]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/events/core.c
perf/core: Fix another perf,trace,cpuhp lock inversion
[mirror_ubuntu-bionic-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61 struct task_struct *p;
62 remote_function_f func;
63 void *info;
64 int ret;
65 };
66
67 static void remote_function(void *data)
68 {
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 struct remote_function_call data = {
107 .p = p,
108 .func = func,
109 .info = info,
110 .ret = -EAGAIN,
111 };
112 int ret;
113
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
119
120 return ret;
121 }
122
123 /**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 struct remote_function_call data = {
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
154 {
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162 {
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197 struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201 };
202
203 static int event_function(void *info)
204 {
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
207 struct perf_event_context *ctx = event->ctx;
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 int ret = 0;
211
212 lockdep_assert_irqs_disabled();
213
214 perf_ctx_lock(cpuctx, task_ctx);
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
218 */
219 if (ctx->task) {
220 if (ctx->task != current) {
221 ret = -ESRCH;
222 goto unlock;
223 }
224
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 }
241
242 efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 perf_ctx_unlock(cpuctx, task_ctx);
245
246 return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 struct perf_event_context *ctx = event->ctx;
252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
258
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
267
268 if (!task) {
269 cpu_function_call(event->cpu, event_function, &efs);
270 return;
271 }
272
273 if (task == TASK_TOMBSTONE)
274 return;
275
276 again:
277 if (!task_function_call(task, event_function, &efs))
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
289 }
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
295 raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 lockdep_assert_irqs_disabled();
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342 unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
350
351 /*
352 * branch priv levels that need permission checks
353 */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
361 EVENT_TIME = 0x4,
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395 * perf event paranoia level:
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
398 * 1 - disallow cpu events for unpriv
399 * 2 - disallow kernel profiling for unpriv
400 */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407 * max perf event sample rate
408 */
409 #define DEFAULT_MAX_SAMPLE_RATE 100000
410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438 {
439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441 if (ret || !write)
442 return ret;
443
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463 {
464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466 if (ret || !write)
467 return ret;
468
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
477
478 return 0;
479 }
480
481 /*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 printk_ratelimited(KERN_INFO
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
510
511 if (max_len == 0)
512 return;
513
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
519
520 /*
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 * from having to maintain a count.
524 */
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
527 return;
528
529 __report_avg = avg_len;
530 __report_allowed = max_len;
531
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
541
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548 if (!irq_work_queue(&perf_duration_work)) {
549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 "kernel.perf_event_max_sample_rate to %d\n",
551 __report_avg, __report_allowed,
552 sysctl_perf_event_sample_rate);
553 }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void) { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572 return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577 return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 return event->clock();
583 }
584
585 /*
586 * State based event timekeeping...
587 *
588 * The basic idea is to use event->state to determine which (if any) time
589 * fields to increment with the current delta. This means we only need to
590 * update timestamps when we change state or when they are explicitly requested
591 * (read).
592 *
593 * Event groups make things a little more complicated, but not terribly so. The
594 * rules for a group are that if the group leader is OFF the entire group is
595 * OFF, irrespecive of what the group member states are. This results in
596 * __perf_effective_state().
597 *
598 * A futher ramification is that when a group leader flips between OFF and
599 * !OFF, we need to update all group member times.
600 *
601 *
602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603 * need to make sure the relevant context time is updated before we try and
604 * update our timestamps.
605 */
606
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610 struct perf_event *leader = event->group_leader;
611
612 if (leader->state <= PERF_EVENT_STATE_OFF)
613 return leader->state;
614
615 return event->state;
616 }
617
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621 enum perf_event_state state = __perf_effective_state(event);
622 u64 delta = now - event->tstamp;
623
624 *enabled = event->total_time_enabled;
625 if (state >= PERF_EVENT_STATE_INACTIVE)
626 *enabled += delta;
627
628 *running = event->total_time_running;
629 if (state >= PERF_EVENT_STATE_ACTIVE)
630 *running += delta;
631 }
632
633 static void perf_event_update_time(struct perf_event *event)
634 {
635 u64 now = perf_event_time(event);
636
637 __perf_update_times(event, now, &event->total_time_enabled,
638 &event->total_time_running);
639 event->tstamp = now;
640 }
641
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644 struct perf_event *sibling;
645
646 list_for_each_entry(sibling, &leader->sibling_list, group_entry)
647 perf_event_update_time(sibling);
648 }
649
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653 if (event->state == state)
654 return;
655
656 perf_event_update_time(event);
657 /*
658 * If a group leader gets enabled/disabled all its siblings
659 * are affected too.
660 */
661 if ((event->state < 0) ^ (state < 0))
662 perf_event_update_sibling_time(event);
663
664 WRITE_ONCE(event->state, state);
665 }
666
667 #ifdef CONFIG_CGROUP_PERF
668
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672 struct perf_event_context *ctx = event->ctx;
673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
675 /* @event doesn't care about cgroup */
676 if (!event->cgrp)
677 return true;
678
679 /* wants specific cgroup scope but @cpuctx isn't associated with any */
680 if (!cpuctx->cgrp)
681 return false;
682
683 /*
684 * Cgroup scoping is recursive. An event enabled for a cgroup is
685 * also enabled for all its descendant cgroups. If @cpuctx's
686 * cgroup is a descendant of @event's (the test covers identity
687 * case), it's a match.
688 */
689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 event->cgrp->css.cgroup);
691 }
692
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695 css_put(&event->cgrp->css);
696 event->cgrp = NULL;
697 }
698
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701 return event->cgrp != NULL;
702 }
703
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706 struct perf_cgroup_info *t;
707
708 t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 return t->time;
710 }
711
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714 struct perf_cgroup_info *info;
715 u64 now;
716
717 now = perf_clock();
718
719 info = this_cpu_ptr(cgrp->info);
720
721 info->time += now - info->timestamp;
722 info->timestamp = now;
723 }
724
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
728 if (cgrp_out)
729 __update_cgrp_time(cgrp_out);
730 }
731
732 static inline void update_cgrp_time_from_event(struct perf_event *event)
733 {
734 struct perf_cgroup *cgrp;
735
736 /*
737 * ensure we access cgroup data only when needed and
738 * when we know the cgroup is pinned (css_get)
739 */
740 if (!is_cgroup_event(event))
741 return;
742
743 cgrp = perf_cgroup_from_task(current, event->ctx);
744 /*
745 * Do not update time when cgroup is not active
746 */
747 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
748 __update_cgrp_time(event->cgrp);
749 }
750
751 static inline void
752 perf_cgroup_set_timestamp(struct task_struct *task,
753 struct perf_event_context *ctx)
754 {
755 struct perf_cgroup *cgrp;
756 struct perf_cgroup_info *info;
757
758 /*
759 * ctx->lock held by caller
760 * ensure we do not access cgroup data
761 * unless we have the cgroup pinned (css_get)
762 */
763 if (!task || !ctx->nr_cgroups)
764 return;
765
766 cgrp = perf_cgroup_from_task(task, ctx);
767 info = this_cpu_ptr(cgrp->info);
768 info->timestamp = ctx->timestamp;
769 }
770
771 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
772
773 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
774 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
775
776 /*
777 * reschedule events based on the cgroup constraint of task.
778 *
779 * mode SWOUT : schedule out everything
780 * mode SWIN : schedule in based on cgroup for next
781 */
782 static void perf_cgroup_switch(struct task_struct *task, int mode)
783 {
784 struct perf_cpu_context *cpuctx;
785 struct list_head *list;
786 unsigned long flags;
787
788 /*
789 * Disable interrupts and preemption to avoid this CPU's
790 * cgrp_cpuctx_entry to change under us.
791 */
792 local_irq_save(flags);
793
794 list = this_cpu_ptr(&cgrp_cpuctx_list);
795 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
796 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
797
798 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
799 perf_pmu_disable(cpuctx->ctx.pmu);
800
801 if (mode & PERF_CGROUP_SWOUT) {
802 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
803 /*
804 * must not be done before ctxswout due
805 * to event_filter_match() in event_sched_out()
806 */
807 cpuctx->cgrp = NULL;
808 }
809
810 if (mode & PERF_CGROUP_SWIN) {
811 WARN_ON_ONCE(cpuctx->cgrp);
812 /*
813 * set cgrp before ctxsw in to allow
814 * event_filter_match() to not have to pass
815 * task around
816 * we pass the cpuctx->ctx to perf_cgroup_from_task()
817 * because cgorup events are only per-cpu
818 */
819 cpuctx->cgrp = perf_cgroup_from_task(task,
820 &cpuctx->ctx);
821 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
822 }
823 perf_pmu_enable(cpuctx->ctx.pmu);
824 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
825 }
826
827 local_irq_restore(flags);
828 }
829
830 static inline void perf_cgroup_sched_out(struct task_struct *task,
831 struct task_struct *next)
832 {
833 struct perf_cgroup *cgrp1;
834 struct perf_cgroup *cgrp2 = NULL;
835
836 rcu_read_lock();
837 /*
838 * we come here when we know perf_cgroup_events > 0
839 * we do not need to pass the ctx here because we know
840 * we are holding the rcu lock
841 */
842 cgrp1 = perf_cgroup_from_task(task, NULL);
843 cgrp2 = perf_cgroup_from_task(next, NULL);
844
845 /*
846 * only schedule out current cgroup events if we know
847 * that we are switching to a different cgroup. Otherwise,
848 * do no touch the cgroup events.
849 */
850 if (cgrp1 != cgrp2)
851 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
852
853 rcu_read_unlock();
854 }
855
856 static inline void perf_cgroup_sched_in(struct task_struct *prev,
857 struct task_struct *task)
858 {
859 struct perf_cgroup *cgrp1;
860 struct perf_cgroup *cgrp2 = NULL;
861
862 rcu_read_lock();
863 /*
864 * we come here when we know perf_cgroup_events > 0
865 * we do not need to pass the ctx here because we know
866 * we are holding the rcu lock
867 */
868 cgrp1 = perf_cgroup_from_task(task, NULL);
869 cgrp2 = perf_cgroup_from_task(prev, NULL);
870
871 /*
872 * only need to schedule in cgroup events if we are changing
873 * cgroup during ctxsw. Cgroup events were not scheduled
874 * out of ctxsw out if that was not the case.
875 */
876 if (cgrp1 != cgrp2)
877 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
878
879 rcu_read_unlock();
880 }
881
882 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
883 struct perf_event_attr *attr,
884 struct perf_event *group_leader)
885 {
886 struct perf_cgroup *cgrp;
887 struct cgroup_subsys_state *css;
888 struct fd f = fdget(fd);
889 int ret = 0;
890
891 if (!f.file)
892 return -EBADF;
893
894 css = css_tryget_online_from_dir(f.file->f_path.dentry,
895 &perf_event_cgrp_subsys);
896 if (IS_ERR(css)) {
897 ret = PTR_ERR(css);
898 goto out;
899 }
900
901 cgrp = container_of(css, struct perf_cgroup, css);
902 event->cgrp = cgrp;
903
904 /*
905 * all events in a group must monitor
906 * the same cgroup because a task belongs
907 * to only one perf cgroup at a time
908 */
909 if (group_leader && group_leader->cgrp != cgrp) {
910 perf_detach_cgroup(event);
911 ret = -EINVAL;
912 }
913 out:
914 fdput(f);
915 return ret;
916 }
917
918 static inline void
919 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
920 {
921 struct perf_cgroup_info *t;
922 t = per_cpu_ptr(event->cgrp->info, event->cpu);
923 event->shadow_ctx_time = now - t->timestamp;
924 }
925
926 /*
927 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
928 * cleared when last cgroup event is removed.
929 */
930 static inline void
931 list_update_cgroup_event(struct perf_event *event,
932 struct perf_event_context *ctx, bool add)
933 {
934 struct perf_cpu_context *cpuctx;
935 struct list_head *cpuctx_entry;
936
937 if (!is_cgroup_event(event))
938 return;
939
940 if (add && ctx->nr_cgroups++)
941 return;
942 else if (!add && --ctx->nr_cgroups)
943 return;
944 /*
945 * Because cgroup events are always per-cpu events,
946 * this will always be called from the right CPU.
947 */
948 cpuctx = __get_cpu_context(ctx);
949 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
950 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
951 if (add) {
952 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
953
954 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
955 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
956 cpuctx->cgrp = cgrp;
957 } else {
958 list_del(cpuctx_entry);
959 cpuctx->cgrp = NULL;
960 }
961 }
962
963 #else /* !CONFIG_CGROUP_PERF */
964
965 static inline bool
966 perf_cgroup_match(struct perf_event *event)
967 {
968 return true;
969 }
970
971 static inline void perf_detach_cgroup(struct perf_event *event)
972 {}
973
974 static inline int is_cgroup_event(struct perf_event *event)
975 {
976 return 0;
977 }
978
979 static inline void update_cgrp_time_from_event(struct perf_event *event)
980 {
981 }
982
983 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
984 {
985 }
986
987 static inline void perf_cgroup_sched_out(struct task_struct *task,
988 struct task_struct *next)
989 {
990 }
991
992 static inline void perf_cgroup_sched_in(struct task_struct *prev,
993 struct task_struct *task)
994 {
995 }
996
997 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
998 struct perf_event_attr *attr,
999 struct perf_event *group_leader)
1000 {
1001 return -EINVAL;
1002 }
1003
1004 static inline void
1005 perf_cgroup_set_timestamp(struct task_struct *task,
1006 struct perf_event_context *ctx)
1007 {
1008 }
1009
1010 void
1011 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1012 {
1013 }
1014
1015 static inline void
1016 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1017 {
1018 }
1019
1020 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1021 {
1022 return 0;
1023 }
1024
1025 static inline void
1026 list_update_cgroup_event(struct perf_event *event,
1027 struct perf_event_context *ctx, bool add)
1028 {
1029 }
1030
1031 #endif
1032
1033 /*
1034 * set default to be dependent on timer tick just
1035 * like original code
1036 */
1037 #define PERF_CPU_HRTIMER (1000 / HZ)
1038 /*
1039 * function must be called with interrupts disabled
1040 */
1041 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1042 {
1043 struct perf_cpu_context *cpuctx;
1044 int rotations = 0;
1045
1046 lockdep_assert_irqs_disabled();
1047
1048 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1049 rotations = perf_rotate_context(cpuctx);
1050
1051 raw_spin_lock(&cpuctx->hrtimer_lock);
1052 if (rotations)
1053 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1054 else
1055 cpuctx->hrtimer_active = 0;
1056 raw_spin_unlock(&cpuctx->hrtimer_lock);
1057
1058 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1059 }
1060
1061 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1062 {
1063 struct hrtimer *timer = &cpuctx->hrtimer;
1064 struct pmu *pmu = cpuctx->ctx.pmu;
1065 u64 interval;
1066
1067 /* no multiplexing needed for SW PMU */
1068 if (pmu->task_ctx_nr == perf_sw_context)
1069 return;
1070
1071 /*
1072 * check default is sane, if not set then force to
1073 * default interval (1/tick)
1074 */
1075 interval = pmu->hrtimer_interval_ms;
1076 if (interval < 1)
1077 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1078
1079 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1080
1081 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1082 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1083 timer->function = perf_mux_hrtimer_handler;
1084 }
1085
1086 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1087 {
1088 struct hrtimer *timer = &cpuctx->hrtimer;
1089 struct pmu *pmu = cpuctx->ctx.pmu;
1090 unsigned long flags;
1091
1092 /* not for SW PMU */
1093 if (pmu->task_ctx_nr == perf_sw_context)
1094 return 0;
1095
1096 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1097 if (!cpuctx->hrtimer_active) {
1098 cpuctx->hrtimer_active = 1;
1099 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1100 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1101 }
1102 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1103
1104 return 0;
1105 }
1106
1107 void perf_pmu_disable(struct pmu *pmu)
1108 {
1109 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1110 if (!(*count)++)
1111 pmu->pmu_disable(pmu);
1112 }
1113
1114 void perf_pmu_enable(struct pmu *pmu)
1115 {
1116 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1117 if (!--(*count))
1118 pmu->pmu_enable(pmu);
1119 }
1120
1121 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1122
1123 /*
1124 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1125 * perf_event_task_tick() are fully serialized because they're strictly cpu
1126 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1127 * disabled, while perf_event_task_tick is called from IRQ context.
1128 */
1129 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1130 {
1131 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1132
1133 lockdep_assert_irqs_disabled();
1134
1135 WARN_ON(!list_empty(&ctx->active_ctx_list));
1136
1137 list_add(&ctx->active_ctx_list, head);
1138 }
1139
1140 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1141 {
1142 lockdep_assert_irqs_disabled();
1143
1144 WARN_ON(list_empty(&ctx->active_ctx_list));
1145
1146 list_del_init(&ctx->active_ctx_list);
1147 }
1148
1149 static void get_ctx(struct perf_event_context *ctx)
1150 {
1151 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1152 }
1153
1154 static void free_ctx(struct rcu_head *head)
1155 {
1156 struct perf_event_context *ctx;
1157
1158 ctx = container_of(head, struct perf_event_context, rcu_head);
1159 kfree(ctx->task_ctx_data);
1160 kfree(ctx);
1161 }
1162
1163 static void put_ctx(struct perf_event_context *ctx)
1164 {
1165 if (atomic_dec_and_test(&ctx->refcount)) {
1166 if (ctx->parent_ctx)
1167 put_ctx(ctx->parent_ctx);
1168 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1169 put_task_struct(ctx->task);
1170 call_rcu(&ctx->rcu_head, free_ctx);
1171 }
1172 }
1173
1174 /*
1175 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1176 * perf_pmu_migrate_context() we need some magic.
1177 *
1178 * Those places that change perf_event::ctx will hold both
1179 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1180 *
1181 * Lock ordering is by mutex address. There are two other sites where
1182 * perf_event_context::mutex nests and those are:
1183 *
1184 * - perf_event_exit_task_context() [ child , 0 ]
1185 * perf_event_exit_event()
1186 * put_event() [ parent, 1 ]
1187 *
1188 * - perf_event_init_context() [ parent, 0 ]
1189 * inherit_task_group()
1190 * inherit_group()
1191 * inherit_event()
1192 * perf_event_alloc()
1193 * perf_init_event()
1194 * perf_try_init_event() [ child , 1 ]
1195 *
1196 * While it appears there is an obvious deadlock here -- the parent and child
1197 * nesting levels are inverted between the two. This is in fact safe because
1198 * life-time rules separate them. That is an exiting task cannot fork, and a
1199 * spawning task cannot (yet) exit.
1200 *
1201 * But remember that that these are parent<->child context relations, and
1202 * migration does not affect children, therefore these two orderings should not
1203 * interact.
1204 *
1205 * The change in perf_event::ctx does not affect children (as claimed above)
1206 * because the sys_perf_event_open() case will install a new event and break
1207 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1208 * concerned with cpuctx and that doesn't have children.
1209 *
1210 * The places that change perf_event::ctx will issue:
1211 *
1212 * perf_remove_from_context();
1213 * synchronize_rcu();
1214 * perf_install_in_context();
1215 *
1216 * to affect the change. The remove_from_context() + synchronize_rcu() should
1217 * quiesce the event, after which we can install it in the new location. This
1218 * means that only external vectors (perf_fops, prctl) can perturb the event
1219 * while in transit. Therefore all such accessors should also acquire
1220 * perf_event_context::mutex to serialize against this.
1221 *
1222 * However; because event->ctx can change while we're waiting to acquire
1223 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1224 * function.
1225 *
1226 * Lock order:
1227 * cred_guard_mutex
1228 * task_struct::perf_event_mutex
1229 * perf_event_context::mutex
1230 * perf_event::child_mutex;
1231 * perf_event_context::lock
1232 * perf_event::mmap_mutex
1233 * mmap_sem
1234 *
1235 * cpu_hotplug_lock
1236 * pmus_lock
1237 * cpuctx->mutex / perf_event_context::mutex
1238 */
1239 static struct perf_event_context *
1240 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1241 {
1242 struct perf_event_context *ctx;
1243
1244 again:
1245 rcu_read_lock();
1246 ctx = READ_ONCE(event->ctx);
1247 if (!atomic_inc_not_zero(&ctx->refcount)) {
1248 rcu_read_unlock();
1249 goto again;
1250 }
1251 rcu_read_unlock();
1252
1253 mutex_lock_nested(&ctx->mutex, nesting);
1254 if (event->ctx != ctx) {
1255 mutex_unlock(&ctx->mutex);
1256 put_ctx(ctx);
1257 goto again;
1258 }
1259
1260 return ctx;
1261 }
1262
1263 static inline struct perf_event_context *
1264 perf_event_ctx_lock(struct perf_event *event)
1265 {
1266 return perf_event_ctx_lock_nested(event, 0);
1267 }
1268
1269 static void perf_event_ctx_unlock(struct perf_event *event,
1270 struct perf_event_context *ctx)
1271 {
1272 mutex_unlock(&ctx->mutex);
1273 put_ctx(ctx);
1274 }
1275
1276 /*
1277 * This must be done under the ctx->lock, such as to serialize against
1278 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1279 * calling scheduler related locks and ctx->lock nests inside those.
1280 */
1281 static __must_check struct perf_event_context *
1282 unclone_ctx(struct perf_event_context *ctx)
1283 {
1284 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1285
1286 lockdep_assert_held(&ctx->lock);
1287
1288 if (parent_ctx)
1289 ctx->parent_ctx = NULL;
1290 ctx->generation++;
1291
1292 return parent_ctx;
1293 }
1294
1295 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1296 enum pid_type type)
1297 {
1298 u32 nr;
1299 /*
1300 * only top level events have the pid namespace they were created in
1301 */
1302 if (event->parent)
1303 event = event->parent;
1304
1305 nr = __task_pid_nr_ns(p, type, event->ns);
1306 /* avoid -1 if it is idle thread or runs in another ns */
1307 if (!nr && !pid_alive(p))
1308 nr = -1;
1309 return nr;
1310 }
1311
1312 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1313 {
1314 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1315 }
1316
1317 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1318 {
1319 return perf_event_pid_type(event, p, PIDTYPE_PID);
1320 }
1321
1322 /*
1323 * If we inherit events we want to return the parent event id
1324 * to userspace.
1325 */
1326 static u64 primary_event_id(struct perf_event *event)
1327 {
1328 u64 id = event->id;
1329
1330 if (event->parent)
1331 id = event->parent->id;
1332
1333 return id;
1334 }
1335
1336 /*
1337 * Get the perf_event_context for a task and lock it.
1338 *
1339 * This has to cope with with the fact that until it is locked,
1340 * the context could get moved to another task.
1341 */
1342 static struct perf_event_context *
1343 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1344 {
1345 struct perf_event_context *ctx;
1346
1347 retry:
1348 /*
1349 * One of the few rules of preemptible RCU is that one cannot do
1350 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1351 * part of the read side critical section was irqs-enabled -- see
1352 * rcu_read_unlock_special().
1353 *
1354 * Since ctx->lock nests under rq->lock we must ensure the entire read
1355 * side critical section has interrupts disabled.
1356 */
1357 local_irq_save(*flags);
1358 rcu_read_lock();
1359 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1360 if (ctx) {
1361 /*
1362 * If this context is a clone of another, it might
1363 * get swapped for another underneath us by
1364 * perf_event_task_sched_out, though the
1365 * rcu_read_lock() protects us from any context
1366 * getting freed. Lock the context and check if it
1367 * got swapped before we could get the lock, and retry
1368 * if so. If we locked the right context, then it
1369 * can't get swapped on us any more.
1370 */
1371 raw_spin_lock(&ctx->lock);
1372 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1373 raw_spin_unlock(&ctx->lock);
1374 rcu_read_unlock();
1375 local_irq_restore(*flags);
1376 goto retry;
1377 }
1378
1379 if (ctx->task == TASK_TOMBSTONE ||
1380 !atomic_inc_not_zero(&ctx->refcount)) {
1381 raw_spin_unlock(&ctx->lock);
1382 ctx = NULL;
1383 } else {
1384 WARN_ON_ONCE(ctx->task != task);
1385 }
1386 }
1387 rcu_read_unlock();
1388 if (!ctx)
1389 local_irq_restore(*flags);
1390 return ctx;
1391 }
1392
1393 /*
1394 * Get the context for a task and increment its pin_count so it
1395 * can't get swapped to another task. This also increments its
1396 * reference count so that the context can't get freed.
1397 */
1398 static struct perf_event_context *
1399 perf_pin_task_context(struct task_struct *task, int ctxn)
1400 {
1401 struct perf_event_context *ctx;
1402 unsigned long flags;
1403
1404 ctx = perf_lock_task_context(task, ctxn, &flags);
1405 if (ctx) {
1406 ++ctx->pin_count;
1407 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1408 }
1409 return ctx;
1410 }
1411
1412 static void perf_unpin_context(struct perf_event_context *ctx)
1413 {
1414 unsigned long flags;
1415
1416 raw_spin_lock_irqsave(&ctx->lock, flags);
1417 --ctx->pin_count;
1418 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1419 }
1420
1421 /*
1422 * Update the record of the current time in a context.
1423 */
1424 static void update_context_time(struct perf_event_context *ctx)
1425 {
1426 u64 now = perf_clock();
1427
1428 ctx->time += now - ctx->timestamp;
1429 ctx->timestamp = now;
1430 }
1431
1432 static u64 perf_event_time(struct perf_event *event)
1433 {
1434 struct perf_event_context *ctx = event->ctx;
1435
1436 if (is_cgroup_event(event))
1437 return perf_cgroup_event_time(event);
1438
1439 return ctx ? ctx->time : 0;
1440 }
1441
1442 static enum event_type_t get_event_type(struct perf_event *event)
1443 {
1444 struct perf_event_context *ctx = event->ctx;
1445 enum event_type_t event_type;
1446
1447 lockdep_assert_held(&ctx->lock);
1448
1449 /*
1450 * It's 'group type', really, because if our group leader is
1451 * pinned, so are we.
1452 */
1453 if (event->group_leader != event)
1454 event = event->group_leader;
1455
1456 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1457 if (!ctx->task)
1458 event_type |= EVENT_CPU;
1459
1460 return event_type;
1461 }
1462
1463 static struct list_head *
1464 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1465 {
1466 if (event->attr.pinned)
1467 return &ctx->pinned_groups;
1468 else
1469 return &ctx->flexible_groups;
1470 }
1471
1472 /*
1473 * Add a event from the lists for its context.
1474 * Must be called with ctx->mutex and ctx->lock held.
1475 */
1476 static void
1477 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1478 {
1479 lockdep_assert_held(&ctx->lock);
1480
1481 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1482 event->attach_state |= PERF_ATTACH_CONTEXT;
1483
1484 event->tstamp = perf_event_time(event);
1485
1486 /*
1487 * If we're a stand alone event or group leader, we go to the context
1488 * list, group events are kept attached to the group so that
1489 * perf_group_detach can, at all times, locate all siblings.
1490 */
1491 if (event->group_leader == event) {
1492 struct list_head *list;
1493
1494 event->group_caps = event->event_caps;
1495
1496 list = ctx_group_list(event, ctx);
1497 list_add_tail(&event->group_entry, list);
1498 }
1499
1500 list_update_cgroup_event(event, ctx, true);
1501
1502 list_add_rcu(&event->event_entry, &ctx->event_list);
1503 ctx->nr_events++;
1504 if (event->attr.inherit_stat)
1505 ctx->nr_stat++;
1506
1507 ctx->generation++;
1508 }
1509
1510 /*
1511 * Initialize event state based on the perf_event_attr::disabled.
1512 */
1513 static inline void perf_event__state_init(struct perf_event *event)
1514 {
1515 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1516 PERF_EVENT_STATE_INACTIVE;
1517 }
1518
1519 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1520 {
1521 int entry = sizeof(u64); /* value */
1522 int size = 0;
1523 int nr = 1;
1524
1525 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1526 size += sizeof(u64);
1527
1528 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1529 size += sizeof(u64);
1530
1531 if (event->attr.read_format & PERF_FORMAT_ID)
1532 entry += sizeof(u64);
1533
1534 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1535 nr += nr_siblings;
1536 size += sizeof(u64);
1537 }
1538
1539 size += entry * nr;
1540 event->read_size = size;
1541 }
1542
1543 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1544 {
1545 struct perf_sample_data *data;
1546 u16 size = 0;
1547
1548 if (sample_type & PERF_SAMPLE_IP)
1549 size += sizeof(data->ip);
1550
1551 if (sample_type & PERF_SAMPLE_ADDR)
1552 size += sizeof(data->addr);
1553
1554 if (sample_type & PERF_SAMPLE_PERIOD)
1555 size += sizeof(data->period);
1556
1557 if (sample_type & PERF_SAMPLE_WEIGHT)
1558 size += sizeof(data->weight);
1559
1560 if (sample_type & PERF_SAMPLE_READ)
1561 size += event->read_size;
1562
1563 if (sample_type & PERF_SAMPLE_DATA_SRC)
1564 size += sizeof(data->data_src.val);
1565
1566 if (sample_type & PERF_SAMPLE_TRANSACTION)
1567 size += sizeof(data->txn);
1568
1569 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1570 size += sizeof(data->phys_addr);
1571
1572 event->header_size = size;
1573 }
1574
1575 /*
1576 * Called at perf_event creation and when events are attached/detached from a
1577 * group.
1578 */
1579 static void perf_event__header_size(struct perf_event *event)
1580 {
1581 __perf_event_read_size(event,
1582 event->group_leader->nr_siblings);
1583 __perf_event_header_size(event, event->attr.sample_type);
1584 }
1585
1586 static void perf_event__id_header_size(struct perf_event *event)
1587 {
1588 struct perf_sample_data *data;
1589 u64 sample_type = event->attr.sample_type;
1590 u16 size = 0;
1591
1592 if (sample_type & PERF_SAMPLE_TID)
1593 size += sizeof(data->tid_entry);
1594
1595 if (sample_type & PERF_SAMPLE_TIME)
1596 size += sizeof(data->time);
1597
1598 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1599 size += sizeof(data->id);
1600
1601 if (sample_type & PERF_SAMPLE_ID)
1602 size += sizeof(data->id);
1603
1604 if (sample_type & PERF_SAMPLE_STREAM_ID)
1605 size += sizeof(data->stream_id);
1606
1607 if (sample_type & PERF_SAMPLE_CPU)
1608 size += sizeof(data->cpu_entry);
1609
1610 event->id_header_size = size;
1611 }
1612
1613 static bool perf_event_validate_size(struct perf_event *event)
1614 {
1615 /*
1616 * The values computed here will be over-written when we actually
1617 * attach the event.
1618 */
1619 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1620 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1621 perf_event__id_header_size(event);
1622
1623 /*
1624 * Sum the lot; should not exceed the 64k limit we have on records.
1625 * Conservative limit to allow for callchains and other variable fields.
1626 */
1627 if (event->read_size + event->header_size +
1628 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1629 return false;
1630
1631 return true;
1632 }
1633
1634 static void perf_group_attach(struct perf_event *event)
1635 {
1636 struct perf_event *group_leader = event->group_leader, *pos;
1637
1638 lockdep_assert_held(&event->ctx->lock);
1639
1640 /*
1641 * We can have double attach due to group movement in perf_event_open.
1642 */
1643 if (event->attach_state & PERF_ATTACH_GROUP)
1644 return;
1645
1646 event->attach_state |= PERF_ATTACH_GROUP;
1647
1648 if (group_leader == event)
1649 return;
1650
1651 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1652
1653 group_leader->group_caps &= event->event_caps;
1654
1655 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1656 group_leader->nr_siblings++;
1657
1658 perf_event__header_size(group_leader);
1659
1660 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1661 perf_event__header_size(pos);
1662 }
1663
1664 /*
1665 * Remove a event from the lists for its context.
1666 * Must be called with ctx->mutex and ctx->lock held.
1667 */
1668 static void
1669 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1670 {
1671 WARN_ON_ONCE(event->ctx != ctx);
1672 lockdep_assert_held(&ctx->lock);
1673
1674 /*
1675 * We can have double detach due to exit/hot-unplug + close.
1676 */
1677 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1678 return;
1679
1680 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1681
1682 list_update_cgroup_event(event, ctx, false);
1683
1684 ctx->nr_events--;
1685 if (event->attr.inherit_stat)
1686 ctx->nr_stat--;
1687
1688 list_del_rcu(&event->event_entry);
1689
1690 if (event->group_leader == event)
1691 list_del_init(&event->group_entry);
1692
1693 /*
1694 * If event was in error state, then keep it
1695 * that way, otherwise bogus counts will be
1696 * returned on read(). The only way to get out
1697 * of error state is by explicit re-enabling
1698 * of the event
1699 */
1700 if (event->state > PERF_EVENT_STATE_OFF)
1701 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1702
1703 ctx->generation++;
1704 }
1705
1706 static void perf_group_detach(struct perf_event *event)
1707 {
1708 struct perf_event *sibling, *tmp;
1709 struct list_head *list = NULL;
1710
1711 lockdep_assert_held(&event->ctx->lock);
1712
1713 /*
1714 * We can have double detach due to exit/hot-unplug + close.
1715 */
1716 if (!(event->attach_state & PERF_ATTACH_GROUP))
1717 return;
1718
1719 event->attach_state &= ~PERF_ATTACH_GROUP;
1720
1721 /*
1722 * If this is a sibling, remove it from its group.
1723 */
1724 if (event->group_leader != event) {
1725 list_del_init(&event->group_entry);
1726 event->group_leader->nr_siblings--;
1727 goto out;
1728 }
1729
1730 if (!list_empty(&event->group_entry))
1731 list = &event->group_entry;
1732
1733 /*
1734 * If this was a group event with sibling events then
1735 * upgrade the siblings to singleton events by adding them
1736 * to whatever list we are on.
1737 */
1738 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1739 if (list)
1740 list_move_tail(&sibling->group_entry, list);
1741 sibling->group_leader = sibling;
1742
1743 /* Inherit group flags from the previous leader */
1744 sibling->group_caps = event->group_caps;
1745
1746 WARN_ON_ONCE(sibling->ctx != event->ctx);
1747 }
1748
1749 out:
1750 perf_event__header_size(event->group_leader);
1751
1752 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1753 perf_event__header_size(tmp);
1754 }
1755
1756 static bool is_orphaned_event(struct perf_event *event)
1757 {
1758 return event->state == PERF_EVENT_STATE_DEAD;
1759 }
1760
1761 static inline int __pmu_filter_match(struct perf_event *event)
1762 {
1763 struct pmu *pmu = event->pmu;
1764 return pmu->filter_match ? pmu->filter_match(event) : 1;
1765 }
1766
1767 /*
1768 * Check whether we should attempt to schedule an event group based on
1769 * PMU-specific filtering. An event group can consist of HW and SW events,
1770 * potentially with a SW leader, so we must check all the filters, to
1771 * determine whether a group is schedulable:
1772 */
1773 static inline int pmu_filter_match(struct perf_event *event)
1774 {
1775 struct perf_event *child;
1776
1777 if (!__pmu_filter_match(event))
1778 return 0;
1779
1780 list_for_each_entry(child, &event->sibling_list, group_entry) {
1781 if (!__pmu_filter_match(child))
1782 return 0;
1783 }
1784
1785 return 1;
1786 }
1787
1788 static inline int
1789 event_filter_match(struct perf_event *event)
1790 {
1791 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1792 perf_cgroup_match(event) && pmu_filter_match(event);
1793 }
1794
1795 static void
1796 event_sched_out(struct perf_event *event,
1797 struct perf_cpu_context *cpuctx,
1798 struct perf_event_context *ctx)
1799 {
1800 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1801
1802 WARN_ON_ONCE(event->ctx != ctx);
1803 lockdep_assert_held(&ctx->lock);
1804
1805 if (event->state != PERF_EVENT_STATE_ACTIVE)
1806 return;
1807
1808 perf_pmu_disable(event->pmu);
1809
1810 event->pmu->del(event, 0);
1811 event->oncpu = -1;
1812
1813 if (event->pending_disable) {
1814 event->pending_disable = 0;
1815 state = PERF_EVENT_STATE_OFF;
1816 }
1817 perf_event_set_state(event, state);
1818
1819 if (!is_software_event(event))
1820 cpuctx->active_oncpu--;
1821 if (!--ctx->nr_active)
1822 perf_event_ctx_deactivate(ctx);
1823 if (event->attr.freq && event->attr.sample_freq)
1824 ctx->nr_freq--;
1825 if (event->attr.exclusive || !cpuctx->active_oncpu)
1826 cpuctx->exclusive = 0;
1827
1828 perf_pmu_enable(event->pmu);
1829 }
1830
1831 static void
1832 group_sched_out(struct perf_event *group_event,
1833 struct perf_cpu_context *cpuctx,
1834 struct perf_event_context *ctx)
1835 {
1836 struct perf_event *event;
1837
1838 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1839 return;
1840
1841 perf_pmu_disable(ctx->pmu);
1842
1843 event_sched_out(group_event, cpuctx, ctx);
1844
1845 /*
1846 * Schedule out siblings (if any):
1847 */
1848 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1849 event_sched_out(event, cpuctx, ctx);
1850
1851 perf_pmu_enable(ctx->pmu);
1852
1853 if (group_event->attr.exclusive)
1854 cpuctx->exclusive = 0;
1855 }
1856
1857 #define DETACH_GROUP 0x01UL
1858
1859 /*
1860 * Cross CPU call to remove a performance event
1861 *
1862 * We disable the event on the hardware level first. After that we
1863 * remove it from the context list.
1864 */
1865 static void
1866 __perf_remove_from_context(struct perf_event *event,
1867 struct perf_cpu_context *cpuctx,
1868 struct perf_event_context *ctx,
1869 void *info)
1870 {
1871 unsigned long flags = (unsigned long)info;
1872
1873 if (ctx->is_active & EVENT_TIME) {
1874 update_context_time(ctx);
1875 update_cgrp_time_from_cpuctx(cpuctx);
1876 }
1877
1878 event_sched_out(event, cpuctx, ctx);
1879 if (flags & DETACH_GROUP)
1880 perf_group_detach(event);
1881 list_del_event(event, ctx);
1882
1883 if (!ctx->nr_events && ctx->is_active) {
1884 ctx->is_active = 0;
1885 if (ctx->task) {
1886 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1887 cpuctx->task_ctx = NULL;
1888 }
1889 }
1890 }
1891
1892 /*
1893 * Remove the event from a task's (or a CPU's) list of events.
1894 *
1895 * If event->ctx is a cloned context, callers must make sure that
1896 * every task struct that event->ctx->task could possibly point to
1897 * remains valid. This is OK when called from perf_release since
1898 * that only calls us on the top-level context, which can't be a clone.
1899 * When called from perf_event_exit_task, it's OK because the
1900 * context has been detached from its task.
