpler to understand.
2062 */
2063 if (is_cgroup_event(event))
2064 perf_cgroup_set_shadow_time(event, event->tstamp);
2065 else
2066 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2067 }
2068
2069 #define MAX_INTERRUPTS (~0ULL)
2070
2071 static void perf_log_throttle(struct perf_event *event, int enable);
2072 static void perf_log_itrace_start(struct perf_event *event);
2073
2074 static int
2075 event_sched_in(struct perf_event *event,
2076 struct perf_cpu_context *cpuctx,
2077 struct perf_event_context *ctx)
2078 {
2079 int ret = 0;
2080
2081 lockdep_assert_held(&ctx->lock);
2082
2083 if (event->state <= PERF_EVENT_STATE_OFF)
2084 return 0;
2085
2086 WRITE_ONCE(event->oncpu, smp_processor_id());
2087 /*
2088 * Order event::oncpu write to happen before the ACTIVE state is
2089 * visible. This allows perf_event_{stop,read}() to observe the correct
2090 * ->oncpu if it sees ACTIVE.
2091 */
2092 smp_wmb();
2093 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2094
2095 /*
2096 * Unthrottle events, since we scheduled we might have missed several
2097 * ticks already, also for a heavily scheduling task there is little
2098 * guarantee it'll get a tick in a timely manner.
2099 */
2100 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2101 perf_log_throttle(event, 1);
2102 event->hw.interrupts = 0;
2103 }
2104
2105 perf_pmu_disable(event->pmu);
2106
2107 perf_set_shadow_time(event, ctx);
2108
2109 perf_log_itrace_start(event);
2110
2111 if (event->pmu->add(event, PERF_EF_START)) {
2112 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2113 event->oncpu = -1;
2114 ret = -EAGAIN;
2115 goto out;
2116 }
2117
2118 if (!is_software_event(event))
2119 cpuctx->active_oncpu++;
2120 if (!ctx->nr_active++)
2121 perf_event_ctx_activate(ctx);
2122 if (event->attr.freq && event->attr.sample_freq)
2123 ctx->nr_freq++;
2124
2125 if (event->attr.exclusive)
2126 cpuctx->exclusive = 1;
2127
2128 out:
2129 perf_pmu_enable(event->pmu);
2130
2131 return ret;
2132 }
2133
2134 static int
2135 group_sched_in(struct perf_event *group_event,
2136 struct perf_cpu_context *cpuctx,
2137 struct perf_event_context *ctx)
2138 {
2139 struct perf_event *event, *partial_group = NULL;
2140 struct pmu *pmu = ctx->pmu;
2141
2142 if (group_event->state == PERF_EVENT_STATE_OFF)
2143 return 0;
2144
2145 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2146
2147 if (event_sched_in(group_event, cpuctx, ctx)) {
2148 pmu->cancel_txn(pmu);
2149 perf_mux_hrtimer_restart(cpuctx);
2150 return -EAGAIN;
2151 }
2152
2153 /*
2154 * Schedule in siblings as one group (if any):
2155 */
2156 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2157 if (event_sched_in(event, cpuctx, ctx)) {
2158 partial_group = event;
2159 goto group_error;
2160 }
2161 }
2162
2163 if (!pmu->commit_txn(pmu))
2164 return 0;
2165
2166 group_error:
2167 /*
2168 * Groups can be scheduled in as one unit only, so undo any
2169 * partial group before returning:
2170 * The events up to the failed event are scheduled out normally.
2171 */
2172 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2173 if (event == partial_group)
2174 break;
2175
2176 event_sched_out(event, cpuctx, ctx);
2177 }
2178 event_sched_out(group_event, cpuctx, ctx);
2179
2180 pmu->cancel_txn(pmu);
2181
2182 perf_mux_hrtimer_restart(cpuctx);
2183
2184 return -EAGAIN;
2185 }
2186
2187 /*
2188 * Work out whether we can put this event group on the CPU now.
2189 */
2190 static int group_can_go_on(struct perf_event *event,
2191 struct perf_cpu_context *cpuctx,
2192 int can_add_hw)
2193 {
2194 /*
2195 * Groups consisting entirely of software events can always go on.
2196 */
2197 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2198 return 1;
2199 /*
2200 * If an exclusive group is already on, no other hardware
2201 * events can go on.
2202 */
2203 if (cpuctx->exclusive)
2204 return 0;
2205 /*
2206 * If this group is exclusive and there are already
2207 * events on the CPU, it can't go on.
2208 */
2209 if (event->attr.exclusive && cpuctx->active_oncpu)
2210 return 0;
2211 /*
2212 * Otherwise, try to add it if all previous groups were able
2213 * to go on.
2214 */
2215 return can_add_hw;
2216 }
2217
2218 static void add_event_to_ctx(struct perf_event *event,
2219 struct perf_event_context *ctx)
2220 {
2221 list_add_event(event, ctx);
2222 perf_group_attach(event);
2223 }
2224
2225 static void ctx_sched_out(struct perf_event_context *ctx,
2226 struct perf_cpu_context *cpuctx,
2227 enum event_type_t event_type);
2228 static void
2229 ctx_sched_in(struct perf_event_context *ctx,
2230 struct perf_cpu_context *cpuctx,
2231 enum event_type_t event_type,
2232 struct task_struct *task);
2233
2234 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2235 struct perf_event_context *ctx,
2236 enum event_type_t event_type)
2237 {
2238 if (!cpuctx->task_ctx)
2239 return;
2240
2241 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2242 return;
2243
2244 ctx_sched_out(ctx, cpuctx, event_type);
2245 }
2246
2247 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2248 struct perf_event_context *ctx,
2249 struct task_struct *task)
2250 {
2251 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2252 if (ctx)
2253 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2254 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2255 if (ctx)
2256 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2257 }
2258
2259 /*
2260 * We want to maintain the following priority of scheduling:
2261 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2262 * - task pinned (EVENT_PINNED)
2263 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2264 * - task flexible (EVENT_FLEXIBLE).
2265 *
2266 * In order to avoid unscheduling and scheduling back in everything every
2267 * time an event is added, only do it for the groups of equal priority and
2268 * below.
2269 *
2270 * This can be called after a batch operation on task events, in which case
2271 * event_type is a bit mask of the types of events involved. For CPU events,
2272 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2273 */
2274 static void ctx_resched(struct perf_cpu_context *cpuctx,
2275 struct perf_event_context *task_ctx,
2276 enum event_type_t event_type)
2277 {
2278 enum event_type_t ctx_event_type;
2279 bool cpu_event = !!(event_type & EVENT_CPU);
2280
2281 /*
2282 * If pinned groups are involved, flexible groups also need to be
2283 * scheduled out.
2284 */
2285 if (event_type & EVENT_PINNED)
2286 event_type |= EVENT_FLEXIBLE;
2287
2288 ctx_event_type = event_type & EVENT_ALL;
2289
2290 perf_pmu_disable(cpuctx->ctx.pmu);
2291 if (task_ctx)
2292 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2293
2294 /*
2295 * Decide which cpu ctx groups to schedule out based on the types
2296 * of events that caused rescheduling:
2297 * - EVENT_CPU: schedule out corresponding groups;
2298 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2299 * - otherwise, do nothing more.
2300 */
2301 if (cpu_event)
2302 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2303 else if (ctx_event_type & EVENT_PINNED)
2304 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2305
2306 perf_event_sched_in(cpuctx, task_ctx, current);
2307 perf_pmu_enable(cpuctx->ctx.pmu);
2308 }
2309
2310 /*
2311 * Cross CPU call to install and enable a performance event
2312 *
2313 * Very similar to remote_function() + event_function() but cannot assume that
2314 * things like ctx->is_active and cpuctx->task_ctx are set.
2315 */
2316 static int __perf_install_in_context(void *info)
2317 {
2318 struct perf_event *event = info;
2319 struct perf_event_context *ctx = event->ctx;
2320 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2321 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2322 bool reprogram = true;
2323 int ret = 0;
2324
2325 raw_spin_lock(&cpuctx->ctx.lock);
2326 if (ctx->task) {
2327 raw_spin_lock(&ctx->lock);
2328 task_ctx = ctx;
2329
2330 reprogram = (ctx->task == current);
2331
2332 /*
2333 * If the task is running, it must be running on this CPU,
2334 * otherwise we cannot reprogram things.
2335 *
2336 * If its not running, we don't care, ctx->lock will
2337 * serialize against it becoming runnable.
2338 */
2339 if (task_curr(ctx->task) && !reprogram) {
2340 ret = -ESRCH;
2341 goto unlock;
2342 }
2343
2344 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2345 } else if (task_ctx) {
2346 raw_spin_lock(&task_ctx->lock);
2347 }
2348
2349 #ifdef CONFIG_CGROUP_PERF
2350 if (is_cgroup_event(event)) {
2351 /*
2352 * If the current cgroup doesn't match the event's
2353 * cgroup, we should not try to schedule it.
2354 */
2355 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2356 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2357 event->cgrp->css.cgroup);
2358 }
2359 #endif
2360
2361 if (reprogram) {
2362 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2363 add_event_to_ctx(event, ctx);
2364 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2365 } else {
2366 add_event_to_ctx(event, ctx);
2367 }
2368
2369 unlock:
2370 perf_ctx_unlock(cpuctx, task_ctx);
2371
2372 return ret;
2373 }
2374
2375 /*
2376 * Attach a performance event to a context.
2377 *
2378 * Very similar to event_function_call, see comment there.
2379 */
2380 static void
2381 perf_install_in_context(struct perf_event_context *ctx,
2382 struct perf_event *event,
2383 int cpu)
2384 {
2385 struct task_struct *task = READ_ONCE(ctx->task);
2386
2387 lockdep_assert_held(&ctx->mutex);
2388
2389 if (event->cpu != -1)
2390 event->cpu = cpu;
2391
2392 /*
2393 * Ensures that if we can observe event->ctx, both the event and ctx
2394 * will be 'complete'. See perf_iterate_sb_cpu().
2395 */
2396 smp_store_release(&event->ctx, ctx);
2397
2398 if (!task) {
2399 cpu_function_call(cpu, __perf_install_in_context, event);
2400 return;
2401 }
2402
2403 /*
2404 * Should not happen, we validate the ctx is still alive before calling.
2405 */
2406 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2407 return;
2408
2409 /*
2410 * Installing events is tricky because we cannot rely on ctx->is_active
2411 * to be set in case this is the nr_events 0 -> 1 transition.
2412 *
2413 * Instead we use task_curr(), which tells us if the task is running.
2414 * However, since we use task_curr() outside of rq::lock, we can race
2415 * against the actual state. This means the result can be wrong.
2416 *
2417 * If we get a false positive, we retry, this is harmless.
2418 *
2419 * If we get a false negative, things are complicated. If we are after
2420 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2421 * value must be correct. If we're before, it doesn't matter since
2422 * perf_event_context_sched_in() will program the counter.
2423 *
2424 * However, this hinges on the remote context switch having observed
2425 * our task->perf_event_ctxp[] store, such that it will in fact take
2426 * ctx::lock in perf_event_context_sched_in().
2427 *
2428 * We do this by task_function_call(), if the IPI fails to hit the task
2429 * we know any future context switch of task must see the
2430 * perf_event_ctpx[] store.
2431 */
2432
2433 /*
2434 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2435 * task_cpu() load, such that if the IPI then does not find the task
2436 * running, a future context switch of that task must observe the
2437 * store.
2438 */
2439 smp_mb();
2440 again:
2441 if (!task_function_call(task, __perf_install_in_context, event))
2442 return;
2443
2444 raw_spin_lock_irq(&ctx->lock);
2445 task = ctx->task;
2446 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2447 /*
2448 * Cannot happen because we already checked above (which also
2449 * cannot happen), and we hold ctx->mutex, which serializes us
2450 * against perf_event_exit_task_context().
2451 */
2452 raw_spin_unlock_irq(&ctx->lock);
2453 return;
2454 }
2455 /*
2456 * If the task is not running, ctx->lock will avoid it becoming so,
2457 * thus we can safely install the event.
2458 */
2459 if (task_curr(task)) {
2460 raw_spin_unlock_irq(&ctx->lock);
2461 goto again;
2462 }
2463 add_event_to_ctx(event, ctx);
2464 raw_spin_unlock_irq(&ctx->lock);
2465 }
2466
2467 /*
2468 * Cross CPU call to enable a performance event
2469 */
2470 static void __perf_event_enable(struct perf_event *event,
2471 struct perf_cpu_context *cpuctx,
2472 struct perf_event_context *ctx,
2473 void *info)
2474 {
2475 struct perf_event *leader = event->group_leader;
2476 struct perf_event_context *task_ctx;
2477
2478 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2479 event->state <= PERF_EVENT_STATE_ERROR)
2480 return;
2481
2482 if (ctx->is_active)
2483 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2484
2485 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2486
2487 if (!ctx->is_active)
2488 return;
2489
2490 if (!event_filter_match(event)) {
2491 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2492 return;
2493 }
2494
2495 /*
2496 * If the event is in a group and isn't the group leader,
2497 * then don't put it on unless the group is on.
2498 */
2499 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2500 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2501 return;
2502 }
2503
2504 task_ctx = cpuctx->task_ctx;
2505 if (ctx->task)
2506 WARN_ON_ONCE(task_ctx != ctx);
2507
2508 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2509 }
2510
2511 /*
2512 * Enable a event.
2513 *
2514 * If event->ctx is a cloned context, callers must make sure that
2515 * every task struct that event->ctx->task could possibly point to
2516 * remains valid. This condition is satisfied when called through
2517 * perf_event_for_each_child or perf_event_for_each as described
2518 * for perf_event_disable.
2519 */
2520 static void _perf_event_enable(struct perf_event *event)
2521 {
2522 struct perf_event_context *ctx = event->ctx;
2523
2524 raw_spin_lock_irq(&ctx->lock);
2525 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2526 event->state < PERF_EVENT_STATE_ERROR) {
2527 raw_spin_unlock_irq(&ctx->lock);
2528 return;
2529 }
2530
2531 /*
2532 * If the event is in error state, clear that first.
2533 *
2534 * That way, if we see the event in error state below, we know that it
2535 * has gone back into error state, as distinct from the task having
2536 * been scheduled away before the cross-call arrived.
2537 */
2538 if (event->state == PERF_EVENT_STATE_ERROR)
2539 event->state = PERF_EVENT_STATE_OFF;
2540 raw_spin_unlock_irq(&ctx->lock);
2541
2542 event_function_call(event, __perf_event_enable, NULL);
2543 }
2544
2545 /*
2546 * See perf_event_disable();
2547 */
2548 void perf_event_enable(struct perf_event *event)
2549 {
2550 struct perf_event_context *ctx;
2551
2552 ctx = perf_event_ctx_lock(event);
2553 _perf_event_enable(event);
2554 perf_event_ctx_unlock(event, ctx);
2555 }
2556 EXPORT_SYMBOL_GPL(perf_event_enable);
2557
2558 struct stop_event_data {
2559 struct perf_event *event;
2560 unsigned int restart;
2561 };
2562
2563 static int __perf_event_stop(void *info)
2564 {
2565 struct stop_event_data *sd = info;
2566 struct perf_event *event = sd->event;
2567
2568 /* if it's already INACTIVE, do nothing */
2569 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2570 return 0;
2571
2572 /* matches smp_wmb() in event_sched_in() */
2573 smp_rmb();
2574
2575 /*
2576 * There is a window with interrupts enabled before we get here,
2577 * so we need to check again lest we try to stop another CPU's event.
2578 */
2579 if (READ_ONCE(event->oncpu) != smp_processor_id())
2580 return -EAGAIN;
2581
2582 event->pmu->stop(event, PERF_EF_UPDATE);
2583
2584 /*
2585 * May race with the actual stop (through perf_pmu_output_stop()),
2586 * but it is only used for events with AUX ring buffer, and such
2587 * events will refuse to restart because of rb::aux_mmap_count==0,
2588 * see comments in perf_aux_output_begin().
2589 *
2590 * Since this is happening on a event-local CPU, no trace is lost
2591 * while restarting.
2592 */
2593 if (sd->restart)
2594 event->pmu->start(event, 0);
2595
2596 return 0;
2597 }
2598
2599 static int perf_event_stop(struct perf_event *event, int restart)
2600 {
2601 struct stop_event_data sd = {
2602 .event = event,
2603 .restart = restart,
2604 };
2605 int ret = 0;
2606
2607 do {
2608 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2609 return 0;
2610
2611 /* matches smp_wmb() in event_sched_in() */
2612 smp_rmb();
2613
2614 /*
2615 * We only want to restart ACTIVE events, so if the event goes
2616 * inactive here (event->oncpu==-1), there's nothing more to do;
2617 * fall through with ret==-ENXIO.
2618 */
2619 ret = cpu_function_call(READ_ONCE(event->oncpu),
2620 __perf_event_stop, &sd);
2621 } while (ret == -EAGAIN);
2622
2623 return ret;
2624 }
2625
2626 /*
2627 * In order to contain the amount of racy and tricky in the address filter
2628 * configuration management, it is a two part process:
2629 *
2630 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2631 * we update the addresses of corresponding vmas in
2632 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2633 * (p2) when an event is scheduled in (pmu::add), it calls
2634 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2635 * if the generation has changed since the previous call.
2636 *
2637 * If (p1) happens while the event is active, we restart it to force (p2).
2638 *
2639 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2640 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2641 * ioctl;
2642 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2643 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2644 * for reading;
2645 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2646 * of exec.
2647 */
2648 void perf_event_addr_filters_sync(struct perf_event *event)
2649 {
2650 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2651
2652 if (!has_addr_filter(event))
2653 return;
2654
2655 raw_spin_lock(&ifh->lock);
2656 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2657 event->pmu->addr_filters_sync(event);
2658 event->hw.addr_filters_gen = event->addr_filters_gen;
2659 }
2660 raw_spin_unlock(&ifh->lock);
2661 }
2662 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2663
2664 static int _perf_event_refresh(struct perf_event *event, int refresh)
2665 {
2666 /*
2667 * not supported on inherited events
2668 */
2669 if (event->attr.inherit || !is_sampling_event(event))
2670 return -EINVAL;
2671
2672 atomic_add(refresh, &event->event_limit);
2673 _perf_event_enable(event);
2674
2675 return 0;
2676 }
2677
2678 /*
2679 * See perf_event_disable()
2680 */
2681 int perf_event_refresh(struct perf_event *event, int refresh)
2682 {
2683 struct perf_event_context *ctx;
2684 int ret;
2685
2686 ctx = perf_event_ctx_lock(event);
2687 ret = _perf_event_refresh(event, refresh);
2688 perf_event_ctx_unlock(event, ctx);
2689
2690 return ret;
2691 }
2692 EXPORT_SYMBOL_GPL(perf_event_refresh);
2693
2694 static void ctx_sched_out(struct perf_event_context *ctx,
2695 struct perf_cpu_context *cpuctx,
2696 enum event_type_t event_type)
2697 {
2698 int is_active = ctx->is_active;
2699 struct perf_event *event;
2700
2701 lockdep_assert_held(&ctx->lock);
2702
2703 if (likely(!ctx->nr_events)) {
2704 /*
2705 * See __perf_remove_from_context().
2706 */
2707 WARN_ON_ONCE(ctx->is_active);
2708 if (ctx->task)
2709 WARN_ON_ONCE(cpuctx->task_ctx);
2710 return;
2711 }
2712
2713 ctx->is_active &= ~event_type;
2714 if (!(ctx->is_active & EVENT_ALL))
2715 ctx->is_active = 0;
2716
2717 if (ctx->task) {
2718 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2719 if (!ctx->is_active)
2720 cpuctx->task_ctx = NULL;
2721 }
2722
2723 /*
2724 * Always update time if it was set; not only when it changes.
2725 * Otherwise we can 'forget' to update time for any but the last
2726 * context we sched out. For example:
2727 *
2728 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2729 * ctx_sched_out(.event_type = EVENT_PINNED)
2730 *
2731 * would only update time for the pinned events.
2732 */
2733 if (is_active & EVENT_TIME) {
2734 /* update (and stop) ctx time */
2735 update_context_time(ctx);
2736 update_cgrp_time_from_cpuctx(cpuctx);
2737 }
2738
2739 is_active ^= ctx->is_active; /* changed bits */
2740
2741 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2742 return;
2743
2744 perf_pmu_disable(ctx->pmu);
2745 if (is_active & EVENT_PINNED) {
2746 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2747 group_sched_out(event, cpuctx, ctx);
2748 }
2749
2750 if (is_active & EVENT_FLEXIBLE) {
2751 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2752 group_sched_out(event, cpuctx, ctx);
2753 }
2754 perf_pmu_enable(ctx->pmu);
2755 }
2756
2757 /*
2758 * Test whether two contexts are equivalent, i.e. whether they have both been
2759 * cloned from the same version of the same context.
2760 *
2761 * Equivalence is measured using a generation number in the context that is
2762 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2763 * and list_del_event().
2764 */
2765 static int context_equiv(struct perf_event_context *ctx1,
2766 struct perf_event_context *ctx2)
2767 {
2768 lockdep_assert_held(&ctx1->lock);
2769 lockdep_assert_held(&ctx2->lock);
2770
2771 /* Pinning disables the swap optimization */
2772 if (ctx1->pin_count || ctx2->pin_count)
2773 return 0;
2774
2775 /* If ctx1 is the parent of ctx2 */
2776 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2777 return 1;
2778
2779 /* If ctx2 is the parent of ctx1 */
2780 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2781 return 1;
2782
2783 /*
2784 * If ctx1 and ctx2 have the same parent; we flatten the parent
2785 * hierarchy, see perf_event_init_context().
2786 */
2787 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2788 ctx1->parent_gen == ctx2->parent_gen)
2789 return 1;
2790
2791 /* Unmatched */
2792 return 0;
2793 }
2794
2795 static void __perf_event_sync_stat(struct perf_event *event,
2796 struct perf_event *next_event)
2797 {
2798 u64 value;
2799
2800 if (!event->attr.inherit_stat)
2801 return;
2802
2803 /*
2804 * Update the event value, we cannot use perf_event_read()
2805 * because we're in the middle of a context switch and have IRQs
2806 * disabled, which upsets smp_call_function_single(), however
2807 * we know the event must be on the current CPU, therefore we
2808 * don't need to use it.
2809 */
2810 if (event->state == PERF_EVENT_STATE_ACTIVE)
2811 event->pmu->read(event);
2812
2813 perf_event_update_time(event);
2814
2815 /*
2816 * In order to keep per-task stats reliable we need to flip the event
2817 * values when we flip the contexts.
2818 */
2819 value = local64_read(&next_event->count);
2820 value = local64_xchg(&event->count, value);
2821 local64_set(&next_event->count, value);
2822
2823 swap(event->total_time_enabled, next_event->total_time_enabled);
2824 swap(event->total_time_running, next_event->total_time_running);
2825
2826 /*
2827 * Since we swizzled the values, update the user visible data too.
2828 */
2829 perf_event_update_userpage(event);
2830 perf_event_update_userpage(next_event);
2831 }
2832
2833 static void perf_event_sync_stat(struct perf_event_context *ctx,
2834 struct perf_event_context *next_ctx)
2835 {
2836 struct perf_event *event, *next_event;
2837
2838 if (!ctx->nr_stat)
2839 return;
2840
2841 update_context_time(ctx);
2842
2843 event = list_first_entry(&ctx->event_list,
2844 struct perf_event, event_entry);
2845
2846 next_event = list_first_entry(&next_ctx->event_list,
2847 struct perf_event, event_entry);
2848
2849 while (&event->event_entry != &ctx->event_list &&
2850 &next_event->event_entry != &next_ctx->event_list) {
2851
2852 __perf_event_sync_stat(event, next_event);
2853
2854 event = list_next_entry(event, event_entry);
2855 next_event = list_next_entry(next_event, event_entry);
2856 }
2857 }
2858
2859 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2860 struct task_struct *next)
2861 {
2862 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2863 struct perf_event_context *next_ctx;
2864 struct perf_event_context *parent, *next_parent;
2865 struct perf_cpu_context *cpuctx;
2866 int do_switch = 1;
2867
2868 if (likely(!ctx))
2869 return;
2870
2871 cpuctx = __get_cpu_context(ctx);
2872 if (!cpuctx->task_ctx)
2873 return;
2874
2875 rcu_read_lock();
2876 next_ctx = next->perf_event_ctxp[ctxn];
2877 if (!next_ctx)
2878 goto unlock;
2879
2880 parent = rcu_dereference(ctx->parent_ctx);
2881 next_parent = rcu_dereference(next_ctx->parent_ctx);
2882
2883 /* If neither context have a parent context; they cannot be clones. */
2884 if (!parent && !next_parent)
2885 goto unlock;
2886
2887 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2888 /*
2889 * Looks like the two contexts are clones, so we might be
2890 * able to optimize the context switch. We lock both
2891 * contexts and check that they are clones under the
2892 * lock (including re-checking that neither has been
2893 * uncloned in the meantime). It doesn't matter which
2894 * order we take the locks because no other cpu could
2895 * be trying to lock both of these tasks.
2896 */
2897 raw_spin_lock(&ctx->lock);
2898 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2899 if (context_equiv(ctx, next_ctx)) {
2900 WRITE_ONCE(ctx->task, next);
2901 WRITE_ONCE(next_ctx->task, task);
2902
2903 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2904
2905 /*
2906 * RCU_INIT_POINTER here is safe because we've not
2907 * modified the ctx and the above modification of
2908 * ctx->task and ctx->task_ctx_data are immaterial
2909 * since those values are always verified under
2910 * ctx->lock which we're now holding.
2911 */
2912 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2913 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2914
2915 do_switch = 0;
2916
2917 perf_event_sync_stat(ctx, next_ctx);
2918 }
2919 raw_spin_unlock(&next_ctx->lock);
2920 raw_spin_unlock(&ctx->lock);
2921 }
2922 unlock:
2923 rcu_read_unlock();
2924
2925 if (do_switch) {
2926 raw_spin_lock(&ctx->lock);
2927 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2928 raw_spin_unlock(&ctx->lock);
2929 }
2930 }
2931
2932 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2933
2934 void perf_sched_cb_dec(struct pmu *pmu)
2935 {
2936 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2937
2938 this_cpu_dec(perf_sched_cb_usages);
2939
2940 if (!--cpuctx->sched_cb_usage)
2941 list_del(&cpuctx->sched_cb_entry);
2942 }
2943
2944
2945 void perf_sched_cb_inc(struct pmu *pmu)
2946 {
2947 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2948
2949 if (!cpuctx->sched_cb_usage++)
2950 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2951
2952 this_cpu_inc(perf_sched_cb_usages);
2953 }
2954
2955 /*
2956 * This function provides the context switch callback to the lower code
2957 * layer. It is invoked ONLY when the context switch callback is enabled.
2958 *
2959 * This callback is relevant even to per-cpu events; for example multi event
2960 * PEBS requires this to provide PID/TID information. This requires we flush
2961 * all queued PEBS records before we context switch to a new task.
2962 */
2963 static void perf_pmu_sched_task(struct task_struct *prev,
2964 struct task_struct *next,
2965 bool sched_in)
2966 {
2967 struct perf_cpu_context *cpuctx;
2968 struct pmu *pmu;
2969
2970 if (prev == next)
2971 return;
2972
2973 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2974 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2975
2976 if (WARN_ON_ONCE(!pmu->sched_task))
2977 continue;
2978
2979 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2980 perf_pmu_disable(pmu);
2981
2982 pmu->sched_task(cpuctx->task_ctx, sched_in);
2983
2984 perf_pmu_enable(pmu);
2985 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2986 }
2987 }
2988
2989 static void perf_event_switch(struct task_struct *task,
2990 struct task_struct *next_prev, bool sched_in);
2991
2992 #define for_each_task_context_nr(ctxn) \
2993 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2994
2995 /*
2996 * Called from scheduler to remove the events of the current task,
2997 * with interrupts disabled.
2998 *
2999 * We stop each event and update the event value in event->count.
3000 *
3001 * This does not protect us against NMI, but disable()
3002 * sets the disabled bit in the control field of event _before_
3003 * accessing the event control register. If a NMI hits, then it will
3004 * not restart the event.
3005 */
3006 void __perf_event_task_sched_out(struct task_struct *task,
3007 struct task_struct *next)
3008 {
3009 int ctxn;
3010
3011 if (__this_cpu_read(perf_sched_cb_usages))
3012 perf_pmu_sched_task(task, next, false);
3013
3014 if (atomic_read(&nr_switch_events))
3015 perf_event_switch(task, next, false);
3016
3017 for_each_task_context_nr(ctxn)
3018 perf_event_context_sched_out(task, ctxn, next);
3019
3020 /*
3021 * if cgroup events exist on this CPU, then we need
3022 * to check if we have to switch out PMU state.
3023 * cgroup event are system-wide mode only
3024 */
3025 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3026 perf_cgroup_sched_out(task, next);
3027 }
3028
3029 /*
3030 * Called with IRQs disabled
3031 */
3032 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3033 enum event_type_t event_type)
3034 {
3035 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3036 }
3037
3038 static void
3039 ctx_pinned_sched_in(struct perf_event_context *ctx,
3040 struct perf_cpu_context *cpuctx)
3041 {
3042 struct perf_event *event;
3043
3044 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3045 if (event->state <= PERF_EVENT_STATE_OFF)
3046 continue;
3047 if (!event_filter_match(event))
3048 continue;
3049
3050 if (group_can_go_on(event, cpuctx, 1))
3051 group_sched_in(event, cpuctx, ctx);
3052
3053 /*
3054 * If this pinned group hasn't been scheduled,
3055 * put it in error state.
3056 */
3057 if (event->state == PERF_EVENT_STATE_INACTIVE)
3058 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3059 }
3060 }
3061
3062 static void
3063 ctx_flexible_sched_in(struct perf_event_context *ctx,
3064 struct perf_cpu_context *cpuctx)
3065 {
3066 struct perf_event *event;
3067 int can_add_hw = 1;
3068
3069 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3070 /* Ignore events in OFF or ERROR state */
3071 if (event->state <= PERF_EVENT_STATE_OFF)
3072 continue;
3073 /*
3074 * Listen to the 'cpu' scheduling filter constraint
3075 * of events:
3076 */
3077 if (!event_filter_match(event))
3078 continue;
3079
3080 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3081 if (group_sched_in(event, cpuctx, ctx))
3082 can_add_hw = 0;
3083 }
3084 }
3085 }
3086
3087 static void
3088 ctx_sched_in(struct perf_event_context *ctx,
3089 struct perf_cpu_context *cpuctx,
3090 enum event_type_t event_type,
3091 struct task_struct *task)
3092 {
3093 int is_active = ctx->is_active;
3094 u64 now;
3095
3096 lockdep_assert_held(&ctx->lock);
3097
3098 if (likely(!ctx->nr_events))
3099 return;
3100
3101 ctx->is_active |= (event_type | EVENT_TIME);
3102 if (ctx->task) {
3103 if (!is_active)
3104 cpuctx->task_ctx = ctx;
3105 else
3106 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3107 }
3108
3109 is_active ^= ctx->is_active; /* changed bits */
3110
3111 if (is_active & EVENT_TIME) {
3112 /* start ctx time */
3113 now = perf_clock();
3114 ctx->timestamp = now;
3115 perf_cgroup_set_timestamp(task, ctx);
3116 }
3117
3118 /*
3119 * First go through the list and put on any pinned groups
3120 * in order to give them the best chance of going on.
3121 */
3122 if (is_active & EVENT_PINNED)
3123 ctx_pinned_sched_in(ctx, cpuctx);
3124
3125 /* Then walk through the lower prio flexible groups */
3126 if (is_active & EVENT_FLEXIBLE)
3127 ctx_flexible_sched_in(ctx, cpuctx);
3128 }
3129
3130 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3131 enum event_type_t event_type,
3132 struct task_struct *task)
3133 {
3134 struct perf_event_context *ctx = &cpuctx->ctx;
3135
3136 ctx_sched_in(ctx, cpuctx, event_type, task);
3137 }
3138
3139 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3140 struct task_struct *task)
3141 {
3142 struct perf_cpu_context *cpuctx;
3143
3144 cpuctx = __get_cpu_context(ctx);
3145 if (cpuctx->task_ctx == ctx)
3146 return;
3147
3148 perf_ctx_lock(cpuctx, ctx);
3149 /*
3150 * We must check ctx->nr_events while holding ctx->lock, such
3151 * that we serialize against perf_install_in_context().
3152 */
3153 if (!ctx->nr_events)
3154 goto unlock;
3155
3156 perf_pmu_disable(ctx->pmu);
3157 /*
3158 * We want to keep the following priority order:
3159 * cpu pinned (that don't need to move), task pinned,
3160 * cpu flexible, task flexible.
3161 *
3162 * However, if task's ctx is not carrying any pinned
3163 * events, no need to flip the cpuctx's events around.
3164 */
3165 if (!list_empty(&ctx->pinned_groups))
3166 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3167 perf_event_sched_in(cpuctx, ctx, task);
3168 perf_pmu_enable(ctx->pmu);
3169
3170 unlock:
3171 perf_ctx_unlock(cpuctx, ctx);
3172 }
3173
3174 /*
3175 * Called from scheduler to add the events of the current task
3176 * with interrupts disabled.
3177 *
3178 * We restore the event value and then enable it.
3179 *
3180 * This does not protect us against NMI, but enable()
3181 * sets the enabled bit in the control field of event _before_
3182 * accessing the event control register. If a NMI hits, then it will
3183 * keep the event running.
