]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/exit.c
fork,memcg: fix crash in free_thread_stack on memcg charge fail
[mirror_ubuntu-bionic-kernel.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/stat.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/sched/cputime.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/capability.h>
18 #include <linux/completion.h>
19 #include <linux/personality.h>
20 #include <linux/tty.h>
21 #include <linux/iocontext.h>
22 #include <linux/key.h>
23 #include <linux/cpu.h>
24 #include <linux/acct.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/blkdev.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
65
66 #include <linux/uaccess.h>
67 #include <asm/unistd.h>
68 #include <asm/pgtable.h>
69 #include <asm/mmu_context.h>
70
71 static void __unhash_process(struct task_struct *p, bool group_dead)
72 {
73 nr_threads--;
74 detach_pid(p, PIDTYPE_PID);
75 if (group_dead) {
76 detach_pid(p, PIDTYPE_PGID);
77 detach_pid(p, PIDTYPE_SID);
78
79 list_del_rcu(&p->tasks);
80 list_del_init(&p->sibling);
81 __this_cpu_dec(process_counts);
82 }
83 list_del_rcu(&p->thread_group);
84 list_del_rcu(&p->thread_node);
85 }
86
87 /*
88 * This function expects the tasklist_lock write-locked.
89 */
90 static void __exit_signal(struct task_struct *tsk)
91 {
92 struct signal_struct *sig = tsk->signal;
93 bool group_dead = thread_group_leader(tsk);
94 struct sighand_struct *sighand;
95 struct tty_struct *uninitialized_var(tty);
96 u64 utime, stime;
97
98 sighand = rcu_dereference_check(tsk->sighand,
99 lockdep_tasklist_lock_is_held());
100 spin_lock(&sighand->siglock);
101
102 #ifdef CONFIG_POSIX_TIMERS
103 posix_cpu_timers_exit(tsk);
104 if (group_dead) {
105 posix_cpu_timers_exit_group(tsk);
106 } else {
107 /*
108 * This can only happen if the caller is de_thread().
109 * FIXME: this is the temporary hack, we should teach
110 * posix-cpu-timers to handle this case correctly.
111 */
112 if (unlikely(has_group_leader_pid(tsk)))
113 posix_cpu_timers_exit_group(tsk);
114 }
115 #endif
116
117 if (group_dead) {
118 tty = sig->tty;
119 sig->tty = NULL;
120 } else {
121 /*
122 * If there is any task waiting for the group exit
123 * then notify it:
124 */
125 if (sig->notify_count > 0 && !--sig->notify_count)
126 wake_up_process(sig->group_exit_task);
127
128 if (tsk == sig->curr_target)
129 sig->curr_target = next_thread(tsk);
130 }
131
132 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
133 sizeof(unsigned long long));
134
135 /*
136 * Accumulate here the counters for all threads as they die. We could
137 * skip the group leader because it is the last user of signal_struct,
138 * but we want to avoid the race with thread_group_cputime() which can
139 * see the empty ->thread_head list.
140 */
141 task_cputime(tsk, &utime, &stime);
142 write_seqlock(&sig->stats_lock);
143 sig->utime += utime;
144 sig->stime += stime;
145 sig->gtime += task_gtime(tsk);
146 sig->min_flt += tsk->min_flt;
147 sig->maj_flt += tsk->maj_flt;
148 sig->nvcsw += tsk->nvcsw;
149 sig->nivcsw += tsk->nivcsw;
150 sig->inblock += task_io_get_inblock(tsk);
151 sig->oublock += task_io_get_oublock(tsk);
152 task_io_accounting_add(&sig->ioac, &tsk->ioac);
153 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
154 sig->nr_threads--;
155 __unhash_process(tsk, group_dead);
156 write_sequnlock(&sig->stats_lock);
157
158 /*
159 * Do this under ->siglock, we can race with another thread
160 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
161 */
162 flush_sigqueue(&tsk->pending);
163 tsk->sighand = NULL;
164 spin_unlock(&sighand->siglock);
165
166 __cleanup_sighand(sighand);
167 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
168 if (group_dead) {
169 flush_sigqueue(&sig->shared_pending);
170 tty_kref_put(tty);
171 }
172 }
173
174 static void delayed_put_task_struct(struct rcu_head *rhp)
175 {
176 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
177
178 perf_event_delayed_put(tsk);
179 trace_sched_process_free(tsk);
180 put_task_struct(tsk);
181 }
182
183
184 void release_task(struct task_struct *p)
185 {
186 struct task_struct *leader;
187 int zap_leader;
188 repeat:
189 /* don't need to get the RCU readlock here - the process is dead and
190 * can't be modifying its own credentials. But shut RCU-lockdep up */
191 rcu_read_lock();
192 atomic_dec(&__task_cred(p)->user->processes);
193 rcu_read_unlock();
194
195 proc_flush_task(p);
196 cgroup_release(p);
197
198 write_lock_irq(&tasklist_lock);
199 ptrace_release_task(p);
200 __exit_signal(p);
201
202 /*
203 * If we are the last non-leader member of the thread
204 * group, and the leader is zombie, then notify the
205 * group leader's parent process. (if it wants notification.)
206 */
207 zap_leader = 0;
208 leader = p->group_leader;
209 if (leader != p && thread_group_empty(leader)
210 && leader->exit_state == EXIT_ZOMBIE) {
211 /*
212 * If we were the last child thread and the leader has
213 * exited already, and the leader's parent ignores SIGCHLD,
214 * then we are the one who should release the leader.
215 */
216 zap_leader = do_notify_parent(leader, leader->exit_signal);
217 if (zap_leader)
218 leader->exit_state = EXIT_DEAD;
219 }
220
221 write_unlock_irq(&tasklist_lock);
222 release_thread(p);
223 call_rcu(&p->rcu, delayed_put_task_struct);
224
225 p = leader;
226 if (unlikely(zap_leader))
227 goto repeat;
228 }
229
230 /*
231 * Note that if this function returns a valid task_struct pointer (!NULL)
232 * task->usage must remain >0 for the duration of the RCU critical section.
233 */
234 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
235 {
236 struct sighand_struct *sighand;
237 struct task_struct *task;
238
239 /*
240 * We need to verify that release_task() was not called and thus
241 * delayed_put_task_struct() can't run and drop the last reference
242 * before rcu_read_unlock(). We check task->sighand != NULL,
243 * but we can read the already freed and reused memory.