1901 */
1902 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1903 {
1904 struct perf_event_context *ctx = event->ctx;
1905
1906 lockdep_assert_held(&ctx->mutex);
1907
1908 event_function_call(event, __perf_remove_from_context, (void *)flags);
1909
1910 /*
1911 * The above event_function_call() can NO-OP when it hits
1912 * TASK_TOMBSTONE. In that case we must already have been detached
1913 * from the context (by perf_event_exit_event()) but the grouping
1914 * might still be in-tact.
1915 */
1916 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1917 if ((flags & DETACH_GROUP) &&
1918 (event->attach_state & PERF_ATTACH_GROUP)) {
1919 /*
1920 * Since in that case we cannot possibly be scheduled, simply
1921 * detach now.
1922 */
1923 raw_spin_lock_irq(&ctx->lock);
1924 perf_group_detach(event);
1925 raw_spin_unlock_irq(&ctx->lock);
1926 }
1927 }
1928
1929 /*
1930 * Cross CPU call to disable a performance event
1931 */
1932 static void __perf_event_disable(struct perf_event *event,
1933 struct perf_cpu_context *cpuctx,
1934 struct perf_event_context *ctx,
1935 void *info)
1936 {
1937 if (event->state < PERF_EVENT_STATE_INACTIVE)
1938 return;
1939
1940 if (ctx->is_active & EVENT_TIME) {
1941 update_context_time(ctx);
1942 update_cgrp_time_from_event(event);
1943 }
1944
1945 if (event == event->group_leader)
1946 group_sched_out(event, cpuctx, ctx);
1947 else
1948 event_sched_out(event, cpuctx, ctx);
1949
1950 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1951 }
1952
1953 /*
1954 * Disable a event.
1955 *
1956 * If event->ctx is a cloned context, callers must make sure that
1957 * every task struct that event->ctx->task could possibly point to
1958 * remains valid. This condition is satisifed when called through
1959 * perf_event_for_each_child or perf_event_for_each because they
1960 * hold the top-level event's child_mutex, so any descendant that
1961 * goes to exit will block in perf_event_exit_event().
1962 *
1963 * When called from perf_pending_event it's OK because event->ctx
1964 * is the current context on this CPU and preemption is disabled,
1965 * hence we can't get into perf_event_task_sched_out for this context.
1966 */
1967 static void _perf_event_disable(struct perf_event *event)
1968 {
1969 struct perf_event_context *ctx = event->ctx;
1970
1971 raw_spin_lock_irq(&ctx->lock);
1972 if (event->state <= PERF_EVENT_STATE_OFF) {
1973 raw_spin_unlock_irq(&ctx->lock);
1974 return;
1975 }
1976 raw_spin_unlock_irq(&ctx->lock);
1977
1978 event_function_call(event, __perf_event_disable, NULL);
1979 }
1980
1981 void perf_event_disable_local(struct perf_event *event)
1982 {
1983 event_function_local(event, __perf_event_disable, NULL);
1984 }
1985
1986 /*
1987 * Strictly speaking kernel users cannot create groups and therefore this
1988 * interface does not need the perf_event_ctx_lock() magic.
1989 */
1990 void perf_event_disable(struct perf_event *event)
1991 {
1992 struct perf_event_context *ctx;
1993
1994 ctx = perf_event_ctx_lock(event);
1995 _perf_event_disable(event);
1996 perf_event_ctx_unlock(event, ctx);
1997 }
1998 EXPORT_SYMBOL_GPL(perf_event_disable);
1999
2000 void perf_event_disable_inatomic(struct perf_event *event)
2001 {
2002 event->pending_disable = 1;
2003 irq_work_queue(&event->pending);
2004 }
2005
2006 static void perf_set_shadow_time(struct perf_event *event,
2007 struct perf_event_context *ctx)
2008 {
2009 /*
2010 * use the correct time source for the time snapshot
2011 *
2012 * We could get by without this by leveraging the
2013 * fact that to get to this function, the caller
2014 * has most likely already called update_context_time()
2015 * and update_cgrp_time_xx() and thus both timestamp
2016 * are identical (or very close). Given that tstamp is,
2017 * already adjusted for cgroup, we could say that:
2018 * tstamp - ctx->timestamp
2019 * is equivalent to
2020 * tstamp - cgrp->timestamp.
2021 *
2022 * Then, in perf_output_read(), the calculation would
2023 * work with no changes because:
2024 * - event is guaranteed scheduled in
2025 * - no scheduled out in between
2026 * - thus the timestamp would be the same
2027 *
2028 * But this is a bit hairy.
2029 *
2030 * So instead, we have an explicit cgroup call to remain
2031 * within the time time source all along. We believe it
2032 * is cleaner and simpler to understand.
2033 */
2034 if (is_cgroup_event(event))
2035 perf_cgroup_set_shadow_time(event, event->tstamp);
2036 else
2037 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2038 }
2039
2040 #define MAX_INTERRUPTS (~0ULL)
2041
2042 static void perf_log_throttle(struct perf_event *event, int enable);
2043 static void perf_log_itrace_start(struct perf_event *event);
2044
2045 static int
2046 event_sched_in(struct perf_event *event,
2047 struct perf_cpu_context *cpuctx,
2048 struct perf_event_context *ctx)
2049 {
2050 int ret = 0;
2051
2052 lockdep_assert_held(&ctx->lock);
2053
2054 if (event->state <= PERF_EVENT_STATE_OFF)
2055 return 0;
2056
2057 WRITE_ONCE(event->oncpu, smp_processor_id());
2058 /*
2059 * Order event::oncpu write to happen before the ACTIVE state is
2060 * visible. This allows perf_event_{stop,read}() to observe the correct
2061 * ->oncpu if it sees ACTIVE.
2062 */
2063 smp_wmb();
2064 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2065
2066 /*
2067 * Unthrottle events, since we scheduled we might have missed several
2068 * ticks already, also for a heavily scheduling task there is little
2069 * guarantee it'll get a tick in a timely manner.
2070 */
2071 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2072 perf_log_throttle(event, 1);
2073 event->hw.interrupts = 0;
2074 }
2075
2076 perf_pmu_disable(event->pmu);
2077
2078 perf_set_shadow_time(event, ctx);
2079
2080 perf_log_itrace_start(event);
2081
2082 if (event->pmu->add(event, PERF_EF_START)) {
2083 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2084 event->oncpu = -1;
2085 ret = -EAGAIN;
2086 goto out;
2087 }
2088
2089 if (!is_software_event(event))
2090 cpuctx->active_oncpu++;
2091 if (!ctx->nr_active++)
2092 perf_event_ctx_activate(ctx);
2093 if (event->attr.freq && event->attr.sample_freq)
2094 ctx->nr_freq++;
2095
2096 if (event->attr.exclusive)
2097 cpuctx->exclusive = 1;
2098
2099 out:
2100 perf_pmu_enable(event->pmu);
2101
2102 return ret;
2103 }
2104
2105 static int
2106 group_sched_in(struct perf_event *group_event,
2107 struct perf_cpu_context *cpuctx,
2108 struct perf_event_context *ctx)
2109 {
2110 struct perf_event *event, *partial_group = NULL;
2111 struct pmu *pmu = ctx->pmu;
2112
2113 if (group_event->state == PERF_EVENT_STATE_OFF)
2114 return 0;
2115
2116 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2117
2118 if (event_sched_in(group_event, cpuctx, ctx)) {
2119 pmu->cancel_txn(pmu);
2120 perf_mux_hrtimer_restart(cpuctx);
2121 return -EAGAIN;
2122 }
2123
2124 /*
2125 * Schedule in siblings as one group (if any):
2126 */
2127 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2128 if (event_sched_in(event, cpuctx, ctx)) {
2129 partial_group = event;
2130 goto group_error;
2131 }
2132 }
2133
2134 if (!pmu->commit_txn(pmu))
2135 return 0;
2136
2137 group_error:
2138 /*
2139 * Groups can be scheduled in as one unit only, so undo any
2140 * partial group before returning:
2141 * The events up to the failed event are scheduled out normally.
2142 */
2143 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2144 if (event == partial_group)
2145 break;
2146
2147 event_sched_out(event, cpuctx, ctx);
2148 }
2149 event_sched_out(group_event, cpuctx, ctx);
2150
2151 pmu->cancel_txn(pmu);
2152
2153 perf_mux_hrtimer_restart(cpuctx);
2154
2155 return -EAGAIN;
2156 }
2157
2158 /*
2159 * Work out whether we can put this event group on the CPU now.
2160 */
2161 static int group_can_go_on(struct perf_event *event,
2162 struct perf_cpu_context *cpuctx,
2163 int can_add_hw)
2164 {
2165 /*
2166 * Groups consisting entirely of software events can always go on.
2167 */
2168 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2169 return 1;
2170 /*
2171 * If an exclusive group is already on, no other hardware
2172 * events can go on.
2173 */
2174 if (cpuctx->exclusive)
2175 return 0;
2176 /*
2177 * If this group is exclusive and there are already
2178 * events on the CPU, it can't go on.
2179 */
2180 if (event->attr.exclusive && cpuctx->active_oncpu)
2181 return 0;
2182 /*
2183 * Otherwise, try to add it if all previous groups were able
2184 * to go on.
2185 */
2186 return can_add_hw;
2187 }
2188
2189 static void add_event_to_ctx(struct perf_event *event,
2190 struct perf_event_context *ctx)
2191 {
2192 list_add_event(event, ctx);
2193 perf_group_attach(event);
2194 }
2195
2196 static void ctx_sched_out(struct perf_event_context *ctx,
2197 struct perf_cpu_context *cpuctx,
2198 enum event_type_t event_type);
2199 static void
2200 ctx_sched_in(struct perf_event_context *ctx,
2201 struct perf_cpu_context *cpuctx,
2202 enum event_type_t event_type,
2203 struct task_struct *task);
2204
2205 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2206 struct perf_event_context *ctx,
2207 enum event_type_t event_type)
2208 {
2209 if (!cpuctx->task_ctx)
2210 return;
2211
2212 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2213 return;
2214
2215 ctx_sched_out(ctx, cpuctx, event_type);
2216 }
2217
2218 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2219 struct perf_event_context *ctx,
2220 struct task_struct *task)
2221 {
2222 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2223 if (ctx)
2224 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2225 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2226 if (ctx)
2227 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2228 }
2229
2230 /*
2231 * We want to maintain the following priority of scheduling:
2232 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2233 * - task pinned (EVENT_PINNED)
2234 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2235 * - task flexible (EVENT_FLEXIBLE).
2236 *
2237 * In order to avoid unscheduling and scheduling back in everything every
2238 * time an event is added, only do it for the groups of equal priority and
2239 * below.
2240 *
2241 * This can be called after a batch operation on task events, in which case
2242 * event_type is a bit mask of the types of events involved. For CPU events,
2243 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2244 */
2245 static void ctx_resched(struct perf_cpu_context *cpuctx,
2246 struct perf_event_context *task_ctx,
2247 enum event_type_t event_type)
2248 {
2249 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2250 bool cpu_event = !!(event_type & EVENT_CPU);
2251
2252 /*
2253 * If pinned groups are involved, flexible groups also need to be
2254 * scheduled out.
2255 */
2256 if (event_type & EVENT_PINNED)
2257 event_type |= EVENT_FLEXIBLE;
2258
2259 perf_pmu_disable(cpuctx->ctx.pmu);
2260 if (task_ctx)
2261 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2262
2263 /*
2264 * Decide which cpu ctx groups to schedule out based on the types
2265 * of events that caused rescheduling:
2266 * - EVENT_CPU: schedule out corresponding groups;
2267 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2268 * - otherwise, do nothing more.
2269 */
2270 if (cpu_event)
2271 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2272 else if (ctx_event_type & EVENT_PINNED)
2273 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2274
2275 perf_event_sched_in(cpuctx, task_ctx, current);
2276 perf_pmu_enable(cpuctx->ctx.pmu);
2277 }
2278
2279 /*
2280 * Cross CPU call to install and enable a performance event
2281 *
2282 * Very similar to remote_function() + event_function() but cannot assume that
2283 * things like ctx->is_active and cpuctx->task_ctx are set.
2284 */
2285 static int __perf_install_in_context(void *info)
2286 {
2287 struct perf_event *event = info;
2288 struct perf_event_context *ctx = event->ctx;
2289 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2290 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2291 bool reprogram = true;
2292 int ret = 0;
2293
2294 raw_spin_lock(&cpuctx->ctx.lock);
2295 if (ctx->task) {
2296 raw_spin_lock(&ctx->lock);
2297 task_ctx = ctx;
2298
2299 reprogram = (ctx->task == current);
2300
2301 /*
2302 * If the task is running, it must be running on this CPU,
2303 * otherwise we cannot reprogram things.
2304 *
2305 * If its not running, we don't care, ctx->lock will
2306 * serialize against it becoming runnable.
2307 */
2308 if (task_curr(ctx->task) && !reprogram) {
2309 ret = -ESRCH;
2310 goto unlock;
2311 }
2312
2313 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2314 } else if (task_ctx) {
2315 raw_spin_lock(&task_ctx->lock);
2316 }
2317
2318 if (reprogram) {
2319 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2320 add_event_to_ctx(event, ctx);
2321 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2322 } else {
2323 add_event_to_ctx(event, ctx);
2324 }
2325
2326 unlock:
2327 perf_ctx_unlock(cpuctx, task_ctx);
2328
2329 return ret;
2330 }
2331
2332 /*
2333 * Attach a performance event to a context.
2334 *
2335 * Very similar to event_function_call, see comment there.
2336 */
2337 static void
2338 perf_install_in_context(struct perf_event_context *ctx,
2339 struct perf_event *event,
2340 int cpu)
2341 {
2342 struct task_struct *task = READ_ONCE(ctx->task);
2343
2344 lockdep_assert_held(&ctx->mutex);
2345
2346 if (event->cpu != -1)
2347 event->cpu = cpu;
2348
2349 /*
2350 * Ensures that if we can observe event->ctx, both the event and ctx
2351 * will be 'complete'. See perf_iterate_sb_cpu().
2352 */
2353 smp_store_release(&event->ctx, ctx);
2354
2355 if (!task) {
2356 cpu_function_call(cpu, __perf_install_in_context, event);
2357 return;
2358 }
2359
2360 /*
2361 * Should not happen, we validate the ctx is still alive before calling.
2362 */
2363 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2364 return;
2365
2366 /*
2367 * Installing events is tricky because we cannot rely on ctx->is_active
2368 * to be set in case this is the nr_events 0 -> 1 transition.
2369 *
2370 * Instead we use task_curr(), which tells us if the task is running.
2371 * However, since we use task_curr() outside of rq::lock, we can race
2372 * against the actual state. This means the result can be wrong.
2373 *
2374 * If we get a false positive, we retry, this is harmless.
2375 *
2376 * If we get a false negative, things are complicated. If we are after
2377 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2378 * value must be correct. If we're before, it doesn't matter since
2379 * perf_event_context_sched_in() will program the counter.
2380 *
2381 * However, this hinges on the remote context switch having observed
2382 * our task->perf_event_ctxp[] store, such that it will in fact take
2383 * ctx::lock in perf_event_context_sched_in().
2384 *
2385 * We do this by task_function_call(), if the IPI fails to hit the task
2386 * we know any future context switch of task must see the
2387 * perf_event_ctpx[] store.
2388 */
2389
2390 /*
2391 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2392 * task_cpu() load, such that if the IPI then does not find the task
2393 * running, a future context switch of that task must observe the
2394 * store.
2395 */
2396 smp_mb();
2397 again:
2398 if (!task_function_call(task, __perf_install_in_context, event))
2399 return;
2400
2401 raw_spin_lock_irq(&ctx->lock);
2402 task = ctx->task;
2403 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2404 /*
2405 * Cannot happen because we already checked above (which also
2406 * cannot happen), and we hold ctx->mutex, which serializes us
2407 * against perf_event_exit_task_context().
2408 */
2409 raw_spin_unlock_irq(&ctx->lock);
2410 return;
2411 }
2412 /*
2413 * If the task is not running, ctx->lock will avoid it becoming so,
2414 * thus we can safely install the event.
2415 */
2416 if (task_curr(task)) {
2417 raw_spin_unlock_irq(&ctx->lock);
2418 goto again;
2419 }
2420 add_event_to_ctx(event, ctx);
2421 raw_spin_unlock_irq(&ctx->lock);
2422 }
2423
2424 /*
2425 * Cross CPU call to enable a performance event
2426 */
2427 static void __perf_event_enable(struct perf_event *event,
2428 struct perf_cpu_context *cpuctx,
2429 struct perf_event_context *ctx,
2430 void *info)
2431 {
2432 struct perf_event *leader = event->group_leader;
2433 struct perf_event_context *task_ctx;
2434
2435 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2436 event->state <= PERF_EVENT_STATE_ERROR)
2437 return;
2438
2439 if (ctx->is_active)
2440 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2441
2442 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2443
2444 if (!ctx->is_active)
2445 return;
2446
2447 if (!event_filter_match(event)) {
2448 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2449 return;
2450 }
2451
2452 /*
2453 * If the event is in a group and isn't the group leader,
2454 * then don't put it on unless the group is on.
2455 */
2456 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2457 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2458 return;
2459 }
2460
2461 task_ctx = cpuctx->task_ctx;
2462 if (ctx->task)
2463 WARN_ON_ONCE(task_ctx != ctx);
2464
2465 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2466 }
2467
2468 /*
2469 * Enable a event.
2470 *
2471 * If event->ctx is a cloned context, callers must make sure that
2472 * every task struct that event->ctx->task could possibly point to
2473 * remains valid. This condition is satisfied when called through
2474 * perf_event_for_each_child or perf_event_for_each as described
2475 * for perf_event_disable.
2476 */
2477 static void _perf_event_enable(struct perf_event *event)
2478 {
2479 struct perf_event_context *ctx = event->ctx;
2480
2481 raw_spin_lock_irq(&ctx->lock);
2482 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2483 event->state < PERF_EVENT_STATE_ERROR) {
2484 raw_spin_unlock_irq(&ctx->lock);
2485 return;
2486 }
2487
2488 /*
2489 * If the event is in error state, clear that first.
2490 *
2491 * That way, if we see the event in error state below, we know that it
2492 * has gone back into error state, as distinct from the task having
2493 * been scheduled away before the cross-call arrived.
2494 */
2495 if (event->state == PERF_EVENT_STATE_ERROR)
2496 event->state = PERF_EVENT_STATE_OFF;
2497 raw_spin_unlock_irq(&ctx->lock);
2498
2499 event_function_call(event, __perf_event_enable, NULL);
2500 }
2501
2502 /*
2503 * See perf_event_disable();
2504 */
2505 void perf_event_enable(struct perf_event *event)
2506 {
2507 struct perf_event_context *ctx;
2508
2509 ctx = perf_event_ctx_lock(event);
2510 _perf_event_enable(event);
2511 perf_event_ctx_unlock(event, ctx);
2512 }
2513 EXPORT_SYMBOL_GPL(perf_event_enable);
2514
2515 struct stop_event_data {
2516 struct perf_event *event;
2517 unsigned int restart;
2518 };
2519
2520 static int __perf_event_stop(void *info)
2521 {
2522 struct stop_event_data *sd = info;
2523 struct perf_event *event = sd->event;
2524
2525 /* if it's already INACTIVE, do nothing */
2526 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2527 return 0;
2528
2529 /* matches smp_wmb() in event_sched_in() */
2530 smp_rmb();
2531
2532 /*
2533 * There is a window with interrupts enabled before we get here,
2534 * so we need to check again lest we try to stop another CPU's event.
2535 */
2536 if (READ_ONCE(event->oncpu) != smp_processor_id())
2537 return -EAGAIN;
2538
2539 event->pmu->stop(event, PERF_EF_UPDATE);
2540
2541 /*
2542 * May race with the actual stop (through perf_pmu_output_stop()),
2543 * but it is only used for events with AUX ring buffer, and such
2544 * events will refuse to restart because of rb::aux_mmap_count==0,
2545 * see comments in perf_aux_output_begin().
2546 *
2547 * Since this is happening on a event-local CPU, no trace is lost
2548 * while restarting.
2549 */
2550 if (sd->restart)
2551 event->pmu->start(event, 0);
2552
2553 return 0;
2554 }
2555
2556 static int perf_event_stop(struct perf_event *event, int restart)
2557 {
2558 struct stop_event_data sd = {
2559 .event = event,
2560 .restart = restart,
2561 };
2562 int ret = 0;
2563
2564 do {
2565 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2566 return 0;
2567
2568 /* matches smp_wmb() in event_sched_in() */
2569 smp_rmb();
2570
2571 /*
2572 * We only want to restart ACTIVE events, so if the event goes
2573 * inactive here (event->oncpu==-1), there's nothing more to do;
2574 * fall through with ret==-ENXIO.
2575 */
2576 ret = cpu_function_call(READ_ONCE(event->oncpu),
2577 __perf_event_stop, &sd);
2578 } while (ret == -EAGAIN);
2579
2580 return ret;
2581 }
2582
2583 /*
2584 * In order to contain the amount of racy and tricky in the address filter
2585 * configuration management, it is a two part process:
2586 *
2587 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2588 * we update the addresses of corresponding vmas in
2589 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2590 * (p2) when an event is scheduled in (pmu::add), it calls
2591 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2592 * if the generation has changed since the previous call.
2593 *
2594 * If (p1) happens while the event is active, we restart it to force (p2).
2595 *
2596 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2597 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2598 * ioctl;
2599 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2600 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2601 * for reading;
2602 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2603 * of exec.
2604 */
2605 void perf_event_addr_filters_sync(struct perf_event *event)
2606 {
2607 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2608
2609 if (!has_addr_filter(event))
2610 return;
2611
2612 raw_spin_lock(&ifh->lock);
2613 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2614 event->pmu->addr_filters_sync(event);
2615 event->hw.addr_filters_gen = event->addr_filters_gen;
2616 }
2617 raw_spin_unlock(&ifh->lock);
2618 }
2619 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2620
2621 static int _perf_event_refresh(struct perf_event *event, int refresh)
2622 {
2623 /*
2624 * not supported on inherited events
2625 */
2626 if (event->attr.inherit || !is_sampling_event(event))
2627 return -EINVAL;
2628
2629 atomic_add(refresh, &event->event_limit);
2630 _perf_event_enable(event);
2631
2632 return 0;
2633 }
2634
2635 /*
2636 * See perf_event_disable()
2637 */
2638 int perf_event_refresh(struct perf_event *event, int refresh)
2639 {
2640 struct perf_event_context *ctx;
2641 int ret;
2642
2643 ctx = perf_event_ctx_lock(event);
2644 ret = _perf_event_refresh(event, refresh);
2645 perf_event_ctx_unlock(event, ctx);
2646
2647 return ret;
2648 }
2649 EXPORT_SYMBOL_GPL(perf_event_refresh);
2650
2651 static void ctx_sched_out(struct perf_event_context *ctx,
2652 struct perf_cpu_context *cpuctx,
2653 enum event_type_t event_type)
2654 {
2655 int is_active = ctx->is_active;
2656 struct perf_event *event;
2657
2658 lockdep_assert_held(&ctx->lock);
2659
2660 if (likely(!ctx->nr_events)) {
2661 /*
2662 * See __perf_remove_from_context().
2663 */
2664 WARN_ON_ONCE(ctx->is_active);
2665 if (ctx->task)
2666 WARN_ON_ONCE(cpuctx->task_ctx);
2667 return;
2668 }
2669
2670 ctx->is_active &= ~event_type;
2671 if (!(ctx->is_active & EVENT_ALL))
2672 ctx->is_active = 0;
2673
2674 if (ctx->task) {
2675 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2676 if (!ctx->is_active)
2677 cpuctx->task_ctx = NULL;
2678 }
2679
2680 /*
2681 * Always update time if it was set; not only when it changes.
2682 * Otherwise we can 'forget' to update time for any but the last
2683 * context we sched out. For example:
2684 *
2685 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2686 * ctx_sched_out(.event_type = EVENT_PINNED)
2687 *
2688 * would only update time for the pinned events.
2689 */
2690 if (is_active & EVENT_TIME) {
2691 /* update (and stop) ctx time */
2692 update_context_time(ctx);
2693 update_cgrp_time_from_cpuctx(cpuctx);
2694 }
2695
2696 is_active ^= ctx->is_active; /* changed bits */
2697
2698 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2699 return;
2700
2701 perf_pmu_disable(ctx->pmu);
2702 if (is_active & EVENT_PINNED) {
2703 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2704 group_sched_out(event, cpuctx, ctx);
2705 }
2706
2707 if (is_active & EVENT_FLEXIBLE) {
2708 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2709 group_sched_out(event, cpuctx, ctx);
2710 }
2711 perf_pmu_enable(ctx->pmu);
2712 }
2713
2714 /*
2715 * Test whether two contexts are equivalent, i.e. whether they have both been
2716 * cloned from the same version of the same context.
2717 *
2718 * Equivalence is measured using a generation number in the context that is
2719 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2720 * and list_del_event().
2721 */
2722 static int context_equiv(struct perf_event_context *ctx1,
2723 struct perf_event_context *ctx2)
2724 {
2725 lockdep_assert_held(&ctx1->lock);
2726 lockdep_assert_held(&ctx2->lock);
2727
2728 /* Pinning disables the swap optimization */
2729 if (ctx1->pin_count || ctx2->pin_count)
2730 return 0;
2731
2732 /* If ctx1 is the parent of ctx2 */
2733 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2734 return 1;
2735
2736 /* If ctx2 is the parent of ctx1 */
2737 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2738 return 1;
2739
2740 /*
2741 * If ctx1 and ctx2 have the same parent; we flatten the parent
2742 * hierarchy, see perf_event_init_context().
2743 */
2744 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2745 ctx1->parent_gen == ctx2->parent_gen)
2746 return 1;
2747
2748 /* Unmatched */
2749 return 0;
2750 }
2751
2752 static void __perf_event_sync_stat(struct perf_event *event,
2753 struct perf_event *next_event)
2754 {
2755 u64 value;
2756
2757 if (!event->attr.inherit_stat)
2758 return;
2759
2760 /*
2761 * Update the event value, we cannot use perf_event_read()
2762 * because we're in the middle of a context switch and have IRQs
2763 * disabled, which upsets smp_call_function_single(), however
2764 * we know the event must be on the current CPU, therefore we
2765 * don't need to use it.
2766 */
2767 if (event->state == PERF_EVENT_STATE_ACTIVE)
2768 event->pmu->read(event);
2769
2770 perf_event_update_time(event);
2771
2772 /*
2773 * In order to keep per-task stats reliable we need to flip the event
2774 * values when we flip the contexts.
2775 */
2776 value = local64_read(&next_event->count);
2777 value = local64_xchg(&event->count, value);
2778 local64_set(&next_event->count, value);
2779
2780 swap(event->total_time_enabled, next_event->total_time_enabled);
2781 swap(event->total_time_running, next_event->total_time_running);
2782
2783 /*
2784 * Since we swizzled the values, update the user visible data too.
2785 */
2786 perf_event_update_userpage(event);
2787 perf_event_update_userpage(next_event);
2788 }
2789
2790 static void perf_event_sync_stat(struct perf_event_context *ctx,
2791 struct perf_event_context *next_ctx)
2792 {
2793 struct perf_event *event, *next_event;
2794
2795 if (!ctx->nr_stat)
2796 return;
2797
2798 update_context_time(ctx);
2799
2800 event = list_first_entry(&ctx->event_list,
2801 struct perf_event, event_entry);
2802
2803 next_event = list_first_entry(&next_ctx->event_list,
2804 struct perf_event, event_entry);
2805
2806 while (&event->event_entry != &ctx->event_list &&
2807 &next_event->event_entry != &next_ctx->event_list) {
2808
2809 __perf_event_sync_stat(event, next_event);
2810
2811 event = list_next_entry(event, event_entry);
2812 next_event = list_next_entry(next_event, event_entry);
2813 }
2814 }
2815
2816 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2817 struct task_struct *next)
2818 {
2819 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2820 struct perf_event_context *next_ctx;
2821 struct perf_event_context *parent, *next_parent;
2822 struct perf_cpu_context *cpuctx;
2823 int do_switch = 1;
2824
2825 if (likely(!ctx))
2826 return;
2827
2828 cpuctx = __get_cpu_context(ctx);
2829 if (!cpuctx->task_ctx)
2830 return;
2831
2832 rcu_read_lock();
2833 next_ctx = next->perf_event_ctxp[ctxn];
2834 if (!next_ctx)
2835 goto unlock;
2836
2837 parent = rcu_dereference(ctx->parent_ctx);
2838 next_parent = rcu_dereference(next_ctx->parent_ctx);
2839
2840 /* If neither context have a parent context; they cannot be clones. */
2841 if (!parent && !next_parent)
2842 goto unlock;
2843
2844 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2845 /*
2846 * Looks like the two contexts are clones, so we might be
2847 * able to optimize the context switch. We lock both
2848 * contexts and check that they are clones under the
2849 * lock (including re-checking that neither has been
2850 * uncloned in the meantime). It doesn't matter which
2851 * order we take the locks because no other cpu could
2852 * be trying to lock both of these tasks.
2853 */
2854 raw_spin_lock(&ctx->lock);
2855 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2856 if (context_equiv(ctx, next_ctx)) {
2857 WRITE_ONCE(ctx->task, next);
2858 WRITE_ONCE(next_ctx->task, task);
2859
2860 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2861
2862 /*
2863 * RCU_INIT_POINTER here is safe because we've not
2864 * modified the ctx and the above modification of
2865 * ctx->task and ctx->task_ctx_data are immaterial
2866 * since those values are always verified under
2867 * ctx->lock which we're now holding.
2868 */
2869 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2870 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2871
2872 do_switch = 0;
2873
2874 perf_event_sync_stat(ctx, next_ctx);
2875 }
2876 raw_spin_unlock(&next_ctx->lock);
2877 raw_spin_unlock(&ctx->lock);
2878 }
2879 unlock:
2880 rcu_read_unlock();
2881
2882 if (do_switch) {
2883 raw_spin_lock(&ctx->lock);
2884 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2885 raw_spin_unlock(&ctx->lock);
2886 }
2887 }
2888
2889 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2890
2891 void perf_sched_cb_dec(struct pmu *pmu)
2892 {
2893 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2894
2895 this_cpu_dec(perf_sched_cb_usages);
2896
2897 if (!--cpuctx->sched_cb_usage)
2898 list_del(&cpuctx->sched_cb_entry);
2899 }
2900
2901
2902 void perf_sched_cb_inc(struct pmu *pmu)
2903 {
2904 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2905
2906 if (!cpuctx->sched_cb_usage++)
2907 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2908
2909 this_cpu_inc(perf_sched_cb_usages);
2910 }
2911
2912 /*
2913 * This function provides the context switch callback to the lower code
2914 * layer. It is invoked ONLY when the context switch callback is enabled.
2915 *
2916 * This callback is relevant even to per-cpu events; for example multi event
2917 * PEBS requires this to provide PID/TID information. This requires we flush
2918 * all queued PEBS records before we context switch to a new task.
2919 */
2920 static void perf_pmu_sched_task(struct task_struct *prev,
2921 struct task_struct *next,
2922 bool sched_in)
2923 {
2924 struct perf_cpu_context *cpuctx;
2925 struct pmu *pmu;
2926
2927 if (prev == next)
2928 return;
2929
2930 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2931 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2932
2933 if (WARN_ON_ONCE(!pmu->sched_task))
2934 continue;
2935
2936 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2937 perf_pmu_disable(pmu);
2938
2939 pmu->sched_task(cpuctx->task_ctx, sched_in);
2940
2941 perf_pmu_enable(pmu);
2942 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2943 }
2944 }
2945
2946 static void perf_event_switch(struct task_struct *task,
2947 struct task_struct *next_prev, bool sched_in);
2948
2949 #define for_each_task_context_nr(ctxn) \
2950 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2951
2952 /*
2953 * Called from scheduler to remove the events of the current task,
2954 * with interrupts disabled.
2955 *
2956 * We stop each event and update the event value in event->count.
2957 *
2958 * This does not protect us against NMI, but disable()
2959 * sets the disabled bit in the control field of event _before_
2960 * accessing the event control register. If a NMI hits, then it will
2961 * not restart the event.
2962 */
2963 void __perf_event_task_sched_out(struct task_struct *task,
2964 struct task_struct *next)
2965 {
2966 int ctxn;
2967
2968 if (__this_cpu_read(perf_sched_cb_usages))
2969 perf_pmu_sched_task(task, next, false);
2970
2971 if (atomic_read(&nr_switch_events))
2972 perf_event_switch(task, next, false);
2973
2974 for_each_task_context_nr(ctxn)
2975 perf_event_context_sched_out(task, ctxn, next);
2976
2977 /*
2978 * if cgroup events exist on this CPU, then we need
2979 * to check if we have to switch out PMU state.
2980 * cgroup event are system-wide mode only
2981 */
2982 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2983 perf_cgroup_sched_out(task, next);
2984 }
2985
2986 /*
2987 * Called with IRQs disabled
2988 */
2989 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2990 enum event_type_t event_type)
2991 {
2992 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2993 }
2994
2995 static void
2996 ctx_pinned_sched_in(struct perf_event_context *ctx,
2997 struct perf_cpu_context *cpuctx)
2998 {
2999 struct perf_event *event;
3000
3001 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3002 if (event->state <= PERF_EVENT_STATE_OFF)
3003 continue;
3004 if (!event_filter_match(event))
3005 continue;
3006
3007 if (group_can_go_on(event, cpuctx, 1))
3008 group_sched_in(event, cpuctx, ctx);
3009
3010 /*
3011 * If this pinned group hasn't been scheduled,
3012 * put it in error state.
3013 */
3014 if (event->state == PERF_EVENT_STATE_INACTIVE)
3015 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3016 }
3017 }
3018
3019 static void
3020 ctx_flexible_sched_in(struct perf_event_context *ctx,
3021 struct perf_cpu_context *cpuctx)
3022 {
3023 struct perf_event *event;
3024 int can_add_hw = 1;
3025
3026 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3027 /* Ignore events in OFF or ERROR state */
3028 if (event->state <= PERF_EVENT_STATE_OFF)
3029 continue;
3030 /*
3031 * Listen to the 'cpu' scheduling filter constraint
3032 * of events:
3033 */
3034 if (!event_filter_match(event))
3035 continue;
3036
3037 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3038 if (group_sched_in(event, cpuctx, ctx))
3039 can_add_hw = 0;
3040 }
3041 }
3042 }
3043
3044 static void
3045 ctx_sched_in(struct perf_event_context *ctx,
3046 struct perf_cpu_context *cpuctx,
3047 enum event_type_t event_type,
3048 struct task_struct *task)
3049 {
3050 int is_active = ctx->is_active;
3051 u64 now;
3052
3053 lockdep_assert_held(&ctx->lock);
3054
3055 if (likely(!ctx->nr_events))
3056 return;
3057
3058 ctx->is_active |= (event_type | EVENT_TIME);
3059 if (ctx->task) {
3060 if (!is_active)
3061 cpuctx->task_ctx = ctx;
3062 else
3063 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3064 }
3065
3066 is_active ^= ctx->is_active; /* changed bits */
3067
3068 if (is_active & EVENT_TIME) {
3069 /* start ctx time */
3070 now = perf_clock();
3071 ctx->timestamp = now;
3072 perf_cgroup_set_timestamp(task, ctx);
3073 }
3074
3075 /*
3076 * First go through the list and put on any pinned groups
3077 * in order to give them the best chance of going on.
3078 */
3079 if (is_active & EVENT_PINNED)
3080 ctx_pinned_sched_in(ctx, cpuctx);
3081
3082 /* Then walk through the lower prio flexible groups */
3083 if (is_active & EVENT_FLEXIBLE)
3084 ctx_flexible_sched_in(ctx, cpuctx);
3085 }
3086
3087 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3088 enum event_type_t event_type,
3089 struct task_struct *task)
3090 {
3091 struct perf_event_context *ctx = &cpuctx->ctx;
3092
3093 ctx_sched_in(ctx, cpuctx, event_type, task);
3094 }
3095
3096 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3097 struct task_struct *task)
3098 {
3099 struct perf_cpu_context *cpuctx;
3100
3101 cpuctx = __get_cpu_context(ctx);
3102 if (cpuctx->task_ctx == ctx)
3103 return;
3104
3105 perf_ctx_lock(cpuctx, ctx);
3106 /*
3107 * We must check ctx->nr_events while holding ctx->lock, such
3108 * that we serialize against perf_install_in_context().
3109 */
3110 if (!ctx->nr_events)
3111 goto unlock;
3112
3113 perf_pmu_disable(ctx->pmu);
3114 /*
3115 * We want to keep the following priority order:
3116 * cpu pinned (that don't need to move), task pinned,
3117 * cpu flexible, task flexible.
3118 *
3119 * However, if task's ctx is not carrying any pinned
3120 * events, no need to flip the cpuctx's events around.
3121 */
3122 if (!list_empty(&ctx->pinned_groups))
3123 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3124 perf_event_sched_in(cpuctx, ctx, task);
3125 perf_pmu_enable(ctx->pmu);
3126
3127 unlock:
3128 perf_ctx_unlock(cpuctx, ctx);
3129 }
3130
3131 /*
3132 * Called from scheduler to add the events of the current task
3133 * with interrupts disabled.
3134 *
3135 * We restore the event value and then enable it.
3136 *
3137 * This does not protect us against NMI, but enable()
3138 * sets the enabled bit in the control field of event _before_
3139 * accessing the event control register. If a NMI hits, then it will
3140 * keep the event running.
3141 */
3142 void __perf_event_task_sched_in(struct task_struct *prev,
3143 struct task_struct *task)
3144 {
3145 struct perf_event_context *ctx;
3146 int ctxn;
3147
3148 /*
3149 * If cgroup events exist on this CPU, then we need to check if we have
3150 * to switch in PMU state; cgroup event are system-wide mode only.
3151 *
3152 * Since cgroup events are CPU events, we must schedule these in before
3153 * we schedule in the task events.
3154 */
3155 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3156 perf_cgroup_sched_in(prev, task);
3157
3158 for_each_task_context_nr(ctxn) {
3159 ctx = task->perf_event_ctxp[ctxn];
3160 if (likely(!ctx))
3161 continue;
3162
3163 perf_event_context_sched_in(ctx, task);
3164 }
3165
3166 if (atomic_read(&nr_switch_events))
3167 perf_event_switch(task, prev, true);
3168
3169 if (__this_cpu_read(perf_sched_cb_usages))
3170 perf_pmu_sched_task(prev, task, true);
3171 }
3172
3173 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3174 {
3175 u64 frequency = event->attr.sample_freq;
3176 u64 sec = NSEC_PER_SEC;
3177 u64 divisor, dividend;
3178
3179 int count_fls, nsec_fls, frequency_fls, sec_fls;
3180
3181 count_fls = fls64(count);
3182 nsec_fls = fls64(nsec);
3183 frequency_fls = fls64(frequency);
3184 sec_fls = 30;
3185
3186 /*
3187 * We got @count in @nsec, with a target of sample_freq HZ
3188 * the target period becomes:
3189 *
3190 * @count * 10^9
3191 * period = -------------------
3192 * @nsec * sample_freq
3193 *
3194 */
3195
3196 /*
3197 * Reduce accuracy by one bit such that @a and @b converge
3198 * to a similar magnitude.
