]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/fork.c
6f320a216e7d98f691729d1eb6fd6131e57e7108
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/perf_event.h>
81 #include <linux/posix-timers.h>
82 #include <linux/user-return-notifier.h>
83 #include <linux/oom.h>
84 #include <linux/khugepaged.h>
85 #include <linux/signalfd.h>
86 #include <linux/uprobes.h>
87 #include <linux/aio.h>
88 #include <linux/compiler.h>
89 #include <linux/sysctl.h>
90 #include <linux/kcov.h>
91 #include <linux/livepatch.h>
92 #include <linux/thread_info.h>
93
94 #include <asm/pgtable.h>
95 #include <asm/pgalloc.h>
96 #include <linux/uaccess.h>
97 #include <asm/mmu_context.h>
98 #include <asm/cacheflush.h>
99 #include <asm/tlbflush.h>
100
101 #include <trace/events/sched.h>
102
103 #define CREATE_TRACE_POINTS
104 #include <trace/events/task.h>
105 #ifdef CONFIG_USER_NS
106 extern int unprivileged_userns_clone;
107 #else
108 #define unprivileged_userns_clone 0
109 #endif
110
111 /*
112 * Minimum number of threads to boot the kernel
113 */
114 #define MIN_THREADS 20
115
116 /*
117 * Maximum number of threads
118 */
119 #define MAX_THREADS FUTEX_TID_MASK
120
121 /*
122 * Protected counters by write_lock_irq(&tasklist_lock)
123 */
124 unsigned long total_forks; /* Handle normal Linux uptimes. */
125 int nr_threads; /* The idle threads do not count.. */
126
127 int max_threads; /* tunable limit on nr_threads */
128
129 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
130
131 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
132
133 #ifdef CONFIG_PROVE_RCU
134 int lockdep_tasklist_lock_is_held(void)
135 {
136 return lockdep_is_held(&tasklist_lock);
137 }
138 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
139 #endif /* #ifdef CONFIG_PROVE_RCU */
140
141 int nr_processes(void)
142 {
143 int cpu;
144 int total = 0;
145
146 for_each_possible_cpu(cpu)
147 total += per_cpu(process_counts, cpu);
148
149 return total;
150 }
151
152 void __weak arch_release_task_struct(struct task_struct *tsk)
153 {
154 }
155
156 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
157 static struct kmem_cache *task_struct_cachep;
158
159 static inline struct task_struct *alloc_task_struct_node(int node)
160 {
161 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
162 }
163
164 static inline void free_task_struct(struct task_struct *tsk)
165 {
166 kmem_cache_free(task_struct_cachep, tsk);
167 }
168 #endif
169
170 void __weak arch_release_thread_stack(unsigned long *stack)
171 {
172 }
173
174 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
175
176 /*
177 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
178 * kmemcache based allocator.
179 */
180 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
181
182 #ifdef CONFIG_VMAP_STACK
183 /*
184 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
185 * flush. Try to minimize the number of calls by caching stacks.
186 */
187 #define NR_CACHED_STACKS 2
188 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
189
190 static int free_vm_stack_cache(unsigned int cpu)
191 {
192 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
193 int i;
194
195 for (i = 0; i < NR_CACHED_STACKS; i++) {
196 struct vm_struct *vm_stack = cached_vm_stacks[i];
197
198 if (!vm_stack)
199 continue;
200
201 vfree(vm_stack->addr);
202 cached_vm_stacks[i] = NULL;
203 }
204
205 return 0;
206 }
207 #endif
208
209 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
210 {
211 #ifdef CONFIG_VMAP_STACK
212 void *stack;
213 int i;
214
215 for (i = 0; i < NR_CACHED_STACKS; i++) {
216 struct vm_struct *s;
217
218 s = this_cpu_xchg(cached_stacks[i], NULL);
219
220 if (!s)
221 continue;
222
223 #ifdef CONFIG_DEBUG_KMEMLEAK
224 /* Clear stale pointers from reused stack. */
225 memset(s->addr, 0, THREAD_SIZE);
226 #endif
227 tsk->stack_vm_area = s;
228 return s->addr;
229 }
230
231 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
232 VMALLOC_START, VMALLOC_END,
233 THREADINFO_GFP,
234 PAGE_KERNEL,
235 0, node, __builtin_return_address(0));
236
237 /*
238 * We can't call find_vm_area() in interrupt context, and
239 * free_thread_stack() can be called in interrupt context,
240 * so cache the vm_struct.
241 */
242 if (stack)
243 tsk->stack_vm_area = find_vm_area(stack);
244 return stack;
245 #else
246 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
247 THREAD_SIZE_ORDER);
248
249 return page ? page_address(page) : NULL;
250 #endif
251 }
252
253 static inline void free_thread_stack(struct task_struct *tsk)
254 {
255 #ifdef CONFIG_VMAP_STACK
256 if (task_stack_vm_area(tsk)) {
257 int i;
258
259 for (i = 0; i < NR_CACHED_STACKS; i++) {
260 if (this_cpu_cmpxchg(cached_stacks[i],
261 NULL, tsk->stack_vm_area) != NULL)
262 continue;
263
264 return;
265 }
266
267 vfree_atomic(tsk->stack);
268 return;
269 }
270 #endif
271
272 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
273 }
274 # else
275 static struct kmem_cache *thread_stack_cache;
276
277 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
278 int node)
279 {
280 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
281 }
282
283 static void free_thread_stack(struct task_struct *tsk)
284 {
285 kmem_cache_free(thread_stack_cache, tsk->stack);
286 }
287
288 void thread_stack_cache_init(void)
289 {
290 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
291 THREAD_SIZE, 0, NULL);
292 BUG_ON(thread_stack_cache == NULL);
293 }
294 # endif
295 #endif
296
297 /* SLAB cache for signal_struct structures (tsk->signal) */
298 static struct kmem_cache *signal_cachep;
299
300 /* SLAB cache for sighand_struct structures (tsk->sighand) */
301 struct kmem_cache *sighand_cachep;
302
303 /* SLAB cache for files_struct structures (tsk->files) */
304 struct kmem_cache *files_cachep;
305
306 /* SLAB cache for fs_struct structures (tsk->fs) */
307 struct kmem_cache *fs_cachep;
308
309 /* SLAB cache for vm_area_struct structures */
310 struct kmem_cache *vm_area_cachep;
311
312 /* SLAB cache for mm_struct structures (tsk->mm) */
313 static struct kmem_cache *mm_cachep;
314
315 static void account_kernel_stack(struct task_struct *tsk, int account)
316 {
317 void *stack = task_stack_page(tsk);
318 struct vm_struct *vm = task_stack_vm_area(tsk);
319
320 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
321
322 if (vm) {
323 int i;
324
325 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
326
327 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
328 mod_zone_page_state(page_zone(vm->pages[i]),
329 NR_KERNEL_STACK_KB,
330 PAGE_SIZE / 1024 * account);
331 }
332
333 /* All stack pages belong to the same memcg. */
334 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
335 account * (THREAD_SIZE / 1024));
336 } else {
337 /*
338 * All stack pages are in the same zone and belong to the
339 * same memcg.
340 */
341 struct page *first_page = virt_to_page(stack);
342
343 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
344 THREAD_SIZE / 1024 * account);
345
346 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
347 account * (THREAD_SIZE / 1024));
348 }
349 }
350
351 static void release_task_stack(struct task_struct *tsk)
352 {
353 if (WARN_ON(tsk->state != TASK_DEAD))
354 return; /* Better to leak the stack than to free prematurely */
355
356 account_kernel_stack(tsk, -1);
357 arch_release_thread_stack(tsk->stack);
358 free_thread_stack(tsk);
359 tsk->stack = NULL;
360 #ifdef CONFIG_VMAP_STACK
361 tsk->stack_vm_area = NULL;
362 #endif
363 }
364
365 #ifdef CONFIG_THREAD_INFO_IN_TASK
366 void put_task_stack(struct task_struct *tsk)
367 {
368 if (atomic_dec_and_test(&tsk->stack_refcount))
369 release_task_stack(tsk);
370 }
371 #endif
372
373 void free_task(struct task_struct *tsk)
374 {
375 #ifndef CONFIG_THREAD_INFO_IN_TASK
376 /*
377 * The task is finally done with both the stack and thread_info,
378 * so free both.
379 */
380 release_task_stack(tsk);
381 #else
382 /*
383 * If the task had a separate stack allocation, it should be gone
384 * by now.