244 */
245 retry:
246 task = rcu_dereference(*ptask);
247 if (!task)
248 return NULL;
249
250 probe_kernel_address(&task->sighand, sighand);
251
252 /*
253 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
254 * was already freed we can not miss the preceding update of this
255 * pointer.
256 */
257 smp_rmb();
258 if (unlikely(task != READ_ONCE(*ptask)))
259 goto retry;
260
261 /*
262 * We've re-checked that "task == *ptask", now we have two different
263 * cases:
264 *
265 * 1. This is actually the same task/task_struct. In this case
266 * sighand != NULL tells us it is still alive.
267 *
268 * 2. This is another task which got the same memory for task_struct.
269 * We can't know this of course, and we can not trust
270 * sighand != NULL.
271 *
272 * In this case we actually return a random value, but this is
273 * correct.
274 *
275 * If we return NULL - we can pretend that we actually noticed that
276 * *ptask was updated when the previous task has exited. Or pretend
277 * that probe_slab_address(&sighand) reads NULL.
278 *
279 * If we return the new task (because sighand is not NULL for any
280 * reason) - this is fine too. This (new) task can't go away before
281 * another gp pass.
282 *
283 * And note: We could even eliminate the false positive if re-read
284 * task->sighand once again to avoid the falsely NULL. But this case
285 * is very unlikely so we don't care.
286 */
287 if (!sighand)
288 return NULL;
289
290 return task;
291 }
292
293 void rcuwait_wake_up(struct rcuwait *w)
294 {
295 struct task_struct *task;
296
297 rcu_read_lock();
298
299 /*
300 * Order condition vs @task, such that everything prior to the load
301 * of @task is visible. This is the condition as to why the user called
302 * rcuwait_trywake() in the first place. Pairs with set_current_state()
303 * barrier (A) in rcuwait_wait_event().
304 *
305 * WAIT WAKE
306 * [S] tsk = current [S] cond = true
307 * MB (A) MB (B)
308 * [L] cond [L] tsk
309 */
310 smp_mb(); /* (B) */
311
312 /*
313 * Avoid using task_rcu_dereference() magic as long as we are careful,
314 * see comment in rcuwait_wait_event() regarding ->exit_state.
315 */
316 task = rcu_dereference(w->task);
317 if (task)
318 wake_up_process(task);
319 rcu_read_unlock();
320 }
321
322 /*
323 * Determine if a process group is "orphaned", according to the POSIX
324 * definition in 2.2.2.52. Orphaned process groups are not to be affected
325 * by terminal-generated stop signals. Newly orphaned process groups are
326 * to receive a SIGHUP and a SIGCONT.
327 *
328 * "I ask you, have you ever known what it is to be an orphan?"
329 */
330 static int will_become_orphaned_pgrp(struct pid *pgrp,
331 struct task_struct *ignored_task)
332 {
333 struct task_struct *p;
334
335 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
336 if ((p == ignored_task) ||
337 (p->exit_state && thread_group_empty(p)) ||
338 is_global_init(p->real_parent))
339 continue;
340
341 if (task_pgrp(p->real_parent) != pgrp &&
342 task_session(p->real_parent) == task_session(p))
343 return 0;
344 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
345
346 return 1;
347 }
348
349 int is_current_pgrp_orphaned(void)
350 {
351 int retval;
352
353 read_lock(&tasklist_lock);
354 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
355 read_unlock(&tasklist_lock);
356
357 return retval;
358 }
359
360 static bool has_stopped_jobs(struct pid *pgrp)
361 {
362 struct task_struct *p;
363
364 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
365 if (p->signal->flags & SIGNAL_STOP_STOPPED)
366 return true;
367 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
368
369 return false;
370 }
371
372 /*
373 * Check to see if any process groups have become orphaned as
374 * a result of our exiting, and if they have any stopped jobs,
375 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
376 */
377 static void
378 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
379 {
380 struct pid *pgrp = task_pgrp(tsk);
381 struct task_struct *ignored_task = tsk;
382
383 if (!parent)
384 /* exit: our father is in a different pgrp than
385 * we are and we were the only connection outside.
386 */
387 parent = tsk->real_parent;
388 else
389 /* reparent: our child is in a different pgrp than
390 * we are, and it was the only connection outside.
391 */
392 ignored_task = NULL;
393
394 if (task_pgrp(parent) != pgrp &&
395 task_session(parent) == task_session(tsk) &&
396 will_become_orphaned_pgrp(pgrp, ignored_task) &&
397 has_stopped_jobs(pgrp)) {
398 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
399 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
400 }
401 }
402
403 #ifdef CONFIG_MEMCG
404 /*
405 * A task is exiting. If it owned this mm, find a new owner for the mm.
406 */
407 void mm_update_next_owner(struct mm_struct *mm)
408 {
409 struct task_struct *c, *g, *p = current;
410
411 retry:
412 /*
413 * If the exiting or execing task is not the owner, it's
414 * someone else's problem.
415 */
416 if (mm->owner != p)
417 return;
418 /*
419 * The current owner is exiting/execing and there are no other
420 * candidates. Do not leave the mm pointing to a possibly
421 * freed task structure.
422 */
423 if (atomic_read(&mm->mm_users) <= 1) {
424 mm->owner = NULL;
425 return;
426 }
427
428 read_lock(&tasklist_lock);
429 /*
430 * Search in the children
431 */
432 list_for_each_entry(c, &p->children, sibling) {
433 if (c->mm == mm)
434 goto assign_new_owner;
435 }
436
437 /*
438 * Search in the siblings
439 */
440 list_for_each_entry(c, &p->real_parent->children, sibling) {
441 if (c->mm == mm)
442 goto assign_new_owner;
443 }
444
445 /*
446 * Search through everything else, we should not get here often.
447 */
448 for_each_process(g) {
449 if (g->flags & PF_KTHREAD)
450 continue;
451 for_each_thread(g, c) {
452 if (c->mm == mm)
453 goto assign_new_owner;
454 if (c->mm)
455 break;
456 }
457 }
458 read_unlock(&tasklist_lock);
459 /*
460 * We found no owner yet mm_users > 1: this implies that we are
461 * most likely racing with swapoff (try_to_unuse()) or /proc or
462 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
463 */
464 mm->owner = NULL;
465 return;
466
467 assign_new_owner:
468 BUG_ON(c == p);
469 get_task_struct(c);
470 /*
471 * The task_lock protects c->mm from changing.
