]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/fork.c
fork: unconditionally clear stack on fork
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/perf_event.h>
81 #include <linux/posix-timers.h>
82 #include <linux/user-return-notifier.h>
83 #include <linux/oom.h>
84 #include <linux/khugepaged.h>
85 #include <linux/signalfd.h>
86 #include <linux/uprobes.h>
87 #include <linux/aio.h>
88 #include <linux/compiler.h>
89 #include <linux/sysctl.h>
90 #include <linux/kcov.h>
91 #include <linux/livepatch.h>
92 #include <linux/thread_info.h>
93
94 #include <asm/pgtable.h>
95 #include <asm/pgalloc.h>
96 #include <linux/uaccess.h>
97 #include <asm/mmu_context.h>
98 #include <asm/cacheflush.h>
99 #include <asm/tlbflush.h>
100
101 #include <trace/events/sched.h>
102
103 #define CREATE_TRACE_POINTS
104 #include <trace/events/task.h>
105 #ifdef CONFIG_USER_NS
106 extern int unprivileged_userns_clone;
107 #else
108 #define unprivileged_userns_clone 0
109 #endif
110
111 /*
112 * Minimum number of threads to boot the kernel
113 */
114 #define MIN_THREADS 20
115
116 /*
117 * Maximum number of threads
118 */
119 #define MAX_THREADS FUTEX_TID_MASK
120
121 /*
122 * Protected counters by write_lock_irq(&tasklist_lock)
123 */
124 unsigned long total_forks; /* Handle normal Linux uptimes. */
125 int nr_threads; /* The idle threads do not count.. */
126
127 int max_threads; /* tunable limit on nr_threads */
128
129 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
130
131 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
132
133 #ifdef CONFIG_PROVE_RCU
134 int lockdep_tasklist_lock_is_held(void)
135 {
136 return lockdep_is_held(&tasklist_lock);
137 }
138 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
139 #endif /* #ifdef CONFIG_PROVE_RCU */
140
141 int nr_processes(void)
142 {
143 int cpu;
144 int total = 0;
145
146 for_each_possible_cpu(cpu)
147 total += per_cpu(process_counts, cpu);
148
149 return total;
150 }
151
152 void __weak arch_release_task_struct(struct task_struct *tsk)
153 {
154 }
155
156 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
157 static struct kmem_cache *task_struct_cachep;
158
159 static inline struct task_struct *alloc_task_struct_node(int node)
160 {
161 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
162 }
163
164 static inline void free_task_struct(struct task_struct *tsk)
165 {
166 kmem_cache_free(task_struct_cachep, tsk);
167 }
168 #endif
169
170 void __weak arch_release_thread_stack(unsigned long *stack)
171 {
172 }
173
174 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
175
176 /*
177 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
178 * kmemcache based allocator.
179 */
180 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
181
182 #ifdef CONFIG_VMAP_STACK
183 /*
184 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
185 * flush. Try to minimize the number of calls by caching stacks.
186 */
187 #define NR_CACHED_STACKS 2
188 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
189
190 static int free_vm_stack_cache(unsigned int cpu)
191 {
192 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
193 int i;
194
195 for (i = 0; i < NR_CACHED_STACKS; i++) {
196 struct vm_struct *vm_stack = cached_vm_stacks[i];
197
198 if (!vm_stack)
199 continue;
200
201 vfree(vm_stack->addr);
202 cached_vm_stacks[i] = NULL;
203 }
204
205 return 0;
206 }
207 #endif
208
209 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
210 {
211 #ifdef CONFIG_VMAP_STACK
212 void *stack;
213 int i;
214
215 for (i = 0; i < NR_CACHED_STACKS; i++) {
216 struct vm_struct *s;
217
218 s = this_cpu_xchg(cached_stacks[i], NULL);
219
220 if (!s)
221 continue;
222
223 /* Clear stale pointers from reused stack. */
224 memset(s->addr, 0, THREAD_SIZE);
225
226 tsk->stack_vm_area = s;
227 return s->addr;
228 }
229
230 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
231 VMALLOC_START, VMALLOC_END,
232 THREADINFO_GFP,
233 PAGE_KERNEL,
234 0, node, __builtin_return_address(0));
235
236 /*
237 * We can't call find_vm_area() in interrupt context, and
238 * free_thread_stack() can be called in interrupt context,
239 * so cache the vm_struct.
240 */
241 if (stack)
242 tsk->stack_vm_area = find_vm_area(stack);
243 return stack;
244 #else
245 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
246 THREAD_SIZE_ORDER);
247
248 return page ? page_address(page) : NULL;
249 #endif
250 }
251
252 static inline void free_thread_stack(struct task_struct *tsk)
253 {
254 #ifdef CONFIG_VMAP_STACK
255 if (task_stack_vm_area(tsk)) {
256 int i;
257
258 for (i = 0; i < NR_CACHED_STACKS; i++) {
259 if (this_cpu_cmpxchg(cached_stacks[i],
260 NULL, tsk->stack_vm_area) != NULL)
261 continue;
262
263 return;
264 }
265
266 vfree_atomic(tsk->stack);
267 return;
268 }
269 #endif
270
271 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
272 }
273 # else
274 static struct kmem_cache *thread_stack_cache;
275
276 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
277 int node)
278 {
279 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
280 }
281
282 static void free_thread_stack(struct task_struct *tsk)
283 {
284 kmem_cache_free(thread_stack_cache, tsk->stack);
285 }
286
287 void thread_stack_cache_init(void)
288 {
289 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
290 THREAD_SIZE, 0, NULL);
291 BUG_ON(thread_stack_cache == NULL);
292 }
293 # endif
294 #endif
295
296 /* SLAB cache for signal_struct structures (tsk->signal) */
297 static struct kmem_cache *signal_cachep;
298
299 /* SLAB cache for sighand_struct structures (tsk->sighand) */
300 struct kmem_cache *sighand_cachep;
301
302 /* SLAB cache for files_struct structures (tsk->files) */
303 struct kmem_cache *files_cachep;
304
305 /* SLAB cache for fs_struct structures (tsk->fs) */
306 struct kmem_cache *fs_cachep;
307
308 /* SLAB cache for vm_area_struct structures */
309 struct kmem_cache *vm_area_cachep;
310
311 /* SLAB cache for mm_struct structures (tsk->mm) */
312 static struct kmem_cache *mm_cachep;
313
314 static void account_kernel_stack(struct task_struct *tsk, int account)
315 {
316 void *stack = task_stack_page(tsk);
317 struct vm_struct *vm = task_stack_vm_area(tsk);
318
319 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
320
321 if (vm) {
322 int i;
323
324 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
325
326 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
327 mod_zone_page_state(page_zone(vm->pages[i]),
328 NR_KERNEL_STACK_KB,
329 PAGE_SIZE / 1024 * account);
330 }
331
332 /* All stack pages belong to the same memcg. */
333 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
334 account * (THREAD_SIZE / 1024));
335 } else {
336 /*
337 * All stack pages are in the same zone and belong to the
338 * same memcg.
