]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/exit.c
cpufreq: Avoid leaving stale IRQ work items during CPU offline
[mirror_ubuntu-bionic-kernel.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/stat.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/sched/cputime.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/capability.h>
18 #include <linux/completion.h>
19 #include <linux/personality.h>
20 #include <linux/tty.h>
21 #include <linux/iocontext.h>
22 #include <linux/key.h>
23 #include <linux/cpu.h>
24 #include <linux/acct.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/blkdev.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
65
66 #include <linux/uaccess.h>
67 #include <asm/unistd.h>
68 #include <asm/pgtable.h>
69 #include <asm/mmu_context.h>
70
71 static void __unhash_process(struct task_struct *p, bool group_dead)
72 {
73 nr_threads--;
74 detach_pid(p, PIDTYPE_PID);
75 if (group_dead) {
76 detach_pid(p, PIDTYPE_PGID);
77 detach_pid(p, PIDTYPE_SID);
78
79 list_del_rcu(&p->tasks);
80 list_del_init(&p->sibling);
81 __this_cpu_dec(process_counts);
82 }
83 list_del_rcu(&p->thread_group);
84 list_del_rcu(&p->thread_node);
85 }
86
87 /*
88 * This function expects the tasklist_lock write-locked.
89 */
90 static void __exit_signal(struct task_struct *tsk)
91 {
92 struct signal_struct *sig = tsk->signal;
93 bool group_dead = thread_group_leader(tsk);
94 struct sighand_struct *sighand;
95 struct tty_struct *uninitialized_var(tty);
96 u64 utime, stime;
97
98 sighand = rcu_dereference_check(tsk->sighand,
99 lockdep_tasklist_lock_is_held());
100 spin_lock(&sighand->siglock);
101
102 #ifdef CONFIG_POSIX_TIMERS
103 posix_cpu_timers_exit(tsk);
104 if (group_dead) {
105 posix_cpu_timers_exit_group(tsk);
106 } else {
107 /*
108 * This can only happen if the caller is de_thread().
109 * FIXME: this is the temporary hack, we should teach
110 * posix-cpu-timers to handle this case correctly.
111 */
112 if (unlikely(has_group_leader_pid(tsk)))
113 posix_cpu_timers_exit_group(tsk);
114 }
115 #endif
116
117 if (group_dead) {
118 tty = sig->tty;
119 sig->tty = NULL;
120 } else {
121 /*
122 * If there is any task waiting for the group exit
123 * then notify it:
124 */
125 if (sig->notify_count > 0 && !--sig->notify_count)
126 wake_up_process(sig->group_exit_task);
127
128 if (tsk == sig->curr_target)
129 sig->curr_target = next_thread(tsk);
130 }
131
132 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
133 sizeof(unsigned long long));
134
135 /*
136 * Accumulate here the counters for all threads as they die. We could
137 * skip the group leader because it is the last user of signal_struct,
138 * but we want to avoid the race with thread_group_cputime() which can
139 * see the empty ->thread_head list.
140 */
141 task_cputime(tsk, &utime, &stime);
142 write_seqlock(&sig->stats_lock);
143 sig->utime += utime;
144 sig->stime += stime;
145 sig->gtime += task_gtime(tsk);
146 sig->min_flt += tsk->min_flt;
147 sig->maj_flt += tsk->maj_flt;
148 sig->nvcsw += tsk->nvcsw;
149 sig->nivcsw += tsk->nivcsw;
150 sig->inblock += task_io_get_inblock(tsk);
151 sig->oublock += task_io_get_oublock(tsk);
152 task_io_accounting_add(&sig->ioac, &tsk->ioac);
153 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
154 sig->nr_threads--;
155 __unhash_process(tsk, group_dead);
156 write_sequnlock(&sig->stats_lock);
157
158 /*
159 * Do this under ->siglock, we can race with another thread
160 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
161 */
162 flush_sigqueue(&tsk->pending);
163 tsk->sighand = NULL;
164 spin_unlock(&sighand->siglock);
165
166 __cleanup_sighand(sighand);
167 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
168 if (group_dead) {
169 flush_sigqueue(&sig->shared_pending);
170 tty_kref_put(tty);
171 }
172 }
173
174 static void delayed_put_task_struct(struct rcu_head *rhp)
175 {
176 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
177
178 perf_event_delayed_put(tsk);
179 trace_sched_process_free(tsk);
180 put_task_struct(tsk);
181 }
182
183
184 void release_task(struct task_struct *p)
185 {
186 struct task_struct *leader;
187 int zap_leader;
188 repeat:
189 /* don't need to get the RCU readlock here - the process is dead and
190 * can't be modifying its own credentials. But shut RCU-lockdep up */
191 rcu_read_lock();
192 atomic_dec(&__task_cred(p)->user->processes);
193 rcu_read_unlock();
194
195 proc_flush_task(p);
196 cgroup_release(p);
197
198 write_lock_irq(&tasklist_lock);
199 ptrace_release_task(p);
200 __exit_signal(p);
201
202 /*
203 * If we are the last non-leader member of the thread
204 * group, and the leader is zombie, then notify the
205 * group leader's parent process. (if it wants notification.)
206 */
207 zap_leader = 0;
208 leader = p->group_leader;
209 if (leader != p && thread_group_empty(leader)
210 && leader->exit_state == EXIT_ZOMBIE) {
211 /*
212 * If we were the last child thread and the leader has
213 * exited already, and the leader's parent ignores SIGCHLD,
214 * then we are the one who should release the leader.
215 */
216 zap_leader = do_notify_parent(leader, leader->exit_signal);
217 if (zap_leader)
218 leader->exit_state = EXIT_DEAD;
219 }
220
221 write_unlock_irq(&tasklist_lock);
222 release_thread(p);
223 call_rcu(&p->rcu, delayed_put_task_struct);
224
225 p = leader;
226 if (unlikely(zap_leader))
227 goto repeat;
228 }
229
230 /*
231 * Note that if this function returns a valid task_struct pointer (!NULL)
232 * task->usage must remain >0 for the duration of the RCU critical section.
233 */
234 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
235 {
236 struct sighand_struct *sighand;
237 struct task_struct *task;
238
239 /*
240 * We need to verify that release_task() was not called and thus
241 * delayed_put_task_struct() can't run and drop the last reference
242 * before rcu_read_unlock(). We check task->sighand != NULL,
243 * but we can read the already freed and reused memory.