3184 */
3185 void __perf_event_task_sched_in(struct task_struct *prev,
3186 struct task_struct *task)
3187 {
3188 struct perf_event_context *ctx;
3189 int ctxn;
3190
3191 /*
3192 * If cgroup events exist on this CPU, then we need to check if we have
3193 * to switch in PMU state; cgroup event are system-wide mode only.
3194 *
3195 * Since cgroup events are CPU events, we must schedule these in before
3196 * we schedule in the task events.
3197 */
3198 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3199 perf_cgroup_sched_in(prev, task);
3200
3201 for_each_task_context_nr(ctxn) {
3202 ctx = task->perf_event_ctxp[ctxn];
3203 if (likely(!ctx))
3204 continue;
3205
3206 perf_event_context_sched_in(ctx, task);
3207 }
3208
3209 if (atomic_read(&nr_switch_events))
3210 perf_event_switch(task, prev, true);
3211
3212 if (__this_cpu_read(perf_sched_cb_usages))
3213 perf_pmu_sched_task(prev, task, true);
3214 }
3215
3216 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3217 {
3218 u64 frequency = event->attr.sample_freq;
3219 u64 sec = NSEC_PER_SEC;
3220 u64 divisor, dividend;
3221
3222 int count_fls, nsec_fls, frequency_fls, sec_fls;
3223
3224 count_fls = fls64(count);
3225 nsec_fls = fls64(nsec);
3226 frequency_fls = fls64(frequency);
3227 sec_fls = 30;
3228
3229 /*
3230 * We got @count in @nsec, with a target of sample_freq HZ
3231 * the target period becomes:
3232 *
3233 * @count * 10^9
3234 * period = -------------------
3235 * @nsec * sample_freq
3236 *
3237 */
3238
3239 /*
3240 * Reduce accuracy by one bit such that @a and @b converge
3241 * to a similar magnitude.
3242 */
3243 #define REDUCE_FLS(a, b) \
3244 do { \
3245 if (a##_fls > b##_fls) { \
3246 a >>= 1; \
3247 a##_fls--; \
3248 } else { \
3249 b >>= 1; \
3250 b##_fls--; \
3251 } \
3252 } while (0)
3253
3254 /*
3255 * Reduce accuracy until either term fits in a u64, then proceed with
3256 * the other, so that finally we can do a u64/u64 division.
3257 */
3258 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3259 REDUCE_FLS(nsec, frequency);
3260 REDUCE_FLS(sec, count);
3261 }
3262
3263 if (count_fls + sec_fls > 64) {
3264 divisor = nsec * frequency;
3265
3266 while (count_fls + sec_fls > 64) {
3267 REDUCE_FLS(count, sec);
3268 divisor >>= 1;
3269 }
3270
3271 dividend = count * sec;
3272 } else {
3273 dividend = count * sec;
3274
3275 while (nsec_fls + frequency_fls > 64) {
3276 REDUCE_FLS(nsec, frequency);
3277 dividend >>= 1;
3278 }
3279
3280 divisor = nsec * frequency;
3281 }
3282
3283 if (!divisor)
3284 return dividend;
3285
3286 return div64_u64(dividend, divisor);
3287 }
3288
3289 static DEFINE_PER_CPU(int, perf_throttled_count);
3290 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3291
3292 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3293 {
3294 struct hw_perf_event *hwc = &event->hw;
3295 s64 period, sample_period;
3296 s64 delta;
3297
3298 period = perf_calculate_period(event, nsec, count);
3299
3300 delta = (s64)(period - hwc->sample_period);
3301 delta = (delta + 7) / 8; /* low pass filter */
3302
3303 sample_period = hwc->sample_period + delta;
3304
3305 if (!sample_period)
3306 sample_period = 1;
3307
3308 hwc->sample_period = sample_period;
3309
3310 if (local64_read(&hwc->period_left) > 8*sample_period) {
3311 if (disable)
3312 event->pmu->stop(event, PERF_EF_UPDATE);
3313
3314 local64_set(&hwc->period_left, 0);
3315
3316 if (disable)
3317 event->pmu->start(event, PERF_EF_RELOAD);
3318 }
3319 }
3320
3321 /*
3322 * combine freq adjustment with unthrottling to avoid two passes over the
3323 * events. At the same time, make sure, having freq events does not change
3324 * the rate of unthrottling as that would introduce bias.
3325 */
3326 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3327 int needs_unthr)
3328 {
3329 struct perf_event *event;
3330 struct hw_perf_event *hwc;
3331 u64 now, period = TICK_NSEC;
3332 s64 delta;
3333
3334 /*
3335 * only need to iterate over all events iff:
3336 * - context have events in frequency mode (needs freq adjust)
3337 * - there are events to unthrottle on this cpu
3338 */
3339 if (!(ctx->nr_freq || needs_unthr))
3340 return;
3341
3342 raw_spin_lock(&ctx->lock);
3343 perf_pmu_disable(ctx->pmu);
3344
3345 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3346 if (event->state != PERF_EVENT_STATE_ACTIVE)
3347 continue;
3348
3349 if (!event_filter_match(event))
3350 continue;
3351
3352 perf_pmu_disable(event->pmu);
3353
3354 hwc = &event->hw;
3355
3356 if (hwc->interrupts == MAX_INTERRUPTS) {
3357 hwc->interrupts = 0;
3358 perf_log_throttle(event, 1);
3359 event->pmu->start(event, 0);
3360 }
3361
3362 if (!event->attr.freq || !event->attr.sample_freq)
3363 goto next;
3364
3365 /*
3366 * stop the event and update event->count
3367 */
3368 event->pmu->stop(event, PERF_EF_UPDATE);
3369
3370 now = local64_read(&event->count);
3371 delta = now - hwc->freq_count_stamp;
3372 hwc->freq_count_stamp = now;
3373
3374 /*
3375 * restart the event
3376 * reload only if value has changed
3377 * we have stopped the event so tell that
3378 * to perf_adjust_period() to avoid stopping it
3379 * twice.
3380 */
3381 if (delta > 0)
3382 perf_adjust_period(event, period, delta, false);
3383
3384 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3385 next:
3386 perf_pmu_enable(event->pmu);
3387 }
3388
3389 perf_pmu_enable(ctx->pmu);
3390 raw_spin_unlock(&ctx->lock);
3391 }
3392
3393 /*
3394 * Round-robin a context's events:
3395 */
3396 static void rotate_ctx(struct perf_event_context *ctx)
3397 {
3398 /*
3399 * Rotate the first entry last of non-pinned groups. Rotation might be
3400 * disabled by the inheritance code.
3401 */
3402 if (!ctx->rotate_disable)
3403 list_rotate_left(&ctx->flexible_groups);
3404 }
3405
3406 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3407 {
3408 struct perf_event_context *ctx = NULL;
3409 int rotate = 0;
3410
3411 if (cpuctx->ctx.nr_events) {
3412 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3413 rotate = 1;
3414 }
3415
3416 ctx = cpuctx->task_ctx;
3417 if (ctx && ctx->nr_events) {
3418 if (ctx->nr_events != ctx->nr_active)
3419 rotate = 1;
3420 }
3421
3422 if (!rotate)
3423 goto done;
3424
3425 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3426 perf_pmu_disable(cpuctx->ctx.pmu);
3427
3428 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3429 if (ctx)
3430 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3431
3432 rotate_ctx(&cpuctx->ctx);
3433 if (ctx)
3434 rotate_ctx(ctx);
3435
3436 perf_event_sched_in(cpuctx, ctx, current);
3437
3438 perf_pmu_enable(cpuctx->ctx.pmu);
3439 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3440 done:
3441
3442 return rotate;
3443 }
3444
3445 void perf_event_task_tick(void)
3446 {
3447 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3448 struct perf_event_context *ctx, *tmp;
3449 int throttled;
3450
3451 lockdep_assert_irqs_disabled();
3452
3453 __this_cpu_inc(perf_throttled_seq);
3454 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3455 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3456
3457 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3458 perf_adjust_freq_unthr_context(ctx, throttled);
3459 }
3460
3461 static int event_enable_on_exec(struct perf_event *event,
3462 struct perf_event_context *ctx)
3463 {
3464 if (!event->attr.enable_on_exec)
3465 return 0;
3466
3467 event->attr.enable_on_exec = 0;
3468 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3469 return 0;
3470
3471 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3472
3473 return 1;
3474 }
3475
3476 /*
3477 * Enable all of a task's events that have been marked enable-on-exec.
3478 * This expects task == current.
3479 */
3480 static void perf_event_enable_on_exec(int ctxn)
3481 {
3482 struct perf_event_context *ctx, *clone_ctx = NULL;
3483 enum event_type_t event_type = 0;
3484 struct perf_cpu_context *cpuctx;
3485 struct perf_event *event;
3486 unsigned long flags;
3487 int enabled = 0;
3488
3489 local_irq_save(flags);
3490 ctx = current->perf_event_ctxp[ctxn];
3491 if (!ctx || !ctx->nr_events)
3492 goto out;
3493
3494 cpuctx = __get_cpu_context(ctx);
3495 perf_ctx_lock(cpuctx, ctx);
3496 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3497 list_for_each_entry(event, &ctx->event_list, event_entry) {
3498 enabled |= event_enable_on_exec(event, ctx);
3499 event_type |= get_event_type(event);
3500 }
3501
3502 /*
3503 * Unclone and reschedule this context if we enabled any event.
3504 */
3505 if (enabled) {
3506 clone_ctx = unclone_ctx(ctx);
3507 ctx_resched(cpuctx, ctx, event_type);
3508 } else {
3509 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3510 }
3511 perf_ctx_unlock(cpuctx, ctx);
3512
3513 out:
3514 local_irq_restore(flags);
3515
3516 if (clone_ctx)
3517 put_ctx(clone_ctx);
3518 }
3519
3520 struct perf_read_data {
3521 struct perf_event *event;
3522 bool group;
3523 int ret;
3524 };
3525
3526 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3527 {
3528 u16 local_pkg, event_pkg;
3529
3530 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3531 int local_cpu = smp_processor_id();
3532
3533 event_pkg = topology_physical_package_id(event_cpu);
3534 local_pkg = topology_physical_package_id(local_cpu);
3535
3536 if (event_pkg == local_pkg)
3537 return local_cpu;
3538 }
3539
3540 return event_cpu;
3541 }
3542
3543 /*
3544 * Cross CPU call to read the hardware event
3545 */
3546 static void __perf_event_read(void *info)
3547 {
3548 struct perf_read_data *data = info;
3549 struct perf_event *sub, *event = data->event;
3550 struct perf_event_context *ctx = event->ctx;
3551 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3552 struct pmu *pmu = event->pmu;
3553
3554 /*
3555 * If this is a task context, we need to check whether it is
3556 * the current task context of this cpu. If not it has been
3557 * scheduled out before the smp call arrived. In that case
3558 * event->count would have been updated to a recent sample
3559 * when the event was scheduled out.
3560 */
3561 if (ctx->task && cpuctx->task_ctx != ctx)
3562 return;
3563
3564 raw_spin_lock(&ctx->lock);
3565 if (ctx->is_active & EVENT_TIME) {
3566 update_context_time(ctx);
3567 update_cgrp_time_from_event(event);
3568 }
3569
3570 perf_event_update_time(event);
3571 if (data->group)
3572 perf_event_update_sibling_time(event);
3573
3574 if (event->state != PERF_EVENT_STATE_ACTIVE)
3575 goto unlock;
3576
3577 if (!data->group) {
3578 pmu->read(event);
3579 data->ret = 0;
3580 goto unlock;
3581 }
3582
3583 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3584
3585 pmu->read(event);
3586
3587 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3588 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3589 /*
3590 * Use sibling's PMU rather than @event's since
3591 * sibling could be on different (eg: software) PMU.
3592 */
3593 sub->pmu->read(sub);
3594 }
3595 }
3596
3597 data->ret = pmu->commit_txn(pmu);
3598
3599 unlock:
3600 raw_spin_unlock(&ctx->lock);
3601 }
3602
3603 static inline u64 perf_event_count(struct perf_event *event)
3604 {
3605 return local64_read(&event->count) + atomic64_read(&event->child_count);
3606 }
3607
3608 /*
3609 * NMI-safe method to read a local event, that is an event that
3610 * is:
3611 * - either for the current task, or for this CPU
3612 * - does not have inherit set, for inherited task events
3613 * will not be local and we cannot read them atomically
3614 * - must not have a pmu::count method
3615 */
3616 int perf_event_read_local(struct perf_event *event, u64 *value,
3617 u64 *enabled, u64 *running)
3618 {
3619 unsigned long flags;
3620 int ret = 0;
3621
3622 /*
3623 * Disabling interrupts avoids all counter scheduling (context
3624 * switches, timer based rotation and IPIs).
3625 */
3626 local_irq_save(flags);
3627
3628 /*
3629 * It must not be an event with inherit set, we cannot read
3630 * all child counters from atomic context.
3631 */
3632 if (event->attr.inherit) {
3633 ret = -EOPNOTSUPP;
3634 goto out;
3635 }
3636
3637 /* If this is a per-task event, it must be for current */
3638 if ((event->attach_state & PERF_ATTACH_TASK) &&
3639 event->hw.target != current) {
3640 ret = -EINVAL;
3641 goto out;
3642 }
3643
3644 /* If this is a per-CPU event, it must be for this CPU */
3645 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3646 event->cpu != smp_processor_id()) {
3647 ret = -EINVAL;
3648 goto out;
3649 }
3650
3651 /* If this is a pinned event it must be running on this CPU */
3652 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3653 ret = -EBUSY;
3654 goto out;
3655 }
3656
3657 /*
3658 * If the event is currently on this CPU, its either a per-task event,
3659 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3660 * oncpu == -1).
3661 */
3662 if (event->oncpu == smp_processor_id())
3663 event->pmu->read(event);
3664
3665 *value = local64_read(&event->count);
3666 if (enabled || running) {
3667 u64 now = event->shadow_ctx_time + perf_clock();
3668 u64 __enabled, __running;
3669
3670 __perf_update_times(event, now, &__enabled, &__running);
3671 if (enabled)
3672 *enabled = __enabled;
3673 if (running)
3674 *running = __running;
3675 }
3676 out:
3677 local_irq_restore(flags);
3678
3679 return ret;
3680 }
3681
3682 static int perf_event_read(struct perf_event *event, bool group)
3683 {
3684 enum perf_event_state state = READ_ONCE(event->state);
3685 int event_cpu, ret = 0;
3686
3687 /*
3688 * If event is enabled and currently active on a CPU, update the
3689 * value in the event structure:
3690 */
3691 again:
3692 if (state == PERF_EVENT_STATE_ACTIVE) {
3693 struct perf_read_data data;
3694
3695 /*
3696 * Orders the ->state and ->oncpu loads such that if we see
3697 * ACTIVE we must also see the right ->oncpu.
3698 *
3699 * Matches the smp_wmb() from event_sched_in().
3700 */
3701 smp_rmb();
3702
3703 event_cpu = READ_ONCE(event->oncpu);
3704 if ((unsigned)event_cpu >= nr_cpu_ids)
3705 return 0;
3706
3707 data = (struct perf_read_data){
3708 .event = event,
3709 .group = group,
3710 .ret = 0,
3711 };
3712
3713 preempt_disable();
3714 event_cpu = __perf_event_read_cpu(event, event_cpu);
3715
3716 /*
3717 * Purposely ignore the smp_call_function_single() return
3718 * value.
3719 *
3720 * If event_cpu isn't a valid CPU it means the event got
3721 * scheduled out and that will have updated the event count.
3722 *
3723 * Therefore, either way, we'll have an up-to-date event count
3724 * after this.
3725 */
3726 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3727 preempt_enable();
3728 ret = data.ret;
3729
3730 } else if (state == PERF_EVENT_STATE_INACTIVE) {
3731 struct perf_event_context *ctx = event->ctx;
3732 unsigned long flags;
3733
3734 raw_spin_lock_irqsave(&ctx->lock, flags);
3735 state = event->state;
3736 if (state != PERF_EVENT_STATE_INACTIVE) {
3737 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3738 goto again;
3739 }
3740
3741 /*
3742 * May read while context is not active (e.g., thread is
3743 * blocked), in that case we cannot update context time
3744 */
3745 if (ctx->is_active & EVENT_TIME) {
3746 update_context_time(ctx);
3747 update_cgrp_time_from_event(event);
3748 }
3749
3750 perf_event_update_time(event);
3751 if (group)
3752 perf_event_update_sibling_time(event);
3753 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3754 }
3755
3756 return ret;
3757 }
3758
3759 /*
3760 * Initialize the perf_event context in a task_struct:
3761 */
3762 static void __perf_event_init_context(struct perf_event_context *ctx)
3763 {
3764 raw_spin_lock_init(&ctx->lock);
3765 mutex_init(&ctx->mutex);
3766 INIT_LIST_HEAD(&ctx->active_ctx_list);
3767 INIT_LIST_HEAD(&ctx->pinned_groups);
3768 INIT_LIST_HEAD(&ctx->flexible_groups);
3769 INIT_LIST_HEAD(&ctx->event_list);
3770 atomic_set(&ctx->refcount, 1);
3771 }
3772
3773 static struct perf_event_context *
3774 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3775 {
3776 struct perf_event_context *ctx;
3777
3778 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3779 if (!ctx)
3780 return NULL;
3781
3782 __perf_event_init_context(ctx);
3783 if (task) {
3784 ctx->task = task;
3785 get_task_struct(task);
3786 }
3787 ctx->pmu = pmu;
3788
3789 return ctx;
3790 }
3791
3792 static struct task_struct *
3793 find_lively_task_by_vpid(pid_t vpid)
3794 {
3795 struct task_struct *task;
3796
3797 rcu_read_lock();
3798 if (!vpid)
3799 task = current;
3800 else
3801 task = find_task_by_vpid(vpid);
3802 if (task)
3803 get_task_struct(task);
3804 rcu_read_unlock();
3805
3806 if (!task)
3807 return ERR_PTR(-ESRCH);
3808
3809 return task;
3810 }
3811
3812 /*
3813 * Returns a matching context with refcount and pincount.
3814 */
3815 static struct perf_event_context *
3816 find_get_context(struct pmu *pmu, struct task_struct *task,
3817 struct perf_event *event)
3818 {
3819 struct perf_event_context *ctx, *clone_ctx = NULL;
3820 struct perf_cpu_context *cpuctx;
3821 void *task_ctx_data = NULL;
3822 unsigned long flags;
3823 int ctxn, err;
3824 int cpu = event->cpu;
3825
3826 if (!task) {
3827 /* Must be root to operate on a CPU event: */
3828 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3829 return ERR_PTR(-EACCES);
3830
3831 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3832 ctx = &cpuctx->ctx;
3833 get_ctx(ctx);
3834 ++ctx->pin_count;
3835
3836 return ctx;
3837 }
3838
3839 err = -EINVAL;
3840 ctxn = pmu->task_ctx_nr;
3841 if (ctxn < 0)
3842 goto errout;
3843
3844 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3845 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3846 if (!task_ctx_data) {
3847 err = -ENOMEM;
3848 goto errout;
3849 }
3850 }
3851
3852 retry:
3853 ctx = perf_lock_task_context(task, ctxn, &flags);
3854 if (ctx) {
3855 clone_ctx = unclone_ctx(ctx);
3856 ++ctx->pin_count;
3857
3858 if (task_ctx_data && !ctx->task_ctx_data) {
3859 ctx->task_ctx_data = task_ctx_data;
3860 task_ctx_data = NULL;
3861 }
3862 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3863
3864 if (clone_ctx)
3865 put_ctx(clone_ctx);
3866 } else {
3867 ctx = alloc_perf_context(pmu, task);
3868 err = -ENOMEM;
3869 if (!ctx)
3870 goto errout;
3871
3872 if (task_ctx_data) {
3873 ctx->task_ctx_data = task_ctx_data;
3874 task_ctx_data = NULL;
3875 }
3876
3877 err = 0;
3878 mutex_lock(&task->perf_event_mutex);
3879 /*
3880 * If it has already passed perf_event_exit_task().
3881 * we must see PF_EXITING, it takes this mutex too.
3882 */
3883 if (task->flags & PF_EXITING)
3884 err = -ESRCH;
3885 else if (task->perf_event_ctxp[ctxn])
3886 err = -EAGAIN;
3887 else {
3888 get_ctx(ctx);
3889 ++ctx->pin_count;
3890 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3891 }
3892 mutex_unlock(&task->perf_event_mutex);
3893
3894 if (unlikely(err)) {
3895 put_ctx(ctx);
3896
3897 if (err == -EAGAIN)
3898 goto retry;
3899 goto errout;
3900 }
3901 }
3902
3903 kfree(task_ctx_data);
3904 return ctx;
3905
3906 errout:
3907 kfree(task_ctx_data);
3908 return ERR_PTR(err);
3909 }
3910
3911 static void perf_event_free_filter(struct perf_event *event);
3912 static void perf_event_free_bpf_prog(struct perf_event *event);
3913
3914 static void free_event_rcu(struct rcu_head *head)
3915 {
3916 struct perf_event *event;
3917
3918 event = container_of(head, struct perf_event, rcu_head);
3919 if (event->ns)
3920 put_pid_ns(event->ns);
3921 perf_event_free_filter(event);
3922 kfree(event);
3923 }
3924
3925 static void ring_buffer_attach(struct perf_event *event,
3926 struct ring_buffer *rb);
3927
3928 static void detach_sb_event(struct perf_event *event)
3929 {
3930 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3931
3932 raw_spin_lock(&pel->lock);
3933 list_del_rcu(&event->sb_list);
3934 raw_spin_unlock(&pel->lock);
3935 }
3936
3937 static bool is_sb_event(struct perf_event *event)
3938 {
3939 struct perf_event_attr *attr = &event->attr;
3940
3941 if (event->parent)
3942 return false;
3943
3944 if (event->attach_state & PERF_ATTACH_TASK)
3945 return false;
3946
3947 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3948 attr->comm || attr->comm_exec ||
3949 attr->task ||
3950 attr->context_switch)
3951 return true;
3952 return false;
3953 }
3954
3955 static void unaccount_pmu_sb_event(struct perf_event *event)
3956 {
3957 if (is_sb_event(event))
3958 detach_sb_event(event);
3959 }
3960
3961 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3962 {
3963 if (event->parent)
3964 return;
3965
3966 if (is_cgroup_event(event))
3967 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3968 }
3969
3970 #ifdef CONFIG_NO_HZ_FULL
3971 static DEFINE_SPINLOCK(nr_freq_lock);
3972 #endif
3973
3974 static void unaccount_freq_event_nohz(void)
3975 {
3976 #ifdef CONFIG_NO_HZ_FULL
3977 spin_lock(&nr_freq_lock);
3978 if (atomic_dec_and_test(&nr_freq_events))
3979 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3980 spin_unlock(&nr_freq_lock);
3981 #endif
3982 }
3983
3984 static void unaccount_freq_event(void)
3985 {
3986 if (tick_nohz_full_enabled())
3987 unaccount_freq_event_nohz();
3988 else
3989 atomic_dec(&nr_freq_events);
3990 }
3991
3992 static void unaccount_event(struct perf_event *event)
3993 {
3994 bool dec = false;
3995
3996 if (event->parent)
3997 return;
3998
3999 if (event->attach_state & PERF_ATTACH_TASK)
4000 dec = true;
4001 if (event->attr.mmap || event->attr.mmap_data)
4002 atomic_dec(&nr_mmap_events);
4003 if (event->attr.comm)
4004 atomic_dec(&nr_comm_events);
4005 if (event->attr.namespaces)
4006 atomic_dec(&nr_namespaces_events);
4007 if (event->attr.task)
4008 atomic_dec(&nr_task_events);
4009 if (event->attr.freq)
4010 unaccount_freq_event();
4011 if (event->attr.context_switch) {
4012 dec = true;
4013 atomic_dec(&nr_switch_events);
4014 }
4015 if (is_cgroup_event(event))
4016 dec = true;
4017 if (has_branch_stack(event))
4018 dec = true;
4019
4020 if (dec) {
4021 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4022 schedule_delayed_work(&perf_sched_work, HZ);
4023 }
4024
4025 unaccount_event_cpu(event, event->cpu);
4026
4027 unaccount_pmu_sb_event(event);
4028 }
4029
4030 static void perf_sched_delayed(struct work_struct *work)
4031 {
4032 mutex_lock(&perf_sched_mutex);
4033 if (atomic_dec_and_test(&perf_sched_count))
4034 static_branch_disable(&perf_sched_events);
4035 mutex_unlock(&perf_sched_mutex);
4036 }
4037
4038 /*
4039 * The following implement mutual exclusion of events on "exclusive" pmus
4040 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4041 * at a time, so we disallow creating events that might conflict, namely:
4042 *
4043 * 1) cpu-wide events in the presence of per-task events,
4044 * 2) per-task events in the presence of cpu-wide events,
4045 * 3) two matching events on the same context.
4046 *
4047 * The former two cases are handled in the allocation path (perf_event_alloc(),
4048 * _free_event()), the latter -- before the first perf_install_in_context().
4049 */
4050 static int exclusive_event_init(struct perf_event *event)
4051 {
4052 struct pmu *pmu = event->pmu;
4053
4054 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4055 return 0;
4056
4057 /*
4058 * Prevent co-existence of per-task and cpu-wide events on the
4059 * same exclusive pmu.
4060 *
4061 * Negative pmu::exclusive_cnt means there are cpu-wide
4062 * events on this "exclusive" pmu, positive means there are
4063 * per-task events.
4064 *
4065 * Since this is called in perf_event_alloc() path, event::ctx
4066 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4067 * to mean "per-task event", because unlike other attach states it
4068 * never gets cleared.
4069 */
4070 if (event->attach_state & PERF_ATTACH_TASK) {
4071 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4072 return -EBUSY;
4073 } else {
4074 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4075 return -EBUSY;
4076 }
4077
4078 return 0;
4079 }
4080
4081 static void exclusive_event_destroy(struct perf_event *event)
4082 {
4083 struct pmu *pmu = event->pmu;
4084
4085 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4086 return;
4087
4088 /* see comment in exclusive_event_init() */
4089 if (event->attach_state & PERF_ATTACH_TASK)
4090 atomic_dec(&pmu->exclusive_cnt);
4091 else
4092 atomic_inc(&pmu->exclusive_cnt);
4093 }
4094
4095 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4096 {
4097 if ((e1->pmu == e2->pmu) &&
4098 (e1->cpu == e2->cpu ||
4099 e1->cpu == -1 ||
4100 e2->cpu == -1))
4101 return true;
4102 return false;
4103 }
4104
4105 /* Called under the same ctx::mutex as perf_install_in_context() */
4106 static bool exclusive_event_installable(struct perf_event *event,
4107 struct perf_event_context *ctx)
4108 {
4109 struct perf_event *iter_event;
4110 struct pmu *pmu = event->pmu;
4111
4112 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4113 return true;
4114
4115 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4116 if (exclusive_event_match(iter_event, event))
4117 return false;
4118 }
4119
4120 return true;
4121 }
4122
4123 static void perf_addr_filters_splice(struct perf_event *event,
4124 struct list_head *head);
4125
4126 static void _free_event(struct perf_event *event)
4127 {
4128 irq_work_sync(&event->pending);
4129
4130 unaccount_event(event);
4131
4132 if (event->rb) {
4133 /*
4134 * Can happen when we close an event with re-directed output.
4135 *
4136 * Since we have a 0 refcount, perf_mmap_close() will skip
4137 * over us; possibly making our ring_buffer_put() the last.
4138 */
4139 mutex_lock(&event->mmap_mutex);
4140 ring_buffer_attach(event, NULL);
4141 mutex_unlock(&event->mmap_mutex);
4142 }
4143
4144 if (is_cgroup_event(event))
4145 perf_detach_cgroup(event);
4146
4147 if (!event->parent) {
4148 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4149 put_callchain_buffers();
4150 }
4151
4152 perf_event_free_bpf_prog(event);
4153 perf_addr_filters_splice(event, NULL);
4154 kfree(event->addr_filters_offs);
4155
4156 if (event->destroy)
4157 event->destroy(event);
4158
4159 if (event->ctx)
4160 put_ctx(event->ctx);
4161
4162 if (event->hw.target)
4163 put_task_struct(event->hw.target);
4164
4165 exclusive_event_destroy(event);
4166 module_put(event->pmu->module);
4167
4168 call_rcu(&event->rcu_head, free_event_rcu);
4169 }
4170
4171 /*
4172 * Used to free events which have a known refcount of 1, such as in error paths
4173 * where the event isn't exposed yet and inherited events.
4174 */
4175 static void free_event(struct perf_event *event)
4176 {
4177 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4178 "unexpected event refcount: %ld; ptr=%p\n",
4179 atomic_long_read(&event->refcount), event)) {
4180 /* leak to avoid use-after-free */
4181 return;
4182 }
4183
4184 _free_event(event);
4185 }
4186
4187 /*
4188 * Remove user event from the owner task.
4189 */
4190 static void perf_remove_from_owner(struct perf_event *event)
4191 {
4192 struct task_struct *owner;
4193
4194 rcu_read_lock();
4195 /*
4196 * Matches the smp_store_release() in perf_event_exit_task(). If we
4197 * observe !owner it means the list deletion is complete and we can
4198 * indeed free this event, otherwise we need to serialize on
4199 * owner->perf_event_mutex.
4200 */
4201 owner = READ_ONCE(event->owner);
4202 if (owner) {
4203 /*
4204 * Since delayed_put_task_struct() also drops the last
4205 * task reference we can safely take a new reference
4206 * while holding the rcu_read_lock().
4207 */
4208 get_task_struct(owner);
4209 }
4210 rcu_read_unlock();
4211
4212 if (owner) {
4213 /*
4214 * If we're here through perf_event_exit_task() we're already
4215 * holding ctx->mutex which would be an inversion wrt. the
4216 * normal lock order.
4217 *
4218 * However we can safely take this lock because its the child
4219 * ctx->mutex.
4220 */
4221 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4222
4223 /*
4224 * We have to re-check the event->owner field, if it is cleared
4225 * we raced with perf_event_exit_task(), acquiring the mutex
4226 * ensured they're done, and we can proceed with freeing the
4227 * event.
4228 */
4229 if (event->owner) {
4230 list_del_init(&event->owner_entry);
4231 smp_store_release(&event->owner, NULL);
4232 }
4233 mutex_unlock(&owner->perf_event_mutex);
4234 put_task_struct(owner);
4235 }
4236 }
4237
4238 static void put_event(struct perf_event *event)
4239 {
4240 if (!atomic_long_dec_and_test(&event->refcount))
4241 return;
4242
4243 _free_event(event);
4244 }
4245
4246 /*
4247 * Kill an event dead; while event:refcount will preserve the event
4248 * object, it will not preserve its functionality. Once the last 'user'
4249 * gives up the object, we'll destroy the thing.
4250 */
4251 int perf_event_release_kernel(struct perf_event *event)
4252 {
4253 struct perf_event_context *ctx = event->ctx;
4254 struct perf_event *child, *tmp;
4255 LIST_HEAD(free_list);
4256
4257 /*
4258 * If we got here through err_file: fput(event_file); we will not have
4259 * attached to a context yet.
4260 */
4261 if (!ctx) {
4262 WARN_ON_ONCE(event->attach_state &
4263 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4264 goto no_ctx;
4265 }
4266
4267 if (!is_kernel_event(event))
4268 perf_remove_from_owner(event);
4269
4270 ctx = perf_event_ctx_lock(event);
4271 WARN_ON_ONCE(ctx->parent_ctx);
4272 perf_remove_from_context(event, DETACH_GROUP);
4273
4274 raw_spin_lock_irq(&ctx->lock);
4275 /*
4276 * Mark this event as STATE_DEAD, there is no external reference to it
4277 * anymore.
4278 *
4279 * Anybody acquiring event->child_mutex after the below loop _must_
4280 * also see this, most importantly inherit_event() which will avoid
4281 * placing more children on the list.
4282 *
4283 * Thus this guarantees that we will in fact observe and kill _ALL_
4284 * child events.
4285 */
4286 event->state = PERF_EVENT_STATE_DEAD;
4287 raw_spin_unlock_irq(&ctx->lock);
4288
4289 perf_event_ctx_unlock(event, ctx);
4290
4291 again:
4292 mutex_lock(&event->child_mutex);
4293 list_for_each_entry(child, &event->child_list, child_list) {
4294
4295 /*
4296 * Cannot change, child events are not migrated, see the
4297 * comment with perf_event_ctx_lock_nested().
4298 */
4299 ctx = READ_ONCE(child->ctx);
4300 /*
4301 * Since child_mutex nests inside ctx::mutex, we must jump
4302 * through hoops. We start by grabbing a reference on the ctx.
4303 *
4304 * Since the event cannot get freed while we hold the
4305 * child_mutex, the context must also exist and have a !0
4306 * reference count.
4307 */
4308 get_ctx(ctx);
4309
4310 /*
4311 * Now that we have a ctx ref, we can drop child_mutex, and
4312 * acquire ctx::mutex without fear of it going away. Then we
4313 * can re-acquire child_mutex.
4314 */
4315 mutex_unlock(&event->child_mutex);
4316 mutex_lock(&ctx->mutex);
4317 mutex_lock(&event->child_mutex);
4318
4319 /*
4320 * Now that we hold ctx::mutex and child_mutex, revalidate our
4321 * state, if child is still the first entry, it didn't get freed
4322 * and we can continue doing so.
4323 */
4324 tmp = list_first_entry_or_null(&event->child_list,
4325 struct perf_event, child_list);
4326 if (tmp == child) {
4327 perf_remove_from_context(child, DETACH_GROUP);
4328 list_move(&child->child_list, &free_list);
4329 /*
4330 * This matches the refcount bump in inherit_event();
4331 * this can't be the last reference.