385 */
386 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
387 #endif
388 rt_mutex_debug_task_free(tsk);
389 ftrace_graph_exit_task(tsk);
390 put_seccomp_filter(tsk);
391 arch_release_task_struct(tsk);
392 if (tsk->flags & PF_KTHREAD)
393 free_kthread_struct(tsk);
394 free_task_struct(tsk);
395 }
396 EXPORT_SYMBOL(free_task);
397
398 static inline void free_signal_struct(struct signal_struct *sig)
399 {
400 taskstats_tgid_free(sig);
401 sched_autogroup_exit(sig);
402 /*
403 * __mmdrop is not safe to call from softirq context on x86 due to
404 * pgd_dtor so postpone it to the async context
405 */
406 if (sig->oom_mm)
407 mmdrop_async(sig->oom_mm);
408 kmem_cache_free(signal_cachep, sig);
409 }
410
411 static inline void put_signal_struct(struct signal_struct *sig)
412 {
413 if (atomic_dec_and_test(&sig->sigcnt))
414 free_signal_struct(sig);
415 }
416
417 void __put_task_struct(struct task_struct *tsk)
418 {
419 WARN_ON(!tsk->exit_state);
420 WARN_ON(atomic_read(&tsk->usage));
421 WARN_ON(tsk == current);
422
423 cgroup_free(tsk);
424 task_numa_free(tsk);
425 security_task_free(tsk);
426 exit_creds(tsk);
427 delayacct_tsk_free(tsk);
428 put_signal_struct(tsk->signal);
429
430 if (!profile_handoff_task(tsk))
431 free_task(tsk);
432 }
433 EXPORT_SYMBOL_GPL(__put_task_struct);
434
435 void __init __weak arch_task_cache_init(void) { }
436
437 /*
438 * set_max_threads
439 */
440 static void set_max_threads(unsigned int max_threads_suggested)
441 {
442 u64 threads;
443
444 /*
445 * The number of threads shall be limited such that the thread
446 * structures may only consume a small part of the available memory.
447 */
448 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
449 threads = MAX_THREADS;
450 else
451 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
452 (u64) THREAD_SIZE * 8UL);
453
454 if (threads > max_threads_suggested)
455 threads = max_threads_suggested;
456
457 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
458 }
459
460 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
461 /* Initialized by the architecture: */
462 int arch_task_struct_size __read_mostly;
463 #endif
464
465 void __init fork_init(void)
466 {
467 int i;
468 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
469 #ifndef ARCH_MIN_TASKALIGN
470 #define ARCH_MIN_TASKALIGN 0
471 #endif
472 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
473
474 /* create a slab on which task_structs can be allocated */
475 task_struct_cachep = kmem_cache_create("task_struct",
476 arch_task_struct_size, align,
477 SLAB_PANIC|SLAB_ACCOUNT, NULL);
478 #endif
479
480 /* do the arch specific task caches init */
481 arch_task_cache_init();
482
483 set_max_threads(MAX_THREADS);
484
485 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
486 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
487 init_task.signal->rlim[RLIMIT_SIGPENDING] =
488 init_task.signal->rlim[RLIMIT_NPROC];
489
490 for (i = 0; i < UCOUNT_COUNTS; i++) {
491 init_user_ns.ucount_max[i] = max_threads/2;
492 }
493
494 #ifdef CONFIG_VMAP_STACK
495 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
496 NULL, free_vm_stack_cache);
497 #endif
498
499 lockdep_init_task(&init_task);
500 }
501
502 int __weak arch_dup_task_struct(struct task_struct *dst,
503 struct task_struct *src)
504 {
505 *dst = *src;
506 return 0;
507 }
508
509 void set_task_stack_end_magic(struct task_struct *tsk)
510 {
511 unsigned long *stackend;
512
513 stackend = end_of_stack(tsk);
514 *stackend = STACK_END_MAGIC; /* for overflow detection */
515 }
516
517 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
518 {
519 struct task_struct *tsk;
520 unsigned long *stack;
521 struct vm_struct *stack_vm_area;
522 int err;
523
524 if (node == NUMA_NO_NODE)
525 node = tsk_fork_get_node(orig);
526 tsk = alloc_task_struct_node(node);
527 if (!tsk)
528 return NULL;
529
530 stack = alloc_thread_stack_node(tsk, node);
531 if (!stack)
532 goto free_tsk;
533
534 stack_vm_area = task_stack_vm_area(tsk);
535
536 err = arch_dup_task_struct(tsk, orig);
537
538 /*
539 * arch_dup_task_struct() clobbers the stack-related fields. Make
540 * sure they're properly initialized before using any stack-related
541 * functions again.
542 */
543 tsk->stack = stack;
544 #ifdef CONFIG_VMAP_STACK
545 tsk->stack_vm_area = stack_vm_area;
546 #endif
547 #ifdef CONFIG_THREAD_INFO_IN_TASK
548 atomic_set(&tsk->stack_refcount, 1);
549 #endif
550
551 if (err)
552 goto free_stack;
553
554 #ifdef CONFIG_SECCOMP
555 /*
556 * We must handle setting up seccomp filters once we're under
557 * the sighand lock in case orig has changed between now and
558 * then. Until then, filter must be NULL to avoid messing up
559 * the usage counts on the error path calling free_task.
560 */
561 tsk->seccomp.filter = NULL;
562 #endif
563
564 setup_thread_stack(tsk, orig);
565 clear_user_return_notifier(tsk);
566 clear_tsk_need_resched(tsk);
567 set_task_stack_end_magic(tsk);
568
569 #ifdef CONFIG_CC_STACKPROTECTOR
570 tsk->stack_canary = get_random_canary();
571 #endif
572
573 /*
574 * One for us, one for whoever does the "release_task()" (usually
575 * parent)
576 */
577 atomic_set(&tsk->usage, 2);
578 #ifdef CONFIG_BLK_DEV_IO_TRACE
579 tsk->btrace_seq = 0;
580 #endif
581 tsk->splice_pipe = NULL;
582 tsk->task_frag.page = NULL;
583 tsk->wake_q.next = NULL;
584
585 account_kernel_stack(tsk, 1);
586
587 kcov_task_init(tsk);
588
589 #ifdef CONFIG_FAULT_INJECTION
590 tsk->fail_nth = 0;
591 #endif
592
593 return tsk;
594
595 free_stack:
596 free_thread_stack(tsk);
597 free_tsk:
598 free_task_struct(tsk);
599 return NULL;
600 }
601
602 #ifdef CONFIG_MMU
603 static __latent_entropy int dup_mmap(struct mm_struct *mm,
604 struct mm_struct *oldmm)
605 {
606 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
607 struct rb_node **rb_link, *rb_parent;
608 int retval;
609 unsigned long charge;
610 LIST_HEAD(uf);
611
612 uprobe_start_dup_mmap();
613 if (down_write_killable(&oldmm->mmap_sem)) {
614 retval = -EINTR;
615 goto fail_uprobe_end;
616 }
617 flush_cache_dup_mm(oldmm);
618 uprobe_dup_mmap(oldmm, mm);
619 /*
620 * Not linked in yet - no deadlock potential:
621 */
622 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
623
624 /* No ordering required: file already has been exposed. */
625 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
626
627 mm->total_vm = oldmm->total_vm;
628 mm->data_vm = oldmm->data_vm;
629 mm->exec_vm = oldmm->exec_vm;
630 mm->stack_vm = oldmm->stack_vm;
631
632 rb_link = &mm->mm_rb.rb_node;
633 rb_parent = NULL;
634 pprev = &mm->mmap;
635 retval = ksm_fork(mm, oldmm);
636 if (retval)
637 goto out;
638 retval = khugepaged_fork(mm, oldmm);
639 if (retval)
640 goto out;
641
642 prev = NULL;
643 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
644 struct file *file;
645
646 if (mpnt->vm_flags & VM_DONTCOPY) {
647 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
648 continue;
649 }
650 charge = 0;
651 if (mpnt->vm_flags & VM_ACCOUNT) {
652 unsigned long len = vma_pages(mpnt);
653
654 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
655 goto fail_nomem;
656 charge = len;
657 }
658 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
659 if (!tmp)
660 goto fail_nomem;
661 *tmp = *mpnt;
662 INIT_LIST_HEAD(&tmp->anon_vma_chain);
663 retval = vma_dup_policy(mpnt, tmp);
664 if (retval)
665 goto fail_nomem_policy;
666 tmp->vm_mm = mm;
667 retval = dup_userfaultfd(tmp, &uf);
668 if (retval)
669 goto fail_nomem_anon_vma_fork;
670 if (tmp->vm_flags & VM_WIPEONFORK) {
671 /* VM_WIPEONFORK gets a clean slate in the child. */
672 tmp->anon_vma = NULL;
673 if (anon_vma_prepare(tmp))
674 goto fail_nomem_anon_vma_fork;
675 } else if (anon_vma_fork(tmp, mpnt))
676 goto fail_nomem_anon_vma_fork;
677 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
678 tmp->vm_next = tmp->vm_prev = NULL;
679 file = tmp->vm_file;
680 if (file) {
681 struct inode *inode = file_inode(file);
682 struct address_space *mapping = file->f_mapping;
683
684 get_file(file);
685 if (tmp->vm_flags & VM_DENYWRITE)
686 atomic_dec(&inode->i_writecount);
687 i_mmap_lock_write(mapping);
688 if (tmp->vm_flags & VM_SHARED)
689 atomic_inc(&mapping->i_mmap_writable);
690 flush_dcache_mmap_lock(mapping);
691 /* insert tmp into the share list, just after mpnt */
692 vma_interval_tree_insert_after(tmp, mpnt,
693 &mapping->i_mmap);
694 flush_dcache_mmap_unlock(mapping);
695 i_mmap_unlock_write(mapping);
696 }
697
698 /*
699 * Clear hugetlb-related page reserves for children. This only
700 * affects MAP_PRIVATE mappings. Faults generated by the child
701 * are not guaranteed to succeed, even if read-only
702 */
703 if (is_vm_hugetlb_page(tmp))
704 reset_vma_resv_huge_pages(tmp);
705
706 /*
707 * Link in the new vma and copy the page table entries.