472 * We always want mm->owner->mm == mm
473 */
474 task_lock(c);
475 /*
476 * Delay read_unlock() till we have the task_lock()
477 * to ensure that c does not slip away underneath us
478 */
479 read_unlock(&tasklist_lock);
480 if (c->mm != mm) {
481 task_unlock(c);
482 put_task_struct(c);
483 goto retry;
484 }
485 mm->owner = c;
486 task_unlock(c);
487 put_task_struct(c);
488 }
489 #endif /* CONFIG_MEMCG */
490
491 /*
492 * Turn us into a lazy TLB process if we
493 * aren't already..
494 */
495 static void exit_mm(void)
496 {
497 struct mm_struct *mm = current->mm;
498 struct core_state *core_state;
499
500 exit_mm_release(current, mm);
501 if (!mm)
502 return;
503 sync_mm_rss(mm);
504 /*
505 * Serialize with any possible pending coredump.
506 * We must hold mmap_sem around checking core_state
507 * and clearing tsk->mm. The core-inducing thread
508 * will increment ->nr_threads for each thread in the
509 * group with ->mm != NULL.
510 */
511 down_read(&mm->mmap_sem);
512 core_state = mm->core_state;
513 if (core_state) {
514 struct core_thread self;
515
516 up_read(&mm->mmap_sem);
517
518 self.task = current;
519 self.next = xchg(&core_state->dumper.next, &self);
520 /*
521 * Implies mb(), the result of xchg() must be visible
522 * to core_state->dumper.
523 */
524 if (atomic_dec_and_test(&core_state->nr_threads))
525 complete(&core_state->startup);
526
527 for (;;) {
528 set_current_state(TASK_UNINTERRUPTIBLE);
529 if (!self.task) /* see coredump_finish() */
530 break;
531 freezable_schedule();
532 }
533 __set_current_state(TASK_RUNNING);
534 down_read(&mm->mmap_sem);
535 }
536 mmgrab(mm);
537 BUG_ON(mm != current->active_mm);
538 /* more a memory barrier than a real lock */
539 task_lock(current);
540 current->mm = NULL;
541 up_read(&mm->mmap_sem);
542 enter_lazy_tlb(mm, current);
543 task_unlock(current);
544 mm_update_next_owner(mm);
545 mmput(mm);
546 if (test_thread_flag(TIF_MEMDIE))
547 exit_oom_victim();
548 }
549
550 static struct task_struct *find_alive_thread(struct task_struct *p)
551 {
552 struct task_struct *t;
553
554 for_each_thread(p, t) {
555 if (!(t->flags & PF_EXITING))
556 return t;
557 }
558 return NULL;
559 }
560
561 static struct task_struct *find_child_reaper(struct task_struct *father,
562 struct list_head *dead)
563 __releases(&tasklist_lock)
564 __acquires(&tasklist_lock)
565 {
566 struct pid_namespace *pid_ns = task_active_pid_ns(father);
567 struct task_struct *reaper = pid_ns->child_reaper;
568 struct task_struct *p, *n;
569
570 if (likely(reaper != father))
571 return reaper;
572
573 reaper = find_alive_thread(father);
574 if (reaper) {
575 pid_ns->child_reaper = reaper;
576 return reaper;
577 }
578
579 write_unlock_irq(&tasklist_lock);
580
581 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
582 list_del_init(&p->ptrace_entry);
583 release_task(p);
584 }
585
586 zap_pid_ns_processes(pid_ns);
587 write_lock_irq(&tasklist_lock);
588
589 return father;
590 }
591
592 /*
593 * When we die, we re-parent all our children, and try to:
594 * 1. give them to another thread in our thread group, if such a member exists
595 * 2. give it to the first ancestor process which prctl'd itself as a
596 * child_subreaper for its children (like a service manager)
597 * 3. give it to the init process (PID 1) in our pid namespace
598 */
599 static struct task_struct *find_new_reaper(struct task_struct *father,
600 struct task_struct *child_reaper)
601 {
602 struct task_struct *thread, *reaper;
603
604 thread = find_alive_thread(father);
605 if (thread)
606 return thread;
607
608 if (father->signal->has_child_subreaper) {
609 unsigned int ns_level = task_pid(father)->level;
610 /*
611 * Find the first ->is_child_subreaper ancestor in our pid_ns.
612 * We can't check reaper != child_reaper to ensure we do not
613 * cross the namespaces, the exiting parent could be injected
614 * by setns() + fork().
615 * We check pid->level, this is slightly more efficient than
616 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
617 */
618 for (reaper = father->real_parent;
619 task_pid(reaper)->level == ns_level;
620 reaper = reaper->real_parent) {
621 if (reaper == &init_task)
622 break;
623 if (!reaper->signal->is_child_subreaper)
624 continue;
625 thread = find_alive_thread(reaper);
626 if (thread)
627 return thread;
628 }
629 }
630
631 return child_reaper;
632 }
633
634 /*
635 * Any that need to be release_task'd are put on the @dead list.
636 */
637 static void reparent_leader(struct task_struct *father, struct task_struct *p,
638 struct list_head *dead)
639 {
640 if (unlikely(p->exit_state == EXIT_DEAD))
641 return;
642
643 /* We don't want people slaying init. */
644 p->exit_signal = SIGCHLD;
645
646 /* If it has exited notify the new parent about this child's death. */
647 if (!p->ptrace &&
648 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
649 if (do_notify_parent(p, p->exit_signal)) {
650 p->exit_state = EXIT_DEAD;
651 list_add(&p->ptrace_entry, dead);
652 }
653 }
654
655 kill_orphaned_pgrp(p, father);
656 }
657
658 /*
659 * This does two things:
660 *
661 * A. Make init inherit all the child processes
662 * B. Check to see if any process groups have become orphaned
663 * as a result of our exiting, and if they have any stopped
664 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
665 */
666 static void forget_original_parent(struct task_struct *father,
667 struct list_head *dead)
668 {
669 struct task_struct *p, *t, *reaper;
670
671 if (unlikely(!list_empty(&father->ptraced)))
672 exit_ptrace(father, dead);
673
674 /* Can drop and reacquire tasklist_lock */
675 reaper = find_child_reaper(father, dead);
676 if (list_empty(&father->children))
677 return;
678
679 reaper = find_new_reaper(father, reaper);
680 list_for_each_entry(p, &father->children, sibling) {
681 for_each_thread(p, t) {
682 t->real_parent = reaper;
683 BUG_ON((!t->ptrace) != (t->parent == father));
684 if (likely(!t->ptrace))
685 t->parent = t->real_parent;
686 if (t->pdeath_signal)
687 group_send_sig_info(t->pdeath_signal,
688 SEND_SIG_NOINFO, t);
689 }
690 /*
691 * If this is a threaded reparent there is no need to
692 * notify anyone anything has happened.