4332 */
4333 put_event(event);
4334 }
4335
4336 mutex_unlock(&event->child_mutex);
4337 mutex_unlock(&ctx->mutex);
4338 put_ctx(ctx);
4339 goto again;
4340 }
4341 mutex_unlock(&event->child_mutex);
4342
4343 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4344 list_del(&child->child_list);
4345 free_event(child);
4346 }
4347
4348 no_ctx:
4349 put_event(event); /* Must be the 'last' reference */
4350 return 0;
4351 }
4352 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4353
4354 /*
4355 * Called when the last reference to the file is gone.
4356 */
4357 static int perf_release(struct inode *inode, struct file *file)
4358 {
4359 perf_event_release_kernel(file->private_data);
4360 return 0;
4361 }
4362
4363 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4364 {
4365 struct perf_event *child;
4366 u64 total = 0;
4367
4368 *enabled = 0;
4369 *running = 0;
4370
4371 mutex_lock(&event->child_mutex);
4372
4373 (void)perf_event_read(event, false);
4374 total += perf_event_count(event);
4375
4376 *enabled += event->total_time_enabled +
4377 atomic64_read(&event->child_total_time_enabled);
4378 *running += event->total_time_running +
4379 atomic64_read(&event->child_total_time_running);
4380
4381 list_for_each_entry(child, &event->child_list, child_list) {
4382 (void)perf_event_read(child, false);
4383 total += perf_event_count(child);
4384 *enabled += child->total_time_enabled;
4385 *running += child->total_time_running;
4386 }
4387 mutex_unlock(&event->child_mutex);
4388
4389 return total;
4390 }
4391
4392 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4393 {
4394 struct perf_event_context *ctx;
4395 u64 count;
4396
4397 ctx = perf_event_ctx_lock(event);
4398 count = __perf_event_read_value(event, enabled, running);
4399 perf_event_ctx_unlock(event, ctx);
4400
4401 return count;
4402 }
4403 EXPORT_SYMBOL_GPL(perf_event_read_value);
4404
4405 static int __perf_read_group_add(struct perf_event *leader,
4406 u64 read_format, u64 *values)
4407 {
4408 struct perf_event_context *ctx = leader->ctx;
4409 struct perf_event *sub;
4410 unsigned long flags;
4411 int n = 1; /* skip @nr */
4412 int ret;
4413
4414 ret = perf_event_read(leader, true);
4415 if (ret)
4416 return ret;
4417
4418 raw_spin_lock_irqsave(&ctx->lock, flags);
4419
4420 /*
4421 * Since we co-schedule groups, {enabled,running} times of siblings
4422 * will be identical to those of the leader, so we only publish one
4423 * set.
4424 */
4425 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4426 values[n++] += leader->total_time_enabled +
4427 atomic64_read(&leader->child_total_time_enabled);
4428 }
4429
4430 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4431 values[n++] += leader->total_time_running +
4432 atomic64_read(&leader->child_total_time_running);
4433 }
4434
4435 /*
4436 * Write {count,id} tuples for every sibling.
4437 */
4438 values[n++] += perf_event_count(leader);
4439 if (read_format & PERF_FORMAT_ID)
4440 values[n++] = primary_event_id(leader);
4441
4442 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4443 values[n++] += perf_event_count(sub);
4444 if (read_format & PERF_FORMAT_ID)
4445 values[n++] = primary_event_id(sub);
4446 }
4447
4448 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4449 return 0;
4450 }
4451
4452 static int perf_read_group(struct perf_event *event,
4453 u64 read_format, char __user *buf)
4454 {
4455 struct perf_event *leader = event->group_leader, *child;
4456 struct perf_event_context *ctx = leader->ctx;
4457 int ret;
4458 u64 *values;
4459
4460 lockdep_assert_held(&ctx->mutex);
4461
4462 values = kzalloc(event->read_size, GFP_KERNEL);
4463 if (!values)
4464 return -ENOMEM;
4465
4466 values[0] = 1 + leader->nr_siblings;
4467
4468 /*
4469 * By locking the child_mutex of the leader we effectively
4470 * lock the child list of all siblings.. XXX explain how.
4471 */
4472 mutex_lock(&leader->child_mutex);
4473
4474 ret = __perf_read_group_add(leader, read_format, values);
4475 if (ret)
4476 goto unlock;
4477
4478 list_for_each_entry(child, &leader->child_list, child_list) {
4479 ret = __perf_read_group_add(child, read_format, values);
4480 if (ret)
4481 goto unlock;
4482 }
4483
4484 mutex_unlock(&leader->child_mutex);
4485
4486 ret = event->read_size;
4487 if (copy_to_user(buf, values, event->read_size))
4488 ret = -EFAULT;
4489 goto out;
4490
4491 unlock:
4492 mutex_unlock(&leader->child_mutex);
4493 out:
4494 kfree(values);
4495 return ret;
4496 }
4497
4498 static int perf_read_one(struct perf_event *event,
4499 u64 read_format, char __user *buf)
4500 {
4501 u64 enabled, running;
4502 u64 values[4];
4503 int n = 0;
4504
4505 values[n++] = __perf_event_read_value(event, &enabled, &running);
4506 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4507 values[n++] = enabled;
4508 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4509 values[n++] = running;
4510 if (read_format & PERF_FORMAT_ID)
4511 values[n++] = primary_event_id(event);
4512
4513 if (copy_to_user(buf, values, n * sizeof(u64)))
4514 return -EFAULT;
4515
4516 return n * sizeof(u64);
4517 }
4518
4519 static bool is_event_hup(struct perf_event *event)
4520 {
4521 bool no_children;
4522
4523 if (event->state > PERF_EVENT_STATE_EXIT)
4524 return false;
4525
4526 mutex_lock(&event->child_mutex);
4527 no_children = list_empty(&event->child_list);
4528 mutex_unlock(&event->child_mutex);
4529 return no_children;
4530 }
4531
4532 /*
4533 * Read the performance event - simple non blocking version for now
4534 */
4535 static ssize_t
4536 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4537 {
4538 u64 read_format = event->attr.read_format;
4539 int ret;
4540
4541 /*
4542 * Return end-of-file for a read on a event that is in
4543 * error state (i.e. because it was pinned but it couldn't be
4544 * scheduled on to the CPU at some point).
4545 */
4546 if (event->state == PERF_EVENT_STATE_ERROR)
4547 return 0;
4548
4549 if (count < event->read_size)
4550 return -ENOSPC;
4551
4552 WARN_ON_ONCE(event->ctx->parent_ctx);
4553 if (read_format & PERF_FORMAT_GROUP)
4554 ret = perf_read_group(event, read_format, buf);
4555 else
4556 ret = perf_read_one(event, read_format, buf);
4557
4558 return ret;
4559 }
4560
4561 static ssize_t
4562 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4563 {
4564 struct perf_event *event = file->private_data;
4565 struct perf_event_context *ctx;
4566 int ret;
4567
4568 ctx = perf_event_ctx_lock(event);
4569 ret = __perf_read(event, buf, count);
4570 perf_event_ctx_unlock(event, ctx);
4571
4572 return ret;
4573 }
4574
4575 static unsigned int perf_poll(struct file *file, poll_table *wait)
4576 {
4577 struct perf_event *event = file->private_data;
4578 struct ring_buffer *rb;
4579 unsigned int events = POLLHUP;
4580
4581 poll_wait(file, &event->waitq, wait);
4582
4583 if (is_event_hup(event))
4584 return events;
4585
4586 /*
4587 * Pin the event->rb by taking event->mmap_mutex; otherwise
4588 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4589 */
4590 mutex_lock(&event->mmap_mutex);
4591 rb = event->rb;
4592 if (rb)
4593 events = atomic_xchg(&rb->poll, 0);
4594 mutex_unlock(&event->mmap_mutex);
4595 return events;
4596 }
4597
4598 static void _perf_event_reset(struct perf_event *event)
4599 {
4600 (void)perf_event_read(event, false);
4601 local64_set(&event->count, 0);
4602 perf_event_update_userpage(event);
4603 }
4604
4605 /*
4606 * Holding the top-level event's child_mutex means that any
4607 * descendant process that has inherited this event will block
4608 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4609 * task existence requirements of perf_event_enable/disable.
4610 */
4611 static void perf_event_for_each_child(struct perf_event *event,
4612 void (*func)(struct perf_event *))
4613 {
4614 struct perf_event *child;
4615
4616 WARN_ON_ONCE(event->ctx->parent_ctx);
4617
4618 mutex_lock(&event->child_mutex);
4619 func(event);
4620 list_for_each_entry(child, &event->child_list, child_list)
4621 func(child);
4622 mutex_unlock(&event->child_mutex);
4623 }
4624
4625 static void perf_event_for_each(struct perf_event *event,
4626 void (*func)(struct perf_event *))
4627 {
4628 struct perf_event_context *ctx = event->ctx;
4629 struct perf_event *sibling;
4630
4631 lockdep_assert_held(&ctx->mutex);
4632
4633 event = event->group_leader;
4634
4635 perf_event_for_each_child(event, func);
4636 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4637 perf_event_for_each_child(sibling, func);
4638 }
4639
4640 static void __perf_event_period(struct perf_event *event,
4641 struct perf_cpu_context *cpuctx,
4642 struct perf_event_context *ctx,
4643 void *info)
4644 {
4645 u64 value = *((u64 *)info);
4646 bool active;
4647
4648 if (event->attr.freq) {
4649 event->attr.sample_freq = value;
4650 } else {
4651 event->attr.sample_period = value;
4652 event->hw.sample_period = value;
4653 }
4654
4655 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4656 if (active) {
4657 perf_pmu_disable(ctx->pmu);
4658 /*
4659 * We could be throttled; unthrottle now to avoid the tick
4660 * trying to unthrottle while we already re-started the event.
4661 */
4662 if (event->hw.interrupts == MAX_INTERRUPTS) {
4663 event->hw.interrupts = 0;
4664 perf_log_throttle(event, 1);
4665 }
4666 event->pmu->stop(event, PERF_EF_UPDATE);
4667 }
4668
4669 local64_set(&event->hw.period_left, 0);
4670
4671 if (active) {
4672 event->pmu->start(event, PERF_EF_RELOAD);
4673 perf_pmu_enable(ctx->pmu);
4674 }
4675 }
4676
4677 static int perf_event_check_period(struct perf_event *event, u64 value)
4678 {
4679 return event->pmu->check_period(event, value);
4680 }
4681
4682 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4683 {
4684 u64 value;
4685
4686 if (!is_sampling_event(event))
4687 return -EINVAL;
4688
4689 if (copy_from_user(&value, arg, sizeof(value)))
4690 return -EFAULT;
4691
4692 if (!value)
4693 return -EINVAL;
4694
4695 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4696 return -EINVAL;
4697
4698 if (perf_event_check_period(event, value))
4699 return -EINVAL;
4700
4701 event_function_call(event, __perf_event_period, &value);
4702
4703 return 0;
4704 }
4705
4706 static const struct file_operations perf_fops;
4707
4708 static inline int perf_fget_light(int fd, struct fd *p)
4709 {
4710 struct fd f = fdget(fd);
4711 if (!f.file)
4712 return -EBADF;
4713
4714 if (f.file->f_op != &perf_fops) {
4715 fdput(f);
4716 return -EBADF;
4717 }
4718 *p = f;
4719 return 0;
4720 }
4721
4722 static int perf_event_set_output(struct perf_event *event,
4723 struct perf_event *output_event);
4724 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4725 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4726
4727 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4728 {
4729 void (*func)(struct perf_event *);
4730 u32 flags = arg;
4731
4732 switch (cmd) {
4733 case PERF_EVENT_IOC_ENABLE:
4734 func = _perf_event_enable;
4735 break;
4736 case PERF_EVENT_IOC_DISABLE:
4737 func = _perf_event_disable;
4738 break;
4739 case PERF_EVENT_IOC_RESET:
4740 func = _perf_event_reset;
4741 break;
4742
4743 case PERF_EVENT_IOC_REFRESH:
4744 return _perf_event_refresh(event, arg);
4745
4746 case PERF_EVENT_IOC_PERIOD:
4747 return perf_event_period(event, (u64 __user *)arg);
4748
4749 case PERF_EVENT_IOC_ID:
4750 {
4751 u64 id = primary_event_id(event);
4752
4753 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4754 return -EFAULT;
4755 return 0;
4756 }
4757
4758 case PERF_EVENT_IOC_SET_OUTPUT:
4759 {
4760 int ret;
4761 if (arg != -1) {
4762 struct perf_event *output_event;
4763 struct fd output;
4764 ret = perf_fget_light(arg, &output);
4765 if (ret)
4766 return ret;
4767 output_event = output.file->private_data;
4768 ret = perf_event_set_output(event, output_event);
4769 fdput(output);
4770 } else {
4771 ret = perf_event_set_output(event, NULL);
4772 }
4773 return ret;
4774 }
4775
4776 case PERF_EVENT_IOC_SET_FILTER:
4777 return perf_event_set_filter(event, (void __user *)arg);
4778
4779 case PERF_EVENT_IOC_SET_BPF:
4780 return perf_event_set_bpf_prog(event, arg);
4781
4782 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4783 struct ring_buffer *rb;
4784
4785 rcu_read_lock();
4786 rb = rcu_dereference(event->rb);
4787 if (!rb || !rb->nr_pages) {
4788 rcu_read_unlock();
4789 return -EINVAL;
4790 }
4791 rb_toggle_paused(rb, !!arg);
4792 rcu_read_unlock();
4793 return 0;
4794 }
4795 default:
4796 return -ENOTTY;
4797 }
4798
4799 if (flags & PERF_IOC_FLAG_GROUP)
4800 perf_event_for_each(event, func);
4801 else
4802 perf_event_for_each_child(event, func);
4803
4804 return 0;
4805 }
4806
4807 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4808 {
4809 struct perf_event *event = file->private_data;
4810 struct perf_event_context *ctx;
4811 long ret;
4812
4813 ctx = perf_event_ctx_lock(event);
4814 ret = _perf_ioctl(event, cmd, arg);
4815 perf_event_ctx_unlock(event, ctx);
4816
4817 return ret;
4818 }
4819
4820 #ifdef CONFIG_COMPAT
4821 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4822 unsigned long arg)
4823 {
4824 switch (_IOC_NR(cmd)) {
4825 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4826 case _IOC_NR(PERF_EVENT_IOC_ID):
4827 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4828 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4829 cmd &= ~IOCSIZE_MASK;
4830 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4831 }
4832 break;
4833 }
4834 return perf_ioctl(file, cmd, arg);
4835 }
4836 #else
4837 # define perf_compat_ioctl NULL
4838 #endif
4839
4840 int perf_event_task_enable(void)
4841 {
4842 struct perf_event_context *ctx;
4843 struct perf_event *event;
4844
4845 mutex_lock(&current->perf_event_mutex);
4846 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4847 ctx = perf_event_ctx_lock(event);
4848 perf_event_for_each_child(event, _perf_event_enable);
4849 perf_event_ctx_unlock(event, ctx);
4850 }
4851 mutex_unlock(&current->perf_event_mutex);
4852
4853 return 0;
4854 }
4855
4856 int perf_event_task_disable(void)
4857 {
4858 struct perf_event_context *ctx;
4859 struct perf_event *event;
4860
4861 mutex_lock(&current->perf_event_mutex);
4862 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4863 ctx = perf_event_ctx_lock(event);
4864 perf_event_for_each_child(event, _perf_event_disable);
4865 perf_event_ctx_unlock(event, ctx);
4866 }
4867 mutex_unlock(&current->perf_event_mutex);
4868
4869 return 0;
4870 }
4871
4872 static int perf_event_index(struct perf_event *event)
4873 {
4874 if (event->hw.state & PERF_HES_STOPPED)
4875 return 0;
4876
4877 if (event->state != PERF_EVENT_STATE_ACTIVE)
4878 return 0;
4879
4880 return event->pmu->event_idx(event);
4881 }
4882
4883 static void calc_timer_values(struct perf_event *event,
4884 u64 *now,
4885 u64 *enabled,
4886 u64 *running)
4887 {
4888 u64 ctx_time;
4889
4890 *now = perf_clock();
4891 ctx_time = event->shadow_ctx_time + *now;
4892 __perf_update_times(event, ctx_time, enabled, running);
4893 }
4894
4895 static void perf_event_init_userpage(struct perf_event *event)
4896 {
4897 struct perf_event_mmap_page *userpg;
4898 struct ring_buffer *rb;
4899
4900 rcu_read_lock();
4901 rb = rcu_dereference(event->rb);
4902 if (!rb)
4903 goto unlock;
4904
4905 userpg = rb->user_page;
4906
4907 /* Allow new userspace to detect that bit 0 is deprecated */
4908 userpg->cap_bit0_is_deprecated = 1;
4909 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4910 userpg->data_offset = PAGE_SIZE;
4911 userpg->data_size = perf_data_size(rb);
4912
4913 unlock:
4914 rcu_read_unlock();
4915 }
4916
4917 void __weak arch_perf_update_userpage(
4918 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4919 {
4920 }
4921
4922 /*
4923 * Callers need to ensure there can be no nesting of this function, otherwise
4924 * the seqlock logic goes bad. We can not serialize this because the arch
4925 * code calls this from NMI context.
4926 */
4927 void perf_event_update_userpage(struct perf_event *event)
4928 {
4929 struct perf_event_mmap_page *userpg;
4930 struct ring_buffer *rb;
4931 u64 enabled, running, now;
4932
4933 rcu_read_lock();
4934 rb = rcu_dereference(event->rb);
4935 if (!rb)
4936 goto unlock;
4937
4938 /*
4939 * compute total_time_enabled, total_time_running
4940 * based on snapshot values taken when the event
4941 * was last scheduled in.
4942 *
4943 * we cannot simply called update_context_time()
4944 * because of locking issue as we can be called in
4945 * NMI context
4946 */
4947 calc_timer_values(event, &now, &enabled, &running);
4948
4949 userpg = rb->user_page;
4950 /*
4951 * Disable preemption so as to not let the corresponding user-space
4952 * spin too long if we get preempted.
4953 */
4954 preempt_disable();
4955 ++userpg->lock;
4956 barrier();
4957 userpg->index = perf_event_index(event);
4958 userpg->offset = perf_event_count(event);
4959 if (userpg->index)
4960 userpg->offset -= local64_read(&event->hw.prev_count);
4961
4962 userpg->time_enabled = enabled +
4963 atomic64_read(&event->child_total_time_enabled);
4964
4965 userpg->time_running = running +
4966 atomic64_read(&event->child_total_time_running);
4967
4968 arch_perf_update_userpage(event, userpg, now);
4969
4970 barrier();
4971 ++userpg->lock;
4972 preempt_enable();
4973 unlock:
4974 rcu_read_unlock();
4975 }
4976 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
4977
4978 static int perf_mmap_fault(struct vm_fault *vmf)
4979 {
4980 struct perf_event *event = vmf->vma->vm_file->private_data;
4981 struct ring_buffer *rb;
4982 int ret = VM_FAULT_SIGBUS;
4983
4984 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4985 if (vmf->pgoff == 0)
4986 ret = 0;
4987 return ret;
4988 }
4989
4990 rcu_read_lock();
4991 rb = rcu_dereference(event->rb);
4992 if (!rb)
4993 goto unlock;
4994
4995 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4996 goto unlock;
4997
4998 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4999 if (!vmf->page)
5000 goto unlock;
5001
5002 get_page(vmf->page);
5003 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5004 vmf->page->index = vmf->pgoff;
5005
5006 ret = 0;
5007 unlock:
5008 rcu_read_unlock();
5009
5010 return ret;
5011 }
5012
5013 static void ring_buffer_attach(struct perf_event *event,
5014 struct ring_buffer *rb)
5015 {
5016 struct ring_buffer *old_rb = NULL;
5017 unsigned long flags;
5018
5019 if (event->rb) {
5020 /*
5021 * Should be impossible, we set this when removing
5022 * event->rb_entry and wait/clear when adding event->rb_entry.
5023 */
5024 WARN_ON_ONCE(event->rcu_pending);
5025
5026 old_rb = event->rb;
5027 spin_lock_irqsave(&old_rb->event_lock, flags);
5028 list_del_rcu(&event->rb_entry);
5029 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5030
5031 event->rcu_batches = get_state_synchronize_rcu();
5032 event->rcu_pending = 1;
5033 }
5034
5035 if (rb) {
5036 if (event->rcu_pending) {
5037 cond_synchronize_rcu(event->rcu_batches);
5038 event->rcu_pending = 0;
5039 }
5040
5041 spin_lock_irqsave(&rb->event_lock, flags);
5042 list_add_rcu(&event->rb_entry, &rb->event_list);
5043 spin_unlock_irqrestore(&rb->event_lock, flags);
5044 }
5045
5046 /*
5047 * Avoid racing with perf_mmap_close(AUX): stop the event
5048 * before swizzling the event::rb pointer; if it's getting
5049 * unmapped, its aux_mmap_count will be 0 and it won't
5050 * restart. See the comment in __perf_pmu_output_stop().
5051 *
5052 * Data will inevitably be lost when set_output is done in
5053 * mid-air, but then again, whoever does it like this is
5054 * not in for the data anyway.
5055 */
5056 if (has_aux(event))
5057 perf_event_stop(event, 0);
5058
5059 rcu_assign_pointer(event->rb, rb);
5060
5061 if (old_rb) {
5062 ring_buffer_put(old_rb);
5063 /*
5064 * Since we detached before setting the new rb, so that we
5065 * could attach the new rb, we could have missed a wakeup.
5066 * Provide it now.
5067 */
5068 wake_up_all(&event->waitq);
5069 }
5070 }
5071
5072 static void ring_buffer_wakeup(struct perf_event *event)
5073 {
5074 struct ring_buffer *rb;
5075
5076 rcu_read_lock();
5077 rb = rcu_dereference(event->rb);
5078 if (rb) {
5079 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5080 wake_up_all(&event->waitq);
5081 }
5082 rcu_read_unlock();
5083 }
5084
5085 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5086 {
5087 struct ring_buffer *rb;
5088
5089 rcu_read_lock();
5090 rb = rcu_dereference(event->rb);
5091 if (rb) {
5092 if (!atomic_inc_not_zero(&rb->refcount))
5093 rb = NULL;
5094 }
5095 rcu_read_unlock();
5096
5097 return rb;
5098 }
5099
5100 void ring_buffer_put(struct ring_buffer *rb)
5101 {
5102 if (!atomic_dec_and_test(&rb->refcount))
5103 return;
5104
5105 WARN_ON_ONCE(!list_empty(&rb->event_list));
5106
5107 call_rcu(&rb->rcu_head, rb_free_rcu);
5108 }
5109
5110 static void perf_mmap_open(struct vm_area_struct *vma)
5111 {
5112 struct perf_event *event = vma->vm_file->private_data;
5113
5114 atomic_inc(&event->mmap_count);
5115 atomic_inc(&event->rb->mmap_count);
5116
5117 if (vma->vm_pgoff)
5118 atomic_inc(&event->rb->aux_mmap_count);
5119
5120 if (event->pmu->event_mapped)
5121 event->pmu->event_mapped(event, vma->vm_mm);
5122 }
5123
5124 static void perf_pmu_output_stop(struct perf_event *event);
5125
5126 /*
5127 * A buffer can be mmap()ed multiple times; either directly through the same
5128 * event, or through other events by use of perf_event_set_output().
5129 *
5130 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5131 * the buffer here, where we still have a VM context. This means we need
5132 * to detach all events redirecting to us.
5133 */
5134 static void perf_mmap_close(struct vm_area_struct *vma)
5135 {
5136 struct perf_event *event = vma->vm_file->private_data;
5137
5138 struct ring_buffer *rb = ring_buffer_get(event);
5139 struct user_struct *mmap_user = rb->mmap_user;
5140 int mmap_locked = rb->mmap_locked;
5141 unsigned long size = perf_data_size(rb);
5142
5143 if (event->pmu->event_unmapped)
5144 event->pmu->event_unmapped(event, vma->vm_mm);
5145
5146 /*
5147 * rb->aux_mmap_count will always drop before rb->mmap_count and
5148 * event->mmap_count, so it is ok to use event->mmap_mutex to
5149 * serialize with perf_mmap here.
5150 */
5151 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5152 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5153 /*
5154 * Stop all AUX events that are writing to this buffer,
5155 * so that we can free its AUX pages and corresponding PMU
5156 * data. Note that after rb::aux_mmap_count dropped to zero,
5157 * they won't start any more (see perf_aux_output_begin()).
5158 */
5159 perf_pmu_output_stop(event);
5160
5161 /* now it's safe to free the pages */
5162 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5163 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5164
5165 /* this has to be the last one */
5166 rb_free_aux(rb);
5167 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5168
5169 mutex_unlock(&event->mmap_mutex);
5170 }
5171
5172 atomic_dec(&rb->mmap_count);
5173
5174 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5175 goto out_put;
5176
5177 ring_buffer_attach(event, NULL);
5178 mutex_unlock(&event->mmap_mutex);
5179
5180 /* If there's still other mmap()s of this buffer, we're done. */
5181 if (atomic_read(&rb->mmap_count))
5182 goto out_put;
5183
5184 /*
5185 * No other mmap()s, detach from all other events that might redirect
5186 * into the now unreachable buffer. Somewhat complicated by the
5187 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5188 */
5189 again:
5190 rcu_read_lock();
5191 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5192 if (!atomic_long_inc_not_zero(&event->refcount)) {
5193 /*
5194 * This event is en-route to free_event() which will
5195 * detach it and remove it from the list.
5196 */
5197 continue;
5198 }
5199 rcu_read_unlock();
5200
5201 mutex_lock(&event->mmap_mutex);
5202 /*
5203 * Check we didn't race with perf_event_set_output() which can
5204 * swizzle the rb from under us while we were waiting to
5205 * acquire mmap_mutex.
5206 *
5207 * If we find a different rb; ignore this event, a next
5208 * iteration will no longer find it on the list. We have to
5209 * still restart the iteration to make sure we're not now
5210 * iterating the wrong list.
5211 */
5212 if (event->rb == rb)
5213 ring_buffer_attach(event, NULL);
5214
5215 mutex_unlock(&event->mmap_mutex);
5216 put_event(event);
5217
5218 /*
5219 * Restart the iteration; either we're on the wrong list or
5220 * destroyed its integrity by doing a deletion.
5221 */
5222 goto again;
5223 }
5224 rcu_read_unlock();
5225
5226 /*
5227 * It could be there's still a few 0-ref events on the list; they'll
5228 * get cleaned up by free_event() -- they'll also still have their
5229 * ref on the rb and will free it whenever they are done with it.
5230 *
5231 * Aside from that, this buffer is 'fully' detached and unmapped,
5232 * undo the VM accounting.
5233 */
5234
5235 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5236 vma->vm_mm->pinned_vm -= mmap_locked;
5237 free_uid(mmap_user);
5238
5239 out_put:
5240 ring_buffer_put(rb); /* could be last */
5241 }
5242
5243 static const struct vm_operations_struct perf_mmap_vmops = {
5244 .open = perf_mmap_open,
5245 .close = perf_mmap_close, /* non mergable */
5246 .fault = perf_mmap_fault,
5247 .page_mkwrite = perf_mmap_fault,
5248 };
5249
5250 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5251 {
5252 struct perf_event *event = file->private_data;
5253 unsigned long user_locked, user_lock_limit;
5254 struct user_struct *user = current_user();
5255 unsigned long locked, lock_limit;
5256 struct ring_buffer *rb = NULL;
5257 unsigned long vma_size;
5258 unsigned long nr_pages;
5259 long user_extra = 0, extra = 0;
5260 int ret = 0, flags = 0;
5261
5262 /*
5263 * Don't allow mmap() of inherited per-task counters. This would
5264 * create a performance issue due to all children writing to the
5265 * same rb.
5266 */
5267 if (event->cpu == -1 && event->attr.inherit)
5268 return -EINVAL;
5269
5270 if (!(vma->vm_flags & VM_SHARED))
5271 return -EINVAL;
5272
5273 vma_size = vma->vm_end - vma->vm_start;
5274
5275 if (vma->vm_pgoff == 0) {
5276 nr_pages = (vma_size / PAGE_SIZE) - 1;
5277 } else {
5278 /*
5279 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5280 * mapped, all subsequent mappings should have the same size
5281 * and offset. Must be above the normal perf buffer.
5282 */
5283 u64 aux_offset, aux_size;
5284
5285 if (!event->rb)
5286 return -EINVAL;
5287
5288 nr_pages = vma_size / PAGE_SIZE;
5289
5290 mutex_lock(&event->mmap_mutex);
5291 ret = -EINVAL;
5292
5293 rb = event->rb;
5294 if (!rb)
5295 goto aux_unlock;
5296
5297 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5298 aux_size = READ_ONCE(rb->user_page->aux_size);
5299
5300 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5301 goto aux_unlock;
5302
5303 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5304 goto aux_unlock;
5305
5306 /* already mapped with a different offset */
5307 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5308 goto aux_unlock;
5309
5310 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5311 goto aux_unlock;
5312
5313 /* already mapped with a different size */
5314 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5315 goto aux_unlock;
5316
5317 if (!is_power_of_2(nr_pages))
5318 goto aux_unlock;
5319
5320 if (!atomic_inc_not_zero(&rb->mmap_count))
5321 goto aux_unlock;
5322
5323 if (rb_has_aux(rb)) {
5324 atomic_inc(&rb->aux_mmap_count);
5325 ret = 0;
5326 goto unlock;
5327 }
5328
5329 atomic_set(&rb->aux_mmap_count, 1);
5330 user_extra = nr_pages;
5331
5332 goto accounting;
5333 }
5334
5335 /*
5336 * If we have rb pages ensure they're a power-of-two number, so we
5337 * can do bitmasks instead of modulo.
5338 */
5339 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5340 return -EINVAL;
5341
5342 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5343 return -EINVAL;
5344
5345 WARN_ON_ONCE(event->ctx->parent_ctx);
5346 again:
5347 mutex_lock(&event->mmap_mutex);
5348 if (event->rb) {
5349 if (event->rb->nr_pages != nr_pages) {
5350 ret = -EINVAL;
5351 goto unlock;
5352 }
5353
5354 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5355 /*
5356 * Raced against perf_mmap_close() through
5357 * perf_event_set_output(). Try again, hope for better
5358 * luck.
5359 */
5360 mutex_unlock(&event->mmap_mutex);
5361 goto again;
5362 }
5363
5364 goto unlock;
5365 }
5366
5367 user_extra = nr_pages + 1;
5368
5369 accounting:
5370 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5371
5372 /*
5373 * Increase the limit linearly with more CPUs:
5374 */
5375 user_lock_limit *= num_online_cpus();
5376
5377 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5378
5379 if (user_locked > user_lock_limit)
5380 extra = user_locked - user_lock_limit;
5381
5382 lock_limit = rlimit(RLIMIT_MEMLOCK);
5383 lock_limit >>= PAGE_SHIFT;
5384 locked = vma->vm_mm->pinned_vm + extra;
5385
5386 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5387 !capable(CAP_IPC_LOCK)) {
5388 ret = -EPERM;
5389 goto unlock;
5390 }
5391
5392 WARN_ON(!rb && event->rb);
5393
5394 if (vma->vm_flags & VM_WRITE)
5395 flags |= RING_BUFFER_WRITABLE;
5396
5397 if (!rb) {
5398 rb = rb_alloc(nr_pages,
5399 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5400 event->cpu, flags);
5401
5402 if (!rb) {
5403 ret = -ENOMEM;
5404 goto unlock;
5405 }
5406
5407 atomic_set(&rb->mmap_count, 1);
5408 rb->mmap_user = get_current_user();
5409 rb->mmap_locked = extra;
5410
5411 ring_buffer_attach(event, rb);
5412
5413 perf_event_init_userpage(event);
5414 perf_event_update_userpage(event);
5415 } else {
5416 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5417 event->attr.aux_watermark, flags);
5418 if (!ret)
5419 rb->aux_mmap_locked = extra;
5420 }
5421
5422 unlock:
5423 if (!ret) {
5424 atomic_long_add(user_extra, &user->locked_vm);
5425 vma->vm_mm->pinned_vm += extra;
5426
5427 atomic_inc(&event->mmap_count);
5428 } else if (rb) {
5429 atomic_dec(&rb->mmap_count);
5430 }
5431 aux_unlock:
5432 mutex_unlock(&event->mmap_mutex);
5433
5434 /*
5435 * Since pinned accounting is per vm we cannot allow fork() to copy our
5436 * vma.
5437 */
5438 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5439 vma->vm_ops = &perf_mmap_vmops;
5440
5441 if (event->pmu->event_mapped)
5442 event->pmu->event_mapped(event, vma->vm_mm);
5443
5444 return ret;
5445 }
5446
5447 static int perf_fasync(int fd, struct file *filp, int on)
5448 {
5449 struct inode *inode = file_inode(filp);
5450 struct perf_event *event = filp->private_data;
5451 int retval;
5452
5453 inode_lock(inode);
5454 retval = fasync_helper(fd, filp, on, &event->fasync);
5455 inode_unlock(inode);
5456
5457 if (retval < 0)
5458 return retval;
5459
5460 return 0;
5461 }
5462
5463 static const struct file_operations perf_fops = {
5464 .llseek = no_llseek,
5465 .release = perf_release,
5466 .read = perf_read,
5467 .poll = perf_poll,
5468 .unlocked_ioctl = perf_ioctl,
5469 .compat_ioctl = perf_compat_ioctl,
5470 .mmap = perf_mmap,
5471 .fasync = perf_fasync,
5472 };
5473
5474 /*
5475 * Perf event wakeup
5476 *
5477 * If there's data, ensure we set the poll() state and publish everything
5478 * to user-space before waking everybody up.