339 */
340 struct page *first_page = virt_to_page(stack);
341
342 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
343 THREAD_SIZE / 1024 * account);
344
345 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
346 account * (THREAD_SIZE / 1024));
347 }
348 }
349
350 static void release_task_stack(struct task_struct *tsk)
351 {
352 if (WARN_ON(tsk->state != TASK_DEAD))
353 return; /* Better to leak the stack than to free prematurely */
354
355 account_kernel_stack(tsk, -1);
356 arch_release_thread_stack(tsk->stack);
357 free_thread_stack(tsk);
358 tsk->stack = NULL;
359 #ifdef CONFIG_VMAP_STACK
360 tsk->stack_vm_area = NULL;
361 #endif
362 }
363
364 #ifdef CONFIG_THREAD_INFO_IN_TASK
365 void put_task_stack(struct task_struct *tsk)
366 {
367 if (atomic_dec_and_test(&tsk->stack_refcount))
368 release_task_stack(tsk);
369 }
370 #endif
371
372 void free_task(struct task_struct *tsk)
373 {
374 #ifndef CONFIG_THREAD_INFO_IN_TASK
375 /*
376 * The task is finally done with both the stack and thread_info,
377 * so free both.
378 */
379 release_task_stack(tsk);
380 #else
381 /*
382 * If the task had a separate stack allocation, it should be gone
383 * by now.
384 */
385 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
386 #endif
387 rt_mutex_debug_task_free(tsk);
388 ftrace_graph_exit_task(tsk);
389 put_seccomp_filter(tsk);
390 arch_release_task_struct(tsk);
391 if (tsk->flags & PF_KTHREAD)
392 free_kthread_struct(tsk);
393 free_task_struct(tsk);
394 }
395 EXPORT_SYMBOL(free_task);
396
397 static inline void free_signal_struct(struct signal_struct *sig)
398 {
399 taskstats_tgid_free(sig);
400 sched_autogroup_exit(sig);
401 /*
402 * __mmdrop is not safe to call from softirq context on x86 due to
403 * pgd_dtor so postpone it to the async context
404 */
405 if (sig->oom_mm)
406 mmdrop_async(sig->oom_mm);
407 kmem_cache_free(signal_cachep, sig);
408 }
409
410 static inline void put_signal_struct(struct signal_struct *sig)
411 {
412 if (atomic_dec_and_test(&sig->sigcnt))
413 free_signal_struct(sig);
414 }
415
416 void __put_task_struct(struct task_struct *tsk)
417 {
418 WARN_ON(!tsk->exit_state);
419 WARN_ON(atomic_read(&tsk->usage));
420 WARN_ON(tsk == current);
421
422 cgroup_free(tsk);
423 task_numa_free(tsk);
424 security_task_free(tsk);
425 exit_creds(tsk);
426 delayacct_tsk_free(tsk);
427 put_signal_struct(tsk->signal);
428
429 if (!profile_handoff_task(tsk))
430 free_task(tsk);
431 }
432 EXPORT_SYMBOL_GPL(__put_task_struct);
433
434 void __init __weak arch_task_cache_init(void) { }
435
436 /*
437 * set_max_threads
438 */
439 static void set_max_threads(unsigned int max_threads_suggested)
440 {
441 u64 threads;
442
443 /*
444 * The number of threads shall be limited such that the thread
445 * structures may only consume a small part of the available memory.
446 */
447 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
448 threads = MAX_THREADS;
449 else
450 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
451 (u64) THREAD_SIZE * 8UL);
452
453 if (threads > max_threads_suggested)
454 threads = max_threads_suggested;
455
456 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
457 }
458
459 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
460 /* Initialized by the architecture: */
461 int arch_task_struct_size __read_mostly;
462 #endif
463
464 void __init fork_init(void)
465 {
466 int i;
467 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
468 #ifndef ARCH_MIN_TASKALIGN
469 #define ARCH_MIN_TASKALIGN 0
470 #endif
471 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
472
473 /* create a slab on which task_structs can be allocated */
474 task_struct_cachep = kmem_cache_create("task_struct",
475 arch_task_struct_size, align,
476 SLAB_PANIC|SLAB_ACCOUNT, NULL);
477 #endif
478
479 /* do the arch specific task caches init */
480 arch_task_cache_init();
481
482 set_max_threads(MAX_THREADS);
483
484 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
485 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
486 init_task.signal->rlim[RLIMIT_SIGPENDING] =
487 init_task.signal->rlim[RLIMIT_NPROC];
488
489 for (i = 0; i < UCOUNT_COUNTS; i++) {
490 init_user_ns.ucount_max[i] = max_threads/2;
491 }
492
493 #ifdef CONFIG_VMAP_STACK
494 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
495 NULL, free_vm_stack_cache);
496 #endif
497
498 lockdep_init_task(&init_task);
499 }
500
501 int __weak arch_dup_task_struct(struct task_struct *dst,
502 struct task_struct *src)
503 {
504 *dst = *src;
505 return 0;
506 }
507
508 void set_task_stack_end_magic(struct task_struct *tsk)
509 {
510 unsigned long *stackend;
511
512 stackend = end_of_stack(tsk);
513 *stackend = STACK_END_MAGIC; /* for overflow detection */
514 }
515
516 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
517 {
518 struct task_struct *tsk;
519 unsigned long *stack;
520 struct vm_struct *stack_vm_area;
521 int err;
522
523 if (node == NUMA_NO_NODE)
524 node = tsk_fork_get_node(orig);
525 tsk = alloc_task_struct_node(node);
526 if (!tsk)
527 return NULL;
528
529 stack = alloc_thread_stack_node(tsk, node);
530 if (!stack)
531 goto free_tsk;
532
533 stack_vm_area = task_stack_vm_area(tsk);
534
535 err = arch_dup_task_struct(tsk, orig);
536
537 /*
538 * arch_dup_task_struct() clobbers the stack-related fields. Make
539 * sure they're properly initialized before using any stack-related
540 * functions again.
541 */
542 tsk->stack = stack;
543 #ifdef CONFIG_VMAP_STACK
544 tsk->stack_vm_area = stack_vm_area;
545 #endif
546 #ifdef CONFIG_THREAD_INFO_IN_TASK
547 atomic_set(&tsk->stack_refcount, 1);
548 #endif
549
550 if (err)
551 goto free_stack;
552
553 #ifdef CONFIG_SECCOMP
554 /*
555 * We must handle setting up seccomp filters once we're under
556 * the sighand lock in case orig has changed between now and
557 * then. Until then, filter must be NULL to avoid messing up
558 * the usage counts on the error path calling free_task.