3199 */
3200 #define REDUCE_FLS(a, b) \
3201 do { \
3202 if (a##_fls > b##_fls) { \
3203 a >>= 1; \
3204 a##_fls--; \
3205 } else { \
3206 b >>= 1; \
3207 b##_fls--; \
3208 } \
3209 } while (0)
3210
3211 /*
3212 * Reduce accuracy until either term fits in a u64, then proceed with
3213 * the other, so that finally we can do a u64/u64 division.
3214 */
3215 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3216 REDUCE_FLS(nsec, frequency);
3217 REDUCE_FLS(sec, count);
3218 }
3219
3220 if (count_fls + sec_fls > 64) {
3221 divisor = nsec * frequency;
3222
3223 while (count_fls + sec_fls > 64) {
3224 REDUCE_FLS(count, sec);
3225 divisor >>= 1;
3226 }
3227
3228 dividend = count * sec;
3229 } else {
3230 dividend = count * sec;
3231
3232 while (nsec_fls + frequency_fls > 64) {
3233 REDUCE_FLS(nsec, frequency);
3234 dividend >>= 1;
3235 }
3236
3237 divisor = nsec * frequency;
3238 }
3239
3240 if (!divisor)
3241 return dividend;
3242
3243 return div64_u64(dividend, divisor);
3244 }
3245
3246 static DEFINE_PER_CPU(int, perf_throttled_count);
3247 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3248
3249 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3250 {
3251 struct hw_perf_event *hwc = &event->hw;
3252 s64 period, sample_period;
3253 s64 delta;
3254
3255 period = perf_calculate_period(event, nsec, count);
3256
3257 delta = (s64)(period - hwc->sample_period);
3258 delta = (delta + 7) / 8; /* low pass filter */
3259
3260 sample_period = hwc->sample_period + delta;
3261
3262 if (!sample_period)
3263 sample_period = 1;
3264
3265 hwc->sample_period = sample_period;
3266
3267 if (local64_read(&hwc->period_left) > 8*sample_period) {
3268 if (disable)
3269 event->pmu->stop(event, PERF_EF_UPDATE);
3270
3271 local64_set(&hwc->period_left, 0);
3272
3273 if (disable)
3274 event->pmu->start(event, PERF_EF_RELOAD);
3275 }
3276 }
3277
3278 /*
3279 * combine freq adjustment with unthrottling to avoid two passes over the
3280 * events. At the same time, make sure, having freq events does not change
3281 * the rate of unthrottling as that would introduce bias.
3282 */
3283 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3284 int needs_unthr)
3285 {
3286 struct perf_event *event;
3287 struct hw_perf_event *hwc;
3288 u64 now, period = TICK_NSEC;
3289 s64 delta;
3290
3291 /*
3292 * only need to iterate over all events iff:
3293 * - context have events in frequency mode (needs freq adjust)
3294 * - there are events to unthrottle on this cpu
3295 */
3296 if (!(ctx->nr_freq || needs_unthr))
3297 return;
3298
3299 raw_spin_lock(&ctx->lock);
3300 perf_pmu_disable(ctx->pmu);
3301
3302 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3303 if (event->state != PERF_EVENT_STATE_ACTIVE)
3304 continue;
3305
3306 if (!event_filter_match(event))
3307 continue;
3308
3309 perf_pmu_disable(event->pmu);
3310
3311 hwc = &event->hw;
3312
3313 if (hwc->interrupts == MAX_INTERRUPTS) {
3314 hwc->interrupts = 0;
3315 perf_log_throttle(event, 1);
3316 event->pmu->start(event, 0);
3317 }
3318
3319 if (!event->attr.freq || !event->attr.sample_freq)
3320 goto next;
3321
3322 /*
3323 * stop the event and update event->count
3324 */
3325 event->pmu->stop(event, PERF_EF_UPDATE);
3326
3327 now = local64_read(&event->count);
3328 delta = now - hwc->freq_count_stamp;
3329 hwc->freq_count_stamp = now;
3330
3331 /*
3332 * restart the event
3333 * reload only if value has changed
3334 * we have stopped the event so tell that
3335 * to perf_adjust_period() to avoid stopping it
3336 * twice.
3337 */
3338 if (delta > 0)
3339 perf_adjust_period(event, period, delta, false);
3340
3341 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3342 next:
3343 perf_pmu_enable(event->pmu);
3344 }
3345
3346 perf_pmu_enable(ctx->pmu);
3347 raw_spin_unlock(&ctx->lock);
3348 }
3349
3350 /*
3351 * Round-robin a context's events:
3352 */
3353 static void rotate_ctx(struct perf_event_context *ctx)
3354 {
3355 /*
3356 * Rotate the first entry last of non-pinned groups. Rotation might be
3357 * disabled by the inheritance code.
3358 */
3359 if (!ctx->rotate_disable)
3360 list_rotate_left(&ctx->flexible_groups);
3361 }
3362
3363 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3364 {
3365 struct perf_event_context *ctx = NULL;
3366 int rotate = 0;
3367
3368 if (cpuctx->ctx.nr_events) {
3369 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3370 rotate = 1;
3371 }
3372
3373 ctx = cpuctx->task_ctx;
3374 if (ctx && ctx->nr_events) {
3375 if (ctx->nr_events != ctx->nr_active)
3376 rotate = 1;
3377 }
3378
3379 if (!rotate)
3380 goto done;
3381
3382 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3383 perf_pmu_disable(cpuctx->ctx.pmu);
3384
3385 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3386 if (ctx)
3387 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3388
3389 rotate_ctx(&cpuctx->ctx);
3390 if (ctx)
3391 rotate_ctx(ctx);
3392
3393 perf_event_sched_in(cpuctx, ctx, current);
3394
3395 perf_pmu_enable(cpuctx->ctx.pmu);
3396 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3397 done:
3398
3399 return rotate;
3400 }
3401
3402 void perf_event_task_tick(void)
3403 {
3404 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3405 struct perf_event_context *ctx, *tmp;
3406 int throttled;
3407
3408 lockdep_assert_irqs_disabled();
3409
3410 __this_cpu_inc(perf_throttled_seq);
3411 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3412 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3413
3414 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3415 perf_adjust_freq_unthr_context(ctx, throttled);
3416 }
3417
3418 static int event_enable_on_exec(struct perf_event *event,
3419 struct perf_event_context *ctx)
3420 {
3421 if (!event->attr.enable_on_exec)
3422 return 0;
3423
3424 event->attr.enable_on_exec = 0;
3425 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3426 return 0;
3427
3428 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3429
3430 return 1;
3431 }
3432
3433 /*
3434 * Enable all of a task's events that have been marked enable-on-exec.
3435 * This expects task == current.
3436 */
3437 static void perf_event_enable_on_exec(int ctxn)
3438 {
3439 struct perf_event_context *ctx, *clone_ctx = NULL;
3440 enum event_type_t event_type = 0;
3441 struct perf_cpu_context *cpuctx;
3442 struct perf_event *event;
3443 unsigned long flags;
3444 int enabled = 0;
3445
3446 local_irq_save(flags);
3447 ctx = current->perf_event_ctxp[ctxn];
3448 if (!ctx || !ctx->nr_events)
3449 goto out;
3450
3451 cpuctx = __get_cpu_context(ctx);
3452 perf_ctx_lock(cpuctx, ctx);
3453 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3454 list_for_each_entry(event, &ctx->event_list, event_entry) {
3455 enabled |= event_enable_on_exec(event, ctx);
3456 event_type |= get_event_type(event);
3457 }
3458
3459 /*
3460 * Unclone and reschedule this context if we enabled any event.
3461 */
3462 if (enabled) {
3463 clone_ctx = unclone_ctx(ctx);
3464 ctx_resched(cpuctx, ctx, event_type);
3465 } else {
3466 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3467 }
3468 perf_ctx_unlock(cpuctx, ctx);
3469
3470 out:
3471 local_irq_restore(flags);
3472
3473 if (clone_ctx)
3474 put_ctx(clone_ctx);
3475 }
3476
3477 struct perf_read_data {
3478 struct perf_event *event;
3479 bool group;
3480 int ret;
3481 };
3482
3483 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3484 {
3485 u16 local_pkg, event_pkg;
3486
3487 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3488 int local_cpu = smp_processor_id();
3489
3490 event_pkg = topology_physical_package_id(event_cpu);
3491 local_pkg = topology_physical_package_id(local_cpu);
3492
3493 if (event_pkg == local_pkg)
3494 return local_cpu;
3495 }
3496
3497 return event_cpu;
3498 }
3499
3500 /*
3501 * Cross CPU call to read the hardware event
3502 */
3503 static void __perf_event_read(void *info)
3504 {
3505 struct perf_read_data *data = info;
3506 struct perf_event *sub, *event = data->event;
3507 struct perf_event_context *ctx = event->ctx;
3508 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3509 struct pmu *pmu = event->pmu;
3510
3511 /*
3512 * If this is a task context, we need to check whether it is
3513 * the current task context of this cpu. If not it has been
3514 * scheduled out before the smp call arrived. In that case
3515 * event->count would have been updated to a recent sample
3516 * when the event was scheduled out.
3517 */
3518 if (ctx->task && cpuctx->task_ctx != ctx)
3519 return;
3520
3521 raw_spin_lock(&ctx->lock);
3522 if (ctx->is_active & EVENT_TIME) {
3523 update_context_time(ctx);
3524 update_cgrp_time_from_event(event);
3525 }
3526
3527 perf_event_update_time(event);
3528 if (data->group)
3529 perf_event_update_sibling_time(event);
3530
3531 if (event->state != PERF_EVENT_STATE_ACTIVE)
3532 goto unlock;
3533
3534 if (!data->group) {
3535 pmu->read(event);
3536 data->ret = 0;
3537 goto unlock;
3538 }
3539
3540 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3541
3542 pmu->read(event);
3543
3544 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3545 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3546 /*
3547 * Use sibling's PMU rather than @event's since
3548 * sibling could be on different (eg: software) PMU.
3549 */
3550 sub->pmu->read(sub);
3551 }
3552 }
3553
3554 data->ret = pmu->commit_txn(pmu);
3555
3556 unlock:
3557 raw_spin_unlock(&ctx->lock);
3558 }
3559
3560 static inline u64 perf_event_count(struct perf_event *event)
3561 {
3562 return local64_read(&event->count) + atomic64_read(&event->child_count);
3563 }
3564
3565 /*
3566 * NMI-safe method to read a local event, that is an event that
3567 * is:
3568 * - either for the current task, or for this CPU
3569 * - does not have inherit set, for inherited task events
3570 * will not be local and we cannot read them atomically
3571 * - must not have a pmu::count method
3572 */
3573 int perf_event_read_local(struct perf_event *event, u64 *value,
3574 u64 *enabled, u64 *running)
3575 {
3576 unsigned long flags;
3577 int ret = 0;
3578
3579 /*
3580 * Disabling interrupts avoids all counter scheduling (context
3581 * switches, timer based rotation and IPIs).
3582 */
3583 local_irq_save(flags);
3584
3585 /*
3586 * It must not be an event with inherit set, we cannot read
3587 * all child counters from atomic context.
3588 */
3589 if (event->attr.inherit) {
3590 ret = -EOPNOTSUPP;
3591 goto out;
3592 }
3593
3594 /* If this is a per-task event, it must be for current */
3595 if ((event->attach_state & PERF_ATTACH_TASK) &&
3596 event->hw.target != current) {
3597 ret = -EINVAL;
3598 goto out;
3599 }
3600
3601 /* If this is a per-CPU event, it must be for this CPU */
3602 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3603 event->cpu != smp_processor_id()) {
3604 ret = -EINVAL;
3605 goto out;
3606 }
3607
3608 /*
3609 * If the event is currently on this CPU, its either a per-task event,
3610 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3611 * oncpu == -1).
3612 */
3613 if (event->oncpu == smp_processor_id())
3614 event->pmu->read(event);
3615
3616 *value = local64_read(&event->count);
3617 if (enabled || running) {
3618 u64 now = event->shadow_ctx_time + perf_clock();
3619 u64 __enabled, __running;
3620
3621 __perf_update_times(event, now, &__enabled, &__running);
3622 if (enabled)
3623 *enabled = __enabled;
3624 if (running)
3625 *running = __running;
3626 }
3627 out:
3628 local_irq_restore(flags);
3629
3630 return ret;
3631 }
3632
3633 static int perf_event_read(struct perf_event *event, bool group)
3634 {
3635 enum perf_event_state state = READ_ONCE(event->state);
3636 int event_cpu, ret = 0;
3637
3638 /*
3639 * If event is enabled and currently active on a CPU, update the
3640 * value in the event structure:
3641 */
3642 again:
3643 if (state == PERF_EVENT_STATE_ACTIVE) {
3644 struct perf_read_data data;
3645
3646 /*
3647 * Orders the ->state and ->oncpu loads such that if we see
3648 * ACTIVE we must also see the right ->oncpu.
3649 *
3650 * Matches the smp_wmb() from event_sched_in().
3651 */
3652 smp_rmb();
3653
3654 event_cpu = READ_ONCE(event->oncpu);
3655 if ((unsigned)event_cpu >= nr_cpu_ids)
3656 return 0;
3657
3658 data = (struct perf_read_data){
3659 .event = event,
3660 .group = group,
3661 .ret = 0,
3662 };
3663
3664 preempt_disable();
3665 event_cpu = __perf_event_read_cpu(event, event_cpu);
3666
3667 /*
3668 * Purposely ignore the smp_call_function_single() return
3669 * value.
3670 *
3671 * If event_cpu isn't a valid CPU it means the event got
3672 * scheduled out and that will have updated the event count.
3673 *
3674 * Therefore, either way, we'll have an up-to-date event count
3675 * after this.
3676 */
3677 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3678 preempt_enable();
3679 ret = data.ret;
3680
3681 } else if (state == PERF_EVENT_STATE_INACTIVE) {
3682 struct perf_event_context *ctx = event->ctx;
3683 unsigned long flags;
3684
3685 raw_spin_lock_irqsave(&ctx->lock, flags);
3686 state = event->state;
3687 if (state != PERF_EVENT_STATE_INACTIVE) {
3688 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3689 goto again;
3690 }
3691
3692 /*
3693 * May read while context is not active (e.g., thread is
3694 * blocked), in that case we cannot update context time
3695 */
3696 if (ctx->is_active & EVENT_TIME) {
3697 update_context_time(ctx);
3698 update_cgrp_time_from_event(event);
3699 }
3700
3701 perf_event_update_time(event);
3702 if (group)
3703 perf_event_update_sibling_time(event);
3704 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3705 }
3706
3707 return ret;
3708 }
3709
3710 /*
3711 * Initialize the perf_event context in a task_struct:
3712 */
3713 static void __perf_event_init_context(struct perf_event_context *ctx)
3714 {
3715 raw_spin_lock_init(&ctx->lock);
3716 mutex_init(&ctx->mutex);
3717 INIT_LIST_HEAD(&ctx->active_ctx_list);
3718 INIT_LIST_HEAD(&ctx->pinned_groups);
3719 INIT_LIST_HEAD(&ctx->flexible_groups);
3720 INIT_LIST_HEAD(&ctx->event_list);
3721 atomic_set(&ctx->refcount, 1);
3722 }
3723
3724 static struct perf_event_context *
3725 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3726 {
3727 struct perf_event_context *ctx;
3728
3729 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3730 if (!ctx)
3731 return NULL;
3732
3733 __perf_event_init_context(ctx);
3734 if (task) {
3735 ctx->task = task;
3736 get_task_struct(task);
3737 }
3738 ctx->pmu = pmu;
3739
3740 return ctx;
3741 }
3742
3743 static struct task_struct *
3744 find_lively_task_by_vpid(pid_t vpid)
3745 {
3746 struct task_struct *task;
3747
3748 rcu_read_lock();
3749 if (!vpid)
3750 task = current;
3751 else
3752 task = find_task_by_vpid(vpid);
3753 if (task)
3754 get_task_struct(task);
3755 rcu_read_unlock();
3756
3757 if (!task)
3758 return ERR_PTR(-ESRCH);
3759
3760 return task;
3761 }
3762
3763 /*
3764 * Returns a matching context with refcount and pincount.
3765 */
3766 static struct perf_event_context *
3767 find_get_context(struct pmu *pmu, struct task_struct *task,
3768 struct perf_event *event)
3769 {
3770 struct perf_event_context *ctx, *clone_ctx = NULL;
3771 struct perf_cpu_context *cpuctx;
3772 void *task_ctx_data = NULL;
3773 unsigned long flags;
3774 int ctxn, err;
3775 int cpu = event->cpu;
3776
3777 if (!task) {
3778 /* Must be root to operate on a CPU event: */
3779 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3780 return ERR_PTR(-EACCES);
3781
3782 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3783 ctx = &cpuctx->ctx;
3784 get_ctx(ctx);
3785 ++ctx->pin_count;
3786
3787 return ctx;
3788 }
3789
3790 err = -EINVAL;
3791 ctxn = pmu->task_ctx_nr;
3792 if (ctxn < 0)
3793 goto errout;
3794
3795 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3796 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3797 if (!task_ctx_data) {
3798 err = -ENOMEM;
3799 goto errout;
3800 }
3801 }
3802
3803 retry:
3804 ctx = perf_lock_task_context(task, ctxn, &flags);
3805 if (ctx) {
3806 clone_ctx = unclone_ctx(ctx);
3807 ++ctx->pin_count;
3808
3809 if (task_ctx_data && !ctx->task_ctx_data) {
3810 ctx->task_ctx_data = task_ctx_data;
3811 task_ctx_data = NULL;
3812 }
3813 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3814
3815 if (clone_ctx)
3816 put_ctx(clone_ctx);
3817 } else {
3818 ctx = alloc_perf_context(pmu, task);
3819 err = -ENOMEM;
3820 if (!ctx)
3821 goto errout;
3822
3823 if (task_ctx_data) {
3824 ctx->task_ctx_data = task_ctx_data;
3825 task_ctx_data = NULL;
3826 }
3827
3828 err = 0;
3829 mutex_lock(&task->perf_event_mutex);
3830 /*
3831 * If it has already passed perf_event_exit_task().
3832 * we must see PF_EXITING, it takes this mutex too.
3833 */
3834 if (task->flags & PF_EXITING)
3835 err = -ESRCH;
3836 else if (task->perf_event_ctxp[ctxn])
3837 err = -EAGAIN;
3838 else {
3839 get_ctx(ctx);
3840 ++ctx->pin_count;
3841 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3842 }
3843 mutex_unlock(&task->perf_event_mutex);
3844
3845 if (unlikely(err)) {
3846 put_ctx(ctx);
3847
3848 if (err == -EAGAIN)
3849 goto retry;
3850 goto errout;
3851 }
3852 }
3853
3854 kfree(task_ctx_data);
3855 return ctx;
3856
3857 errout:
3858 kfree(task_ctx_data);
3859 return ERR_PTR(err);
3860 }
3861
3862 static void perf_event_free_filter(struct perf_event *event);
3863 static void perf_event_free_bpf_prog(struct perf_event *event);
3864
3865 static void free_event_rcu(struct rcu_head *head)
3866 {
3867 struct perf_event *event;
3868
3869 event = container_of(head, struct perf_event, rcu_head);
3870 if (event->ns)
3871 put_pid_ns(event->ns);
3872 perf_event_free_filter(event);
3873 kfree(event);
3874 }
3875
3876 static void ring_buffer_attach(struct perf_event *event,
3877 struct ring_buffer *rb);
3878
3879 static void detach_sb_event(struct perf_event *event)
3880 {
3881 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3882
3883 raw_spin_lock(&pel->lock);
3884 list_del_rcu(&event->sb_list);
3885 raw_spin_unlock(&pel->lock);
3886 }
3887
3888 static bool is_sb_event(struct perf_event *event)
3889 {
3890 struct perf_event_attr *attr = &event->attr;
3891
3892 if (event->parent)
3893 return false;
3894
3895 if (event->attach_state & PERF_ATTACH_TASK)
3896 return false;
3897
3898 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3899 attr->comm || attr->comm_exec ||
3900 attr->task ||
3901 attr->context_switch)
3902 return true;
3903 return false;
3904 }
3905
3906 static void unaccount_pmu_sb_event(struct perf_event *event)
3907 {
3908 if (is_sb_event(event))
3909 detach_sb_event(event);
3910 }
3911
3912 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3913 {
3914 if (event->parent)
3915 return;
3916
3917 if (is_cgroup_event(event))
3918 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3919 }
3920
3921 #ifdef CONFIG_NO_HZ_FULL
3922 static DEFINE_SPINLOCK(nr_freq_lock);
3923 #endif
3924
3925 static void unaccount_freq_event_nohz(void)
3926 {
3927 #ifdef CONFIG_NO_HZ_FULL
3928 spin_lock(&nr_freq_lock);
3929 if (atomic_dec_and_test(&nr_freq_events))
3930 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3931 spin_unlock(&nr_freq_lock);
3932 #endif
3933 }
3934
3935 static void unaccount_freq_event(void)
3936 {
3937 if (tick_nohz_full_enabled())
3938 unaccount_freq_event_nohz();
3939 else
3940 atomic_dec(&nr_freq_events);
3941 }
3942
3943 static void unaccount_event(struct perf_event *event)
3944 {
3945 bool dec = false;
3946
3947 if (event->parent)
3948 return;
3949
3950 if (event->attach_state & PERF_ATTACH_TASK)
3951 dec = true;
3952 if (event->attr.mmap || event->attr.mmap_data)
3953 atomic_dec(&nr_mmap_events);
3954 if (event->attr.comm)
3955 atomic_dec(&nr_comm_events);
3956 if (event->attr.namespaces)
3957 atomic_dec(&nr_namespaces_events);
3958 if (event->attr.task)
3959 atomic_dec(&nr_task_events);
3960 if (event->attr.freq)
3961 unaccount_freq_event();
3962 if (event->attr.context_switch) {
3963 dec = true;
3964 atomic_dec(&nr_switch_events);
3965 }
3966 if (is_cgroup_event(event))
3967 dec = true;
3968 if (has_branch_stack(event))
3969 dec = true;
3970
3971 if (dec) {
3972 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3973 schedule_delayed_work(&perf_sched_work, HZ);
3974 }
3975
3976 unaccount_event_cpu(event, event->cpu);
3977
3978 unaccount_pmu_sb_event(event);
3979 }
3980
3981 static void perf_sched_delayed(struct work_struct *work)
3982 {
3983 mutex_lock(&perf_sched_mutex);
3984 if (atomic_dec_and_test(&perf_sched_count))
3985 static_branch_disable(&perf_sched_events);
3986 mutex_unlock(&perf_sched_mutex);
3987 }
3988
3989 /*
3990 * The following implement mutual exclusion of events on "exclusive" pmus
3991 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3992 * at a time, so we disallow creating events that might conflict, namely:
3993 *
3994 * 1) cpu-wide events in the presence of per-task events,
3995 * 2) per-task events in the presence of cpu-wide events,
3996 * 3) two matching events on the same context.
3997 *
3998 * The former two cases are handled in the allocation path (perf_event_alloc(),
3999 * _free_event()), the latter -- before the first perf_install_in_context().
4000 */
4001 static int exclusive_event_init(struct perf_event *event)
4002 {
4003 struct pmu *pmu = event->pmu;
4004
4005 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4006 return 0;
4007
4008 /*
4009 * Prevent co-existence of per-task and cpu-wide events on the
4010 * same exclusive pmu.
4011 *
4012 * Negative pmu::exclusive_cnt means there are cpu-wide
4013 * events on this "exclusive" pmu, positive means there are
4014 * per-task events.
4015 *
4016 * Since this is called in perf_event_alloc() path, event::ctx
4017 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4018 * to mean "per-task event", because unlike other attach states it
4019 * never gets cleared.
4020 */
4021 if (event->attach_state & PERF_ATTACH_TASK) {
4022 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4023 return -EBUSY;
4024 } else {
4025 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4026 return -EBUSY;
4027 }
4028
4029 return 0;
4030 }
4031
4032 static void exclusive_event_destroy(struct perf_event *event)
4033 {
4034 struct pmu *pmu = event->pmu;
4035
4036 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4037 return;
4038
4039 /* see comment in exclusive_event_init() */
4040 if (event->attach_state & PERF_ATTACH_TASK)
4041 atomic_dec(&pmu->exclusive_cnt);
4042 else
4043 atomic_inc(&pmu->exclusive_cnt);
4044 }
4045
4046 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4047 {
4048 if ((e1->pmu == e2->pmu) &&
4049 (e1->cpu == e2->cpu ||
4050 e1->cpu == -1 ||
4051 e2->cpu == -1))
4052 return true;
4053 return false;
4054 }
4055
4056 /* Called under the same ctx::mutex as perf_install_in_context() */
4057 static bool exclusive_event_installable(struct perf_event *event,
4058 struct perf_event_context *ctx)
4059 {
4060 struct perf_event *iter_event;
4061 struct pmu *pmu = event->pmu;
4062
4063 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4064 return true;
4065
4066 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4067 if (exclusive_event_match(iter_event, event))
4068 return false;
4069 }
4070
4071 return true;
4072 }
4073
4074 static void perf_addr_filters_splice(struct perf_event *event,
4075 struct list_head *head);
4076
4077 static void _free_event(struct perf_event *event)
4078 {
4079 irq_work_sync(&event->pending);
4080
4081 unaccount_event(event);
4082
4083 if (event->rb) {
4084 /*
4085 * Can happen when we close an event with re-directed output.
4086 *
4087 * Since we have a 0 refcount, perf_mmap_close() will skip
4088 * over us; possibly making our ring_buffer_put() the last.
4089 */
4090 mutex_lock(&event->mmap_mutex);
4091 ring_buffer_attach(event, NULL);
4092 mutex_unlock(&event->mmap_mutex);
4093 }
4094
4095 if (is_cgroup_event(event))
4096 perf_detach_cgroup(event);
4097
4098 if (!event->parent) {
4099 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4100 put_callchain_buffers();
4101 }
4102
4103 perf_event_free_bpf_prog(event);
4104 perf_addr_filters_splice(event, NULL);
4105 kfree(event->addr_filters_offs);
4106
4107 if (event->destroy)
4108 event->destroy(event);
4109
4110 if (event->ctx)
4111 put_ctx(event->ctx);
4112
4113 exclusive_event_destroy(event);
4114 module_put(event->pmu->module);
4115
4116 call_rcu(&event->rcu_head, free_event_rcu);
4117 }
4118
4119 /*
4120 * Used to free events which have a known refcount of 1, such as in error paths
4121 * where the event isn't exposed yet and inherited events.
4122 */
4123 static void free_event(struct perf_event *event)
4124 {
4125 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4126 "unexpected event refcount: %ld; ptr=%p\n",
4127 atomic_long_read(&event->refcount), event)) {
4128 /* leak to avoid use-after-free */
4129 return;
4130 }
4131
4132 _free_event(event);
4133 }
4134
4135 /*
4136 * Remove user event from the owner task.
4137 */
4138 static void perf_remove_from_owner(struct perf_event *event)
4139 {
4140 struct task_struct *owner;
4141
4142 rcu_read_lock();
4143 /*
4144 * Matches the smp_store_release() in perf_event_exit_task(). If we
4145 * observe !owner it means the list deletion is complete and we can
4146 * indeed free this event, otherwise we need to serialize on
4147 * owner->perf_event_mutex.
4148 */
4149 owner = READ_ONCE(event->owner);
4150 if (owner) {
4151 /*
4152 * Since delayed_put_task_struct() also drops the last
4153 * task reference we can safely take a new reference
4154 * while holding the rcu_read_lock().
4155 */
4156 get_task_struct(owner);
4157 }
4158 rcu_read_unlock();
4159
4160 if (owner) {
4161 /*
4162 * If we're here through perf_event_exit_task() we're already
4163 * holding ctx->mutex which would be an inversion wrt. the
4164 * normal lock order.
4165 *
4166 * However we can safely take this lock because its the child
4167 * ctx->mutex.
4168 */
4169 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4170
4171 /*
4172 * We have to re-check the event->owner field, if it is cleared
4173 * we raced with perf_event_exit_task(), acquiring the mutex
4174 * ensured they're done, and we can proceed with freeing the
4175 * event.
4176 */
4177 if (event->owner) {
4178 list_del_init(&event->owner_entry);
4179 smp_store_release(&event->owner, NULL);
4180 }
4181 mutex_unlock(&owner->perf_event_mutex);
4182 put_task_struct(owner);
4183 }
4184 }
4185
4186 static void put_event(struct perf_event *event)
4187 {
4188 if (!atomic_long_dec_and_test(&event->refcount))
4189 return;
4190
4191 _free_event(event);
4192 }
4193
4194 /*
4195 * Kill an event dead; while event:refcount will preserve the event
4196 * object, it will not preserve its functionality. Once the last 'user'
4197 * gives up the object, we'll destroy the thing.
4198 */
4199 int perf_event_release_kernel(struct perf_event *event)
4200 {
4201 struct perf_event_context *ctx = event->ctx;
4202 struct perf_event *child, *tmp;
4203 LIST_HEAD(free_list);
4204
4205 /*
4206 * If we got here through err_file: fput(event_file); we will not have
4207 * attached to a context yet.
4208 */
4209 if (!ctx) {
4210 WARN_ON_ONCE(event->attach_state &
4211 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4212 goto no_ctx;
4213 }
4214
4215 if (!is_kernel_event(event))
4216 perf_remove_from_owner(event);
4217
4218 ctx = perf_event_ctx_lock(event);
4219 WARN_ON_ONCE(ctx->parent_ctx);
4220 perf_remove_from_context(event, DETACH_GROUP);
4221
4222 raw_spin_lock_irq(&ctx->lock);
4223 /*
4224 * Mark this event as STATE_DEAD, there is no external reference to it
4225 * anymore.
4226 *
4227 * Anybody acquiring event->child_mutex after the below loop _must_
4228 * also see this, most importantly inherit_event() which will avoid
4229 * placing more children on the list.
4230 *
4231 * Thus this guarantees that we will in fact observe and kill _ALL_
4232 * child events.
4233 */
4234 event->state = PERF_EVENT_STATE_DEAD;
4235 raw_spin_unlock_irq(&ctx->lock);
4236
4237 perf_event_ctx_unlock(event, ctx);
4238
4239 again:
4240 mutex_lock(&event->child_mutex);
4241 list_for_each_entry(child, &event->child_list, child_list) {
4242
4243 /*
4244 * Cannot change, child events are not migrated, see the
4245 * comment with perf_event_ctx_lock_nested().
4246 */
4247 ctx = READ_ONCE(child->ctx);
4248 /*
4249 * Since child_mutex nests inside ctx::mutex, we must jump
4250 * through hoops. We start by grabbing a reference on the ctx.
4251 *
4252 * Since the event cannot get freed while we hold the
4253 * child_mutex, the context must also exist and have a !0
4254 * reference count.
4255 */
4256 get_ctx(ctx);
4257
4258 /*
4259 * Now that we have a ctx ref, we can drop child_mutex, and
4260 * acquire ctx::mutex without fear of it going away. Then we
4261 * can re-acquire child_mutex.
4262 */
4263 mutex_unlock(&event->child_mutex);
4264 mutex_lock(&ctx->mutex);
4265 mutex_lock(&event->child_mutex);
4266
4267 /*
4268 * Now that we hold ctx::mutex and child_mutex, revalidate our
4269 * state, if child is still the first entry, it didn't get freed
4270 * and we can continue doing so.
4271 */
4272 tmp = list_first_entry_or_null(&event->child_list,
4273 struct perf_event, child_list);
4274 if (tmp == child) {
4275 perf_remove_from_context(child, DETACH_GROUP);
4276 list_move(&child->child_list, &free_list);
4277 /*
4278 * This matches the refcount bump in inherit_event();
4279 * this can't be the last reference.
4280 */
4281 put_event(event);
4282 }
4283
4284 mutex_unlock(&event->child_mutex);
4285 mutex_unlock(&ctx->mutex);
4286 put_ctx(ctx);
4287 goto again;
4288 }
4289 mutex_unlock(&event->child_mutex);
4290
4291 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4292 list_del(&child->child_list);
4293 free_event(child);
4294 }
4295
4296 no_ctx:
4297 put_event(event); /* Must be the 'last' reference */
4298 return 0;
4299 }
4300 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4301
4302 /*
4303 * Called when the last reference to the file is gone.
4304 */
4305 static int perf_release(struct inode *inode, struct file *file)
4306 {
4307 perf_event_release_kernel(file->private_data);
4308 return 0;
4309 }
4310
4311 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4312 {
4313 struct perf_event *child;
4314 u64 total = 0;
4315
4316 *enabled = 0;
4317 *running = 0;
4318
4319 mutex_lock(&event->child_mutex);
4320
4321 (void)perf_event_read(event, false);
4322 total += perf_event_count(event);
4323
4324 *enabled += event->total_time_enabled +
4325 atomic64_read(&event->child_total_time_enabled);
4326 *running += event->total_time_running +
4327 atomic64_read(&event->child_total_time_running);
4328
4329 list_for_each_entry(child, &event->child_list, child_list) {
4330 (void)perf_event_read(child, false);
4331 total += perf_event_count(child);
4332 *enabled += child->total_time_enabled;
4333 *running += child->total_time_running;
4334 }
4335 mutex_unlock(&event->child_mutex);
4336
4337 return total;
4338 }
4339
4340 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4341 {
4342 struct perf_event_context *ctx;
4343 u64 count;
4344
4345 ctx = perf_event_ctx_lock(event);
4346 count = __perf_event_read_value(event, enabled, running);
4347 perf_event_ctx_unlock(event, ctx);
4348
4349 return count;
4350 }
4351 EXPORT_SYMBOL_GPL(perf_event_read_value);
4352
4353 static int __perf_read_group_add(struct perf_event *leader,
4354 u64 read_format, u64 *values)
4355 {
4356 struct perf_event_context *ctx = leader->ctx;
4357 struct perf_event *sub;
4358 unsigned long flags;
4359 int n = 1; /* skip @nr */
4360 int ret;
4361
4362 ret = perf_event_read(leader, true);
4363 if (ret)
4364 return ret;
4365
4366 raw_spin_lock_irqsave(&ctx->lock, flags);
4367
4368 /*
4369 * Since we co-schedule groups, {enabled,running} times of siblings
4370 * will be identical to those of the leader, so we only publish one
4371 * set.
4372 */
4373 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4374 values[n++] += leader->total_time_enabled +
4375 atomic64_read(&leader->child_total_time_enabled);
4376 }
4377
4378 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4379 values[n++] += leader->total_time_running +
4380 atomic64_read(&leader->child_total_time_running);
4381 }
4382
4383 /*
4384 * Write {count,id} tuples for every sibling.
4385 */
4386 values[n++] += perf_event_count(leader);
4387 if (read_format & PERF_FORMAT_ID)
4388 values[n++] = primary_event_id(leader);
4389
4390 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4391 values[n++] += perf_event_count(sub);
4392 if (read_format & PERF_FORMAT_ID)
4393 values[n++] = primary_event_id(sub);
4394 }
4395
4396 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4397 return 0;
4398 }
4399
4400 static int perf_read_group(struct perf_event *event,
4401 u64 read_format, char __user *buf)
4402 {
4403 struct perf_event *leader = event->group_leader, *child;
4404 struct perf_event_context *ctx = leader->ctx;
4405 int ret;
4406 u64 *values;
4407
4408 lockdep_assert_held(&ctx->mutex);
4409
4410 values = kzalloc(event->read_size, GFP_KERNEL);
4411 if (!values)
4412 return -ENOMEM;
4413
4414 values[0] = 1 + leader->nr_siblings;
4415
4416 /*
4417 * By locking the child_mutex of the leader we effectively
4418 * lock the child list of all siblings.. XXX explain how.
4419 */
4420 mutex_lock(&leader->child_mutex);
4421
4422 ret = __perf_read_group_add(leader, read_format, values);
4423 if (ret)
4424 goto unlock;
4425
4426 list_for_each_entry(child, &leader->child_list, child_list) {
4427 ret = __perf_read_group_add(child, read_format, values);
4428 if (ret)
4429 goto unlock;
4430 }
4431
4432 mutex_unlock(&leader->child_mutex);
4433
4434 ret = event->read_size;
4435 if (copy_to_user(buf, values, event->read_size))
4436 ret = -EFAULT;
4437 goto out;
4438
4439 unlock:
4440 mutex_unlock(&leader->child_mutex);
4441 out:
4442 kfree(values);
4443 return ret;
4444 }
4445
4446 static int perf_read_one(struct perf_event *event,
4447 u64 read_format, char __user *buf)
4448 {
4449 u64 enabled, running;
4450 u64 values[4];
4451 int n = 0;
4452
4453 values[n++] = __perf_event_read_value(event, &enabled, &running);
4454 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4455 values[n++] = enabled;
4456 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4457 values[n++] = running;
4458 if (read_format & PERF_FORMAT_ID)
4459 values[n++] = primary_event_id(event);
4460
4461 if (copy_to_user(buf, values, n * sizeof(u64)))
4462 return -EFAULT;
4463
4464 return n * sizeof(u64);
4465 }
4466
4467 static bool is_event_hup(struct perf_event *event)
4468 {
4469 bool no_children;
4470
4471 if (event->state > PERF_EVENT_STATE_EXIT)
4472 return false;
4473
4474 mutex_lock(&event->child_mutex);
4475 no_children = list_empty(&event->child_list);
4476 mutex_unlock(&event->child_mutex);
4477 return no_children;
4478 }
4479
4480 /*
4481 * Read the performance event - simple non blocking version for now
4482 */
4483 static ssize_t
4484 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4485 {
4486 u64 read_format = event->attr.read_format;
4487 int ret;
4488
4489 /*
4490 * Return end-of-file for a read on a event that is in
4491 * error state (i.e. because it was pinned but it couldn't be
4492 * scheduled on to the CPU at some point).