708 */
709 *pprev = tmp;
710 pprev = &tmp->vm_next;
711 tmp->vm_prev = prev;
712 prev = tmp;
713
714 __vma_link_rb(mm, tmp, rb_link, rb_parent);
715 rb_link = &tmp->vm_rb.rb_right;
716 rb_parent = &tmp->vm_rb;
717
718 mm->map_count++;
719 if (!(tmp->vm_flags & VM_WIPEONFORK))
720 retval = copy_page_range(mm, oldmm, mpnt);
721
722 if (tmp->vm_ops && tmp->vm_ops->open)
723 tmp->vm_ops->open(tmp);
724
725 if (retval)
726 goto out;
727 }
728 /* a new mm has just been created */
729 retval = arch_dup_mmap(oldmm, mm);
730 out:
731 up_write(&mm->mmap_sem);
732 flush_tlb_mm(oldmm);
733 up_write(&oldmm->mmap_sem);
734 dup_userfaultfd_complete(&uf);
735 fail_uprobe_end:
736 uprobe_end_dup_mmap();
737 return retval;
738 fail_nomem_anon_vma_fork:
739 mpol_put(vma_policy(tmp));
740 fail_nomem_policy:
741 kmem_cache_free(vm_area_cachep, tmp);
742 fail_nomem:
743 retval = -ENOMEM;
744 vm_unacct_memory(charge);
745 goto out;
746 }
747
748 static inline int mm_alloc_pgd(struct mm_struct *mm)
749 {
750 mm->pgd = pgd_alloc(mm);
751 if (unlikely(!mm->pgd))
752 return -ENOMEM;
753 return 0;
754 }
755
756 static inline void mm_free_pgd(struct mm_struct *mm)
757 {
758 pgd_free(mm, mm->pgd);
759 }
760 #else
761 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
762 {
763 down_write(&oldmm->mmap_sem);
764 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
765 up_write(&oldmm->mmap_sem);
766 return 0;
767 }
768 #define mm_alloc_pgd(mm) (0)
769 #define mm_free_pgd(mm)
770 #endif /* CONFIG_MMU */
771
772 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
773
774 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
775 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
776
777 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
778
779 static int __init coredump_filter_setup(char *s)
780 {
781 default_dump_filter =
782 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
783 MMF_DUMP_FILTER_MASK;
784 return 1;
785 }
786
787 __setup("coredump_filter=", coredump_filter_setup);
788
789 #include <linux/init_task.h>
790
791 static void mm_init_aio(struct mm_struct *mm)
792 {
793 #ifdef CONFIG_AIO
794 spin_lock_init(&mm->ioctx_lock);
795 mm->ioctx_table = NULL;
796 #endif
797 }
798
799 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
800 {
801 #ifdef CONFIG_MEMCG
802 mm->owner = p;
803 #endif
804 }
805
806 static void mm_init_uprobes_state(struct mm_struct *mm)
807 {
808 #ifdef CONFIG_UPROBES
809 mm->uprobes_state.xol_area = NULL;
810 #endif
811 }
812
813 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
814 struct user_namespace *user_ns)
815 {
816 mm->mmap = NULL;
817 mm->mm_rb = RB_ROOT;
818 mm->vmacache_seqnum = 0;
819 atomic_set(&mm->mm_users, 1);
820 atomic_set(&mm->mm_count, 1);
821 init_rwsem(&mm->mmap_sem);
822 INIT_LIST_HEAD(&mm->mmlist);
823 mm->core_state = NULL;
824 mm_pgtables_bytes_init(mm);
825 mm->map_count = 0;
826 mm->locked_vm = 0;
827 mm->pinned_vm = 0;
828 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
829 spin_lock_init(&mm->page_table_lock);
830 mm_init_cpumask(mm);
831 mm_init_aio(mm);
832 mm_init_owner(mm, p);
833 RCU_INIT_POINTER(mm->exe_file, NULL);
834 mmu_notifier_mm_init(mm);
835 hmm_mm_init(mm);
836 init_tlb_flush_pending(mm);
837 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
838 mm->pmd_huge_pte = NULL;
839 #endif
840 mm_init_uprobes_state(mm);
841
842 if (current->mm) {
843 mm->flags = current->mm->flags & MMF_INIT_MASK;
844 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
845 } else {
846 mm->flags = default_dump_filter;
847 mm->def_flags = 0;
848 }
849
850 if (mm_alloc_pgd(mm))
851 goto fail_nopgd;
852
853 if (init_new_context(p, mm))
854 goto fail_nocontext;
855
856 mm->user_ns = get_user_ns(user_ns);
857 return mm;
858
859 fail_nocontext:
860 mm_free_pgd(mm);
861 fail_nopgd:
862 free_mm(mm);
863 return NULL;
864 }
865
866 static void check_mm(struct mm_struct *mm)
867 {
868 int i;
869
870 for (i = 0; i < NR_MM_COUNTERS; i++) {
871 long x = atomic_long_read(&mm->rss_stat.count[i]);
872
873 if (unlikely(x))
874 printk(KERN_ALERT "BUG: Bad rss-counter state "
875 "mm:%p idx:%d val:%ld\n", mm, i, x);
876 }
877
878 if (mm_pgtables_bytes(mm))
879 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
880 mm_pgtables_bytes(mm));
881
882 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
883 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
884 #endif
885 }
886
887 /*
888 * Allocate and initialize an mm_struct.
889 */
890 struct mm_struct *mm_alloc(void)
891 {
892 struct mm_struct *mm;
893
894 mm = allocate_mm();
895 if (!mm)
896 return NULL;
897
898 memset(mm, 0, sizeof(*mm));
899 return mm_init(mm, current, current_user_ns());
900 }
901
902 /*
903 * Called when the last reference to the mm
904 * is dropped: either by a lazy thread or by
905 * mmput. Free the page directory and the mm.
906 */
907 void __mmdrop(struct mm_struct *mm)
908 {
909 BUG_ON(mm == &init_mm);
910 mm_free_pgd(mm);
911 destroy_context(mm);
912 hmm_mm_destroy(mm);
913 mmu_notifier_mm_destroy(mm);
914 check_mm(mm);
915 put_user_ns(mm->user_ns);
916 free_mm(mm);
917 }
918 EXPORT_SYMBOL_GPL(__mmdrop);
919
920 static inline void __mmput(struct mm_struct *mm)
921 {
922 VM_BUG_ON(atomic_read(&mm->mm_users));
923
924 uprobe_clear_state(mm);
925 exit_aio(mm);
926 ksm_exit(mm);
927 khugepaged_exit(mm); /* must run before exit_mmap */
928 exit_mmap(mm);
929 mm_put_huge_zero_page(mm);
930 set_mm_exe_file(mm, NULL);
931 if (!list_empty(&mm->mmlist)) {
932 spin_lock(&mmlist_lock);
933 list_del(&mm->mmlist);
934 spin_unlock(&mmlist_lock);
935 }
936 if (mm->binfmt)
937 module_put(mm->binfmt->module);
938 mmdrop(mm);
939 }
940
941 /*
942 * Decrement the use count and release all resources for an mm.
943 */
944 void mmput(struct mm_struct *mm)
945 {
946 might_sleep();
947
948 if (atomic_dec_and_test(&mm->mm_users))
949 __mmput(mm);
950 }
951 EXPORT_SYMBOL_GPL(mmput);
952
953 #ifdef CONFIG_MMU
954 static void mmput_async_fn(struct work_struct *work)
955 {
956 struct mm_struct *mm = container_of(work, struct mm_struct,
957 async_put_work);
958
959 __mmput(mm);
960 }
961
962 void mmput_async(struct mm_struct *mm)
963 {
964 if (atomic_dec_and_test(&mm->mm_users)) {
965 INIT_WORK(&mm->async_put_work, mmput_async_fn);
966 schedule_work(&mm->async_put_work);
967 }
968 }
969 #endif
970
971 /**
972 * set_mm_exe_file - change a reference to the mm's executable file
973 *
974 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
975 *
976 * Main users are mmput() and sys_execve(). Callers prevent concurrent
977 * invocations: in mmput() nobody alive left, in execve task is single
978 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
979 * mm->exe_file, but does so without using set_mm_exe_file() in order
980 * to do avoid the need for any locks.
981 */
982 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
983 {
984 struct file *old_exe_file;
985
986 /*
987 * It is safe to dereference the exe_file without RCU as
988 * this function is only called if nobody else can access
989 * this mm -- see comment above for justification.
990 */
991 old_exe_file = rcu_dereference_raw(mm->exe_file);
992
993 if (new_exe_file)
994 get_file(new_exe_file);
995 rcu_assign_pointer(mm->exe_file, new_exe_file);
996 if (old_exe_file)
997 fput(old_exe_file);
998 }
999
1000 /**
1001 * get_mm_exe_file - acquire a reference to the mm's executable file
1002 *
1003 * Returns %NULL if mm has no associated executable file.
1004 * User must release file via fput().