5479 */
5480
5481 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5482 {
5483 /* only the parent has fasync state */
5484 if (event->parent)
5485 event = event->parent;
5486 return &event->fasync;
5487 }
5488
5489 void perf_event_wakeup(struct perf_event *event)
5490 {
5491 ring_buffer_wakeup(event);
5492
5493 if (event->pending_kill) {
5494 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5495 event->pending_kill = 0;
5496 }
5497 }
5498
5499 static void perf_pending_event_disable(struct perf_event *event)
5500 {
5501 int cpu = READ_ONCE(event->pending_disable);
5502
5503 if (cpu < 0)
5504 return;
5505
5506 if (cpu == smp_processor_id()) {
5507 WRITE_ONCE(event->pending_disable, -1);
5508 perf_event_disable_local(event);
5509 return;
5510 }
5511
5512 /*
5513 * CPU-A CPU-B
5514 *
5515 * perf_event_disable_inatomic()
5516 * @pending_disable = CPU-A;
5517 * irq_work_queue();
5518 *
5519 * sched-out
5520 * @pending_disable = -1;
5521 *
5522 * sched-in
5523 * perf_event_disable_inatomic()
5524 * @pending_disable = CPU-B;
5525 * irq_work_queue(); // FAILS
5526 *
5527 * irq_work_run()
5528 * perf_pending_event()
5529 *
5530 * But the event runs on CPU-B and wants disabling there.
5531 */
5532 irq_work_queue_on(&event->pending, cpu);
5533 }
5534
5535 static void perf_pending_event(struct irq_work *entry)
5536 {
5537 struct perf_event *event = container_of(entry, struct perf_event, pending);
5538 int rctx;
5539
5540 rctx = perf_swevent_get_recursion_context();
5541 /*
5542 * If we 'fail' here, that's OK, it means recursion is already disabled
5543 * and we won't recurse 'further'.
5544 */
5545
5546 perf_pending_event_disable(event);
5547
5548 if (event->pending_wakeup) {
5549 event->pending_wakeup = 0;
5550 perf_event_wakeup(event);
5551 }
5552
5553 if (rctx >= 0)
5554 perf_swevent_put_recursion_context(rctx);
5555 }
5556
5557 /*
5558 * We assume there is only KVM supporting the callbacks.
5559 * Later on, we might change it to a list if there is
5560 * another virtualization implementation supporting the callbacks.
5561 */
5562 struct perf_guest_info_callbacks *perf_guest_cbs;
5563
5564 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5565 {
5566 perf_guest_cbs = cbs;
5567 return 0;
5568 }
5569 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5570
5571 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5572 {
5573 perf_guest_cbs = NULL;
5574 return 0;
5575 }
5576 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5577
5578 static void
5579 perf_output_sample_regs(struct perf_output_handle *handle,
5580 struct pt_regs *regs, u64 mask)
5581 {
5582 int bit;
5583 DECLARE_BITMAP(_mask, 64);
5584
5585 bitmap_from_u64(_mask, mask);
5586 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5587 u64 val;
5588
5589 val = perf_reg_value(regs, bit);
5590 perf_output_put(handle, val);
5591 }
5592 }
5593
5594 static void perf_sample_regs_user(struct perf_regs *regs_user,
5595 struct pt_regs *regs,
5596 struct pt_regs *regs_user_copy)
5597 {
5598 if (user_mode(regs)) {
5599 regs_user->abi = perf_reg_abi(current);
5600 regs_user->regs = regs;
5601 } else if (current->mm) {
5602 perf_get_regs_user(regs_user, regs, regs_user_copy);
5603 } else {
5604 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5605 regs_user->regs = NULL;
5606 }
5607 }
5608
5609 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5610 struct pt_regs *regs)
5611 {
5612 regs_intr->regs = regs;
5613 regs_intr->abi = perf_reg_abi(current);
5614 }
5615
5616
5617 /*
5618 * Get remaining task size from user stack pointer.
5619 *
5620 * It'd be better to take stack vma map and limit this more
5621 * precisly, but there's no way to get it safely under interrupt,
5622 * so using TASK_SIZE as limit.
5623 */
5624 static u64 perf_ustack_task_size(struct pt_regs *regs)
5625 {
5626 unsigned long addr = perf_user_stack_pointer(regs);
5627
5628 if (!addr || addr >= TASK_SIZE)
5629 return 0;
5630
5631 return TASK_SIZE - addr;
5632 }
5633
5634 static u16
5635 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5636 struct pt_regs *regs)
5637 {
5638 u64 task_size;
5639
5640 /* No regs, no stack pointer, no dump. */
5641 if (!regs)
5642 return 0;
5643
5644 /*
5645 * Check if we fit in with the requested stack size into the:
5646 * - TASK_SIZE
5647 * If we don't, we limit the size to the TASK_SIZE.
5648 *
5649 * - remaining sample size
5650 * If we don't, we customize the stack size to
5651 * fit in to the remaining sample size.
5652 */
5653
5654 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5655 stack_size = min(stack_size, (u16) task_size);
5656
5657 /* Current header size plus static size and dynamic size. */
5658 header_size += 2 * sizeof(u64);
5659
5660 /* Do we fit in with the current stack dump size? */
5661 if ((u16) (header_size + stack_size) < header_size) {
5662 /*
5663 * If we overflow the maximum size for the sample,
5664 * we customize the stack dump size to fit in.
5665 */
5666 stack_size = USHRT_MAX - header_size - sizeof(u64);
5667 stack_size = round_up(stack_size, sizeof(u64));
5668 }
5669
5670 return stack_size;
5671 }
5672
5673 static void
5674 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5675 struct pt_regs *regs)
5676 {
5677 /* Case of a kernel thread, nothing to dump */
5678 if (!regs) {
5679 u64 size = 0;
5680 perf_output_put(handle, size);
5681 } else {
5682 unsigned long sp;
5683 unsigned int rem;
5684 u64 dyn_size;
5685 mm_segment_t fs;
5686
5687 /*
5688 * We dump:
5689 * static size
5690 * - the size requested by user or the best one we can fit
5691 * in to the sample max size
5692 * data
5693 * - user stack dump data
5694 * dynamic size
5695 * - the actual dumped size
5696 */
5697
5698 /* Static size. */
5699 perf_output_put(handle, dump_size);
5700
5701 /* Data. */
5702 sp = perf_user_stack_pointer(regs);
5703 fs = get_fs();
5704 set_fs(USER_DS);
5705 rem = __output_copy_user(handle, (void *) sp, dump_size);
5706 set_fs(fs);
5707 dyn_size = dump_size - rem;
5708
5709 perf_output_skip(handle, rem);
5710
5711 /* Dynamic size. */
5712 perf_output_put(handle, dyn_size);
5713 }
5714 }
5715
5716 static void __perf_event_header__init_id(struct perf_event_header *header,
5717 struct perf_sample_data *data,
5718 struct perf_event *event)
5719 {
5720 u64 sample_type = event->attr.sample_type;
5721
5722 data->type = sample_type;
5723 header->size += event->id_header_size;
5724
5725 if (sample_type & PERF_SAMPLE_TID) {
5726 /* namespace issues */
5727 data->tid_entry.pid = perf_event_pid(event, current);
5728 data->tid_entry.tid = perf_event_tid(event, current);
5729 }
5730
5731 if (sample_type & PERF_SAMPLE_TIME)
5732 data->time = perf_event_clock(event);
5733
5734 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5735 data->id = primary_event_id(event);
5736
5737 if (sample_type & PERF_SAMPLE_STREAM_ID)
5738 data->stream_id = event->id;
5739
5740 if (sample_type & PERF_SAMPLE_CPU) {
5741 data->cpu_entry.cpu = raw_smp_processor_id();
5742 data->cpu_entry.reserved = 0;
5743 }
5744 }
5745
5746 void perf_event_header__init_id(struct perf_event_header *header,
5747 struct perf_sample_data *data,
5748 struct perf_event *event)
5749 {
5750 if (event->attr.sample_id_all)
5751 __perf_event_header__init_id(header, data, event);
5752 }
5753
5754 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5755 struct perf_sample_data *data)
5756 {
5757 u64 sample_type = data->type;
5758
5759 if (sample_type & PERF_SAMPLE_TID)
5760 perf_output_put(handle, data->tid_entry);
5761
5762 if (sample_type & PERF_SAMPLE_TIME)
5763 perf_output_put(handle, data->time);
5764
5765 if (sample_type & PERF_SAMPLE_ID)
5766 perf_output_put(handle, data->id);
5767
5768 if (sample_type & PERF_SAMPLE_STREAM_ID)
5769 perf_output_put(handle, data->stream_id);
5770
5771 if (sample_type & PERF_SAMPLE_CPU)
5772 perf_output_put(handle, data->cpu_entry);
5773
5774 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5775 perf_output_put(handle, data->id);
5776 }
5777
5778 void perf_event__output_id_sample(struct perf_event *event,
5779 struct perf_output_handle *handle,
5780 struct perf_sample_data *sample)
5781 {
5782 if (event->attr.sample_id_all)
5783 __perf_event__output_id_sample(handle, sample);
5784 }
5785
5786 static void perf_output_read_one(struct perf_output_handle *handle,
5787 struct perf_event *event,
5788 u64 enabled, u64 running)
5789 {
5790 u64 read_format = event->attr.read_format;
5791 u64 values[4];
5792 int n = 0;
5793
5794 values[n++] = perf_event_count(event);
5795 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5796 values[n++] = enabled +
5797 atomic64_read(&event->child_total_time_enabled);
5798 }
5799 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5800 values[n++] = running +
5801 atomic64_read(&event->child_total_time_running);
5802 }
5803 if (read_format & PERF_FORMAT_ID)
5804 values[n++] = primary_event_id(event);
5805
5806 __output_copy(handle, values, n * sizeof(u64));
5807 }
5808
5809 static void perf_output_read_group(struct perf_output_handle *handle,
5810 struct perf_event *event,
5811 u64 enabled, u64 running)
5812 {
5813 struct perf_event *leader = event->group_leader, *sub;
5814 u64 read_format = event->attr.read_format;
5815 u64 values[5];
5816 int n = 0;
5817
5818 values[n++] = 1 + leader->nr_siblings;
5819
5820 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5821 values[n++] = enabled;
5822
5823 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5824 values[n++] = running;
5825
5826 if ((leader != event) &&
5827 (leader->state == PERF_EVENT_STATE_ACTIVE))
5828 leader->pmu->read(leader);
5829
5830 values[n++] = perf_event_count(leader);
5831 if (read_format & PERF_FORMAT_ID)
5832 values[n++] = primary_event_id(leader);
5833
5834 __output_copy(handle, values, n * sizeof(u64));
5835
5836 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5837 n = 0;
5838
5839 if ((sub != event) &&
5840 (sub->state == PERF_EVENT_STATE_ACTIVE))
5841 sub->pmu->read(sub);
5842
5843 values[n++] = perf_event_count(sub);
5844 if (read_format & PERF_FORMAT_ID)
5845 values[n++] = primary_event_id(sub);
5846
5847 __output_copy(handle, values, n * sizeof(u64));
5848 }
5849 }
5850
5851 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5852 PERF_FORMAT_TOTAL_TIME_RUNNING)
5853
5854 /*
5855 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5856 *
5857 * The problem is that its both hard and excessively expensive to iterate the
5858 * child list, not to mention that its impossible to IPI the children running
5859 * on another CPU, from interrupt/NMI context.
5860 */
5861 static void perf_output_read(struct perf_output_handle *handle,
5862 struct perf_event *event)
5863 {
5864 u64 enabled = 0, running = 0, now;
5865 u64 read_format = event->attr.read_format;
5866
5867 /*
5868 * compute total_time_enabled, total_time_running
5869 * based on snapshot values taken when the event
5870 * was last scheduled in.
5871 *
5872 * we cannot simply called update_context_time()
5873 * because of locking issue as we are called in
5874 * NMI context
5875 */
5876 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5877 calc_timer_values(event, &now, &enabled, &running);
5878
5879 if (event->attr.read_format & PERF_FORMAT_GROUP)
5880 perf_output_read_group(handle, event, enabled, running);
5881 else
5882 perf_output_read_one(handle, event, enabled, running);
5883 }
5884
5885 void perf_output_sample(struct perf_output_handle *handle,
5886 struct perf_event_header *header,
5887 struct perf_sample_data *data,
5888 struct perf_event *event)
5889 {
5890 u64 sample_type = data->type;
5891
5892 perf_output_put(handle, *header);
5893
5894 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5895 perf_output_put(handle, data->id);
5896
5897 if (sample_type & PERF_SAMPLE_IP)
5898 perf_output_put(handle, data->ip);
5899
5900 if (sample_type & PERF_SAMPLE_TID)
5901 perf_output_put(handle, data->tid_entry);
5902
5903 if (sample_type & PERF_SAMPLE_TIME)
5904 perf_output_put(handle, data->time);
5905
5906 if (sample_type & PERF_SAMPLE_ADDR)
5907 perf_output_put(handle, data->addr);
5908
5909 if (sample_type & PERF_SAMPLE_ID)
5910 perf_output_put(handle, data->id);
5911
5912 if (sample_type & PERF_SAMPLE_STREAM_ID)
5913 perf_output_put(handle, data->stream_id);
5914
5915 if (sample_type & PERF_SAMPLE_CPU)
5916 perf_output_put(handle, data->cpu_entry);
5917
5918 if (sample_type & PERF_SAMPLE_PERIOD)
5919 perf_output_put(handle, data->period);
5920
5921 if (sample_type & PERF_SAMPLE_READ)
5922 perf_output_read(handle, event);
5923
5924 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5925 if (data->callchain) {
5926 int size = 1;
5927
5928 if (data->callchain)
5929 size += data->callchain->nr;
5930
5931 size *= sizeof(u64);
5932
5933 __output_copy(handle, data->callchain, size);
5934 } else {
5935 u64 nr = 0;
5936 perf_output_put(handle, nr);
5937 }
5938 }
5939
5940 if (sample_type & PERF_SAMPLE_RAW) {
5941 struct perf_raw_record *raw = data->raw;
5942
5943 if (raw) {
5944 struct perf_raw_frag *frag = &raw->frag;
5945
5946 perf_output_put(handle, raw->size);
5947 do {
5948 if (frag->copy) {
5949 __output_custom(handle, frag->copy,
5950 frag->data, frag->size);
5951 } else {
5952 __output_copy(handle, frag->data,
5953 frag->size);
5954 }
5955 if (perf_raw_frag_last(frag))
5956 break;
5957 frag = frag->next;
5958 } while (1);
5959 if (frag->pad)
5960 __output_skip(handle, NULL, frag->pad);
5961 } else {
5962 struct {
5963 u32 size;
5964 u32 data;
5965 } raw = {
5966 .size = sizeof(u32),
5967 .data = 0,
5968 };
5969 perf_output_put(handle, raw);
5970 }
5971 }
5972
5973 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5974 if (data->br_stack) {
5975 size_t size;
5976
5977 size = data->br_stack->nr
5978 * sizeof(struct perf_branch_entry);
5979
5980 perf_output_put(handle, data->br_stack->nr);
5981 perf_output_copy(handle, data->br_stack->entries, size);
5982 } else {
5983 /*
5984 * we always store at least the value of nr
5985 */
5986 u64 nr = 0;
5987 perf_output_put(handle, nr);
5988 }
5989 }
5990
5991 if (sample_type & PERF_SAMPLE_REGS_USER) {
5992 u64 abi = data->regs_user.abi;
5993
5994 /*
5995 * If there are no regs to dump, notice it through
5996 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5997 */
5998 perf_output_put(handle, abi);
5999
6000 if (abi) {
6001 u64 mask = event->attr.sample_regs_user;
6002 perf_output_sample_regs(handle,
6003 data->regs_user.regs,
6004 mask);
6005 }
6006 }
6007
6008 if (sample_type & PERF_SAMPLE_STACK_USER) {
6009 perf_output_sample_ustack(handle,
6010 data->stack_user_size,
6011 data->regs_user.regs);
6012 }
6013
6014 if (sample_type & PERF_SAMPLE_WEIGHT)
6015 perf_output_put(handle, data->weight);
6016
6017 if (sample_type & PERF_SAMPLE_DATA_SRC)
6018 perf_output_put(handle, data->data_src.val);
6019
6020 if (sample_type & PERF_SAMPLE_TRANSACTION)
6021 perf_output_put(handle, data->txn);
6022
6023 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6024 u64 abi = data->regs_intr.abi;
6025 /*
6026 * If there are no regs to dump, notice it through
6027 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6028 */
6029 perf_output_put(handle, abi);
6030
6031 if (abi) {
6032 u64 mask = event->attr.sample_regs_intr;
6033
6034 perf_output_sample_regs(handle,
6035 data->regs_intr.regs,
6036 mask);
6037 }
6038 }
6039
6040 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6041 perf_output_put(handle, data->phys_addr);
6042
6043 if (!event->attr.watermark) {
6044 int wakeup_events = event->attr.wakeup_events;
6045
6046 if (wakeup_events) {
6047 struct ring_buffer *rb = handle->rb;
6048 int events = local_inc_return(&rb->events);
6049
6050 if (events >= wakeup_events) {
6051 local_sub(wakeup_events, &rb->events);
6052 local_inc(&rb->wakeup);
6053 }
6054 }
6055 }
6056 }
6057
6058 static u64 perf_virt_to_phys(u64 virt)
6059 {
6060 u64 phys_addr = 0;
6061 struct page *p = NULL;
6062
6063 if (!virt)
6064 return 0;
6065
6066 if (virt >= TASK_SIZE) {
6067 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6068 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6069 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6070 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6071 } else {
6072 /*
6073 * Walking the pages tables for user address.
6074 * Interrupts are disabled, so it prevents any tear down
6075 * of the page tables.
6076 * Try IRQ-safe __get_user_pages_fast first.
6077 * If failed, leave phys_addr as 0.
6078 */
6079 if ((current->mm != NULL) &&
6080 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6081 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6082
6083 if (p)
6084 put_page(p);
6085 }
6086
6087 return phys_addr;
6088 }
6089
6090 void perf_prepare_sample(struct perf_event_header *header,
6091 struct perf_sample_data *data,
6092 struct perf_event *event,
6093 struct pt_regs *regs)
6094 {
6095 u64 sample_type = event->attr.sample_type;
6096
6097 header->type = PERF_RECORD_SAMPLE;
6098 header->size = sizeof(*header) + event->header_size;
6099
6100 header->misc = 0;
6101 header->misc |= perf_misc_flags(regs);
6102
6103 __perf_event_header__init_id(header, data, event);
6104
6105 if (sample_type & PERF_SAMPLE_IP)
6106 data->ip = perf_instruction_pointer(regs);
6107
6108 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6109 int size = 1;
6110
6111 data->callchain = perf_callchain(event, regs);
6112
6113 if (data->callchain)
6114 size += data->callchain->nr;
6115
6116 header->size += size * sizeof(u64);
6117 }
6118
6119 if (sample_type & PERF_SAMPLE_RAW) {
6120 struct perf_raw_record *raw = data->raw;
6121 int size;
6122
6123 if (raw) {
6124 struct perf_raw_frag *frag = &raw->frag;
6125 u32 sum = 0;
6126
6127 do {
6128 sum += frag->size;
6129 if (perf_raw_frag_last(frag))
6130 break;
6131 frag = frag->next;
6132 } while (1);
6133
6134 size = round_up(sum + sizeof(u32), sizeof(u64));
6135 raw->size = size - sizeof(u32);
6136 frag->pad = raw->size - sum;
6137 } else {
6138 size = sizeof(u64);
6139 }
6140
6141 header->size += size;
6142 }
6143
6144 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6145 int size = sizeof(u64); /* nr */
6146 if (data->br_stack) {
6147 size += data->br_stack->nr
6148 * sizeof(struct perf_branch_entry);
6149 }
6150 header->size += size;
6151 }
6152
6153 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6154 perf_sample_regs_user(&data->regs_user, regs,
6155 &data->regs_user_copy);
6156
6157 if (sample_type & PERF_SAMPLE_REGS_USER) {
6158 /* regs dump ABI info */
6159 int size = sizeof(u64);
6160
6161 if (data->regs_user.regs) {
6162 u64 mask = event->attr.sample_regs_user;
6163 size += hweight64(mask) * sizeof(u64);
6164 }
6165
6166 header->size += size;
6167 }
6168
6169 if (sample_type & PERF_SAMPLE_STACK_USER) {
6170 /*
6171 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6172 * processed as the last one or have additional check added
6173 * in case new sample type is added, because we could eat
6174 * up the rest of the sample size.
6175 */
6176 u16 stack_size = event->attr.sample_stack_user;
6177 u16 size = sizeof(u64);
6178
6179 stack_size = perf_sample_ustack_size(stack_size, header->size,
6180 data->regs_user.regs);
6181
6182 /*
6183 * If there is something to dump, add space for the dump
6184 * itself and for the field that tells the dynamic size,
6185 * which is how many have been actually dumped.
6186 */
6187 if (stack_size)
6188 size += sizeof(u64) + stack_size;
6189
6190 data->stack_user_size = stack_size;
6191 header->size += size;
6192 }
6193
6194 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6195 /* regs dump ABI info */
6196 int size = sizeof(u64);
6197
6198 perf_sample_regs_intr(&data->regs_intr, regs);
6199
6200 if (data->regs_intr.regs) {
6201 u64 mask = event->attr.sample_regs_intr;
6202
6203 size += hweight64(mask) * sizeof(u64);
6204 }
6205
6206 header->size += size;
6207 }
6208
6209 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6210 data->phys_addr = perf_virt_to_phys(data->addr);
6211 }
6212
6213 static void __always_inline
6214 __perf_event_output(struct perf_event *event,
6215 struct perf_sample_data *data,
6216 struct pt_regs *regs,
6217 int (*output_begin)(struct perf_output_handle *,
6218 struct perf_event *,
6219 unsigned int))
6220 {
6221 struct perf_output_handle handle;
6222 struct perf_event_header header;
6223
6224 /* protect the callchain buffers */
6225 rcu_read_lock();
6226
6227 perf_prepare_sample(&header, data, event, regs);
6228
6229 if (output_begin(&handle, event, header.size))
6230 goto exit;
6231
6232 perf_output_sample(&handle, &header, data, event);
6233
6234 perf_output_end(&handle);
6235
6236 exit:
6237 rcu_read_unlock();
6238 }
6239
6240 void
6241 perf_event_output_forward(struct perf_event *event,
6242 struct perf_sample_data *data,
6243 struct pt_regs *regs)
6244 {
6245 __perf_event_output(event, data, regs, perf_output_begin_forward);
6246 }
6247
6248 void
6249 perf_event_output_backward(struct perf_event *event,
6250 struct perf_sample_data *data,
6251 struct pt_regs *regs)
6252 {
6253 __perf_event_output(event, data, regs, perf_output_begin_backward);
6254 }
6255
6256 void
6257 perf_event_output(struct perf_event *event,
6258 struct perf_sample_data *data,
6259 struct pt_regs *regs)
6260 {
6261 __perf_event_output(event, data, regs, perf_output_begin);
6262 }
6263
6264 /*
6265 * read event_id
6266 */
6267
6268 struct perf_read_event {
6269 struct perf_event_header header;
6270
6271 u32 pid;
6272 u32 tid;
6273 };
6274
6275 static void
6276 perf_event_read_event(struct perf_event *event,
6277 struct task_struct *task)
6278 {
6279 struct perf_output_handle handle;
6280 struct perf_sample_data sample;
6281 struct perf_read_event read_event = {
6282 .header = {
6283 .type = PERF_RECORD_READ,
6284 .misc = 0,
6285 .size = sizeof(read_event) + event->read_size,
6286 },
6287 .pid = perf_event_pid(event, task),
6288 .tid = perf_event_tid(event, task),
6289 };
6290 int ret;
6291
6292 perf_event_header__init_id(&read_event.header, &sample, event);
6293 ret = perf_output_begin(&handle, event, read_event.header.size);
6294 if (ret)
6295 return;
6296
6297 perf_output_put(&handle, read_event);
6298 perf_output_read(&handle, event);
6299 perf_event__output_id_sample(event, &handle, &sample);
6300
6301 perf_output_end(&handle);
6302 }
6303
6304 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6305
6306 static void
6307 perf_iterate_ctx(struct perf_event_context *ctx,
6308 perf_iterate_f output,
6309 void *data, bool all)
6310 {
6311 struct perf_event *event;
6312
6313 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6314 if (!all) {
6315 if (event->state < PERF_EVENT_STATE_INACTIVE)
6316 continue;
6317 if (!event_filter_match(event))
6318 continue;
6319 }
6320
6321 output(event, data);
6322 }
6323 }
6324
6325 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6326 {
6327 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6328 struct perf_event *event;
6329
6330 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6331 /*
6332 * Skip events that are not fully formed yet; ensure that
6333 * if we observe event->ctx, both event and ctx will be
6334 * complete enough. See perf_install_in_context().
6335 */
6336 if (!smp_load_acquire(&event->ctx))
6337 continue;
6338
6339 if (event->state < PERF_EVENT_STATE_INACTIVE)
6340 continue;
6341 if (!event_filter_match(event))
6342 continue;
6343 output(event, data);
6344 }
6345 }
6346
6347 /*
6348 * Iterate all events that need to receive side-band events.
6349 *
6350 * For new callers; ensure that account_pmu_sb_event() includes
6351 * your event, otherwise it might not get delivered.
6352 */
6353 static void
6354 perf_iterate_sb(perf_iterate_f output, void *data,
6355 struct perf_event_context *task_ctx)
6356 {
6357 struct perf_event_context *ctx;
6358 int ctxn;
6359
6360 rcu_read_lock();
6361 preempt_disable();
6362
6363 /*
6364 * If we have task_ctx != NULL we only notify the task context itself.
6365 * The task_ctx is set only for EXIT events before releasing task
6366 * context.
6367 */
6368 if (task_ctx) {
6369 perf_iterate_ctx(task_ctx, output, data, false);
6370 goto done;
6371 }
6372
6373 perf_iterate_sb_cpu(output, data);
6374
6375 for_each_task_context_nr(ctxn) {
6376 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6377 if (ctx)
6378 perf_iterate_ctx(ctx, output, data, false);
6379 }
6380 done:
6381 preempt_enable();
6382 rcu_read_unlock();
6383 }
6384
6385 /*
6386 * Clear all file-based filters at exec, they'll have to be
6387 * re-instated when/if these objects are mmapped again.
6388 */
6389 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6390 {
6391 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6392 struct perf_addr_filter *filter;
6393 unsigned int restart = 0, count = 0;
6394 unsigned long flags;
6395
6396 if (!has_addr_filter(event))
6397 return;
6398
6399 raw_spin_lock_irqsave(&ifh->lock, flags);
6400 list_for_each_entry(filter, &ifh->list, entry) {
6401 if (filter->inode) {
6402 event->addr_filters_offs[count] = 0;
6403 restart++;
6404 }
6405
6406 count++;
6407 }
6408
6409 if (restart)
6410 event->addr_filters_gen++;
6411 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6412
6413 if (restart)
6414 perf_event_stop(event, 1);
6415 }
6416
6417 void perf_event_exec(void)
6418 {
6419 struct perf_event_context *ctx;
6420 int ctxn;
6421
6422 rcu_read_lock();
6423 for_each_task_context_nr(ctxn) {
6424 ctx = current->perf_event_ctxp[ctxn];
6425 if (!ctx)
6426 continue;
6427
6428 perf_event_enable_on_exec(ctxn);
6429
6430 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6431 true);
6432 }
6433 rcu_read_unlock();
6434 }
6435
6436 struct remote_output {
6437 struct ring_buffer *rb;
6438 int err;
6439 };
6440
6441 static void __perf_event_output_stop(struct perf_event *event, void *data)
6442 {
6443 struct perf_event *parent = event->parent;
6444 struct remote_output *ro = data;
6445 struct ring_buffer *rb = ro->rb;
6446 struct stop_event_data sd = {
6447 .event = event,
6448 };
6449
6450 if (!has_aux(event))
6451 return;
6452
6453 if (!parent)
6454 parent = event;
6455
6456 /*
6457 * In case of inheritance, it will be the parent that links to the
6458 * ring-buffer, but it will be the child that's actually using it.
6459 *
6460 * We are using event::rb to determine if the event should be stopped,
6461 * however this may race with ring_buffer_attach() (through set_output),
6462 * which will make us skip the event that actually needs to be stopped.
6463 * So ring_buffer_attach() has to stop an aux event before re-assigning
6464 * its rb pointer.
6465 */
6466 if (rcu_dereference(parent->rb) == rb)
6467 ro->err = __perf_event_stop(&sd);
6468 }
6469
6470 static int __perf_pmu_output_stop(void *info)
6471 {
6472 struct perf_event *event = info;
6473 struct pmu *pmu = event->pmu;
6474 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6475 struct remote_output ro = {
6476 .rb = event->rb,
6477 };
6478
6479 rcu_read_lock();
6480 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6481 if (cpuctx->task_ctx)
6482 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6483 &ro, false);
6484 rcu_read_unlock();
6485
6486 return ro.err;
6487 }
6488
6489 static void perf_pmu_output_stop(struct perf_event *event)
6490 {
6491 struct perf_event *iter;
6492 int err, cpu;
6493
6494 restart:
6495 rcu_read_lock();
6496 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6497 /*
6498 * For per-CPU events, we need to make sure that neither they
6499 * nor their children are running; for cpu==-1 events it's
6500 * sufficient to stop the event itself if it's active, since
6501 * it can't have children.