559 */
560 tsk->seccomp.filter = NULL;
561 #endif
562
563 setup_thread_stack(tsk, orig);
564 clear_user_return_notifier(tsk);
565 clear_tsk_need_resched(tsk);
566 set_task_stack_end_magic(tsk);
567
568 #ifdef CONFIG_CC_STACKPROTECTOR
569 tsk->stack_canary = get_random_canary();
570 #endif
571
572 /*
573 * One for us, one for whoever does the "release_task()" (usually
574 * parent)
575 */
576 atomic_set(&tsk->usage, 2);
577 #ifdef CONFIG_BLK_DEV_IO_TRACE
578 tsk->btrace_seq = 0;
579 #endif
580 tsk->splice_pipe = NULL;
581 tsk->task_frag.page = NULL;
582 tsk->wake_q.next = NULL;
583
584 account_kernel_stack(tsk, 1);
585
586 kcov_task_init(tsk);
587
588 #ifdef CONFIG_FAULT_INJECTION
589 tsk->fail_nth = 0;
590 #endif
591
592 return tsk;
593
594 free_stack:
595 free_thread_stack(tsk);
596 free_tsk:
597 free_task_struct(tsk);
598 return NULL;
599 }
600
601 #ifdef CONFIG_MMU
602 static __latent_entropy int dup_mmap(struct mm_struct *mm,
603 struct mm_struct *oldmm)
604 {
605 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
606 struct rb_node **rb_link, *rb_parent;
607 int retval;
608 unsigned long charge;
609 LIST_HEAD(uf);
610
611 uprobe_start_dup_mmap();
612 if (down_write_killable(&oldmm->mmap_sem)) {
613 retval = -EINTR;
614 goto fail_uprobe_end;
615 }
616 flush_cache_dup_mm(oldmm);
617 uprobe_dup_mmap(oldmm, mm);
618 /*
619 * Not linked in yet - no deadlock potential:
620 */
621 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
622
623 /* No ordering required: file already has been exposed. */
624 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
625
626 mm->total_vm = oldmm->total_vm;
627 mm->data_vm = oldmm->data_vm;
628 mm->exec_vm = oldmm->exec_vm;
629 mm->stack_vm = oldmm->stack_vm;
630
631 rb_link = &mm->mm_rb.rb_node;
632 rb_parent = NULL;
633 pprev = &mm->mmap;
634 retval = ksm_fork(mm, oldmm);
635 if (retval)
636 goto out;
637 retval = khugepaged_fork(mm, oldmm);
638 if (retval)
639 goto out;
640
641 prev = NULL;
642 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
643 struct file *file;
644
645 if (mpnt->vm_flags & VM_DONTCOPY) {
646 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
647 continue;
648 }
649 charge = 0;
650 if (mpnt->vm_flags & VM_ACCOUNT) {
651 unsigned long len = vma_pages(mpnt);
652
653 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
654 goto fail_nomem;
655 charge = len;
656 }
657 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
658 if (!tmp)
659 goto fail_nomem;
660 *tmp = *mpnt;
661 INIT_LIST_HEAD(&tmp->anon_vma_chain);
662 retval = vma_dup_policy(mpnt, tmp);
663 if (retval)
664 goto fail_nomem_policy;
665 tmp->vm_mm = mm;
666 retval = dup_userfaultfd(tmp, &uf);
667 if (retval)
668 goto fail_nomem_anon_vma_fork;
669 if (tmp->vm_flags & VM_WIPEONFORK) {
670 /* VM_WIPEONFORK gets a clean slate in the child. */
671 tmp->anon_vma = NULL;
672 if (anon_vma_prepare(tmp))
673 goto fail_nomem_anon_vma_fork;
674 } else if (anon_vma_fork(tmp, mpnt))
675 goto fail_nomem_anon_vma_fork;
676 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
677 tmp->vm_next = tmp->vm_prev = NULL;
678 file = tmp->vm_file;
679 if (file) {
680 struct inode *inode = file_inode(file);
681 struct address_space *mapping = file->f_mapping;
682
683 vma_get_file(tmp);
684 if (tmp->vm_flags & VM_DENYWRITE)
685 atomic_dec(&inode->i_writecount);
686 i_mmap_lock_write(mapping);
687 if (tmp->vm_flags & VM_SHARED)
688 atomic_inc(&mapping->i_mmap_writable);
689 flush_dcache_mmap_lock(mapping);
690 /* insert tmp into the share list, just after mpnt */
691 vma_interval_tree_insert_after(tmp, mpnt,
692 &mapping->i_mmap);
693 flush_dcache_mmap_unlock(mapping);
694 i_mmap_unlock_write(mapping);
695 }
696
697 /*
698 * Clear hugetlb-related page reserves for children. This only
699 * affects MAP_PRIVATE mappings. Faults generated by the child
700 * are not guaranteed to succeed, even if read-only
701 */
702 if (is_vm_hugetlb_page(tmp))
703 reset_vma_resv_huge_pages(tmp);
704
705 /*
706 * Link in the new vma and copy the page table entries.