1005 */
1006 struct file *get_mm_exe_file(struct mm_struct *mm)
1007 {
1008 struct file *exe_file;
1009
1010 rcu_read_lock();
1011 exe_file = rcu_dereference(mm->exe_file);
1012 if (exe_file && !get_file_rcu(exe_file))
1013 exe_file = NULL;
1014 rcu_read_unlock();
1015 return exe_file;
1016 }
1017 EXPORT_SYMBOL(get_mm_exe_file);
1018
1019 /**
1020 * get_task_exe_file - acquire a reference to the task's executable file
1021 *
1022 * Returns %NULL if task's mm (if any) has no associated executable file or
1023 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1024 * User must release file via fput().
1025 */
1026 struct file *get_task_exe_file(struct task_struct *task)
1027 {
1028 struct file *exe_file = NULL;
1029 struct mm_struct *mm;
1030
1031 task_lock(task);
1032 mm = task->mm;
1033 if (mm) {
1034 if (!(task->flags & PF_KTHREAD))
1035 exe_file = get_mm_exe_file(mm);
1036 }
1037 task_unlock(task);
1038 return exe_file;
1039 }
1040 EXPORT_SYMBOL(get_task_exe_file);
1041
1042 /**
1043 * get_task_mm - acquire a reference to the task's mm
1044 *
1045 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1046 * this kernel workthread has transiently adopted a user mm with use_mm,
1047 * to do its AIO) is not set and if so returns a reference to it, after
1048 * bumping up the use count. User must release the mm via mmput()
1049 * after use. Typically used by /proc and ptrace.
1050 */
1051 struct mm_struct *get_task_mm(struct task_struct *task)
1052 {
1053 struct mm_struct *mm;
1054
1055 task_lock(task);
1056 mm = task->mm;
1057 if (mm) {
1058 if (task->flags & PF_KTHREAD)
1059 mm = NULL;
1060 else
1061 mmget(mm);
1062 }
1063 task_unlock(task);
1064 return mm;
1065 }
1066 EXPORT_SYMBOL_GPL(get_task_mm);
1067
1068 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1069 {
1070 struct mm_struct *mm;
1071 int err;
1072
1073 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1074 if (err)
1075 return ERR_PTR(err);
1076
1077 mm = get_task_mm(task);
1078 if (mm && mm != current->mm &&
1079 !ptrace_may_access(task, mode)) {
1080 mmput(mm);
1081 mm = ERR_PTR(-EACCES);
1082 }
1083 mutex_unlock(&task->signal->cred_guard_mutex);
1084
1085 return mm;
1086 }
1087
1088 static void complete_vfork_done(struct task_struct *tsk)
1089 {
1090 struct completion *vfork;
1091
1092 task_lock(tsk);
1093 vfork = tsk->vfork_done;
1094 if (likely(vfork)) {
1095 tsk->vfork_done = NULL;
1096 complete(vfork);
1097 }
1098 task_unlock(tsk);
1099 }
1100
1101 static int wait_for_vfork_done(struct task_struct *child,
1102 struct completion *vfork)
1103 {
1104 int killed;
1105
1106 freezer_do_not_count();
1107 killed = wait_for_completion_killable(vfork);
1108 freezer_count();
1109
1110 if (killed) {
1111 task_lock(child);
1112 child->vfork_done = NULL;
1113 task_unlock(child);
1114 }
1115
1116 put_task_struct(child);
1117 return killed;
1118 }
1119
1120 /* Please note the differences between mmput and mm_release.
1121 * mmput is called whenever we stop holding onto a mm_struct,
1122 * error success whatever.
1123 *
1124 * mm_release is called after a mm_struct has been removed
1125 * from the current process.
1126 *
1127 * This difference is important for error handling, when we
1128 * only half set up a mm_struct for a new process and need to restore
1129 * the old one. Because we mmput the new mm_struct before
1130 * restoring the old one. . .
1131 * Eric Biederman 10 January 1998
1132 */
1133 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1134 {
1135 /* Get rid of any futexes when releasing the mm */
1136 #ifdef CONFIG_FUTEX
1137 if (unlikely(tsk->robust_list)) {
1138 exit_robust_list(tsk);
1139 tsk->robust_list = NULL;
1140 }
1141 #ifdef CONFIG_COMPAT
1142 if (unlikely(tsk->compat_robust_list)) {
1143 compat_exit_robust_list(tsk);
1144 tsk->compat_robust_list = NULL;
1145 }
1146 #endif
1147 if (unlikely(!list_empty(&tsk->pi_state_list)))
1148 exit_pi_state_list(tsk);
1149 #endif
1150
1151 uprobe_free_utask(tsk);
1152
1153 /* Get rid of any cached register state */
1154 deactivate_mm(tsk, mm);
1155
1156 /*
1157 * Signal userspace if we're not exiting with a core dump
1158 * because we want to leave the value intact for debugging
1159 * purposes.
1160 */
1161 if (tsk->clear_child_tid) {
1162 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1163 atomic_read(&mm->mm_users) > 1) {
1164 /*
1165 * We don't check the error code - if userspace has
1166 * not set up a proper pointer then tough luck.
1167 */
1168 put_user(0, tsk->clear_child_tid);
1169 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1170 1, NULL, NULL, 0);
1171 }
1172 tsk->clear_child_tid = NULL;
1173 }
1174
1175 /*
1176 * All done, finally we can wake up parent and return this mm to him.
1177 * Also kthread_stop() uses this completion for synchronization.
1178 */
1179 if (tsk->vfork_done)
1180 complete_vfork_done(tsk);
1181 }
1182
1183 /*
1184 * Allocate a new mm structure and copy contents from the
1185 * mm structure of the passed in task structure.
1186 */
1187 static struct mm_struct *dup_mm(struct task_struct *tsk)
1188 {
1189 struct mm_struct *mm, *oldmm = current->mm;
1190 int err;
1191
1192 mm = allocate_mm();
1193 if (!mm)
1194 goto fail_nomem;
1195
1196 memcpy(mm, oldmm, sizeof(*mm));
1197
1198 if (!mm_init(mm, tsk, mm->user_ns))
1199 goto fail_nomem;
1200
1201 err = dup_mmap(mm, oldmm);
1202 if (err)
1203 goto free_pt;
1204
1205 mm->hiwater_rss = get_mm_rss(mm);
1206 mm->hiwater_vm = mm->total_vm;
1207
1208 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1209 goto free_pt;
1210
1211 return mm;
1212
1213 free_pt:
1214 /* don't put binfmt in mmput, we haven't got module yet */
1215 mm->binfmt = NULL;
1216 mmput(mm);
1217
1218 fail_nomem:
1219 return NULL;
1220 }
1221
1222 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1223 {
1224 struct mm_struct *mm, *oldmm;
1225 int retval;
1226
1227 tsk->min_flt = tsk->maj_flt = 0;
1228 tsk->nvcsw = tsk->nivcsw = 0;
1229 #ifdef CONFIG_DETECT_HUNG_TASK
1230 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1231 #endif
1232
1233 tsk->mm = NULL;
1234 tsk->active_mm = NULL;
1235
1236 /*
1237 * Are we cloning a kernel thread?
1238 *
1239 * We need to steal a active VM for that..
1240 */
1241 oldmm = current->mm;
1242 if (!oldmm)
1243 return 0;
1244
1245 /* initialize the new vmacache entries */
1246 vmacache_flush(tsk);
1247
1248 if (clone_flags & CLONE_VM) {
1249 mmget(oldmm);
1250 mm = oldmm;
1251 goto good_mm;
1252 }
1253
1254 retval = -ENOMEM;
1255 mm = dup_mm(tsk);
1256 if (!mm)
1257 goto fail_nomem;
1258
1259 good_mm:
1260 tsk->mm = mm;
1261 tsk->active_mm = mm;
1262 return 0;
1263
1264 fail_nomem:
1265 return retval;
1266 }
1267
1268 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1269 {
1270 struct fs_struct *fs = current->fs;
1271 if (clone_flags & CLONE_FS) {
1272 /* tsk->fs is already what we want */
1273 spin_lock(&fs->lock);
1274 if (fs->in_exec) {
1275 spin_unlock(&fs->lock);
1276 return -EAGAIN;
1277 }
1278 fs->users++;
1279 spin_unlock(&fs->lock);
1280 return 0;
1281 }
1282 tsk->fs = copy_fs_struct(fs);
1283 if (!tsk->fs)
1284 return -ENOMEM;
1285 return 0;
1286 }
1287
1288 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1289 {
1290 struct files_struct *oldf, *newf;
1291 int error = 0;
1292
1293 /*
1294 * A background process may not have any files ...
1295 */
1296 oldf = current->files;
1297 if (!oldf)
1298 goto out;
1299
1300 if (clone_flags & CLONE_FILES) {
1301 atomic_inc(&oldf->count);
1302 goto out;
1303 }
1304
1305 newf = dup_fd(oldf, &error);
1306 if (!newf)
1307 goto out;
1308
1309 tsk->files = newf;
1310 error = 0;
1311 out:
1312 return error;
1313 }
1314
1315 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1316 {
1317 #ifdef CONFIG_BLOCK
1318 struct io_context *ioc = current->io_context;
1319 struct io_context *new_ioc;
1320
1321 if (!ioc)
1322 return 0;
1323 /*
1324 * Share io context with parent, if CLONE_IO is set
1325 */
1326 if (clone_flags & CLONE_IO) {
1327 ioc_task_link(ioc);
1328 tsk->io_context = ioc;
1329 } else if (ioprio_valid(ioc->ioprio)) {
1330 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1331 if (unlikely(!new_ioc))
1332 return -ENOMEM;
1333
1334 new_ioc->ioprio = ioc->ioprio;
1335 put_io_context(new_ioc);
1336 }
1337 #endif
1338 return 0;
1339 }
1340
1341 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1342 {
1343 struct sighand_struct *sig;
1344
1345 if (clone_flags & CLONE_SIGHAND) {
1346 atomic_inc(&current->sighand->count);
1347 return 0;
1348 }
1349 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1350 rcu_assign_pointer(tsk->sighand, sig);
1351 if (!sig)
1352 return -ENOMEM;
1353
1354 atomic_set(&sig->count, 1);
1355 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1356 return 0;
1357 }
1358
1359 void __cleanup_sighand(struct sighand_struct *sighand)
1360 {
1361 if (atomic_dec_and_test(&sighand->count)) {
1362 signalfd_cleanup(sighand);
1363 /*
1364 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1365 * without an RCU grace period, see __lock_task_sighand().