6502 */
6503 cpu = iter->cpu;
6504 if (cpu == -1)
6505 cpu = READ_ONCE(iter->oncpu);
6506
6507 if (cpu == -1)
6508 continue;
6509
6510 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6511 if (err == -EAGAIN) {
6512 rcu_read_unlock();
6513 goto restart;
6514 }
6515 }
6516 rcu_read_unlock();
6517 }
6518
6519 /*
6520 * task tracking -- fork/exit
6521 *
6522 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6523 */
6524
6525 struct perf_task_event {
6526 struct task_struct *task;
6527 struct perf_event_context *task_ctx;
6528
6529 struct {
6530 struct perf_event_header header;
6531
6532 u32 pid;
6533 u32 ppid;
6534 u32 tid;
6535 u32 ptid;
6536 u64 time;
6537 } event_id;
6538 };
6539
6540 static int perf_event_task_match(struct perf_event *event)
6541 {
6542 return event->attr.comm || event->attr.mmap ||
6543 event->attr.mmap2 || event->attr.mmap_data ||
6544 event->attr.task;
6545 }
6546
6547 static void perf_event_task_output(struct perf_event *event,
6548 void *data)
6549 {
6550 struct perf_task_event *task_event = data;
6551 struct perf_output_handle handle;
6552 struct perf_sample_data sample;
6553 struct task_struct *task = task_event->task;
6554 int ret, size = task_event->event_id.header.size;
6555
6556 if (!perf_event_task_match(event))
6557 return;
6558
6559 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6560
6561 ret = perf_output_begin(&handle, event,
6562 task_event->event_id.header.size);
6563 if (ret)
6564 goto out;
6565
6566 task_event->event_id.pid = perf_event_pid(event, task);
6567 task_event->event_id.ppid = perf_event_pid(event, current);
6568
6569 task_event->event_id.tid = perf_event_tid(event, task);
6570 task_event->event_id.ptid = perf_event_tid(event, current);
6571
6572 task_event->event_id.time = perf_event_clock(event);
6573
6574 perf_output_put(&handle, task_event->event_id);
6575
6576 perf_event__output_id_sample(event, &handle, &sample);
6577
6578 perf_output_end(&handle);
6579 out:
6580 task_event->event_id.header.size = size;
6581 }
6582
6583 static void perf_event_task(struct task_struct *task,
6584 struct perf_event_context *task_ctx,
6585 int new)
6586 {
6587 struct perf_task_event task_event;
6588
6589 if (!atomic_read(&nr_comm_events) &&
6590 !atomic_read(&nr_mmap_events) &&
6591 !atomic_read(&nr_task_events))
6592 return;
6593
6594 task_event = (struct perf_task_event){
6595 .task = task,
6596 .task_ctx = task_ctx,
6597 .event_id = {
6598 .header = {
6599 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6600 .misc = 0,
6601 .size = sizeof(task_event.event_id),
6602 },
6603 /* .pid */
6604 /* .ppid */
6605 /* .tid */
6606 /* .ptid */
6607 /* .time */
6608 },
6609 };
6610
6611 perf_iterate_sb(perf_event_task_output,
6612 &task_event,
6613 task_ctx);
6614 }
6615
6616 void perf_event_fork(struct task_struct *task)
6617 {
6618 perf_event_task(task, NULL, 1);
6619 perf_event_namespaces(task);
6620 }
6621
6622 /*
6623 * comm tracking
6624 */
6625
6626 struct perf_comm_event {
6627 struct task_struct *task;
6628 char *comm;
6629 int comm_size;
6630
6631 struct {
6632 struct perf_event_header header;
6633
6634 u32 pid;
6635 u32 tid;
6636 } event_id;
6637 };
6638
6639 static int perf_event_comm_match(struct perf_event *event)
6640 {
6641 return event->attr.comm;
6642 }
6643
6644 static void perf_event_comm_output(struct perf_event *event,
6645 void *data)
6646 {
6647 struct perf_comm_event *comm_event = data;
6648 struct perf_output_handle handle;
6649 struct perf_sample_data sample;
6650 int size = comm_event->event_id.header.size;
6651 int ret;
6652
6653 if (!perf_event_comm_match(event))
6654 return;
6655
6656 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6657 ret = perf_output_begin(&handle, event,
6658 comm_event->event_id.header.size);
6659
6660 if (ret)
6661 goto out;
6662
6663 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6664 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6665
6666 perf_output_put(&handle, comm_event->event_id);
6667 __output_copy(&handle, comm_event->comm,
6668 comm_event->comm_size);
6669
6670 perf_event__output_id_sample(event, &handle, &sample);
6671
6672 perf_output_end(&handle);
6673 out:
6674 comm_event->event_id.header.size = size;
6675 }
6676
6677 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6678 {
6679 char comm[TASK_COMM_LEN];
6680 unsigned int size;
6681
6682 memset(comm, 0, sizeof(comm));
6683 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6684 size = ALIGN(strlen(comm)+1, sizeof(u64));
6685
6686 comm_event->comm = comm;
6687 comm_event->comm_size = size;
6688
6689 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6690
6691 perf_iterate_sb(perf_event_comm_output,
6692 comm_event,
6693 NULL);
6694 }
6695
6696 void perf_event_comm(struct task_struct *task, bool exec)
6697 {
6698 struct perf_comm_event comm_event;
6699
6700 if (!atomic_read(&nr_comm_events))
6701 return;
6702
6703 comm_event = (struct perf_comm_event){
6704 .task = task,
6705 /* .comm */
6706 /* .comm_size */
6707 .event_id = {
6708 .header = {
6709 .type = PERF_RECORD_COMM,
6710 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6711 /* .size */
6712 },
6713 /* .pid */
6714 /* .tid */
6715 },
6716 };
6717
6718 perf_event_comm_event(&comm_event);
6719 }
6720
6721 /*
6722 * namespaces tracking
6723 */
6724
6725 struct perf_namespaces_event {
6726 struct task_struct *task;
6727
6728 struct {
6729 struct perf_event_header header;
6730
6731 u32 pid;
6732 u32 tid;
6733 u64 nr_namespaces;
6734 struct perf_ns_link_info link_info[NR_NAMESPACES];
6735 } event_id;
6736 };
6737
6738 static int perf_event_namespaces_match(struct perf_event *event)
6739 {
6740 return event->attr.namespaces;
6741 }
6742
6743 static void perf_event_namespaces_output(struct perf_event *event,
6744 void *data)
6745 {
6746 struct perf_namespaces_event *namespaces_event = data;
6747 struct perf_output_handle handle;
6748 struct perf_sample_data sample;
6749 u16 header_size = namespaces_event->event_id.header.size;
6750 int ret;
6751
6752 if (!perf_event_namespaces_match(event))
6753 return;
6754
6755 perf_event_header__init_id(&namespaces_event->event_id.header,
6756 &sample, event);
6757 ret = perf_output_begin(&handle, event,
6758 namespaces_event->event_id.header.size);
6759 if (ret)
6760 goto out;
6761
6762 namespaces_event->event_id.pid = perf_event_pid(event,
6763 namespaces_event->task);
6764 namespaces_event->event_id.tid = perf_event_tid(event,
6765 namespaces_event->task);
6766
6767 perf_output_put(&handle, namespaces_event->event_id);
6768
6769 perf_event__output_id_sample(event, &handle, &sample);
6770
6771 perf_output_end(&handle);
6772 out:
6773 namespaces_event->event_id.header.size = header_size;
6774 }
6775
6776 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6777 struct task_struct *task,
6778 const struct proc_ns_operations *ns_ops)
6779 {
6780 struct path ns_path;
6781 struct inode *ns_inode;
6782 void *error;
6783
6784 error = ns_get_path(&ns_path, task, ns_ops);
6785 if (!error) {
6786 ns_inode = ns_path.dentry->d_inode;
6787 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6788 ns_link_info->ino = ns_inode->i_ino;
6789 path_put(&ns_path);
6790 }
6791 }
6792
6793 void perf_event_namespaces(struct task_struct *task)
6794 {
6795 struct perf_namespaces_event namespaces_event;
6796 struct perf_ns_link_info *ns_link_info;
6797
6798 if (!atomic_read(&nr_namespaces_events))
6799 return;
6800
6801 namespaces_event = (struct perf_namespaces_event){
6802 .task = task,
6803 .event_id = {
6804 .header = {
6805 .type = PERF_RECORD_NAMESPACES,
6806 .misc = 0,
6807 .size = sizeof(namespaces_event.event_id),
6808 },
6809 /* .pid */
6810 /* .tid */
6811 .nr_namespaces = NR_NAMESPACES,
6812 /* .link_info[NR_NAMESPACES] */
6813 },
6814 };
6815
6816 ns_link_info = namespaces_event.event_id.link_info;
6817
6818 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6819 task, &mntns_operations);
6820
6821 #ifdef CONFIG_USER_NS
6822 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6823 task, &userns_operations);
6824 #endif
6825 #ifdef CONFIG_NET_NS
6826 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6827 task, &netns_operations);
6828 #endif
6829 #ifdef CONFIG_UTS_NS
6830 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6831 task, &utsns_operations);
6832 #endif
6833 #ifdef CONFIG_IPC_NS
6834 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6835 task, &ipcns_operations);
6836 #endif
6837 #ifdef CONFIG_PID_NS
6838 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6839 task, &pidns_operations);
6840 #endif
6841 #ifdef CONFIG_CGROUPS
6842 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6843 task, &cgroupns_operations);
6844 #endif
6845
6846 perf_iterate_sb(perf_event_namespaces_output,
6847 &namespaces_event,
6848 NULL);
6849 }
6850
6851 /*
6852 * mmap tracking
6853 */
6854
6855 struct perf_mmap_event {
6856 struct vm_area_struct *vma;
6857
6858 const char *file_name;
6859 int file_size;
6860 int maj, min;
6861 u64 ino;
6862 u64 ino_generation;
6863 u32 prot, flags;
6864
6865 struct {
6866 struct perf_event_header header;
6867
6868 u32 pid;
6869 u32 tid;
6870 u64 start;
6871 u64 len;
6872 u64 pgoff;
6873 } event_id;
6874 };
6875
6876 static int perf_event_mmap_match(struct perf_event *event,
6877 void *data)
6878 {
6879 struct perf_mmap_event *mmap_event = data;
6880 struct vm_area_struct *vma = mmap_event->vma;
6881 int executable = vma->vm_flags & VM_EXEC;
6882
6883 return (!executable && event->attr.mmap_data) ||
6884 (executable && (event->attr.mmap || event->attr.mmap2));
6885 }
6886
6887 static void perf_event_mmap_output(struct perf_event *event,
6888 void *data)
6889 {
6890 struct perf_mmap_event *mmap_event = data;
6891 struct perf_output_handle handle;
6892 struct perf_sample_data sample;
6893 int size = mmap_event->event_id.header.size;
6894 u32 type = mmap_event->event_id.header.type;
6895 int ret;
6896
6897 if (!perf_event_mmap_match(event, data))
6898 return;
6899
6900 if (event->attr.mmap2) {
6901 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6902 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6903 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6904 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6905 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6906 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6907 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6908 }
6909
6910 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6911 ret = perf_output_begin(&handle, event,
6912 mmap_event->event_id.header.size);
6913 if (ret)
6914 goto out;
6915
6916 mmap_event->event_id.pid = perf_event_pid(event, current);
6917 mmap_event->event_id.tid = perf_event_tid(event, current);
6918
6919 perf_output_put(&handle, mmap_event->event_id);
6920
6921 if (event->attr.mmap2) {
6922 perf_output_put(&handle, mmap_event->maj);
6923 perf_output_put(&handle, mmap_event->min);
6924 perf_output_put(&handle, mmap_event->ino);
6925 perf_output_put(&handle, mmap_event->ino_generation);
6926 perf_output_put(&handle, mmap_event->prot);
6927 perf_output_put(&handle, mmap_event->flags);
6928 }
6929
6930 __output_copy(&handle, mmap_event->file_name,
6931 mmap_event->file_size);
6932
6933 perf_event__output_id_sample(event, &handle, &sample);
6934
6935 perf_output_end(&handle);
6936 out:
6937 mmap_event->event_id.header.size = size;
6938 mmap_event->event_id.header.type = type;
6939 }
6940
6941 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6942 {
6943 struct vm_area_struct *vma = mmap_event->vma;
6944 struct file *file = vma->vm_file;
6945 int maj = 0, min = 0;
6946 u64 ino = 0, gen = 0;
6947 u32 prot = 0, flags = 0;
6948 unsigned int size;
6949 char tmp[16];
6950 char *buf = NULL;
6951 char *name;
6952
6953 if (vma->vm_flags & VM_READ)
6954 prot |= PROT_READ;
6955 if (vma->vm_flags & VM_WRITE)
6956 prot |= PROT_WRITE;
6957 if (vma->vm_flags & VM_EXEC)
6958 prot |= PROT_EXEC;
6959
6960 if (vma->vm_flags & VM_MAYSHARE)
6961 flags = MAP_SHARED;
6962 else
6963 flags = MAP_PRIVATE;
6964
6965 if (vma->vm_flags & VM_DENYWRITE)
6966 flags |= MAP_DENYWRITE;
6967 if (vma->vm_flags & VM_MAYEXEC)
6968 flags |= MAP_EXECUTABLE;
6969 if (vma->vm_flags & VM_LOCKED)
6970 flags |= MAP_LOCKED;
6971 if (vma->vm_flags & VM_HUGETLB)
6972 flags |= MAP_HUGETLB;
6973
6974 if (file) {
6975 struct inode *inode;
6976 dev_t dev;
6977
6978 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6979 if (!buf) {
6980 name = "//enomem";
6981 goto cpy_name;
6982 }
6983 /*
6984 * d_path() works from the end of the rb backwards, so we
6985 * need to add enough zero bytes after the string to handle
6986 * the 64bit alignment we do later.
6987 */
6988 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6989 if (IS_ERR(name)) {
6990 name = "//toolong";
6991 goto cpy_name;
6992 }
6993 inode = file_inode(vma->vm_file);
6994 dev = inode->i_sb->s_dev;
6995 ino = inode->i_ino;
6996 gen = inode->i_generation;
6997 maj = MAJOR(dev);
6998 min = MINOR(dev);
6999
7000 goto got_name;
7001 } else {
7002 if (vma->vm_ops && vma->vm_ops->name) {
7003 name = (char *) vma->vm_ops->name(vma);
7004 if (name)
7005 goto cpy_name;
7006 }
7007
7008 name = (char *)arch_vma_name(vma);
7009 if (name)
7010 goto cpy_name;
7011
7012 if (vma->vm_start <= vma->vm_mm->start_brk &&
7013 vma->vm_end >= vma->vm_mm->brk) {
7014 name = "[heap]";
7015 goto cpy_name;
7016 }
7017 if (vma->vm_start <= vma->vm_mm->start_stack &&
7018 vma->vm_end >= vma->vm_mm->start_stack) {
7019 name = "[stack]";
7020 goto cpy_name;
7021 }
7022
7023 name = "//anon";
7024 goto cpy_name;
7025 }
7026
7027 cpy_name:
7028 strlcpy(tmp, name, sizeof(tmp));
7029 name = tmp;
7030 got_name:
7031 /*
7032 * Since our buffer works in 8 byte units we need to align our string
7033 * size to a multiple of 8. However, we must guarantee the tail end is
7034 * zero'd out to avoid leaking random bits to userspace.
7035 */
7036 size = strlen(name)+1;
7037 while (!IS_ALIGNED(size, sizeof(u64)))
7038 name[size++] = '\0';
7039
7040 mmap_event->file_name = name;
7041 mmap_event->file_size = size;
7042 mmap_event->maj = maj;
7043 mmap_event->min = min;
7044 mmap_event->ino = ino;
7045 mmap_event->ino_generation = gen;
7046 mmap_event->prot = prot;
7047 mmap_event->flags = flags;
7048
7049 if (!(vma->vm_flags & VM_EXEC))
7050 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7051
7052 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7053
7054 perf_iterate_sb(perf_event_mmap_output,
7055 mmap_event,
7056 NULL);
7057
7058 kfree(buf);
7059 }
7060
7061 /*
7062 * Check whether inode and address range match filter criteria.
7063 */
7064 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7065 struct file *file, unsigned long offset,
7066 unsigned long size)
7067 {
7068 if (filter->inode != file_inode(file))
7069 return false;
7070
7071 if (filter->offset > offset + size)
7072 return false;
7073
7074 if (filter->offset + filter->size < offset)
7075 return false;
7076
7077 return true;
7078 }
7079
7080 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7081 {
7082 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7083 struct vm_area_struct *vma = data;
7084 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7085 struct file *file = vma->vm_file;
7086 struct perf_addr_filter *filter;
7087 unsigned int restart = 0, count = 0;
7088
7089 if (!has_addr_filter(event))
7090 return;
7091
7092 if (!file)
7093 return;
7094
7095 raw_spin_lock_irqsave(&ifh->lock, flags);
7096 list_for_each_entry(filter, &ifh->list, entry) {
7097 if (perf_addr_filter_match(filter, file, off,
7098 vma->vm_end - vma->vm_start)) {
7099 event->addr_filters_offs[count] = vma->vm_start;
7100 restart++;
7101 }
7102
7103 count++;
7104 }
7105
7106 if (restart)
7107 event->addr_filters_gen++;
7108 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7109
7110 if (restart)
7111 perf_event_stop(event, 1);
7112 }
7113
7114 /*
7115 * Adjust all task's events' filters to the new vma
7116 */
7117 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7118 {
7119 struct perf_event_context *ctx;
7120 int ctxn;
7121
7122 /*
7123 * Data tracing isn't supported yet and as such there is no need
7124 * to keep track of anything that isn't related to executable code:
7125 */
7126 if (!(vma->vm_flags & VM_EXEC))
7127 return;
7128
7129 rcu_read_lock();
7130 for_each_task_context_nr(ctxn) {
7131 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7132 if (!ctx)
7133 continue;
7134
7135 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7136 }
7137 rcu_read_unlock();
7138 }
7139
7140 void perf_event_mmap(struct vm_area_struct *vma)
7141 {
7142 struct perf_mmap_event mmap_event;
7143
7144 if (!atomic_read(&nr_mmap_events))
7145 return;
7146
7147 mmap_event = (struct perf_mmap_event){
7148 .vma = vma,
7149 /* .file_name */
7150 /* .file_size */
7151 .event_id = {
7152 .header = {
7153 .type = PERF_RECORD_MMAP,
7154 .misc = PERF_RECORD_MISC_USER,
7155 /* .size */
7156 },
7157 /* .pid */
7158 /* .tid */
7159 .start = vma->vm_start,
7160 .len = vma->vm_end - vma->vm_start,
7161 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
7162 },
7163 /* .maj (attr_mmap2 only) */
7164 /* .min (attr_mmap2 only) */
7165 /* .ino (attr_mmap2 only) */
7166 /* .ino_generation (attr_mmap2 only) */
7167 /* .prot (attr_mmap2 only) */
7168 /* .flags (attr_mmap2 only) */
7169 };
7170
7171 perf_addr_filters_adjust(vma);
7172 perf_event_mmap_event(&mmap_event);
7173 }
7174
7175 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7176 unsigned long size, u64 flags)
7177 {
7178 struct perf_output_handle handle;
7179 struct perf_sample_data sample;
7180 struct perf_aux_event {
7181 struct perf_event_header header;
7182 u64 offset;
7183 u64 size;
7184 u64 flags;
7185 } rec = {
7186 .header = {
7187 .type = PERF_RECORD_AUX,
7188 .misc = 0,
7189 .size = sizeof(rec),
7190 },
7191 .offset = head,
7192 .size = size,
7193 .flags = flags,
7194 };
7195 int ret;
7196
7197 perf_event_header__init_id(&rec.header, &sample, event);
7198 ret = perf_output_begin(&handle, event, rec.header.size);
7199
7200 if (ret)
7201 return;
7202
7203 perf_output_put(&handle, rec);
7204 perf_event__output_id_sample(event, &handle, &sample);
7205
7206 perf_output_end(&handle);
7207 }
7208
7209 /*
7210 * Lost/dropped samples logging
7211 */
7212 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7213 {
7214 struct perf_output_handle handle;
7215 struct perf_sample_data sample;
7216 int ret;
7217
7218 struct {
7219 struct perf_event_header header;
7220 u64 lost;
7221 } lost_samples_event = {
7222 .header = {
7223 .type = PERF_RECORD_LOST_SAMPLES,
7224 .misc = 0,
7225 .size = sizeof(lost_samples_event),
7226 },
7227 .lost = lost,
7228 };
7229
7230 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7231
7232 ret = perf_output_begin(&handle, event,
7233 lost_samples_event.header.size);
7234 if (ret)
7235 return;
7236
7237 perf_output_put(&handle, lost_samples_event);
7238 perf_event__output_id_sample(event, &handle, &sample);
7239 perf_output_end(&handle);
7240 }
7241
7242 /*
7243 * context_switch tracking
7244 */
7245
7246 struct perf_switch_event {
7247 struct task_struct *task;
7248 struct task_struct *next_prev;
7249
7250 struct {
7251 struct perf_event_header header;
7252 u32 next_prev_pid;
7253 u32 next_prev_tid;
7254 } event_id;
7255 };
7256
7257 static int perf_event_switch_match(struct perf_event *event)
7258 {
7259 return event->attr.context_switch;
7260 }
7261
7262 static void perf_event_switch_output(struct perf_event *event, void *data)
7263 {
7264 struct perf_switch_event *se = data;
7265 struct perf_output_handle handle;
7266 struct perf_sample_data sample;
7267 int ret;
7268
7269 if (!perf_event_switch_match(event))
7270 return;
7271
7272 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7273 if (event->ctx->task) {
7274 se->event_id.header.type = PERF_RECORD_SWITCH;
7275 se->event_id.header.size = sizeof(se->event_id.header);
7276 } else {
7277 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7278 se->event_id.header.size = sizeof(se->event_id);
7279 se->event_id.next_prev_pid =
7280 perf_event_pid(event, se->next_prev);
7281 se->event_id.next_prev_tid =
7282 perf_event_tid(event, se->next_prev);
7283 }
7284
7285 perf_event_header__init_id(&se->event_id.header, &sample, event);
7286
7287 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7288 if (ret)
7289 return;
7290
7291 if (event->ctx->task)
7292 perf_output_put(&handle, se->event_id.header);
7293 else
7294 perf_output_put(&handle, se->event_id);
7295
7296 perf_event__output_id_sample(event, &handle, &sample);
7297
7298 perf_output_end(&handle);
7299 }
7300
7301 static void perf_event_switch(struct task_struct *task,
7302 struct task_struct *next_prev, bool sched_in)
7303 {
7304 struct perf_switch_event switch_event;
7305
7306 /* N.B. caller checks nr_switch_events != 0 */
7307
7308 switch_event = (struct perf_switch_event){
7309 .task = task,
7310 .next_prev = next_prev,
7311 .event_id = {
7312 .header = {
7313 /* .type */
7314 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7315 /* .size */
7316 },
7317 /* .next_prev_pid */
7318 /* .next_prev_tid */
7319 },
7320 };
7321
7322 perf_iterate_sb(perf_event_switch_output,
7323 &switch_event,
7324 NULL);
7325 }
7326
7327 /*
7328 * IRQ throttle logging
7329 */
7330
7331 static void perf_log_throttle(struct perf_event *event, int enable)
7332 {
7333 struct perf_output_handle handle;
7334 struct perf_sample_data sample;
7335 int ret;
7336
7337 struct {
7338 struct perf_event_header header;
7339 u64 time;
7340 u64 id;
7341 u64 stream_id;
7342 } throttle_event = {
7343 .header = {
7344 .type = PERF_RECORD_THROTTLE,
7345 .misc = 0,
7346 .size = sizeof(throttle_event),
7347 },
7348 .time = perf_event_clock(event),
7349 .id = primary_event_id(event),
7350 .stream_id = event->id,
7351 };
7352
7353 if (enable)
7354 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7355
7356 perf_event_header__init_id(&throttle_event.header, &sample, event);
7357
7358 ret = perf_output_begin(&handle, event,
7359 throttle_event.header.size);
7360 if (ret)
7361 return;
7362
7363 perf_output_put(&handle, throttle_event);
7364 perf_event__output_id_sample(event, &handle, &sample);
7365 perf_output_end(&handle);
7366 }
7367
7368 void perf_event_itrace_started(struct perf_event *event)
7369 {
7370 event->attach_state |= PERF_ATTACH_ITRACE;
7371 }
7372
7373 static void perf_log_itrace_start(struct perf_event *event)
7374 {
7375 struct perf_output_handle handle;
7376 struct perf_sample_data sample;
7377 struct perf_aux_event {
7378 struct perf_event_header header;
7379 u32 pid;
7380 u32 tid;
7381 } rec;
7382 int ret;
7383
7384 if (event->parent)
7385 event = event->parent;
7386
7387 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7388 event->attach_state & PERF_ATTACH_ITRACE)
7389 return;
7390
7391 rec.header.type = PERF_RECORD_ITRACE_START;
7392 rec.header.misc = 0;
7393 rec.header.size = sizeof(rec);
7394 rec.pid = perf_event_pid(event, current);
7395 rec.tid = perf_event_tid(event, current);
7396
7397 perf_event_header__init_id(&rec.header, &sample, event);
7398 ret = perf_output_begin(&handle, event, rec.header.size);
7399
7400 if (ret)
7401 return;
7402
7403 perf_output_put(&handle, rec);
7404 perf_event__output_id_sample(event, &handle, &sample);
7405
7406 perf_output_end(&handle);
7407 }
7408
7409 static int
7410 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7411 {
7412 struct hw_perf_event *hwc = &event->hw;
7413 int ret = 0;
7414 u64 seq;
7415
7416 seq = __this_cpu_read(perf_throttled_seq);
7417 if (seq != hwc->interrupts_seq) {
7418 hwc->interrupts_seq = seq;
7419 hwc->interrupts = 1;
7420 } else {
7421 hwc->interrupts++;
7422 if (unlikely(throttle
7423 && hwc->interrupts >= max_samples_per_tick)) {
7424 __this_cpu_inc(perf_throttled_count);
7425 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7426 hwc->interrupts = MAX_INTERRUPTS;
7427 perf_log_throttle(event, 0);
7428 ret = 1;
7429 }
7430 }
7431
7432 if (event->attr.freq) {
7433 u64 now = perf_clock();
7434 s64 delta = now - hwc->freq_time_stamp;
7435
7436 hwc->freq_time_stamp = now;
7437
7438 if (delta > 0 && delta < 2*TICK_NSEC)
7439 perf_adjust_period(event, delta, hwc->last_period, true);
7440 }
7441
7442 return ret;
7443 }
7444
7445 int perf_event_account_interrupt(struct perf_event *event)
7446 {
7447 return __perf_event_account_interrupt(event, 1);
7448 }
7449
7450 /*
7451 * Generic event overflow handling, sampling.
7452 */
7453
7454 static int __perf_event_overflow(struct perf_event *event,
7455 int throttle, struct perf_sample_data *data,
7456 struct pt_regs *regs)
7457 {
7458 int events = atomic_read(&event->event_limit);
7459 int ret = 0;
7460
7461 /*
7462 * Non-sampling counters might still use the PMI to fold short
7463 * hardware counters, ignore those.
7464 */
7465 if (unlikely(!is_sampling_event(event)))
7466 return 0;
7467
7468 ret = __perf_event_account_interrupt(event, throttle);
7469
7470 /*
7471 * XXX event_limit might not quite work as expected on inherited
7472 * events
7473 */
7474
7475 event->pending_kill = POLL_IN;
7476 if (events && atomic_dec_and_test(&event->event_limit)) {
7477 ret = 1;
7478 event->pending_kill = POLL_HUP;
7479
7480 perf_event_disable_inatomic(event);
7481 }
7482
7483 READ_ONCE(event->overflow_handler)(event, data, regs);
7484
7485 if (*perf_event_fasync(event) && event->pending_kill) {
7486 event->pending_wakeup = 1;
7487 irq_work_queue(&event->pending);
7488 }
7489
7490 return ret;
7491 }
7492
7493 int perf_event_overflow(struct perf_event *event,
7494 struct perf_sample_data *data,
7495 struct pt_regs *regs)
7496 {
7497 return __perf_event_overflow(event, 1, data, regs);
7498 }
7499
7500 /*
7501 * Generic software event infrastructure
7502 */
7503
7504 struct swevent_htable {
7505 struct swevent_hlist *swevent_hlist;
7506 struct mutex hlist_mutex;
7507 int hlist_refcount;
7508
7509 /* Recursion avoidance in each contexts */
7510 int recursion[PERF_NR_CONTEXTS];
7511 };
7512
7513 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7514
7515 /*
7516 * We directly increment event->count and keep a second value in
7517 * event->hw.period_left to count intervals. This period event
7518 * is kept in the range [-sample_period, 0] so that we can use the
7519 * sign as trigger.
7520 */
7521
7522 u64 perf_swevent_set_period(struct perf_event *event)
7523 {
7524 struct hw_perf_event *hwc = &event->hw;
7525 u64 period = hwc->last_period;
7526 u64 nr, offset;
7527 s64 old, val;
7528
7529 hwc->last_period = hwc->sample_period;
7530
7531 again:
7532 old = val = local64_read(&hwc->period_left);
7533 if (val < 0)
7534 return 0;
7535
7536 nr = div64_u64(period + val, period);
7537 offset = nr * period;
7538 val -= offset;
7539 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7540 goto again;
7541
7542 return nr;
7543 }
7544
7545 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7546 struct perf_sample_data *data,
7547 struct pt_regs *regs)
7548 {
7549 struct hw_perf_event *hwc = &event->hw;
7550 int throttle = 0;
7551
7552 if (!overflow)
7553 overflow = perf_swevent_set_period(event);
7554
7555 if (hwc->interrupts == MAX_INTERRUPTS)
7556 return;
7557
7558 for (; overflow; overflow--) {
7559 if (__perf_event_overflow(event, throttle,
7560 data, regs)) {
7561 /*
7562 * We inhibit the overflow from happening when
7563 * hwc->interrupts == MAX_INTERRUPTS.
7564 */
7565 break;
7566 }
7567 throttle = 1;
7568 }
7569 }
7570
7571 static void perf_swevent_event(struct perf_event *event, u64 nr,
7572 struct perf_sample_data *data,
7573 struct pt_regs *regs)
7574 {
7575 struct hw_perf_event *hwc = &event->hw;
7576
7577 local64_add(nr, &event->count);
7578
7579 if (!regs)
7580 return;
7581
7582 if (!is_sampling_event(event))
7583 return;
7584
7585 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7586 data->period = nr;
7587 return perf_swevent_overflow(event, 1, data, regs);
7588 } else
7589 data->period = event->hw.last_period;
7590
7591 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7592 return perf_swevent_overflow(event, 1, data, regs);
7593
7594 if (local64_add_negative(nr, &hwc->period_left))
7595 return;
7596
7597 perf_swevent_overflow(event, 0, data, regs);
7598 }
7599
7600 static int perf_exclude_event(struct perf_event *event,
7601 struct pt_regs *regs)
7602 {
7603 if (event->hw.state & PERF_HES_STOPPED)
7604 return 1;
7605
7606 if (regs) {
7607 if (event->attr.exclude_user && user_mode(regs))
7608 return 1;
7609
7610 if (event->attr.exclude_kernel && !user_mode(regs))
7611 return 1;
7612 }
7613
7614 return 0;
7615 }
7616
7617 static int perf_swevent_match(struct perf_event *event,
7618 enum perf_type_id type,
7619 u32 event_id,
7620 struct perf_sample_data *data,
7621 struct pt_regs *regs)
7622 {
7623 if (event->attr.type != type)
7624 return 0;
7625
7626 if (event->attr.config != event_id)
7627 return 0;
7628
7629 if (perf_exclude_event(event, regs))
7630 return 0;
7631
7632 return 1;
7633 }
7634
7635 static inline u64 swevent_hash(u64 type, u32 event_id)
7636 {
7637 u64 val = event_id | (type << 32);
7638
7639 return hash_64(val, SWEVENT_HLIST_BITS);
7640 }
7641
7642 static inline struct hlist_head *
7643 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7644 {
7645 u64 hash = swevent_hash(type, event_id);
7646
7647 return &hlist->heads[hash];
7648 }
7649
7650 /* For the read side: events when they trigger */
7651 static inline struct hlist_head *
7652 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7653 {
7654 struct swevent_hlist *hlist;
7655
7656 hlist = rcu_dereference(swhash->swevent_hlist);
7657 if (!hlist)
7658 return NULL;
7659
7660 return __find_swevent_head(hlist, type, event_id);
7661 }
7662
7663 /* For the event head insertion and removal in the hlist */
7664 static inline struct hlist_head *
7665 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7666 {
7667 struct swevent_hlist *hlist;
7668 u32 event_id = event->attr.config;
7669 u64 type = event->attr.type;
7670
7671 /*
7672 * Event scheduling is always serialized against hlist allocation
7673 * and release. Which makes the protected version suitable here.
7674 * The context lock guarantees that.
7675 */
7676 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7677 lockdep_is_held(&event->ctx->lock));
7678 if (!hlist)
7679 return NULL;
7680
7681 return __find_swevent_head(hlist, type, event_id);
7682 }
7683
7684 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7685 u64 nr,
7686 struct perf_sample_data *data,
7687 struct pt_regs *regs)
7688 {
7689 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7690 struct perf_event *event;
7691 struct hlist_head *head;
7692
7693 rcu_read_lock();
7694 head = find_swevent_head_rcu(swhash, type, event_id);
7695 if (!head)
7696 goto end;
7697
7698 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7699 if (perf_swevent_match(event, type, event_id, data, regs))
7700 perf_swevent_event(event, nr, data, regs);
7701 }
7702 end:
7703 rcu_read_unlock();
7704 }
7705
7706 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7707
7708 int perf_swevent_get_recursion_context(void)
7709 {
7710 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7711
7712 return get_recursion_context(swhash->recursion);
7713 }
7714 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7715
7716 void perf_swevent_put_recursion_context(int rctx)
7717 {
7718 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7719
7720 put_recursion_context(swhash->recursion, rctx);
7721 }
7722
7723 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7724 {
7725 struct perf_sample_data data;
7726
7727 if (WARN_ON_ONCE(!regs))
7728 return;
7729
7730 perf_sample_data_init(&data, addr, 0);
7731 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7732 }
7733
7734 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7735 {
7736 int rctx;
7737
7738 preempt_disable_notrace();
7739 rctx = perf_swevent_get_recursion_context();
7740 if (unlikely(rctx < 0))
7741 goto fail;
7742
7743 ___perf_sw_event(event_id, nr, regs, addr);
7744
7745 perf_swevent_put_recursion_context(rctx);
7746 fail:
7747 preempt_enable_notrace();
7748 }
7749
7750 static void perf_swevent_read(struct perf_event *event)
7751 {
7752 }
7753
7754 static int perf_swevent_add(struct perf_event *event, int flags)
7755 {
7756 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7757 struct hw_perf_event *hwc = &event->hw;
7758 struct hlist_head *head;
7759
7760 if (is_sampling_event(event)) {
7761 hwc->last_period = hwc->sample_period;
7762 perf_swevent_set_period(event);
7763 }
7764
7765 hwc->state = !(flags & PERF_EF_START);
7766
7767 head = find_swevent_head(swhash, event);
7768 if (WARN_ON_ONCE(!head))
7769 return -EINVAL;
7770
7771 hlist_add_head_rcu(&event->hlist_entry, head);
7772 perf_event_update_userpage(event);
7773
7774 return 0;
7775 }
7776
7777 static void perf_swevent_del(struct perf_event *event, int flags)
7778 {
7779 hlist_del_rcu(&event->hlist_entry);
7780 }
7781
7782 static void perf_swevent_start(struct perf_event *event, int flags)
7783 {
7784 event->hw.state = 0;
7785 }
7786
7787 static void perf_swevent_stop(struct perf_event *event, int flags)
7788 {
7789 event->hw.state = PERF_HES_STOPPED;
7790 }
7791
7792 /* Deref the hlist from the update side */
7793 static inline struct swevent_hlist *
7794 swevent_hlist_deref(struct swevent_htable *swhash)
7795 {
7796 return rcu_dereference_protected(swhash->swevent_hlist,
7797 lockdep_is_held(&swhash->hlist_mutex));
7798 }
7799
7800 static void swevent_hlist_release(struct swevent_htable *swhash)
7801 {
7802 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7803
7804 if (!hlist)
7805 return;
7806
7807 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7808 kfree_rcu(hlist, rcu_head);
7809 }
7810
7811 static void swevent_hlist_put_cpu(int cpu)
7812 {
7813 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7814
7815 mutex_lock(&swhash->hlist_mutex);
7816
7817 if (!--swhash->hlist_refcount)
7818 swevent_hlist_release(swhash);
7819
7820 mutex_unlock(&swhash->hlist_mutex);
7821 }
7822
7823 static void swevent_hlist_put(void)
7824 {
7825 int cpu;
7826
7827 for_each_possible_cpu(cpu)
7828 swevent_hlist_put_cpu(cpu);
7829 }
7830
7831 static int swevent_hlist_get_cpu(int cpu)
7832 {
7833 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7834 int err = 0;
7835
7836 mutex_lock(&swhash->hlist_mutex);
7837 if (!swevent_hlist_deref(swhash) &&
7838 cpumask_test_cpu(cpu, perf_online_mask)) {
7839 struct swevent_hlist *hlist;
7840
7841 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7842 if (!hlist) {
7843 err = -ENOMEM;
7844 goto exit;
7845 }
7846 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7847 }
7848 swhash->hlist_refcount++;
7849 exit:
7850 mutex_unlock(&swhash->hlist_mutex);
7851
7852 return err;
7853 }
7854
7855 static int swevent_hlist_get(void)
7856 {
7857 int err, cpu, failed_cpu;
7858
7859 mutex_lock(&pmus_lock);
7860 for_each_possible_cpu(cpu) {
7861 err = swevent_hlist_get_cpu(cpu);
7862 if (err) {
7863 failed_cpu = cpu;
7864 goto fail;
7865 }
7866 }
7867 mutex_unlock(&pmus_lock);
7868 return 0;
7869 fail:
7870 for_each_possible_cpu(cpu) {
7871 if (cpu == failed_cpu)
7872 break;
7873 swevent_hlist_put_cpu(cpu);
7874 }
7875 mutex_unlock(&pmus_lock);
7876 return err;
7877 }
7878
7879 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7880
7881 static void sw_perf_event_destroy(struct perf_event *event)
7882 {
7883 u64 event_id = event->attr.config;
7884
7885 WARN_ON(event->parent);
7886
7887 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7888 swevent_hlist_put();
7889 }
7890
7891 static int perf_swevent_init(struct perf_event *event)
7892 {
7893 u64 event_id = event->attr.config;
7894
7895 if (event->attr.type != PERF_TYPE_SOFTWARE)
7896 return -ENOENT;
7897
7898 /*
7899 * no branch sampling for software events
7900 */
7901 if (has_branch_stack(event))
7902 return -EOPNOTSUPP;
7903
7904 switch (event_id) {
7905 case PERF_COUNT_SW_CPU_CLOCK:
7906 case PERF_COUNT_SW_TASK_CLOCK:
7907 return -ENOENT;
7908
7909 default:
7910 break;
7911 }
7912
7913 if (event_id >= PERF_COUNT_SW_MAX)
7914 return -ENOENT;
7915
7916 if (!event->parent) {
7917 int err;
7918
7919 err = swevent_hlist_get();
7920 if (err)
7921 return err;
7922
7923 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7924 event->destroy = sw_perf_event_destroy;
7925 }
7926
7927 return 0;
7928 }
7929
7930 static struct pmu perf_swevent = {
7931 .task_ctx_nr = perf_sw_context,
7932
7933 .capabilities = PERF_PMU_CAP_NO_NMI,
7934
7935 .event_init = perf_swevent_init,
7936 .add = perf_swevent_add,
7937 .del = perf_swevent_del,
7938 .start = perf_swevent_start,
7939 .stop = perf_swevent_stop,
7940 .read = perf_swevent_read,
7941 };
7942
7943 #ifdef CONFIG_EVENT_TRACING
7944
7945 static int perf_tp_filter_match(struct perf_event *event,
7946 struct perf_sample_data *data)
7947 {
7948 void *record = data->raw->frag.data;
7949
7950 /* only top level events have filters set */
7951 if (event->parent)
7952 event = event->parent;
7953
7954 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7955 return 1;
7956 return 0;
7957 }
7958
7959 static int perf_tp_event_match(struct perf_event *event,
7960 struct perf_sample_data *data,
7961 struct pt_regs *regs)
7962 {
7963 if (event->hw.state & PERF_HES_STOPPED)
7964 return 0;
7965 /*
7966 * All tracepoints are from kernel-space.