693 */
694 if (!same_thread_group(reaper, father))
695 reparent_leader(father, p, dead);
696 }
697 list_splice_tail_init(&father->children, &reaper->children);
698 }
699
700 /*
701 * Send signals to all our closest relatives so that they know
702 * to properly mourn us..
703 */
704 static void exit_notify(struct task_struct *tsk, int group_dead)
705 {
706 bool autoreap;
707 struct task_struct *p, *n;
708 LIST_HEAD(dead);
709
710 write_lock_irq(&tasklist_lock);
711 forget_original_parent(tsk, &dead);
712
713 if (group_dead)
714 kill_orphaned_pgrp(tsk->group_leader, NULL);
715
716 if (unlikely(tsk->ptrace)) {
717 int sig = thread_group_leader(tsk) &&
718 thread_group_empty(tsk) &&
719 !ptrace_reparented(tsk) ?
720 tsk->exit_signal : SIGCHLD;
721 autoreap = do_notify_parent(tsk, sig);
722 } else if (thread_group_leader(tsk)) {
723 autoreap = thread_group_empty(tsk) &&
724 do_notify_parent(tsk, tsk->exit_signal);
725 } else {
726 autoreap = true;
727 }
728
729 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
730 if (tsk->exit_state == EXIT_DEAD)
731 list_add(&tsk->ptrace_entry, &dead);
732
733 /* mt-exec, de_thread() is waiting for group leader */
734 if (unlikely(tsk->signal->notify_count < 0))
735 wake_up_process(tsk->signal->group_exit_task);
736 write_unlock_irq(&tasklist_lock);
737
738 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
739 list_del_init(&p->ptrace_entry);
740 release_task(p);
741 }
742 }
743
744 #ifdef CONFIG_DEBUG_STACK_USAGE
745 static void check_stack_usage(void)
746 {
747 static DEFINE_SPINLOCK(low_water_lock);
748 static int lowest_to_date = THREAD_SIZE;
749 unsigned long free;
750
751 free = stack_not_used(current);
752
753 if (free >= lowest_to_date)
754 return;
755
756 spin_lock(&low_water_lock);
757 if (free < lowest_to_date) {
758 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
759 current->comm, task_pid_nr(current), free);
760 lowest_to_date = free;
761 }
762 spin_unlock(&low_water_lock);
763 }
764 #else
765 static inline void check_stack_usage(void) {}
766 #endif
767
768 void __noreturn do_exit(long code)
769 {
770 struct task_struct *tsk = current;
771 int group_dead;
772
773 profile_task_exit(tsk);
774 kcov_task_exit(tsk);
775
776 WARN_ON(blk_needs_flush_plug(tsk));
777
778 if (unlikely(in_interrupt()))
779 panic("Aiee, killing interrupt handler!");
780 if (unlikely(!tsk->pid))
781 panic("Attempted to kill the idle task!");
782
783 /*
784 * If do_exit is called because this processes oopsed, it's possible
785 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
786 * continuing. Amongst other possible reasons, this is to prevent
787 * mm_release()->clear_child_tid() from writing to a user-controlled
788 * kernel address.
789 */
790 set_fs(USER_DS);
791
792 ptrace_event(PTRACE_EVENT_EXIT, code);
793
794 validate_creds_for_do_exit(tsk);
795
796 /*
797 * We're taking recursive faults here in do_exit. Safest is to just
798 * leave this task alone and wait for reboot.
799 */
800 if (unlikely(tsk->flags & PF_EXITING)) {
801 pr_alert("Fixing recursive fault but reboot is needed!\n");
802 futex_exit_recursive(tsk);
803 set_current_state(TASK_UNINTERRUPTIBLE);
804 schedule();
805 }
806
807 exit_signals(tsk); /* sets PF_EXITING */
808
809 if (unlikely(in_atomic())) {
810 pr_info("note: %s[%d] exited with preempt_count %d\n",
811 current->comm, task_pid_nr(current),
812 preempt_count());
813 preempt_count_set(PREEMPT_ENABLED);
814 }
815
816 /* sync mm's RSS info before statistics gathering */
817 if (tsk->mm)
818 sync_mm_rss(tsk->mm);
819 acct_update_integrals(tsk);
820 group_dead = atomic_dec_and_test(&tsk->signal->live);
821 if (group_dead) {
822 /*
823 * If the last thread of global init has exited, panic
824 * immediately to get a useable coredump.
825 */
826 if (unlikely(is_global_init(tsk)))
827 panic("Attempted to kill init! exitcode=0x%08x\n",
828 tsk->signal->group_exit_code ?: (int)code);
829
830 #ifdef CONFIG_POSIX_TIMERS
831 hrtimer_cancel(&tsk->signal->real_timer);
832 exit_itimers(tsk->signal);
833 #endif
834 if (tsk->mm)
835 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
836 }
837 acct_collect(code, group_dead);
838 if (group_dead)
839 tty_audit_exit();
840 audit_free(tsk);
841
842 tsk->exit_code = code;
843 taskstats_exit(tsk, group_dead);
844
845 exit_mm();
846
847 if (group_dead)
848 acct_process();
849 trace_sched_process_exit(tsk);
850
851 exit_sem(tsk);
852 exit_shm(tsk);
853 exit_files(tsk);
854 exit_fs(tsk);
855 if (group_dead)
856 disassociate_ctty(1);
857 exit_task_namespaces(tsk);
858 exit_task_work(tsk);
859 exit_thread(tsk);
860
861 /*
862 * Flush inherited counters to the parent - before the parent
863 * gets woken up by child-exit notifications.