1366 */
1367 kmem_cache_free(sighand_cachep, sighand);
1368 }
1369 }
1370
1371 #ifdef CONFIG_POSIX_TIMERS
1372 /*
1373 * Initialize POSIX timer handling for a thread group.
1374 */
1375 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1376 {
1377 unsigned long cpu_limit;
1378
1379 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1380 if (cpu_limit != RLIM_INFINITY) {
1381 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1382 sig->cputimer.running = true;
1383 }
1384
1385 /* The timer lists. */
1386 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1387 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1388 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1389 }
1390 #else
1391 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1392 #endif
1393
1394 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1395 {
1396 struct signal_struct *sig;
1397
1398 if (clone_flags & CLONE_THREAD)
1399 return 0;
1400
1401 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1402 tsk->signal = sig;
1403 if (!sig)
1404 return -ENOMEM;
1405
1406 sig->nr_threads = 1;
1407 atomic_set(&sig->live, 1);
1408 atomic_set(&sig->sigcnt, 1);
1409
1410 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1411 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1412 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1413
1414 init_waitqueue_head(&sig->wait_chldexit);
1415 sig->curr_target = tsk;
1416 init_sigpending(&sig->shared_pending);
1417 seqlock_init(&sig->stats_lock);
1418 prev_cputime_init(&sig->prev_cputime);
1419
1420 #ifdef CONFIG_POSIX_TIMERS
1421 INIT_LIST_HEAD(&sig->posix_timers);
1422 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1423 sig->real_timer.function = it_real_fn;
1424 #endif
1425
1426 task_lock(current->group_leader);
1427 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1428 task_unlock(current->group_leader);
1429
1430 posix_cpu_timers_init_group(sig);
1431
1432 tty_audit_fork(sig);
1433 sched_autogroup_fork(sig);
1434
1435 sig->oom_score_adj = current->signal->oom_score_adj;
1436 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1437
1438 mutex_init(&sig->cred_guard_mutex);
1439
1440 return 0;
1441 }
1442
1443 static void copy_seccomp(struct task_struct *p)
1444 {
1445 #ifdef CONFIG_SECCOMP
1446 /*
1447 * Must be called with sighand->lock held, which is common to
1448 * all threads in the group. Holding cred_guard_mutex is not
1449 * needed because this new task is not yet running and cannot
1450 * be racing exec.
1451 */
1452 assert_spin_locked(&current->sighand->siglock);
1453
1454 /* Ref-count the new filter user, and assign it. */
1455 get_seccomp_filter(current);
1456 p->seccomp = current->seccomp;
1457
1458 /*
1459 * Explicitly enable no_new_privs here in case it got set
1460 * between the task_struct being duplicated and holding the
1461 * sighand lock. The seccomp state and nnp must be in sync.
1462 */
1463 if (task_no_new_privs(current))
1464 task_set_no_new_privs(p);
1465
1466 /*
1467 * If the parent gained a seccomp mode after copying thread
1468 * flags and between before we held the sighand lock, we have
1469 * to manually enable the seccomp thread flag here.
1470 */
1471 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1472 set_tsk_thread_flag(p, TIF_SECCOMP);
1473 #endif
1474 }
1475
1476 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1477 {
1478 current->clear_child_tid = tidptr;
1479
1480 return task_pid_vnr(current);
1481 }
1482
1483 static void rt_mutex_init_task(struct task_struct *p)
1484 {
1485 raw_spin_lock_init(&p->pi_lock);
1486 #ifdef CONFIG_RT_MUTEXES
1487 p->pi_waiters = RB_ROOT_CACHED;
1488 p->pi_top_task = NULL;
1489 p->pi_blocked_on = NULL;
1490 #endif
1491 }
1492
1493 #ifdef CONFIG_POSIX_TIMERS
1494 /*
1495 * Initialize POSIX timer handling for a single task.
1496 */
1497 static void posix_cpu_timers_init(struct task_struct *tsk)
1498 {
1499 tsk->cputime_expires.prof_exp = 0;
1500 tsk->cputime_expires.virt_exp = 0;
1501 tsk->cputime_expires.sched_exp = 0;
1502 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1503 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1504 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1505 }
1506 #else
1507 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1508 #endif
1509
1510 static inline void
1511 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1512 {
1513 task->pids[type].pid = pid;
1514 }
1515
1516 static inline void rcu_copy_process(struct task_struct *p)
1517 {
1518 #ifdef CONFIG_PREEMPT_RCU
1519 p->rcu_read_lock_nesting = 0;
1520 p->rcu_read_unlock_special.s = 0;
1521 p->rcu_blocked_node = NULL;
1522 INIT_LIST_HEAD(&p->rcu_node_entry);
1523 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1524 #ifdef CONFIG_TASKS_RCU
1525 p->rcu_tasks_holdout = false;
1526 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1527 p->rcu_tasks_idle_cpu = -1;
1528 #endif /* #ifdef CONFIG_TASKS_RCU */
1529 }
1530
1531 /*
1532 * This creates a new process as a copy of the old one,
1533 * but does not actually start it yet.
1534 *
1535 * It copies the registers, and all the appropriate
1536 * parts of the process environment (as per the clone
1537 * flags). The actual kick-off is left to the caller.
1538 */
1539 static __latent_entropy struct task_struct *copy_process(
1540 unsigned long clone_flags,
1541 unsigned long stack_start,
1542 unsigned long stack_size,
1543 int __user *child_tidptr,
1544 struct pid *pid,
1545 int trace,
1546 unsigned long tls,
1547 int node)
1548 {
1549 int retval;
1550 struct task_struct *p;
1551
1552 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1553 return ERR_PTR(-EINVAL);
1554
1555 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1556 return ERR_PTR(-EINVAL);
1557
1558 if ((clone_flags & CLONE_NEWUSER) && !unprivileged_userns_clone)
1559 if (!capable(CAP_SYS_ADMIN))
1560 return ERR_PTR(-EPERM);
1561
1562 /*
1563 * Thread groups must share signals as well, and detached threads
1564 * can only be started up within the thread group.
1565 */
1566 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1567 return ERR_PTR(-EINVAL);
1568
1569 /*
1570 * Shared signal handlers imply shared VM. By way of the above,
1571 * thread groups also imply shared VM. Blocking this case allows
1572 * for various simplifications in other code.
1573 */
1574 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1575 return ERR_PTR(-EINVAL);
1576
1577 /*
1578 * Siblings of global init remain as zombies on exit since they are
1579 * not reaped by their parent (swapper). To solve this and to avoid
1580 * multi-rooted process trees, prevent global and container-inits
1581 * from creating siblings.
1582 */
1583 if ((clone_flags & CLONE_PARENT) &&
1584 current->signal->flags & SIGNAL_UNKILLABLE)
1585 return ERR_PTR(-EINVAL);
1586
1587 /*
1588 * If the new process will be in a different pid or user namespace
1589 * do not allow it to share a thread group with the forking task.
1590 */
1591 if (clone_flags & CLONE_THREAD) {
1592 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1593 (task_active_pid_ns(current) !=
1594 current->nsproxy->pid_ns_for_children))
1595 return ERR_PTR(-EINVAL);
1596 }
1597
1598 retval = -ENOMEM;
1599 p = dup_task_struct(current, node);
1600 if (!p)
1601 goto fork_out;
1602
1603 /*
1604 * This _must_ happen before we call free_task(), i.e. before we jump
1605 * to any of the bad_fork_* labels. This is to avoid freeing
1606 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1607 * kernel threads (PF_KTHREAD).
1608 */
1609 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1610 /*
1611 * Clear TID on mm_release()?
1612 */
1613 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1614
1615 ftrace_graph_init_task(p);
1616
1617 rt_mutex_init_task(p);
1618
1619 #ifdef CONFIG_PROVE_LOCKING
1620 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1621 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1622 #endif
1623 retval = -EAGAIN;
1624 if (atomic_read(&p->real_cred->user->processes) >=
1625 task_rlimit(p, RLIMIT_NPROC)) {
1626 if (p->real_cred->user != INIT_USER &&
1627 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1628 goto bad_fork_free;
1629 }
1630 current->flags &= ~PF_NPROC_EXCEEDED;
1631
1632 retval = copy_creds(p, clone_flags);
1633 if (retval < 0)
1634 goto bad_fork_free;
1635
1636 /*
1637 * If multiple threads are within copy_process(), then this check
1638 * triggers too late. This doesn't hurt, the check is only there
1639 * to stop root fork bombs.