7967 */
7968 if (event->attr.exclude_kernel)
7969 return 0;
7970
7971 if (!perf_tp_filter_match(event, data))
7972 return 0;
7973
7974 return 1;
7975 }
7976
7977 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7978 struct trace_event_call *call, u64 count,
7979 struct pt_regs *regs, struct hlist_head *head,
7980 struct task_struct *task)
7981 {
7982 if (bpf_prog_array_valid(call)) {
7983 *(struct pt_regs **)raw_data = regs;
7984 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
7985 perf_swevent_put_recursion_context(rctx);
7986 return;
7987 }
7988 }
7989 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7990 rctx, task);
7991 }
7992 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7993
7994 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7995 struct pt_regs *regs, struct hlist_head *head, int rctx,
7996 struct task_struct *task)
7997 {
7998 struct perf_sample_data data;
7999 struct perf_event *event;
8000
8001 struct perf_raw_record raw = {
8002 .frag = {
8003 .size = entry_size,
8004 .data = record,
8005 },
8006 };
8007
8008 perf_sample_data_init(&data, 0, 0);
8009 data.raw = &raw;
8010
8011 perf_trace_buf_update(record, event_type);
8012
8013 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8014 if (perf_tp_event_match(event, &data, regs))
8015 perf_swevent_event(event, count, &data, regs);
8016 }
8017
8018 /*
8019 * If we got specified a target task, also iterate its context and
8020 * deliver this event there too.
8021 */
8022 if (task && task != current) {
8023 struct perf_event_context *ctx;
8024 struct trace_entry *entry = record;
8025
8026 rcu_read_lock();
8027 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8028 if (!ctx)
8029 goto unlock;
8030
8031 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8032 if (event->cpu != smp_processor_id())
8033 continue;
8034 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8035 continue;
8036 if (event->attr.config != entry->type)
8037 continue;
8038 if (perf_tp_event_match(event, &data, regs))
8039 perf_swevent_event(event, count, &data, regs);
8040 }
8041 unlock:
8042 rcu_read_unlock();
8043 }
8044
8045 perf_swevent_put_recursion_context(rctx);
8046 }
8047 EXPORT_SYMBOL_GPL(perf_tp_event);
8048
8049 static void tp_perf_event_destroy(struct perf_event *event)
8050 {
8051 perf_trace_destroy(event);
8052 }
8053
8054 static int perf_tp_event_init(struct perf_event *event)
8055 {
8056 int err;
8057
8058 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8059 return -ENOENT;
8060
8061 /*
8062 * no branch sampling for tracepoint events
8063 */
8064 if (has_branch_stack(event))
8065 return -EOPNOTSUPP;
8066
8067 err = perf_trace_init(event);
8068 if (err)
8069 return err;
8070
8071 event->destroy = tp_perf_event_destroy;
8072
8073 return 0;
8074 }
8075
8076 static struct pmu perf_tracepoint = {
8077 .task_ctx_nr = perf_sw_context,
8078
8079 .event_init = perf_tp_event_init,
8080 .add = perf_trace_add,
8081 .del = perf_trace_del,
8082 .start = perf_swevent_start,
8083 .stop = perf_swevent_stop,
8084 .read = perf_swevent_read,
8085 };
8086
8087 static inline void perf_tp_register(void)
8088 {
8089 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8090 }
8091
8092 static void perf_event_free_filter(struct perf_event *event)
8093 {
8094 ftrace_profile_free_filter(event);
8095 }
8096
8097 #ifdef CONFIG_BPF_SYSCALL
8098 static void bpf_overflow_handler(struct perf_event *event,
8099 struct perf_sample_data *data,
8100 struct pt_regs *regs)
8101 {
8102 struct bpf_perf_event_data_kern ctx = {
8103 .data = data,
8104 .event = event,
8105 };
8106 int ret = 0;
8107
8108 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8109 preempt_disable();
8110 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8111 goto out;
8112 rcu_read_lock();
8113 ret = BPF_PROG_RUN(event->prog, &ctx);
8114 rcu_read_unlock();
8115 out:
8116 __this_cpu_dec(bpf_prog_active);
8117 preempt_enable();
8118 if (!ret)
8119 return;
8120
8121 event->orig_overflow_handler(event, data, regs);
8122 }
8123
8124 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8125 {
8126 struct bpf_prog *prog;
8127
8128 if (event->overflow_handler_context)
8129 /* hw breakpoint or kernel counter */
8130 return -EINVAL;
8131
8132 if (event->prog)
8133 return -EEXIST;
8134
8135 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8136 if (IS_ERR(prog))
8137 return PTR_ERR(prog);
8138
8139 event->prog = prog;
8140 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8141 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8142 return 0;
8143 }
8144
8145 static void perf_event_free_bpf_handler(struct perf_event *event)
8146 {
8147 struct bpf_prog *prog = event->prog;
8148
8149 if (!prog)
8150 return;
8151
8152 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8153 event->prog = NULL;
8154 bpf_prog_put(prog);
8155 }
8156 #else
8157 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8158 {
8159 return -EOPNOTSUPP;
8160 }
8161 static void perf_event_free_bpf_handler(struct perf_event *event)
8162 {
8163 }
8164 #endif
8165
8166 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8167 {
8168 bool is_kprobe, is_tracepoint, is_syscall_tp;
8169 struct bpf_prog *prog;
8170 int ret;
8171
8172 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8173 return perf_event_set_bpf_handler(event, prog_fd);
8174
8175 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8176 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8177 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8178 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8179 /* bpf programs can only be attached to u/kprobe or tracepoint */
8180 return -EINVAL;
8181
8182 prog = bpf_prog_get(prog_fd);
8183 if (IS_ERR(prog))
8184 return PTR_ERR(prog);
8185
8186 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8187 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8188 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8189 /* valid fd, but invalid bpf program type */
8190 bpf_prog_put(prog);
8191 return -EINVAL;
8192 }
8193
8194 if (is_tracepoint || is_syscall_tp) {
8195 int off = trace_event_get_offsets(event->tp_event);
8196
8197 if (prog->aux->max_ctx_offset > off) {
8198 bpf_prog_put(prog);
8199 return -EACCES;
8200 }
8201 }
8202
8203 ret = perf_event_attach_bpf_prog(event, prog);
8204 if (ret)
8205 bpf_prog_put(prog);
8206 return ret;
8207 }
8208
8209 static void perf_event_free_bpf_prog(struct perf_event *event)
8210 {
8211 if (event->attr.type != PERF_TYPE_TRACEPOINT) {
8212 perf_event_free_bpf_handler(event);
8213 return;
8214 }
8215 perf_event_detach_bpf_prog(event);
8216 }
8217
8218 #else
8219
8220 static inline void perf_tp_register(void)
8221 {
8222 }
8223
8224 static void perf_event_free_filter(struct perf_event *event)
8225 {
8226 }
8227
8228 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8229 {
8230 return -ENOENT;
8231 }
8232
8233 static void perf_event_free_bpf_prog(struct perf_event *event)
8234 {
8235 }
8236 #endif /* CONFIG_EVENT_TRACING */
8237
8238 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8239 void perf_bp_event(struct perf_event *bp, void *data)
8240 {
8241 struct perf_sample_data sample;
8242 struct pt_regs *regs = data;
8243
8244 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8245
8246 if (!bp->hw.state && !perf_exclude_event(bp, regs))
8247 perf_swevent_event(bp, 1, &sample, regs);
8248 }
8249 #endif
8250
8251 /*
8252 * Allocate a new address filter
8253 */
8254 static struct perf_addr_filter *
8255 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8256 {
8257 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8258 struct perf_addr_filter *filter;
8259
8260 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8261 if (!filter)
8262 return NULL;
8263
8264 INIT_LIST_HEAD(&filter->entry);
8265 list_add_tail(&filter->entry, filters);
8266
8267 return filter;
8268 }
8269
8270 static void free_filters_list(struct list_head *filters)
8271 {
8272 struct perf_addr_filter *filter, *iter;
8273
8274 list_for_each_entry_safe(filter, iter, filters, entry) {
8275 if (filter->inode)
8276 iput(filter->inode);
8277 list_del(&filter->entry);
8278 kfree(filter);
8279 }
8280 }
8281
8282 /*
8283 * Free existing address filters and optionally install new ones
8284 */
8285 static void perf_addr_filters_splice(struct perf_event *event,
8286 struct list_head *head)
8287 {
8288 unsigned long flags;
8289 LIST_HEAD(list);
8290
8291 if (!has_addr_filter(event))
8292 return;
8293
8294 /* don't bother with children, they don't have their own filters */
8295 if (event->parent)
8296 return;
8297
8298 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8299
8300 list_splice_init(&event->addr_filters.list, &list);
8301 if (head)
8302 list_splice(head, &event->addr_filters.list);
8303
8304 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8305
8306 free_filters_list(&list);
8307 }
8308
8309 /*
8310 * Scan through mm's vmas and see if one of them matches the
8311 * @filter; if so, adjust filter's address range.
8312 * Called with mm::mmap_sem down for reading.
8313 */
8314 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8315 struct mm_struct *mm)
8316 {
8317 struct vm_area_struct *vma;
8318
8319 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8320 struct file *file = vma->vm_file;
8321 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8322 unsigned long vma_size = vma->vm_end - vma->vm_start;
8323
8324 if (!file)
8325 continue;
8326
8327 if (!perf_addr_filter_match(filter, file, off, vma_size))
8328 continue;
8329
8330 return vma->vm_start;
8331 }
8332
8333 return 0;
8334 }
8335
8336 /*
8337 * Update event's address range filters based on the
8338 * task's existing mappings, if any.
8339 */
8340 static void perf_event_addr_filters_apply(struct perf_event *event)
8341 {
8342 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8343 struct task_struct *task = READ_ONCE(event->ctx->task);
8344 struct perf_addr_filter *filter;
8345 struct mm_struct *mm = NULL;
8346 unsigned int count = 0;
8347 unsigned long flags;
8348
8349 /*
8350 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8351 * will stop on the parent's child_mutex that our caller is also holding
8352 */
8353 if (task == TASK_TOMBSTONE)
8354 return;
8355
8356 if (!ifh->nr_file_filters)
8357 return;
8358
8359 mm = get_task_mm(event->ctx->task);
8360 if (!mm)
8361 goto restart;
8362
8363 down_read(&mm->mmap_sem);
8364
8365 raw_spin_lock_irqsave(&ifh->lock, flags);
8366 list_for_each_entry(filter, &ifh->list, entry) {
8367 event->addr_filters_offs[count] = 0;
8368
8369 /*
8370 * Adjust base offset if the filter is associated to a binary
8371 * that needs to be mapped:
8372 */
8373 if (filter->inode)
8374 event->addr_filters_offs[count] =
8375 perf_addr_filter_apply(filter, mm);
8376
8377 count++;
8378 }
8379
8380 event->addr_filters_gen++;
8381 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8382
8383 up_read(&mm->mmap_sem);
8384
8385 mmput(mm);
8386
8387 restart:
8388 perf_event_stop(event, 1);
8389 }
8390
8391 /*
8392 * Address range filtering: limiting the data to certain
8393 * instruction address ranges. Filters are ioctl()ed to us from
8394 * userspace as ascii strings.
8395 *
8396 * Filter string format:
8397 *
8398 * ACTION RANGE_SPEC
8399 * where ACTION is one of the
8400 * * "filter": limit the trace to this region
8401 * * "start": start tracing from this address
8402 * * "stop": stop tracing at this address/region;
8403 * RANGE_SPEC is
8404 * * for kernel addresses: <start address>[/<size>]
8405 * * for object files: <start address>[/<size>]@</path/to/object/file>
8406 *
8407 * if <size> is not specified, the range is treated as a single address.
8408 */
8409 enum {
8410 IF_ACT_NONE = -1,
8411 IF_ACT_FILTER,
8412 IF_ACT_START,
8413 IF_ACT_STOP,
8414 IF_SRC_FILE,
8415 IF_SRC_KERNEL,
8416 IF_SRC_FILEADDR,
8417 IF_SRC_KERNELADDR,
8418 };
8419
8420 enum {
8421 IF_STATE_ACTION = 0,
8422 IF_STATE_SOURCE,
8423 IF_STATE_END,
8424 };
8425
8426 static const match_table_t if_tokens = {
8427 { IF_ACT_FILTER, "filter" },
8428 { IF_ACT_START, "start" },
8429 { IF_ACT_STOP, "stop" },
8430 { IF_SRC_FILE, "%u/%u@%s" },
8431 { IF_SRC_KERNEL, "%u/%u" },
8432 { IF_SRC_FILEADDR, "%u@%s" },
8433 { IF_SRC_KERNELADDR, "%u" },
8434 { IF_ACT_NONE, NULL },
8435 };
8436
8437 /*
8438 * Address filter string parser
8439 */
8440 static int
8441 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8442 struct list_head *filters)
8443 {
8444 struct perf_addr_filter *filter = NULL;
8445 char *start, *orig, *filename = NULL;
8446 struct path path;
8447 substring_t args[MAX_OPT_ARGS];
8448 int state = IF_STATE_ACTION, token;
8449 unsigned int kernel = 0;
8450 int ret = -EINVAL;
8451
8452 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8453 if (!fstr)
8454 return -ENOMEM;
8455
8456 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8457 ret = -EINVAL;
8458
8459 if (!*start)
8460 continue;
8461
8462 /* filter definition begins */
8463 if (state == IF_STATE_ACTION) {
8464 filter = perf_addr_filter_new(event, filters);
8465 if (!filter)
8466 goto fail;
8467 }
8468
8469 token = match_token(start, if_tokens, args);
8470 switch (token) {
8471 case IF_ACT_FILTER:
8472 case IF_ACT_START:
8473 filter->filter = 1;
8474
8475 case IF_ACT_STOP:
8476 if (state != IF_STATE_ACTION)
8477 goto fail;
8478
8479 state = IF_STATE_SOURCE;
8480 break;
8481
8482 case IF_SRC_KERNELADDR:
8483 case IF_SRC_KERNEL:
8484 kernel = 1;
8485
8486 case IF_SRC_FILEADDR:
8487 case IF_SRC_FILE:
8488 if (state != IF_STATE_SOURCE)
8489 goto fail;
8490
8491 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8492 filter->range = 1;
8493
8494 *args[0].to = 0;
8495 ret = kstrtoul(args[0].from, 0, &filter->offset);
8496 if (ret)
8497 goto fail;
8498
8499 if (filter->range) {
8500 *args[1].to = 0;
8501 ret = kstrtoul(args[1].from, 0, &filter->size);
8502 if (ret)
8503 goto fail;
8504 }
8505
8506 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8507 int fpos = filter->range ? 2 : 1;
8508
8509 filename = match_strdup(&args[fpos]);
8510 if (!filename) {
8511 ret = -ENOMEM;
8512 goto fail;
8513 }
8514 }
8515
8516 state = IF_STATE_END;
8517 break;
8518
8519 default:
8520 goto fail;
8521 }
8522
8523 /*
8524 * Filter definition is fully parsed, validate and install it.
8525 * Make sure that it doesn't contradict itself or the event's
8526 * attribute.
8527 */
8528 if (state == IF_STATE_END) {
8529 ret = -EINVAL;
8530 if (kernel && event->attr.exclude_kernel)
8531 goto fail;
8532
8533 if (!kernel) {
8534 if (!filename)
8535 goto fail;
8536
8537 /*
8538 * For now, we only support file-based filters
8539 * in per-task events; doing so for CPU-wide
8540 * events requires additional context switching
8541 * trickery, since same object code will be
8542 * mapped at different virtual addresses in
8543 * different processes.
8544 */
8545 ret = -EOPNOTSUPP;
8546 if (!event->ctx->task)
8547 goto fail_free_name;
8548
8549 /* look up the path and grab its inode */
8550 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8551 if (ret)
8552 goto fail_free_name;
8553
8554 filter->inode = igrab(d_inode(path.dentry));
8555 path_put(&path);
8556 kfree(filename);
8557 filename = NULL;
8558
8559 ret = -EINVAL;
8560 if (!filter->inode ||
8561 !S_ISREG(filter->inode->i_mode))
8562 /* free_filters_list() will iput() */
8563 goto fail;
8564
8565 event->addr_filters.nr_file_filters++;
8566 }
8567
8568 /* ready to consume more filters */
8569 state = IF_STATE_ACTION;
8570 filter = NULL;
8571 }
8572 }
8573
8574 if (state != IF_STATE_ACTION)
8575 goto fail;
8576
8577 kfree(orig);
8578
8579 return 0;
8580
8581 fail_free_name:
8582 kfree(filename);
8583 fail:
8584 free_filters_list(filters);
8585 kfree(orig);
8586
8587 return ret;
8588 }
8589
8590 static int
8591 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8592 {
8593 LIST_HEAD(filters);
8594 int ret;
8595
8596 /*
8597 * Since this is called in perf_ioctl() path, we're already holding
8598 * ctx::mutex.
8599 */
8600 lockdep_assert_held(&event->ctx->mutex);
8601
8602 if (WARN_ON_ONCE(event->parent))
8603 return -EINVAL;
8604
8605 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8606 if (ret)
8607 goto fail_clear_files;
8608
8609 ret = event->pmu->addr_filters_validate(&filters);
8610 if (ret)
8611 goto fail_free_filters;
8612
8613 /* remove existing filters, if any */
8614 perf_addr_filters_splice(event, &filters);
8615
8616 /* install new filters */
8617 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8618
8619 return ret;
8620
8621 fail_free_filters:
8622 free_filters_list(&filters);
8623
8624 fail_clear_files:
8625 event->addr_filters.nr_file_filters = 0;
8626
8627 return ret;
8628 }
8629
8630 static int
8631 perf_tracepoint_set_filter(struct perf_event *event, char *filter_str)
8632 {
8633 struct perf_event_context *ctx = event->ctx;
8634 int ret;
8635
8636 /*
8637 * Beware, here be dragons!!
8638 *
8639 * the tracepoint muck will deadlock against ctx->mutex, but the tracepoint
8640 * stuff does not actually need it. So temporarily drop ctx->mutex. As per
8641 * perf_event_ctx_lock() we already have a reference on ctx.
8642 *
8643 * This can result in event getting moved to a different ctx, but that
8644 * does not affect the tracepoint state.
8645 */
8646 mutex_unlock(&ctx->mutex);
8647 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
8648 mutex_lock(&ctx->mutex);
8649
8650 return ret;
8651 }
8652
8653 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8654 {
8655 char *filter_str;
8656 int ret = -EINVAL;
8657
8658 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8659 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8660 !has_addr_filter(event))
8661 return -EINVAL;
8662
8663 filter_str = strndup_user(arg, PAGE_SIZE);
8664 if (IS_ERR(filter_str))
8665 return PTR_ERR(filter_str);
8666
8667 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8668 event->attr.type == PERF_TYPE_TRACEPOINT)
8669 ret = perf_tracepoint_set_filter(event, filter_str);
8670 else if (has_addr_filter(event))
8671 ret = perf_event_set_addr_filter(event, filter_str);
8672
8673 kfree(filter_str);
8674 return ret;
8675 }
8676
8677 /*
8678 * hrtimer based swevent callback
8679 */
8680
8681 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8682 {
8683 enum hrtimer_restart ret = HRTIMER_RESTART;
8684 struct perf_sample_data data;
8685 struct pt_regs *regs;
8686 struct perf_event *event;
8687 u64 period;
8688
8689 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8690
8691 if (event->state != PERF_EVENT_STATE_ACTIVE)
8692 return HRTIMER_NORESTART;
8693
8694 event->pmu->read(event);
8695
8696 perf_sample_data_init(&data, 0, event->hw.last_period);
8697 regs = get_irq_regs();
8698
8699 if (regs && !perf_exclude_event(event, regs)) {
8700 if (!(event->attr.exclude_idle && is_idle_task(current)))
8701 if (__perf_event_overflow(event, 1, &data, regs))
8702 ret = HRTIMER_NORESTART;
8703 }
8704
8705 period = max_t(u64, 10000, event->hw.sample_period);
8706 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8707
8708 return ret;
8709 }
8710
8711 static void perf_swevent_start_hrtimer(struct perf_event *event)
8712 {
8713 struct hw_perf_event *hwc = &event->hw;
8714 s64 period;
8715
8716 if (!is_sampling_event(event))
8717 return;
8718
8719 period = local64_read(&hwc->period_left);
8720 if (period) {
8721 if (period < 0)
8722 period = 10000;
8723
8724 local64_set(&hwc->period_left, 0);
8725 } else {
8726 period = max_t(u64, 10000, hwc->sample_period);
8727 }
8728 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8729 HRTIMER_MODE_REL_PINNED);
8730 }
8731
8732 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8733 {
8734 struct hw_perf_event *hwc = &event->hw;
8735
8736 if (is_sampling_event(event)) {
8737 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8738 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8739
8740 hrtimer_cancel(&hwc->hrtimer);
8741 }
8742 }
8743
8744 static void perf_swevent_init_hrtimer(struct perf_event *event)
8745 {
8746 struct hw_perf_event *hwc = &event->hw;
8747
8748 if (!is_sampling_event(event))
8749 return;
8750
8751 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8752 hwc->hrtimer.function = perf_swevent_hrtimer;
8753
8754 /*
8755 * Since hrtimers have a fixed rate, we can do a static freq->period
8756 * mapping and avoid the whole period adjust feedback stuff.
8757 */
8758 if (event->attr.freq) {
8759 long freq = event->attr.sample_freq;
8760
8761 event->attr.sample_period = NSEC_PER_SEC / freq;
8762 hwc->sample_period = event->attr.sample_period;
8763 local64_set(&hwc->period_left, hwc->sample_period);
8764 hwc->last_period = hwc->sample_period;
8765 event->attr.freq = 0;
8766 }
8767 }
8768
8769 /*
8770 * Software event: cpu wall time clock
8771 */
8772
8773 static void cpu_clock_event_update(struct perf_event *event)
8774 {
8775 s64 prev;
8776 u64 now;
8777
8778 now = local_clock();
8779 prev = local64_xchg(&event->hw.prev_count, now);
8780 local64_add(now - prev, &event->count);
8781 }
8782
8783 static void cpu_clock_event_start(struct perf_event *event, int flags)
8784 {
8785 local64_set(&event->hw.prev_count, local_clock());
8786 perf_swevent_start_hrtimer(event);
8787 }
8788
8789 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8790 {
8791 perf_swevent_cancel_hrtimer(event);
8792 cpu_clock_event_update(event);
8793 }
8794
8795 static int cpu_clock_event_add(struct perf_event *event, int flags)
8796 {
8797 if (flags & PERF_EF_START)
8798 cpu_clock_event_start(event, flags);
8799 perf_event_update_userpage(event);
8800
8801 return 0;
8802 }
8803
8804 static void cpu_clock_event_del(struct perf_event *event, int flags)
8805 {
8806 cpu_clock_event_stop(event, flags);
8807 }
8808
8809 static void cpu_clock_event_read(struct perf_event *event)
8810 {
8811 cpu_clock_event_update(event);
8812 }
8813
8814 static int cpu_clock_event_init(struct perf_event *event)
8815 {
8816 if (event->attr.type != PERF_TYPE_SOFTWARE)
8817 return -ENOENT;
8818
8819 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8820 return -ENOENT;
8821
8822 /*
8823 * no branch sampling for software events
8824 */
8825 if (has_branch_stack(event))
8826 return -EOPNOTSUPP;
8827
8828 perf_swevent_init_hrtimer(event);
8829
8830 return 0;
8831 }
8832
8833 static struct pmu perf_cpu_clock = {
8834 .task_ctx_nr = perf_sw_context,
8835
8836 .capabilities = PERF_PMU_CAP_NO_NMI,
8837
8838 .event_init = cpu_clock_event_init,
8839 .add = cpu_clock_event_add,
8840 .del = cpu_clock_event_del,
8841 .start = cpu_clock_event_start,
8842 .stop = cpu_clock_event_stop,
8843 .read = cpu_clock_event_read,
8844 };
8845
8846 /*
8847 * Software event: task time clock
8848 */
8849
8850 static void task_clock_event_update(struct perf_event *event, u64 now)
8851 {
8852 u64 prev;
8853 s64 delta;
8854
8855 prev = local64_xchg(&event->hw.prev_count, now);
8856 delta = now - prev;
8857 local64_add(delta, &event->count);
8858 }
8859
8860 static void task_clock_event_start(struct perf_event *event, int flags)
8861 {
8862 local64_set(&event->hw.prev_count, event->ctx->time);
8863 perf_swevent_start_hrtimer(event);
8864 }
8865
8866 static void task_clock_event_stop(struct perf_event *event, int flags)
8867 {
8868 perf_swevent_cancel_hrtimer(event);
8869 task_clock_event_update(event, event->ctx->time);
8870 }
8871
8872 static int task_clock_event_add(struct perf_event *event, int flags)
8873 {
8874 if (flags & PERF_EF_START)
8875 task_clock_event_start(event, flags);
8876 perf_event_update_userpage(event);
8877
8878 return 0;
8879 }
8880
8881 static void task_clock_event_del(struct perf_event *event, int flags)
8882 {
8883 task_clock_event_stop(event, PERF_EF_UPDATE);
8884 }
8885
8886 static void task_clock_event_read(struct perf_event *event)
8887 {
8888 u64 now = perf_clock();
8889 u64 delta = now - event->ctx->timestamp;
8890 u64 time = event->ctx->time + delta;
8891
8892 task_clock_event_update(event, time);
8893 }
8894
8895 static int task_clock_event_init(struct perf_event *event)
8896 {
8897 if (event->attr.type != PERF_TYPE_SOFTWARE)
8898 return -ENOENT;
8899
8900 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8901 return -ENOENT;
8902
8903 /*
8904 * no branch sampling for software events
8905 */
8906 if (has_branch_stack(event))
8907 return -EOPNOTSUPP;
8908
8909 perf_swevent_init_hrtimer(event);
8910
8911 return 0;
8912 }
8913
8914 static struct pmu perf_task_clock = {
8915 .task_ctx_nr = perf_sw_context,
8916
8917 .capabilities = PERF_PMU_CAP_NO_NMI,
8918
8919 .event_init = task_clock_event_init,
8920 .add = task_clock_event_add,
8921 .del = task_clock_event_del,
8922 .start = task_clock_event_start,
8923 .stop = task_clock_event_stop,
8924 .read = task_clock_event_read,
8925 };
8926
8927 static void perf_pmu_nop_void(struct pmu *pmu)
8928 {
8929 }
8930
8931 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8932 {
8933 }
8934
8935 static int perf_pmu_nop_int(struct pmu *pmu)
8936 {
8937 return 0;
8938 }
8939
8940 static int perf_event_nop_int(struct perf_event *event, u64 value)
8941 {
8942 return 0;
8943 }
8944
8945 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8946
8947 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8948 {
8949 __this_cpu_write(nop_txn_flags, flags);
8950
8951 if (flags & ~PERF_PMU_TXN_ADD)
8952 return;
8953
8954 perf_pmu_disable(pmu);
8955 }
8956
8957 static int perf_pmu_commit_txn(struct pmu *pmu)
8958 {
8959 unsigned int flags = __this_cpu_read(nop_txn_flags);
8960
8961 __this_cpu_write(nop_txn_flags, 0);
8962
8963 if (flags & ~PERF_PMU_TXN_ADD)
8964 return 0;
8965
8966 perf_pmu_enable(pmu);
8967 return 0;
8968 }
8969
8970 static void perf_pmu_cancel_txn(struct pmu *pmu)
8971 {
8972 unsigned int flags = __this_cpu_read(nop_txn_flags);
8973
8974 __this_cpu_write(nop_txn_flags, 0);
8975
8976 if (flags & ~PERF_PMU_TXN_ADD)
8977 return;
8978
8979 perf_pmu_enable(pmu);
8980 }
8981
8982 static int perf_event_idx_default(struct perf_event *event)
8983 {
8984 return 0;
8985 }
8986
8987 /*
8988 * Ensures all contexts with the same task_ctx_nr have the same
8989 * pmu_cpu_context too.
8990 */
8991 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8992 {
8993 struct pmu *pmu;
8994
8995 if (ctxn < 0)
8996 return NULL;
8997
8998 list_for_each_entry(pmu, &pmus, entry) {
8999 if (pmu->task_ctx_nr == ctxn)
9000 return pmu->pmu_cpu_context;
9001 }
9002
9003 return NULL;
9004 }
9005
9006 static void free_pmu_context(struct pmu *pmu)
9007 {
9008 /*
9009 * Static contexts such as perf_sw_context have a global lifetime
9010 * and may be shared between different PMUs. Avoid freeing them
9011 * when a single PMU is going away.