244 */
245 retry:
246 task = rcu_dereference(*ptask);
247 if (!task)
248 return NULL;
249
250 probe_kernel_address(&task->sighand, sighand);
251
252 /*
253 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
254 * was already freed we can not miss the preceding update of this
255 * pointer.
256 */
257 smp_rmb();
258 if (unlikely(task != READ_ONCE(*ptask)))
259 goto retry;
260
261 /*
262 * We've re-checked that "task == *ptask", now we have two different
263 * cases:
264 *
265 * 1. This is actually the same task/task_struct. In this case
266 * sighand != NULL tells us it is still alive.
267 *
268 * 2. This is another task which got the same memory for task_struct.
269 * We can't know this of course, and we can not trust
270 * sighand != NULL.
271 *
272 * In this case we actually return a random value, but this is
273 * correct.
274 *
275 * If we return NULL - we can pretend that we actually noticed that
276 * *ptask was updated when the previous task has exited. Or pretend
277 * that probe_slab_address(&sighand) reads NULL.
278 *
279 * If we return the new task (because sighand is not NULL for any
280 * reason) - this is fine too. This (new) task can't go away before
281 * another gp pass.
282 *
283 * And note: We could even eliminate the false positive if re-read
284 * task->sighand once again to avoid the falsely NULL. But this case
285 * is very unlikely so we don't care.
286 */
287 if (!sighand)
288 return NULL;
289
290 return task;
291 }
292
293 void rcuwait_wake_up(struct rcuwait *w)
294 {
295 struct task_struct *task;
296
297 rcu_read_lock();
298
299 /*
300 * Order condition vs @task, such that everything prior to the load
301 * of @task is visible. This is the condition as to why the user called
302 * rcuwait_trywake() in the first place. Pairs with set_current_state()
303 * barrier (A) in rcuwait_wait_event().
304 *
305 * WAIT WAKE
306 * [S] tsk = current [S] cond = true
307 * MB (A) MB (B)
308 * [L] cond [L] tsk
309 */
310 smp_mb(); /* (B) */
311
312 /*
313 * Avoid using task_rcu_dereference() magic as long as we are careful,
314 * see comment in rcuwait_wait_event() regarding ->exit_state.
315 */
316 task = rcu_dereference(w->task);
317 if (task)
318 wake_up_process(task);
319 rcu_read_unlock();
320 }
321
322 /*
323 * Determine if a process group is "orphaned", according to the POSIX
324 * definition in 2.2.2.52. Orphaned process groups are not to be affected
325 * by terminal-generated stop signals. Newly orphaned process groups are
326 * to receive a SIGHUP and a SIGCONT.
327 *
328 * "I ask you, have you ever known what it is to be an orphan?"
329 */
330 static int will_become_orphaned_pgrp(struct pid *pgrp,
331 struct task_struct *ignored_task)
332 {
333 struct task_struct *p;
334
335 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
336 if ((p == ignored_task) ||
337 (p->exit_state && thread_group_empty(p)) ||
338 is_global_init(p->real_parent))
339 continue;
340
341 if (task_pgrp(p->real_parent) != pgrp &&
342 task_session(p->real_parent) == task_session(p))
343 return 0;
344 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
345
346 return 1;
347 }
348
349 int is_current_pgrp_orphaned(void)
350 {
351 int retval;
352
353 read_lock(&tasklist_lock);
354 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
355 read_unlock(&tasklist_lock);
356
357 return retval;
358 }
359
360 static bool has_stopped_jobs(struct pid *pgrp)
361 {
362 struct task_struct *p;
363
364 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
365 if (p->signal->flags & SIGNAL_STOP_STOPPED)
366 return true;
367 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
368
369 return false;
370 }
371
372 /*
373 * Check to see if any process groups have become orphaned as
374 * a result of our exiting, and if they have any stopped jobs,
375 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
376 */
377 static void
378 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
379 {
380 struct pid *pgrp = task_pgrp(tsk);
381 struct task_struct *ignored_task = tsk;
382
383 if (!parent)
384 /* exit: our father is in a different pgrp than
385 * we are and we were the only connection outside.
386 */
387 parent = tsk->real_parent;
388 else
389 /* reparent: our child is in a different pgrp than
390 * we are, and it was the only connection outside.
391 */
392 ignored_task = NULL;
393
394 if (task_pgrp(parent) != pgrp &&
395 task_session(parent) == task_session(tsk) &&
396 will_become_orphaned_pgrp(pgrp, ignored_task) &&
397 has_stopped_jobs(pgrp)) {
398 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
399 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
400 }
401 }
402
403 #ifdef CONFIG_MEMCG
404 /*
405 * A task is exiting. If it owned this mm, find a new owner for the mm.
406 */
407 void mm_update_next_owner(struct mm_struct *mm)
408 {
409 struct task_struct *c, *g, *p = current;
410
411 retry:
412 /*
413 * If the exiting or execing task is not the owner, it's
414 * someone else's problem.
415 */
416 if (mm->owner != p)
417 return;
418 /*
419 * The current owner is exiting/execing and there are no other
420 * candidates. Do not leave the mm pointing to a possibly
421 * freed task structure.
422 */
423 if (atomic_read(&mm->mm_users) <= 1) {
424 mm->owner = NULL;
425 return;
426 }
427
428 read_lock(&tasklist_lock);
429 /*
430 * Search in the children
431 */
432 list_for_each_entry(c, &p->children, sibling) {
433 if (c->mm == mm)
434 goto assign_new_owner;
435 }
436
437 /*
438 * Search in the siblings
439 */
440 list_for_each_entry(c, &p->real_parent->children, sibling) {
441 if (c->mm == mm)
442 goto assign_new_owner;
443 }
444
445 /*
446 * Search through everything else, we should not get here often.
447 */
448 for_each_process(g) {
449 if (g->flags & PF_KTHREAD)
450 continue;
451 for_each_thread(g, c) {
452 if (c->mm == mm)
453 goto assign_new_owner;
454 if (c->mm)
455 break;
456 }
457 }
458 read_unlock(&tasklist_lock);
459 /*
460 * We found no owner yet mm_users > 1: this implies that we are
461 * most likely racing with swapoff (try_to_unuse()) or /proc or
462 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
463 */
464 mm->owner = NULL;
465 return;
466
467 assign_new_owner:
468 BUG_ON(c == p);
469 get_task_struct(c);
470 /*
471 * The task_lock protects c->mm from changing.