707 */
708 *pprev = tmp;
709 pprev = &tmp->vm_next;
710 tmp->vm_prev = prev;
711 prev = tmp;
712
713 __vma_link_rb(mm, tmp, rb_link, rb_parent);
714 rb_link = &tmp->vm_rb.rb_right;
715 rb_parent = &tmp->vm_rb;
716
717 mm->map_count++;
718 if (!(tmp->vm_flags & VM_WIPEONFORK))
719 retval = copy_page_range(mm, oldmm, mpnt);
720
721 if (tmp->vm_ops && tmp->vm_ops->open)
722 tmp->vm_ops->open(tmp);
723
724 if (retval)
725 goto out;
726 }
727 /* a new mm has just been created */
728 retval = arch_dup_mmap(oldmm, mm);
729 out:
730 up_write(&mm->mmap_sem);
731 flush_tlb_mm(oldmm);
732 up_write(&oldmm->mmap_sem);
733 dup_userfaultfd_complete(&uf);
734 fail_uprobe_end:
735 uprobe_end_dup_mmap();
736 return retval;
737 fail_nomem_anon_vma_fork:
738 mpol_put(vma_policy(tmp));
739 fail_nomem_policy:
740 kmem_cache_free(vm_area_cachep, tmp);
741 fail_nomem:
742 retval = -ENOMEM;
743 vm_unacct_memory(charge);
744 goto out;
745 }
746
747 static inline int mm_alloc_pgd(struct mm_struct *mm)
748 {
749 mm->pgd = pgd_alloc(mm);
750 if (unlikely(!mm->pgd))
751 return -ENOMEM;
752 return 0;
753 }
754
755 static inline void mm_free_pgd(struct mm_struct *mm)
756 {
757 pgd_free(mm, mm->pgd);
758 }
759 #else
760 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
761 {
762 down_write(&oldmm->mmap_sem);
763 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
764 up_write(&oldmm->mmap_sem);
765 return 0;
766 }
767 #define mm_alloc_pgd(mm) (0)
768 #define mm_free_pgd(mm)
769 #endif /* CONFIG_MMU */
770
771 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
772
773 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
774 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
775
776 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
777
778 static int __init coredump_filter_setup(char *s)
779 {
780 default_dump_filter =
781 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
782 MMF_DUMP_FILTER_MASK;
783 return 1;
784 }
785
786 __setup("coredump_filter=", coredump_filter_setup);
787
788 #include <linux/init_task.h>
789
790 static void mm_init_aio(struct mm_struct *mm)
791 {
792 #ifdef CONFIG_AIO
793 spin_lock_init(&mm->ioctx_lock);
794 mm->ioctx_table = NULL;
795 #endif
796 }
797
798 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
799 {
800 #ifdef CONFIG_MEMCG
801 mm->owner = p;
802 #endif
803 }
804
805 static void mm_init_uprobes_state(struct mm_struct *mm)
806 {
807 #ifdef CONFIG_UPROBES
808 mm->uprobes_state.xol_area = NULL;
809 #endif
810 }
811
812 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
813 struct user_namespace *user_ns)
814 {
815 mm->mmap = NULL;
816 mm->mm_rb = RB_ROOT;
817 mm->vmacache_seqnum = 0;
818 atomic_set(&mm->mm_users, 1);
819 atomic_set(&mm->mm_count, 1);
820 init_rwsem(&mm->mmap_sem);
821 INIT_LIST_HEAD(&mm->mmlist);
822 mm->core_state = NULL;
823 mm_pgtables_bytes_init(mm);
824 mm->map_count = 0;
825 mm->locked_vm = 0;
826 mm->pinned_vm = 0;
827 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
828 spin_lock_init(&mm->page_table_lock);
829 mm_init_cpumask(mm);
830 mm_init_aio(mm);
831 mm_init_owner(mm, p);
832 RCU_INIT_POINTER(mm->exe_file, NULL);
833 mmu_notifier_mm_init(mm);
834 hmm_mm_init(mm);
835 init_tlb_flush_pending(mm);
836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
837 mm->pmd_huge_pte = NULL;
838 #endif
839 mm_init_uprobes_state(mm);
840
841 if (current->mm) {
842 mm->flags = current->mm->flags & MMF_INIT_MASK;
843 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
844 } else {
845 mm->flags = default_dump_filter;
846 mm->def_flags = 0;
847 }
848
849 if (mm_alloc_pgd(mm))
850 goto fail_nopgd;
851
852 if (init_new_context(p, mm))
853 goto fail_nocontext;
854
855 mm->user_ns = get_user_ns(user_ns);
856 return mm;
857
858 fail_nocontext:
859 mm_free_pgd(mm);
860 fail_nopgd:
861 free_mm(mm);
862 return NULL;
863 }
864
865 static void check_mm(struct mm_struct *mm)
866 {
867 int i;
868
869 for (i = 0; i < NR_MM_COUNTERS; i++) {
870 long x = atomic_long_read(&mm->rss_stat.count[i]);
871
872 if (unlikely(x))
873 printk(KERN_ALERT "BUG: Bad rss-counter state "
874 "mm:%p idx:%d val:%ld\n", mm, i, x);
875 }
876
877 if (mm_pgtables_bytes(mm))
878 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
879 mm_pgtables_bytes(mm));
880
881 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
882 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
883 #endif
884 }
885
886 /*
887 * Allocate and initialize an mm_struct.
888 */
889 struct mm_struct *mm_alloc(void)
890 {
891 struct mm_struct *mm;
892
893 mm = allocate_mm();
894 if (!mm)
895 return NULL;
896
897 memset(mm, 0, sizeof(*mm));
898 return mm_init(mm, current, current_user_ns());
899 }
900
901 /*
902 * Called when the last reference to the mm
903 * is dropped: either by a lazy thread or by
904 * mmput. Free the page directory and the mm.
905 */
906 void __mmdrop(struct mm_struct *mm)
907 {
908 BUG_ON(mm == &init_mm);
909 mm_free_pgd(mm);
910 destroy_context(mm);
911 hmm_mm_destroy(mm);
912 mmu_notifier_mm_destroy(mm);
913 check_mm(mm);
914 put_user_ns(mm->user_ns);
915 free_mm(mm);
916 }
917 EXPORT_SYMBOL_GPL(__mmdrop);
918
919 static inline void __mmput(struct mm_struct *mm)
920 {
921 VM_BUG_ON(atomic_read(&mm->mm_users));
922
923 uprobe_clear_state(mm);
924 exit_aio(mm);
925 ksm_exit(mm);
926 khugepaged_exit(mm); /* must run before exit_mmap */
927 exit_mmap(mm);
928 mm_put_huge_zero_page(mm);
929 set_mm_exe_file(mm, NULL);
930 if (!list_empty(&mm->mmlist)) {
931 spin_lock(&mmlist_lock);
932 list_del(&mm->mmlist);
933 spin_unlock(&mmlist_lock);
934 }
935 if (mm->binfmt)
936 module_put(mm->binfmt->module);
937 mmdrop(mm);
938 }
939
940 /*
941 * Decrement the use count and release all resources for an mm.
942 */
943 void mmput(struct mm_struct *mm)
944 {
945 might_sleep();
946
947 if (atomic_dec_and_test(&mm->mm_users))
948 __mmput(mm);
949 }
950 EXPORT_SYMBOL_GPL(mmput);
951
952 #ifdef CONFIG_MMU
953 static void mmput_async_fn(struct work_struct *work)
954 {
955 struct mm_struct *mm = container_of(work, struct mm_struct,
956 async_put_work);
957
958 __mmput(mm);
959 }
960
961 void mmput_async(struct mm_struct *mm)
962 {
963 if (atomic_dec_and_test(&mm->mm_users)) {
964 INIT_WORK(&mm->async_put_work, mmput_async_fn);
965 schedule_work(&mm->async_put_work);
966 }
967 }
968 #endif
969
970 /**
971 * set_mm_exe_file - change a reference to the mm's executable file
972 *
973 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
974 *
975 * Main users are mmput() and sys_execve(). Callers prevent concurrent
976 * invocations: in mmput() nobody alive left, in execve task is single
977 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
978 * mm->exe_file, but does so without using set_mm_exe_file() in order
979 * to do avoid the need for any locks.
980 */
981 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
982 {
983 struct file *old_exe_file;
984
985 /*
986 * It is safe to dereference the exe_file without RCU as
987 * this function is only called if nobody else can access
988 * this mm -- see comment above for justification.
989 */
990 old_exe_file = rcu_dereference_raw(mm->exe_file);
991
992 if (new_exe_file)
993 get_file(new_exe_file);
994 rcu_assign_pointer(mm->exe_file, new_exe_file);
995 if (old_exe_file)
996 fput(old_exe_file);
997 }
998
999 /**
1000 * get_mm_exe_file - acquire a reference to the mm's executable file
1001 *
1002 * Returns %NULL if mm has no associated executable file.