9012 */
9013 if (pmu->task_ctx_nr > perf_invalid_context)
9014 return;
9015
9016 free_percpu(pmu->pmu_cpu_context);
9017 }
9018
9019 /*
9020 * Let userspace know that this PMU supports address range filtering:
9021 */
9022 static ssize_t nr_addr_filters_show(struct device *dev,
9023 struct device_attribute *attr,
9024 char *page)
9025 {
9026 struct pmu *pmu = dev_get_drvdata(dev);
9027
9028 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9029 }
9030 DEVICE_ATTR_RO(nr_addr_filters);
9031
9032 static struct idr pmu_idr;
9033
9034 static ssize_t
9035 type_show(struct device *dev, struct device_attribute *attr, char *page)
9036 {
9037 struct pmu *pmu = dev_get_drvdata(dev);
9038
9039 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9040 }
9041 static DEVICE_ATTR_RO(type);
9042
9043 static ssize_t
9044 perf_event_mux_interval_ms_show(struct device *dev,
9045 struct device_attribute *attr,
9046 char *page)
9047 {
9048 struct pmu *pmu = dev_get_drvdata(dev);
9049
9050 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9051 }
9052
9053 static DEFINE_MUTEX(mux_interval_mutex);
9054
9055 static ssize_t
9056 perf_event_mux_interval_ms_store(struct device *dev,
9057 struct device_attribute *attr,
9058 const char *buf, size_t count)
9059 {
9060 struct pmu *pmu = dev_get_drvdata(dev);
9061 int timer, cpu, ret;
9062
9063 ret = kstrtoint(buf, 0, &timer);
9064 if (ret)
9065 return ret;
9066
9067 if (timer < 1)
9068 return -EINVAL;
9069
9070 /* same value, noting to do */
9071 if (timer == pmu->hrtimer_interval_ms)
9072 return count;
9073
9074 mutex_lock(&mux_interval_mutex);
9075 pmu->hrtimer_interval_ms = timer;
9076
9077 /* update all cpuctx for this PMU */
9078 cpus_read_lock();
9079 for_each_online_cpu(cpu) {
9080 struct perf_cpu_context *cpuctx;
9081 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9082 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9083
9084 cpu_function_call(cpu,
9085 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9086 }
9087 cpus_read_unlock();
9088 mutex_unlock(&mux_interval_mutex);
9089
9090 return count;
9091 }
9092 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9093
9094 static struct attribute *pmu_dev_attrs[] = {
9095 &dev_attr_type.attr,
9096 &dev_attr_perf_event_mux_interval_ms.attr,
9097 NULL,
9098 };
9099 ATTRIBUTE_GROUPS(pmu_dev);
9100
9101 static int pmu_bus_running;
9102 static struct bus_type pmu_bus = {
9103 .name = "event_source",
9104 .dev_groups = pmu_dev_groups,
9105 };
9106
9107 static void pmu_dev_release(struct device *dev)
9108 {
9109 kfree(dev);
9110 }
9111
9112 static int pmu_dev_alloc(struct pmu *pmu)
9113 {
9114 int ret = -ENOMEM;
9115
9116 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9117 if (!pmu->dev)
9118 goto out;
9119
9120 pmu->dev->groups = pmu->attr_groups;
9121 device_initialize(pmu->dev);
9122 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9123 if (ret)
9124 goto free_dev;
9125
9126 dev_set_drvdata(pmu->dev, pmu);
9127 pmu->dev->bus = &pmu_bus;
9128 pmu->dev->release = pmu_dev_release;
9129 ret = device_add(pmu->dev);
9130 if (ret)
9131 goto free_dev;
9132
9133 /* For PMUs with address filters, throw in an extra attribute: */
9134 if (pmu->nr_addr_filters)
9135 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9136
9137 if (ret)
9138 goto del_dev;
9139
9140 out:
9141 return ret;
9142
9143 del_dev:
9144 device_del(pmu->dev);
9145
9146 free_dev:
9147 put_device(pmu->dev);
9148 goto out;
9149 }
9150
9151 static struct lock_class_key cpuctx_mutex;
9152 static struct lock_class_key cpuctx_lock;
9153
9154 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9155 {
9156 int cpu, ret;
9157
9158 mutex_lock(&pmus_lock);
9159 ret = -ENOMEM;
9160 pmu->pmu_disable_count = alloc_percpu(int);
9161 if (!pmu->pmu_disable_count)
9162 goto unlock;
9163
9164 pmu->type = -1;
9165 if (!name)
9166 goto skip_type;
9167 pmu->name = name;
9168
9169 if (type < 0) {
9170 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9171 if (type < 0) {
9172 ret = type;
9173 goto free_pdc;
9174 }
9175 }
9176 pmu->type = type;
9177
9178 if (pmu_bus_running) {
9179 ret = pmu_dev_alloc(pmu);
9180 if (ret)
9181 goto free_idr;
9182 }
9183
9184 skip_type:
9185 if (pmu->task_ctx_nr == perf_hw_context) {
9186 static int hw_context_taken = 0;
9187
9188 /*
9189 * Other than systems with heterogeneous CPUs, it never makes
9190 * sense for two PMUs to share perf_hw_context. PMUs which are
9191 * uncore must use perf_invalid_context.
9192 */
9193 if (WARN_ON_ONCE(hw_context_taken &&
9194 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9195 pmu->task_ctx_nr = perf_invalid_context;
9196
9197 hw_context_taken = 1;
9198 }
9199
9200 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9201 if (pmu->pmu_cpu_context)
9202 goto got_cpu_context;
9203
9204 ret = -ENOMEM;
9205 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9206 if (!pmu->pmu_cpu_context)
9207 goto free_dev;
9208
9209 for_each_possible_cpu(cpu) {
9210 struct perf_cpu_context *cpuctx;
9211
9212 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9213 __perf_event_init_context(&cpuctx->ctx);
9214 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9215 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9216 cpuctx->ctx.pmu = pmu;
9217 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9218
9219 __perf_mux_hrtimer_init(cpuctx, cpu);
9220 }
9221
9222 got_cpu_context:
9223 if (!pmu->start_txn) {
9224 if (pmu->pmu_enable) {
9225 /*
9226 * If we have pmu_enable/pmu_disable calls, install
9227 * transaction stubs that use that to try and batch
9228 * hardware accesses.
9229 */
9230 pmu->start_txn = perf_pmu_start_txn;
9231 pmu->commit_txn = perf_pmu_commit_txn;
9232 pmu->cancel_txn = perf_pmu_cancel_txn;
9233 } else {
9234 pmu->start_txn = perf_pmu_nop_txn;
9235 pmu->commit_txn = perf_pmu_nop_int;
9236 pmu->cancel_txn = perf_pmu_nop_void;
9237 }
9238 }
9239
9240 if (!pmu->pmu_enable) {
9241 pmu->pmu_enable = perf_pmu_nop_void;
9242 pmu->pmu_disable = perf_pmu_nop_void;
9243 }
9244
9245 if (!pmu->check_period)
9246 pmu->check_period = perf_event_nop_int;
9247
9248 if (!pmu->event_idx)
9249 pmu->event_idx = perf_event_idx_default;
9250
9251 list_add_rcu(&pmu->entry, &pmus);
9252 atomic_set(&pmu->exclusive_cnt, 0);
9253 ret = 0;
9254 unlock:
9255 mutex_unlock(&pmus_lock);
9256
9257 return ret;
9258
9259 free_dev:
9260 device_del(pmu->dev);
9261 put_device(pmu->dev);
9262
9263 free_idr:
9264 if (pmu->type >= PERF_TYPE_MAX)
9265 idr_remove(&pmu_idr, pmu->type);
9266
9267 free_pdc:
9268 free_percpu(pmu->pmu_disable_count);
9269 goto unlock;
9270 }
9271 EXPORT_SYMBOL_GPL(perf_pmu_register);
9272
9273 void perf_pmu_unregister(struct pmu *pmu)
9274 {
9275 mutex_lock(&pmus_lock);
9276 list_del_rcu(&pmu->entry);
9277
9278 /*
9279 * We dereference the pmu list under both SRCU and regular RCU, so
9280 * synchronize against both of those.
9281 */
9282 synchronize_srcu(&pmus_srcu);
9283 synchronize_rcu();
9284
9285 free_percpu(pmu->pmu_disable_count);
9286 if (pmu->type >= PERF_TYPE_MAX)
9287 idr_remove(&pmu_idr, pmu->type);
9288 if (pmu_bus_running) {
9289 if (pmu->nr_addr_filters)
9290 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9291 device_del(pmu->dev);
9292 put_device(pmu->dev);
9293 }
9294 free_pmu_context(pmu);
9295 mutex_unlock(&pmus_lock);
9296 }
9297 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9298
9299 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9300 {
9301 struct perf_event_context *ctx = NULL;
9302 int ret;
9303
9304 if (!try_module_get(pmu->module))
9305 return -ENODEV;
9306
9307 /*
9308 * A number of pmu->event_init() methods iterate the sibling_list to,
9309 * for example, validate if the group fits on the PMU. Therefore,
9310 * if this is a sibling event, acquire the ctx->mutex to protect
9311 * the sibling_list.
9312 */
9313 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9314 /*
9315 * This ctx->mutex can nest when we're called through
9316 * inheritance. See the perf_event_ctx_lock_nested() comment.
9317 */
9318 ctx = perf_event_ctx_lock_nested(event->group_leader,
9319 SINGLE_DEPTH_NESTING);
9320 BUG_ON(!ctx);
9321 }
9322
9323 event->pmu = pmu;
9324 ret = pmu->event_init(event);
9325
9326 if (ctx)
9327 perf_event_ctx_unlock(event->group_leader, ctx);
9328
9329 if (ret)
9330 module_put(pmu->module);
9331
9332 return ret;
9333 }
9334
9335 static struct pmu *perf_init_event(struct perf_event *event)
9336 {
9337 struct pmu *pmu;
9338 int idx;
9339 int ret;
9340
9341 idx = srcu_read_lock(&pmus_srcu);
9342
9343 /* Try parent's PMU first: */
9344 if (event->parent && event->parent->pmu) {
9345 pmu = event->parent->pmu;
9346 ret = perf_try_init_event(pmu, event);
9347 if (!ret)
9348 goto unlock;
9349 }
9350
9351 rcu_read_lock();
9352 pmu = idr_find(&pmu_idr, event->attr.type);
9353 rcu_read_unlock();
9354 if (pmu) {
9355 ret = perf_try_init_event(pmu, event);
9356 if (ret)
9357 pmu = ERR_PTR(ret);
9358 goto unlock;
9359 }
9360
9361 list_for_each_entry_rcu(pmu, &pmus, entry) {
9362 ret = perf_try_init_event(pmu, event);
9363 if (!ret)
9364 goto unlock;
9365
9366 if (ret != -ENOENT) {
9367 pmu = ERR_PTR(ret);
9368 goto unlock;
9369 }
9370 }
9371 pmu = ERR_PTR(-ENOENT);
9372 unlock:
9373 srcu_read_unlock(&pmus_srcu, idx);
9374
9375 return pmu;
9376 }
9377
9378 static void attach_sb_event(struct perf_event *event)
9379 {
9380 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9381
9382 raw_spin_lock(&pel->lock);
9383 list_add_rcu(&event->sb_list, &pel->list);
9384 raw_spin_unlock(&pel->lock);
9385 }
9386
9387 /*
9388 * We keep a list of all !task (and therefore per-cpu) events
9389 * that need to receive side-band records.
9390 *
9391 * This avoids having to scan all the various PMU per-cpu contexts
9392 * looking for them.
9393 */
9394 static void account_pmu_sb_event(struct perf_event *event)
9395 {
9396 if (is_sb_event(event))
9397 attach_sb_event(event);
9398 }
9399
9400 static void account_event_cpu(struct perf_event *event, int cpu)
9401 {
9402 if (event->parent)
9403 return;
9404
9405 if (is_cgroup_event(event))
9406 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9407 }
9408
9409 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9410 static void account_freq_event_nohz(void)
9411 {
9412 #ifdef CONFIG_NO_HZ_FULL
9413 /* Lock so we don't race with concurrent unaccount */
9414 spin_lock(&nr_freq_lock);
9415 if (atomic_inc_return(&nr_freq_events) == 1)
9416 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9417 spin_unlock(&nr_freq_lock);
9418 #endif
9419 }
9420
9421 static void account_freq_event(void)
9422 {
9423 if (tick_nohz_full_enabled())
9424 account_freq_event_nohz();
9425 else
9426 atomic_inc(&nr_freq_events);
9427 }
9428
9429
9430 static void account_event(struct perf_event *event)
9431 {
9432 bool inc = false;
9433
9434 if (event->parent)
9435 return;
9436
9437 if (event->attach_state & PERF_ATTACH_TASK)
9438 inc = true;
9439 if (event->attr.mmap || event->attr.mmap_data)
9440 atomic_inc(&nr_mmap_events);
9441 if (event->attr.comm)
9442 atomic_inc(&nr_comm_events);
9443 if (event->attr.namespaces)
9444 atomic_inc(&nr_namespaces_events);
9445 if (event->attr.task)
9446 atomic_inc(&nr_task_events);
9447 if (event->attr.freq)
9448 account_freq_event();
9449 if (event->attr.context_switch) {
9450 atomic_inc(&nr_switch_events);
9451 inc = true;
9452 }
9453 if (has_branch_stack(event))
9454 inc = true;
9455 if (is_cgroup_event(event))
9456 inc = true;
9457
9458 if (inc) {
9459 /*
9460 * We need the mutex here because static_branch_enable()
9461 * must complete *before* the perf_sched_count increment
9462 * becomes visible.
9463 */
9464 if (atomic_inc_not_zero(&perf_sched_count))
9465 goto enabled;
9466
9467 mutex_lock(&perf_sched_mutex);
9468 if (!atomic_read(&perf_sched_count)) {
9469 static_branch_enable(&perf_sched_events);
9470 /*
9471 * Guarantee that all CPUs observe they key change and
9472 * call the perf scheduling hooks before proceeding to
9473 * install events that need them.
9474 */
9475 synchronize_sched();
9476 }
9477 /*
9478 * Now that we have waited for the sync_sched(), allow further
9479 * increments to by-pass the mutex.
9480 */
9481 atomic_inc(&perf_sched_count);
9482 mutex_unlock(&perf_sched_mutex);
9483 }
9484 enabled:
9485
9486 account_event_cpu(event, event->cpu);
9487
9488 account_pmu_sb_event(event);
9489 }
9490
9491 /*
9492 * Allocate and initialize a event structure
9493 */
9494 static struct perf_event *
9495 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9496 struct task_struct *task,
9497 struct perf_event *group_leader,
9498 struct perf_event *parent_event,
9499 perf_overflow_handler_t overflow_handler,
9500 void *context, int cgroup_fd)
9501 {
9502 struct pmu *pmu;
9503 struct perf_event *event;
9504 struct hw_perf_event *hwc;
9505 long err = -EINVAL;
9506
9507 if ((unsigned)cpu >= nr_cpu_ids) {
9508 if (!task || cpu != -1)
9509 return ERR_PTR(-EINVAL);
9510 }
9511
9512 event = kzalloc(sizeof(*event), GFP_KERNEL);
9513 if (!event)
9514 return ERR_PTR(-ENOMEM);
9515
9516 /*
9517 * Single events are their own group leaders, with an
9518 * empty sibling list:
9519 */
9520 if (!group_leader)
9521 group_leader = event;
9522
9523 mutex_init(&event->child_mutex);
9524 INIT_LIST_HEAD(&event->child_list);
9525
9526 INIT_LIST_HEAD(&event->group_entry);
9527 INIT_LIST_HEAD(&event->event_entry);
9528 INIT_LIST_HEAD(&event->sibling_list);
9529 INIT_LIST_HEAD(&event->rb_entry);
9530 INIT_LIST_HEAD(&event->active_entry);
9531 INIT_LIST_HEAD(&event->addr_filters.list);
9532 INIT_HLIST_NODE(&event->hlist_entry);
9533
9534
9535 init_waitqueue_head(&event->waitq);
9536 event->pending_disable = -1;
9537 init_irq_work(&event->pending, perf_pending_event);
9538
9539 mutex_init(&event->mmap_mutex);
9540 raw_spin_lock_init(&event->addr_filters.lock);
9541
9542 atomic_long_set(&event->refcount, 1);
9543 event->cpu = cpu;
9544 event->attr = *attr;
9545 event->group_leader = group_leader;
9546 event->pmu = NULL;
9547 event->oncpu = -1;
9548
9549 event->parent = parent_event;
9550
9551 event->ns = get_pid_ns(task_active_pid_ns(current));
9552 event->id = atomic64_inc_return(&perf_event_id);
9553
9554 event->state = PERF_EVENT_STATE_INACTIVE;
9555
9556 if (task) {
9557 event->attach_state = PERF_ATTACH_TASK;
9558 /*
9559 * XXX pmu::event_init needs to know what task to account to
9560 * and we cannot use the ctx information because we need the
9561 * pmu before we get a ctx.
9562 */
9563 get_task_struct(task);
9564 event->hw.target = task;
9565 }
9566
9567 event->clock = &local_clock;
9568 if (parent_event)
9569 event->clock = parent_event->clock;
9570
9571 if (!overflow_handler && parent_event) {
9572 overflow_handler = parent_event->overflow_handler;
9573 context = parent_event->overflow_handler_context;
9574 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9575 if (overflow_handler == bpf_overflow_handler) {
9576 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9577
9578 if (IS_ERR(prog)) {
9579 err = PTR_ERR(prog);
9580 goto err_ns;
9581 }
9582 event->prog = prog;
9583 event->orig_overflow_handler =
9584 parent_event->orig_overflow_handler;
9585 }
9586 #endif
9587 }
9588
9589 if (overflow_handler) {
9590 event->overflow_handler = overflow_handler;
9591 event->overflow_handler_context = context;
9592 } else if (is_write_backward(event)){
9593 event->overflow_handler = perf_event_output_backward;
9594 event->overflow_handler_context = NULL;
9595 } else {
9596 event->overflow_handler = perf_event_output_forward;
9597 event->overflow_handler_context = NULL;
9598 }
9599
9600 perf_event__state_init(event);
9601
9602 pmu = NULL;
9603
9604 hwc = &event->hw;
9605 hwc->sample_period = attr->sample_period;
9606 if (attr->freq && attr->sample_freq)
9607 hwc->sample_period = 1;
9608 hwc->last_period = hwc->sample_period;
9609
9610 local64_set(&hwc->period_left, hwc->sample_period);
9611
9612 /*
9613 * We currently do not support PERF_SAMPLE_READ on inherited events.
9614 * See perf_output_read().
9615 */
9616 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9617 goto err_ns;
9618
9619 if (!has_branch_stack(event))
9620 event->attr.branch_sample_type = 0;
9621
9622 if (cgroup_fd != -1) {
9623 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9624 if (err)
9625 goto err_ns;
9626 }
9627
9628 pmu = perf_init_event(event);
9629 if (IS_ERR(pmu)) {
9630 err = PTR_ERR(pmu);
9631 goto err_ns;
9632 }
9633
9634 err = exclusive_event_init(event);
9635 if (err)
9636 goto err_pmu;
9637
9638 if (has_addr_filter(event)) {
9639 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9640 sizeof(unsigned long),
9641 GFP_KERNEL);
9642 if (!event->addr_filters_offs) {
9643 err = -ENOMEM;
9644 goto err_per_task;
9645 }
9646
9647 /* force hw sync on the address filters */
9648 event->addr_filters_gen = 1;
9649 }
9650
9651 if (!event->parent) {
9652 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9653 err = get_callchain_buffers(attr->sample_max_stack);
9654 if (err)
9655 goto err_addr_filters;
9656 }
9657 }
9658
9659 /* symmetric to unaccount_event() in _free_event() */
9660 account_event(event);
9661
9662 return event;
9663
9664 err_addr_filters:
9665 kfree(event->addr_filters_offs);
9666
9667 err_per_task:
9668 exclusive_event_destroy(event);
9669
9670 err_pmu:
9671 if (event->destroy)
9672 event->destroy(event);
9673 module_put(pmu->module);
9674 err_ns:
9675 if (is_cgroup_event(event))
9676 perf_detach_cgroup(event);
9677 if (event->ns)
9678 put_pid_ns(event->ns);
9679 if (event->hw.target)
9680 put_task_struct(event->hw.target);
9681 kfree(event);
9682
9683 return ERR_PTR(err);
9684 }
9685
9686 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9687 struct perf_event_attr *attr)
9688 {
9689 u32 size;
9690 int ret;
9691
9692 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9693 return -EFAULT;
9694
9695 /*
9696 * zero the full structure, so that a short copy will be nice.
9697 */
9698 memset(attr, 0, sizeof(*attr));
9699
9700 ret = get_user(size, &uattr->size);
9701 if (ret)
9702 return ret;
9703
9704 if (size > PAGE_SIZE) /* silly large */
9705 goto err_size;
9706
9707 if (!size) /* abi compat */
9708 size = PERF_ATTR_SIZE_VER0;
9709
9710 if (size < PERF_ATTR_SIZE_VER0)
9711 goto err_size;
9712
9713 /*
9714 * If we're handed a bigger struct than we know of,
9715 * ensure all the unknown bits are 0 - i.e. new
9716 * user-space does not rely on any kernel feature
9717 * extensions we dont know about yet.
9718 */
9719 if (size > sizeof(*attr)) {
9720 unsigned char __user *addr;
9721 unsigned char __user *end;
9722 unsigned char val;
9723
9724 addr = (void __user *)uattr + sizeof(*attr);
9725 end = (void __user *)uattr + size;
9726
9727 for (; addr < end; addr++) {
9728 ret = get_user(val, addr);
9729 if (ret)
9730 return ret;
9731 if (val)
9732 goto err_size;
9733 }
9734 size = sizeof(*attr);
9735 }
9736
9737 ret = copy_from_user(attr, uattr, size);
9738 if (ret)
9739 return -EFAULT;
9740
9741 attr->size = size;
9742
9743 if (attr->__reserved_1)
9744 return -EINVAL;
9745
9746 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9747 return -EINVAL;
9748
9749 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9750 return -EINVAL;
9751
9752 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9753 u64 mask = attr->branch_sample_type;
9754
9755 /* only using defined bits */
9756 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9757 return -EINVAL;
9758
9759 /* at least one branch bit must be set */
9760 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9761 return -EINVAL;
9762
9763 /* propagate priv level, when not set for branch */
9764 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9765
9766 /* exclude_kernel checked on syscall entry */
9767 if (!attr->exclude_kernel)
9768 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9769
9770 if (!attr->exclude_user)
9771 mask |= PERF_SAMPLE_BRANCH_USER;
9772
9773 if (!attr->exclude_hv)
9774 mask |= PERF_SAMPLE_BRANCH_HV;
9775 /*
9776 * adjust user setting (for HW filter setup)
9777 */
9778 attr->branch_sample_type = mask;
9779 }
9780 /* privileged levels capture (kernel, hv): check permissions */
9781 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9782 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9783 return -EACCES;
9784 }
9785
9786 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9787 ret = perf_reg_validate(attr->sample_regs_user);
9788 if (ret)
9789 return ret;
9790 }
9791
9792 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9793 if (!arch_perf_have_user_stack_dump())
9794 return -ENOSYS;
9795
9796 /*
9797 * We have __u32 type for the size, but so far
9798 * we can only use __u16 as maximum due to the
9799 * __u16 sample size limit.
9800 */
9801 if (attr->sample_stack_user >= USHRT_MAX)
9802 return -EINVAL;
9803 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9804 return -EINVAL;
9805 }
9806
9807 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9808 ret = perf_reg_validate(attr->sample_regs_intr);
9809 out:
9810 return ret;
9811
9812 err_size:
9813 put_user(sizeof(*attr), &uattr->size);
9814 ret = -E2BIG;
9815 goto out;
9816 }
9817
9818 static int
9819 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9820 {
9821 struct ring_buffer *rb = NULL;
9822 int ret = -EINVAL;
9823
9824 if (!output_event)
9825 goto set;
9826
9827 /* don't allow circular references */
9828 if (event == output_event)
9829 goto out;
9830
9831 /*
9832 * Don't allow cross-cpu buffers
9833 */
9834 if (output_event->cpu != event->cpu)
9835 goto out;
9836
9837 /*
9838 * If its not a per-cpu rb, it must be the same task.
9839 */
9840 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9841 goto out;
9842
9843 /*
9844 * Mixing clocks in the same buffer is trouble you don't need.
9845 */
9846 if (output_event->clock != event->clock)
9847 goto out;
9848
9849 /*
9850 * Either writing ring buffer from beginning or from end.
9851 * Mixing is not allowed.
9852 */
9853 if (is_write_backward(output_event) != is_write_backward(event))
9854 goto out;
9855
9856 /*
9857 * If both events generate aux data, they must be on the same PMU
9858 */
9859 if (has_aux(event) && has_aux(output_event) &&
9860 event->pmu != output_event->pmu)
9861 goto out;
9862
9863 set:
9864 mutex_lock(&event->mmap_mutex);
9865 /* Can't redirect output if we've got an active mmap() */
9866 if (atomic_read(&event->mmap_count))
9867 goto unlock;
9868
9869 if (output_event) {
9870 /* get the rb we want to redirect to */
9871 rb = ring_buffer_get(output_event);
9872 if (!rb)
9873 goto unlock;
9874 }
9875
9876 ring_buffer_attach(event, rb);
9877
9878 ret = 0;
9879 unlock:
9880 mutex_unlock(&event->mmap_mutex);
9881
9882 out:
9883 return ret;
9884 }
9885
9886 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9887 {
9888 if (b < a)
9889 swap(a, b);
9890
9891 mutex_lock(a);
9892 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9893 }
9894
9895 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9896 {
9897 bool nmi_safe = false;
9898
9899 switch (clk_id) {
9900 case CLOCK_MONOTONIC:
9901 event->clock = &ktime_get_mono_fast_ns;
9902 nmi_safe = true;
9903 break;
9904
9905 case CLOCK_MONOTONIC_RAW:
9906 event->clock = &ktime_get_raw_fast_ns;
9907 nmi_safe = true;
9908 break;
9909
9910 case CLOCK_REALTIME:
9911 event->clock = &ktime_get_real_ns;
9912 break;
9913
9914 case CLOCK_BOOTTIME:
9915 event->clock = &ktime_get_boot_ns;
9916 break;
9917
9918 case CLOCK_TAI:
9919 event->clock = &ktime_get_tai_ns;
9920 break;
9921
9922 default:
9923 return -EINVAL;
9924 }
9925
9926 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9927 return -EINVAL;
9928
9929 return 0;
9930 }
9931
9932 /*
9933 * Variation on perf_event_ctx_lock_nested(), except we take two context
9934 * mutexes.
9935 */
9936 static struct perf_event_context *
9937 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9938 struct perf_event_context *ctx)
9939 {
9940 struct perf_event_context *gctx;
9941
9942 again:
9943 rcu_read_lock();
9944 gctx = READ_ONCE(group_leader->ctx);
9945 if (!atomic_inc_not_zero(&gctx->refcount)) {
9946 rcu_read_unlock();
9947 goto again;
9948 }
9949 rcu_read_unlock();
9950
9951 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9952
9953 if (group_leader->ctx != gctx) {
9954 mutex_unlock(&ctx->mutex);
9955 mutex_unlock(&gctx->mutex);
9956 put_ctx(gctx);
9957 goto again;
9958 }
9959
9960 return gctx;
9961 }
9962
9963 /**
9964 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9965 *
9966 * @attr_uptr: event_id type attributes for monitoring/sampling
9967 * @pid: target pid
9968 * @cpu: target cpu
9969 * @group_fd: group leader event fd
9970 */
9971 SYSCALL_DEFINE5(perf_event_open,
9972 struct perf_event_attr __user *, attr_uptr,
9973 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9974 {
9975 struct perf_event *group_leader = NULL, *output_event = NULL;
9976 struct perf_event *event, *sibling;
9977 struct perf_event_attr attr;
9978 struct perf_event_context *ctx, *uninitialized_var(gctx);
9979 struct file *event_file = NULL;
9980 struct fd group = {NULL, 0};
9981 struct task_struct *task = NULL;
9982 struct pmu *pmu;
9983 int event_fd;
9984 int move_group = 0;
9985 int err;
9986 int f_flags = O_RDWR;
9987 int cgroup_fd = -1;
9988
9989 /* for future expandability... */
9990 if (flags & ~PERF_FLAG_ALL)
9991 return -EINVAL;
9992
9993 if (perf_paranoid_any() && !capable(CAP_SYS_ADMIN))
9994 return -EACCES;
9995
9996 err = perf_copy_attr(attr_uptr, &attr);
9997 if (err)
9998 return err;
9999
10000 if (!attr.exclude_kernel) {
10001 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10002 return -EACCES;
10003 }
10004
10005 if (attr.namespaces) {
10006 if (!capable(CAP_SYS_ADMIN))
10007 return -EACCES;
10008 }
10009
10010 if (attr.freq) {
10011 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10012 return -EINVAL;
10013 } else {
10014 if (attr.sample_period & (1ULL << 63))
10015 return -EINVAL;
10016 }
10017
10018 /* Only privileged users can get physical addresses */
10019 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10020 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10021 return -EACCES;
10022
10023 if (!attr.sample_max_stack)
10024 attr.sample_max_stack = sysctl_perf_event_max_stack;
10025
10026 /*
10027 * In cgroup mode, the pid argument is used to pass the fd
10028 * opened to the cgroup directory in cgroupfs. The cpu argument
10029 * designates the cpu on which to monitor threads from that
10030 * cgroup.
10031 */
10032 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10033 return -EINVAL;
10034
10035 if (flags & PERF_FLAG_FD_CLOEXEC)
10036 f_flags |= O_CLOEXEC;
10037
10038 event_fd = get_unused_fd_flags(f_flags);
10039 if (event_fd < 0)
10040 return event_fd;
10041
10042 if (group_fd != -1) {
10043 err = perf_fget_light(group_fd, &group);
10044 if (err)
10045 goto err_fd;
10046 group_leader = group.file->private_data;
10047 if (flags & PERF_FLAG_FD_OUTPUT)
10048 output_event = group_leader;
10049 if (flags & PERF_FLAG_FD_NO_GROUP)
10050 group_leader = NULL;
10051 }
10052
10053 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10054 task = find_lively_task_by_vpid(pid);
10055 if (IS_ERR(task)) {
10056 err = PTR_ERR(task);
10057 goto err_group_fd;
10058 }
10059 }
10060
10061 if (task && group_leader &&
10062 group_leader->attr.inherit != attr.inherit) {
10063 err = -EINVAL;
10064 goto err_task;
10065 }
10066
10067 if (task) {
10068 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10069 if (err)
10070 goto err_task;
10071
10072 /*
10073 * Reuse ptrace permission checks for now.
10074 *
10075 * We must hold cred_guard_mutex across this and any potential
10076 * perf_install_in_context() call for this new event to
10077 * serialize against exec() altering our credentials (and the
10078 * perf_event_exit_task() that could imply).
10079 */
10080 err = -EACCES;
10081 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10082 goto err_cred;
10083 }
10084
10085 if (flags & PERF_FLAG_PID_CGROUP)
10086 cgroup_fd = pid;
10087
10088 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10089 NULL, NULL, cgroup_fd);
10090 if (IS_ERR(event)) {
10091 err = PTR_ERR(event);
10092 goto err_cred;
10093 }
10094
10095 if (is_sampling_event(event)) {
10096 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10097 err = -EOPNOTSUPP;
10098 goto err_alloc;
10099 }
10100 }
10101
10102 /*
10103 * Special case software events and allow them to be part of
10104 * any hardware group.
10105 */
10106 pmu = event->pmu;
10107
10108 if (attr.use_clockid) {
10109 err = perf_event_set_clock(event, attr.clockid);
10110 if (err)
10111 goto err_alloc;
10112 }
10113
10114 if (pmu->task_ctx_nr == perf_sw_context)
10115 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10116
10117 if (group_leader &&
10118 (is_software_event(event) != is_software_event(group_leader))) {
10119 if (is_software_event(event)) {
10120 /*
10121 * If event and group_leader are not both a software
10122 * event, and event is, then group leader is not.
10123 *
10124 * Allow the addition of software events to !software
10125 * groups, this is safe because software events never
10126 * fail to schedule.
10127 */
10128 pmu = group_leader->pmu;
10129 } else if (is_software_event(group_leader) &&
10130 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10131 /*
10132 * In case the group is a pure software group, and we
10133 * try to add a hardware event, move the whole group to
10134 * the hardware context.
10135 */
10136 move_group = 1;
10137 }
10138 }
10139
10140 /*
10141 * Get the target context (task or percpu):
10142 */
10143 ctx = find_get_context(pmu, task, event);
10144 if (IS_ERR(ctx)) {
10145 err = PTR_ERR(ctx);
10146 goto err_alloc;
10147 }
10148
10149 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10150 err = -EBUSY;
10151 goto err_context;
10152 }
10153
10154 /*
10155 * Look up the group leader (we will attach this event to it):
10156 */
10157 if (group_leader) {
10158 err = -EINVAL;
10159
10160 /*
10161 * Do not allow a recursive hierarchy (this new sibling
10162 * becoming part of another group-sibling):
10163 */
10164 if (group_leader->group_leader != group_leader)
10165 goto err_context;
10166
10167 /* All events in a group should have the same clock */
10168 if (group_leader->clock != event->clock)
10169 goto err_context;
10170
10171 /*
10172 * Make sure we're both events for the same CPU;
10173 * grouping events for different CPUs is broken; since
10174 * you can never concurrently schedule them anyhow.
10175 */
10176 if (group_leader->cpu != event->cpu)
10177 goto err_context;
10178
10179 /*
10180 * Make sure we're both on the same task, or both
10181 * per-CPU events.
10182 */
10183 if (group_leader->ctx->task != ctx->task)
10184 goto err_context;
10185
10186 /*
10187 * Do not allow to attach to a group in a different task
10188 * or CPU context. If we're moving SW events, we'll fix
10189 * this up later, so allow that.
10190 */
10191 if (!move_group && group_leader->ctx != ctx)
10192 goto err_context;
10193
10194 /*
10195 * Only a group leader can be exclusive or pinned
10196 */
10197 if (attr.exclusive || attr.pinned)
10198 goto err_context;
10199 }
10200
10201 if (output_event) {
10202 err = perf_event_set_output(event, output_event);
10203 if (err)
10204 goto err_context;
10205 }
10206
10207 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10208 f_flags);
10209 if (IS_ERR(event_file)) {
10210 err = PTR_ERR(event_file);
10211 event_file = NULL;
10212 goto err_context;
10213 }
10214
10215 if (move_group) {
10216 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10217
10218 if (gctx->task == TASK_TOMBSTONE) {
10219 err = -ESRCH;
10220 goto err_locked;
10221 }
10222
10223 /*
10224 * Check if we raced against another sys_perf_event_open() call
10225 * moving the software group underneath us.
10226 */
10227 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10228 /*
10229 * If someone moved the group out from under us, check
10230 * if this new event wound up on the same ctx, if so
10231 * its the regular !move_group case, otherwise fail.
10232 */
10233 if (gctx != ctx) {
10234 err = -EINVAL;
10235 goto err_locked;
10236 } else {
10237 perf_event_ctx_unlock(group_leader, gctx);
10238 move_group = 0;
10239 }
10240 }
10241 } else {
10242 mutex_lock(&ctx->mutex);
10243 }
10244
10245 if (ctx->task == TASK_TOMBSTONE) {
10246 err = -ESRCH;
10247 goto err_locked;
10248 }
10249
10250 if (!perf_event_validate_size(event)) {
10251 err = -E2BIG;
10252 goto err_locked;
10253 }
10254
10255 if (!task) {
10256 /*
10257 * Check if the @cpu we're creating an event for is online.