472 * We always want mm->owner->mm == mm
473 */
474 task_lock(c);
475 /*
476 * Delay read_unlock() till we have the task_lock()
477 * to ensure that c does not slip away underneath us
478 */
479 read_unlock(&tasklist_lock);
480 if (c->mm != mm) {
481 task_unlock(c);
482 put_task_struct(c);
483 goto retry;
484 }
485 mm->owner = c;
486 task_unlock(c);
487 put_task_struct(c);
488 }
489 #endif /* CONFIG_MEMCG */
490
491 /*
492 * Turn us into a lazy TLB process if we
493 * aren't already..
494 */
495 static void exit_mm(void)
496 {
497 struct mm_struct *mm = current->mm;
498 struct core_state *core_state;
499
500 exit_mm_release(current, mm);
501 if (!mm)
502 return;
503 sync_mm_rss(mm);
504 /*
505 * Serialize with any possible pending coredump.
506 * We must hold mmap_sem around checking core_state
507 * and clearing tsk->mm. The core-inducing thread
508 * will increment ->nr_threads for each thread in the
509 * group with ->mm != NULL.
510 */
511 down_read(&mm->mmap_sem);
512 core_state = mm->core_state;
513 if (core_state) {
514 struct core_thread self;
515
516 up_read(&mm->mmap_sem);
517
518 self.task = current;
519 self.next = xchg(&core_state->dumper.next, &self);
520 /*
521 * Implies mb(), the result of xchg() must be visible
522 * to core_state->dumper.
523 */
524 if (atomic_dec_and_test(&core_state->nr_threads))
525 complete(&core_state->startup);
526
527 for (;;) {
528 set_current_state(TASK_UNINTERRUPTIBLE);
529 if (!self.task) /* see coredump_finish() */
530 break;
531 freezable_schedule();
532 }
533 __set_current_state(TASK_RUNNING);
534 down_read(&mm->mmap_sem);
535 }
536 mmgrab(mm);
537 BUG_ON(mm != current->active_mm);
538 /* more a memory barrier than a real lock */
539 task_lock(current);
540 current->mm = NULL;
541 up_read(&mm->mmap_sem);
542 enter_lazy_tlb(mm, current);
543 task_unlock(current);
544 mm_update_next_owner(mm);
545 mmput(mm);
546 if (test_thread_flag(TIF_MEMDIE))
547 exit_oom_victim();
548 }
549
550 static struct task_struct *find_alive_thread(struct task_struct *p)
551 {
552 struct task_struct *t;
553
554 for_each_thread(p, t) {
555 if (!(t->flags & PF_EXITING))
556 return t;
557 }
558 return NULL;
559 }
560
561 static struct task_struct *find_child_reaper(struct task_struct *father,
562 struct list_head *dead)
563 __releases(&tasklist_lock)
564 __acquires(&tasklist_lock)
565 {
566 struct pid_namespace *pid_ns = task_active_pid_ns(father);
567 struct task_struct *reaper = pid_ns->child_reaper;
568 struct task_struct *p, *n;
569
570 if (likely(reaper != father))
571 return reaper;
572
573 reaper = find_alive_thread(father);
574 if (reaper) {
575 pid_ns->child_reaper = reaper;
576 return reaper;
577 }
578
579 write_unlock_irq(&tasklist_lock);
580 if (unlikely(pid_ns == &init_pid_ns)) {
581 panic("Attempted to kill init! exitcode=0x%08x\n",
582 father->signal->group_exit_code ?: father->exit_code);
583 }
584
585 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
586 list_del_init(&p->ptrace_entry);
587 release_task(p);
588 }
589
590 zap_pid_ns_processes(pid_ns);
591 write_lock_irq(&tasklist_lock);
592
593 return father;
594 }
595
596 /*
597 * When we die, we re-parent all our children, and try to:
598 * 1. give them to another thread in our thread group, if such a member exists
599 * 2. give it to the first ancestor process which prctl'd itself as a
600 * child_subreaper for its children (like a service manager)
601 * 3. give it to the init process (PID 1) in our pid namespace
602 */
603 static struct task_struct *find_new_reaper(struct task_struct *father,
604 struct task_struct *child_reaper)
605 {
606 struct task_struct *thread, *reaper;
607
608 thread = find_alive_thread(father);
609 if (thread)
610 return thread;
611
612 if (father->signal->has_child_subreaper) {
613 unsigned int ns_level = task_pid(father)->level;
614 /*
615 * Find the first ->is_child_subreaper ancestor in our pid_ns.
616 * We can't check reaper != child_reaper to ensure we do not
617 * cross the namespaces, the exiting parent could be injected
618 * by setns() + fork().
619 * We check pid->level, this is slightly more efficient than
620 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
621 */
622 for (reaper = father->real_parent;
623 task_pid(reaper)->level == ns_level;
624 reaper = reaper->real_parent) {
625 if (reaper == &init_task)
626 break;
627 if (!reaper->signal->is_child_subreaper)
628 continue;
629 thread = find_alive_thread(reaper);
630 if (thread)
631 return thread;
632 }
633 }
634
635 return child_reaper;
636 }
637
638 /*
639 * Any that need to be release_task'd are put on the @dead list.
640 */
641 static void reparent_leader(struct task_struct *father, struct task_struct *p,
642 struct list_head *dead)
643 {
644 if (unlikely(p->exit_state == EXIT_DEAD))
645 return;
646
647 /* We don't want people slaying init. */
648 p->exit_signal = SIGCHLD;
649
650 /* If it has exited notify the new parent about this child's death. */
651 if (!p->ptrace &&
652 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
653 if (do_notify_parent(p, p->exit_signal)) {
654 p->exit_state = EXIT_DEAD;
655 list_add(&p->ptrace_entry, dead);
656 }
657 }
658
659 kill_orphaned_pgrp(p, father);
660 }
661
662 /*
663 * This does two things:
664 *
665 * A. Make init inherit all the child processes
666 * B. Check to see if any process groups have become orphaned
667 * as a result of our exiting, and if they have any stopped
668 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
669 */
670 static void forget_original_parent(struct task_struct *father,
671 struct list_head *dead)
672 {
673 struct task_struct *p, *t, *reaper;
674
675 if (unlikely(!list_empty(&father->ptraced)))
676 exit_ptrace(father, dead);
677
678 /* Can drop and reacquire tasklist_lock */
679 reaper = find_child_reaper(father, dead);
680 if (list_empty(&father->children))
681 return;
682
683 reaper = find_new_reaper(father, reaper);
684 list_for_each_entry(p, &father->children, sibling) {
685 for_each_thread(p, t) {
686 t->real_parent = reaper;
687 BUG_ON((!t->ptrace) != (t->parent == father));
688 if (likely(!t->ptrace))
689 t->parent = t->real_parent;
690 if (t->pdeath_signal)
691 group_send_sig_info(t->pdeath_signal,
692 SEND_SIG_NOINFO, t);
693 }
694 /*
695 * If this is a threaded reparent there is no need to
696 * notify anyone anything has happened.