864 *
865 * because of cgroup mode, must be called before cgroup_exit()
866 */
867 perf_event_exit_task(tsk);
868
869 sched_autogroup_exit_task(tsk);
870 cgroup_exit(tsk);
871
872 /*
873 * FIXME: do that only when needed, using sched_exit tracepoint
874 */
875 flush_ptrace_hw_breakpoint(tsk);
876
877 exit_tasks_rcu_start();
878 exit_notify(tsk, group_dead);
879 proc_exit_connector(tsk);
880 mpol_put_task_policy(tsk);
881 #ifdef CONFIG_FUTEX
882 if (unlikely(current->pi_state_cache))
883 kfree(current->pi_state_cache);
884 #endif
885 /*
886 * Make sure we are holding no locks:
887 */
888 debug_check_no_locks_held();
889
890 if (tsk->io_context)
891 exit_io_context(tsk);
892
893 if (tsk->splice_pipe)
894 free_pipe_info(tsk->splice_pipe);
895
896 if (tsk->task_frag.page)
897 put_page(tsk->task_frag.page);
898
899 validate_creds_for_do_exit(tsk);
900
901 check_stack_usage();
902 preempt_disable();
903 if (tsk->nr_dirtied)
904 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
905 exit_rcu();
906 exit_tasks_rcu_finish();
907
908 lockdep_free_task(tsk);
909 do_task_dead();
910 }
911 EXPORT_SYMBOL_GPL(do_exit);
912
913 void complete_and_exit(struct completion *comp, long code)
914 {
915 if (comp)
916 complete(comp);
917
918 do_exit(code);
919 }
920 EXPORT_SYMBOL(complete_and_exit);
921
922 SYSCALL_DEFINE1(exit, int, error_code)
923 {
924 do_exit((error_code&0xff)<<8);
925 }
926
927 /*
928 * Take down every thread in the group. This is called by fatal signals
929 * as well as by sys_exit_group (below).
930 */
931 void
932 do_group_exit(int exit_code)
933 {
934 struct signal_struct *sig = current->signal;
935
936 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
937
938 if (signal_group_exit(sig))
939 exit_code = sig->group_exit_code;
940 else if (!thread_group_empty(current)) {
941 struct sighand_struct *const sighand = current->sighand;
942
943 spin_lock_irq(&sighand->siglock);
944 if (signal_group_exit(sig))
945 /* Another thread got here before we took the lock. */
946 exit_code = sig->group_exit_code;
947 else {
948 sig->group_exit_code = exit_code;
949 sig->flags = SIGNAL_GROUP_EXIT;
950 zap_other_threads(current);
951 }
952 spin_unlock_irq(&sighand->siglock);
953 }
954
955 do_exit(exit_code);
956 /* NOTREACHED */
957 }
958
959 /*
960 * this kills every thread in the thread group. Note that any externally
961 * wait4()-ing process will get the correct exit code - even if this
962 * thread is not the thread group leader.
963 */
964 SYSCALL_DEFINE1(exit_group, int, error_code)
965 {
966 do_group_exit((error_code & 0xff) << 8);
967 /* NOTREACHED */
968 return 0;
969 }
970
971 struct waitid_info {
972 pid_t pid;
973 uid_t uid;
974 int status;
975 int cause;
976 };
977
978 struct wait_opts {
979 enum pid_type wo_type;
980 int wo_flags;
981 struct pid *wo_pid;
982
983 struct waitid_info *wo_info;
984 int wo_stat;
985 struct rusage *wo_rusage;
986
987 wait_queue_entry_t child_wait;
988 int notask_error;
989 };
990
991 static inline
992 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
993 {
994 if (type != PIDTYPE_PID)
995 task = task->group_leader;
996 return task->pids[type].pid;
997 }
998
999 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1000 {
1001 return wo->wo_type == PIDTYPE_MAX ||
1002 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1003 }
1004
1005 static int
1006 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1007 {
1008 if (!eligible_pid(wo, p))
1009 return 0;
1010
1011 /*
1012 * Wait for all children (clone and not) if __WALL is set or
1013 * if it is traced by us.
1014 */
1015 if (ptrace || (wo->wo_flags & __WALL))
1016 return 1;
1017
1018 /*
1019 * Otherwise, wait for clone children *only* if __WCLONE is set;
1020 * otherwise, wait for non-clone children *only*.
1021 *
1022 * Note: a "clone" child here is one that reports to its parent
1023 * using a signal other than SIGCHLD, or a non-leader thread which
1024 * we can only see if it is traced by us.
1025 */
1026 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1027 return 0;
1028
1029 return 1;
1030 }
1031
1032 /*
1033 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1034 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1035 * the lock and this task is uninteresting. If we return nonzero, we have
1036 * released the lock and the system call should return.
1037 */
1038 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1039 {
1040 int state, status;
1041 pid_t pid = task_pid_vnr(p);
1042 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1043 struct waitid_info *infop;
1044
1045 if (!likely(wo->wo_flags & WEXITED))
1046 return 0;
1047
1048 if (unlikely(wo->wo_flags & WNOWAIT)) {
1049 status = p->exit_code;
1050 get_task_struct(p);
1051 read_unlock(&tasklist_lock);
1052 sched_annotate_sleep();
1053 if (wo->wo_rusage)
1054 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1055 put_task_struct(p);
1056 goto out_info;
1057 }
1058 /*
1059 * Move the task's state to DEAD/TRACE, only one thread can do this.
1060 */
1061 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1062 EXIT_TRACE : EXIT_DEAD;
1063 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1064 return 0;
1065 /*
1066 * We own this thread, nobody else can reap it.
1067 */
1068 read_unlock(&tasklist_lock);
1069 sched_annotate_sleep();
1070
1071 /*
1072 * Check thread_group_leader() to exclude the traced sub-threads.
1073 */
1074 if (state == EXIT_DEAD && thread_group_leader(p)) {
1075 struct signal_struct *sig = p->signal;
1076 struct signal_struct *psig = current->signal;
1077 unsigned long maxrss;
1078 u64 tgutime, tgstime;
1079
1080 /*
1081 * The resource counters for the group leader are in its
1082 * own task_struct. Those for dead threads in the group
1083 * are in its signal_struct, as are those for the child
1084 * processes it has previously reaped. All these
1085 * accumulate in the parent's signal_struct c* fields.
1086 *
1087 * We don't bother to take a lock here to protect these
1088 * p->signal fields because the whole thread group is dead
1089 * and nobody can change them.
1090 *
1091 * psig->stats_lock also protects us from our sub-theads
1092 * which can reap other children at the same time. Until
1093 * we change k_getrusage()-like users to rely on this lock
1094 * we have to take ->siglock as well.
1095 *
1096 * We use thread_group_cputime_adjusted() to get times for
1097 * the thread group, which consolidates times for all threads
1098 * in the group including the group leader.