4493 */
4494 if (event->state == PERF_EVENT_STATE_ERROR)
4495 return 0;
4496
4497 if (count < event->read_size)
4498 return -ENOSPC;
4499
4500 WARN_ON_ONCE(event->ctx->parent_ctx);
4501 if (read_format & PERF_FORMAT_GROUP)
4502 ret = perf_read_group(event, read_format, buf);
4503 else
4504 ret = perf_read_one(event, read_format, buf);
4505
4506 return ret;
4507 }
4508
4509 static ssize_t
4510 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4511 {
4512 struct perf_event *event = file->private_data;
4513 struct perf_event_context *ctx;
4514 int ret;
4515
4516 ctx = perf_event_ctx_lock(event);
4517 ret = __perf_read(event, buf, count);
4518 perf_event_ctx_unlock(event, ctx);
4519
4520 return ret;
4521 }
4522
4523 static unsigned int perf_poll(struct file *file, poll_table *wait)
4524 {
4525 struct perf_event *event = file->private_data;
4526 struct ring_buffer *rb;
4527 unsigned int events = POLLHUP;
4528
4529 poll_wait(file, &event->waitq, wait);
4530
4531 if (is_event_hup(event))
4532 return events;
4533
4534 /*
4535 * Pin the event->rb by taking event->mmap_mutex; otherwise
4536 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4537 */
4538 mutex_lock(&event->mmap_mutex);
4539 rb = event->rb;
4540 if (rb)
4541 events = atomic_xchg(&rb->poll, 0);
4542 mutex_unlock(&event->mmap_mutex);
4543 return events;
4544 }
4545
4546 static void _perf_event_reset(struct perf_event *event)
4547 {
4548 (void)perf_event_read(event, false);
4549 local64_set(&event->count, 0);
4550 perf_event_update_userpage(event);
4551 }
4552
4553 /*
4554 * Holding the top-level event's child_mutex means that any
4555 * descendant process that has inherited this event will block
4556 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4557 * task existence requirements of perf_event_enable/disable.
4558 */
4559 static void perf_event_for_each_child(struct perf_event *event,
4560 void (*func)(struct perf_event *))
4561 {
4562 struct perf_event *child;
4563
4564 WARN_ON_ONCE(event->ctx->parent_ctx);
4565
4566 mutex_lock(&event->child_mutex);
4567 func(event);
4568 list_for_each_entry(child, &event->child_list, child_list)
4569 func(child);
4570 mutex_unlock(&event->child_mutex);
4571 }
4572
4573 static void perf_event_for_each(struct perf_event *event,
4574 void (*func)(struct perf_event *))
4575 {
4576 struct perf_event_context *ctx = event->ctx;
4577 struct perf_event *sibling;
4578
4579 lockdep_assert_held(&ctx->mutex);
4580
4581 event = event->group_leader;
4582
4583 perf_event_for_each_child(event, func);
4584 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4585 perf_event_for_each_child(sibling, func);
4586 }
4587
4588 static void __perf_event_period(struct perf_event *event,
4589 struct perf_cpu_context *cpuctx,
4590 struct perf_event_context *ctx,
4591 void *info)
4592 {
4593 u64 value = *((u64 *)info);
4594 bool active;
4595
4596 if (event->attr.freq) {
4597 event->attr.sample_freq = value;
4598 } else {
4599 event->attr.sample_period = value;
4600 event->hw.sample_period = value;
4601 }
4602
4603 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4604 if (active) {
4605 perf_pmu_disable(ctx->pmu);
4606 /*
4607 * We could be throttled; unthrottle now to avoid the tick
4608 * trying to unthrottle while we already re-started the event.
4609 */
4610 if (event->hw.interrupts == MAX_INTERRUPTS) {
4611 event->hw.interrupts = 0;
4612 perf_log_throttle(event, 1);
4613 }
4614 event->pmu->stop(event, PERF_EF_UPDATE);
4615 }
4616
4617 local64_set(&event->hw.period_left, 0);
4618
4619 if (active) {
4620 event->pmu->start(event, PERF_EF_RELOAD);
4621 perf_pmu_enable(ctx->pmu);
4622 }
4623 }
4624
4625 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4626 {
4627 u64 value;
4628
4629 if (!is_sampling_event(event))
4630 return -EINVAL;
4631
4632 if (copy_from_user(&value, arg, sizeof(value)))
4633 return -EFAULT;
4634
4635 if (!value)
4636 return -EINVAL;
4637
4638 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4639 return -EINVAL;
4640
4641 event_function_call(event, __perf_event_period, &value);
4642
4643 return 0;
4644 }
4645
4646 static const struct file_operations perf_fops;
4647
4648 static inline int perf_fget_light(int fd, struct fd *p)
4649 {
4650 struct fd f = fdget(fd);
4651 if (!f.file)
4652 return -EBADF;
4653
4654 if (f.file->f_op != &perf_fops) {
4655 fdput(f);
4656 return -EBADF;
4657 }
4658 *p = f;
4659 return 0;
4660 }
4661
4662 static int perf_event_set_output(struct perf_event *event,
4663 struct perf_event *output_event);
4664 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4665 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4666
4667 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4668 {
4669 void (*func)(struct perf_event *);
4670 u32 flags = arg;
4671
4672 switch (cmd) {
4673 case PERF_EVENT_IOC_ENABLE:
4674 func = _perf_event_enable;
4675 break;
4676 case PERF_EVENT_IOC_DISABLE:
4677 func = _perf_event_disable;
4678 break;
4679 case PERF_EVENT_IOC_RESET:
4680 func = _perf_event_reset;
4681 break;
4682
4683 case PERF_EVENT_IOC_REFRESH:
4684 return _perf_event_refresh(event, arg);
4685
4686 case PERF_EVENT_IOC_PERIOD:
4687 return perf_event_period(event, (u64 __user *)arg);
4688
4689 case PERF_EVENT_IOC_ID:
4690 {
4691 u64 id = primary_event_id(event);
4692
4693 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4694 return -EFAULT;
4695 return 0;
4696 }
4697
4698 case PERF_EVENT_IOC_SET_OUTPUT:
4699 {
4700 int ret;
4701 if (arg != -1) {
4702 struct perf_event *output_event;
4703 struct fd output;
4704 ret = perf_fget_light(arg, &output);
4705 if (ret)
4706 return ret;
4707 output_event = output.file->private_data;
4708 ret = perf_event_set_output(event, output_event);
4709 fdput(output);
4710 } else {
4711 ret = perf_event_set_output(event, NULL);
4712 }
4713 return ret;
4714 }
4715
4716 case PERF_EVENT_IOC_SET_FILTER:
4717 return perf_event_set_filter(event, (void __user *)arg);
4718
4719 case PERF_EVENT_IOC_SET_BPF:
4720 return perf_event_set_bpf_prog(event, arg);
4721
4722 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4723 struct ring_buffer *rb;
4724
4725 rcu_read_lock();
4726 rb = rcu_dereference(event->rb);
4727 if (!rb || !rb->nr_pages) {
4728 rcu_read_unlock();
4729 return -EINVAL;
4730 }
4731 rb_toggle_paused(rb, !!arg);
4732 rcu_read_unlock();
4733 return 0;
4734 }
4735 default:
4736 return -ENOTTY;
4737 }
4738
4739 if (flags & PERF_IOC_FLAG_GROUP)
4740 perf_event_for_each(event, func);
4741 else
4742 perf_event_for_each_child(event, func);
4743
4744 return 0;
4745 }
4746
4747 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4748 {
4749 struct perf_event *event = file->private_data;
4750 struct perf_event_context *ctx;
4751 long ret;
4752
4753 ctx = perf_event_ctx_lock(event);
4754 ret = _perf_ioctl(event, cmd, arg);
4755 perf_event_ctx_unlock(event, ctx);
4756
4757 return ret;
4758 }
4759
4760 #ifdef CONFIG_COMPAT
4761 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4762 unsigned long arg)
4763 {
4764 switch (_IOC_NR(cmd)) {
4765 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4766 case _IOC_NR(PERF_EVENT_IOC_ID):
4767 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4768 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4769 cmd &= ~IOCSIZE_MASK;
4770 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4771 }
4772 break;
4773 }
4774 return perf_ioctl(file, cmd, arg);
4775 }
4776 #else
4777 # define perf_compat_ioctl NULL
4778 #endif
4779
4780 int perf_event_task_enable(void)
4781 {
4782 struct perf_event_context *ctx;
4783 struct perf_event *event;
4784
4785 mutex_lock(&current->perf_event_mutex);
4786 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4787 ctx = perf_event_ctx_lock(event);
4788 perf_event_for_each_child(event, _perf_event_enable);
4789 perf_event_ctx_unlock(event, ctx);
4790 }
4791 mutex_unlock(&current->perf_event_mutex);
4792
4793 return 0;
4794 }
4795
4796 int perf_event_task_disable(void)
4797 {
4798 struct perf_event_context *ctx;
4799 struct perf_event *event;
4800
4801 mutex_lock(&current->perf_event_mutex);
4802 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4803 ctx = perf_event_ctx_lock(event);
4804 perf_event_for_each_child(event, _perf_event_disable);
4805 perf_event_ctx_unlock(event, ctx);
4806 }
4807 mutex_unlock(&current->perf_event_mutex);
4808
4809 return 0;
4810 }
4811
4812 static int perf_event_index(struct perf_event *event)
4813 {
4814 if (event->hw.state & PERF_HES_STOPPED)
4815 return 0;
4816
4817 if (event->state != PERF_EVENT_STATE_ACTIVE)
4818 return 0;
4819
4820 return event->pmu->event_idx(event);
4821 }
4822
4823 static void calc_timer_values(struct perf_event *event,
4824 u64 *now,
4825 u64 *enabled,
4826 u64 *running)
4827 {
4828 u64 ctx_time;
4829
4830 *now = perf_clock();
4831 ctx_time = event->shadow_ctx_time + *now;
4832 __perf_update_times(event, ctx_time, enabled, running);
4833 }
4834
4835 static void perf_event_init_userpage(struct perf_event *event)
4836 {
4837 struct perf_event_mmap_page *userpg;
4838 struct ring_buffer *rb;
4839
4840 rcu_read_lock();
4841 rb = rcu_dereference(event->rb);
4842 if (!rb)
4843 goto unlock;
4844
4845 userpg = rb->user_page;
4846
4847 /* Allow new userspace to detect that bit 0 is deprecated */
4848 userpg->cap_bit0_is_deprecated = 1;
4849 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4850 userpg->data_offset = PAGE_SIZE;
4851 userpg->data_size = perf_data_size(rb);
4852
4853 unlock:
4854 rcu_read_unlock();
4855 }
4856
4857 void __weak arch_perf_update_userpage(
4858 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4859 {
4860 }
4861
4862 /*
4863 * Callers need to ensure there can be no nesting of this function, otherwise
4864 * the seqlock logic goes bad. We can not serialize this because the arch
4865 * code calls this from NMI context.
4866 */
4867 void perf_event_update_userpage(struct perf_event *event)
4868 {
4869 struct perf_event_mmap_page *userpg;
4870 struct ring_buffer *rb;
4871 u64 enabled, running, now;
4872
4873 rcu_read_lock();
4874 rb = rcu_dereference(event->rb);
4875 if (!rb)
4876 goto unlock;
4877
4878 /*
4879 * compute total_time_enabled, total_time_running
4880 * based on snapshot values taken when the event
4881 * was last scheduled in.
4882 *
4883 * we cannot simply called update_context_time()
4884 * because of locking issue as we can be called in
4885 * NMI context
4886 */
4887 calc_timer_values(event, &now, &enabled, &running);
4888
4889 userpg = rb->user_page;
4890 /*
4891 * Disable preemption so as to not let the corresponding user-space
4892 * spin too long if we get preempted.
4893 */
4894 preempt_disable();
4895 ++userpg->lock;
4896 barrier();
4897 userpg->index = perf_event_index(event);
4898 userpg->offset = perf_event_count(event);
4899 if (userpg->index)
4900 userpg->offset -= local64_read(&event->hw.prev_count);
4901
4902 userpg->time_enabled = enabled +
4903 atomic64_read(&event->child_total_time_enabled);
4904
4905 userpg->time_running = running +
4906 atomic64_read(&event->child_total_time_running);
4907
4908 arch_perf_update_userpage(event, userpg, now);
4909
4910 barrier();
4911 ++userpg->lock;
4912 preempt_enable();
4913 unlock:
4914 rcu_read_unlock();
4915 }
4916
4917 static int perf_mmap_fault(struct vm_fault *vmf)
4918 {
4919 struct perf_event *event = vmf->vma->vm_file->private_data;
4920 struct ring_buffer *rb;
4921 int ret = VM_FAULT_SIGBUS;
4922
4923 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4924 if (vmf->pgoff == 0)
4925 ret = 0;
4926 return ret;
4927 }
4928
4929 rcu_read_lock();
4930 rb = rcu_dereference(event->rb);
4931 if (!rb)
4932 goto unlock;
4933
4934 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4935 goto unlock;
4936
4937 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4938 if (!vmf->page)
4939 goto unlock;
4940
4941 get_page(vmf->page);
4942 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4943 vmf->page->index = vmf->pgoff;
4944
4945 ret = 0;
4946 unlock:
4947 rcu_read_unlock();
4948
4949 return ret;
4950 }
4951
4952 static void ring_buffer_attach(struct perf_event *event,
4953 struct ring_buffer *rb)
4954 {
4955 struct ring_buffer *old_rb = NULL;
4956 unsigned long flags;
4957
4958 if (event->rb) {
4959 /*
4960 * Should be impossible, we set this when removing
4961 * event->rb_entry and wait/clear when adding event->rb_entry.
4962 */
4963 WARN_ON_ONCE(event->rcu_pending);
4964
4965 old_rb = event->rb;
4966 spin_lock_irqsave(&old_rb->event_lock, flags);
4967 list_del_rcu(&event->rb_entry);
4968 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4969
4970 event->rcu_batches = get_state_synchronize_rcu();
4971 event->rcu_pending = 1;
4972 }
4973
4974 if (rb) {
4975 if (event->rcu_pending) {
4976 cond_synchronize_rcu(event->rcu_batches);
4977 event->rcu_pending = 0;
4978 }
4979
4980 spin_lock_irqsave(&rb->event_lock, flags);
4981 list_add_rcu(&event->rb_entry, &rb->event_list);
4982 spin_unlock_irqrestore(&rb->event_lock, flags);
4983 }
4984
4985 /*
4986 * Avoid racing with perf_mmap_close(AUX): stop the event
4987 * before swizzling the event::rb pointer; if it's getting
4988 * unmapped, its aux_mmap_count will be 0 and it won't
4989 * restart. See the comment in __perf_pmu_output_stop().
4990 *
4991 * Data will inevitably be lost when set_output is done in
4992 * mid-air, but then again, whoever does it like this is
4993 * not in for the data anyway.
4994 */
4995 if (has_aux(event))
4996 perf_event_stop(event, 0);
4997
4998 rcu_assign_pointer(event->rb, rb);
4999
5000 if (old_rb) {
5001 ring_buffer_put(old_rb);
5002 /*
5003 * Since we detached before setting the new rb, so that we
5004 * could attach the new rb, we could have missed a wakeup.
5005 * Provide it now.
5006 */
5007 wake_up_all(&event->waitq);
5008 }
5009 }
5010
5011 static void ring_buffer_wakeup(struct perf_event *event)
5012 {
5013 struct ring_buffer *rb;
5014
5015 rcu_read_lock();
5016 rb = rcu_dereference(event->rb);
5017 if (rb) {
5018 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5019 wake_up_all(&event->waitq);
5020 }
5021 rcu_read_unlock();
5022 }
5023
5024 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5025 {
5026 struct ring_buffer *rb;
5027
5028 rcu_read_lock();
5029 rb = rcu_dereference(event->rb);
5030 if (rb) {
5031 if (!atomic_inc_not_zero(&rb->refcount))
5032 rb = NULL;
5033 }
5034 rcu_read_unlock();
5035
5036 return rb;
5037 }
5038
5039 void ring_buffer_put(struct ring_buffer *rb)
5040 {
5041 if (!atomic_dec_and_test(&rb->refcount))
5042 return;
5043
5044 WARN_ON_ONCE(!list_empty(&rb->event_list));
5045
5046 call_rcu(&rb->rcu_head, rb_free_rcu);
5047 }
5048
5049 static void perf_mmap_open(struct vm_area_struct *vma)
5050 {
5051 struct perf_event *event = vma->vm_file->private_data;
5052
5053 atomic_inc(&event->mmap_count);
5054 atomic_inc(&event->rb->mmap_count);
5055
5056 if (vma->vm_pgoff)
5057 atomic_inc(&event->rb->aux_mmap_count);
5058
5059 if (event->pmu->event_mapped)
5060 event->pmu->event_mapped(event, vma->vm_mm);
5061 }
5062
5063 static void perf_pmu_output_stop(struct perf_event *event);
5064
5065 /*
5066 * A buffer can be mmap()ed multiple times; either directly through the same
5067 * event, or through other events by use of perf_event_set_output().
5068 *
5069 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5070 * the buffer here, where we still have a VM context. This means we need
5071 * to detach all events redirecting to us.
5072 */
5073 static void perf_mmap_close(struct vm_area_struct *vma)
5074 {
5075 struct perf_event *event = vma->vm_file->private_data;
5076
5077 struct ring_buffer *rb = ring_buffer_get(event);
5078 struct user_struct *mmap_user = rb->mmap_user;
5079 int mmap_locked = rb->mmap_locked;
5080 unsigned long size = perf_data_size(rb);
5081
5082 if (event->pmu->event_unmapped)
5083 event->pmu->event_unmapped(event, vma->vm_mm);
5084
5085 /*
5086 * rb->aux_mmap_count will always drop before rb->mmap_count and
5087 * event->mmap_count, so it is ok to use event->mmap_mutex to
5088 * serialize with perf_mmap here.
5089 */
5090 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5091 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5092 /*
5093 * Stop all AUX events that are writing to this buffer,
5094 * so that we can free its AUX pages and corresponding PMU
5095 * data. Note that after rb::aux_mmap_count dropped to zero,
5096 * they won't start any more (see perf_aux_output_begin()).
5097 */
5098 perf_pmu_output_stop(event);
5099
5100 /* now it's safe to free the pages */
5101 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5102 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5103
5104 /* this has to be the last one */
5105 rb_free_aux(rb);
5106 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5107
5108 mutex_unlock(&event->mmap_mutex);
5109 }
5110
5111 atomic_dec(&rb->mmap_count);
5112
5113 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5114 goto out_put;
5115
5116 ring_buffer_attach(event, NULL);
5117 mutex_unlock(&event->mmap_mutex);
5118
5119 /* If there's still other mmap()s of this buffer, we're done. */
5120 if (atomic_read(&rb->mmap_count))
5121 goto out_put;
5122
5123 /*
5124 * No other mmap()s, detach from all other events that might redirect
5125 * into the now unreachable buffer. Somewhat complicated by the
5126 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5127 */
5128 again:
5129 rcu_read_lock();
5130 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5131 if (!atomic_long_inc_not_zero(&event->refcount)) {
5132 /*
5133 * This event is en-route to free_event() which will
5134 * detach it and remove it from the list.
5135 */
5136 continue;
5137 }
5138 rcu_read_unlock();
5139
5140 mutex_lock(&event->mmap_mutex);
5141 /*
5142 * Check we didn't race with perf_event_set_output() which can
5143 * swizzle the rb from under us while we were waiting to
5144 * acquire mmap_mutex.
5145 *
5146 * If we find a different rb; ignore this event, a next
5147 * iteration will no longer find it on the list. We have to
5148 * still restart the iteration to make sure we're not now
5149 * iterating the wrong list.
5150 */
5151 if (event->rb == rb)
5152 ring_buffer_attach(event, NULL);
5153
5154 mutex_unlock(&event->mmap_mutex);
5155 put_event(event);
5156
5157 /*
5158 * Restart the iteration; either we're on the wrong list or
5159 * destroyed its integrity by doing a deletion.
5160 */
5161 goto again;
5162 }
5163 rcu_read_unlock();
5164
5165 /*
5166 * It could be there's still a few 0-ref events on the list; they'll
5167 * get cleaned up by free_event() -- they'll also still have their
5168 * ref on the rb and will free it whenever they are done with it.
5169 *
5170 * Aside from that, this buffer is 'fully' detached and unmapped,
5171 * undo the VM accounting.
5172 */
5173
5174 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5175 vma->vm_mm->pinned_vm -= mmap_locked;
5176 free_uid(mmap_user);
5177
5178 out_put:
5179 ring_buffer_put(rb); /* could be last */
5180 }
5181
5182 static const struct vm_operations_struct perf_mmap_vmops = {
5183 .open = perf_mmap_open,
5184 .close = perf_mmap_close, /* non mergable */
5185 .fault = perf_mmap_fault,
5186 .page_mkwrite = perf_mmap_fault,
5187 };
5188
5189 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5190 {
5191 struct perf_event *event = file->private_data;
5192 unsigned long user_locked, user_lock_limit;
5193 struct user_struct *user = current_user();
5194 unsigned long locked, lock_limit;
5195 struct ring_buffer *rb = NULL;
5196 unsigned long vma_size;
5197 unsigned long nr_pages;
5198 long user_extra = 0, extra = 0;
5199 int ret = 0, flags = 0;
5200
5201 /*
5202 * Don't allow mmap() of inherited per-task counters. This would
5203 * create a performance issue due to all children writing to the
5204 * same rb.
5205 */
5206 if (event->cpu == -1 && event->attr.inherit)
5207 return -EINVAL;
5208
5209 if (!(vma->vm_flags & VM_SHARED))
5210 return -EINVAL;
5211
5212 vma_size = vma->vm_end - vma->vm_start;
5213
5214 if (vma->vm_pgoff == 0) {
5215 nr_pages = (vma_size / PAGE_SIZE) - 1;
5216 } else {
5217 /*
5218 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5219 * mapped, all subsequent mappings should have the same size
5220 * and offset. Must be above the normal perf buffer.
5221 */
5222 u64 aux_offset, aux_size;
5223
5224 if (!event->rb)
5225 return -EINVAL;
5226
5227 nr_pages = vma_size / PAGE_SIZE;
5228
5229 mutex_lock(&event->mmap_mutex);
5230 ret = -EINVAL;
5231
5232 rb = event->rb;
5233 if (!rb)
5234 goto aux_unlock;
5235
5236 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5237 aux_size = READ_ONCE(rb->user_page->aux_size);
5238
5239 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5240 goto aux_unlock;
5241
5242 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5243 goto aux_unlock;
5244
5245 /* already mapped with a different offset */
5246 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5247 goto aux_unlock;
5248
5249 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5250 goto aux_unlock;
5251
5252 /* already mapped with a different size */
5253 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5254 goto aux_unlock;
5255
5256 if (!is_power_of_2(nr_pages))
5257 goto aux_unlock;
5258
5259 if (!atomic_inc_not_zero(&rb->mmap_count))
5260 goto aux_unlock;
5261
5262 if (rb_has_aux(rb)) {
5263 atomic_inc(&rb->aux_mmap_count);
5264 ret = 0;
5265 goto unlock;
5266 }
5267
5268 atomic_set(&rb->aux_mmap_count, 1);
5269 user_extra = nr_pages;
5270
5271 goto accounting;
5272 }
5273
5274 /*
5275 * If we have rb pages ensure they're a power-of-two number, so we
5276 * can do bitmasks instead of modulo.
5277 */
5278 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5279 return -EINVAL;
5280
5281 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5282 return -EINVAL;
5283
5284 WARN_ON_ONCE(event->ctx->parent_ctx);
5285 again:
5286 mutex_lock(&event->mmap_mutex);
5287 if (event->rb) {
5288 if (event->rb->nr_pages != nr_pages) {
5289 ret = -EINVAL;
5290 goto unlock;
5291 }
5292
5293 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5294 /*
5295 * Raced against perf_mmap_close() through
5296 * perf_event_set_output(). Try again, hope for better
5297 * luck.
5298 */
5299 mutex_unlock(&event->mmap_mutex);
5300 goto again;
5301 }
5302
5303 goto unlock;
5304 }
5305
5306 user_extra = nr_pages + 1;
5307
5308 accounting:
5309 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5310
5311 /*
5312 * Increase the limit linearly with more CPUs:
5313 */
5314 user_lock_limit *= num_online_cpus();
5315
5316 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5317
5318 if (user_locked > user_lock_limit)
5319 extra = user_locked - user_lock_limit;
5320
5321 lock_limit = rlimit(RLIMIT_MEMLOCK);
5322 lock_limit >>= PAGE_SHIFT;
5323 locked = vma->vm_mm->pinned_vm + extra;
5324
5325 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5326 !capable(CAP_IPC_LOCK)) {
5327 ret = -EPERM;
5328 goto unlock;
5329 }
5330
5331 WARN_ON(!rb && event->rb);
5332
5333 if (vma->vm_flags & VM_WRITE)
5334 flags |= RING_BUFFER_WRITABLE;
5335
5336 if (!rb) {
5337 rb = rb_alloc(nr_pages,
5338 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5339 event->cpu, flags);
5340
5341 if (!rb) {
5342 ret = -ENOMEM;
5343 goto unlock;
5344 }
5345
5346 atomic_set(&rb->mmap_count, 1);
5347 rb->mmap_user = get_current_user();
5348 rb->mmap_locked = extra;
5349
5350 ring_buffer_attach(event, rb);
5351
5352 perf_event_init_userpage(event);
5353 perf_event_update_userpage(event);
5354 } else {
5355 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5356 event->attr.aux_watermark, flags);
5357 if (!ret)
5358 rb->aux_mmap_locked = extra;
5359 }
5360
5361 unlock:
5362 if (!ret) {
5363 atomic_long_add(user_extra, &user->locked_vm);
5364 vma->vm_mm->pinned_vm += extra;
5365
5366 atomic_inc(&event->mmap_count);
5367 } else if (rb) {
5368 atomic_dec(&rb->mmap_count);
5369 }
5370 aux_unlock:
5371 mutex_unlock(&event->mmap_mutex);
5372
5373 /*
5374 * Since pinned accounting is per vm we cannot allow fork() to copy our
5375 * vma.
5376 */
5377 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5378 vma->vm_ops = &perf_mmap_vmops;
5379
5380 if (event->pmu->event_mapped)
5381 event->pmu->event_mapped(event, vma->vm_mm);
5382
5383 return ret;
5384 }
5385
5386 static int perf_fasync(int fd, struct file *filp, int on)
5387 {
5388 struct inode *inode = file_inode(filp);
5389 struct perf_event *event = filp->private_data;
5390 int retval;
5391
5392 inode_lock(inode);
5393 retval = fasync_helper(fd, filp, on, &event->fasync);
5394 inode_unlock(inode);
5395
5396 if (retval < 0)
5397 return retval;
5398
5399 return 0;
5400 }
5401
5402 static const struct file_operations perf_fops = {
5403 .llseek = no_llseek,
5404 .release = perf_release,
5405 .read = perf_read,
5406 .poll = perf_poll,
5407 .unlocked_ioctl = perf_ioctl,
5408 .compat_ioctl = perf_compat_ioctl,
5409 .mmap = perf_mmap,
5410 .fasync = perf_fasync,
5411 };
5412
5413 /*
5414 * Perf event wakeup
5415 *
5416 * If there's data, ensure we set the poll() state and publish everything
5417 * to user-space before waking everybody up.
5418 */
5419
5420 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5421 {
5422 /* only the parent has fasync state */
5423 if (event->parent)
5424 event = event->parent;
5425 return &event->fasync;
5426 }
5427
5428 void perf_event_wakeup(struct perf_event *event)
5429 {
5430 ring_buffer_wakeup(event);
5431
5432 if (event->pending_kill) {
5433 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5434 event->pending_kill = 0;
5435 }
5436 }
5437
5438 static void perf_pending_event(struct irq_work *entry)
5439 {
5440 struct perf_event *event = container_of(entry,
5441 struct perf_event, pending);
5442 int rctx;
5443
5444 rctx = perf_swevent_get_recursion_context();
5445 /*
5446 * If we 'fail' here, that's OK, it means recursion is already disabled
5447 * and we won't recurse 'further'.
5448 */
5449
5450 if (event->pending_disable) {
5451 event->pending_disable = 0;
5452 perf_event_disable_local(event);
5453 }
5454
5455 if (event->pending_wakeup) {
5456 event->pending_wakeup = 0;
5457 perf_event_wakeup(event);
5458 }
5459
5460 if (rctx >= 0)
5461 perf_swevent_put_recursion_context(rctx);
5462 }
5463
5464 /*
5465 * We assume there is only KVM supporting the callbacks.
5466 * Later on, we might change it to a list if there is
5467 * another virtualization implementation supporting the callbacks.
5468 */
5469 struct perf_guest_info_callbacks *perf_guest_cbs;
5470
5471 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5472 {
5473 perf_guest_cbs = cbs;
5474 return 0;
5475 }
5476 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5477
5478 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5479 {
5480 perf_guest_cbs = NULL;
5481 return 0;
5482 }
5483 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5484
5485 static void
5486 perf_output_sample_regs(struct perf_output_handle *handle,
5487 struct pt_regs *regs, u64 mask)
5488 {
5489 int bit;
5490 DECLARE_BITMAP(_mask, 64);
5491
5492 bitmap_from_u64(_mask, mask);
5493 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5494 u64 val;
5495
5496 val = perf_reg_value(regs, bit);
5497 perf_output_put(handle, val);
5498 }
5499 }
5500
5501 static void perf_sample_regs_user(struct perf_regs *regs_user,
5502 struct pt_regs *regs,
5503 struct pt_regs *regs_user_copy)
5504 {
5505 if (user_mode(regs)) {
5506 regs_user->abi = perf_reg_abi(current);
5507 regs_user->regs = regs;
5508 } else if (current->mm) {
5509 perf_get_regs_user(regs_user, regs, regs_user_copy);
5510 } else {
5511 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5512 regs_user->regs = NULL;
5513 }
5514 }
5515
5516 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5517 struct pt_regs *regs)
5518 {
5519 regs_intr->regs = regs;
5520 regs_intr->abi = perf_reg_abi(current);
5521 }
5522
5523
5524 /*
5525 * Get remaining task size from user stack pointer.
5526 *
5527 * It'd be better to take stack vma map and limit this more
5528 * precisly, but there's no way to get it safely under interrupt,
5529 * so using TASK_SIZE as limit.
5530 */
5531 static u64 perf_ustack_task_size(struct pt_regs *regs)
5532 {
5533 unsigned long addr = perf_user_stack_pointer(regs);
5534
5535 if (!addr || addr >= TASK_SIZE)
5536 return 0;
5537
5538 return TASK_SIZE - addr;
5539 }
5540
5541 static u16
5542 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5543 struct pt_regs *regs)
5544 {
5545 u64 task_size;
5546
5547 /* No regs, no stack pointer, no dump. */
5548 if (!regs)
5549 return 0;
5550
5551 /*
5552 * Check if we fit in with the requested stack size into the:
5553 * - TASK_SIZE
5554 * If we don't, we limit the size to the TASK_SIZE.
5555 *
5556 * - remaining sample size
5557 * If we don't, we customize the stack size to
5558 * fit in to the remaining sample size.
5559 */
5560
5561 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5562 stack_size = min(stack_size, (u16) task_size);
5563
5564 /* Current header size plus static size and dynamic size. */
5565 header_size += 2 * sizeof(u64);
5566
5567 /* Do we fit in with the current stack dump size? */
5568 if ((u16) (header_size + stack_size) < header_size) {
5569 /*
5570 * If we overflow the maximum size for the sample,
5571 * we customize the stack dump size to fit in.
5572 */
5573 stack_size = USHRT_MAX - header_size - sizeof(u64);
5574 stack_size = round_up(stack_size, sizeof(u64));
5575 }
5576
5577 return stack_size;
5578 }
5579
5580 static void
5581 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5582 struct pt_regs *regs)
5583 {
5584 /* Case of a kernel thread, nothing to dump */
5585 if (!regs) {
5586 u64 size = 0;
5587 perf_output_put(handle, size);
5588 } else {
5589 unsigned long sp;
5590 unsigned int rem;
5591 u64 dyn_size;
5592
5593 /*
5594 * We dump:
5595 * static size
5596 * - the size requested by user or the best one we can fit
5597 * in to the sample max size
5598 * data
5599 * - user stack dump data
5600 * dynamic size
5601 * - the actual dumped size
5602 */
5603
5604 /* Static size. */
5605 perf_output_put(handle, dump_size);
5606
5607 /* Data. */
5608 sp = perf_user_stack_pointer(regs);
5609 rem = __output_copy_user(handle, (void *) sp, dump_size);
5610 dyn_size = dump_size - rem;
5611
5612 perf_output_skip(handle, rem);
5613
5614 /* Dynamic size. */
5615 perf_output_put(handle, dyn_size);
5616 }
5617 }
5618
5619 static void __perf_event_header__init_id(struct perf_event_header *header,
5620 struct perf_sample_data *data,
5621 struct perf_event *event)
5622 {
5623 u64 sample_type = event->attr.sample_type;
5624
5625 data->type = sample_type;
5626 header->size += event->id_header_size;
5627
5628 if (sample_type & PERF_SAMPLE_TID) {
5629 /* namespace issues */
5630 data->tid_entry.pid = perf_event_pid(event, current);
5631 data->tid_entry.tid = perf_event_tid(event, current);
5632 }
5633
5634 if (sample_type & PERF_SAMPLE_TIME)
5635 data->time = perf_event_clock(event);
5636
5637 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5638 data->id = primary_event_id(event);
5639
5640 if (sample_type & PERF_SAMPLE_STREAM_ID)
5641 data->stream_id = event->id;
5642
5643 if (sample_type & PERF_SAMPLE_CPU) {
5644 data->cpu_entry.cpu = raw_smp_processor_id();
5645 data->cpu_entry.reserved = 0;
5646 }
5647 }
5648
5649 void perf_event_header__init_id(struct perf_event_header *header,
5650 struct perf_sample_data *data,
5651 struct perf_event *event)
5652 {
5653 if (event->attr.sample_id_all)
5654 __perf_event_header__init_id(header, data, event);
5655 }
5656
5657 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5658 struct perf_sample_data *data)
5659 {
5660 u64 sample_type = data->type;
5661
5662 if (sample_type & PERF_SAMPLE_TID)
5663 perf_output_put(handle, data->tid_entry);
5664
5665 if (sample_type & PERF_SAMPLE_TIME)
5666 perf_output_put(handle, data->time);
5667
5668 if (sample_type & PERF_SAMPLE_ID)
5669 perf_output_put(handle, data->id);
5670
5671 if (sample_type & PERF_SAMPLE_STREAM_ID)
5672 perf_output_put(handle, data->stream_id);
5673
5674 if (sample_type & PERF_SAMPLE_CPU)
5675 perf_output_put(handle, data->cpu_entry);
5676
5677 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5678 perf_output_put(handle, data->id);
5679 }
5680
5681 void perf_event__output_id_sample(struct perf_event *event,
5682 struct perf_output_handle *handle,
5683 struct perf_sample_data *sample)
5684 {
5685 if (event->attr.sample_id_all)
5686 __perf_event__output_id_sample(handle, sample);
5687 }
5688
5689 static void perf_output_read_one(struct perf_output_handle *handle,
5690 struct perf_event *event,
5691 u64 enabled, u64 running)
5692 {
5693 u64 read_format = event->attr.read_format;
5694 u64 values[4];
5695 int n = 0;
5696
5697 values[n++] = perf_event_count(event);
5698 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5699 values[n++] = enabled +
5700 atomic64_read(&event->child_total_time_enabled);
5701 }
5702 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5703 values[n++] = running +
5704 atomic64_read(&event->child_total_time_running);
5705 }
5706 if (read_format & PERF_FORMAT_ID)
5707 values[n++] = primary_event_id(event);
5708
5709 __output_copy(handle, values, n * sizeof(u64));
5710 }
5711
5712 static void perf_output_read_group(struct perf_output_handle *handle,
5713 struct perf_event *event,
5714 u64 enabled, u64 running)
5715 {
5716 struct perf_event *leader = event->group_leader, *sub;
5717 u64 read_format = event->attr.read_format;
5718 u64 values[5];
5719 int n = 0;
5720
5721 values[n++] = 1 + leader->nr_siblings;
5722
5723 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5724 values[n++] = enabled;
5725
5726 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5727 values[n++] = running;
5728
5729 if (leader != event)
5730 leader->pmu->read(leader);
5731
5732 values[n++] = perf_event_count(leader);
5733 if (read_format & PERF_FORMAT_ID)
5734 values[n++] = primary_event_id(leader);
5735
5736 __output_copy(handle, values, n * sizeof(u64));
5737
5738 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5739 n = 0;
5740
5741 if ((sub != event) &&
5742 (sub->state == PERF_EVENT_STATE_ACTIVE))
5743 sub->pmu->read(sub);
5744
5745 values[n++] = perf_event_count(sub);
5746 if (read_format & PERF_FORMAT_ID)
5747 values[n++] = primary_event_id(sub);
5748
5749 __output_copy(handle, values, n * sizeof(u64));
5750 }
5751 }
5752
5753 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5754 PERF_FORMAT_TOTAL_TIME_RUNNING)
5755
5756 /*
5757 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5758 *
5759 * The problem is that its both hard and excessively expensive to iterate the
5760 * child list, not to mention that its impossible to IPI the children running
5761 * on another CPU, from interrupt/NMI context.
5762 */
5763 static void perf_output_read(struct perf_output_handle *handle,
5764 struct perf_event *event)
5765 {
5766 u64 enabled = 0, running = 0, now;
5767 u64 read_format = event->attr.read_format;
5768
5769 /*
5770 * compute total_time_enabled, total_time_running
5771 * based on snapshot values taken when the event
5772 * was last scheduled in.