1003 * User must release file via fput().
1004 */
1005 struct file *get_mm_exe_file(struct mm_struct *mm)
1006 {
1007 struct file *exe_file;
1008
1009 rcu_read_lock();
1010 exe_file = rcu_dereference(mm->exe_file);
1011 if (exe_file && !get_file_rcu(exe_file))
1012 exe_file = NULL;
1013 rcu_read_unlock();
1014 return exe_file;
1015 }
1016 EXPORT_SYMBOL(get_mm_exe_file);
1017
1018 /**
1019 * get_task_exe_file - acquire a reference to the task's executable file
1020 *
1021 * Returns %NULL if task's mm (if any) has no associated executable file or
1022 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1023 * User must release file via fput().
1024 */
1025 struct file *get_task_exe_file(struct task_struct *task)
1026 {
1027 struct file *exe_file = NULL;
1028 struct mm_struct *mm;
1029
1030 task_lock(task);
1031 mm = task->mm;
1032 if (mm) {
1033 if (!(task->flags & PF_KTHREAD))
1034 exe_file = get_mm_exe_file(mm);
1035 }
1036 task_unlock(task);
1037 return exe_file;
1038 }
1039 EXPORT_SYMBOL(get_task_exe_file);
1040
1041 /**
1042 * get_task_mm - acquire a reference to the task's mm
1043 *
1044 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1045 * this kernel workthread has transiently adopted a user mm with use_mm,
1046 * to do its AIO) is not set and if so returns a reference to it, after
1047 * bumping up the use count. User must release the mm via mmput()
1048 * after use. Typically used by /proc and ptrace.
1049 */
1050 struct mm_struct *get_task_mm(struct task_struct *task)
1051 {
1052 struct mm_struct *mm;
1053
1054 task_lock(task);
1055 mm = task->mm;
1056 if (mm) {
1057 if (task->flags & PF_KTHREAD)
1058 mm = NULL;
1059 else
1060 mmget(mm);
1061 }
1062 task_unlock(task);
1063 return mm;
1064 }
1065 EXPORT_SYMBOL_GPL(get_task_mm);
1066
1067 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1068 {
1069 struct mm_struct *mm;
1070 int err;
1071
1072 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1073 if (err)
1074 return ERR_PTR(err);
1075
1076 mm = get_task_mm(task);
1077 if (mm && mm != current->mm &&
1078 !ptrace_may_access(task, mode)) {
1079 mmput(mm);
1080 mm = ERR_PTR(-EACCES);
1081 }
1082 mutex_unlock(&task->signal->cred_guard_mutex);
1083
1084 return mm;
1085 }
1086
1087 static void complete_vfork_done(struct task_struct *tsk)
1088 {
1089 struct completion *vfork;
1090
1091 task_lock(tsk);
1092 vfork = tsk->vfork_done;
1093 if (likely(vfork)) {
1094 tsk->vfork_done = NULL;
1095 complete(vfork);
1096 }
1097 task_unlock(tsk);
1098 }
1099
1100 static int wait_for_vfork_done(struct task_struct *child,
1101 struct completion *vfork)
1102 {
1103 int killed;
1104
1105 freezer_do_not_count();
1106 killed = wait_for_completion_killable(vfork);
1107 freezer_count();
1108
1109 if (killed) {
1110 task_lock(child);
1111 child->vfork_done = NULL;
1112 task_unlock(child);
1113 }
1114
1115 put_task_struct(child);
1116 return killed;
1117 }
1118
1119 /* Please note the differences between mmput and mm_release.
1120 * mmput is called whenever we stop holding onto a mm_struct,
1121 * error success whatever.
1122 *
1123 * mm_release is called after a mm_struct has been removed
1124 * from the current process.
1125 *
1126 * This difference is important for error handling, when we
1127 * only half set up a mm_struct for a new process and need to restore
1128 * the old one. Because we mmput the new mm_struct before
1129 * restoring the old one. . .
1130 * Eric Biederman 10 January 1998
1131 */
1132 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1133 {
1134 /* Get rid of any futexes when releasing the mm */
1135 #ifdef CONFIG_FUTEX
1136 if (unlikely(tsk->robust_list)) {
1137 exit_robust_list(tsk);
1138 tsk->robust_list = NULL;
1139 }
1140 #ifdef CONFIG_COMPAT
1141 if (unlikely(tsk->compat_robust_list)) {
1142 compat_exit_robust_list(tsk);
1143 tsk->compat_robust_list = NULL;
1144 }
1145 #endif
1146 if (unlikely(!list_empty(&tsk->pi_state_list)))
1147 exit_pi_state_list(tsk);
1148 #endif
1149
1150 uprobe_free_utask(tsk);
1151
1152 /* Get rid of any cached register state */
1153 deactivate_mm(tsk, mm);
1154
1155 /*
1156 * Signal userspace if we're not exiting with a core dump
1157 * because we want to leave the value intact for debugging
1158 * purposes.
1159 */
1160 if (tsk->clear_child_tid) {
1161 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1162 atomic_read(&mm->mm_users) > 1) {
1163 /*
1164 * We don't check the error code - if userspace has
1165 * not set up a proper pointer then tough luck.
1166 */
1167 put_user(0, tsk->clear_child_tid);
1168 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1169 1, NULL, NULL, 0);
1170 }
1171 tsk->clear_child_tid = NULL;
1172 }
1173
1174 /*
1175 * All done, finally we can wake up parent and return this mm to him.
1176 * Also kthread_stop() uses this completion for synchronization.
1177 */
1178 if (tsk->vfork_done)
1179 complete_vfork_done(tsk);
1180 }
1181
1182 /*
1183 * Allocate a new mm structure and copy contents from the
1184 * mm structure of the passed in task structure.
1185 */
1186 static struct mm_struct *dup_mm(struct task_struct *tsk)
1187 {
1188 struct mm_struct *mm, *oldmm = current->mm;
1189 int err;
1190
1191 mm = allocate_mm();
1192 if (!mm)
1193 goto fail_nomem;
1194
1195 memcpy(mm, oldmm, sizeof(*mm));
1196
1197 if (!mm_init(mm, tsk, mm->user_ns))
1198 goto fail_nomem;
1199
1200 err = dup_mmap(mm, oldmm);
1201 if (err)
1202 goto free_pt;
1203
1204 mm->hiwater_rss = get_mm_rss(mm);
1205 mm->hiwater_vm = mm->total_vm;
1206
1207 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1208 goto free_pt;
1209
1210 return mm;
1211
1212 free_pt:
1213 /* don't put binfmt in mmput, we haven't got module yet */
1214 mm->binfmt = NULL;
1215 mmput(mm);
1216
1217 fail_nomem:
1218 return NULL;
1219 }
1220
1221 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1222 {
1223 struct mm_struct *mm, *oldmm;
1224 int retval;
1225
1226 tsk->min_flt = tsk->maj_flt = 0;
1227 tsk->nvcsw = tsk->nivcsw = 0;
1228 #ifdef CONFIG_DETECT_HUNG_TASK
1229 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1230 #endif
1231
1232 tsk->mm = NULL;
1233 tsk->active_mm = NULL;
1234
1235 /*
1236 * Are we cloning a kernel thread?