1640 */
1641 retval = -EAGAIN;
1642 if (nr_threads >= max_threads)
1643 goto bad_fork_cleanup_count;
1644
1645 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1646 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1647 p->flags |= PF_FORKNOEXEC;
1648 INIT_LIST_HEAD(&p->children);
1649 INIT_LIST_HEAD(&p->sibling);
1650 rcu_copy_process(p);
1651 p->vfork_done = NULL;
1652 spin_lock_init(&p->alloc_lock);
1653
1654 init_sigpending(&p->pending);
1655
1656 p->utime = p->stime = p->gtime = 0;
1657 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1658 p->utimescaled = p->stimescaled = 0;
1659 #endif
1660 prev_cputime_init(&p->prev_cputime);
1661
1662 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1663 seqcount_init(&p->vtime.seqcount);
1664 p->vtime.starttime = 0;
1665 p->vtime.state = VTIME_INACTIVE;
1666 #endif
1667
1668 #if defined(SPLIT_RSS_COUNTING)
1669 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1670 #endif
1671
1672 p->default_timer_slack_ns = current->timer_slack_ns;
1673
1674 task_io_accounting_init(&p->ioac);
1675 acct_clear_integrals(p);
1676
1677 posix_cpu_timers_init(p);
1678
1679 p->start_time = ktime_get_ns();
1680 p->real_start_time = ktime_get_boot_ns();
1681 p->io_context = NULL;
1682 p->audit_context = NULL;
1683 cgroup_fork(p);
1684 #ifdef CONFIG_NUMA
1685 p->mempolicy = mpol_dup(p->mempolicy);
1686 if (IS_ERR(p->mempolicy)) {
1687 retval = PTR_ERR(p->mempolicy);
1688 p->mempolicy = NULL;
1689 goto bad_fork_cleanup_threadgroup_lock;
1690 }
1691 #endif
1692 #ifdef CONFIG_CPUSETS
1693 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1694 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1695 seqcount_init(&p->mems_allowed_seq);
1696 #endif
1697 #ifdef CONFIG_TRACE_IRQFLAGS
1698 p->irq_events = 0;
1699 p->hardirqs_enabled = 0;
1700 p->hardirq_enable_ip = 0;
1701 p->hardirq_enable_event = 0;
1702 p->hardirq_disable_ip = _THIS_IP_;
1703 p->hardirq_disable_event = 0;
1704 p->softirqs_enabled = 1;
1705 p->softirq_enable_ip = _THIS_IP_;
1706 p->softirq_enable_event = 0;
1707 p->softirq_disable_ip = 0;
1708 p->softirq_disable_event = 0;
1709 p->hardirq_context = 0;
1710 p->softirq_context = 0;
1711 #endif
1712
1713 p->pagefault_disabled = 0;
1714
1715 #ifdef CONFIG_LOCKDEP
1716 p->lockdep_depth = 0; /* no locks held yet */
1717 p->curr_chain_key = 0;
1718 p->lockdep_recursion = 0;
1719 lockdep_init_task(p);
1720 #endif
1721
1722 #ifdef CONFIG_DEBUG_MUTEXES
1723 p->blocked_on = NULL; /* not blocked yet */
1724 #endif
1725 #ifdef CONFIG_BCACHE
1726 p->sequential_io = 0;
1727 p->sequential_io_avg = 0;
1728 #endif
1729
1730 /* Perform scheduler related setup. Assign this task to a CPU. */
1731 retval = sched_fork(clone_flags, p);
1732 if (retval)
1733 goto bad_fork_cleanup_policy;
1734
1735 retval = perf_event_init_task(p);
1736 if (retval)
1737 goto bad_fork_cleanup_policy;
1738 retval = audit_alloc(p);
1739 if (retval)
1740 goto bad_fork_cleanup_perf;
1741 /* copy all the process information */
1742 shm_init_task(p);
1743 retval = security_task_alloc(p, clone_flags);
1744 if (retval)
1745 goto bad_fork_cleanup_audit;
1746 retval = copy_semundo(clone_flags, p);
1747 if (retval)
1748 goto bad_fork_cleanup_security;
1749 retval = copy_files(clone_flags, p);
1750 if (retval)
1751 goto bad_fork_cleanup_semundo;
1752 retval = copy_fs(clone_flags, p);
1753 if (retval)
1754 goto bad_fork_cleanup_files;
1755 retval = copy_sighand(clone_flags, p);
1756 if (retval)
1757 goto bad_fork_cleanup_fs;
1758 retval = copy_signal(clone_flags, p);
1759 if (retval)
1760 goto bad_fork_cleanup_sighand;
1761 retval = copy_mm(clone_flags, p);
1762 if (retval)
1763 goto bad_fork_cleanup_signal;
1764 retval = copy_namespaces(clone_flags, p);
1765 if (retval)
1766 goto bad_fork_cleanup_mm;
1767 retval = copy_io(clone_flags, p);
1768 if (retval)
1769 goto bad_fork_cleanup_namespaces;
1770 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1771 if (retval)
1772 goto bad_fork_cleanup_io;
1773
1774 if (pid != &init_struct_pid) {
1775 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1776 if (IS_ERR(pid)) {
1777 retval = PTR_ERR(pid);
1778 goto bad_fork_cleanup_thread;
1779 }
1780 }
1781
1782 #ifdef CONFIG_BLOCK
1783 p->plug = NULL;
1784 #endif
1785 #ifdef CONFIG_FUTEX
1786 p->robust_list = NULL;
1787 #ifdef CONFIG_COMPAT
1788 p->compat_robust_list = NULL;
1789 #endif
1790 INIT_LIST_HEAD(&p->pi_state_list);
1791 p->pi_state_cache = NULL;
1792 #endif
1793 /*
1794 * sigaltstack should be cleared when sharing the same VM
1795 */
1796 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1797 sas_ss_reset(p);
1798
1799 /*
1800 * Syscall tracing and stepping should be turned off in the
1801 * child regardless of CLONE_PTRACE.
1802 */
1803 user_disable_single_step(p);
1804 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1805 #ifdef TIF_SYSCALL_EMU
1806 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1807 #endif
1808 clear_all_latency_tracing(p);
1809
1810 /* ok, now we should be set up.. */
1811 p->pid = pid_nr(pid);
1812 if (clone_flags & CLONE_THREAD) {
1813 p->exit_signal = -1;
1814 p->group_leader = current->group_leader;
1815 p->tgid = current->tgid;
1816 } else {
1817 if (clone_flags & CLONE_PARENT)
1818 p->exit_signal = current->group_leader->exit_signal;
1819 else
1820 p->exit_signal = (clone_flags & CSIGNAL);
1821 p->group_leader = p;
1822 p->tgid = p->pid;
1823 }
1824
1825 p->nr_dirtied = 0;
1826 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1827 p->dirty_paused_when = 0;
1828
1829 p->pdeath_signal = 0;
1830 INIT_LIST_HEAD(&p->thread_group);
1831 p->task_works = NULL;
1832
1833 cgroup_threadgroup_change_begin(current);
1834 /*
1835 * Ensure that the cgroup subsystem policies allow the new process to be
1836 * forked. It should be noted the the new process's css_set can be changed
1837 * between here and cgroup_post_fork() if an organisation operation is in
1838 * progress.
1839 */
1840 retval = cgroup_can_fork(p);
1841 if (retval)
1842 goto bad_fork_free_pid;
1843
1844 /*
1845 * Make it visible to the rest of the system, but dont wake it up yet.
1846 * Need tasklist lock for parent etc handling!
1847 */
1848 write_lock_irq(&tasklist_lock);
1849
1850 /* CLONE_PARENT re-uses the old parent */
1851 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1852 p->real_parent = current->real_parent;
1853 p->parent_exec_id = current->parent_exec_id;
1854 } else {
1855 p->real_parent = current;
1856 p->parent_exec_id = current->self_exec_id;
1857 }
1858
1859 klp_copy_process(p);
1860
1861 spin_lock(&current->sighand->siglock);
1862
1863 /*
1864 * Copy seccomp details explicitly here, in case they were changed
1865 * before holding sighand lock.
1866 */
1867 copy_seccomp(p);
1868
1869 /*
1870 * Process group and session signals need to be delivered to just the
1871 * parent before the fork or both the parent and the child after the
1872 * fork. Restart if a signal comes in before we add the new process to
1873 * it's process group.
1874 * A fatal signal pending means that current will exit, so the new
1875 * thread can't slip out of an OOM kill (or normal SIGKILL).
1876 */
1877 recalc_sigpending();
1878 if (signal_pending(current)) {
1879 retval = -ERESTARTNOINTR;
1880 goto bad_fork_cancel_cgroup;
1881 }
1882 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1883 retval = -ENOMEM;
1884 goto bad_fork_cancel_cgroup;
1885 }
1886
1887 if (likely(p->pid)) {
1888 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1889
1890 init_task_pid(p, PIDTYPE_PID, pid);
1891 if (thread_group_leader(p)) {
1892 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1893 init_task_pid(p, PIDTYPE_SID, task_session(current));
1894
1895 if (is_child_reaper(pid)) {
1896 ns_of_pid(pid)->child_reaper = p;
1897 p->signal->flags |= SIGNAL_UNKILLABLE;
1898 }
1899
1900 p->signal->leader_pid = pid;
1901 p->signal->tty = tty_kref_get(current->signal->tty);
1902 /*
1903 * Inherit has_child_subreaper flag under the same
1904 * tasklist_lock with adding child to the process tree
1905 * for propagate_has_child_subreaper optimization.