697 */
698 if (!same_thread_group(reaper, father))
699 reparent_leader(father, p, dead);
700 }
701 list_splice_tail_init(&father->children, &reaper->children);
702 }
703
704 /*
705 * Send signals to all our closest relatives so that they know
706 * to properly mourn us..
707 */
708 static void exit_notify(struct task_struct *tsk, int group_dead)
709 {
710 bool autoreap;
711 struct task_struct *p, *n;
712 LIST_HEAD(dead);
713
714 write_lock_irq(&tasklist_lock);
715 forget_original_parent(tsk, &dead);
716
717 if (group_dead)
718 kill_orphaned_pgrp(tsk->group_leader, NULL);
719
720 if (unlikely(tsk->ptrace)) {
721 int sig = thread_group_leader(tsk) &&
722 thread_group_empty(tsk) &&
723 !ptrace_reparented(tsk) ?
724 tsk->exit_signal : SIGCHLD;
725 autoreap = do_notify_parent(tsk, sig);
726 } else if (thread_group_leader(tsk)) {
727 autoreap = thread_group_empty(tsk) &&
728 do_notify_parent(tsk, tsk->exit_signal);
729 } else {
730 autoreap = true;
731 }
732
733 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
734 if (tsk->exit_state == EXIT_DEAD)
735 list_add(&tsk->ptrace_entry, &dead);
736
737 /* mt-exec, de_thread() is waiting for group leader */
738 if (unlikely(tsk->signal->notify_count < 0))
739 wake_up_process(tsk->signal->group_exit_task);
740 write_unlock_irq(&tasklist_lock);
741
742 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
743 list_del_init(&p->ptrace_entry);
744 release_task(p);
745 }
746 }
747
748 #ifdef CONFIG_DEBUG_STACK_USAGE
749 static void check_stack_usage(void)
750 {
751 static DEFINE_SPINLOCK(low_water_lock);
752 static int lowest_to_date = THREAD_SIZE;
753 unsigned long free;
754
755 free = stack_not_used(current);
756
757 if (free >= lowest_to_date)
758 return;
759
760 spin_lock(&low_water_lock);
761 if (free < lowest_to_date) {
762 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
763 current->comm, task_pid_nr(current), free);
764 lowest_to_date = free;
765 }
766 spin_unlock(&low_water_lock);
767 }
768 #else
769 static inline void check_stack_usage(void) {}
770 #endif
771
772 void __noreturn do_exit(long code)
773 {
774 struct task_struct *tsk = current;
775 int group_dead;
776
777 profile_task_exit(tsk);
778 kcov_task_exit(tsk);
779
780 WARN_ON(blk_needs_flush_plug(tsk));
781
782 if (unlikely(in_interrupt()))
783 panic("Aiee, killing interrupt handler!");
784 if (unlikely(!tsk->pid))
785 panic("Attempted to kill the idle task!");
786
787 /*
788 * If do_exit is called because this processes oopsed, it's possible
789 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
790 * continuing. Amongst other possible reasons, this is to prevent
791 * mm_release()->clear_child_tid() from writing to a user-controlled
792 * kernel address.
793 */
794 set_fs(USER_DS);
795
796 ptrace_event(PTRACE_EVENT_EXIT, code);
797
798 validate_creds_for_do_exit(tsk);
799
800 /*
801 * We're taking recursive faults here in do_exit. Safest is to just
802 * leave this task alone and wait for reboot.
803 */
804 if (unlikely(tsk->flags & PF_EXITING)) {
805 pr_alert("Fixing recursive fault but reboot is needed!\n");
806 futex_exit_recursive(tsk);
807 set_current_state(TASK_UNINTERRUPTIBLE);
808 schedule();
809 }
810
811 exit_signals(tsk); /* sets PF_EXITING */
812
813 if (unlikely(in_atomic())) {
814 pr_info("note: %s[%d] exited with preempt_count %d\n",
815 current->comm, task_pid_nr(current),
816 preempt_count());
817 preempt_count_set(PREEMPT_ENABLED);
818 }
819
820 /* sync mm's RSS info before statistics gathering */
821 if (tsk->mm)
822 sync_mm_rss(tsk->mm);
823 acct_update_integrals(tsk);
824 group_dead = atomic_dec_and_test(&tsk->signal->live);
825 if (group_dead) {
826 #ifdef CONFIG_POSIX_TIMERS
827 hrtimer_cancel(&tsk->signal->real_timer);
828 exit_itimers(tsk->signal);
829 #endif
830 if (tsk->mm)
831 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
832 }
833 acct_collect(code, group_dead);
834 if (group_dead)
835 tty_audit_exit();
836 audit_free(tsk);
837
838 tsk->exit_code = code;
839 taskstats_exit(tsk, group_dead);
840
841 exit_mm();
842
843 if (group_dead)
844 acct_process();
845 trace_sched_process_exit(tsk);
846
847 exit_sem(tsk);
848 exit_shm(tsk);
849 exit_files(tsk);
850 exit_fs(tsk);
851 if (group_dead)
852 disassociate_ctty(1);
853 exit_task_namespaces(tsk);
854 exit_task_work(tsk);
855 exit_thread(tsk);
856
857 /*
858 * Flush inherited counters to the parent - before the parent
859 * gets woken up by child-exit notifications.