5773 *
5774 * we cannot simply called update_context_time()
5775 * because of locking issue as we are called in
5776 * NMI context
5777 */
5778 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5779 calc_timer_values(event, &now, &enabled, &running);
5780
5781 if (event->attr.read_format & PERF_FORMAT_GROUP)
5782 perf_output_read_group(handle, event, enabled, running);
5783 else
5784 perf_output_read_one(handle, event, enabled, running);
5785 }
5786
5787 void perf_output_sample(struct perf_output_handle *handle,
5788 struct perf_event_header *header,
5789 struct perf_sample_data *data,
5790 struct perf_event *event)
5791 {
5792 u64 sample_type = data->type;
5793
5794 perf_output_put(handle, *header);
5795
5796 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5797 perf_output_put(handle, data->id);
5798
5799 if (sample_type & PERF_SAMPLE_IP)
5800 perf_output_put(handle, data->ip);
5801
5802 if (sample_type & PERF_SAMPLE_TID)
5803 perf_output_put(handle, data->tid_entry);
5804
5805 if (sample_type & PERF_SAMPLE_TIME)
5806 perf_output_put(handle, data->time);
5807
5808 if (sample_type & PERF_SAMPLE_ADDR)
5809 perf_output_put(handle, data->addr);
5810
5811 if (sample_type & PERF_SAMPLE_ID)
5812 perf_output_put(handle, data->id);
5813
5814 if (sample_type & PERF_SAMPLE_STREAM_ID)
5815 perf_output_put(handle, data->stream_id);
5816
5817 if (sample_type & PERF_SAMPLE_CPU)
5818 perf_output_put(handle, data->cpu_entry);
5819
5820 if (sample_type & PERF_SAMPLE_PERIOD)
5821 perf_output_put(handle, data->period);
5822
5823 if (sample_type & PERF_SAMPLE_READ)
5824 perf_output_read(handle, event);
5825
5826 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5827 if (data->callchain) {
5828 int size = 1;
5829
5830 if (data->callchain)
5831 size += data->callchain->nr;
5832
5833 size *= sizeof(u64);
5834
5835 __output_copy(handle, data->callchain, size);
5836 } else {
5837 u64 nr = 0;
5838 perf_output_put(handle, nr);
5839 }
5840 }
5841
5842 if (sample_type & PERF_SAMPLE_RAW) {
5843 struct perf_raw_record *raw = data->raw;
5844
5845 if (raw) {
5846 struct perf_raw_frag *frag = &raw->frag;
5847
5848 perf_output_put(handle, raw->size);
5849 do {
5850 if (frag->copy) {
5851 __output_custom(handle, frag->copy,
5852 frag->data, frag->size);
5853 } else {
5854 __output_copy(handle, frag->data,
5855 frag->size);
5856 }
5857 if (perf_raw_frag_last(frag))
5858 break;
5859 frag = frag->next;
5860 } while (1);
5861 if (frag->pad)
5862 __output_skip(handle, NULL, frag->pad);
5863 } else {
5864 struct {
5865 u32 size;
5866 u32 data;
5867 } raw = {
5868 .size = sizeof(u32),
5869 .data = 0,
5870 };
5871 perf_output_put(handle, raw);
5872 }
5873 }
5874
5875 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5876 if (data->br_stack) {
5877 size_t size;
5878
5879 size = data->br_stack->nr
5880 * sizeof(struct perf_branch_entry);
5881
5882 perf_output_put(handle, data->br_stack->nr);
5883 perf_output_copy(handle, data->br_stack->entries, size);
5884 } else {
5885 /*
5886 * we always store at least the value of nr
5887 */
5888 u64 nr = 0;
5889 perf_output_put(handle, nr);
5890 }
5891 }
5892
5893 if (sample_type & PERF_SAMPLE_REGS_USER) {
5894 u64 abi = data->regs_user.abi;
5895
5896 /*
5897 * If there are no regs to dump, notice it through
5898 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5899 */
5900 perf_output_put(handle, abi);
5901
5902 if (abi) {
5903 u64 mask = event->attr.sample_regs_user;
5904 perf_output_sample_regs(handle,
5905 data->regs_user.regs,
5906 mask);
5907 }
5908 }
5909
5910 if (sample_type & PERF_SAMPLE_STACK_USER) {
5911 perf_output_sample_ustack(handle,
5912 data->stack_user_size,
5913 data->regs_user.regs);
5914 }
5915
5916 if (sample_type & PERF_SAMPLE_WEIGHT)
5917 perf_output_put(handle, data->weight);
5918
5919 if (sample_type & PERF_SAMPLE_DATA_SRC)
5920 perf_output_put(handle, data->data_src.val);
5921
5922 if (sample_type & PERF_SAMPLE_TRANSACTION)
5923 perf_output_put(handle, data->txn);
5924
5925 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5926 u64 abi = data->regs_intr.abi;
5927 /*
5928 * If there are no regs to dump, notice it through
5929 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5930 */
5931 perf_output_put(handle, abi);
5932
5933 if (abi) {
5934 u64 mask = event->attr.sample_regs_intr;
5935
5936 perf_output_sample_regs(handle,
5937 data->regs_intr.regs,
5938 mask);
5939 }
5940 }
5941
5942 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
5943 perf_output_put(handle, data->phys_addr);
5944
5945 if (!event->attr.watermark) {
5946 int wakeup_events = event->attr.wakeup_events;
5947
5948 if (wakeup_events) {
5949 struct ring_buffer *rb = handle->rb;
5950 int events = local_inc_return(&rb->events);
5951
5952 if (events >= wakeup_events) {
5953 local_sub(wakeup_events, &rb->events);
5954 local_inc(&rb->wakeup);
5955 }
5956 }
5957 }
5958 }
5959
5960 static u64 perf_virt_to_phys(u64 virt)
5961 {
5962 u64 phys_addr = 0;
5963 struct page *p = NULL;
5964
5965 if (!virt)
5966 return 0;
5967
5968 if (virt >= TASK_SIZE) {
5969 /* If it's vmalloc()d memory, leave phys_addr as 0 */
5970 if (virt_addr_valid((void *)(uintptr_t)virt) &&
5971 !(virt >= VMALLOC_START && virt < VMALLOC_END))
5972 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
5973 } else {
5974 /*
5975 * Walking the pages tables for user address.
5976 * Interrupts are disabled, so it prevents any tear down
5977 * of the page tables.
5978 * Try IRQ-safe __get_user_pages_fast first.
5979 * If failed, leave phys_addr as 0.
5980 */
5981 if ((current->mm != NULL) &&
5982 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
5983 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
5984
5985 if (p)
5986 put_page(p);
5987 }
5988
5989 return phys_addr;
5990 }
5991
5992 void perf_prepare_sample(struct perf_event_header *header,
5993 struct perf_sample_data *data,
5994 struct perf_event *event,
5995 struct pt_regs *regs)
5996 {
5997 u64 sample_type = event->attr.sample_type;
5998
5999 header->type = PERF_RECORD_SAMPLE;
6000 header->size = sizeof(*header) + event->header_size;
6001
6002 header->misc = 0;
6003 header->misc |= perf_misc_flags(regs);
6004
6005 __perf_event_header__init_id(header, data, event);
6006
6007 if (sample_type & PERF_SAMPLE_IP)
6008 data->ip = perf_instruction_pointer(regs);
6009
6010 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6011 int size = 1;
6012
6013 data->callchain = perf_callchain(event, regs);
6014
6015 if (data->callchain)
6016 size += data->callchain->nr;
6017
6018 header->size += size * sizeof(u64);
6019 }
6020
6021 if (sample_type & PERF_SAMPLE_RAW) {
6022 struct perf_raw_record *raw = data->raw;
6023 int size;
6024
6025 if (raw) {
6026 struct perf_raw_frag *frag = &raw->frag;
6027 u32 sum = 0;
6028
6029 do {
6030 sum += frag->size;
6031 if (perf_raw_frag_last(frag))
6032 break;
6033 frag = frag->next;
6034 } while (1);
6035
6036 size = round_up(sum + sizeof(u32), sizeof(u64));
6037 raw->size = size - sizeof(u32);
6038 frag->pad = raw->size - sum;
6039 } else {
6040 size = sizeof(u64);
6041 }
6042
6043 header->size += size;
6044 }
6045
6046 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6047 int size = sizeof(u64); /* nr */
6048 if (data->br_stack) {
6049 size += data->br_stack->nr
6050 * sizeof(struct perf_branch_entry);
6051 }
6052 header->size += size;
6053 }
6054
6055 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6056 perf_sample_regs_user(&data->regs_user, regs,
6057 &data->regs_user_copy);
6058
6059 if (sample_type & PERF_SAMPLE_REGS_USER) {
6060 /* regs dump ABI info */
6061 int size = sizeof(u64);
6062
6063 if (data->regs_user.regs) {
6064 u64 mask = event->attr.sample_regs_user;
6065 size += hweight64(mask) * sizeof(u64);
6066 }
6067
6068 header->size += size;
6069 }
6070
6071 if (sample_type & PERF_SAMPLE_STACK_USER) {
6072 /*
6073 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6074 * processed as the last one or have additional check added
6075 * in case new sample type is added, because we could eat
6076 * up the rest of the sample size.
6077 */
6078 u16 stack_size = event->attr.sample_stack_user;
6079 u16 size = sizeof(u64);
6080
6081 stack_size = perf_sample_ustack_size(stack_size, header->size,
6082 data->regs_user.regs);
6083
6084 /*
6085 * If there is something to dump, add space for the dump
6086 * itself and for the field that tells the dynamic size,
6087 * which is how many have been actually dumped.
6088 */
6089 if (stack_size)
6090 size += sizeof(u64) + stack_size;
6091
6092 data->stack_user_size = stack_size;
6093 header->size += size;
6094 }
6095
6096 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6097 /* regs dump ABI info */
6098 int size = sizeof(u64);
6099
6100 perf_sample_regs_intr(&data->regs_intr, regs);
6101
6102 if (data->regs_intr.regs) {
6103 u64 mask = event->attr.sample_regs_intr;
6104
6105 size += hweight64(mask) * sizeof(u64);
6106 }
6107
6108 header->size += size;
6109 }
6110
6111 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6112 data->phys_addr = perf_virt_to_phys(data->addr);
6113 }
6114
6115 static void __always_inline
6116 __perf_event_output(struct perf_event *event,
6117 struct perf_sample_data *data,
6118 struct pt_regs *regs,
6119 int (*output_begin)(struct perf_output_handle *,
6120 struct perf_event *,
6121 unsigned int))
6122 {
6123 struct perf_output_handle handle;
6124 struct perf_event_header header;
6125
6126 /* protect the callchain buffers */
6127 rcu_read_lock();
6128
6129 perf_prepare_sample(&header, data, event, regs);
6130
6131 if (output_begin(&handle, event, header.size))
6132 goto exit;
6133
6134 perf_output_sample(&handle, &header, data, event);
6135
6136 perf_output_end(&handle);
6137
6138 exit:
6139 rcu_read_unlock();
6140 }
6141
6142 void
6143 perf_event_output_forward(struct perf_event *event,
6144 struct perf_sample_data *data,
6145 struct pt_regs *regs)
6146 {
6147 __perf_event_output(event, data, regs, perf_output_begin_forward);
6148 }
6149
6150 void
6151 perf_event_output_backward(struct perf_event *event,
6152 struct perf_sample_data *data,
6153 struct pt_regs *regs)
6154 {
6155 __perf_event_output(event, data, regs, perf_output_begin_backward);
6156 }
6157
6158 void
6159 perf_event_output(struct perf_event *event,
6160 struct perf_sample_data *data,
6161 struct pt_regs *regs)
6162 {
6163 __perf_event_output(event, data, regs, perf_output_begin);
6164 }
6165
6166 /*
6167 * read event_id
6168 */
6169
6170 struct perf_read_event {
6171 struct perf_event_header header;
6172
6173 u32 pid;
6174 u32 tid;
6175 };
6176
6177 static void
6178 perf_event_read_event(struct perf_event *event,
6179 struct task_struct *task)
6180 {
6181 struct perf_output_handle handle;
6182 struct perf_sample_data sample;
6183 struct perf_read_event read_event = {
6184 .header = {
6185 .type = PERF_RECORD_READ,
6186 .misc = 0,
6187 .size = sizeof(read_event) + event->read_size,
6188 },
6189 .pid = perf_event_pid(event, task),
6190 .tid = perf_event_tid(event, task),
6191 };
6192 int ret;
6193
6194 perf_event_header__init_id(&read_event.header, &sample, event);
6195 ret = perf_output_begin(&handle, event, read_event.header.size);
6196 if (ret)
6197 return;
6198
6199 perf_output_put(&handle, read_event);
6200 perf_output_read(&handle, event);
6201 perf_event__output_id_sample(event, &handle, &sample);
6202
6203 perf_output_end(&handle);
6204 }
6205
6206 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6207
6208 static void
6209 perf_iterate_ctx(struct perf_event_context *ctx,
6210 perf_iterate_f output,
6211 void *data, bool all)
6212 {
6213 struct perf_event *event;
6214
6215 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6216 if (!all) {
6217 if (event->state < PERF_EVENT_STATE_INACTIVE)
6218 continue;
6219 if (!event_filter_match(event))
6220 continue;
6221 }
6222
6223 output(event, data);
6224 }
6225 }
6226
6227 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6228 {
6229 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6230 struct perf_event *event;
6231
6232 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6233 /*
6234 * Skip events that are not fully formed yet; ensure that
6235 * if we observe event->ctx, both event and ctx will be
6236 * complete enough. See perf_install_in_context().
6237 */
6238 if (!smp_load_acquire(&event->ctx))
6239 continue;
6240
6241 if (event->state < PERF_EVENT_STATE_INACTIVE)
6242 continue;
6243 if (!event_filter_match(event))
6244 continue;
6245 output(event, data);
6246 }
6247 }
6248
6249 /*
6250 * Iterate all events that need to receive side-band events.
6251 *
6252 * For new callers; ensure that account_pmu_sb_event() includes
6253 * your event, otherwise it might not get delivered.
6254 */
6255 static void
6256 perf_iterate_sb(perf_iterate_f output, void *data,
6257 struct perf_event_context *task_ctx)
6258 {
6259 struct perf_event_context *ctx;
6260 int ctxn;
6261
6262 rcu_read_lock();
6263 preempt_disable();
6264
6265 /*
6266 * If we have task_ctx != NULL we only notify the task context itself.
6267 * The task_ctx is set only for EXIT events before releasing task
6268 * context.
6269 */
6270 if (task_ctx) {
6271 perf_iterate_ctx(task_ctx, output, data, false);
6272 goto done;
6273 }
6274
6275 perf_iterate_sb_cpu(output, data);
6276
6277 for_each_task_context_nr(ctxn) {
6278 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6279 if (ctx)
6280 perf_iterate_ctx(ctx, output, data, false);
6281 }
6282 done:
6283 preempt_enable();
6284 rcu_read_unlock();
6285 }
6286
6287 /*
6288 * Clear all file-based filters at exec, they'll have to be
6289 * re-instated when/if these objects are mmapped again.
6290 */
6291 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6292 {
6293 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6294 struct perf_addr_filter *filter;
6295 unsigned int restart = 0, count = 0;
6296 unsigned long flags;
6297
6298 if (!has_addr_filter(event))
6299 return;
6300
6301 raw_spin_lock_irqsave(&ifh->lock, flags);
6302 list_for_each_entry(filter, &ifh->list, entry) {
6303 if (filter->inode) {
6304 event->addr_filters_offs[count] = 0;
6305 restart++;
6306 }
6307
6308 count++;
6309 }
6310
6311 if (restart)
6312 event->addr_filters_gen++;
6313 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6314
6315 if (restart)
6316 perf_event_stop(event, 1);
6317 }
6318
6319 void perf_event_exec(void)
6320 {
6321 struct perf_event_context *ctx;
6322 int ctxn;
6323
6324 rcu_read_lock();
6325 for_each_task_context_nr(ctxn) {
6326 ctx = current->perf_event_ctxp[ctxn];
6327 if (!ctx)
6328 continue;
6329
6330 perf_event_enable_on_exec(ctxn);
6331
6332 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6333 true);
6334 }
6335 rcu_read_unlock();
6336 }
6337
6338 struct remote_output {
6339 struct ring_buffer *rb;
6340 int err;
6341 };
6342
6343 static void __perf_event_output_stop(struct perf_event *event, void *data)
6344 {
6345 struct perf_event *parent = event->parent;
6346 struct remote_output *ro = data;
6347 struct ring_buffer *rb = ro->rb;
6348 struct stop_event_data sd = {
6349 .event = event,
6350 };
6351
6352 if (!has_aux(event))
6353 return;
6354
6355 if (!parent)
6356 parent = event;
6357
6358 /*
6359 * In case of inheritance, it will be the parent that links to the
6360 * ring-buffer, but it will be the child that's actually using it.
6361 *
6362 * We are using event::rb to determine if the event should be stopped,
6363 * however this may race with ring_buffer_attach() (through set_output),
6364 * which will make us skip the event that actually needs to be stopped.
6365 * So ring_buffer_attach() has to stop an aux event before re-assigning
6366 * its rb pointer.
6367 */
6368 if (rcu_dereference(parent->rb) == rb)
6369 ro->err = __perf_event_stop(&sd);
6370 }
6371
6372 static int __perf_pmu_output_stop(void *info)
6373 {
6374 struct perf_event *event = info;
6375 struct pmu *pmu = event->pmu;
6376 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6377 struct remote_output ro = {
6378 .rb = event->rb,
6379 };
6380
6381 rcu_read_lock();
6382 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6383 if (cpuctx->task_ctx)
6384 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6385 &ro, false);
6386 rcu_read_unlock();
6387
6388 return ro.err;
6389 }
6390
6391 static void perf_pmu_output_stop(struct perf_event *event)
6392 {
6393 struct perf_event *iter;
6394 int err, cpu;
6395
6396 restart:
6397 rcu_read_lock();
6398 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6399 /*
6400 * For per-CPU events, we need to make sure that neither they
6401 * nor their children are running; for cpu==-1 events it's
6402 * sufficient to stop the event itself if it's active, since
6403 * it can't have children.
6404 */
6405 cpu = iter->cpu;
6406 if (cpu == -1)
6407 cpu = READ_ONCE(iter->oncpu);
6408
6409 if (cpu == -1)
6410 continue;
6411
6412 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6413 if (err == -EAGAIN) {
6414 rcu_read_unlock();
6415 goto restart;
6416 }
6417 }
6418 rcu_read_unlock();
6419 }
6420
6421 /*
6422 * task tracking -- fork/exit
6423 *
6424 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6425 */
6426
6427 struct perf_task_event {
6428 struct task_struct *task;
6429 struct perf_event_context *task_ctx;
6430
6431 struct {
6432 struct perf_event_header header;
6433
6434 u32 pid;
6435 u32 ppid;
6436 u32 tid;
6437 u32 ptid;
6438 u64 time;
6439 } event_id;
6440 };
6441
6442 static int perf_event_task_match(struct perf_event *event)
6443 {
6444 return event->attr.comm || event->attr.mmap ||
6445 event->attr.mmap2 || event->attr.mmap_data ||
6446 event->attr.task;
6447 }
6448
6449 static void perf_event_task_output(struct perf_event *event,
6450 void *data)
6451 {
6452 struct perf_task_event *task_event = data;
6453 struct perf_output_handle handle;
6454 struct perf_sample_data sample;
6455 struct task_struct *task = task_event->task;
6456 int ret, size = task_event->event_id.header.size;
6457
6458 if (!perf_event_task_match(event))
6459 return;
6460
6461 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6462
6463 ret = perf_output_begin(&handle, event,
6464 task_event->event_id.header.size);
6465 if (ret)
6466 goto out;
6467
6468 task_event->event_id.pid = perf_event_pid(event, task);
6469 task_event->event_id.ppid = perf_event_pid(event, current);
6470
6471 task_event->event_id.tid = perf_event_tid(event, task);
6472 task_event->event_id.ptid = perf_event_tid(event, current);
6473
6474 task_event->event_id.time = perf_event_clock(event);
6475
6476 perf_output_put(&handle, task_event->event_id);
6477
6478 perf_event__output_id_sample(event, &handle, &sample);
6479
6480 perf_output_end(&handle);
6481 out:
6482 task_event->event_id.header.size = size;
6483 }
6484
6485 static void perf_event_task(struct task_struct *task,
6486 struct perf_event_context *task_ctx,
6487 int new)
6488 {
6489 struct perf_task_event task_event;
6490
6491 if (!atomic_read(&nr_comm_events) &&
6492 !atomic_read(&nr_mmap_events) &&
6493 !atomic_read(&nr_task_events))
6494 return;
6495
6496 task_event = (struct perf_task_event){
6497 .task = task,
6498 .task_ctx = task_ctx,
6499 .event_id = {
6500 .header = {
6501 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6502 .misc = 0,
6503 .size = sizeof(task_event.event_id),
6504 },
6505 /* .pid */
6506 /* .ppid */
6507 /* .tid */
6508 /* .ptid */
6509 /* .time */
6510 },
6511 };
6512
6513 perf_iterate_sb(perf_event_task_output,
6514 &task_event,
6515 task_ctx);
6516 }
6517
6518 void perf_event_fork(struct task_struct *task)
6519 {
6520 perf_event_task(task, NULL, 1);
6521 perf_event_namespaces(task);
6522 }
6523
6524 /*
6525 * comm tracking
6526 */
6527
6528 struct perf_comm_event {
6529 struct task_struct *task;
6530 char *comm;
6531 int comm_size;
6532
6533 struct {
6534 struct perf_event_header header;
6535
6536 u32 pid;
6537 u32 tid;
6538 } event_id;
6539 };
6540
6541 static int perf_event_comm_match(struct perf_event *event)
6542 {
6543 return event->attr.comm;
6544 }
6545
6546 static void perf_event_comm_output(struct perf_event *event,
6547 void *data)
6548 {
6549 struct perf_comm_event *comm_event = data;
6550 struct perf_output_handle handle;
6551 struct perf_sample_data sample;
6552 int size = comm_event->event_id.header.size;
6553 int ret;
6554
6555 if (!perf_event_comm_match(event))
6556 return;
6557
6558 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6559 ret = perf_output_begin(&handle, event,
6560 comm_event->event_id.header.size);
6561
6562 if (ret)
6563 goto out;
6564
6565 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6566 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6567
6568 perf_output_put(&handle, comm_event->event_id);
6569 __output_copy(&handle, comm_event->comm,
6570 comm_event->comm_size);
6571
6572 perf_event__output_id_sample(event, &handle, &sample);
6573
6574 perf_output_end(&handle);
6575 out:
6576 comm_event->event_id.header.size = size;
6577 }
6578
6579 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6580 {
6581 char comm[TASK_COMM_LEN];
6582 unsigned int size;
6583
6584 memset(comm, 0, sizeof(comm));
6585 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6586 size = ALIGN(strlen(comm)+1, sizeof(u64));
6587
6588 comm_event->comm = comm;
6589 comm_event->comm_size = size;
6590
6591 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6592
6593 perf_iterate_sb(perf_event_comm_output,
6594 comm_event,
6595 NULL);
6596 }
6597
6598 void perf_event_comm(struct task_struct *task, bool exec)
6599 {
6600 struct perf_comm_event comm_event;
6601
6602 if (!atomic_read(&nr_comm_events))
6603 return;
6604
6605 comm_event = (struct perf_comm_event){
6606 .task = task,
6607 /* .comm */
6608 /* .comm_size */
6609 .event_id = {
6610 .header = {
6611 .type = PERF_RECORD_COMM,
6612 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6613 /* .size */
6614 },
6615 /* .pid */
6616 /* .tid */
6617 },
6618 };
6619
6620 perf_event_comm_event(&comm_event);
6621 }
6622
6623 /*
6624 * namespaces tracking
6625 */
6626
6627 struct perf_namespaces_event {
6628 struct task_struct *task;
6629
6630 struct {
6631 struct perf_event_header header;
6632
6633 u32 pid;
6634 u32 tid;
6635 u64 nr_namespaces;
6636 struct perf_ns_link_info link_info[NR_NAMESPACES];
6637 } event_id;
6638 };
6639
6640 static int perf_event_namespaces_match(struct perf_event *event)
6641 {
6642 return event->attr.namespaces;
6643 }
6644
6645 static void perf_event_namespaces_output(struct perf_event *event,
6646 void *data)
6647 {
6648 struct perf_namespaces_event *namespaces_event = data;
6649 struct perf_output_handle handle;
6650 struct perf_sample_data sample;
6651 u16 header_size = namespaces_event->event_id.header.size;
6652 int ret;
6653
6654 if (!perf_event_namespaces_match(event))
6655 return;
6656
6657 perf_event_header__init_id(&namespaces_event->event_id.header,
6658 &sample, event);
6659 ret = perf_output_begin(&handle, event,
6660 namespaces_event->event_id.header.size);
6661 if (ret)
6662 goto out;
6663
6664 namespaces_event->event_id.pid = perf_event_pid(event,
6665 namespaces_event->task);
6666 namespaces_event->event_id.tid = perf_event_tid(event,
6667 namespaces_event->task);
6668
6669 perf_output_put(&handle, namespaces_event->event_id);
6670
6671 perf_event__output_id_sample(event, &handle, &sample);
6672
6673 perf_output_end(&handle);
6674 out:
6675 namespaces_event->event_id.header.size = header_size;
6676 }
6677
6678 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6679 struct task_struct *task,
6680 const struct proc_ns_operations *ns_ops)
6681 {
6682 struct path ns_path;
6683 struct inode *ns_inode;
6684 void *error;
6685
6686 error = ns_get_path(&ns_path, task, ns_ops);
6687 if (!error) {
6688 ns_inode = ns_path.dentry->d_inode;
6689 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6690 ns_link_info->ino = ns_inode->i_ino;
6691 path_put(&ns_path);
6692 }
6693 }
6694
6695 void perf_event_namespaces(struct task_struct *task)
6696 {
6697 struct perf_namespaces_event namespaces_event;
6698 struct perf_ns_link_info *ns_link_info;
6699
6700 if (!atomic_read(&nr_namespaces_events))
6701 return;
6702
6703 namespaces_event = (struct perf_namespaces_event){
6704 .task = task,
6705 .event_id = {
6706 .header = {
6707 .type = PERF_RECORD_NAMESPACES,
6708 .misc = 0,
6709 .size = sizeof(namespaces_event.event_id),
6710 },
6711 /* .pid */
6712 /* .tid */
6713 .nr_namespaces = NR_NAMESPACES,
6714 /* .link_info[NR_NAMESPACES] */
6715 },
6716 };
6717
6718 ns_link_info = namespaces_event.event_id.link_info;
6719
6720 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6721 task, &mntns_operations);
6722
6723 #ifdef CONFIG_USER_NS
6724 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6725 task, &userns_operations);
6726 #endif
6727 #ifdef CONFIG_NET_NS
6728 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6729 task, &netns_operations);
6730 #endif
6731 #ifdef CONFIG_UTS_NS
6732 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6733 task, &utsns_operations);
6734 #endif
6735 #ifdef CONFIG_IPC_NS
6736 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6737 task, &ipcns_operations);
6738 #endif
6739 #ifdef CONFIG_PID_NS
6740 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6741 task, &pidns_operations);
6742 #endif
6743 #ifdef CONFIG_CGROUPS
6744 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6745 task, &cgroupns_operations);
6746 #endif
6747
6748 perf_iterate_sb(perf_event_namespaces_output,
6749 &namespaces_event,
6750 NULL);
6751 }
6752
6753 /*
6754 * mmap tracking
6755 */
6756
6757 struct perf_mmap_event {
6758 struct vm_area_struct *vma;
6759
6760 const char *file_name;
6761 int file_size;
6762 int maj, min;
6763 u64 ino;
6764 u64 ino_generation;
6765 u32 prot, flags;
6766
6767 struct {
6768 struct perf_event_header header;
6769
6770 u32 pid;
6771 u32 tid;
6772 u64 start;
6773 u64 len;
6774 u64 pgoff;
6775 } event_id;
6776 };
6777
6778 static int perf_event_mmap_match(struct perf_event *event,
6779 void *data)
6780 {
6781 struct perf_mmap_event *mmap_event = data;
6782 struct vm_area_struct *vma = mmap_event->vma;
6783 int executable = vma->vm_flags & VM_EXEC;
6784
6785 return (!executable && event->attr.mmap_data) ||
6786 (executable && (event->attr.mmap || event->attr.mmap2));
6787 }
6788
6789 static void perf_event_mmap_output(struct perf_event *event,
6790 void *data)
6791 {
6792 struct perf_mmap_event *mmap_event = data;
6793 struct perf_output_handle handle;
6794 struct perf_sample_data sample;
6795 int size = mmap_event->event_id.header.size;
6796 int ret;
6797
6798 if (!perf_event_mmap_match(event, data))
6799 return;
6800
6801 if (event->attr.mmap2) {
6802 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6803 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6804 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6805 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6806 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6807 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6808 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6809 }
6810
6811 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6812 ret = perf_output_begin(&handle, event,
6813 mmap_event->event_id.header.size);
6814 if (ret)
6815 goto out;
6816
6817 mmap_event->event_id.pid = perf_event_pid(event, current);
6818 mmap_event->event_id.tid = perf_event_tid(event, current);
6819
6820 perf_output_put(&handle, mmap_event->event_id);
6821
6822 if (event->attr.mmap2) {
6823 perf_output_put(&handle, mmap_event->maj);
6824 perf_output_put(&handle, mmap_event->min);
6825 perf_output_put(&handle, mmap_event->ino);
6826 perf_output_put(&handle, mmap_event->ino_generation);
6827 perf_output_put(&handle, mmap_event->prot);
6828 perf_output_put(&handle, mmap_event->flags);
6829 }
6830
6831 __output_copy(&handle, mmap_event->file_name,
6832 mmap_event->file_size);
6833
6834 perf_event__output_id_sample(event, &handle, &sample);
6835
6836 perf_output_end(&handle);
6837 out:
6838 mmap_event->event_id.header.size = size;
6839 }
6840
6841 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6842 {
6843 struct vm_area_struct *vma = mmap_event->vma;
6844 struct file *file = vma->vm_file;
6845 int maj = 0, min = 0;
6846 u64 ino = 0, gen = 0;
6847 u32 prot = 0, flags = 0;
6848 unsigned int size;
6849 char tmp[16];
6850 char *buf = NULL;
6851 char *name;
6852
6853 if (vma->vm_flags & VM_READ)
6854 prot |= PROT_READ;
6855 if (vma->vm_flags & VM_WRITE)
6856 prot |= PROT_WRITE;
6857 if (vma->vm_flags & VM_EXEC)
6858 prot |= PROT_EXEC;
6859
6860 if (vma->vm_flags & VM_MAYSHARE)
6861 flags = MAP_SHARED;
6862 else
6863 flags = MAP_PRIVATE;
6864
6865 if (vma->vm_flags & VM_DENYWRITE)
6866 flags |= MAP_DENYWRITE;
6867 if (vma->vm_flags & VM_MAYEXEC)
6868 flags |= MAP_EXECUTABLE;
6869 if (vma->vm_flags & VM_LOCKED)
6870 flags |= MAP_LOCKED;
6871 if (vma->vm_flags & VM_HUGETLB)
6872 flags |= MAP_HUGETLB;
6873
6874 if (file) {
6875 struct inode *inode;
6876 dev_t dev;
6877
6878 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6879 if (!buf) {
6880 name = "//enomem";
6881 goto cpy_name;
6882 }
6883 /*
6884 * d_path() works from the end of the rb backwards, so we
6885 * need to add enough zero bytes after the string to handle
6886 * the 64bit alignment we do later.
6887 */
6888 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6889 if (IS_ERR(name)) {
6890 name = "//toolong";
6891 goto cpy_name;
6892 }
6893 inode = file_inode(vma->vm_file);
6894 dev = inode->i_sb->s_dev;
6895 ino = inode->i_ino;
6896 gen = inode->i_generation;
6897 maj = MAJOR(dev);
6898 min = MINOR(dev);
6899
6900 goto got_name;
6901 } else {
6902 if (vma->vm_ops && vma->vm_ops->name) {
6903 name = (char *) vma->vm_ops->name(vma);
6904 if (name)
6905 goto cpy_name;
6906 }
6907
6908 name = (char *)arch_vma_name(vma);
6909 if (name)
6910 goto cpy_name;
6911
6912 if (vma->vm_start <= vma->vm_mm->start_brk &&
6913 vma->vm_end >= vma->vm_mm->brk) {
6914 name = "[heap]";
6915 goto cpy_name;
6916 }
6917 if (vma->vm_start <= vma->vm_mm->start_stack &&
6918 vma->vm_end >= vma->vm_mm->start_stack) {
6919 name = "[stack]";
6920 goto cpy_name;
6921 }
6922
6923 name = "//anon";
6924 goto cpy_name;
6925 }
6926
6927 cpy_name:
6928 strlcpy(tmp, name, sizeof(tmp));
6929 name = tmp;
6930 got_name:
6931 /*
6932 * Since our buffer works in 8 byte units we need to align our string
6933 * size to a multiple of 8. However, we must guarantee the tail end is
6934 * zero'd out to avoid leaking random bits to userspace.
6935 */
6936 size = strlen(name)+1;
6937 while (!IS_ALIGNED(size, sizeof(u64)))
6938 name[size++] = '\0';
6939
6940 mmap_event->file_name = name;
6941 mmap_event->file_size = size;
6942 mmap_event->maj = maj;
6943 mmap_event->min = min;
6944 mmap_event->ino = ino;
6945 mmap_event->ino_generation = gen;
6946 mmap_event->prot = prot;
6947 mmap_event->flags = flags;
6948
6949 if (!(vma->vm_flags & VM_EXEC))
6950 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6951
6952 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6953
6954 perf_iterate_sb(perf_event_mmap_output,
6955 mmap_event,
6956 NULL);
6957
6958 kfree(buf);
6959 }
6960
6961 /*
6962 * Check whether inode and address range match filter criteria.
6963 */
6964 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6965 struct file *file, unsigned long offset,
6966 unsigned long size)
6967 {
6968 if (filter->inode != file_inode(file))
6969 return false;
6970
6971 if (filter->offset > offset + size)
6972 return false;
6973
6974 if (filter->offset + filter->size < offset)
6975 return false;
6976
6977 return true;
6978 }
6979
6980 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6981 {
6982 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6983 struct vm_area_struct *vma = data;
6984 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6985 struct file *file = vma->vm_file;
6986 struct perf_addr_filter *filter;
6987 unsigned int restart = 0, count = 0;
6988
6989 if (!has_addr_filter(event))
6990 return;
6991
6992 if (!file)
6993 return;
6994
6995 raw_spin_lock_irqsave(&ifh->lock, flags);
6996 list_for_each_entry(filter, &ifh->list, entry) {
6997 if (perf_addr_filter_match(filter, file, off,
6998 vma->vm_end - vma->vm_start)) {
6999 event->addr_filters_offs[count] = vma->vm_start;
7000 restart++;
7001 }
7002
7003 count++;
7004 }
7005
7006 if (restart)
7007 event->addr_filters_gen++;
7008 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7009
7010 if (restart)
7011 perf_event_stop(event, 1);
7012 }
7013
7014 /*
7015 * Adjust all task's events' filters to the new vma
7016 */
7017 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7018 {
7019 struct perf_event_context *ctx;
7020 int ctxn;
7021
7022 /*
7023 * Data tracing isn't supported yet and as such there is no need
7024 * to keep track of anything that isn't related to executable code:
7025 */
7026 if (!(vma->vm_flags & VM_EXEC))
7027 return;
7028
7029 rcu_read_lock();
7030 for_each_task_context_nr(ctxn) {
7031 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7032 if (!ctx)
7033 continue;
7034
7035 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7036 }
7037 rcu_read_unlock();
7038 }
7039
7040 void perf_event_mmap(struct vm_area_struct *vma)
7041 {
7042 struct perf_mmap_event mmap_event;
7043
7044 if (!atomic_read(&nr_mmap_events))
7045 return;
7046
7047 mmap_event = (struct perf_mmap_event){
7048 .vma = vma,
7049 /* .file_name */
7050 /* .file_size */
7051 .event_id = {
7052 .header = {
7053 .type = PERF_RECORD_MMAP,
7054 .misc = PERF_RECORD_MISC_USER,
7055 /* .size */
7056 },
7057 /* .pid */
7058 /* .tid */
7059 .start = vma->vm_start,
7060 .len = vma->vm_end - vma->vm_start,
7061 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
7062 },
7063 /* .maj (attr_mmap2 only) */
7064 /* .min (attr_mmap2 only) */
7065 /* .ino (attr_mmap2 only) */
7066 /* .ino_generation (attr_mmap2 only) */
7067 /* .prot (attr_mmap2 only) */
7068 /* .flags (attr_mmap2 only) */
7069 };
7070
7071 perf_addr_filters_adjust(vma);
7072 perf_event_mmap_event(&mmap_event);
7073 }
7074
7075 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7076 unsigned long size, u64 flags)
7077 {
7078 struct perf_output_handle handle;
7079 struct perf_sample_data sample;
7080 struct perf_aux_event {
7081 struct perf_event_header header;
7082 u64 offset;
7083 u64 size;
7084 u64 flags;
7085 } rec = {
7086 .header = {
7087 .type = PERF_RECORD_AUX,
7088 .misc = 0,
7089 .size = sizeof(rec),
7090 },
7091 .offset = head,
7092 .size = size,
7093 .flags = flags,
7094 };
7095 int ret;
7096
7097 perf_event_header__init_id(&rec.header, &sample, event);
7098 ret = perf_output_begin(&handle, event, rec.header.size);
7099
7100 if (ret)
7101 return;
7102
7103 perf_output_put(&handle, rec);
7104 perf_event__output_id_sample(event, &handle, &sample);
7105
7106 perf_output_end(&handle);
7107 }
7108
7109 /*
7110 * Lost/dropped samples logging
7111 */
7112 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7113 {
7114 struct perf_output_handle handle;
7115 struct perf_sample_data sample;
7116 int ret;
7117
7118 struct {
7119 struct perf_event_header header;
7120 u64 lost;
7121 } lost_samples_event = {
7122 .header = {
7123 .type = PERF_RECORD_LOST_SAMPLES,
7124 .misc = 0,
7125 .size = sizeof(lost_samples_event),
7126 },
7127 .lost = lost,
7128 };
7129
7130 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7131
7132 ret = perf_output_begin(&handle, event,
7133 lost_samples_event.header.size);
7134 if (ret)
7135 return;
7136
7137 perf_output_put(&handle, lost_samples_event);
7138 perf_event__output_id_sample(event, &handle, &sample);
7139 perf_output_end(&handle);
7140 }
7141
7142 /*
7143 * context_switch tracking
7144 */
7145
7146 struct perf_switch_event {
7147 struct task_struct *task;
7148 struct task_struct *next_prev;
7149
7150 struct {
7151 struct perf_event_header header;
7152 u32 next_prev_pid;
7153 u32 next_prev_tid;
7154 } event_id;
7155 };
7156
7157 static int perf_event_switch_match(struct perf_event *event)
7158 {
7159 return event->attr.context_switch;
7160 }
7161
7162 static void perf_event_switch_output(struct perf_event *event, void *data)
7163 {
7164 struct perf_switch_event *se = data;
7165 struct perf_output_handle handle;
7166 struct perf_sample_data sample;
7167 int ret;
7168
7169 if (!perf_event_switch_match(event))
7170 return;
7171
7172 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7173 if (event->ctx->task) {
7174 se->event_id.header.type = PERF_RECORD_SWITCH;
7175 se->event_id.header.size = sizeof(se->event_id.header);
7176 } else {
7177 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7178 se->event_id.header.size = sizeof(se->event_id);
7179 se->event_id.next_prev_pid =
7180 perf_event_pid(event, se->next_prev);
7181 se->event_id.next_prev_tid =
7182 perf_event_tid(event, se->next_prev);
7183 }
7184
7185 perf_event_header__init_id(&se->event_id.header, &sample, event);
7186
7187 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7188 if (ret)
7189 return;
7190
7191 if (event->ctx->task)
7192 perf_output_put(&handle, se->event_id.header);
7193 else
7194 perf_output_put(&handle, se->event_id);
7195
7196 perf_event__output_id_sample(event, &handle, &sample);
7197
7198 perf_output_end(&handle);
7199 }
7200
7201 static void perf_event_switch(struct task_struct *task,
7202 struct task_struct *next_prev, bool sched_in)
7203 {
7204 struct perf_switch_event switch_event;
7205
7206 /* N.B. caller checks nr_switch_events != 0 */
7207
7208 switch_event = (struct perf_switch_event){
7209 .task = task,
7210 .next_prev = next_prev,
7211 .event_id = {
7212 .header = {
7213 /* .type */
7214 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7215 /* .size */
7216 },
7217 /* .next_prev_pid */
7218 /* .next_prev_tid */
7219 },
7220 };
7221
7222 perf_iterate_sb(perf_event_switch_output,
7223 &switch_event,
7224 NULL);
7225 }
7226
7227 /*
7228 * IRQ throttle logging
7229 */
7230
7231 static void perf_log_throttle(struct perf_event *event, int enable)
7232 {
7233 struct perf_output_handle handle;
7234 struct perf_sample_data sample;
7235 int ret;
7236
7237 struct {
7238 struct perf_event_header header;
7239 u64 time;
7240 u64 id;
7241 u64 stream_id;
7242 } throttle_event = {
7243 .header = {
7244 .type = PERF_RECORD_THROTTLE,
7245 .misc = 0,
7246 .size = sizeof(throttle_event),
7247 },
7248 .time = perf_event_clock(event),
7249 .id = primary_event_id(event),
7250 .stream_id = event->id,
7251 };
7252
7253 if (enable)
7254 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7255
7256 perf_event_header__init_id(&throttle_event.header, &sample, event);
7257
7258 ret = perf_output_begin(&handle, event,
7259 throttle_event.header.size);
7260 if (ret)
7261 return;
7262
7263 perf_output_put(&handle, throttle_event);
7264 perf_event__output_id_sample(event, &handle, &sample);
7265 perf_output_end(&handle);
7266 }
7267
7268 void perf_event_itrace_started(struct perf_event *event)
7269 {
7270 event->attach_state |= PERF_ATTACH_ITRACE;
7271 }
7272
7273 static void perf_log_itrace_start(struct perf_event *event)
7274 {
7275 struct perf_output_handle handle;
7276 struct perf_sample_data sample;
7277 struct perf_aux_event {
7278 struct perf_event_header header;
7279 u32 pid;
7280 u32 tid;
7281 } rec;
7282 int ret;
7283
7284 if (event->parent)
7285 event = event->parent;
7286
7287 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7288 event->attach_state & PERF_ATTACH_ITRACE)
7289 return;
7290
7291 rec.header.type = PERF_RECORD_ITRACE_START;
7292 rec.header.misc = 0;
7293 rec.header.size = sizeof(rec);
7294 rec.pid = perf_event_pid(event, current);
7295 rec.tid = perf_event_tid(event, current);
7296
7297 perf_event_header__init_id(&rec.header, &sample, event);
7298 ret = perf_output_begin(&handle, event, rec.header.size);
7299
7300 if (ret)
7301 return;
7302
7303 perf_output_put(&handle, rec);
7304 perf_event__output_id_sample(event, &handle, &sample);
7305
7306 perf_output_end(&handle);
7307 }
7308
7309 static int
7310 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7311 {
7312 struct hw_perf_event *hwc = &event->hw;
7313 int ret = 0;
7314 u64 seq;
7315
7316 seq = __this_cpu_read(perf_throttled_seq);
7317 if (seq != hwc->interrupts_seq) {
7318 hwc->interrupts_seq = seq;
7319 hwc->interrupts = 1;
7320 } else {
7321 hwc->interrupts++;
7322 if (unlikely(throttle
7323 && hwc->interrupts >= max_samples_per_tick)) {
7324 __this_cpu_inc(perf_throttled_count);
7325 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7326 hwc->interrupts = MAX_INTERRUPTS;
7327 perf_log_throttle(event, 0);
7328 ret = 1;
7329 }
7330 }
7331
7332 if (event->attr.freq) {
7333 u64 now = perf_clock();
7334 s64 delta = now - hwc->freq_time_stamp;
7335
7336 hwc->freq_time_stamp = now;
7337
7338 if (delta > 0 && delta < 2*TICK_NSEC)
7339 perf_adjust_period(event, delta, hwc->last_period, true);
7340 }
7341
7342 return ret;
7343 }
7344
7345 int perf_event_account_interrupt(struct perf_event *event)
7346 {
7347 return __perf_event_account_interrupt(event, 1);
7348 }
7349
7350 /*
7351 * Generic event overflow handling, sampling.