1099 */
1100 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1101 spin_lock_irq(&current->sighand->siglock);
1102 write_seqlock(&psig->stats_lock);
1103 psig->cutime += tgutime + sig->cutime;
1104 psig->cstime += tgstime + sig->cstime;
1105 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1106 psig->cmin_flt +=
1107 p->min_flt + sig->min_flt + sig->cmin_flt;
1108 psig->cmaj_flt +=
1109 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1110 psig->cnvcsw +=
1111 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1112 psig->cnivcsw +=
1113 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1114 psig->cinblock +=
1115 task_io_get_inblock(p) +
1116 sig->inblock + sig->cinblock;
1117 psig->coublock +=
1118 task_io_get_oublock(p) +
1119 sig->oublock + sig->coublock;
1120 maxrss = max(sig->maxrss, sig->cmaxrss);
1121 if (psig->cmaxrss < maxrss)
1122 psig->cmaxrss = maxrss;
1123 task_io_accounting_add(&psig->ioac, &p->ioac);
1124 task_io_accounting_add(&psig->ioac, &sig->ioac);
1125 write_sequnlock(&psig->stats_lock);
1126 spin_unlock_irq(&current->sighand->siglock);
1127 }
1128
1129 if (wo->wo_rusage)
1130 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1131 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1132 ? p->signal->group_exit_code : p->exit_code;
1133 wo->wo_stat = status;
1134
1135 if (state == EXIT_TRACE) {
1136 write_lock_irq(&tasklist_lock);
1137 /* We dropped tasklist, ptracer could die and untrace */
1138 ptrace_unlink(p);
1139
1140 /* If parent wants a zombie, don't release it now */
1141 state = EXIT_ZOMBIE;
1142 if (do_notify_parent(p, p->exit_signal))
1143 state = EXIT_DEAD;
1144 p->exit_state = state;
1145 write_unlock_irq(&tasklist_lock);
1146 }
1147 if (state == EXIT_DEAD)
1148 release_task(p);
1149
1150 out_info:
1151 infop = wo->wo_info;
1152 if (infop) {
1153 if ((status & 0x7f) == 0) {
1154 infop->cause = CLD_EXITED;
1155 infop->status = status >> 8;
1156 } else {
1157 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1158 infop->status = status & 0x7f;
1159 }
1160 infop->pid = pid;
1161 infop->uid = uid;
1162 }
1163
1164 return pid;
1165 }
1166
1167 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1168 {
1169 if (ptrace) {
1170 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1171 return &p->exit_code;
1172 } else {
1173 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1174 return &p->signal->group_exit_code;
1175 }
1176 return NULL;
1177 }
1178
1179 /**
1180 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1181 * @wo: wait options
1182 * @ptrace: is the wait for ptrace
1183 * @p: task to wait for
1184 *
1185 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1186 *
1187 * CONTEXT:
1188 * read_lock(&tasklist_lock), which is released if return value is
1189 * non-zero. Also, grabs and releases @p->sighand->siglock.
1190 *
1191 * RETURNS:
1192 * 0 if wait condition didn't exist and search for other wait conditions
1193 * should continue. Non-zero return, -errno on failure and @p's pid on
1194 * success, implies that tasklist_lock is released and wait condition
1195 * search should terminate.
1196 */
1197 static int wait_task_stopped(struct wait_opts *wo,
1198 int ptrace, struct task_struct *p)
1199 {
1200 struct waitid_info *infop;
1201 int exit_code, *p_code, why;
1202 uid_t uid = 0; /* unneeded, required by compiler */
1203 pid_t pid;
1204
1205 /*
1206 * Traditionally we see ptrace'd stopped tasks regardless of options.
1207 */
1208 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1209 return 0;
1210
1211 if (!task_stopped_code(p, ptrace))
1212 return 0;
1213
1214 exit_code = 0;
1215 spin_lock_irq(&p->sighand->siglock);
1216
1217 p_code = task_stopped_code(p, ptrace);
1218 if (unlikely(!p_code))
1219 goto unlock_sig;
1220
1221 exit_code = *p_code;
1222 if (!exit_code)
1223 goto unlock_sig;
1224
1225 if (!unlikely(wo->wo_flags & WNOWAIT))
1226 *p_code = 0;
1227
1228 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1229 unlock_sig:
1230 spin_unlock_irq(&p->sighand->siglock);
1231 if (!exit_code)
1232 return 0;
1233
1234 /*
1235 * Now we are pretty sure this task is interesting.
1236 * Make sure it doesn't get reaped out from under us while we
1237 * give up the lock and then examine it below. We don't want to
1238 * keep holding onto the tasklist_lock while we call getrusage and
1239 * possibly take page faults for user memory.
1240 */
1241 get_task_struct(p);
1242 pid = task_pid_vnr(p);
1243 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1244 read_unlock(&tasklist_lock);
1245 sched_annotate_sleep();
1246 if (wo->wo_rusage)
1247 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1248 put_task_struct(p);
1249
1250 if (likely(!(wo->wo_flags & WNOWAIT)))
1251 wo->wo_stat = (exit_code << 8) | 0x7f;
1252
1253 infop = wo->wo_info;
1254 if (infop) {
1255 infop->cause = why;
1256 infop->status = exit_code;
1257 infop->pid = pid;
1258 infop->uid = uid;
1259 }
1260 return pid;
1261 }
1262
1263 /*
1264 * Handle do_wait work for one task in a live, non-stopped state.
1265 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1266 * the lock and this task is uninteresting. If we return nonzero, we have
1267 * released the lock and the system call should return.
1268 */
1269 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1270 {
1271 struct waitid_info *infop;
1272 pid_t pid;
1273 uid_t uid;
1274
1275 if (!unlikely(wo->wo_flags & WCONTINUED))
1276 return 0;
1277
1278 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1279 return 0;
1280
1281 spin_lock_irq(&p->sighand->siglock);
1282 /* Re-check with the lock held. */
1283 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1284 spin_unlock_irq(&p->sighand->siglock);
1285 return 0;
1286 }
1287 if (!unlikely(wo->wo_flags & WNOWAIT))
1288 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1289 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1290 spin_unlock_irq(&p->sighand->siglock);
1291
1292 pid = task_pid_vnr(p);
1293 get_task_struct(p);
1294 read_unlock(&tasklist_lock);
1295 sched_annotate_sleep();
1296 if (wo->wo_rusage)
1297 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1298 put_task_struct(p);
1299
1300 infop = wo->wo_info;
1301 if (!infop) {
1302 wo->wo_stat = 0xffff;
1303 } else {
1304 infop->cause = CLD_CONTINUED;
1305 infop->pid = pid;
1306 infop->uid = uid;
1307 infop->status = SIGCONT;
1308 }
1309 return pid;
1310 }
1311
1312 /*
1313 * Consider @p for a wait by @parent.