860 *
861 * because of cgroup mode, must be called before cgroup_exit()
862 */
863 perf_event_exit_task(tsk);
864
865 sched_autogroup_exit_task(tsk);
866 cgroup_exit(tsk);
867
868 /*
869 * FIXME: do that only when needed, using sched_exit tracepoint
870 */
871 flush_ptrace_hw_breakpoint(tsk);
872
873 exit_tasks_rcu_start();
874 exit_notify(tsk, group_dead);
875 proc_exit_connector(tsk);
876 mpol_put_task_policy(tsk);
877 #ifdef CONFIG_FUTEX
878 if (unlikely(current->pi_state_cache))
879 kfree(current->pi_state_cache);
880 #endif
881 /*
882 * Make sure we are holding no locks:
883 */
884 debug_check_no_locks_held();
885
886 if (tsk->io_context)
887 exit_io_context(tsk);
888
889 if (tsk->splice_pipe)
890 free_pipe_info(tsk->splice_pipe);
891
892 if (tsk->task_frag.page)
893 put_page(tsk->task_frag.page);
894
895 validate_creds_for_do_exit(tsk);
896
897 check_stack_usage();
898 preempt_disable();
899 if (tsk->nr_dirtied)
900 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
901 exit_rcu();
902 exit_tasks_rcu_finish();
903
904 lockdep_free_task(tsk);
905 do_task_dead();
906 }
907 EXPORT_SYMBOL_GPL(do_exit);
908
909 void complete_and_exit(struct completion *comp, long code)
910 {
911 if (comp)
912 complete(comp);
913
914 do_exit(code);
915 }
916 EXPORT_SYMBOL(complete_and_exit);
917
918 SYSCALL_DEFINE1(exit, int, error_code)
919 {
920 do_exit((error_code&0xff)<<8);
921 }
922
923 /*
924 * Take down every thread in the group. This is called by fatal signals
925 * as well as by sys_exit_group (below).
926 */
927 void
928 do_group_exit(int exit_code)
929 {
930 struct signal_struct *sig = current->signal;
931
932 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
933
934 if (signal_group_exit(sig))
935 exit_code = sig->group_exit_code;
936 else if (!thread_group_empty(current)) {
937 struct sighand_struct *const sighand = current->sighand;
938
939 spin_lock_irq(&sighand->siglock);
940 if (signal_group_exit(sig))
941 /* Another thread got here before we took the lock. */
942 exit_code = sig->group_exit_code;
943 else {
944 sig->group_exit_code = exit_code;
945 sig->flags = SIGNAL_GROUP_EXIT;
946 zap_other_threads(current);
947 }
948 spin_unlock_irq(&sighand->siglock);
949 }
950
951 do_exit(exit_code);
952 /* NOTREACHED */
953 }
954
955 /*
956 * this kills every thread in the thread group. Note that any externally
957 * wait4()-ing process will get the correct exit code - even if this
958 * thread is not the thread group leader.
959 */
960 SYSCALL_DEFINE1(exit_group, int, error_code)
961 {
962 do_group_exit((error_code & 0xff) << 8);
963 /* NOTREACHED */
964 return 0;
965 }
966
967 struct waitid_info {
968 pid_t pid;
969 uid_t uid;
970 int status;
971 int cause;
972 };
973
974 struct wait_opts {
975 enum pid_type wo_type;
976 int wo_flags;
977 struct pid *wo_pid;
978
979 struct waitid_info *wo_info;
980 int wo_stat;
981 struct rusage *wo_rusage;
982
983 wait_queue_entry_t child_wait;
984 int notask_error;
985 };
986
987 static inline
988 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
989 {
990 if (type != PIDTYPE_PID)
991 task = task->group_leader;
992 return task->pids[type].pid;
993 }
994
995 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
996 {
997 return wo->wo_type == PIDTYPE_MAX ||
998 task_pid_type(p, wo->wo_type) == wo->wo_pid;
999 }
1000
1001 static int
1002 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1003 {
1004 if (!eligible_pid(wo, p))
1005 return 0;
1006
1007 /*
1008 * Wait for all children (clone and not) if __WALL is set or
1009 * if it is traced by us.
1010 */
1011 if (ptrace || (wo->wo_flags & __WALL))
1012 return 1;
1013
1014 /*
1015 * Otherwise, wait for clone children *only* if __WCLONE is set;
1016 * otherwise, wait for non-clone children *only*.
1017 *
1018 * Note: a "clone" child here is one that reports to its parent
1019 * using a signal other than SIGCHLD, or a non-leader thread which
1020 * we can only see if it is traced by us.
1021 */
1022 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1023 return 0;
1024
1025 return 1;
1026 }
1027
1028 /*
1029 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1030 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1031 * the lock and this task is uninteresting. If we return nonzero, we have
1032 * released the lock and the system call should return.
1033 */
1034 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1035 {
1036 int state, status;
1037 pid_t pid = task_pid_vnr(p);
1038 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1039 struct waitid_info *infop;
1040
1041 if (!likely(wo->wo_flags & WEXITED))
1042 return 0;
1043
1044 if (unlikely(wo->wo_flags & WNOWAIT)) {
1045 status = p->exit_code;
1046 get_task_struct(p);
1047 read_unlock(&tasklist_lock);
1048 sched_annotate_sleep();
1049 if (wo->wo_rusage)
1050 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1051 put_task_struct(p);
1052 goto out_info;
1053 }
1054 /*
1055 * Move the task's state to DEAD/TRACE, only one thread can do this.
1056 */
1057 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1058 EXIT_TRACE : EXIT_DEAD;
1059 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1060 return 0;
1061 /*
1062 * We own this thread, nobody else can reap it.
1063 */
1064 read_unlock(&tasklist_lock);
1065 sched_annotate_sleep();
1066
1067 /*
1068 * Check thread_group_leader() to exclude the traced sub-threads.
1069 */
1070 if (state == EXIT_DEAD && thread_group_leader(p)) {
1071 struct signal_struct *sig = p->signal;
1072 struct signal_struct *psig = current->signal;
1073 unsigned long maxrss;
1074 u64 tgutime, tgstime;
1075
1076 /*
1077 * The resource counters for the group leader are in its
1078 * own task_struct. Those for dead threads in the group
1079 * are in its signal_struct, as are those for the child
1080 * processes it has previously reaped. All these
1081 * accumulate in the parent's signal_struct c* fields.
1082 *
1083 * We don't bother to take a lock here to protect these
1084 * p->signal fields because the whole thread group is dead
1085 * and nobody can change them.
1086 *
1087 * psig->stats_lock also protects us from our sub-theads
1088 * which can reap other children at the same time. Until
1089 * we change k_getrusage()-like users to rely on this lock
1090 * we have to take ->siglock as well.
1091 *
1092 * We use thread_group_cputime_adjusted() to get times for
1093 * the thread group, which consolidates times for all threads
1094 * in the group including the group leader.