1237 *
1238 * We need to steal a active VM for that..
1239 */
1240 oldmm = current->mm;
1241 if (!oldmm)
1242 return 0;
1243
1244 /* initialize the new vmacache entries */
1245 vmacache_flush(tsk);
1246
1247 if (clone_flags & CLONE_VM) {
1248 mmget(oldmm);
1249 mm = oldmm;
1250 goto good_mm;
1251 }
1252
1253 retval = -ENOMEM;
1254 mm = dup_mm(tsk);
1255 if (!mm)
1256 goto fail_nomem;
1257
1258 good_mm:
1259 tsk->mm = mm;
1260 tsk->active_mm = mm;
1261 return 0;
1262
1263 fail_nomem:
1264 return retval;
1265 }
1266
1267 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1268 {
1269 struct fs_struct *fs = current->fs;
1270 if (clone_flags & CLONE_FS) {
1271 /* tsk->fs is already what we want */
1272 spin_lock(&fs->lock);
1273 if (fs->in_exec) {
1274 spin_unlock(&fs->lock);
1275 return -EAGAIN;
1276 }
1277 fs->users++;
1278 spin_unlock(&fs->lock);
1279 return 0;
1280 }
1281 tsk->fs = copy_fs_struct(fs);
1282 if (!tsk->fs)
1283 return -ENOMEM;
1284 return 0;
1285 }
1286
1287 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1288 {
1289 struct files_struct *oldf, *newf;
1290 int error = 0;
1291
1292 /*
1293 * A background process may not have any files ...
1294 */
1295 oldf = current->files;
1296 if (!oldf)
1297 goto out;
1298
1299 if (clone_flags & CLONE_FILES) {
1300 atomic_inc(&oldf->count);
1301 goto out;
1302 }
1303
1304 newf = dup_fd(oldf, &error);
1305 if (!newf)
1306 goto out;
1307
1308 tsk->files = newf;
1309 error = 0;
1310 out:
1311 return error;
1312 }
1313
1314 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1315 {
1316 #ifdef CONFIG_BLOCK
1317 struct io_context *ioc = current->io_context;
1318 struct io_context *new_ioc;
1319
1320 if (!ioc)
1321 return 0;
1322 /*
1323 * Share io context with parent, if CLONE_IO is set
1324 */
1325 if (clone_flags & CLONE_IO) {
1326 ioc_task_link(ioc);
1327 tsk->io_context = ioc;
1328 } else if (ioprio_valid(ioc->ioprio)) {
1329 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1330 if (unlikely(!new_ioc))
1331 return -ENOMEM;
1332
1333 new_ioc->ioprio = ioc->ioprio;
1334 put_io_context(new_ioc);
1335 }
1336 #endif
1337 return 0;
1338 }
1339
1340 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1341 {
1342 struct sighand_struct *sig;
1343
1344 if (clone_flags & CLONE_SIGHAND) {
1345 atomic_inc(&current->sighand->count);
1346 return 0;
1347 }
1348 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1349 rcu_assign_pointer(tsk->sighand, sig);
1350 if (!sig)
1351 return -ENOMEM;
1352
1353 atomic_set(&sig->count, 1);
1354 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1355 return 0;
1356 }
1357
1358 void __cleanup_sighand(struct sighand_struct *sighand)
1359 {
1360 if (atomic_dec_and_test(&sighand->count)) {
1361 signalfd_cleanup(sighand);
1362 /*
1363 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1364 * without an RCU grace period, see __lock_task_sighand().
1365 */
1366 kmem_cache_free(sighand_cachep, sighand);
1367 }
1368 }
1369
1370 #ifdef CONFIG_POSIX_TIMERS
1371 /*
1372 * Initialize POSIX timer handling for a thread group.
1373 */
1374 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1375 {
1376 unsigned long cpu_limit;
1377
1378 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1379 if (cpu_limit != RLIM_INFINITY) {
1380 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1381 sig->cputimer.running = true;
1382 }
1383
1384 /* The timer lists. */
1385 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1386 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1387 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1388 }
1389 #else
1390 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1391 #endif
1392
1393 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1394 {
1395 struct signal_struct *sig;
1396
1397 if (clone_flags & CLONE_THREAD)
1398 return 0;
1399
1400 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1401 tsk->signal = sig;
1402 if (!sig)
1403 return -ENOMEM;
1404
1405 sig->nr_threads = 1;
1406 atomic_set(&sig->live, 1);
1407 atomic_set(&sig->sigcnt, 1);
1408
1409 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1410 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1411 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1412
1413 init_waitqueue_head(&sig->wait_chldexit);
1414 sig->curr_target = tsk;
1415 init_sigpending(&sig->shared_pending);
1416 seqlock_init(&sig->stats_lock);
1417 prev_cputime_init(&sig->prev_cputime);
1418
1419 #ifdef CONFIG_POSIX_TIMERS
1420 INIT_LIST_HEAD(&sig->posix_timers);
1421 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1422 sig->real_timer.function = it_real_fn;
1423 #endif
1424
1425 task_lock(current->group_leader);
1426 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1427 task_unlock(current->group_leader);
1428
1429 posix_cpu_timers_init_group(sig);
1430
1431 tty_audit_fork(sig);
1432 sched_autogroup_fork(sig);
1433
1434 sig->oom_score_adj = current->signal->oom_score_adj;
1435 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1436
1437 mutex_init(&sig->cred_guard_mutex);
1438
1439 return 0;
1440 }
1441
1442 static void copy_seccomp(struct task_struct *p)
1443 {
1444 #ifdef CONFIG_SECCOMP
1445 /*
1446 * Must be called with sighand->lock held, which is common to
1447 * all threads in the group. Holding cred_guard_mutex is not
1448 * needed because this new task is not yet running and cannot
1449 * be racing exec.
1450 */
1451 assert_spin_locked(&current->sighand->siglock);
1452
1453 /* Ref-count the new filter user, and assign it. */
1454 get_seccomp_filter(current);
1455 p->seccomp = current->seccomp;
1456
1457 /*
1458 * Explicitly enable no_new_privs here in case it got set
1459 * between the task_struct being duplicated and holding the
1460 * sighand lock. The seccomp state and nnp must be in sync.