7352 */
7353
7354 static int __perf_event_overflow(struct perf_event *event,
7355 int throttle, struct perf_sample_data *data,
7356 struct pt_regs *regs)
7357 {
7358 int events = atomic_read(&event->event_limit);
7359 int ret = 0;
7360
7361 /*
7362 * Non-sampling counters might still use the PMI to fold short
7363 * hardware counters, ignore those.
7364 */
7365 if (unlikely(!is_sampling_event(event)))
7366 return 0;
7367
7368 ret = __perf_event_account_interrupt(event, throttle);
7369
7370 /*
7371 * XXX event_limit might not quite work as expected on inherited
7372 * events
7373 */
7374
7375 event->pending_kill = POLL_IN;
7376 if (events && atomic_dec_and_test(&event->event_limit)) {
7377 ret = 1;
7378 event->pending_kill = POLL_HUP;
7379
7380 perf_event_disable_inatomic(event);
7381 }
7382
7383 READ_ONCE(event->overflow_handler)(event, data, regs);
7384
7385 if (*perf_event_fasync(event) && event->pending_kill) {
7386 event->pending_wakeup = 1;
7387 irq_work_queue(&event->pending);
7388 }
7389
7390 return ret;
7391 }
7392
7393 int perf_event_overflow(struct perf_event *event,
7394 struct perf_sample_data *data,
7395 struct pt_regs *regs)
7396 {
7397 return __perf_event_overflow(event, 1, data, regs);
7398 }
7399
7400 /*
7401 * Generic software event infrastructure
7402 */
7403
7404 struct swevent_htable {
7405 struct swevent_hlist *swevent_hlist;
7406 struct mutex hlist_mutex;
7407 int hlist_refcount;
7408
7409 /* Recursion avoidance in each contexts */
7410 int recursion[PERF_NR_CONTEXTS];
7411 };
7412
7413 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7414
7415 /*
7416 * We directly increment event->count and keep a second value in
7417 * event->hw.period_left to count intervals. This period event
7418 * is kept in the range [-sample_period, 0] so that we can use the
7419 * sign as trigger.
7420 */
7421
7422 u64 perf_swevent_set_period(struct perf_event *event)
7423 {
7424 struct hw_perf_event *hwc = &event->hw;
7425 u64 period = hwc->last_period;
7426 u64 nr, offset;
7427 s64 old, val;
7428
7429 hwc->last_period = hwc->sample_period;
7430
7431 again:
7432 old = val = local64_read(&hwc->period_left);
7433 if (val < 0)
7434 return 0;
7435
7436 nr = div64_u64(period + val, period);
7437 offset = nr * period;
7438 val -= offset;
7439 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7440 goto again;
7441
7442 return nr;
7443 }
7444
7445 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7446 struct perf_sample_data *data,
7447 struct pt_regs *regs)
7448 {
7449 struct hw_perf_event *hwc = &event->hw;
7450 int throttle = 0;
7451
7452 if (!overflow)
7453 overflow = perf_swevent_set_period(event);
7454
7455 if (hwc->interrupts == MAX_INTERRUPTS)
7456 return;
7457
7458 for (; overflow; overflow--) {
7459 if (__perf_event_overflow(event, throttle,
7460 data, regs)) {
7461 /*
7462 * We inhibit the overflow from happening when
7463 * hwc->interrupts == MAX_INTERRUPTS.
7464 */
7465 break;
7466 }
7467 throttle = 1;
7468 }
7469 }
7470
7471 static void perf_swevent_event(struct perf_event *event, u64 nr,
7472 struct perf_sample_data *data,
7473 struct pt_regs *regs)
7474 {
7475 struct hw_perf_event *hwc = &event->hw;
7476
7477 local64_add(nr, &event->count);
7478
7479 if (!regs)
7480 return;
7481
7482 if (!is_sampling_event(event))
7483 return;
7484
7485 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7486 data->period = nr;
7487 return perf_swevent_overflow(event, 1, data, regs);
7488 } else
7489 data->period = event->hw.last_period;
7490
7491 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7492 return perf_swevent_overflow(event, 1, data, regs);
7493
7494 if (local64_add_negative(nr, &hwc->period_left))
7495 return;
7496
7497 perf_swevent_overflow(event, 0, data, regs);
7498 }
7499
7500 static int perf_exclude_event(struct perf_event *event,
7501 struct pt_regs *regs)
7502 {
7503 if (event->hw.state & PERF_HES_STOPPED)
7504 return 1;
7505
7506 if (regs) {
7507 if (event->attr.exclude_user && user_mode(regs))
7508 return 1;
7509
7510 if (event->attr.exclude_kernel && !user_mode(regs))
7511 return 1;
7512 }
7513
7514 return 0;
7515 }
7516
7517 static int perf_swevent_match(struct perf_event *event,
7518 enum perf_type_id type,
7519 u32 event_id,
7520 struct perf_sample_data *data,
7521 struct pt_regs *regs)
7522 {
7523 if (event->attr.type != type)
7524 return 0;
7525
7526 if (event->attr.config != event_id)
7527 return 0;
7528
7529 if (perf_exclude_event(event, regs))
7530 return 0;
7531
7532 return 1;
7533 }
7534
7535 static inline u64 swevent_hash(u64 type, u32 event_id)
7536 {
7537 u64 val = event_id | (type << 32);
7538
7539 return hash_64(val, SWEVENT_HLIST_BITS);
7540 }
7541
7542 static inline struct hlist_head *
7543 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7544 {
7545 u64 hash = swevent_hash(type, event_id);
7546
7547 return &hlist->heads[hash];
7548 }
7549
7550 /* For the read side: events when they trigger */
7551 static inline struct hlist_head *
7552 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7553 {
7554 struct swevent_hlist *hlist;
7555
7556 hlist = rcu_dereference(swhash->swevent_hlist);
7557 if (!hlist)
7558 return NULL;
7559
7560 return __find_swevent_head(hlist, type, event_id);
7561 }
7562
7563 /* For the event head insertion and removal in the hlist */
7564 static inline struct hlist_head *
7565 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7566 {
7567 struct swevent_hlist *hlist;
7568 u32 event_id = event->attr.config;
7569 u64 type = event->attr.type;
7570
7571 /*
7572 * Event scheduling is always serialized against hlist allocation
7573 * and release. Which makes the protected version suitable here.
7574 * The context lock guarantees that.
7575 */
7576 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7577 lockdep_is_held(&event->ctx->lock));
7578 if (!hlist)
7579 return NULL;
7580
7581 return __find_swevent_head(hlist, type, event_id);
7582 }
7583
7584 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7585 u64 nr,
7586 struct perf_sample_data *data,
7587 struct pt_regs *regs)
7588 {
7589 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7590 struct perf_event *event;
7591 struct hlist_head *head;
7592
7593 rcu_read_lock();
7594 head = find_swevent_head_rcu(swhash, type, event_id);
7595 if (!head)
7596 goto end;
7597
7598 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7599 if (perf_swevent_match(event, type, event_id, data, regs))
7600 perf_swevent_event(event, nr, data, regs);
7601 }
7602 end:
7603 rcu_read_unlock();
7604 }
7605
7606 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7607
7608 int perf_swevent_get_recursion_context(void)
7609 {
7610 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7611
7612 return get_recursion_context(swhash->recursion);
7613 }
7614 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7615
7616 void perf_swevent_put_recursion_context(int rctx)
7617 {
7618 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7619
7620 put_recursion_context(swhash->recursion, rctx);
7621 }
7622
7623 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7624 {
7625 struct perf_sample_data data;
7626
7627 if (WARN_ON_ONCE(!regs))
7628 return;
7629
7630 perf_sample_data_init(&data, addr, 0);
7631 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7632 }
7633
7634 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7635 {
7636 int rctx;
7637
7638 preempt_disable_notrace();
7639 rctx = perf_swevent_get_recursion_context();
7640 if (unlikely(rctx < 0))
7641 goto fail;
7642
7643 ___perf_sw_event(event_id, nr, regs, addr);
7644
7645 perf_swevent_put_recursion_context(rctx);
7646 fail:
7647 preempt_enable_notrace();
7648 }
7649
7650 static void perf_swevent_read(struct perf_event *event)
7651 {
7652 }
7653
7654 static int perf_swevent_add(struct perf_event *event, int flags)
7655 {
7656 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7657 struct hw_perf_event *hwc = &event->hw;
7658 struct hlist_head *head;
7659
7660 if (is_sampling_event(event)) {
7661 hwc->last_period = hwc->sample_period;
7662 perf_swevent_set_period(event);
7663 }
7664
7665 hwc->state = !(flags & PERF_EF_START);
7666
7667 head = find_swevent_head(swhash, event);
7668 if (WARN_ON_ONCE(!head))
7669 return -EINVAL;
7670
7671 hlist_add_head_rcu(&event->hlist_entry, head);
7672 perf_event_update_userpage(event);
7673
7674 return 0;
7675 }
7676
7677 static void perf_swevent_del(struct perf_event *event, int flags)
7678 {
7679 hlist_del_rcu(&event->hlist_entry);
7680 }
7681
7682 static void perf_swevent_start(struct perf_event *event, int flags)
7683 {
7684 event->hw.state = 0;
7685 }
7686
7687 static void perf_swevent_stop(struct perf_event *event, int flags)
7688 {
7689 event->hw.state = PERF_HES_STOPPED;
7690 }
7691
7692 /* Deref the hlist from the update side */
7693 static inline struct swevent_hlist *
7694 swevent_hlist_deref(struct swevent_htable *swhash)
7695 {
7696 return rcu_dereference_protected(swhash->swevent_hlist,
7697 lockdep_is_held(&swhash->hlist_mutex));
7698 }
7699
7700 static void swevent_hlist_release(struct swevent_htable *swhash)
7701 {
7702 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7703
7704 if (!hlist)
7705 return;
7706
7707 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7708 kfree_rcu(hlist, rcu_head);
7709 }
7710
7711 static void swevent_hlist_put_cpu(int cpu)
7712 {
7713 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7714
7715 mutex_lock(&swhash->hlist_mutex);
7716
7717 if (!--swhash->hlist_refcount)
7718 swevent_hlist_release(swhash);
7719
7720 mutex_unlock(&swhash->hlist_mutex);
7721 }
7722
7723 static void swevent_hlist_put(void)
7724 {
7725 int cpu;
7726
7727 for_each_possible_cpu(cpu)
7728 swevent_hlist_put_cpu(cpu);
7729 }
7730
7731 static int swevent_hlist_get_cpu(int cpu)
7732 {
7733 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7734 int err = 0;
7735
7736 mutex_lock(&swhash->hlist_mutex);
7737 if (!swevent_hlist_deref(swhash) &&
7738 cpumask_test_cpu(cpu, perf_online_mask)) {
7739 struct swevent_hlist *hlist;
7740
7741 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7742 if (!hlist) {
7743 err = -ENOMEM;
7744 goto exit;
7745 }
7746 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7747 }
7748 swhash->hlist_refcount++;
7749 exit:
7750 mutex_unlock(&swhash->hlist_mutex);
7751
7752 return err;
7753 }
7754
7755 static int swevent_hlist_get(void)
7756 {
7757 int err, cpu, failed_cpu;
7758
7759 mutex_lock(&pmus_lock);
7760 for_each_possible_cpu(cpu) {
7761 err = swevent_hlist_get_cpu(cpu);
7762 if (err) {
7763 failed_cpu = cpu;
7764 goto fail;
7765 }
7766 }
7767 mutex_unlock(&pmus_lock);
7768 return 0;
7769 fail:
7770 for_each_possible_cpu(cpu) {
7771 if (cpu == failed_cpu)
7772 break;
7773 swevent_hlist_put_cpu(cpu);
7774 }
7775 mutex_unlock(&pmus_lock);
7776 return err;
7777 }
7778
7779 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7780
7781 static void sw_perf_event_destroy(struct perf_event *event)
7782 {
7783 u64 event_id = event->attr.config;
7784
7785 WARN_ON(event->parent);
7786
7787 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7788 swevent_hlist_put();
7789 }
7790
7791 static int perf_swevent_init(struct perf_event *event)
7792 {
7793 u64 event_id = event->attr.config;
7794
7795 if (event->attr.type != PERF_TYPE_SOFTWARE)
7796 return -ENOENT;
7797
7798 /*
7799 * no branch sampling for software events
7800 */
7801 if (has_branch_stack(event))
7802 return -EOPNOTSUPP;
7803
7804 switch (event_id) {
7805 case PERF_COUNT_SW_CPU_CLOCK:
7806 case PERF_COUNT_SW_TASK_CLOCK:
7807 return -ENOENT;
7808
7809 default:
7810 break;
7811 }
7812
7813 if (event_id >= PERF_COUNT_SW_MAX)
7814 return -ENOENT;
7815
7816 if (!event->parent) {
7817 int err;
7818
7819 err = swevent_hlist_get();
7820 if (err)
7821 return err;
7822
7823 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7824 event->destroy = sw_perf_event_destroy;
7825 }
7826
7827 return 0;
7828 }
7829
7830 static struct pmu perf_swevent = {
7831 .task_ctx_nr = perf_sw_context,
7832
7833 .capabilities = PERF_PMU_CAP_NO_NMI,
7834
7835 .event_init = perf_swevent_init,
7836 .add = perf_swevent_add,
7837 .del = perf_swevent_del,
7838 .start = perf_swevent_start,
7839 .stop = perf_swevent_stop,
7840 .read = perf_swevent_read,
7841 };
7842
7843 #ifdef CONFIG_EVENT_TRACING
7844
7845 static int perf_tp_filter_match(struct perf_event *event,
7846 struct perf_sample_data *data)
7847 {
7848 void *record = data->raw->frag.data;
7849
7850 /* only top level events have filters set */
7851 if (event->parent)
7852 event = event->parent;
7853
7854 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7855 return 1;
7856 return 0;
7857 }
7858
7859 static int perf_tp_event_match(struct perf_event *event,
7860 struct perf_sample_data *data,
7861 struct pt_regs *regs)
7862 {
7863 if (event->hw.state & PERF_HES_STOPPED)
7864 return 0;
7865 /*
7866 * All tracepoints are from kernel-space.
7867 */
7868 if (event->attr.exclude_kernel)
7869 return 0;
7870
7871 if (!perf_tp_filter_match(event, data))
7872 return 0;
7873
7874 return 1;
7875 }
7876
7877 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7878 struct trace_event_call *call, u64 count,
7879 struct pt_regs *regs, struct hlist_head *head,
7880 struct task_struct *task)
7881 {
7882 if (bpf_prog_array_valid(call)) {
7883 *(struct pt_regs **)raw_data = regs;
7884 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
7885 perf_swevent_put_recursion_context(rctx);
7886 return;
7887 }
7888 }
7889 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7890 rctx, task);
7891 }
7892 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7893
7894 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7895 struct pt_regs *regs, struct hlist_head *head, int rctx,
7896 struct task_struct *task)
7897 {
7898 struct perf_sample_data data;
7899 struct perf_event *event;
7900
7901 struct perf_raw_record raw = {
7902 .frag = {
7903 .size = entry_size,
7904 .data = record,
7905 },
7906 };
7907
7908 perf_sample_data_init(&data, 0, 0);
7909 data.raw = &raw;
7910
7911 perf_trace_buf_update(record, event_type);
7912
7913 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7914 if (perf_tp_event_match(event, &data, regs))
7915 perf_swevent_event(event, count, &data, regs);
7916 }
7917
7918 /*
7919 * If we got specified a target task, also iterate its context and
7920 * deliver this event there too.
7921 */
7922 if (task && task != current) {
7923 struct perf_event_context *ctx;
7924 struct trace_entry *entry = record;
7925
7926 rcu_read_lock();
7927 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7928 if (!ctx)
7929 goto unlock;
7930
7931 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7932 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7933 continue;
7934 if (event->attr.config != entry->type)
7935 continue;
7936 if (perf_tp_event_match(event, &data, regs))
7937 perf_swevent_event(event, count, &data, regs);
7938 }
7939 unlock:
7940 rcu_read_unlock();
7941 }
7942
7943 perf_swevent_put_recursion_context(rctx);
7944 }
7945 EXPORT_SYMBOL_GPL(perf_tp_event);
7946
7947 static void tp_perf_event_destroy(struct perf_event *event)
7948 {
7949 perf_trace_destroy(event);
7950 }
7951
7952 static int perf_tp_event_init(struct perf_event *event)
7953 {
7954 int err;
7955
7956 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7957 return -ENOENT;
7958
7959 /*
7960 * no branch sampling for tracepoint events
7961 */
7962 if (has_branch_stack(event))
7963 return -EOPNOTSUPP;
7964
7965 err = perf_trace_init(event);
7966 if (err)
7967 return err;
7968
7969 event->destroy = tp_perf_event_destroy;
7970
7971 return 0;
7972 }
7973
7974 static struct pmu perf_tracepoint = {
7975 .task_ctx_nr = perf_sw_context,
7976
7977 .event_init = perf_tp_event_init,
7978 .add = perf_trace_add,
7979 .del = perf_trace_del,
7980 .start = perf_swevent_start,
7981 .stop = perf_swevent_stop,
7982 .read = perf_swevent_read,
7983 };
7984
7985 static inline void perf_tp_register(void)
7986 {
7987 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7988 }
7989
7990 static void perf_event_free_filter(struct perf_event *event)
7991 {
7992 ftrace_profile_free_filter(event);
7993 }
7994
7995 #ifdef CONFIG_BPF_SYSCALL
7996 static void bpf_overflow_handler(struct perf_event *event,
7997 struct perf_sample_data *data,
7998 struct pt_regs *regs)
7999 {
8000 struct bpf_perf_event_data_kern ctx = {
8001 .data = data,
8002 .event = event,
8003 };
8004 int ret = 0;
8005
8006 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8007 preempt_disable();
8008 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8009 goto out;
8010 rcu_read_lock();
8011 ret = BPF_PROG_RUN(event->prog, &ctx);
8012 rcu_read_unlock();
8013 out:
8014 __this_cpu_dec(bpf_prog_active);
8015 preempt_enable();
8016 if (!ret)
8017 return;
8018
8019 event->orig_overflow_handler(event, data, regs);
8020 }
8021
8022 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8023 {
8024 struct bpf_prog *prog;
8025
8026 if (event->overflow_handler_context)
8027 /* hw breakpoint or kernel counter */
8028 return -EINVAL;
8029
8030 if (event->prog)
8031 return -EEXIST;
8032
8033 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8034 if (IS_ERR(prog))
8035 return PTR_ERR(prog);
8036
8037 event->prog = prog;
8038 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8039 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8040 return 0;
8041 }
8042
8043 static void perf_event_free_bpf_handler(struct perf_event *event)
8044 {
8045 struct bpf_prog *prog = event->prog;
8046
8047 if (!prog)
8048 return;
8049
8050 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8051 event->prog = NULL;
8052 bpf_prog_put(prog);
8053 }
8054 #else
8055 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8056 {
8057 return -EOPNOTSUPP;
8058 }
8059 static void perf_event_free_bpf_handler(struct perf_event *event)
8060 {
8061 }
8062 #endif
8063
8064 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8065 {
8066 bool is_kprobe, is_tracepoint, is_syscall_tp;
8067 struct bpf_prog *prog;
8068 int ret;
8069
8070 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8071 return perf_event_set_bpf_handler(event, prog_fd);
8072
8073 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8074 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8075 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8076 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8077 /* bpf programs can only be attached to u/kprobe or tracepoint */
8078 return -EINVAL;
8079
8080 prog = bpf_prog_get(prog_fd);
8081 if (IS_ERR(prog))
8082 return PTR_ERR(prog);
8083
8084 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8085 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8086 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8087 /* valid fd, but invalid bpf program type */
8088 bpf_prog_put(prog);
8089 return -EINVAL;
8090 }
8091
8092 if (is_tracepoint || is_syscall_tp) {
8093 int off = trace_event_get_offsets(event->tp_event);
8094
8095 if (prog->aux->max_ctx_offset > off) {
8096 bpf_prog_put(prog);
8097 return -EACCES;
8098 }
8099 }
8100
8101 ret = perf_event_attach_bpf_prog(event, prog);
8102 if (ret)
8103 bpf_prog_put(prog);
8104 return ret;
8105 }
8106
8107 static void perf_event_free_bpf_prog(struct perf_event *event)
8108 {
8109 if (event->attr.type != PERF_TYPE_TRACEPOINT) {
8110 perf_event_free_bpf_handler(event);
8111 return;
8112 }
8113 perf_event_detach_bpf_prog(event);
8114 }
8115
8116 #else
8117
8118 static inline void perf_tp_register(void)
8119 {
8120 }
8121
8122 static void perf_event_free_filter(struct perf_event *event)
8123 {
8124 }
8125
8126 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8127 {
8128 return -ENOENT;
8129 }
8130
8131 static void perf_event_free_bpf_prog(struct perf_event *event)
8132 {
8133 }
8134 #endif /* CONFIG_EVENT_TRACING */
8135
8136 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8137 void perf_bp_event(struct perf_event *bp, void *data)
8138 {
8139 struct perf_sample_data sample;
8140 struct pt_regs *regs = data;
8141
8142 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8143
8144 if (!bp->hw.state && !perf_exclude_event(bp, regs))
8145 perf_swevent_event(bp, 1, &sample, regs);
8146 }
8147 #endif
8148
8149 /*
8150 * Allocate a new address filter
8151 */
8152 static struct perf_addr_filter *
8153 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8154 {
8155 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8156 struct perf_addr_filter *filter;
8157
8158 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8159 if (!filter)
8160 return NULL;
8161
8162 INIT_LIST_HEAD(&filter->entry);
8163 list_add_tail(&filter->entry, filters);
8164
8165 return filter;
8166 }
8167
8168 static void free_filters_list(struct list_head *filters)
8169 {
8170 struct perf_addr_filter *filter, *iter;
8171
8172 list_for_each_entry_safe(filter, iter, filters, entry) {
8173 if (filter->inode)
8174 iput(filter->inode);
8175 list_del(&filter->entry);
8176 kfree(filter);
8177 }
8178 }
8179
8180 /*
8181 * Free existing address filters and optionally install new ones
8182 */
8183 static void perf_addr_filters_splice(struct perf_event *event,
8184 struct list_head *head)
8185 {
8186 unsigned long flags;
8187 LIST_HEAD(list);
8188
8189 if (!has_addr_filter(event))
8190 return;
8191
8192 /* don't bother with children, they don't have their own filters */
8193 if (event->parent)
8194 return;
8195
8196 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8197
8198 list_splice_init(&event->addr_filters.list, &list);
8199 if (head)
8200 list_splice(head, &event->addr_filters.list);
8201
8202 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8203
8204 free_filters_list(&list);
8205 }
8206
8207 /*
8208 * Scan through mm's vmas and see if one of them matches the
8209 * @filter; if so, adjust filter's address range.
8210 * Called with mm::mmap_sem down for reading.
8211 */
8212 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8213 struct mm_struct *mm)
8214 {
8215 struct vm_area_struct *vma;
8216
8217 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8218 struct file *file = vma->vm_file;
8219 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8220 unsigned long vma_size = vma->vm_end - vma->vm_start;
8221
8222 if (!file)
8223 continue;
8224
8225 if (!perf_addr_filter_match(filter, file, off, vma_size))
8226 continue;
8227
8228 return vma->vm_start;
8229 }
8230
8231 return 0;
8232 }
8233
8234 /*
8235 * Update event's address range filters based on the
8236 * task's existing mappings, if any.
8237 */
8238 static void perf_event_addr_filters_apply(struct perf_event *event)
8239 {
8240 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8241 struct task_struct *task = READ_ONCE(event->ctx->task);
8242 struct perf_addr_filter *filter;
8243 struct mm_struct *mm = NULL;
8244 unsigned int count = 0;
8245 unsigned long flags;
8246
8247 /*
8248 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8249 * will stop on the parent's child_mutex that our caller is also holding
8250 */
8251 if (task == TASK_TOMBSTONE)
8252 return;
8253
8254 if (!ifh->nr_file_filters)
8255 return;
8256
8257 mm = get_task_mm(event->ctx->task);
8258 if (!mm)
8259 goto restart;
8260
8261 down_read(&mm->mmap_sem);
8262
8263 raw_spin_lock_irqsave(&ifh->lock, flags);
8264 list_for_each_entry(filter, &ifh->list, entry) {
8265 event->addr_filters_offs[count] = 0;
8266
8267 /*
8268 * Adjust base offset if the filter is associated to a binary
8269 * that needs to be mapped:
8270 */
8271 if (filter->inode)
8272 event->addr_filters_offs[count] =
8273 perf_addr_filter_apply(filter, mm);
8274
8275 count++;
8276 }
8277
8278 event->addr_filters_gen++;
8279 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8280
8281 up_read(&mm->mmap_sem);
8282
8283 mmput(mm);
8284
8285 restart:
8286 perf_event_stop(event, 1);
8287 }
8288
8289 /*
8290 * Address range filtering: limiting the data to certain
8291 * instruction address ranges. Filters are ioctl()ed to us from
8292 * userspace as ascii strings.
8293 *
8294 * Filter string format:
8295 *
8296 * ACTION RANGE_SPEC
8297 * where ACTION is one of the
8298 * * "filter": limit the trace to this region
8299 * * "start": start tracing from this address
8300 * * "stop": stop tracing at this address/region;
8301 * RANGE_SPEC is
8302 * * for kernel addresses: <start address>[/<size>]
8303 * * for object files: <start address>[/<size>]@</path/to/object/file>
8304 *
8305 * if <size> is not specified, the range is treated as a single address.
8306 */
8307 enum {
8308 IF_ACT_NONE = -1,
8309 IF_ACT_FILTER,
8310 IF_ACT_START,
8311 IF_ACT_STOP,
8312 IF_SRC_FILE,
8313 IF_SRC_KERNEL,
8314 IF_SRC_FILEADDR,
8315 IF_SRC_KERNELADDR,
8316 };
8317
8318 enum {
8319 IF_STATE_ACTION = 0,
8320 IF_STATE_SOURCE,
8321 IF_STATE_END,
8322 };
8323
8324 static const match_table_t if_tokens = {
8325 { IF_ACT_FILTER, "filter" },
8326 { IF_ACT_START, "start" },
8327 { IF_ACT_STOP, "stop" },
8328 { IF_SRC_FILE, "%u/%u@%s" },
8329 { IF_SRC_KERNEL, "%u/%u" },
8330 { IF_SRC_FILEADDR, "%u@%s" },
8331 { IF_SRC_KERNELADDR, "%u" },
8332 { IF_ACT_NONE, NULL },
8333 };
8334
8335 /*
8336 * Address filter string parser
8337 */
8338 static int
8339 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8340 struct list_head *filters)
8341 {
8342 struct perf_addr_filter *filter = NULL;
8343 char *start, *orig, *filename = NULL;
8344 struct path path;
8345 substring_t args[MAX_OPT_ARGS];
8346 int state = IF_STATE_ACTION, token;
8347 unsigned int kernel = 0;
8348 int ret = -EINVAL;
8349
8350 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8351 if (!fstr)
8352 return -ENOMEM;
8353
8354 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8355 ret = -EINVAL;
8356
8357 if (!*start)
8358 continue;
8359
8360 /* filter definition begins */
8361 if (state == IF_STATE_ACTION) {
8362 filter = perf_addr_filter_new(event, filters);
8363 if (!filter)
8364 goto fail;
8365 }
8366
8367 token = match_token(start, if_tokens, args);
8368 switch (token) {
8369 case IF_ACT_FILTER:
8370 case IF_ACT_START:
8371 filter->filter = 1;
8372
8373 case IF_ACT_STOP:
8374 if (state != IF_STATE_ACTION)
8375 goto fail;
8376
8377 state = IF_STATE_SOURCE;
8378 break;
8379
8380 case IF_SRC_KERNELADDR:
8381 case IF_SRC_KERNEL:
8382 kernel = 1;
8383
8384 case IF_SRC_FILEADDR:
8385 case IF_SRC_FILE:
8386 if (state != IF_STATE_SOURCE)
8387 goto fail;
8388
8389 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8390 filter->range = 1;
8391
8392 *args[0].to = 0;
8393 ret = kstrtoul(args[0].from, 0, &filter->offset);
8394 if (ret)
8395 goto fail;
8396
8397 if (filter->range) {
8398 *args[1].to = 0;
8399 ret = kstrtoul(args[1].from, 0, &filter->size);
8400 if (ret)
8401 goto fail;
8402 }
8403
8404 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8405 int fpos = filter->range ? 2 : 1;
8406
8407 filename = match_strdup(&args[fpos]);
8408 if (!filename) {
8409 ret = -ENOMEM;
8410 goto fail;
8411 }
8412 }
8413
8414 state = IF_STATE_END;
8415 break;
8416
8417 default:
8418 goto fail;
8419 }
8420
8421 /*
8422 * Filter definition is fully parsed, validate and install it.
8423 * Make sure that it doesn't contradict itself or the event's
8424 * attribute.
8425 */
8426 if (state == IF_STATE_END) {
8427 ret = -EINVAL;
8428 if (kernel && event->attr.exclude_kernel)
8429 goto fail;
8430
8431 if (!kernel) {
8432 if (!filename)
8433 goto fail;
8434
8435 /*
8436 * For now, we only support file-based filters
8437 * in per-task events; doing so for CPU-wide
8438 * events requires additional context switching
8439 * trickery, since same object code will be
8440 * mapped at different virtual addresses in
8441 * different processes.
8442 */
8443 ret = -EOPNOTSUPP;
8444 if (!event->ctx->task)
8445 goto fail_free_name;
8446
8447 /* look up the path and grab its inode */
8448 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8449 if (ret)
8450 goto fail_free_name;
8451
8452 filter->inode = igrab(d_inode(path.dentry));
8453 path_put(&path);
8454 kfree(filename);
8455 filename = NULL;
8456
8457 ret = -EINVAL;
8458 if (!filter->inode ||
8459 !S_ISREG(filter->inode->i_mode))
8460 /* free_filters_list() will iput() */
8461 goto fail;
8462
8463 event->addr_filters.nr_file_filters++;
8464 }
8465
8466 /* ready to consume more filters */
8467 state = IF_STATE_ACTION;
8468 filter = NULL;
8469 }
8470 }
8471
8472 if (state != IF_STATE_ACTION)
8473 goto fail;
8474
8475 kfree(orig);
8476
8477 return 0;
8478
8479 fail_free_name:
8480 kfree(filename);
8481 fail:
8482 free_filters_list(filters);
8483 kfree(orig);
8484
8485 return ret;
8486 }
8487
8488 static int
8489 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8490 {
8491 LIST_HEAD(filters);
8492 int ret;
8493
8494 /*
8495 * Since this is called in perf_ioctl() path, we're already holding
8496 * ctx::mutex.
8497 */
8498 lockdep_assert_held(&event->ctx->mutex);
8499
8500 if (WARN_ON_ONCE(event->parent))
8501 return -EINVAL;
8502
8503 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8504 if (ret)
8505 goto fail_clear_files;
8506
8507 ret = event->pmu->addr_filters_validate(&filters);
8508 if (ret)
8509 goto fail_free_filters;
8510
8511 /* remove existing filters, if any */
8512 perf_addr_filters_splice(event, &filters);
8513
8514 /* install new filters */
8515 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8516
8517 return ret;
8518
8519 fail_free_filters:
8520 free_filters_list(&filters);
8521
8522 fail_clear_files:
8523 event->addr_filters.nr_file_filters = 0;
8524
8525 return ret;
8526 }
8527
8528 static int
8529 perf_tracepoint_set_filter(struct perf_event *event, char *filter_str)
8530 {
8531 struct perf_event_context *ctx = event->ctx;
8532 int ret;
8533
8534 /*
8535 * Beware, here be dragons!!
8536 *
8537 * the tracepoint muck will deadlock against ctx->mutex, but the tracepoint
8538 * stuff does not actually need it. So temporarily drop ctx->mutex. As per
8539 * perf_event_ctx_lock() we already have a reference on ctx.
8540 *
8541 * This can result in event getting moved to a different ctx, but that
8542 * does not affect the tracepoint state.
8543 */
8544 mutex_unlock(&ctx->mutex);
8545 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
8546 mutex_lock(&ctx->mutex);
8547
8548 return ret;
8549 }
8550
8551 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8552 {
8553 char *filter_str;
8554 int ret = -EINVAL;
8555
8556 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8557 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8558 !has_addr_filter(event))
8559 return -EINVAL;
8560
8561 filter_str = strndup_user(arg, PAGE_SIZE);
8562 if (IS_ERR(filter_str))
8563 return PTR_ERR(filter_str);
8564
8565 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8566 event->attr.type == PERF_TYPE_TRACEPOINT)
8567 ret = perf_tracepoint_set_filter(event, filter_str);
8568 else if (has_addr_filter(event))
8569 ret = perf_event_set_addr_filter(event, filter_str);
8570
8571 kfree(filter_str);
8572 return ret;
8573 }
8574
8575 /*
8576 * hrtimer based swevent callback
8577 */
8578
8579 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8580 {
8581 enum hrtimer_restart ret = HRTIMER_RESTART;
8582 struct perf_sample_data data;
8583 struct pt_regs *regs;
8584 struct perf_event *event;
8585 u64 period;
8586
8587 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8588
8589 if (event->state != PERF_EVENT_STATE_ACTIVE)
8590 return HRTIMER_NORESTART;
8591
8592 event->pmu->read(event);
8593
8594 perf_sample_data_init(&data, 0, event->hw.last_period);
8595 regs = get_irq_regs();
8596
8597 if (regs && !perf_exclude_event(event, regs)) {
8598 if (!(event->attr.exclude_idle && is_idle_task(current)))
8599 if (__perf_event_overflow(event, 1, &data, regs))
8600 ret = HRTIMER_NORESTART;
8601 }
8602
8603 period = max_t(u64, 10000, event->hw.sample_period);
8604 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8605
8606 return ret;
8607 }
8608
8609 static void perf_swevent_start_hrtimer(struct perf_event *event)
8610 {
8611 struct hw_perf_event *hwc = &event->hw;
8612 s64 period;
8613
8614 if (!is_sampling_event(event))
8615 return;
8616
8617 period = local64_read(&hwc->period_left);
8618 if (period) {
8619 if (period < 0)
8620 period = 10000;
8621
8622 local64_set(&hwc->period_left, 0);
8623 } else {
8624 period = max_t(u64, 10000, hwc->sample_period);
8625 }
8626 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8627 HRTIMER_MODE_REL_PINNED);
8628 }
8629
8630 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8631 {
8632 struct hw_perf_event *hwc = &event->hw;
8633
8634 if (is_sampling_event(event)) {
8635 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8636 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8637
8638 hrtimer_cancel(&hwc->hrtimer);
8639 }
8640 }
8641
8642 static void perf_swevent_init_hrtimer(struct perf_event *event)
8643 {
8644 struct hw_perf_event *hwc = &event->hw;
8645
8646 if (!is_sampling_event(event))
8647 return;
8648
8649 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8650 hwc->hrtimer.function = perf_swevent_hrtimer;
8651
8652 /*
8653 * Since hrtimers have a fixed rate, we can do a static freq->period
8654 * mapping and avoid the whole period adjust feedback stuff.