1906 */
1907 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1908 p->real_parent->signal->is_child_subreaper;
1909 list_add_tail(&p->sibling, &p->real_parent->children);
1910 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1911 attach_pid(p, PIDTYPE_PGID);
1912 attach_pid(p, PIDTYPE_SID);
1913 __this_cpu_inc(process_counts);
1914 } else {
1915 current->signal->nr_threads++;
1916 atomic_inc(&current->signal->live);
1917 atomic_inc(&current->signal->sigcnt);
1918 list_add_tail_rcu(&p->thread_group,
1919 &p->group_leader->thread_group);
1920 list_add_tail_rcu(&p->thread_node,
1921 &p->signal->thread_head);
1922 }
1923 attach_pid(p, PIDTYPE_PID);
1924 nr_threads++;
1925 }
1926
1927 total_forks++;
1928 spin_unlock(&current->sighand->siglock);
1929 syscall_tracepoint_update(p);
1930 write_unlock_irq(&tasklist_lock);
1931
1932 proc_fork_connector(p);
1933 cgroup_post_fork(p);
1934 cgroup_threadgroup_change_end(current);
1935 perf_event_fork(p);
1936
1937 trace_task_newtask(p, clone_flags);
1938 uprobe_copy_process(p, clone_flags);
1939
1940 return p;
1941
1942 bad_fork_cancel_cgroup:
1943 spin_unlock(&current->sighand->siglock);
1944 write_unlock_irq(&tasklist_lock);
1945 cgroup_cancel_fork(p);
1946 bad_fork_free_pid:
1947 cgroup_threadgroup_change_end(current);
1948 if (pid != &init_struct_pid)
1949 free_pid(pid);
1950 bad_fork_cleanup_thread:
1951 exit_thread(p);
1952 bad_fork_cleanup_io:
1953 if (p->io_context)
1954 exit_io_context(p);
1955 bad_fork_cleanup_namespaces:
1956 exit_task_namespaces(p);
1957 bad_fork_cleanup_mm:
1958 if (p->mm)
1959 mmput(p->mm);
1960 bad_fork_cleanup_signal:
1961 if (!(clone_flags & CLONE_THREAD))
1962 free_signal_struct(p->signal);
1963 bad_fork_cleanup_sighand:
1964 __cleanup_sighand(p->sighand);
1965 bad_fork_cleanup_fs:
1966 exit_fs(p); /* blocking */
1967 bad_fork_cleanup_files:
1968 exit_files(p); /* blocking */
1969 bad_fork_cleanup_semundo:
1970 exit_sem(p);
1971 bad_fork_cleanup_security:
1972 security_task_free(p);
1973 bad_fork_cleanup_audit:
1974 audit_free(p);
1975 bad_fork_cleanup_perf:
1976 perf_event_free_task(p);
1977 bad_fork_cleanup_policy:
1978 lockdep_free_task(p);
1979 #ifdef CONFIG_NUMA
1980 mpol_put(p->mempolicy);
1981 bad_fork_cleanup_threadgroup_lock:
1982 #endif
1983 delayacct_tsk_free(p);
1984 bad_fork_cleanup_count:
1985 atomic_dec(&p->cred->user->processes);
1986 exit_creds(p);
1987 bad_fork_free:
1988 p->state = TASK_DEAD;
1989 put_task_stack(p);
1990 free_task(p);
1991 fork_out:
1992 return ERR_PTR(retval);
1993 }
1994
1995 static inline void init_idle_pids(struct pid_link *links)
1996 {
1997 enum pid_type type;
1998
1999 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2000 INIT_HLIST_NODE(&links[type].node); /* not really needed */
2001 links[type].pid = &init_struct_pid;
2002 }
2003 }
2004
2005 struct task_struct *fork_idle(int cpu)
2006 {
2007 struct task_struct *task;
2008 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2009 cpu_to_node(cpu));
2010 if (!IS_ERR(task)) {
2011 init_idle_pids(task->pids);
2012 init_idle(task, cpu);
2013 }
2014
2015 return task;
2016 }
2017
2018 /*
2019 * Ok, this is the main fork-routine.
2020 *
2021 * It copies the process, and if successful kick-starts
2022 * it and waits for it to finish using the VM if required.
2023 */
2024 long _do_fork(unsigned long clone_flags,
2025 unsigned long stack_start,
2026 unsigned long stack_size,
2027 int __user *parent_tidptr,
2028 int __user *child_tidptr,
2029 unsigned long tls)
2030 {
2031 struct task_struct *p;
2032 int trace = 0;
2033 long nr;
2034
2035 /*
2036 * Determine whether and which event to report to ptracer. When
2037 * called from kernel_thread or CLONE_UNTRACED is explicitly
2038 * requested, no event is reported; otherwise, report if the event
2039 * for the type of forking is enabled.
2040 */
2041 if (!(clone_flags & CLONE_UNTRACED)) {
2042 if (clone_flags & CLONE_VFORK)
2043 trace = PTRACE_EVENT_VFORK;
2044 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2045 trace = PTRACE_EVENT_CLONE;
2046 else
2047 trace = PTRACE_EVENT_FORK;
2048
2049 if (likely(!ptrace_event_enabled(current, trace)))
2050 trace = 0;
2051 }
2052
2053 p = copy_process(clone_flags, stack_start, stack_size,
2054 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2055 add_latent_entropy();
2056 /*
2057 * Do this prior waking up the new thread - the thread pointer
2058 * might get invalid after that point, if the thread exits quickly.
2059 */
2060 if (!IS_ERR(p)) {
2061 struct completion vfork;
2062 struct pid *pid;
2063
2064 trace_sched_process_fork(current, p);
2065
2066 pid = get_task_pid(p, PIDTYPE_PID);
2067 nr = pid_vnr(pid);
2068
2069 if (clone_flags & CLONE_PARENT_SETTID)
2070 put_user(nr, parent_tidptr);
2071
2072 if (clone_flags & CLONE_VFORK) {
2073 p->vfork_done = &vfork;
2074 init_completion(&vfork);
2075 get_task_struct(p);
2076 }
2077
2078 wake_up_new_task(p);
2079
2080 /* forking complete and child started to run, tell ptracer */
2081 if (unlikely(trace))
2082 ptrace_event_pid(trace, pid);
2083
2084 if (clone_flags & CLONE_VFORK) {
2085 if (!wait_for_vfork_done(p, &vfork))
2086 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2087 }
2088
2089 put_pid(pid);
2090 } else {
2091 nr = PTR_ERR(p);
2092 }
2093 return nr;
2094 }
2095
2096 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2097 /* For compatibility with architectures that call do_fork directly rather than
2098 * using the syscall entry points below. */
2099 long do_fork(unsigned long clone_flags,
2100 unsigned long stack_start,
2101 unsigned long stack_size,
2102 int __user *parent_tidptr,
2103 int __user *child_tidptr)
2104 {
2105 return _do_fork(clone_flags, stack_start, stack_size,
2106 parent_tidptr, child_tidptr, 0);
2107 }
2108 #endif
2109
2110 /*
2111 * Create a kernel thread.
2112 */
2113 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2114 {
2115 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2116 (unsigned long)arg, NULL, NULL, 0);
2117 }
2118
2119 #ifdef __ARCH_WANT_SYS_FORK
2120 SYSCALL_DEFINE0(fork)
2121 {
2122 #ifdef CONFIG_MMU
2123 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2124 #else
2125 /* can not support in nommu mode */
2126 return -EINVAL;
2127 #endif
2128 }
2129 #endif
2130
2131 #ifdef __ARCH_WANT_SYS_VFORK
2132 SYSCALL_DEFINE0(vfork)
2133 {
2134 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2135 0, NULL, NULL, 0);
2136 }
2137 #endif
2138
2139 #ifdef __ARCH_WANT_SYS_CLONE
2140 #ifdef CONFIG_CLONE_BACKWARDS
2141 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2142 int __user *, parent_tidptr,
2143 unsigned long, tls,
2144 int __user *, child_tidptr)
2145 #elif defined(CONFIG_CLONE_BACKWARDS2)
2146 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2147 int __user *, parent_tidptr,
2148 int __user *, child_tidptr,
2149 unsigned long, tls)
2150 #elif defined(CONFIG_CLONE_BACKWARDS3)
2151 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2152 int, stack_size,
2153 int __user *, parent_tidptr,
2154 int __user *, child_tidptr,
2155 unsigned long, tls)
2156 #else
2157 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2158 int __user *, parent_tidptr,
2159 int __user *, child_tidptr,
2160 unsigned long, tls)
2161 #endif
2162 {
2163 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2164 }
2165 #endif
2166
2167 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2168 {
2169 struct task_struct *leader, *parent, *child;
2170 int res;
2171
2172 read_lock(&tasklist_lock);
2173 leader = top = top->group_leader;
2174 down:
2175 for_each_thread(leader, parent) {
2176 list_for_each_entry(child, &parent->children, sibling) {
2177 res = visitor(child, data);
2178 if (res) {
2179 if (res < 0)
2180 goto out;
2181 leader = child;
2182 goto down;
2183 }
2184 up:
2185 ;
2186 }
2187 }
2188
2189 if (leader != top) {
2190 child = leader;
2191 parent = child->real_parent;
2192 leader = parent->group_leader;
2193 goto up;
2194 }
2195 out:
2196 read_unlock(&tasklist_lock);
2197 }
2198
2199 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2200 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2201 #endif
2202
2203 static void sighand_ctor(void *data)
2204 {
2205 struct sighand_struct *sighand = data;
2206
2207 spin_lock_init(&sighand->siglock);
2208 init_waitqueue_head(&sighand->signalfd_wqh);
2209 }
2210
2211 void __init proc_caches_init(void)
2212 {
2213 sighand_cachep = kmem_cache_create("sighand_cache",
2214 sizeof(struct sighand_struct), 0,
2215 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2216 SLAB_ACCOUNT, sighand_ctor);
2217 signal_cachep = kmem_cache_create("signal_cache",
2218 sizeof(struct signal_struct), 0,
2219 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2220 NULL);
2221 files_cachep = kmem_cache_create("files_cache",
2222 sizeof(struct files_struct), 0,
2223 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2224 NULL);
2225 fs_cachep = kmem_cache_create("fs_cache",
2226 sizeof(struct fs_struct), 0,
2227 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2228 NULL);
2229 /*
2230 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2231 * whole struct cpumask for the OFFSTACK case. We could change
2232 * this to *only* allocate as much of it as required by the
2233 * maximum number of CPU's we can ever have. The cpumask_allocation
2234 * is at the end of the structure, exactly for that reason.