1314 *
1315 * -ECHILD should be in ->notask_error before the first call.
1316 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1317 * Returns zero if the search for a child should continue;
1318 * then ->notask_error is 0 if @p is an eligible child,
1319 * or still -ECHILD.
1320 */
1321 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1322 struct task_struct *p)
1323 {
1324 /*
1325 * We can race with wait_task_zombie() from another thread.
1326 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1327 * can't confuse the checks below.
1328 */
1329 int exit_state = READ_ONCE(p->exit_state);
1330 int ret;
1331
1332 if (unlikely(exit_state == EXIT_DEAD))
1333 return 0;
1334
1335 ret = eligible_child(wo, ptrace, p);
1336 if (!ret)
1337 return ret;
1338
1339 if (unlikely(exit_state == EXIT_TRACE)) {
1340 /*
1341 * ptrace == 0 means we are the natural parent. In this case
1342 * we should clear notask_error, debugger will notify us.
1343 */
1344 if (likely(!ptrace))
1345 wo->notask_error = 0;
1346 return 0;
1347 }
1348
1349 if (likely(!ptrace) && unlikely(p->ptrace)) {
1350 /*
1351 * If it is traced by its real parent's group, just pretend
1352 * the caller is ptrace_do_wait() and reap this child if it
1353 * is zombie.
1354 *
1355 * This also hides group stop state from real parent; otherwise
1356 * a single stop can be reported twice as group and ptrace stop.
1357 * If a ptracer wants to distinguish these two events for its
1358 * own children it should create a separate process which takes
1359 * the role of real parent.
1360 */
1361 if (!ptrace_reparented(p))
1362 ptrace = 1;
1363 }
1364
1365 /* slay zombie? */
1366 if (exit_state == EXIT_ZOMBIE) {
1367 /* we don't reap group leaders with subthreads */
1368 if (!delay_group_leader(p)) {
1369 /*
1370 * A zombie ptracee is only visible to its ptracer.
1371 * Notification and reaping will be cascaded to the
1372 * real parent when the ptracer detaches.
1373 */
1374 if (unlikely(ptrace) || likely(!p->ptrace))
1375 return wait_task_zombie(wo, p);
1376 }
1377
1378 /*
1379 * Allow access to stopped/continued state via zombie by
1380 * falling through. Clearing of notask_error is complex.
1381 *
1382 * When !@ptrace:
1383 *
1384 * If WEXITED is set, notask_error should naturally be
1385 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1386 * so, if there are live subthreads, there are events to
1387 * wait for. If all subthreads are dead, it's still safe
1388 * to clear - this function will be called again in finite
1389 * amount time once all the subthreads are released and
1390 * will then return without clearing.
1391 *
1392 * When @ptrace:
1393 *
1394 * Stopped state is per-task and thus can't change once the
1395 * target task dies. Only continued and exited can happen.
1396 * Clear notask_error if WCONTINUED | WEXITED.
1397 */
1398 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1399 wo->notask_error = 0;
1400 } else {
1401 /*
1402 * @p is alive and it's gonna stop, continue or exit, so
1403 * there always is something to wait for.
1404 */
1405 wo->notask_error = 0;
1406 }
1407
1408 /*
1409 * Wait for stopped. Depending on @ptrace, different stopped state
1410 * is used and the two don't interact with each other.
1411 */
1412 ret = wait_task_stopped(wo, ptrace, p);
1413 if (ret)
1414 return ret;
1415
1416 /*
1417 * Wait for continued. There's only one continued state and the
1418 * ptracer can consume it which can confuse the real parent. Don't
1419 * use WCONTINUED from ptracer. You don't need or want it.
1420 */
1421 return wait_task_continued(wo, p);
1422 }
1423
1424 /*
1425 * Do the work of do_wait() for one thread in the group, @tsk.
1426 *
1427 * -ECHILD should be in ->notask_error before the first call.
1428 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1429 * Returns zero if the search for a child should continue; then
1430 * ->notask_error is 0 if there were any eligible children,
1431 * or still -ECHILD.
1432 */
1433 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1434 {
1435 struct task_struct *p;
1436
1437 list_for_each_entry(p, &tsk->children, sibling) {
1438 int ret = wait_consider_task(wo, 0, p);
1439
1440 if (ret)
1441 return ret;
1442 }
1443
1444 return 0;
1445 }
1446
1447 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1448 {
1449 struct task_struct *p;
1450
1451 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1452 int ret = wait_consider_task(wo, 1, p);
1453
1454 if (ret)
1455 return ret;
1456 }
1457
1458 return 0;
1459 }
1460
1461 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1462 int sync, void *key)
1463 {
1464 struct wait_opts *wo = container_of(wait, struct wait_opts,
1465 child_wait);
1466 struct task_struct *p = key;
1467
1468 if (!eligible_pid(wo, p))
1469 return 0;
1470
1471 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1472 return 0;
1473
1474 return default_wake_function(wait, mode, sync, key);
1475 }
1476
1477 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1478 {
1479 __wake_up_sync_key(&parent->signal->wait_chldexit,
1480 TASK_INTERRUPTIBLE, 1, p);
1481 }
1482
1483 static long do_wait(struct wait_opts *wo)
1484 {
1485 struct task_struct *tsk;
1486 int retval;
1487
1488 trace_sched_process_wait(wo->wo_pid);
1489
1490 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1491 wo->child_wait.private = current;
1492 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1493 repeat:
1494 /*
1495 * If there is nothing that can match our criteria, just get out.
1496 * We will clear ->notask_error to zero if we see any child that
1497 * might later match our criteria, even if we are not able to reap
1498 * it yet.