8655 */
8656 if (event->attr.freq) {
8657 long freq = event->attr.sample_freq;
8658
8659 event->attr.sample_period = NSEC_PER_SEC / freq;
8660 hwc->sample_period = event->attr.sample_period;
8661 local64_set(&hwc->period_left, hwc->sample_period);
8662 hwc->last_period = hwc->sample_period;
8663 event->attr.freq = 0;
8664 }
8665 }
8666
8667 /*
8668 * Software event: cpu wall time clock
8669 */
8670
8671 static void cpu_clock_event_update(struct perf_event *event)
8672 {
8673 s64 prev;
8674 u64 now;
8675
8676 now = local_clock();
8677 prev = local64_xchg(&event->hw.prev_count, now);
8678 local64_add(now - prev, &event->count);
8679 }
8680
8681 static void cpu_clock_event_start(struct perf_event *event, int flags)
8682 {
8683 local64_set(&event->hw.prev_count, local_clock());
8684 perf_swevent_start_hrtimer(event);
8685 }
8686
8687 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8688 {
8689 perf_swevent_cancel_hrtimer(event);
8690 cpu_clock_event_update(event);
8691 }
8692
8693 static int cpu_clock_event_add(struct perf_event *event, int flags)
8694 {
8695 if (flags & PERF_EF_START)
8696 cpu_clock_event_start(event, flags);
8697 perf_event_update_userpage(event);
8698
8699 return 0;
8700 }
8701
8702 static void cpu_clock_event_del(struct perf_event *event, int flags)
8703 {
8704 cpu_clock_event_stop(event, flags);
8705 }
8706
8707 static void cpu_clock_event_read(struct perf_event *event)
8708 {
8709 cpu_clock_event_update(event);
8710 }
8711
8712 static int cpu_clock_event_init(struct perf_event *event)
8713 {
8714 if (event->attr.type != PERF_TYPE_SOFTWARE)
8715 return -ENOENT;
8716
8717 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8718 return -ENOENT;
8719
8720 /*
8721 * no branch sampling for software events
8722 */
8723 if (has_branch_stack(event))
8724 return -EOPNOTSUPP;
8725
8726 perf_swevent_init_hrtimer(event);
8727
8728 return 0;
8729 }
8730
8731 static struct pmu perf_cpu_clock = {
8732 .task_ctx_nr = perf_sw_context,
8733
8734 .capabilities = PERF_PMU_CAP_NO_NMI,
8735
8736 .event_init = cpu_clock_event_init,
8737 .add = cpu_clock_event_add,
8738 .del = cpu_clock_event_del,
8739 .start = cpu_clock_event_start,
8740 .stop = cpu_clock_event_stop,
8741 .read = cpu_clock_event_read,
8742 };
8743
8744 /*
8745 * Software event: task time clock
8746 */
8747
8748 static void task_clock_event_update(struct perf_event *event, u64 now)
8749 {
8750 u64 prev;
8751 s64 delta;
8752
8753 prev = local64_xchg(&event->hw.prev_count, now);
8754 delta = now - prev;
8755 local64_add(delta, &event->count);
8756 }
8757
8758 static void task_clock_event_start(struct perf_event *event, int flags)
8759 {
8760 local64_set(&event->hw.prev_count, event->ctx->time);
8761 perf_swevent_start_hrtimer(event);
8762 }
8763
8764 static void task_clock_event_stop(struct perf_event *event, int flags)
8765 {
8766 perf_swevent_cancel_hrtimer(event);
8767 task_clock_event_update(event, event->ctx->time);
8768 }
8769
8770 static int task_clock_event_add(struct perf_event *event, int flags)
8771 {
8772 if (flags & PERF_EF_START)
8773 task_clock_event_start(event, flags);
8774 perf_event_update_userpage(event);
8775
8776 return 0;
8777 }
8778
8779 static void task_clock_event_del(struct perf_event *event, int flags)
8780 {
8781 task_clock_event_stop(event, PERF_EF_UPDATE);
8782 }
8783
8784 static void task_clock_event_read(struct perf_event *event)
8785 {
8786 u64 now = perf_clock();
8787 u64 delta = now - event->ctx->timestamp;
8788 u64 time = event->ctx->time + delta;
8789
8790 task_clock_event_update(event, time);
8791 }
8792
8793 static int task_clock_event_init(struct perf_event *event)
8794 {
8795 if (event->attr.type != PERF_TYPE_SOFTWARE)
8796 return -ENOENT;
8797
8798 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8799 return -ENOENT;
8800
8801 /*
8802 * no branch sampling for software events
8803 */
8804 if (has_branch_stack(event))
8805 return -EOPNOTSUPP;
8806
8807 perf_swevent_init_hrtimer(event);
8808
8809 return 0;
8810 }
8811
8812 static struct pmu perf_task_clock = {
8813 .task_ctx_nr = perf_sw_context,
8814
8815 .capabilities = PERF_PMU_CAP_NO_NMI,
8816
8817 .event_init = task_clock_event_init,
8818 .add = task_clock_event_add,
8819 .del = task_clock_event_del,
8820 .start = task_clock_event_start,
8821 .stop = task_clock_event_stop,
8822 .read = task_clock_event_read,
8823 };
8824
8825 static void perf_pmu_nop_void(struct pmu *pmu)
8826 {
8827 }
8828
8829 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8830 {
8831 }
8832
8833 static int perf_pmu_nop_int(struct pmu *pmu)
8834 {
8835 return 0;
8836 }
8837
8838 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8839
8840 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8841 {
8842 __this_cpu_write(nop_txn_flags, flags);
8843
8844 if (flags & ~PERF_PMU_TXN_ADD)
8845 return;
8846
8847 perf_pmu_disable(pmu);
8848 }
8849
8850 static int perf_pmu_commit_txn(struct pmu *pmu)
8851 {
8852 unsigned int flags = __this_cpu_read(nop_txn_flags);
8853
8854 __this_cpu_write(nop_txn_flags, 0);
8855
8856 if (flags & ~PERF_PMU_TXN_ADD)
8857 return 0;
8858
8859 perf_pmu_enable(pmu);
8860 return 0;
8861 }
8862
8863 static void perf_pmu_cancel_txn(struct pmu *pmu)
8864 {
8865 unsigned int flags = __this_cpu_read(nop_txn_flags);
8866
8867 __this_cpu_write(nop_txn_flags, 0);
8868
8869 if (flags & ~PERF_PMU_TXN_ADD)
8870 return;
8871
8872 perf_pmu_enable(pmu);
8873 }
8874
8875 static int perf_event_idx_default(struct perf_event *event)
8876 {
8877 return 0;
8878 }
8879
8880 /*
8881 * Ensures all contexts with the same task_ctx_nr have the same
8882 * pmu_cpu_context too.
8883 */
8884 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8885 {
8886 struct pmu *pmu;
8887
8888 if (ctxn < 0)
8889 return NULL;
8890
8891 list_for_each_entry(pmu, &pmus, entry) {
8892 if (pmu->task_ctx_nr == ctxn)
8893 return pmu->pmu_cpu_context;
8894 }
8895
8896 return NULL;
8897 }
8898
8899 static void free_pmu_context(struct pmu *pmu)
8900 {
8901 /*
8902 * Static contexts such as perf_sw_context have a global lifetime
8903 * and may be shared between different PMUs. Avoid freeing them
8904 * when a single PMU is going away.
8905 */
8906 if (pmu->task_ctx_nr > perf_invalid_context)
8907 return;
8908
8909 mutex_lock(&pmus_lock);
8910 free_percpu(pmu->pmu_cpu_context);
8911 mutex_unlock(&pmus_lock);
8912 }
8913
8914 /*
8915 * Let userspace know that this PMU supports address range filtering:
8916 */
8917 static ssize_t nr_addr_filters_show(struct device *dev,
8918 struct device_attribute *attr,
8919 char *page)
8920 {
8921 struct pmu *pmu = dev_get_drvdata(dev);
8922
8923 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8924 }
8925 DEVICE_ATTR_RO(nr_addr_filters);
8926
8927 static struct idr pmu_idr;
8928
8929 static ssize_t
8930 type_show(struct device *dev, struct device_attribute *attr, char *page)
8931 {
8932 struct pmu *pmu = dev_get_drvdata(dev);
8933
8934 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8935 }
8936 static DEVICE_ATTR_RO(type);
8937
8938 static ssize_t
8939 perf_event_mux_interval_ms_show(struct device *dev,
8940 struct device_attribute *attr,
8941 char *page)
8942 {
8943 struct pmu *pmu = dev_get_drvdata(dev);
8944
8945 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8946 }
8947
8948 static DEFINE_MUTEX(mux_interval_mutex);
8949
8950 static ssize_t
8951 perf_event_mux_interval_ms_store(struct device *dev,
8952 struct device_attribute *attr,
8953 const char *buf, size_t count)
8954 {
8955 struct pmu *pmu = dev_get_drvdata(dev);
8956 int timer, cpu, ret;
8957
8958 ret = kstrtoint(buf, 0, &timer);
8959 if (ret)
8960 return ret;
8961
8962 if (timer < 1)
8963 return -EINVAL;
8964
8965 /* same value, noting to do */
8966 if (timer == pmu->hrtimer_interval_ms)
8967 return count;
8968
8969 mutex_lock(&mux_interval_mutex);
8970 pmu->hrtimer_interval_ms = timer;
8971
8972 /* update all cpuctx for this PMU */
8973 cpus_read_lock();
8974 for_each_online_cpu(cpu) {
8975 struct perf_cpu_context *cpuctx;
8976 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8977 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8978
8979 cpu_function_call(cpu,
8980 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8981 }
8982 cpus_read_unlock();
8983 mutex_unlock(&mux_interval_mutex);
8984
8985 return count;
8986 }
8987 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8988
8989 static struct attribute *pmu_dev_attrs[] = {
8990 &dev_attr_type.attr,
8991 &dev_attr_perf_event_mux_interval_ms.attr,
8992 NULL,
8993 };
8994 ATTRIBUTE_GROUPS(pmu_dev);
8995
8996 static int pmu_bus_running;
8997 static struct bus_type pmu_bus = {
8998 .name = "event_source",
8999 .dev_groups = pmu_dev_groups,
9000 };
9001
9002 static void pmu_dev_release(struct device *dev)
9003 {
9004 kfree(dev);
9005 }
9006
9007 static int pmu_dev_alloc(struct pmu *pmu)
9008 {
9009 int ret = -ENOMEM;
9010
9011 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9012 if (!pmu->dev)
9013 goto out;
9014
9015 pmu->dev->groups = pmu->attr_groups;
9016 device_initialize(pmu->dev);
9017 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9018 if (ret)
9019 goto free_dev;
9020
9021 dev_set_drvdata(pmu->dev, pmu);
9022 pmu->dev->bus = &pmu_bus;
9023 pmu->dev->release = pmu_dev_release;
9024 ret = device_add(pmu->dev);
9025 if (ret)
9026 goto free_dev;
9027
9028 /* For PMUs with address filters, throw in an extra attribute: */
9029 if (pmu->nr_addr_filters)
9030 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9031
9032 if (ret)
9033 goto del_dev;
9034
9035 out:
9036 return ret;
9037
9038 del_dev:
9039 device_del(pmu->dev);
9040
9041 free_dev:
9042 put_device(pmu->dev);
9043 goto out;
9044 }
9045
9046 static struct lock_class_key cpuctx_mutex;
9047 static struct lock_class_key cpuctx_lock;
9048
9049 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9050 {
9051 int cpu, ret;
9052
9053 mutex_lock(&pmus_lock);
9054 ret = -ENOMEM;
9055 pmu->pmu_disable_count = alloc_percpu(int);
9056 if (!pmu->pmu_disable_count)
9057 goto unlock;
9058
9059 pmu->type = -1;
9060 if (!name)
9061 goto skip_type;
9062 pmu->name = name;
9063
9064 if (type < 0) {
9065 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9066 if (type < 0) {
9067 ret = type;
9068 goto free_pdc;
9069 }
9070 }
9071 pmu->type = type;
9072
9073 if (pmu_bus_running) {
9074 ret = pmu_dev_alloc(pmu);
9075 if (ret)
9076 goto free_idr;
9077 }
9078
9079 skip_type:
9080 if (pmu->task_ctx_nr == perf_hw_context) {
9081 static int hw_context_taken = 0;
9082
9083 /*
9084 * Other than systems with heterogeneous CPUs, it never makes
9085 * sense for two PMUs to share perf_hw_context. PMUs which are
9086 * uncore must use perf_invalid_context.
9087 */
9088 if (WARN_ON_ONCE(hw_context_taken &&
9089 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9090 pmu->task_ctx_nr = perf_invalid_context;
9091
9092 hw_context_taken = 1;
9093 }
9094
9095 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9096 if (pmu->pmu_cpu_context)
9097 goto got_cpu_context;
9098
9099 ret = -ENOMEM;
9100 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9101 if (!pmu->pmu_cpu_context)
9102 goto free_dev;
9103
9104 for_each_possible_cpu(cpu) {
9105 struct perf_cpu_context *cpuctx;
9106
9107 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9108 __perf_event_init_context(&cpuctx->ctx);
9109 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9110 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9111 cpuctx->ctx.pmu = pmu;
9112 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9113
9114 __perf_mux_hrtimer_init(cpuctx, cpu);
9115 }
9116
9117 got_cpu_context:
9118 if (!pmu->start_txn) {
9119 if (pmu->pmu_enable) {
9120 /*
9121 * If we have pmu_enable/pmu_disable calls, install
9122 * transaction stubs that use that to try and batch
9123 * hardware accesses.
9124 */
9125 pmu->start_txn = perf_pmu_start_txn;
9126 pmu->commit_txn = perf_pmu_commit_txn;
9127 pmu->cancel_txn = perf_pmu_cancel_txn;
9128 } else {
9129 pmu->start_txn = perf_pmu_nop_txn;
9130 pmu->commit_txn = perf_pmu_nop_int;
9131 pmu->cancel_txn = perf_pmu_nop_void;
9132 }
9133 }
9134
9135 if (!pmu->pmu_enable) {
9136 pmu->pmu_enable = perf_pmu_nop_void;
9137 pmu->pmu_disable = perf_pmu_nop_void;
9138 }
9139
9140 if (!pmu->event_idx)
9141 pmu->event_idx = perf_event_idx_default;
9142
9143 list_add_rcu(&pmu->entry, &pmus);
9144 atomic_set(&pmu->exclusive_cnt, 0);
9145 ret = 0;
9146 unlock:
9147 mutex_unlock(&pmus_lock);
9148
9149 return ret;
9150
9151 free_dev:
9152 device_del(pmu->dev);
9153 put_device(pmu->dev);
9154
9155 free_idr:
9156 if (pmu->type >= PERF_TYPE_MAX)
9157 idr_remove(&pmu_idr, pmu->type);
9158
9159 free_pdc:
9160 free_percpu(pmu->pmu_disable_count);
9161 goto unlock;
9162 }
9163 EXPORT_SYMBOL_GPL(perf_pmu_register);
9164
9165 void perf_pmu_unregister(struct pmu *pmu)
9166 {
9167 int remove_device;
9168
9169 mutex_lock(&pmus_lock);
9170 remove_device = pmu_bus_running;
9171 list_del_rcu(&pmu->entry);
9172 mutex_unlock(&pmus_lock);
9173
9174 /*
9175 * We dereference the pmu list under both SRCU and regular RCU, so
9176 * synchronize against both of those.
9177 */
9178 synchronize_srcu(&pmus_srcu);
9179 synchronize_rcu();
9180
9181 free_percpu(pmu->pmu_disable_count);
9182 if (pmu->type >= PERF_TYPE_MAX)
9183 idr_remove(&pmu_idr, pmu->type);
9184 if (remove_device) {
9185 if (pmu->nr_addr_filters)
9186 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9187 device_del(pmu->dev);
9188 put_device(pmu->dev);
9189 }
9190 free_pmu_context(pmu);
9191 }
9192 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9193
9194 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9195 {
9196 struct perf_event_context *ctx = NULL;
9197 int ret;
9198
9199 if (!try_module_get(pmu->module))
9200 return -ENODEV;
9201
9202 if (event->group_leader != event) {
9203 /*
9204 * This ctx->mutex can nest when we're called through
9205 * inheritance. See the perf_event_ctx_lock_nested() comment.
9206 */
9207 ctx = perf_event_ctx_lock_nested(event->group_leader,
9208 SINGLE_DEPTH_NESTING);
9209 BUG_ON(!ctx);
9210 }
9211
9212 event->pmu = pmu;
9213 ret = pmu->event_init(event);
9214
9215 if (ctx)
9216 perf_event_ctx_unlock(event->group_leader, ctx);
9217
9218 if (ret)
9219 module_put(pmu->module);
9220
9221 return ret;
9222 }
9223
9224 static struct pmu *perf_init_event(struct perf_event *event)
9225 {
9226 struct pmu *pmu;
9227 int idx;
9228 int ret;
9229
9230 idx = srcu_read_lock(&pmus_srcu);
9231
9232 /* Try parent's PMU first: */
9233 if (event->parent && event->parent->pmu) {
9234 pmu = event->parent->pmu;
9235 ret = perf_try_init_event(pmu, event);
9236 if (!ret)
9237 goto unlock;
9238 }
9239
9240 rcu_read_lock();
9241 pmu = idr_find(&pmu_idr, event->attr.type);
9242 rcu_read_unlock();
9243 if (pmu) {
9244 ret = perf_try_init_event(pmu, event);
9245 if (ret)
9246 pmu = ERR_PTR(ret);
9247 goto unlock;
9248 }
9249
9250 list_for_each_entry_rcu(pmu, &pmus, entry) {
9251 ret = perf_try_init_event(pmu, event);
9252 if (!ret)
9253 goto unlock;
9254
9255 if (ret != -ENOENT) {
9256 pmu = ERR_PTR(ret);
9257 goto unlock;
9258 }
9259 }
9260 pmu = ERR_PTR(-ENOENT);
9261 unlock:
9262 srcu_read_unlock(&pmus_srcu, idx);
9263
9264 return pmu;
9265 }
9266
9267 static void attach_sb_event(struct perf_event *event)
9268 {
9269 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9270
9271 raw_spin_lock(&pel->lock);
9272 list_add_rcu(&event->sb_list, &pel->list);
9273 raw_spin_unlock(&pel->lock);
9274 }
9275
9276 /*
9277 * We keep a list of all !task (and therefore per-cpu) events
9278 * that need to receive side-band records.
9279 *
9280 * This avoids having to scan all the various PMU per-cpu contexts
9281 * looking for them.
9282 */
9283 static void account_pmu_sb_event(struct perf_event *event)
9284 {
9285 if (is_sb_event(event))
9286 attach_sb_event(event);
9287 }
9288
9289 static void account_event_cpu(struct perf_event *event, int cpu)
9290 {
9291 if (event->parent)
9292 return;
9293
9294 if (is_cgroup_event(event))
9295 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9296 }
9297
9298 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9299 static void account_freq_event_nohz(void)
9300 {
9301 #ifdef CONFIG_NO_HZ_FULL
9302 /* Lock so we don't race with concurrent unaccount */
9303 spin_lock(&nr_freq_lock);
9304 if (atomic_inc_return(&nr_freq_events) == 1)
9305 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9306 spin_unlock(&nr_freq_lock);
9307 #endif
9308 }
9309
9310 static void account_freq_event(void)
9311 {
9312 if (tick_nohz_full_enabled())
9313 account_freq_event_nohz();
9314 else
9315 atomic_inc(&nr_freq_events);
9316 }
9317
9318
9319 static void account_event(struct perf_event *event)
9320 {
9321 bool inc = false;
9322
9323 if (event->parent)
9324 return;
9325
9326 if (event->attach_state & PERF_ATTACH_TASK)
9327 inc = true;
9328 if (event->attr.mmap || event->attr.mmap_data)
9329 atomic_inc(&nr_mmap_events);
9330 if (event->attr.comm)
9331 atomic_inc(&nr_comm_events);
9332 if (event->attr.namespaces)
9333 atomic_inc(&nr_namespaces_events);
9334 if (event->attr.task)
9335 atomic_inc(&nr_task_events);
9336 if (event->attr.freq)
9337 account_freq_event();
9338 if (event->attr.context_switch) {
9339 atomic_inc(&nr_switch_events);
9340 inc = true;
9341 }
9342 if (has_branch_stack(event))
9343 inc = true;
9344 if (is_cgroup_event(event))
9345 inc = true;
9346
9347 if (inc) {
9348 /*
9349 * We need the mutex here because static_branch_enable()
9350 * must complete *before* the perf_sched_count increment
9351 * becomes visible.
9352 */
9353 if (atomic_inc_not_zero(&perf_sched_count))
9354 goto enabled;
9355
9356 mutex_lock(&perf_sched_mutex);
9357 if (!atomic_read(&perf_sched_count)) {
9358 static_branch_enable(&perf_sched_events);
9359 /*
9360 * Guarantee that all CPUs observe they key change and
9361 * call the perf scheduling hooks before proceeding to
9362 * install events that need them.
9363 */
9364 synchronize_sched();
9365 }
9366 /*
9367 * Now that we have waited for the sync_sched(), allow further
9368 * increments to by-pass the mutex.
9369 */
9370 atomic_inc(&perf_sched_count);
9371 mutex_unlock(&perf_sched_mutex);
9372 }
9373 enabled:
9374
9375 account_event_cpu(event, event->cpu);
9376
9377 account_pmu_sb_event(event);
9378 }
9379
9380 /*
9381 * Allocate and initialize a event structure
9382 */
9383 static struct perf_event *
9384 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9385 struct task_struct *task,
9386 struct perf_event *group_leader,
9387 struct perf_event *parent_event,
9388 perf_overflow_handler_t overflow_handler,
9389 void *context, int cgroup_fd)
9390 {
9391 struct pmu *pmu;
9392 struct perf_event *event;
9393 struct hw_perf_event *hwc;
9394 long err = -EINVAL;
9395
9396 if ((unsigned)cpu >= nr_cpu_ids) {
9397 if (!task || cpu != -1)
9398 return ERR_PTR(-EINVAL);
9399 }
9400
9401 event = kzalloc(sizeof(*event), GFP_KERNEL);
9402 if (!event)
9403 return ERR_PTR(-ENOMEM);
9404
9405 /*
9406 * Single events are their own group leaders, with an
9407 * empty sibling list:
9408 */
9409 if (!group_leader)
9410 group_leader = event;
9411
9412 mutex_init(&event->child_mutex);
9413 INIT_LIST_HEAD(&event->child_list);
9414
9415 INIT_LIST_HEAD(&event->group_entry);
9416 INIT_LIST_HEAD(&event->event_entry);
9417 INIT_LIST_HEAD(&event->sibling_list);
9418 INIT_LIST_HEAD(&event->rb_entry);
9419 INIT_LIST_HEAD(&event->active_entry);
9420 INIT_LIST_HEAD(&event->addr_filters.list);
9421 INIT_HLIST_NODE(&event->hlist_entry);
9422
9423
9424 init_waitqueue_head(&event->waitq);
9425 init_irq_work(&event->pending, perf_pending_event);
9426
9427 mutex_init(&event->mmap_mutex);
9428 raw_spin_lock_init(&event->addr_filters.lock);
9429
9430 atomic_long_set(&event->refcount, 1);
9431 event->cpu = cpu;
9432 event->attr = *attr;
9433 event->group_leader = group_leader;
9434 event->pmu = NULL;
9435 event->oncpu = -1;
9436
9437 event->parent = parent_event;
9438
9439 event->ns = get_pid_ns(task_active_pid_ns(current));
9440 event->id = atomic64_inc_return(&perf_event_id);
9441
9442 event->state = PERF_EVENT_STATE_INACTIVE;
9443
9444 if (task) {
9445 event->attach_state = PERF_ATTACH_TASK;
9446 /*
9447 * XXX pmu::event_init needs to know what task to account to
9448 * and we cannot use the ctx information because we need the
9449 * pmu before we get a ctx.
9450 */
9451 event->hw.target = task;
9452 }
9453
9454 event->clock = &local_clock;
9455 if (parent_event)
9456 event->clock = parent_event->clock;
9457
9458 if (!overflow_handler && parent_event) {
9459 overflow_handler = parent_event->overflow_handler;
9460 context = parent_event->overflow_handler_context;
9461 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9462 if (overflow_handler == bpf_overflow_handler) {
9463 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9464
9465 if (IS_ERR(prog)) {
9466 err = PTR_ERR(prog);
9467 goto err_ns;
9468 }
9469 event->prog = prog;
9470 event->orig_overflow_handler =
9471 parent_event->orig_overflow_handler;
9472 }
9473 #endif
9474 }
9475
9476 if (overflow_handler) {
9477 event->overflow_handler = overflow_handler;
9478 event->overflow_handler_context = context;
9479 } else if (is_write_backward(event)){
9480 event->overflow_handler = perf_event_output_backward;
9481 event->overflow_handler_context = NULL;
9482 } else {
9483 event->overflow_handler = perf_event_output_forward;
9484 event->overflow_handler_context = NULL;
9485 }
9486
9487 perf_event__state_init(event);
9488
9489 pmu = NULL;
9490
9491 hwc = &event->hw;
9492 hwc->sample_period = attr->sample_period;
9493 if (attr->freq && attr->sample_freq)
9494 hwc->sample_period = 1;
9495 hwc->last_period = hwc->sample_period;
9496
9497 local64_set(&hwc->period_left, hwc->sample_period);
9498
9499 /*
9500 * We currently do not support PERF_SAMPLE_READ on inherited events.
9501 * See perf_output_read().
9502 */
9503 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9504 goto err_ns;
9505
9506 if (!has_branch_stack(event))
9507 event->attr.branch_sample_type = 0;
9508
9509 if (cgroup_fd != -1) {
9510 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9511 if (err)
9512 goto err_ns;
9513 }
9514
9515 pmu = perf_init_event(event);
9516 if (IS_ERR(pmu)) {
9517 err = PTR_ERR(pmu);
9518 goto err_ns;
9519 }
9520
9521 err = exclusive_event_init(event);
9522 if (err)
9523 goto err_pmu;
9524
9525 if (has_addr_filter(event)) {
9526 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9527 sizeof(unsigned long),
9528 GFP_KERNEL);
9529 if (!event->addr_filters_offs) {
9530 err = -ENOMEM;
9531 goto err_per_task;
9532 }
9533
9534 /* force hw sync on the address filters */
9535 event->addr_filters_gen = 1;
9536 }
9537
9538 if (!event->parent) {
9539 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9540 err = get_callchain_buffers(attr->sample_max_stack);
9541 if (err)
9542 goto err_addr_filters;
9543 }
9544 }
9545
9546 /* symmetric to unaccount_event() in _free_event() */
9547 account_event(event);
9548
9549 return event;
9550
9551 err_addr_filters:
9552 kfree(event->addr_filters_offs);
9553
9554 err_per_task:
9555 exclusive_event_destroy(event);
9556
9557 err_pmu:
9558 if (event->destroy)
9559 event->destroy(event);
9560 module_put(pmu->module);
9561 err_ns:
9562 if (is_cgroup_event(event))
9563 perf_detach_cgroup(event);
9564 if (event->ns)
9565 put_pid_ns(event->ns);
9566 kfree(event);
9567
9568 return ERR_PTR(err);
9569 }
9570
9571 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9572 struct perf_event_attr *attr)
9573 {
9574 u32 size;
9575 int ret;
9576
9577 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9578 return -EFAULT;
9579
9580 /*
9581 * zero the full structure, so that a short copy will be nice.
9582 */
9583 memset(attr, 0, sizeof(*attr));
9584
9585 ret = get_user(size, &uattr->size);
9586 if (ret)
9587 return ret;
9588
9589 if (size > PAGE_SIZE) /* silly large */
9590 goto err_size;
9591
9592 if (!size) /* abi compat */
9593 size = PERF_ATTR_SIZE_VER0;
9594
9595 if (size < PERF_ATTR_SIZE_VER0)
9596 goto err_size;
9597
9598 /*
9599 * If we're handed a bigger struct than we know of,
9600 * ensure all the unknown bits are 0 - i.e. new
9601 * user-space does not rely on any kernel feature
9602 * extensions we dont know about yet.
9603 */
9604 if (size > sizeof(*attr)) {
9605 unsigned char __user *addr;
9606 unsigned char __user *end;
9607 unsigned char val;
9608
9609 addr = (void __user *)uattr + sizeof(*attr);
9610 end = (void __user *)uattr + size;
9611
9612 for (; addr < end; addr++) {
9613 ret = get_user(val, addr);
9614 if (ret)
9615 return ret;
9616 if (val)
9617 goto err_size;
9618 }
9619 size = sizeof(*attr);
9620 }
9621
9622 ret = copy_from_user(attr, uattr, size);
9623 if (ret)
9624 return -EFAULT;
9625
9626 attr->size = size;
9627
9628 if (attr->__reserved_1)
9629 return -EINVAL;
9630
9631 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9632 return -EINVAL;
9633
9634 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9635 return -EINVAL;
9636
9637 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9638 u64 mask = attr->branch_sample_type;
9639
9640 /* only using defined bits */
9641 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9642 return -EINVAL;
9643
9644 /* at least one branch bit must be set */
9645 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9646 return -EINVAL;
9647
9648 /* propagate priv level, when not set for branch */
9649 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9650
9651 /* exclude_kernel checked on syscall entry */
9652 if (!attr->exclude_kernel)
9653 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9654
9655 if (!attr->exclude_user)
9656 mask |= PERF_SAMPLE_BRANCH_USER;
9657
9658 if (!attr->exclude_hv)
9659 mask |= PERF_SAMPLE_BRANCH_HV;
9660 /*
9661 * adjust user setting (for HW filter setup)
9662 */
9663 attr->branch_sample_type = mask;
9664 }
9665 /* privileged levels capture (kernel, hv): check permissions */
9666 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9667 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9668 return -EACCES;
9669 }
9670
9671 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9672 ret = perf_reg_validate(attr->sample_regs_user);
9673 if (ret)
9674 return ret;
9675 }
9676
9677 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9678 if (!arch_perf_have_user_stack_dump())
9679 return -ENOSYS;
9680
9681 /*
9682 * We have __u32 type for the size, but so far
9683 * we can only use __u16 as maximum due to the
9684 * __u16 sample size limit.
9685 */
9686 if (attr->sample_stack_user >= USHRT_MAX)
9687 ret = -EINVAL;
9688 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9689 ret = -EINVAL;
9690 }
9691
9692 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9693 ret = perf_reg_validate(attr->sample_regs_intr);
9694 out:
9695 return ret;
9696
9697 err_size:
9698 put_user(sizeof(*attr), &uattr->size);
9699 ret = -E2BIG;
9700 goto out;
9701 }
9702
9703 static int
9704 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9705 {
9706 struct ring_buffer *rb = NULL;
9707 int ret = -EINVAL;
9708
9709 if (!output_event)
9710 goto set;
9711
9712 /* don't allow circular references */
9713 if (event == output_event)
9714 goto out;
9715
9716 /*
9717 * Don't allow cross-cpu buffers
9718 */
9719 if (output_event->cpu != event->cpu)
9720 goto out;
9721
9722 /*
9723 * If its not a per-cpu rb, it must be the same task.
9724 */
9725 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9726 goto out;
9727
9728 /*
9729 * Mixing clocks in the same buffer is trouble you don't need.
9730 */
9731 if (output_event->clock != event->clock)
9732 goto out;
9733
9734 /*
9735 * Either writing ring buffer from beginning or from end.
9736 * Mixing is not allowed.
9737 */
9738 if (is_write_backward(output_event) != is_write_backward(event))
9739 goto out;
9740
9741 /*
9742 * If both events generate aux data, they must be on the same PMU
9743 */
9744 if (has_aux(event) && has_aux(output_event) &&
9745 event->pmu != output_event->pmu)
9746 goto out;
9747
9748 set:
9749 mutex_lock(&event->mmap_mutex);
9750 /* Can't redirect output if we've got an active mmap() */
9751 if (atomic_read(&event->mmap_count))
9752 goto unlock;
9753
9754 if (output_event) {
9755 /* get the rb we want to redirect to */
9756 rb = ring_buffer_get(output_event);
9757 if (!rb)
9758 goto unlock;
9759 }
9760
9761 ring_buffer_attach(event, rb);
9762
9763 ret = 0;
9764 unlock:
9765 mutex_unlock(&event->mmap_mutex);
9766
9767 out:
9768 return ret;
9769 }
9770
9771 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9772 {
9773 if (b < a)
9774 swap(a, b);
9775
9776 mutex_lock(a);
9777 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9778 }
9779
9780 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9781 {
9782 bool nmi_safe = false;
9783
9784 switch (clk_id) {
9785 case CLOCK_MONOTONIC:
9786 event->clock = &ktime_get_mono_fast_ns;
9787 nmi_safe = true;
9788 break;
9789
9790 case CLOCK_MONOTONIC_RAW:
9791 event->clock = &ktime_get_raw_fast_ns;
9792 nmi_safe = true;
9793 break;
9794
9795 case CLOCK_REALTIME:
9796 event->clock = &ktime_get_real_ns;
9797 break;
9798
9799 case CLOCK_BOOTTIME:
9800 event->clock = &ktime_get_boot_ns;
9801 break;
9802
9803 case CLOCK_TAI:
9804 event->clock = &ktime_get_tai_ns;
9805 break;
9806
9807 default:
9808 return -EINVAL;
9809 }
9810
9811 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9812 return -EINVAL;
9813
9814 return 0;
9815 }
9816
9817 /*
9818 * Variation on perf_event_ctx_lock_nested(), except we take two context
9819 * mutexes.
9820 */
9821 static struct perf_event_context *
9822 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9823 struct perf_event_context *ctx)
9824 {
9825 struct perf_event_context *gctx;
9826
9827 again:
9828 rcu_read_lock();
9829 gctx = READ_ONCE(group_leader->ctx);
9830 if (!atomic_inc_not_zero(&gctx->refcount)) {
9831 rcu_read_unlock();
9832 goto again;
9833 }
9834 rcu_read_unlock();
9835
9836 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9837
9838 if (group_leader->ctx != gctx) {
9839 mutex_unlock(&ctx->mutex);
9840 mutex_unlock(&gctx->mutex);
9841 put_ctx(gctx);
9842 goto again;
9843 }
9844
9845 return gctx;
9846 }
9847
9848 /**
9849 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9850 *
9851 * @attr_uptr: event_id type attributes for monitoring/sampling
9852 * @pid: target pid
9853 * @cpu: target cpu
9854 * @group_fd: group leader event fd
9855 */
9856 SYSCALL_DEFINE5(perf_event_open,
9857 struct perf_event_attr __user *, attr_uptr,
9858 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9859 {
9860 struct perf_event *group_leader = NULL, *output_event = NULL;
9861 struct perf_event *event, *sibling;
9862 struct perf_event_attr attr;
9863 struct perf_event_context *ctx, *uninitialized_var(gctx);
9864 struct file *event_file = NULL;
9865 struct fd group = {NULL, 0};
9866 struct task_struct *task = NULL;
9867 struct pmu *pmu;
9868 int event_fd;
9869 int move_group = 0;
9870 int err;
9871 int f_flags = O_RDWR;
9872 int cgroup_fd = -1;
9873
9874 /* for future expandability... */
9875 if (flags & ~PERF_FLAG_ALL)
9876 return -EINVAL;
9877
9878 err = perf_copy_attr(attr_uptr, &attr);
9879 if (err)
9880 return err;
9881
9882 if (!attr.exclude_kernel) {
9883 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9884 return -EACCES;
9885 }
9886
9887 if (attr.namespaces) {
9888 if (!capable(CAP_SYS_ADMIN))
9889 return -EACCES;
9890 }
9891
9892 if (attr.freq) {
9893 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9894 return -EINVAL;
9895 } else {
9896 if (attr.sample_period & (1ULL << 63))
9897 return -EINVAL;
9898 }
9899
9900 /* Only privileged users can get physical addresses */
9901 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9902 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9903 return -EACCES;
9904
9905 if (!attr.sample_max_stack)
9906 attr.sample_max_stack = sysctl_perf_event_max_stack;
9907
9908 /*
9909 * In cgroup mode, the pid argument is used to pass the fd
9910 * opened to the cgroup directory in cgroupfs. The cpu argument
9911 * designates the cpu on which to monitor threads from that
9912 * cgroup.
9913 */
9914 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9915 return -EINVAL;
9916
9917 if (flags & PERF_FLAG_FD_CLOEXEC)
9918 f_flags |= O_CLOEXEC;
9919
9920 event_fd = get_unused_fd_flags(f_flags);
9921 if (event_fd < 0)
9922 return event_fd;
9923
9924 if (group_fd != -1) {
9925 err = perf_fget_light(group_fd, &group);
9926 if (err)
9927 goto err_fd;
9928 group_leader = group.file->private_data;
9929 if (flags & PERF_FLAG_FD_OUTPUT)
9930 output_event = group_leader;
9931 if (flags & PERF_FLAG_FD_NO_GROUP)
9932 group_leader = NULL;
9933 }
9934
9935 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9936 task = find_lively_task_by_vpid(pid);
9937 if (IS_ERR(task)) {
9938 err = PTR_ERR(task);
9939 goto err_group_fd;
9940 }
9941 }
9942
9943 if (task && group_leader &&
9944 group_leader->attr.inherit != attr.inherit) {
9945 err = -EINVAL;
9946 goto err_task;
9947 }
9948
9949 if (task) {
9950 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9951 if (err)
9952 goto err_task;
9953
9954 /*
9955 * Reuse ptrace permission checks for now.