2235 */
2236 mm_cachep = kmem_cache_create("mm_struct",
2237 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2238 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2239 NULL);
2240 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2241 mmap_init();
2242 nsproxy_cache_init();
2243 }
2244
2245 /*
2246 * Check constraints on flags passed to the unshare system call.
2247 */
2248 static int check_unshare_flags(unsigned long unshare_flags)
2249 {
2250 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2251 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2252 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2253 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2254 return -EINVAL;
2255 /*
2256 * Not implemented, but pretend it works if there is nothing
2257 * to unshare. Note that unsharing the address space or the
2258 * signal handlers also need to unshare the signal queues (aka
2259 * CLONE_THREAD).
2260 */
2261 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2262 if (!thread_group_empty(current))
2263 return -EINVAL;
2264 }
2265 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2266 if (atomic_read(&current->sighand->count) > 1)
2267 return -EINVAL;
2268 }
2269 if (unshare_flags & CLONE_VM) {
2270 if (!current_is_single_threaded())
2271 return -EINVAL;
2272 }
2273
2274 return 0;
2275 }
2276
2277 /*
2278 * Unshare the filesystem structure if it is being shared
2279 */
2280 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2281 {
2282 struct fs_struct *fs = current->fs;
2283
2284 if (!(unshare_flags & CLONE_FS) || !fs)
2285 return 0;
2286
2287 /* don't need lock here; in the worst case we'll do useless copy */
2288 if (fs->users == 1)
2289 return 0;
2290
2291 *new_fsp = copy_fs_struct(fs);
2292 if (!*new_fsp)
2293 return -ENOMEM;
2294
2295 return 0;
2296 }
2297
2298 /*
2299 * Unshare file descriptor table if it is being shared
2300 */
2301 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2302 {
2303 struct files_struct *fd = current->files;
2304 int error = 0;
2305
2306 if ((unshare_flags & CLONE_FILES) &&
2307 (fd && atomic_read(&fd->count) > 1)) {
2308 *new_fdp = dup_fd(fd, &error);
2309 if (!*new_fdp)
2310 return error;
2311 }
2312
2313 return 0;
2314 }
2315
2316 /*
2317 * unshare allows a process to 'unshare' part of the process
2318 * context which was originally shared using clone. copy_*
2319 * functions used by do_fork() cannot be used here directly
2320 * because they modify an inactive task_struct that is being
2321 * constructed. Here we are modifying the current, active,
2322 * task_struct.
2323 */
2324 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2325 {
2326 struct fs_struct *fs, *new_fs = NULL;
2327 struct files_struct *fd, *new_fd = NULL;
2328 struct cred *new_cred = NULL;
2329 struct nsproxy *new_nsproxy = NULL;
2330 int do_sysvsem = 0;
2331 int err;
2332
2333 /*
2334 * If unsharing a user namespace must also unshare the thread group
2335 * and unshare the filesystem root and working directories.
2336 */
2337 if (unshare_flags & CLONE_NEWUSER)
2338 unshare_flags |= CLONE_THREAD | CLONE_FS;
2339 /*
2340 * If unsharing vm, must also unshare signal handlers.
2341 */
2342 if (unshare_flags & CLONE_VM)
2343 unshare_flags |= CLONE_SIGHAND;
2344 /*
2345 * If unsharing a signal handlers, must also unshare the signal queues.
2346 */
2347 if (unshare_flags & CLONE_SIGHAND)
2348 unshare_flags |= CLONE_THREAD;
2349 /*
2350 * If unsharing namespace, must also unshare filesystem information.
2351 */
2352 if (unshare_flags & CLONE_NEWNS)
2353 unshare_flags |= CLONE_FS;
2354
2355 if ((unshare_flags & CLONE_NEWUSER) && !unprivileged_userns_clone) {
2356 err = -EPERM;
2357 if (!capable(CAP_SYS_ADMIN))
2358 goto bad_unshare_out;
2359 }
2360
2361 err = check_unshare_flags(unshare_flags);
2362 if (err)
2363 goto bad_unshare_out;
2364 /*
2365 * CLONE_NEWIPC must also detach from the undolist: after switching
2366 * to a new ipc namespace, the semaphore arrays from the old
2367 * namespace are unreachable.
2368 */
2369 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2370 do_sysvsem = 1;
2371 err = unshare_fs(unshare_flags, &new_fs);
2372 if (err)
2373 goto bad_unshare_out;
2374 err = unshare_fd(unshare_flags, &new_fd);
2375 if (err)
2376 goto bad_unshare_cleanup_fs;
2377 err = unshare_userns(unshare_flags, &new_cred);
2378 if (err)
2379 goto bad_unshare_cleanup_fd;
2380 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2381 new_cred, new_fs);
2382 if (err)
2383 goto bad_unshare_cleanup_cred;
2384
2385 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2386 if (do_sysvsem) {
2387 /*
2388 * CLONE_SYSVSEM is equivalent to sys_exit().
2389 */
2390 exit_sem(current);
2391 }
2392 if (unshare_flags & CLONE_NEWIPC) {
2393 /* Orphan segments in old ns (see sem above). */
2394 exit_shm(current);
2395 shm_init_task(current);
2396 }
2397
2398 if (new_nsproxy)
2399 switch_task_namespaces(current, new_nsproxy);
2400
2401 task_lock(current);
2402
2403 if (new_fs) {
2404 fs = current->fs;
2405 spin_lock(&fs->lock);
2406 current->fs = new_fs;
2407 if (--fs->users)
2408 new_fs = NULL;
2409 else
2410 new_fs = fs;
2411 spin_unlock(&fs->lock);
2412 }
2413
2414 if (new_fd) {
2415 fd = current->files;
2416 current->files = new_fd;
2417 new_fd = fd;
2418 }
2419
2420 task_unlock(current);
2421
2422 if (new_cred) {
2423 /* Install the new user namespace */
2424 commit_creds(new_cred);
2425 new_cred = NULL;
2426 }
2427 }
2428
2429 perf_event_namespaces(current);
2430
2431 bad_unshare_cleanup_cred:
2432 if (new_cred)
2433 put_cred(new_cred);
2434 bad_unshare_cleanup_fd:
2435 if (new_fd)
2436 put_files_struct(new_fd);
2437
2438 bad_unshare_cleanup_fs:
2439 if (new_fs)
2440 free_fs_struct(new_fs);
2441
2442 bad_unshare_out:
2443 return err;
2444 }
2445
2446 /*
2447 * Helper to unshare the files of the current task.
2448 * We don't want to expose copy_files internals to
2449 * the exec layer of the kernel.
2450 */
2451
2452 int unshare_files(struct files_struct **displaced)
2453 {
2454 struct task_struct *task = current;
2455 struct files_struct *copy = NULL;
2456 int error;
2457
2458 error = unshare_fd(CLONE_FILES, &copy);
2459 if (error || !copy) {
2460 *displaced = NULL;
2461 return error;
2462 }
2463 *displaced = task->files;
2464 task_lock(task);
2465 task->files = copy;
2466 task_unlock(task);
2467 return 0;
2468 }
2469
2470 int sysctl_max_threads(struct ctl_table *table, int write,
2471 void __user *buffer, size_t *lenp, loff_t *ppos)
2472 {
2473 struct ctl_table t;
2474 int ret;
2475 int threads = max_threads;
2476 int min = MIN_THREADS;
2477 int max = MAX_THREADS;
2478
2479 t = *table;
2480 t.data = &threads;
2481 t.extra1 = &min;
2482 t.extra2 = &max;
2483
2484 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2485 if (ret || !write)
2486 return ret;
2487
2488 set_max_threads(threads);
2489
2490 return 0;
2491 }