1461 */
1462 if (task_no_new_privs(current))
1463 task_set_no_new_privs(p);
1464
1465 /*
1466 * If the parent gained a seccomp mode after copying thread
1467 * flags and between before we held the sighand lock, we have
1468 * to manually enable the seccomp thread flag here.
1469 */
1470 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1471 set_tsk_thread_flag(p, TIF_SECCOMP);
1472 #endif
1473 }
1474
1475 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1476 {
1477 current->clear_child_tid = tidptr;
1478
1479 return task_pid_vnr(current);
1480 }
1481
1482 static void rt_mutex_init_task(struct task_struct *p)
1483 {
1484 raw_spin_lock_init(&p->pi_lock);
1485 #ifdef CONFIG_RT_MUTEXES
1486 p->pi_waiters = RB_ROOT_CACHED;
1487 p->pi_top_task = NULL;
1488 p->pi_blocked_on = NULL;
1489 #endif
1490 }
1491
1492 #ifdef CONFIG_POSIX_TIMERS
1493 /*
1494 * Initialize POSIX timer handling for a single task.
1495 */
1496 static void posix_cpu_timers_init(struct task_struct *tsk)
1497 {
1498 tsk->cputime_expires.prof_exp = 0;
1499 tsk->cputime_expires.virt_exp = 0;
1500 tsk->cputime_expires.sched_exp = 0;
1501 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1502 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1503 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1504 }
1505 #else
1506 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1507 #endif
1508
1509 static inline void
1510 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1511 {
1512 task->pids[type].pid = pid;
1513 }
1514
1515 static inline void rcu_copy_process(struct task_struct *p)
1516 {
1517 #ifdef CONFIG_PREEMPT_RCU
1518 p->rcu_read_lock_nesting = 0;
1519 p->rcu_read_unlock_special.s = 0;
1520 p->rcu_blocked_node = NULL;
1521 INIT_LIST_HEAD(&p->rcu_node_entry);
1522 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1523 #ifdef CONFIG_TASKS_RCU
1524 p->rcu_tasks_holdout = false;
1525 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1526 p->rcu_tasks_idle_cpu = -1;
1527 #endif /* #ifdef CONFIG_TASKS_RCU */
1528 }
1529
1530 /*
1531 * This creates a new process as a copy of the old one,
1532 * but does not actually start it yet.
1533 *
1534 * It copies the registers, and all the appropriate
1535 * parts of the process environment (as per the clone
1536 * flags). The actual kick-off is left to the caller.
1537 */
1538 static __latent_entropy struct task_struct *copy_process(
1539 unsigned long clone_flags,
1540 unsigned long stack_start,
1541 unsigned long stack_size,
1542 int __user *child_tidptr,
1543 struct pid *pid,
1544 int trace,
1545 unsigned long tls,
1546 int node)
1547 {
1548 int retval;
1549 struct task_struct *p;
1550
1551 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1552 return ERR_PTR(-EINVAL);
1553
1554 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1555 return ERR_PTR(-EINVAL);
1556
1557 if ((clone_flags & CLONE_NEWUSER) && !unprivileged_userns_clone)
1558 if (!capable(CAP_SYS_ADMIN))
1559 return ERR_PTR(-EPERM);
1560
1561 /*
1562 * Thread groups must share signals as well, and detached threads
1563 * can only be started up within the thread group.
1564 */
1565 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1566 return ERR_PTR(-EINVAL);
1567
1568 /*
1569 * Shared signal handlers imply shared VM. By way of the above,
1570 * thread groups also imply shared VM. Blocking this case allows
1571 * for various simplifications in other code.
1572 */
1573 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1574 return ERR_PTR(-EINVAL);
1575
1576 /*
1577 * Siblings of global init remain as zombies on exit since they are
1578 * not reaped by their parent (swapper). To solve this and to avoid
1579 * multi-rooted process trees, prevent global and container-inits
1580 * from creating siblings.
1581 */
1582 if ((clone_flags & CLONE_PARENT) &&
1583 current->signal->flags & SIGNAL_UNKILLABLE)
1584 return ERR_PTR(-EINVAL);
1585
1586 /*
1587 * If the new process will be in a different pid or user namespace
1588 * do not allow it to share a thread group with the forking task.
1589 */
1590 if (clone_flags & CLONE_THREAD) {
1591 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1592 (task_active_pid_ns(current) !=
1593 current->nsproxy->pid_ns_for_children))
1594 return ERR_PTR(-EINVAL);
1595 }
1596
1597 retval = -ENOMEM;
1598 p = dup_task_struct(current, node);
1599 if (!p)
1600 goto fork_out;
1601
1602 /*
1603 * This _must_ happen before we call free_task(), i.e. before we jump
1604 * to any of the bad_fork_* labels. This is to avoid freeing
1605 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1606 * kernel threads (PF_KTHREAD).
1607 */
1608 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1609 /*
1610 * Clear TID on mm_release()?
1611 */
1612 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1613
1614 ftrace_graph_init_task(p);
1615
1616 rt_mutex_init_task(p);
1617
1618 #ifdef CONFIG_PROVE_LOCKING
1619 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1620 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1621 #endif
1622 retval = -EAGAIN;
1623 if (atomic_read(&p->real_cred->user->processes) >=
1624 task_rlimit(p, RLIMIT_NPROC)) {
1625 if (p->real_cred->user != INIT_USER &&
1626 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1627 goto bad_fork_free;
1628 }
1629 current->flags &= ~PF_NPROC_EXCEEDED;
1630
1631 retval = copy_creds(p, clone_flags);
1632 if (retval < 0)
1633 goto bad_fork_free;
1634
1635 /*
1636 * If multiple threads are within copy_process(), then this check
1637 * triggers too late. This doesn't hurt, the check is only there
1638 * to stop root fork bombs.