1095 */
1096 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1097 spin_lock_irq(&current->sighand->siglock);
1098 write_seqlock(&psig->stats_lock);
1099 psig->cutime += tgutime + sig->cutime;
1100 psig->cstime += tgstime + sig->cstime;
1101 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1102 psig->cmin_flt +=
1103 p->min_flt + sig->min_flt + sig->cmin_flt;
1104 psig->cmaj_flt +=
1105 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1106 psig->cnvcsw +=
1107 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1108 psig->cnivcsw +=
1109 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1110 psig->cinblock +=
1111 task_io_get_inblock(p) +
1112 sig->inblock + sig->cinblock;
1113 psig->coublock +=
1114 task_io_get_oublock(p) +
1115 sig->oublock + sig->coublock;
1116 maxrss = max(sig->maxrss, sig->cmaxrss);
1117 if (psig->cmaxrss < maxrss)
1118 psig->cmaxrss = maxrss;
1119 task_io_accounting_add(&psig->ioac, &p->ioac);
1120 task_io_accounting_add(&psig->ioac, &sig->ioac);
1121 write_sequnlock(&psig->stats_lock);
1122 spin_unlock_irq(&current->sighand->siglock);
1123 }
1124
1125 if (wo->wo_rusage)
1126 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1127 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1128 ? p->signal->group_exit_code : p->exit_code;
1129 wo->wo_stat = status;
1130
1131 if (state == EXIT_TRACE) {
1132 write_lock_irq(&tasklist_lock);
1133 /* We dropped tasklist, ptracer could die and untrace */
1134 ptrace_unlink(p);
1135
1136 /* If parent wants a zombie, don't release it now */
1137 state = EXIT_ZOMBIE;
1138 if (do_notify_parent(p, p->exit_signal))
1139 state = EXIT_DEAD;
1140 p->exit_state = state;
1141 write_unlock_irq(&tasklist_lock);
1142 }
1143 if (state == EXIT_DEAD)
1144 release_task(p);
1145
1146 out_info:
1147 infop = wo->wo_info;
1148 if (infop) {
1149 if ((status & 0x7f) == 0) {
1150 infop->cause = CLD_EXITED;
1151 infop->status = status >> 8;
1152 } else {
1153 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1154 infop->status = status & 0x7f;
1155 }
1156 infop->pid = pid;
1157 infop->uid = uid;
1158 }
1159
1160 return pid;
1161 }
1162
1163 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1164 {
1165 if (ptrace) {
1166 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1167 return &p->exit_code;
1168 } else {
1169 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1170 return &p->signal->group_exit_code;
1171 }
1172 return NULL;
1173 }
1174
1175 /**
1176 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1177 * @wo: wait options
1178 * @ptrace: is the wait for ptrace
1179 * @p: task to wait for
1180 *
1181 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1182 *
1183 * CONTEXT:
1184 * read_lock(&tasklist_lock), which is released if return value is
1185 * non-zero. Also, grabs and releases @p->sighand->siglock.
1186 *
1187 * RETURNS:
1188 * 0 if wait condition didn't exist and search for other wait conditions
1189 * should continue. Non-zero return, -errno on failure and @p's pid on
1190 * success, implies that tasklist_lock is released and wait condition
1191 * search should terminate.
1192 */
1193 static int wait_task_stopped(struct wait_opts *wo,
1194 int ptrace, struct task_struct *p)
1195 {
1196 struct waitid_info *infop;
1197 int exit_code, *p_code, why;
1198 uid_t uid = 0; /* unneeded, required by compiler */
1199 pid_t pid;
1200
1201 /*
1202 * Traditionally we see ptrace'd stopped tasks regardless of options.
1203 */
1204 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1205 return 0;
1206
1207 if (!task_stopped_code(p, ptrace))
1208 return 0;
1209
1210 exit_code = 0;
1211 spin_lock_irq(&p->sighand->siglock);
1212
1213 p_code = task_stopped_code(p, ptrace);
1214 if (unlikely(!p_code))
1215 goto unlock_sig;
1216
1217 exit_code = *p_code;
1218 if (!exit_code)
1219 goto unlock_sig;
1220
1221 if (!unlikely(wo->wo_flags & WNOWAIT))
1222 *p_code = 0;
1223
1224 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1225 unlock_sig:
1226 spin_unlock_irq(&p->sighand->siglock);
1227 if (!exit_code)
1228 return 0;
1229
1230 /*
1231 * Now we are pretty sure this task is interesting.
1232 * Make sure it doesn't get reaped out from under us while we
1233 * give up the lock and then examine it below. We don't want to
1234 * keep holding onto the tasklist_lock while we call getrusage and
1235 * possibly take page faults for user memory.
1236 */
1237 get_task_struct(p);
1238 pid = task_pid_vnr(p);
1239 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1240 read_unlock(&tasklist_lock);
1241 sched_annotate_sleep();
1242 if (wo->wo_rusage)
1243 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1244 put_task_struct(p);
1245
1246 if (likely(!(wo->wo_flags & WNOWAIT)))
1247 wo->wo_stat = (exit_code << 8) | 0x7f;
1248
1249 infop = wo->wo_info;
1250 if (infop) {
1251 infop->cause = why;
1252 infop->status = exit_code;
1253 infop->pid = pid;
1254 infop->uid = uid;
1255 }
1256 return pid;
1257 }
1258
1259 /*
1260 * Handle do_wait work for one task in a live, non-stopped state.
1261 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1262 * the lock and this task is uninteresting. If we return nonzero, we have
1263 * released the lock and the system call should return.
1264 */
1265 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1266 {
1267 struct waitid_info *infop;
1268 pid_t pid;
1269 uid_t uid;
1270
1271 if (!unlikely(wo->wo_flags & WCONTINUED))
1272 return 0;
1273
1274 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1275 return 0;
1276
1277 spin_lock_irq(&p->sighand->siglock);
1278 /* Re-check with the lock held. */
1279 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1280 spin_unlock_irq(&p->sighand->siglock);
1281 return 0;
1282 }
1283 if (!unlikely(wo->wo_flags & WNOWAIT))
1284 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1285 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1286 spin_unlock_irq(&p->sighand->siglock);
1287
1288 pid = task_pid_vnr(p);
1289 get_task_struct(p);
1290 read_unlock(&tasklist_lock);
1291 sched_annotate_sleep();
1292 if (wo->wo_rusage)
1293 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1294 put_task_struct(p);
1295
1296 infop = wo->wo_info;
1297 if (!infop) {
1298 wo->wo_stat = 0xffff;
1299 } else {
1300 infop->cause = CLD_CONTINUED;
1301 infop->pid = pid;
1302 infop->uid = uid;
1303 infop->status = SIGCONT;
1304 }
1305 return pid;
1306 }
1307
1308 /*
1309 * Consider @p for a wait by @parent.