9956 *
9957 * We must hold cred_guard_mutex across this and any potential
9958 * perf_install_in_context() call for this new event to
9959 * serialize against exec() altering our credentials (and the
9960 * perf_event_exit_task() that could imply).
9961 */
9962 err = -EACCES;
9963 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9964 goto err_cred;
9965 }
9966
9967 if (flags & PERF_FLAG_PID_CGROUP)
9968 cgroup_fd = pid;
9969
9970 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9971 NULL, NULL, cgroup_fd);
9972 if (IS_ERR(event)) {
9973 err = PTR_ERR(event);
9974 goto err_cred;
9975 }
9976
9977 if (is_sampling_event(event)) {
9978 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9979 err = -EOPNOTSUPP;
9980 goto err_alloc;
9981 }
9982 }
9983
9984 /*
9985 * Special case software events and allow them to be part of
9986 * any hardware group.
9987 */
9988 pmu = event->pmu;
9989
9990 if (attr.use_clockid) {
9991 err = perf_event_set_clock(event, attr.clockid);
9992 if (err)
9993 goto err_alloc;
9994 }
9995
9996 if (pmu->task_ctx_nr == perf_sw_context)
9997 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9998
9999 if (group_leader &&
10000 (is_software_event(event) != is_software_event(group_leader))) {
10001 if (is_software_event(event)) {
10002 /*
10003 * If event and group_leader are not both a software
10004 * event, and event is, then group leader is not.
10005 *
10006 * Allow the addition of software events to !software
10007 * groups, this is safe because software events never
10008 * fail to schedule.
10009 */
10010 pmu = group_leader->pmu;
10011 } else if (is_software_event(group_leader) &&
10012 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10013 /*
10014 * In case the group is a pure software group, and we
10015 * try to add a hardware event, move the whole group to
10016 * the hardware context.
10017 */
10018 move_group = 1;
10019 }
10020 }
10021
10022 /*
10023 * Get the target context (task or percpu):
10024 */
10025 ctx = find_get_context(pmu, task, event);
10026 if (IS_ERR(ctx)) {
10027 err = PTR_ERR(ctx);
10028 goto err_alloc;
10029 }
10030
10031 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10032 err = -EBUSY;
10033 goto err_context;
10034 }
10035
10036 /*
10037 * Look up the group leader (we will attach this event to it):
10038 */
10039 if (group_leader) {
10040 err = -EINVAL;
10041
10042 /*
10043 * Do not allow a recursive hierarchy (this new sibling
10044 * becoming part of another group-sibling):
10045 */
10046 if (group_leader->group_leader != group_leader)
10047 goto err_context;
10048
10049 /* All events in a group should have the same clock */
10050 if (group_leader->clock != event->clock)
10051 goto err_context;
10052
10053 /*
10054 * Make sure we're both events for the same CPU;
10055 * grouping events for different CPUs is broken; since
10056 * you can never concurrently schedule them anyhow.
10057 */
10058 if (group_leader->cpu != event->cpu)
10059 goto err_context;
10060
10061 /*
10062 * Make sure we're both on the same task, or both
10063 * per-CPU events.
10064 */
10065 if (group_leader->ctx->task != ctx->task)
10066 goto err_context;
10067
10068 /*
10069 * Do not allow to attach to a group in a different task
10070 * or CPU context. If we're moving SW events, we'll fix
10071 * this up later, so allow that.
10072 */
10073 if (!move_group && group_leader->ctx != ctx)
10074 goto err_context;
10075
10076 /*
10077 * Only a group leader can be exclusive or pinned
10078 */
10079 if (attr.exclusive || attr.pinned)
10080 goto err_context;
10081 }
10082
10083 if (output_event) {
10084 err = perf_event_set_output(event, output_event);
10085 if (err)
10086 goto err_context;
10087 }
10088
10089 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10090 f_flags);
10091 if (IS_ERR(event_file)) {
10092 err = PTR_ERR(event_file);
10093 event_file = NULL;
10094 goto err_context;
10095 }
10096
10097 if (move_group) {
10098 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10099
10100 if (gctx->task == TASK_TOMBSTONE) {
10101 err = -ESRCH;
10102 goto err_locked;
10103 }
10104
10105 /*
10106 * Check if we raced against another sys_perf_event_open() call
10107 * moving the software group underneath us.
10108 */
10109 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10110 /*
10111 * If someone moved the group out from under us, check
10112 * if this new event wound up on the same ctx, if so
10113 * its the regular !move_group case, otherwise fail.
10114 */
10115 if (gctx != ctx) {
10116 err = -EINVAL;
10117 goto err_locked;
10118 } else {
10119 perf_event_ctx_unlock(group_leader, gctx);
10120 move_group = 0;
10121 }
10122 }
10123 } else {
10124 mutex_lock(&ctx->mutex);
10125 }
10126
10127 if (ctx->task == TASK_TOMBSTONE) {
10128 err = -ESRCH;
10129 goto err_locked;
10130 }
10131
10132 if (!perf_event_validate_size(event)) {
10133 err = -E2BIG;
10134 goto err_locked;
10135 }
10136
10137 if (!task) {
10138 /*
10139 * Check if the @cpu we're creating an event for is online.
10140 *
10141 * We use the perf_cpu_context::ctx::mutex to serialize against
10142 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10143 */
10144 struct perf_cpu_context *cpuctx =
10145 container_of(ctx, struct perf_cpu_context, ctx);
10146
10147 if (!cpuctx->online) {
10148 err = -ENODEV;
10149 goto err_locked;
10150 }
10151 }
10152
10153
10154 /*
10155 * Must be under the same ctx::mutex as perf_install_in_context(),
10156 * because we need to serialize with concurrent event creation.
10157 */
10158 if (!exclusive_event_installable(event, ctx)) {
10159 /* exclusive and group stuff are assumed mutually exclusive */
10160 WARN_ON_ONCE(move_group);
10161
10162 err = -EBUSY;
10163 goto err_locked;
10164 }
10165
10166 WARN_ON_ONCE(ctx->parent_ctx);
10167
10168 /*
10169 * This is the point on no return; we cannot fail hereafter. This is
10170 * where we start modifying current state.
10171 */
10172
10173 if (move_group) {
10174 /*
10175 * See perf_event_ctx_lock() for comments on the details
10176 * of swizzling perf_event::ctx.
10177 */
10178 perf_remove_from_context(group_leader, 0);
10179 put_ctx(gctx);
10180
10181 list_for_each_entry(sibling, &group_leader->sibling_list,
10182 group_entry) {
10183 perf_remove_from_context(sibling, 0);
10184 put_ctx(gctx);
10185 }
10186
10187 /*
10188 * Wait for everybody to stop referencing the events through
10189 * the old lists, before installing it on new lists.
10190 */
10191 synchronize_rcu();
10192
10193 /*
10194 * Install the group siblings before the group leader.
10195 *
10196 * Because a group leader will try and install the entire group
10197 * (through the sibling list, which is still in-tact), we can
10198 * end up with siblings installed in the wrong context.
10199 *
10200 * By installing siblings first we NO-OP because they're not
10201 * reachable through the group lists.
10202 */
10203 list_for_each_entry(sibling, &group_leader->sibling_list,
10204 group_entry) {
10205 perf_event__state_init(sibling);
10206 perf_install_in_context(ctx, sibling, sibling->cpu);
10207 get_ctx(ctx);
10208 }
10209
10210 /*
10211 * Removing from the context ends up with disabled
10212 * event. What we want here is event in the initial
10213 * startup state, ready to be add into new context.
10214 */
10215 perf_event__state_init(group_leader);
10216 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10217 get_ctx(ctx);
10218 }
10219
10220 /*
10221 * Precalculate sample_data sizes; do while holding ctx::mutex such
10222 * that we're serialized against further additions and before
10223 * perf_install_in_context() which is the point the event is active and
10224 * can use these values.
10225 */
10226 perf_event__header_size(event);
10227 perf_event__id_header_size(event);
10228
10229 event->owner = current;
10230
10231 perf_install_in_context(ctx, event, event->cpu);
10232 perf_unpin_context(ctx);
10233
10234 if (move_group)
10235 perf_event_ctx_unlock(group_leader, gctx);
10236 mutex_unlock(&ctx->mutex);
10237
10238 if (task) {
10239 mutex_unlock(&task->signal->cred_guard_mutex);
10240 put_task_struct(task);
10241 }
10242
10243 mutex_lock(&current->perf_event_mutex);
10244 list_add_tail(&event->owner_entry, &current->perf_event_list);
10245 mutex_unlock(&current->perf_event_mutex);
10246
10247 /*
10248 * Drop the reference on the group_event after placing the
10249 * new event on the sibling_list. This ensures destruction
10250 * of the group leader will find the pointer to itself in
10251 * perf_group_detach().
10252 */
10253 fdput(group);
10254 fd_install(event_fd, event_file);
10255 return event_fd;
10256
10257 err_locked:
10258 if (move_group)
10259 perf_event_ctx_unlock(group_leader, gctx);
10260 mutex_unlock(&ctx->mutex);
10261 /* err_file: */
10262 fput(event_file);
10263 err_context:
10264 perf_unpin_context(ctx);
10265 put_ctx(ctx);
10266 err_alloc:
10267 /*
10268 * If event_file is set, the fput() above will have called ->release()
10269 * and that will take care of freeing the event.
10270 */
10271 if (!event_file)
10272 free_event(event);
10273 err_cred:
10274 if (task)
10275 mutex_unlock(&task->signal->cred_guard_mutex);
10276 err_task:
10277 if (task)
10278 put_task_struct(task);
10279 err_group_fd:
10280 fdput(group);
10281 err_fd:
10282 put_unused_fd(event_fd);
10283 return err;
10284 }
10285
10286 /**
10287 * perf_event_create_kernel_counter
10288 *
10289 * @attr: attributes of the counter to create
10290 * @cpu: cpu in which the counter is bound
10291 * @task: task to profile (NULL for percpu)
10292 */
10293 struct perf_event *
10294 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10295 struct task_struct *task,
10296 perf_overflow_handler_t overflow_handler,
10297 void *context)
10298 {
10299 struct perf_event_context *ctx;
10300 struct perf_event *event;
10301 int err;
10302
10303 /*
10304 * Get the target context (task or percpu):
10305 */
10306
10307 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10308 overflow_handler, context, -1);
10309 if (IS_ERR(event)) {
10310 err = PTR_ERR(event);
10311 goto err;
10312 }
10313
10314 /* Mark owner so we could distinguish it from user events. */
10315 event->owner = TASK_TOMBSTONE;
10316
10317 ctx = find_get_context(event->pmu, task, event);
10318 if (IS_ERR(ctx)) {
10319 err = PTR_ERR(ctx);
10320 goto err_free;
10321 }
10322
10323 WARN_ON_ONCE(ctx->parent_ctx);
10324 mutex_lock(&ctx->mutex);
10325 if (ctx->task == TASK_TOMBSTONE) {
10326 err = -ESRCH;
10327 goto err_unlock;
10328 }
10329
10330 if (!task) {
10331 /*
10332 * Check if the @cpu we're creating an event for is online.
10333 *
10334 * We use the perf_cpu_context::ctx::mutex to serialize against
10335 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10336 */
10337 struct perf_cpu_context *cpuctx =
10338 container_of(ctx, struct perf_cpu_context, ctx);
10339 if (!cpuctx->online) {
10340 err = -ENODEV;
10341 goto err_unlock;
10342 }
10343 }
10344
10345 if (!exclusive_event_installable(event, ctx)) {
10346 err = -EBUSY;
10347 goto err_unlock;
10348 }
10349
10350 perf_install_in_context(ctx, event, cpu);
10351 perf_unpin_context(ctx);
10352 mutex_unlock(&ctx->mutex);
10353
10354 return event;
10355
10356 err_unlock:
10357 mutex_unlock(&ctx->mutex);
10358 perf_unpin_context(ctx);
10359 put_ctx(ctx);
10360 err_free:
10361 free_event(event);
10362 err:
10363 return ERR_PTR(err);
10364 }
10365 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10366
10367 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10368 {
10369 struct perf_event_context *src_ctx;
10370 struct perf_event_context *dst_ctx;
10371 struct perf_event *event, *tmp;
10372 LIST_HEAD(events);
10373
10374 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10375 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10376
10377 /*
10378 * See perf_event_ctx_lock() for comments on the details
10379 * of swizzling perf_event::ctx.
10380 */
10381 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10382 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10383 event_entry) {
10384 perf_remove_from_context(event, 0);
10385 unaccount_event_cpu(event, src_cpu);
10386 put_ctx(src_ctx);
10387 list_add(&event->migrate_entry, &events);
10388 }
10389
10390 /*
10391 * Wait for the events to quiesce before re-instating them.
10392 */
10393 synchronize_rcu();
10394
10395 /*
10396 * Re-instate events in 2 passes.
10397 *
10398 * Skip over group leaders and only install siblings on this first
10399 * pass, siblings will not get enabled without a leader, however a
10400 * leader will enable its siblings, even if those are still on the old
10401 * context.
10402 */
10403 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10404 if (event->group_leader == event)
10405 continue;
10406
10407 list_del(&event->migrate_entry);
10408 if (event->state >= PERF_EVENT_STATE_OFF)
10409 event->state = PERF_EVENT_STATE_INACTIVE;
10410 account_event_cpu(event, dst_cpu);
10411 perf_install_in_context(dst_ctx, event, dst_cpu);
10412 get_ctx(dst_ctx);
10413 }
10414
10415 /*
10416 * Once all the siblings are setup properly, install the group leaders
10417 * to make it go.
10418 */
10419 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10420 list_del(&event->migrate_entry);
10421 if (event->state >= PERF_EVENT_STATE_OFF)
10422 event->state = PERF_EVENT_STATE_INACTIVE;
10423 account_event_cpu(event, dst_cpu);
10424 perf_install_in_context(dst_ctx, event, dst_cpu);
10425 get_ctx(dst_ctx);
10426 }
10427 mutex_unlock(&dst_ctx->mutex);
10428 mutex_unlock(&src_ctx->mutex);
10429 }
10430 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10431
10432 static void sync_child_event(struct perf_event *child_event,
10433 struct task_struct *child)
10434 {
10435 struct perf_event *parent_event = child_event->parent;
10436 u64 child_val;
10437
10438 if (child_event->attr.inherit_stat)
10439 perf_event_read_event(child_event, child);
10440
10441 child_val = perf_event_count(child_event);
10442
10443 /*
10444 * Add back the child's count to the parent's count:
10445 */
10446 atomic64_add(child_val, &parent_event->child_count);
10447 atomic64_add(child_event->total_time_enabled,
10448 &parent_event->child_total_time_enabled);
10449 atomic64_add(child_event->total_time_running,
10450 &parent_event->child_total_time_running);
10451 }
10452
10453 static void
10454 perf_event_exit_event(struct perf_event *child_event,
10455 struct perf_event_context *child_ctx,
10456 struct task_struct *child)
10457 {
10458 struct perf_event *parent_event = child_event->parent;
10459
10460 /*
10461 * Do not destroy the 'original' grouping; because of the context
10462 * switch optimization the original events could've ended up in a
10463 * random child task.
10464 *
10465 * If we were to destroy the original group, all group related
10466 * operations would cease to function properly after this random
10467 * child dies.
10468 *
10469 * Do destroy all inherited groups, we don't care about those
10470 * and being thorough is better.
10471 */
10472 raw_spin_lock_irq(&child_ctx->lock);
10473 WARN_ON_ONCE(child_ctx->is_active);
10474
10475 if (parent_event)
10476 perf_group_detach(child_event);
10477 list_del_event(child_event, child_ctx);
10478 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10479 raw_spin_unlock_irq(&child_ctx->lock);
10480
10481 /*
10482 * Parent events are governed by their filedesc, retain them.
10483 */
10484 if (!parent_event) {
10485 perf_event_wakeup(child_event);
10486 return;
10487 }
10488 /*
10489 * Child events can be cleaned up.
10490 */
10491
10492 sync_child_event(child_event, child);
10493
10494 /*
10495 * Remove this event from the parent's list
10496 */
10497 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10498 mutex_lock(&parent_event->child_mutex);
10499 list_del_init(&child_event->child_list);
10500 mutex_unlock(&parent_event->child_mutex);
10501
10502 /*
10503 * Kick perf_poll() for is_event_hup().
10504 */
10505 perf_event_wakeup(parent_event);
10506 free_event(child_event);
10507 put_event(parent_event);
10508 }
10509
10510 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10511 {
10512 struct perf_event_context *child_ctx, *clone_ctx = NULL;
10513 struct perf_event *child_event, *next;
10514
10515 WARN_ON_ONCE(child != current);
10516
10517 child_ctx = perf_pin_task_context(child, ctxn);
10518 if (!child_ctx)
10519 return;
10520
10521 /*
10522 * In order to reduce the amount of tricky in ctx tear-down, we hold
10523 * ctx::mutex over the entire thing. This serializes against almost
10524 * everything that wants to access the ctx.
10525 *
10526 * The exception is sys_perf_event_open() /
10527 * perf_event_create_kernel_count() which does find_get_context()
10528 * without ctx::mutex (it cannot because of the move_group double mutex
10529 * lock thing). See the comments in perf_install_in_context().
10530 */
10531 mutex_lock(&child_ctx->mutex);
10532
10533 /*
10534 * In a single ctx::lock section, de-schedule the events and detach the
10535 * context from the task such that we cannot ever get it scheduled back
10536 * in.
10537 */
10538 raw_spin_lock_irq(&child_ctx->lock);
10539 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10540
10541 /*
10542 * Now that the context is inactive, destroy the task <-> ctx relation
10543 * and mark the context dead.
10544 */
10545 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10546 put_ctx(child_ctx); /* cannot be last */
10547 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10548 put_task_struct(current); /* cannot be last */
10549
10550 clone_ctx = unclone_ctx(child_ctx);
10551 raw_spin_unlock_irq(&child_ctx->lock);
10552
10553 if (clone_ctx)
10554 put_ctx(clone_ctx);
10555
10556 /*
10557 * Report the task dead after unscheduling the events so that we
10558 * won't get any samples after PERF_RECORD_EXIT. We can however still
10559 * get a few PERF_RECORD_READ events.
10560 */
10561 perf_event_task(child, child_ctx, 0);
10562
10563 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10564 perf_event_exit_event(child_event, child_ctx, child);
10565
10566 mutex_unlock(&child_ctx->mutex);
10567
10568 put_ctx(child_ctx);
10569 }
10570
10571 /*
10572 * When a child task exits, feed back event values to parent events.
10573 *
10574 * Can be called with cred_guard_mutex held when called from
10575 * install_exec_creds().
10576 */
10577 void perf_event_exit_task(struct task_struct *child)
10578 {
10579 struct perf_event *event, *tmp;
10580 int ctxn;
10581
10582 mutex_lock(&child->perf_event_mutex);
10583 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10584 owner_entry) {
10585 list_del_init(&event->owner_entry);
10586
10587 /*
10588 * Ensure the list deletion is visible before we clear
10589 * the owner, closes a race against perf_release() where
10590 * we need to serialize on the owner->perf_event_mutex.
10591 */
10592 smp_store_release(&event->owner, NULL);
10593 }
10594 mutex_unlock(&child->perf_event_mutex);
10595
10596 for_each_task_context_nr(ctxn)
10597 perf_event_exit_task_context(child, ctxn);
10598
10599 /*
10600 * The perf_event_exit_task_context calls perf_event_task
10601 * with child's task_ctx, which generates EXIT events for
10602 * child contexts and sets child->perf_event_ctxp[] to NULL.
10603 * At this point we need to send EXIT events to cpu contexts.
10604 */
10605 perf_event_task(child, NULL, 0);
10606 }
10607
10608 static void perf_free_event(struct perf_event *event,
10609 struct perf_event_context *ctx)
10610 {
10611 struct perf_event *parent = event->parent;
10612
10613 if (WARN_ON_ONCE(!parent))
10614 return;
10615
10616 mutex_lock(&parent->child_mutex);
10617 list_del_init(&event->child_list);
10618 mutex_unlock(&parent->child_mutex);
10619
10620 put_event(parent);
10621
10622 raw_spin_lock_irq(&ctx->lock);
10623 perf_group_detach(event);
10624 list_del_event(event, ctx);
10625 raw_spin_unlock_irq(&ctx->lock);
10626 free_event(event);
10627 }
10628
10629 /*
10630 * Free an unexposed, unused context as created by inheritance by
10631 * perf_event_init_task below, used by fork() in case of fail.
10632 *
10633 * Not all locks are strictly required, but take them anyway to be nice and
10634 * help out with the lockdep assertions.
10635 */
10636 void perf_event_free_task(struct task_struct *task)
10637 {
10638 struct perf_event_context *ctx;
10639 struct perf_event *event, *tmp;
10640 int ctxn;
10641
10642 for_each_task_context_nr(ctxn) {
10643 ctx = task->perf_event_ctxp[ctxn];
10644 if (!ctx)
10645 continue;
10646
10647 mutex_lock(&ctx->mutex);
10648 raw_spin_lock_irq(&ctx->lock);
10649 /*
10650 * Destroy the task <-> ctx relation and mark the context dead.
10651 *
10652 * This is important because even though the task hasn't been
10653 * exposed yet the context has been (through child_list).
10654 */
10655 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10656 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10657 put_task_struct(task); /* cannot be last */
10658 raw_spin_unlock_irq(&ctx->lock);
10659
10660 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10661 perf_free_event(event, ctx);
10662
10663 mutex_unlock(&ctx->mutex);
10664 put_ctx(ctx);
10665 }
10666 }
10667
10668 void perf_event_delayed_put(struct task_struct *task)
10669 {
10670 int ctxn;
10671
10672 for_each_task_context_nr(ctxn)
10673 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10674 }
10675
10676 struct file *perf_event_get(unsigned int fd)
10677 {
10678 struct file *file;
10679
10680 file = fget_raw(fd);
10681 if (!file)
10682 return ERR_PTR(-EBADF);
10683
10684 if (file->f_op != &perf_fops) {
10685 fput(file);
10686 return ERR_PTR(-EBADF);
10687 }
10688
10689 return file;
10690 }
10691
10692 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10693 {
10694 if (!event)
10695 return ERR_PTR(-EINVAL);
10696
10697 return &event->attr;
10698 }
10699
10700 /*
10701 * Inherit a event from parent task to child task.
10702 *
10703 * Returns:
10704 * - valid pointer on success
10705 * - NULL for orphaned events
10706 * - IS_ERR() on error
10707 */
10708 static struct perf_event *
10709 inherit_event(struct perf_event *parent_event,
10710 struct task_struct *parent,
10711 struct perf_event_context *parent_ctx,
10712 struct task_struct *child,
10713 struct perf_event *group_leader,
10714 struct perf_event_context *child_ctx)
10715 {
10716 enum perf_event_state parent_state = parent_event->state;
10717 struct perf_event *child_event;
10718 unsigned long flags;
10719
10720 /*
10721 * Instead of creating recursive hierarchies of events,
10722 * we link inherited events back to the original parent,
10723 * which has a filp for sure, which we use as the reference
10724 * count:
10725 */
10726 if (parent_event->parent)
10727 parent_event = parent_event->parent;
10728
10729 child_event = perf_event_alloc(&parent_event->attr,
10730 parent_event->cpu,
10731 child,
10732 group_leader, parent_event,
10733 NULL, NULL, -1);
10734 if (IS_ERR(child_event))
10735 return child_event;
10736
10737 /*
10738 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10739 * must be under the same lock in order to serialize against
10740 * perf_event_release_kernel(), such that either we must observe
10741 * is_orphaned_event() or they will observe us on the child_list.
10742 */
10743 mutex_lock(&parent_event->child_mutex);
10744 if (is_orphaned_event(parent_event) ||
10745 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10746 mutex_unlock(&parent_event->child_mutex);
10747 free_event(child_event);
10748 return NULL;
10749 }
10750
10751 get_ctx(child_ctx);
10752
10753 /*
10754 * Make the child state follow the state of the parent event,
10755 * not its attr.disabled bit. We hold the parent's mutex,
10756 * so we won't race with perf_event_{en, dis}able_family.
10757 */
10758 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10759 child_event->state = PERF_EVENT_STATE_INACTIVE;
10760 else
10761 child_event->state = PERF_EVENT_STATE_OFF;
10762
10763 if (parent_event->attr.freq) {
10764 u64 sample_period = parent_event->hw.sample_period;
10765 struct hw_perf_event *hwc = &child_event->hw;
10766
10767 hwc->sample_period = sample_period;
10768 hwc->last_period = sample_period;
10769
10770 local64_set(&hwc->period_left, sample_period);
10771 }
10772
10773 child_event->ctx = child_ctx;
10774 child_event->overflow_handler = parent_event->overflow_handler;
10775 child_event->overflow_handler_context
10776 = parent_event->overflow_handler_context;
10777
10778 /*
10779 * Precalculate sample_data sizes
10780 */
10781 perf_event__header_size(child_event);
10782 perf_event__id_header_size(child_event);
10783
10784 /*
10785 * Link it up in the child's context:
10786 */
10787 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10788 add_event_to_ctx(child_event, child_ctx);
10789 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10790
10791 /*
10792 * Link this into the parent event's child list
10793 */
10794 list_add_tail(&child_event->child_list, &parent_event->child_list);
10795 mutex_unlock(&parent_event->child_mutex);
10796
10797 return child_event;
10798 }
10799
10800 /*
10801 * Inherits an event group.
10802 *
10803 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10804 * This matches with perf_event_release_kernel() removing all child events.
10805 *
10806 * Returns:
10807 * - 0 on success
10808 * - <0 on error
10809 */
10810 static int inherit_group(struct perf_event *parent_event,
10811 struct task_struct *parent,
10812 struct perf_event_context *parent_ctx,
10813 struct task_struct *child,
10814 struct perf_event_context *child_ctx)
10815 {
10816 struct perf_event *leader;
10817 struct perf_event *sub;
10818 struct perf_event *child_ctr;
10819
10820 leader = inherit_event(parent_event, parent, parent_ctx,
10821 child, NULL, child_ctx);
10822 if (IS_ERR(leader))
10823 return PTR_ERR(leader);
10824 /*
10825 * @leader can be NULL here because of is_orphaned_event(). In this
10826 * case inherit_event() will create individual events, similar to what
10827 * perf_group_detach() would do anyway.
10828 */
10829 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10830 child_ctr = inherit_event(sub, parent, parent_ctx,
10831 child, leader, child_ctx);
10832 if (IS_ERR(child_ctr))
10833 return PTR_ERR(child_ctr);
10834 }
10835 return 0;
10836 }
10837
10838 /*
10839 * Creates the child task context and tries to inherit the event-group.
10840 *
10841 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10842 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10843 * consistent with perf_event_release_kernel() removing all child events.
10844 *
10845 * Returns:
10846 * - 0 on success
10847 * - <0 on error
10848 */
10849 static int
10850 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10851 struct perf_event_context *parent_ctx,
10852 struct task_struct *child, int ctxn,
10853 int *inherited_all)
10854 {
10855 int ret;
10856 struct perf_event_context *child_ctx;
10857
10858 if (!event->attr.inherit) {
10859 *inherited_all = 0;
10860 return 0;
10861 }
10862
10863 child_ctx = child->perf_event_ctxp[ctxn];
10864 if (!child_ctx) {
10865 /*
10866 * This is executed from the parent task context, so
10867 * inherit events that have been marked for cloning.
10868 * First allocate and initialize a context for the
10869 * child.
10870 */
10871 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10872 if (!child_ctx)
10873 return -ENOMEM;
10874
10875 child->perf_event_ctxp[ctxn] = child_ctx;
10876 }
10877
10878 ret = inherit_group(event, parent, parent_ctx,
10879 child, child_ctx);
10880
10881 if (ret)
10882 *inherited_all = 0;
10883
10884 return ret;
10885 }
10886
10887 /*
10888 * Initialize the perf_event context in task_struct
10889 */
10890 static int perf_event_init_context(struct task_struct *child, int ctxn)
10891 {
10892 struct perf_event_context *child_ctx, *parent_ctx;
10893 struct perf_event_context *cloned_ctx;
10894 struct perf_event *event;
10895 struct task_struct *parent = current;
10896 int inherited_all = 1;
10897 unsigned long flags;
10898 int ret = 0;
10899
10900 if (likely(!parent->perf_event_ctxp[ctxn]))
10901 return 0;
10902
10903 /*
10904 * If the parent's context is a clone, pin it so it won't get
10905 * swapped under us.
10906 */
10907 parent_ctx = perf_pin_task_context(parent, ctxn);
10908 if (!parent_ctx)
10909 return 0;
10910
10911 /*
10912 * No need to check if parent_ctx != NULL here; since we saw
10913 * it non-NULL earlier, the only reason for it to become NULL
10914 * is if we exit, and since we're currently in the middle of
10915 * a fork we can't be exiting at the same time.
10916 */
10917
10918 /*
10919 * Lock the parent list. No need to lock the child - not PID
10920 * hashed yet and not running, so nobody can access it.
10921 */
10922 mutex_lock(&parent_ctx->mutex);
10923
10924 /*
10925 * We dont have to disable NMIs - we are only looking at
10926 * the list, not manipulating it:
10927 */
10928 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10929 ret = inherit_task_group(event, parent, parent_ctx,
10930 child, ctxn, &inherited_all);
10931 if (ret)
10932 goto out_unlock;
10933 }
10934
10935 /*
10936 * We can't hold ctx->lock when iterating the ->flexible_group list due
10937 * to allocations, but we need to prevent rotation because
10938 * rotate_ctx() will change the list from interrupt context.
10939 */
10940 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10941 parent_ctx->rotate_disable = 1;
10942 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10943
10944 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10945 ret = inherit_task_group(event, parent, parent_ctx,
10946 child, ctxn, &inherited_all);
10947 if (ret)
10948 goto out_unlock;
10949 }
10950
10951 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10952 parent_ctx->rotate_disable = 0;
10953
10954 child_ctx = child->perf_event_ctxp[ctxn];
10955
10956 if (child_ctx && inherited_all) {
10957 /*
10958 * Mark the child context as a clone of the parent
10959 * context, or of whatever the parent is a clone of.
10960 *
10961 * Note that if the parent is a clone, the holding of
10962 * parent_ctx->lock avoids it from being uncloned.
10963 */
10964 cloned_ctx = parent_ctx->parent_ctx;
10965 if (cloned_ctx) {
10966 child_ctx->parent_ctx = cloned_ctx;
10967 child_ctx->parent_gen = parent_ctx->parent_gen;
10968 } else {
10969 child_ctx->parent_ctx = parent_ctx;
10970 child_ctx->parent_gen = parent_ctx->generation;
10971 }
10972 get_ctx(child_ctx->parent_ctx);
10973 }
10974
10975 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10976 out_unlock:
10977 mutex_unlock(&parent_ctx->mutex);
10978
10979 perf_unpin_context(parent_ctx);
10980 put_ctx(parent_ctx);
10981
10982 return ret;
10983 }
10984
10985 /*
10986 * Initialize the perf_event context in task_struct
10987 */
10988 int perf_event_init_task(struct task_struct *child)
10989 {
10990 int ctxn, ret;
10991
10992 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10993 mutex_init(&child->perf_event_mutex);
10994 INIT_LIST_HEAD(&child->perf_event_list);
10995
10996 for_each_task_context_nr(ctxn) {
10997 ret = perf_event_init_context(child, ctxn);
10998 if (ret) {
10999 perf_event_free_task(child);
11000 return ret;
11001 }
11002 }
11003
11004 return 0;
11005 }
11006
11007 static void __init perf_event_init_all_cpus(void)
11008 {
11009 struct swevent_htable *swhash;
11010 int cpu;
11011
11012 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11013
11014 for_each_possible_cpu(cpu) {
11015 swhash = &per_cpu(swevent_htable, cpu);
11016 mutex_init(&swhash->hlist_mutex);
11017 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11018
11019 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11020 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11021
11022 #ifdef CONFIG_CGROUP_PERF
11023 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11024 #endif
11025 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11026 }
11027 }
11028
11029 void perf_swevent_init_cpu(unsigned int cpu)
11030 {
11031 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11032
11033 mutex_lock(&swhash->hlist_mutex);
11034 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11035 struct swevent_hlist *hlist;
11036
11037 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11038 WARN_ON(!hlist);
11039 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11040 }
11041 mutex_unlock(&swhash->hlist_mutex);
11042 }
11043
11044 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11045 static void __perf_event_exit_context(void *__info)
11046 {
11047 struct perf_event_context *ctx = __info;
11048 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11049 struct perf_event *event;
11050
11051 raw_spin_lock(&ctx->lock);
11052 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11053 list_for_each_entry(event, &ctx->event_list, event_entry)
11054 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11055 raw_spin_unlock(&ctx->lock);
11056 }
11057
11058 static void perf_event_exit_cpu_context(int cpu)
11059 {
11060 struct perf_cpu_context *cpuctx;
11061 struct perf_event_context *ctx;
11062 struct pmu *pmu;
11063
11064 mutex_lock(&pmus_lock);
11065 list_for_each_entry(pmu, &pmus, entry) {
11066 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11067 ctx = &cpuctx->ctx;
11068
11069 mutex_lock(&ctx->mutex);
11070 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11071 cpuctx->online = 0;
11072 mutex_unlock(&ctx->mutex);
11073 }
11074 cpumask_clear_cpu(cpu, perf_online_mask);
11075 mutex_unlock(&pmus_lock);
11076 }
11077 #else
11078
11079 static void perf_event_exit_cpu_context(int cpu) { }
11080
11081 #endif
11082
11083 int perf_event_init_cpu(unsigned int cpu)
11084 {
11085 struct perf_cpu_context *cpuctx;
11086 struct perf_event_context *ctx;
11087 struct pmu *pmu;
11088
11089 perf_swevent_init_cpu(cpu);
11090
11091 mutex_lock(&pmus_lock);
11092 cpumask_set_cpu(cpu, perf_online_mask);
11093 list_for_each_entry(pmu, &pmus, entry) {
11094 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11095 ctx = &cpuctx->ctx;
11096
11097 mutex_lock(&ctx->mutex);
11098 cpuctx->online = 1;
11099 mutex_unlock(&ctx->mutex);
11100 }
11101 mutex_unlock(&pmus_lock);
11102
11103 return 0;
11104 }
11105
11106 int perf_event_exit_cpu(unsigned int cpu)
11107 {
11108 perf_event_exit_cpu_context(cpu);
11109 return 0;
11110 }
11111
11112 static int
11113 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11114 {
11115 int cpu;
11116
11117 for_each_online_cpu(cpu)
11118 perf_event_exit_cpu(cpu);
11119
11120 return NOTIFY_OK;
11121 }
11122
11123 /*
11124 * Run the perf reboot notifier at the very last possible moment so that
11125 * the generic watchdog code runs as long as possible.
11126 */
11127 static struct notifier_block perf_reboot_notifier = {
11128 .notifier_call = perf_reboot,
11129 .priority = INT_MIN,
11130 };
11131
11132 void __init perf_event_init(void)
11133 {
11134 int ret;
11135
11136 idr_init(&pmu_idr);
11137
11138 perf_event_init_all_cpus();
11139 init_srcu_struct(&pmus_srcu);
11140 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11141 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11142 perf_pmu_register(&perf_task_clock, NULL, -1);
11143 perf_tp_register();
11144 perf_event_init_cpu(smp_processor_id());
11145 register_reboot_notifier(&perf_reboot_notifier);
11146
11147 ret = init_hw_breakpoint();
11148 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11149
11150 /*
11151 * Build time assertion that we keep the data_head at the intended
11152 * location. IOW, validation we got the __reserved[] size right.
11153 */
11154 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11155 != 1024);
11156 }
11157
11158 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11159 char *page)
11160 {
11161 struct perf_pmu_events_attr *pmu_attr =
11162 container_of(attr, struct perf_pmu_events_attr, attr);
11163
11164 if (pmu_attr->event_str)
11165 return sprintf(page, "%s\n", pmu_attr->event_str);
11166
11167 return 0;
11168 }
11169 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11170
11171 static int __init perf_event_sysfs_init(void)
11172 {
11173 struct pmu *pmu;
11174 int ret;
11175
11176 mutex_lock(&pmus_lock);
11177
11178 ret = bus_register(&pmu_bus);
11179 if (ret)
11180 goto unlock;
11181
11182 list_for_each_entry(pmu, &pmus, entry) {
11183 if (!pmu->name || pmu->type < 0)
11184 continue;
11185
11186 ret = pmu_dev_alloc(pmu);
11187 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11188 }
11189 pmu_bus_running = 1;
11190 ret = 0;
11191
11192 unlock:
11193 mutex_unlock(&pmus_lock);
11194
11195 return ret;
11196 }
11197 device_initcall(perf_event_sysfs_init);
11198
11199 #ifdef CONFIG_CGROUP_PERF
11200 static struct cgroup_subsys_state *
11201 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11202 {
11203 struct perf_cgroup *jc;
11204
11205 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11206 if (!jc)
11207 return ERR_PTR(-ENOMEM);
11208
11209 jc->info = alloc_percpu(struct perf_cgroup_info);
11210 if (!jc->info) {
11211 kfree(jc);
11212 return ERR_PTR(-ENOMEM);
11213 }
11214
11215 return &jc->css;
11216 }
11217
11218 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11219 {
11220 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11221
11222 free_percpu(jc->info);
11223 kfree(jc);
11224 }
11225
11226 static int __perf_cgroup_move(void *info)
11227 {
11228 struct task_struct *task = info;
11229 rcu_read_lock();
11230 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11231 rcu_read_unlock();
11232 return 0;
11233 }
11234
11235 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11236 {
11237 struct task_struct *task;
11238 struct cgroup_subsys_state *css;
11239
11240 cgroup_taskset_for_each(task, css, tset)
11241 task_function_call(task, __perf_cgroup_move, task);
11242 }
11243
11244 struct cgroup_subsys perf_event_cgrp_subsys = {
11245 .css_alloc = perf_cgroup_css_alloc,
11246 .css_free = perf_cgroup_css_free,
11247 .attach = perf_cgroup_attach,
11248 /*
11249 * Implicitly enable on dfl hierarchy so that perf events can
11250 * always be filtered by cgroup2 path as long as perf_event
11251 * controller is not mounted on a legacy hierarchy.
11252 */
11253 .implicit_on_dfl = true,
11254 .threaded = true,
11255 };
11256 #endif /* CONFIG_CGROUP_PERF */