10258 *
10259 * We use the perf_cpu_context::ctx::mutex to serialize against
10260 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10261 */
10262 struct perf_cpu_context *cpuctx =
10263 container_of(ctx, struct perf_cpu_context, ctx);
10264
10265 if (!cpuctx->online) {
10266 err = -ENODEV;
10267 goto err_locked;
10268 }
10269 }
10270
10271
10272 /*
10273 * Must be under the same ctx::mutex as perf_install_in_context(),
10274 * because we need to serialize with concurrent event creation.
10275 */
10276 if (!exclusive_event_installable(event, ctx)) {
10277 /* exclusive and group stuff are assumed mutually exclusive */
10278 WARN_ON_ONCE(move_group);
10279
10280 err = -EBUSY;
10281 goto err_locked;
10282 }
10283
10284 WARN_ON_ONCE(ctx->parent_ctx);
10285
10286 /*
10287 * This is the point on no return; we cannot fail hereafter. This is
10288 * where we start modifying current state.
10289 */
10290
10291 if (move_group) {
10292 /*
10293 * See perf_event_ctx_lock() for comments on the details
10294 * of swizzling perf_event::ctx.
10295 */
10296 perf_remove_from_context(group_leader, 0);
10297 put_ctx(gctx);
10298
10299 list_for_each_entry(sibling, &group_leader->sibling_list,
10300 group_entry) {
10301 perf_remove_from_context(sibling, 0);
10302 put_ctx(gctx);
10303 }
10304
10305 /*
10306 * Wait for everybody to stop referencing the events through
10307 * the old lists, before installing it on new lists.
10308 */
10309 synchronize_rcu();
10310
10311 /*
10312 * Install the group siblings before the group leader.
10313 *
10314 * Because a group leader will try and install the entire group
10315 * (through the sibling list, which is still in-tact), we can
10316 * end up with siblings installed in the wrong context.
10317 *
10318 * By installing siblings first we NO-OP because they're not
10319 * reachable through the group lists.
10320 */
10321 list_for_each_entry(sibling, &group_leader->sibling_list,
10322 group_entry) {
10323 perf_event__state_init(sibling);
10324 perf_install_in_context(ctx, sibling, sibling->cpu);
10325 get_ctx(ctx);
10326 }
10327
10328 /*
10329 * Removing from the context ends up with disabled
10330 * event. What we want here is event in the initial
10331 * startup state, ready to be add into new context.
10332 */
10333 perf_event__state_init(group_leader);
10334 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10335 get_ctx(ctx);
10336 }
10337
10338 /*
10339 * Precalculate sample_data sizes; do while holding ctx::mutex such
10340 * that we're serialized against further additions and before
10341 * perf_install_in_context() which is the point the event is active and
10342 * can use these values.
10343 */
10344 perf_event__header_size(event);
10345 perf_event__id_header_size(event);
10346
10347 event->owner = current;
10348
10349 perf_install_in_context(ctx, event, event->cpu);
10350 perf_unpin_context(ctx);
10351
10352 if (move_group)
10353 perf_event_ctx_unlock(group_leader, gctx);
10354 mutex_unlock(&ctx->mutex);
10355
10356 if (task) {
10357 mutex_unlock(&task->signal->cred_guard_mutex);
10358 put_task_struct(task);
10359 }
10360
10361 mutex_lock(&current->perf_event_mutex);
10362 list_add_tail(&event->owner_entry, &current->perf_event_list);
10363 mutex_unlock(&current->perf_event_mutex);
10364
10365 /*
10366 * Drop the reference on the group_event after placing the
10367 * new event on the sibling_list. This ensures destruction
10368 * of the group leader will find the pointer to itself in
10369 * perf_group_detach().
10370 */
10371 fdput(group);
10372 fd_install(event_fd, event_file);
10373 return event_fd;
10374
10375 err_locked:
10376 if (move_group)
10377 perf_event_ctx_unlock(group_leader, gctx);
10378 mutex_unlock(&ctx->mutex);
10379 /* err_file: */
10380 fput(event_file);
10381 err_context:
10382 perf_unpin_context(ctx);
10383 put_ctx(ctx);
10384 err_alloc:
10385 /*
10386 * If event_file is set, the fput() above will have called ->release()
10387 * and that will take care of freeing the event.
10388 */
10389 if (!event_file)
10390 free_event(event);
10391 err_cred:
10392 if (task)
10393 mutex_unlock(&task->signal->cred_guard_mutex);
10394 err_task:
10395 if (task)
10396 put_task_struct(task);
10397 err_group_fd:
10398 fdput(group);
10399 err_fd:
10400 put_unused_fd(event_fd);
10401 return err;
10402 }
10403
10404 /**
10405 * perf_event_create_kernel_counter
10406 *
10407 * @attr: attributes of the counter to create
10408 * @cpu: cpu in which the counter is bound
10409 * @task: task to profile (NULL for percpu)
10410 */
10411 struct perf_event *
10412 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10413 struct task_struct *task,
10414 perf_overflow_handler_t overflow_handler,
10415 void *context)
10416 {
10417 struct perf_event_context *ctx;
10418 struct perf_event *event;
10419 int err;
10420
10421 /*
10422 * Get the target context (task or percpu):
10423 */
10424
10425 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10426 overflow_handler, context, -1);
10427 if (IS_ERR(event)) {
10428 err = PTR_ERR(event);
10429 goto err;
10430 }
10431
10432 /* Mark owner so we could distinguish it from user events. */
10433 event->owner = TASK_TOMBSTONE;
10434
10435 ctx = find_get_context(event->pmu, task, event);
10436 if (IS_ERR(ctx)) {
10437 err = PTR_ERR(ctx);
10438 goto err_free;
10439 }
10440
10441 WARN_ON_ONCE(ctx->parent_ctx);
10442 mutex_lock(&ctx->mutex);
10443 if (ctx->task == TASK_TOMBSTONE) {
10444 err = -ESRCH;
10445 goto err_unlock;
10446 }
10447
10448 if (!task) {
10449 /*
10450 * Check if the @cpu we're creating an event for is online.
10451 *
10452 * We use the perf_cpu_context::ctx::mutex to serialize against
10453 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10454 */
10455 struct perf_cpu_context *cpuctx =
10456 container_of(ctx, struct perf_cpu_context, ctx);
10457 if (!cpuctx->online) {
10458 err = -ENODEV;
10459 goto err_unlock;
10460 }
10461 }
10462
10463 if (!exclusive_event_installable(event, ctx)) {
10464 err = -EBUSY;
10465 goto err_unlock;
10466 }
10467
10468 perf_install_in_context(ctx, event, cpu);
10469 perf_unpin_context(ctx);
10470 mutex_unlock(&ctx->mutex);
10471
10472 return event;
10473
10474 err_unlock:
10475 mutex_unlock(&ctx->mutex);
10476 perf_unpin_context(ctx);
10477 put_ctx(ctx);
10478 err_free:
10479 free_event(event);
10480 err:
10481 return ERR_PTR(err);
10482 }
10483 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10484
10485 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10486 {
10487 struct perf_event_context *src_ctx;
10488 struct perf_event_context *dst_ctx;
10489 struct perf_event *event, *tmp;
10490 LIST_HEAD(events);
10491
10492 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10493 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10494
10495 /*
10496 * See perf_event_ctx_lock() for comments on the details
10497 * of swizzling perf_event::ctx.
10498 */
10499 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10500 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10501 event_entry) {
10502 perf_remove_from_context(event, 0);
10503 unaccount_event_cpu(event, src_cpu);
10504 put_ctx(src_ctx);
10505 list_add(&event->migrate_entry, &events);
10506 }
10507
10508 /*
10509 * Wait for the events to quiesce before re-instating them.
10510 */
10511 synchronize_rcu();
10512
10513 /*
10514 * Re-instate events in 2 passes.
10515 *
10516 * Skip over group leaders and only install siblings on this first
10517 * pass, siblings will not get enabled without a leader, however a
10518 * leader will enable its siblings, even if those are still on the old
10519 * context.
10520 */
10521 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10522 if (event->group_leader == event)
10523 continue;
10524
10525 list_del(&event->migrate_entry);
10526 if (event->state >= PERF_EVENT_STATE_OFF)
10527 event->state = PERF_EVENT_STATE_INACTIVE;
10528 account_event_cpu(event, dst_cpu);
10529 perf_install_in_context(dst_ctx, event, dst_cpu);
10530 get_ctx(dst_ctx);
10531 }
10532
10533 /*
10534 * Once all the siblings are setup properly, install the group leaders
10535 * to make it go.
10536 */
10537 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10538 list_del(&event->migrate_entry);
10539 if (event->state >= PERF_EVENT_STATE_OFF)
10540 event->state = PERF_EVENT_STATE_INACTIVE;
10541 account_event_cpu(event, dst_cpu);
10542 perf_install_in_context(dst_ctx, event, dst_cpu);
10543 get_ctx(dst_ctx);
10544 }
10545 mutex_unlock(&dst_ctx->mutex);
10546 mutex_unlock(&src_ctx->mutex);
10547 }
10548 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10549
10550 static void sync_child_event(struct perf_event *child_event,
10551 struct task_struct *child)
10552 {
10553 struct perf_event *parent_event = child_event->parent;
10554 u64 child_val;
10555
10556 if (child_event->attr.inherit_stat)
10557 perf_event_read_event(child_event, child);
10558
10559 child_val = perf_event_count(child_event);
10560
10561 /*
10562 * Add back the child's count to the parent's count:
10563 */
10564 atomic64_add(child_val, &parent_event->child_count);
10565 atomic64_add(child_event->total_time_enabled,
10566 &parent_event->child_total_time_enabled);
10567 atomic64_add(child_event->total_time_running,
10568 &parent_event->child_total_time_running);
10569 }
10570
10571 static void
10572 perf_event_exit_event(struct perf_event *child_event,
10573 struct perf_event_context *child_ctx,
10574 struct task_struct *child)
10575 {
10576 struct perf_event *parent_event = child_event->parent;
10577
10578 /*
10579 * Do not destroy the 'original' grouping; because of the context
10580 * switch optimization the original events could've ended up in a
10581 * random child task.
10582 *
10583 * If we were to destroy the original group, all group related
10584 * operations would cease to function properly after this random
10585 * child dies.
10586 *
10587 * Do destroy all inherited groups, we don't care about those
10588 * and being thorough is better.
10589 */
10590 raw_spin_lock_irq(&child_ctx->lock);
10591 WARN_ON_ONCE(child_ctx->is_active);
10592
10593 if (parent_event)
10594 perf_group_detach(child_event);
10595 list_del_event(child_event, child_ctx);
10596 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10597 raw_spin_unlock_irq(&child_ctx->lock);
10598
10599 /*
10600 * Parent events are governed by their filedesc, retain them.
10601 */
10602 if (!parent_event) {
10603 perf_event_wakeup(child_event);
10604 return;
10605 }
10606 /*
10607 * Child events can be cleaned up.
10608 */
10609
10610 sync_child_event(child_event, child);
10611
10612 /*
10613 * Remove this event from the parent's list
10614 */
10615 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10616 mutex_lock(&parent_event->child_mutex);
10617 list_del_init(&child_event->child_list);
10618 mutex_unlock(&parent_event->child_mutex);
10619
10620 /*
10621 * Kick perf_poll() for is_event_hup().
10622 */
10623 perf_event_wakeup(parent_event);
10624 free_event(child_event);
10625 put_event(parent_event);
10626 }
10627
10628 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10629 {
10630 struct perf_event_context *child_ctx, *clone_ctx = NULL;
10631 struct perf_event *child_event, *next;
10632
10633 WARN_ON_ONCE(child != current);
10634
10635 child_ctx = perf_pin_task_context(child, ctxn);
10636 if (!child_ctx)
10637 return;
10638
10639 /*
10640 * In order to reduce the amount of tricky in ctx tear-down, we hold
10641 * ctx::mutex over the entire thing. This serializes against almost
10642 * everything that wants to access the ctx.
10643 *
10644 * The exception is sys_perf_event_open() /
10645 * perf_event_create_kernel_count() which does find_get_context()
10646 * without ctx::mutex (it cannot because of the move_group double mutex
10647 * lock thing). See the comments in perf_install_in_context().
10648 */
10649 mutex_lock(&child_ctx->mutex);
10650
10651 /*
10652 * In a single ctx::lock section, de-schedule the events and detach the
10653 * context from the task such that we cannot ever get it scheduled back
10654 * in.
10655 */
10656 raw_spin_lock_irq(&child_ctx->lock);
10657 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10658
10659 /*
10660 * Now that the context is inactive, destroy the task <-> ctx relation
10661 * and mark the context dead.
10662 */
10663 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10664 put_ctx(child_ctx); /* cannot be last */
10665 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10666 put_task_struct(current); /* cannot be last */
10667
10668 clone_ctx = unclone_ctx(child_ctx);
10669 raw_spin_unlock_irq(&child_ctx->lock);
10670
10671 if (clone_ctx)
10672 put_ctx(clone_ctx);
10673
10674 /*
10675 * Report the task dead after unscheduling the events so that we
10676 * won't get any samples after PERF_RECORD_EXIT. We can however still
10677 * get a few PERF_RECORD_READ events.
10678 */
10679 perf_event_task(child, child_ctx, 0);
10680
10681 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10682 perf_event_exit_event(child_event, child_ctx, child);
10683
10684 mutex_unlock(&child_ctx->mutex);
10685
10686 put_ctx(child_ctx);
10687 }
10688
10689 /*
10690 * When a child task exits, feed back event values to parent events.
10691 *
10692 * Can be called with cred_guard_mutex held when called from
10693 * install_exec_creds().
10694 */
10695 void perf_event_exit_task(struct task_struct *child)
10696 {
10697 struct perf_event *event, *tmp;
10698 int ctxn;
10699
10700 mutex_lock(&child->perf_event_mutex);
10701 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10702 owner_entry) {
10703 list_del_init(&event->owner_entry);
10704
10705 /*
10706 * Ensure the list deletion is visible before we clear
10707 * the owner, closes a race against perf_release() where
10708 * we need to serialize on the owner->perf_event_mutex.
10709 */
10710 smp_store_release(&event->owner, NULL);
10711 }
10712 mutex_unlock(&child->perf_event_mutex);
10713
10714 for_each_task_context_nr(ctxn)
10715 perf_event_exit_task_context(child, ctxn);
10716
10717 /*
10718 * The perf_event_exit_task_context calls perf_event_task
10719 * with child's task_ctx, which generates EXIT events for
10720 * child contexts and sets child->perf_event_ctxp[] to NULL.
10721 * At this point we need to send EXIT events to cpu contexts.
10722 */
10723 perf_event_task(child, NULL, 0);
10724 }
10725
10726 static void perf_free_event(struct perf_event *event,
10727 struct perf_event_context *ctx)
10728 {
10729 struct perf_event *parent = event->parent;
10730
10731 if (WARN_ON_ONCE(!parent))
10732 return;
10733
10734 mutex_lock(&parent->child_mutex);
10735 list_del_init(&event->child_list);
10736 mutex_unlock(&parent->child_mutex);
10737
10738 put_event(parent);
10739
10740 raw_spin_lock_irq(&ctx->lock);
10741 perf_group_detach(event);
10742 list_del_event(event, ctx);
10743 raw_spin_unlock_irq(&ctx->lock);
10744 free_event(event);
10745 }
10746
10747 /*
10748 * Free an unexposed, unused context as created by inheritance by
10749 * perf_event_init_task below, used by fork() in case of fail.
10750 *
10751 * Not all locks are strictly required, but take them anyway to be nice and
10752 * help out with the lockdep assertions.
10753 */
10754 void perf_event_free_task(struct task_struct *task)
10755 {
10756 struct perf_event_context *ctx;
10757 struct perf_event *event, *tmp;
10758 int ctxn;
10759
10760 for_each_task_context_nr(ctxn) {
10761 ctx = task->perf_event_ctxp[ctxn];
10762 if (!ctx)
10763 continue;
10764
10765 mutex_lock(&ctx->mutex);
10766 raw_spin_lock_irq(&ctx->lock);
10767 /*
10768 * Destroy the task <-> ctx relation and mark the context dead.
10769 *
10770 * This is important because even though the task hasn't been
10771 * exposed yet the context has been (through child_list).
10772 */
10773 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10774 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10775 put_task_struct(task); /* cannot be last */
10776 raw_spin_unlock_irq(&ctx->lock);
10777
10778 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10779 perf_free_event(event, ctx);
10780
10781 mutex_unlock(&ctx->mutex);
10782 put_ctx(ctx);
10783 }
10784 }
10785
10786 void perf_event_delayed_put(struct task_struct *task)
10787 {
10788 int ctxn;
10789
10790 for_each_task_context_nr(ctxn)
10791 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10792 }
10793
10794 struct file *perf_event_get(unsigned int fd)
10795 {
10796 struct file *file;
10797
10798 file = fget_raw(fd);
10799 if (!file)
10800 return ERR_PTR(-EBADF);
10801
10802 if (file->f_op != &perf_fops) {
10803 fput(file);
10804 return ERR_PTR(-EBADF);
10805 }
10806
10807 return file;
10808 }
10809
10810 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10811 {
10812 if (!event)
10813 return ERR_PTR(-EINVAL);
10814
10815 return &event->attr;
10816 }
10817
10818 /*
10819 * Inherit a event from parent task to child task.
10820 *
10821 * Returns:
10822 * - valid pointer on success
10823 * - NULL for orphaned events
10824 * - IS_ERR() on error
10825 */
10826 static struct perf_event *
10827 inherit_event(struct perf_event *parent_event,
10828 struct task_struct *parent,
10829 struct perf_event_context *parent_ctx,
10830 struct task_struct *child,
10831 struct perf_event *group_leader,
10832 struct perf_event_context *child_ctx)
10833 {
10834 enum perf_event_state parent_state = parent_event->state;
10835 struct perf_event *child_event;
10836 unsigned long flags;
10837
10838 /*
10839 * Instead of creating recursive hierarchies of events,
10840 * we link inherited events back to the original parent,
10841 * which has a filp for sure, which we use as the reference
10842 * count:
10843 */
10844 if (parent_event->parent)
10845 parent_event = parent_event->parent;
10846
10847 child_event = perf_event_alloc(&parent_event->attr,
10848 parent_event->cpu,
10849 child,
10850 group_leader, parent_event,
10851 NULL, NULL, -1);
10852 if (IS_ERR(child_event))
10853 return child_event;
10854
10855 /*
10856 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10857 * must be under the same lock in order to serialize against
10858 * perf_event_release_kernel(), such that either we must observe
10859 * is_orphaned_event() or they will observe us on the child_list.
10860 */
10861 mutex_lock(&parent_event->child_mutex);
10862 if (is_orphaned_event(parent_event) ||
10863 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10864 mutex_unlock(&parent_event->child_mutex);
10865 free_event(child_event);
10866 return NULL;
10867 }
10868
10869 get_ctx(child_ctx);
10870
10871 /*
10872 * Make the child state follow the state of the parent event,
10873 * not its attr.disabled bit. We hold the parent's mutex,
10874 * so we won't race with perf_event_{en, dis}able_family.
10875 */
10876 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10877 child_event->state = PERF_EVENT_STATE_INACTIVE;
10878 else
10879 child_event->state = PERF_EVENT_STATE_OFF;
10880
10881 if (parent_event->attr.freq) {
10882 u64 sample_period = parent_event->hw.sample_period;
10883 struct hw_perf_event *hwc = &child_event->hw;
10884
10885 hwc->sample_period = sample_period;
10886 hwc->last_period = sample_period;
10887
10888 local64_set(&hwc->period_left, sample_period);
10889 }
10890
10891 child_event->ctx = child_ctx;
10892 child_event->overflow_handler = parent_event->overflow_handler;
10893 child_event->overflow_handler_context
10894 = parent_event->overflow_handler_context;
10895
10896 /*
10897 * Precalculate sample_data sizes
10898 */
10899 perf_event__header_size(child_event);
10900 perf_event__id_header_size(child_event);
10901
10902 /*
10903 * Link it up in the child's context:
10904 */
10905 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10906 add_event_to_ctx(child_event, child_ctx);
10907 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10908
10909 /*
10910 * Link this into the parent event's child list
10911 */
10912 list_add_tail(&child_event->child_list, &parent_event->child_list);
10913 mutex_unlock(&parent_event->child_mutex);
10914
10915 return child_event;
10916 }
10917
10918 /*
10919 * Inherits an event group.
10920 *
10921 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10922 * This matches with perf_event_release_kernel() removing all child events.
10923 *
10924 * Returns:
10925 * - 0 on success
10926 * - <0 on error
10927 */
10928 static int inherit_group(struct perf_event *parent_event,
10929 struct task_struct *parent,
10930 struct perf_event_context *parent_ctx,
10931 struct task_struct *child,
10932 struct perf_event_context *child_ctx)
10933 {
10934 struct perf_event *leader;
10935 struct perf_event *sub;
10936 struct perf_event *child_ctr;
10937
10938 leader = inherit_event(parent_event, parent, parent_ctx,
10939 child, NULL, child_ctx);
10940 if (IS_ERR(leader))
10941 return PTR_ERR(leader);
10942 /*
10943 * @leader can be NULL here because of is_orphaned_event(). In this
10944 * case inherit_event() will create individual events, similar to what
10945 * perf_group_detach() would do anyway.
10946 */
10947 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10948 child_ctr = inherit_event(sub, parent, parent_ctx,
10949 child, leader, child_ctx);
10950 if (IS_ERR(child_ctr))
10951 return PTR_ERR(child_ctr);
10952 }
10953 return 0;
10954 }
10955
10956 /*
10957 * Creates the child task context and tries to inherit the event-group.
10958 *
10959 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10960 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10961 * consistent with perf_event_release_kernel() removing all child events.
10962 *
10963 * Returns:
10964 * - 0 on success
10965 * - <0 on error
10966 */
10967 static int
10968 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10969 struct perf_event_context *parent_ctx,
10970 struct task_struct *child, int ctxn,
10971 int *inherited_all)
10972 {
10973 int ret;
10974 struct perf_event_context *child_ctx;
10975
10976 if (!event->attr.inherit) {
10977 *inherited_all = 0;
10978 return 0;
10979 }
10980
10981 child_ctx = child->perf_event_ctxp[ctxn];
10982 if (!child_ctx) {
10983 /*
10984 * This is executed from the parent task context, so
10985 * inherit events that have been marked for cloning.
10986 * First allocate and initialize a context for the
10987 * child.
10988 */
10989 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10990 if (!child_ctx)
10991 return -ENOMEM;
10992
10993 child->perf_event_ctxp[ctxn] = child_ctx;
10994 }
10995
10996 ret = inherit_group(event, parent, parent_ctx,
10997 child, child_ctx);
10998
10999 if (ret)
11000 *inherited_all = 0;
11001
11002 return ret;
11003 }
11004
11005 /*
11006 * Initialize the perf_event context in task_struct
11007 */
11008 static int perf_event_init_context(struct task_struct *child, int ctxn)
11009 {
11010 struct perf_event_context *child_ctx, *parent_ctx;
11011 struct perf_event_context *cloned_ctx;
11012 struct perf_event *event;
11013 struct task_struct *parent = current;
11014 int inherited_all = 1;
11015 unsigned long flags;
11016 int ret = 0;
11017
11018 if (likely(!parent->perf_event_ctxp[ctxn]))
11019 return 0;
11020
11021 /*
11022 * If the parent's context is a clone, pin it so it won't get
11023 * swapped under us.
11024 */
11025 parent_ctx = perf_pin_task_context(parent, ctxn);
11026 if (!parent_ctx)
11027 return 0;
11028
11029 /*
11030 * No need to check if parent_ctx != NULL here; since we saw
11031 * it non-NULL earlier, the only reason for it to become NULL
11032 * is if we exit, and since we're currently in the middle of
11033 * a fork we can't be exiting at the same time.
11034 */
11035
11036 /*
11037 * Lock the parent list. No need to lock the child - not PID
11038 * hashed yet and not running, so nobody can access it.
11039 */
11040 mutex_lock(&parent_ctx->mutex);
11041
11042 /*
11043 * We dont have to disable NMIs - we are only looking at
11044 * the list, not manipulating it:
11045 */
11046 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
11047 ret = inherit_task_group(event, parent, parent_ctx,
11048 child, ctxn, &inherited_all);
11049 if (ret)
11050 goto out_unlock;
11051 }
11052
11053 /*
11054 * We can't hold ctx->lock when iterating the ->flexible_group list due
11055 * to allocations, but we need to prevent rotation because
11056 * rotate_ctx() will change the list from interrupt context.
11057 */
11058 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11059 parent_ctx->rotate_disable = 1;
11060 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11061
11062 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
11063 ret = inherit_task_group(event, parent, parent_ctx,
11064 child, ctxn, &inherited_all);
11065 if (ret)
11066 goto out_unlock;
11067 }
11068
11069 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11070 parent_ctx->rotate_disable = 0;
11071
11072 child_ctx = child->perf_event_ctxp[ctxn];
11073
11074 if (child_ctx && inherited_all) {
11075 /*
11076 * Mark the child context as a clone of the parent
11077 * context, or of whatever the parent is a clone of.
11078 *
11079 * Note that if the parent is a clone, the holding of
11080 * parent_ctx->lock avoids it from being uncloned.
11081 */
11082 cloned_ctx = parent_ctx->parent_ctx;
11083 if (cloned_ctx) {
11084 child_ctx->parent_ctx = cloned_ctx;
11085 child_ctx->parent_gen = parent_ctx->parent_gen;
11086 } else {
11087 child_ctx->parent_ctx = parent_ctx;
11088 child_ctx->parent_gen = parent_ctx->generation;
11089 }
11090 get_ctx(child_ctx->parent_ctx);
11091 }
11092
11093 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11094 out_unlock:
11095 mutex_unlock(&parent_ctx->mutex);
11096
11097 perf_unpin_context(parent_ctx);
11098 put_ctx(parent_ctx);
11099
11100 return ret;
11101 }
11102
11103 /*
11104 * Initialize the perf_event context in task_struct
11105 */
11106 int perf_event_init_task(struct task_struct *child)
11107 {
11108 int ctxn, ret;
11109
11110 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11111 mutex_init(&child->perf_event_mutex);
11112 INIT_LIST_HEAD(&child->perf_event_list);
11113
11114 for_each_task_context_nr(ctxn) {
11115 ret = perf_event_init_context(child, ctxn);
11116 if (ret) {
11117 perf_event_free_task(child);
11118 return ret;
11119 }
11120 }
11121
11122 return 0;
11123 }
11124
11125 static void __init perf_event_init_all_cpus(void)
11126 {
11127 struct swevent_htable *swhash;
11128 int cpu;
11129
11130 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11131
11132 for_each_possible_cpu(cpu) {
11133 swhash = &per_cpu(swevent_htable, cpu);
11134 mutex_init(&swhash->hlist_mutex);
11135 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11136
11137 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11138 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11139
11140 #ifdef CONFIG_CGROUP_PERF
11141 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11142 #endif
11143 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11144 }
11145 }
11146
11147 void perf_swevent_init_cpu(unsigned int cpu)
11148 {
11149 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11150
11151 mutex_lock(&swhash->hlist_mutex);
11152 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11153 struct swevent_hlist *hlist;
11154
11155 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11156 WARN_ON(!hlist);
11157 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11158 }
11159 mutex_unlock(&swhash->hlist_mutex);
11160 }
11161
11162 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11163 static void __perf_event_exit_context(void *__info)
11164 {
11165 struct perf_event_context *ctx = __info;
11166 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11167 struct perf_event *event;
11168
11169 raw_spin_lock(&ctx->lock);
11170 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11171 list_for_each_entry(event, &ctx->event_list, event_entry)
11172 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11173 raw_spin_unlock(&ctx->lock);
11174 }
11175
11176 static void perf_event_exit_cpu_context(int cpu)
11177 {
11178 struct perf_cpu_context *cpuctx;
11179 struct perf_event_context *ctx;
11180 struct pmu *pmu;
11181
11182 mutex_lock(&pmus_lock);
11183 list_for_each_entry(pmu, &pmus, entry) {
11184 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11185 ctx = &cpuctx->ctx;
11186
11187 mutex_lock(&ctx->mutex);
11188 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11189 cpuctx->online = 0;
11190 mutex_unlock(&ctx->mutex);
11191 }
11192 cpumask_clear_cpu(cpu, perf_online_mask);
11193 mutex_unlock(&pmus_lock);
11194 }
11195 #else
11196
11197 static void perf_event_exit_cpu_context(int cpu) { }
11198
11199 #endif
11200
11201 int perf_event_init_cpu(unsigned int cpu)
11202 {
11203 struct perf_cpu_context *cpuctx;
11204 struct perf_event_context *ctx;
11205 struct pmu *pmu;
11206
11207 perf_swevent_init_cpu(cpu);
11208
11209 mutex_lock(&pmus_lock);
11210 cpumask_set_cpu(cpu, perf_online_mask);
11211 list_for_each_entry(pmu, &pmus, entry) {
11212 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11213 ctx = &cpuctx->ctx;
11214
11215 mutex_lock(&ctx->mutex);
11216 cpuctx->online = 1;
11217 mutex_unlock(&ctx->mutex);
11218 }
11219 mutex_unlock(&pmus_lock);
11220
11221 return 0;
11222 }
11223
11224 int perf_event_exit_cpu(unsigned int cpu)
11225 {
11226 perf_event_exit_cpu_context(cpu);
11227 return 0;
11228 }
11229
11230 static int
11231 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11232 {
11233 int cpu;
11234
11235 for_each_online_cpu(cpu)
11236 perf_event_exit_cpu(cpu);
11237
11238 return NOTIFY_OK;
11239 }
11240
11241 /*
11242 * Run the perf reboot notifier at the very last possible moment so that
11243 * the generic watchdog code runs as long as possible.
11244 */
11245 static struct notifier_block perf_reboot_notifier = {
11246 .notifier_call = perf_reboot,
11247 .priority = INT_MIN,
11248 };
11249
11250 void __init perf_event_init(void)
11251 {
11252 int ret;
11253
11254 idr_init(&pmu_idr);
11255
11256 perf_event_init_all_cpus();
11257 init_srcu_struct(&pmus_srcu);
11258 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11259 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11260 perf_pmu_register(&perf_task_clock, NULL, -1);
11261 perf_tp_register();
11262 perf_event_init_cpu(smp_processor_id());
11263 register_reboot_notifier(&perf_reboot_notifier);
11264
11265 ret = init_hw_breakpoint();
11266 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11267
11268 /*
11269 * Build time assertion that we keep the data_head at the intended
11270 * location. IOW, validation we got the __reserved[] size right.
11271 */
11272 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11273 != 1024);
11274 }
11275
11276 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11277 char *page)
11278 {
11279 struct perf_pmu_events_attr *pmu_attr =
11280 container_of(attr, struct perf_pmu_events_attr, attr);
11281
11282 if (pmu_attr->event_str)
11283 return sprintf(page, "%s\n", pmu_attr->event_str);
11284
11285 return 0;
11286 }
11287 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11288
11289 static int __init perf_event_sysfs_init(void)
11290 {
11291 struct pmu *pmu;
11292 int ret;
11293
11294 mutex_lock(&pmus_lock);
11295
11296 ret = bus_register(&pmu_bus);
11297 if (ret)
11298 goto unlock;
11299
11300 list_for_each_entry(pmu, &pmus, entry) {
11301 if (!pmu->name || pmu->type < 0)
11302 continue;
11303
11304 ret = pmu_dev_alloc(pmu);
11305 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11306 }
11307 pmu_bus_running = 1;
11308 ret = 0;
11309
11310 unlock:
11311 mutex_unlock(&pmus_lock);
11312
11313 return ret;
11314 }
11315 device_initcall(perf_event_sysfs_init);
11316
11317 #ifdef CONFIG_CGROUP_PERF
11318 static struct cgroup_subsys_state *
11319 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11320 {
11321 struct perf_cgroup *jc;
11322
11323 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11324 if (!jc)
11325 return ERR_PTR(-ENOMEM);
11326
11327 jc->info = alloc_percpu(struct perf_cgroup_info);
11328 if (!jc->info) {
11329 kfree(jc);
11330 return ERR_PTR(-ENOMEM);
11331 }
11332
11333 return &jc->css;
11334 }
11335
11336 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11337 {
11338 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11339
11340 free_percpu(jc->info);
11341 kfree(jc);
11342 }
11343
11344 static int __perf_cgroup_move(void *info)
11345 {
11346 struct task_struct *task = info;
11347 rcu_read_lock();
11348 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11349 rcu_read_unlock();
11350 return 0;
11351 }
11352
11353 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11354 {
11355 struct task_struct *task;
11356 struct cgroup_subsys_state *css;
11357
11358 cgroup_taskset_for_each(task, css, tset)
11359 task_function_call(task, __perf_cgroup_move, task);
11360 }
11361
11362 struct cgroup_subsys perf_event_cgrp_subsys = {
11363 .css_alloc = perf_cgroup_css_alloc,
11364 .css_free = perf_cgroup_css_free,
11365 .attach = perf_cgroup_attach,
11366 /*
11367 * Implicitly enable on dfl hierarchy so that perf events can
11368 * always be filtered by cgroup2 path as long as perf_event
11369 * controller is not mounted on a legacy hierarchy.
11370 */
11371 .implicit_on_dfl = true,
11372 .threaded = true,
11373 };
11374 #endif /* CONFIG_CGROUP_PERF */