1310 *
1311 * -ECHILD should be in ->notask_error before the first call.
1312 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1313 * Returns zero if the search for a child should continue;
1314 * then ->notask_error is 0 if @p is an eligible child,
1315 * or still -ECHILD.
1316 */
1317 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1318 struct task_struct *p)
1319 {
1320 /*
1321 * We can race with wait_task_zombie() from another thread.
1322 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1323 * can't confuse the checks below.
1324 */
1325 int exit_state = READ_ONCE(p->exit_state);
1326 int ret;
1327
1328 if (unlikely(exit_state == EXIT_DEAD))
1329 return 0;
1330
1331 ret = eligible_child(wo, ptrace, p);
1332 if (!ret)
1333 return ret;
1334
1335 if (unlikely(exit_state == EXIT_TRACE)) {
1336 /*
1337 * ptrace == 0 means we are the natural parent. In this case
1338 * we should clear notask_error, debugger will notify us.
1339 */
1340 if (likely(!ptrace))
1341 wo->notask_error = 0;
1342 return 0;
1343 }
1344
1345 if (likely(!ptrace) && unlikely(p->ptrace)) {
1346 /*
1347 * If it is traced by its real parent's group, just pretend
1348 * the caller is ptrace_do_wait() and reap this child if it
1349 * is zombie.
1350 *
1351 * This also hides group stop state from real parent; otherwise
1352 * a single stop can be reported twice as group and ptrace stop.
1353 * If a ptracer wants to distinguish these two events for its
1354 * own children it should create a separate process which takes
1355 * the role of real parent.
1356 */
1357 if (!ptrace_reparented(p))
1358 ptrace = 1;
1359 }
1360
1361 /* slay zombie? */
1362 if (exit_state == EXIT_ZOMBIE) {
1363 /* we don't reap group leaders with subthreads */
1364 if (!delay_group_leader(p)) {
1365 /*
1366 * A zombie ptracee is only visible to its ptracer.
1367 * Notification and reaping will be cascaded to the
1368 * real parent when the ptracer detaches.
1369 */
1370 if (unlikely(ptrace) || likely(!p->ptrace))
1371 return wait_task_zombie(wo, p);
1372 }
1373
1374 /*
1375 * Allow access to stopped/continued state via zombie by
1376 * falling through. Clearing of notask_error is complex.
1377 *
1378 * When !@ptrace:
1379 *
1380 * If WEXITED is set, notask_error should naturally be
1381 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1382 * so, if there are live subthreads, there are events to
1383 * wait for. If all subthreads are dead, it's still safe
1384 * to clear - this function will be called again in finite
1385 * amount time once all the subthreads are released and
1386 * will then return without clearing.
1387 *
1388 * When @ptrace:
1389 *
1390 * Stopped state is per-task and thus can't change once the
1391 * target task dies. Only continued and exited can happen.
1392 * Clear notask_error if WCONTINUED | WEXITED.
1393 */
1394 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1395 wo->notask_error = 0;
1396 } else {
1397 /*
1398 * @p is alive and it's gonna stop, continue or exit, so
1399 * there always is something to wait for.
1400 */
1401 wo->notask_error = 0;
1402 }
1403
1404 /*
1405 * Wait for stopped. Depending on @ptrace, different stopped state
1406 * is used and the two don't interact with each other.
1407 */
1408 ret = wait_task_stopped(wo, ptrace, p);
1409 if (ret)
1410 return ret;
1411
1412 /*
1413 * Wait for continued. There's only one continued state and the
1414 * ptracer can consume it which can confuse the real parent. Don't
1415 * use WCONTINUED from ptracer. You don't need or want it.
1416 */
1417 return wait_task_continued(wo, p);
1418 }
1419
1420 /*
1421 * Do the work of do_wait() for one thread in the group, @tsk.
1422 *
1423 * -ECHILD should be in ->notask_error before the first call.
1424 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1425 * Returns zero if the search for a child should continue; then
1426 * ->notask_error is 0 if there were any eligible children,
1427 * or still -ECHILD.
1428 */
1429 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1430 {
1431 struct task_struct *p;
1432
1433 list_for_each_entry(p, &tsk->children, sibling) {
1434 int ret = wait_consider_task(wo, 0, p);
1435
1436 if (ret)
1437 return ret;
1438 }
1439
1440 return 0;
1441 }
1442
1443 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1444 {
1445 struct task_struct *p;
1446
1447 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1448 int ret = wait_consider_task(wo, 1, p);
1449
1450 if (ret)
1451 return ret;
1452 }
1453
1454 return 0;
1455 }
1456
1457 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1458 int sync, void *key)
1459 {
1460 struct wait_opts *wo = container_of(wait, struct wait_opts,
1461 child_wait);
1462 struct task_struct *p = key;
1463
1464 if (!eligible_pid(wo, p))
1465 return 0;
1466
1467 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1468 return 0;
1469
1470 return default_wake_function(wait, mode, sync, key);
1471 }
1472
1473 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1474 {
1475 __wake_up_sync_key(&parent->signal->wait_chldexit,
1476 TASK_INTERRUPTIBLE, 1, p);
1477 }
1478
1479 static long do_wait(struct wait_opts *wo)
1480 {
1481 struct task_struct *tsk;
1482 int retval;
1483
1484 trace_sched_process_wait(wo->wo_pid);
1485
1486 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1487 wo->child_wait.private = current;
1488 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1489 repeat:
1490 /*
1491 * If there is nothing that can match our criteria, just get out.
1492 * We will clear ->notask_error to zero if we see any child that
1493 * might later match our criteria, even if we are not able to reap
1494 * it yet.