1499 */
1500 wo->notask_error = -ECHILD;
1501 if ((wo->wo_type < PIDTYPE_MAX) &&
1502 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1503 goto notask;
1504
1505 set_current_state(TASK_INTERRUPTIBLE);
1506 read_lock(&tasklist_lock);
1507 tsk = current;
1508 do {
1509 retval = do_wait_thread(wo, tsk);
1510 if (retval)
1511 goto end;
1512
1513 retval = ptrace_do_wait(wo, tsk);
1514 if (retval)
1515 goto end;
1516
1517 if (wo->wo_flags & __WNOTHREAD)
1518 break;
1519 } while_each_thread(current, tsk);
1520 read_unlock(&tasklist_lock);
1521
1522 notask:
1523 retval = wo->notask_error;
1524 if (!retval && !(wo->wo_flags & WNOHANG)) {
1525 retval = -ERESTARTSYS;
1526 if (!signal_pending(current)) {
1527 schedule();
1528 goto repeat;
1529 }
1530 }
1531 end:
1532 __set_current_state(TASK_RUNNING);
1533 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1534 return retval;
1535 }
1536
1537 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1538 int options, struct rusage *ru)
1539 {
1540 struct wait_opts wo;
1541 struct pid *pid = NULL;
1542 enum pid_type type;
1543 long ret;
1544
1545 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1546 __WNOTHREAD|__WCLONE|__WALL))
1547 return -EINVAL;
1548 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1549 return -EINVAL;
1550
1551 switch (which) {
1552 case P_ALL:
1553 type = PIDTYPE_MAX;
1554 break;
1555 case P_PID:
1556 type = PIDTYPE_PID;
1557 if (upid <= 0)
1558 return -EINVAL;
1559 break;
1560 case P_PGID:
1561 type = PIDTYPE_PGID;
1562 if (upid <= 0)
1563 return -EINVAL;
1564 break;
1565 default:
1566 return -EINVAL;
1567 }
1568
1569 if (type < PIDTYPE_MAX)
1570 pid = find_get_pid(upid);
1571
1572 wo.wo_type = type;
1573 wo.wo_pid = pid;
1574 wo.wo_flags = options;
1575 wo.wo_info = infop;
1576 wo.wo_rusage = ru;
1577 ret = do_wait(&wo);
1578
1579 put_pid(pid);
1580 return ret;
1581 }
1582
1583 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1584 infop, int, options, struct rusage __user *, ru)
1585 {
1586 struct rusage r;
1587 struct waitid_info info = {.status = 0};
1588 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1589 int signo = 0;
1590
1591 if (err > 0) {
1592 signo = SIGCHLD;
1593 err = 0;
1594 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1595 return -EFAULT;
1596 }
1597 if (!infop)
1598 return err;
1599
1600 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1601 return -EFAULT;
1602
1603 user_access_begin();
1604 unsafe_put_user(signo, &infop->si_signo, Efault);
1605 unsafe_put_user(0, &infop->si_errno, Efault);
1606 unsafe_put_user(info.cause, &infop->si_code, Efault);
1607 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1608 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1609 unsafe_put_user(info.status, &infop->si_status, Efault);
1610 user_access_end();
1611 return err;
1612 Efault:
1613 user_access_end();
1614 return -EFAULT;
1615 }
1616
1617 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1618 struct rusage *ru)
1619 {
1620 struct wait_opts wo;
1621 struct pid *pid = NULL;
1622 enum pid_type type;
1623 long ret;
1624
1625 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1626 __WNOTHREAD|__WCLONE|__WALL))
1627 return -EINVAL;
1628
1629 /* -INT_MIN is not defined */
1630 if (upid == INT_MIN)
1631 return -ESRCH;
1632
1633 if (upid == -1)
1634 type = PIDTYPE_MAX;
1635 else if (upid < 0) {
1636 type = PIDTYPE_PGID;
1637 pid = find_get_pid(-upid);
1638 } else if (upid == 0) {
1639 type = PIDTYPE_PGID;
1640 pid = get_task_pid(current, PIDTYPE_PGID);
1641 } else /* upid > 0 */ {
1642 type = PIDTYPE_PID;
1643 pid = find_get_pid(upid);
1644 }
1645
1646 wo.wo_type = type;
1647 wo.wo_pid = pid;
1648 wo.wo_flags = options | WEXITED;
1649 wo.wo_info = NULL;
1650 wo.wo_stat = 0;
1651 wo.wo_rusage = ru;
1652 ret = do_wait(&wo);
1653 put_pid(pid);
1654 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1655 ret = -EFAULT;
1656
1657 return ret;
1658 }
1659
1660 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1661 int, options, struct rusage __user *, ru)
1662 {
1663 struct rusage r;
1664 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1665
1666 if (err > 0) {
1667 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1668 return -EFAULT;
1669 }
1670 return err;
1671 }
1672
1673 #ifdef __ARCH_WANT_SYS_WAITPID
1674
1675 /*
1676 * sys_waitpid() remains for compatibility. waitpid() should be
1677 * implemented by calling sys_wait4() from libc.a.
1678 */
1679 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1680 {
1681 return sys_wait4(pid, stat_addr, options, NULL);
1682 }
1683
1684 #endif
1685
1686 #ifdef CONFIG_COMPAT
1687 COMPAT_SYSCALL_DEFINE4(wait4,
1688 compat_pid_t, pid,
1689 compat_uint_t __user *, stat_addr,
1690 int, options,
1691 struct compat_rusage __user *, ru)
1692 {
1693 struct rusage r;
1694 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1695 if (err > 0) {
1696 if (ru && put_compat_rusage(&r, ru))
1697 return -EFAULT;
1698 }
1699 return err;
1700 }
1701
1702 COMPAT_SYSCALL_DEFINE5(waitid,
1703 int, which, compat_pid_t, pid,
1704 struct compat_siginfo __user *, infop, int, options,
1705 struct compat_rusage __user *, uru)
1706 {
1707 struct rusage ru;
1708 struct waitid_info info = {.status = 0};
1709 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1710 int signo = 0;
1711 if (err > 0) {
1712 signo = SIGCHLD;
1713 err = 0;
1714 if (uru) {
1715 /* kernel_waitid() overwrites everything in ru */
1716 if (COMPAT_USE_64BIT_TIME)
1717 err = copy_to_user(uru, &ru, sizeof(ru));
1718 else
1719 err = put_compat_rusage(&ru, uru);
1720 if (err)
1721 return -EFAULT;
1722 }
1723 }
1724
1725 if (!infop)
1726 return err;
1727
1728 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1729 return -EFAULT;
1730
1731 user_access_begin();
1732 unsafe_put_user(signo, &infop->si_signo, Efault);
1733 unsafe_put_user(0, &infop->si_errno, Efault);
1734 unsafe_put_user(info.cause, &infop->si_code, Efault);
1735 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1736 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1737 unsafe_put_user(info.status, &infop->si_status, Efault);
1738 user_access_end();
1739 return err;
1740 Efault:
1741 user_access_end();
1742 return -EFAULT;
1743 }
1744 #endif
1745
1746 __weak void abort(void)
1747 {
1748 BUG();
1749
1750 /* if that doesn't kill us, halt */
1751 panic("Oops failed to kill thread");
1752 }
1753 EXPORT_SYMBOL(abort);