1495 */
1496 wo->notask_error = -ECHILD;
1497 if ((wo->wo_type < PIDTYPE_MAX) &&
1498 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1499 goto notask;
1500
1501 set_current_state(TASK_INTERRUPTIBLE);
1502 read_lock(&tasklist_lock);
1503 tsk = current;
1504 do {
1505 retval = do_wait_thread(wo, tsk);
1506 if (retval)
1507 goto end;
1508
1509 retval = ptrace_do_wait(wo, tsk);
1510 if (retval)
1511 goto end;
1512
1513 if (wo->wo_flags & __WNOTHREAD)
1514 break;
1515 } while_each_thread(current, tsk);
1516 read_unlock(&tasklist_lock);
1517
1518 notask:
1519 retval = wo->notask_error;
1520 if (!retval && !(wo->wo_flags & WNOHANG)) {
1521 retval = -ERESTARTSYS;
1522 if (!signal_pending(current)) {
1523 schedule();
1524 goto repeat;
1525 }
1526 }
1527 end:
1528 __set_current_state(TASK_RUNNING);
1529 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1530 return retval;
1531 }
1532
1533 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1534 int options, struct rusage *ru)
1535 {
1536 struct wait_opts wo;
1537 struct pid *pid = NULL;
1538 enum pid_type type;
1539 long ret;
1540
1541 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1542 __WNOTHREAD|__WCLONE|__WALL))
1543 return -EINVAL;
1544 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1545 return -EINVAL;
1546
1547 switch (which) {
1548 case P_ALL:
1549 type = PIDTYPE_MAX;
1550 break;
1551 case P_PID:
1552 type = PIDTYPE_PID;
1553 if (upid <= 0)
1554 return -EINVAL;
1555 break;
1556 case P_PGID:
1557 type = PIDTYPE_PGID;
1558 if (upid <= 0)
1559 return -EINVAL;
1560 break;
1561 default:
1562 return -EINVAL;
1563 }
1564
1565 if (type < PIDTYPE_MAX)
1566 pid = find_get_pid(upid);
1567
1568 wo.wo_type = type;
1569 wo.wo_pid = pid;
1570 wo.wo_flags = options;
1571 wo.wo_info = infop;
1572 wo.wo_rusage = ru;
1573 ret = do_wait(&wo);
1574
1575 put_pid(pid);
1576 return ret;
1577 }
1578
1579 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1580 infop, int, options, struct rusage __user *, ru)
1581 {
1582 struct rusage r;
1583 struct waitid_info info = {.status = 0};
1584 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1585 int signo = 0;
1586
1587 if (err > 0) {
1588 signo = SIGCHLD;
1589 err = 0;
1590 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1591 return -EFAULT;
1592 }
1593 if (!infop)
1594 return err;
1595
1596 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1597 return -EFAULT;
1598
1599 user_access_begin();
1600 unsafe_put_user(signo, &infop->si_signo, Efault);
1601 unsafe_put_user(0, &infop->si_errno, Efault);
1602 unsafe_put_user(info.cause, &infop->si_code, Efault);
1603 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1604 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1605 unsafe_put_user(info.status, &infop->si_status, Efault);
1606 user_access_end();
1607 return err;
1608 Efault:
1609 user_access_end();
1610 return -EFAULT;
1611 }
1612
1613 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1614 struct rusage *ru)
1615 {
1616 struct wait_opts wo;
1617 struct pid *pid = NULL;
1618 enum pid_type type;
1619 long ret;
1620
1621 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1622 __WNOTHREAD|__WCLONE|__WALL))
1623 return -EINVAL;
1624
1625 /* -INT_MIN is not defined */
1626 if (upid == INT_MIN)
1627 return -ESRCH;
1628
1629 if (upid == -1)
1630 type = PIDTYPE_MAX;
1631 else if (upid < 0) {
1632 type = PIDTYPE_PGID;
1633 pid = find_get_pid(-upid);
1634 } else if (upid == 0) {
1635 type = PIDTYPE_PGID;
1636 pid = get_task_pid(current, PIDTYPE_PGID);
1637 } else /* upid > 0 */ {
1638 type = PIDTYPE_PID;
1639 pid = find_get_pid(upid);
1640 }
1641
1642 wo.wo_type = type;
1643 wo.wo_pid = pid;
1644 wo.wo_flags = options | WEXITED;
1645 wo.wo_info = NULL;
1646 wo.wo_stat = 0;
1647 wo.wo_rusage = ru;
1648 ret = do_wait(&wo);
1649 put_pid(pid);
1650 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1651 ret = -EFAULT;
1652
1653 return ret;
1654 }
1655
1656 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1657 int, options, struct rusage __user *, ru)
1658 {
1659 struct rusage r;
1660 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1661
1662 if (err > 0) {
1663 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1664 return -EFAULT;
1665 }
1666 return err;
1667 }
1668
1669 #ifdef __ARCH_WANT_SYS_WAITPID
1670
1671 /*
1672 * sys_waitpid() remains for compatibility. waitpid() should be
1673 * implemented by calling sys_wait4() from libc.a.
1674 */
1675 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1676 {
1677 return sys_wait4(pid, stat_addr, options, NULL);
1678 }
1679
1680 #endif
1681
1682 #ifdef CONFIG_COMPAT
1683 COMPAT_SYSCALL_DEFINE4(wait4,
1684 compat_pid_t, pid,
1685 compat_uint_t __user *, stat_addr,
1686 int, options,
1687 struct compat_rusage __user *, ru)
1688 {
1689 struct rusage r;
1690 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1691 if (err > 0) {
1692 if (ru && put_compat_rusage(&r, ru))
1693 return -EFAULT;
1694 }
1695 return err;
1696 }
1697
1698 COMPAT_SYSCALL_DEFINE5(waitid,
1699 int, which, compat_pid_t, pid,
1700 struct compat_siginfo __user *, infop, int, options,
1701 struct compat_rusage __user *, uru)
1702 {
1703 struct rusage ru;
1704 struct waitid_info info = {.status = 0};
1705 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1706 int signo = 0;
1707 if (err > 0) {
1708 signo = SIGCHLD;
1709 err = 0;
1710 if (uru) {
1711 /* kernel_waitid() overwrites everything in ru */
1712 if (COMPAT_USE_64BIT_TIME)
1713 err = copy_to_user(uru, &ru, sizeof(ru));
1714 else
1715 err = put_compat_rusage(&ru, uru);
1716 if (err)
1717 return -EFAULT;
1718 }
1719 }
1720
1721 if (!infop)
1722 return err;
1723
1724 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1725 return -EFAULT;
1726
1727 user_access_begin();
1728 unsafe_put_user(signo, &infop->si_signo, Efault);
1729 unsafe_put_user(0, &infop->si_errno, Efault);
1730 unsafe_put_user(info.cause, &infop->si_code, Efault);
1731 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1732 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1733 unsafe_put_user(info.status, &infop->si_status, Efault);
1734 user_access_end();
1735 return err;
1736 Efault:
1737 user_access_end();
1738 return -EFAULT;
1739 }
1740 #endif
1741
1742 __weak void abort(void)
1743 {
1744 BUG();
1745
1746 /* if that doesn't kill us, halt */
1747 panic("Oops failed to kill thread");
1748 }
1749 EXPORT_SYMBOL(abort);