1639 */
1640 retval = -EAGAIN;
1641 if (nr_threads >= max_threads)
1642 goto bad_fork_cleanup_count;
1643
1644 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1645 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1646 p->flags |= PF_FORKNOEXEC;
1647 INIT_LIST_HEAD(&p->children);
1648 INIT_LIST_HEAD(&p->sibling);
1649 rcu_copy_process(p);
1650 p->vfork_done = NULL;
1651 spin_lock_init(&p->alloc_lock);
1652
1653 init_sigpending(&p->pending);
1654
1655 p->utime = p->stime = p->gtime = 0;
1656 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1657 p->utimescaled = p->stimescaled = 0;
1658 #endif
1659 prev_cputime_init(&p->prev_cputime);
1660
1661 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1662 seqcount_init(&p->vtime.seqcount);
1663 p->vtime.starttime = 0;
1664 p->vtime.state = VTIME_INACTIVE;
1665 #endif
1666
1667 #if defined(SPLIT_RSS_COUNTING)
1668 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1669 #endif
1670
1671 p->default_timer_slack_ns = current->timer_slack_ns;
1672
1673 task_io_accounting_init(&p->ioac);
1674 acct_clear_integrals(p);
1675
1676 posix_cpu_timers_init(p);
1677
1678 p->io_context = NULL;
1679 p->audit_context = NULL;
1680 cgroup_fork(p);
1681 #ifdef CONFIG_NUMA
1682 p->mempolicy = mpol_dup(p->mempolicy);
1683 if (IS_ERR(p->mempolicy)) {
1684 retval = PTR_ERR(p->mempolicy);
1685 p->mempolicy = NULL;
1686 goto bad_fork_cleanup_threadgroup_lock;
1687 }
1688 #endif
1689 #ifdef CONFIG_CPUSETS
1690 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1691 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1692 seqcount_init(&p->mems_allowed_seq);
1693 #endif
1694 #ifdef CONFIG_TRACE_IRQFLAGS
1695 p->irq_events = 0;
1696 p->hardirqs_enabled = 0;
1697 p->hardirq_enable_ip = 0;
1698 p->hardirq_enable_event = 0;
1699 p->hardirq_disable_ip = _THIS_IP_;
1700 p->hardirq_disable_event = 0;
1701 p->softirqs_enabled = 1;
1702 p->softirq_enable_ip = _THIS_IP_;
1703 p->softirq_enable_event = 0;
1704 p->softirq_disable_ip = 0;
1705 p->softirq_disable_event = 0;
1706 p->hardirq_context = 0;
1707 p->softirq_context = 0;
1708 #endif
1709
1710 p->pagefault_disabled = 0;
1711
1712 #ifdef CONFIG_LOCKDEP
1713 p->lockdep_depth = 0; /* no locks held yet */
1714 p->curr_chain_key = 0;
1715 p->lockdep_recursion = 0;
1716 lockdep_init_task(p);
1717 #endif
1718
1719 #ifdef CONFIG_DEBUG_MUTEXES
1720 p->blocked_on = NULL; /* not blocked yet */
1721 #endif
1722 #ifdef CONFIG_BCACHE
1723 p->sequential_io = 0;
1724 p->sequential_io_avg = 0;
1725 #endif
1726 #ifdef CONFIG_SECURITY
1727 p->security = NULL;
1728 #endif
1729
1730 /* Perform scheduler related setup. Assign this task to a CPU. */
1731 retval = sched_fork(clone_flags, p);
1732 if (retval)
1733 goto bad_fork_cleanup_policy;
1734
1735 retval = perf_event_init_task(p);
1736 if (retval)
1737 goto bad_fork_cleanup_policy;
1738 retval = audit_alloc(p);
1739 if (retval)
1740 goto bad_fork_cleanup_perf;
1741 /* copy all the process information */
1742 shm_init_task(p);
1743 retval = security_task_alloc(p, clone_flags);
1744 if (retval)
1745 goto bad_fork_cleanup_audit;
1746 retval = copy_semundo(clone_flags, p);
1747 if (retval)
1748 goto bad_fork_cleanup_security;
1749 retval = copy_files(clone_flags, p);
1750 if (retval)
1751 goto bad_fork_cleanup_semundo;
1752 retval = copy_fs(clone_flags, p);
1753 if (retval)
1754 goto bad_fork_cleanup_files;
1755 retval = copy_sighand(clone_flags, p);
1756 if (retval)
1757 goto bad_fork_cleanup_fs;
1758 retval = copy_signal(clone_flags, p);
1759 if (retval)
1760 goto bad_fork_cleanup_sighand;
1761 retval = copy_mm(clone_flags, p);
1762 if (retval)
1763 goto bad_fork_cleanup_signal;
1764 retval = copy_namespaces(clone_flags, p);
1765 if (retval)
1766 goto bad_fork_cleanup_mm;
1767 retval = copy_io(clone_flags, p);
1768 if (retval)
1769 goto bad_fork_cleanup_namespaces;
1770 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1771 if (retval)
1772 goto bad_fork_cleanup_io;
1773
1774 if (pid != &init_struct_pid) {
1775 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1776 if (IS_ERR(pid)) {
1777 retval = PTR_ERR(pid);
1778 goto bad_fork_cleanup_thread;
1779 }
1780 }
1781
1782 #ifdef CONFIG_BLOCK
1783 p->plug = NULL;
1784 #endif
1785 #ifdef CONFIG_FUTEX
1786 p->robust_list = NULL;
1787 #ifdef CONFIG_COMPAT
1788 p->compat_robust_list = NULL;
1789 #endif
1790 INIT_LIST_HEAD(&p->pi_state_list);
1791 p->pi_state_cache = NULL;
1792 #endif
1793 /*
1794 * sigaltstack should be cleared when sharing the same VM
1795 */
1796 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1797 sas_ss_reset(p);
1798
1799 /*
1800 * Syscall tracing and stepping should be turned off in the
1801 * child regardless of CLONE_PTRACE.
1802 */
1803 user_disable_single_step(p);
1804 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1805 #ifdef TIF_SYSCALL_EMU
1806 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1807 #endif
1808 clear_all_latency_tracing(p);
1809
1810 /* ok, now we should be set up.. */
1811 p->pid = pid_nr(pid);
1812 if (clone_flags & CLONE_THREAD) {
1813 p->exit_signal = -1;
1814 p->group_leader = current->group_leader;
1815 p->tgid = current->tgid;
1816 } else {
1817 if (clone_flags & CLONE_PARENT)
1818 p->exit_signal = current->group_leader->exit_signal;
1819 else
1820 p->exit_signal = (clone_flags & CSIGNAL);
1821 p->group_leader = p;
1822 p->tgid = p->pid;
1823 }
1824
1825 p->nr_dirtied = 0;
1826 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1827 p->dirty_paused_when = 0;
1828
1829 p->pdeath_signal = 0;
1830 INIT_LIST_HEAD(&p->thread_group);
1831 p->task_works = NULL;
1832
1833 cgroup_threadgroup_change_begin(current);
1834 /*
1835 * Ensure that the cgroup subsystem policies allow the new process to be
1836 * forked. It should be noted the the new process's css_set can be changed
1837 * between here and cgroup_post_fork() if an organisation operation is in
1838 * progress.
1839 */
1840 retval = cgroup_can_fork(p);
1841 if (retval)
1842 goto bad_fork_free_pid;
1843
1844 /*
1845 * From this point on we must avoid any synchronous user-space
1846 * communication until we take the tasklist-lock. In particular, we do
1847 * not want user-space to be able to predict the process start-time by
1848 * stalling fork(2) after we recorded the start_time but before it is
1849 * visible to the system.
1850 */
1851
1852 p->start_time = ktime_get_ns();
1853 p->real_start_time = ktime_get_boot_ns();
1854
1855 /*
1856 * Make it visible to the rest of the system, but dont wake it up yet.
1857 * Need tasklist lock for parent etc handling!
1858 */
1859 write_lock_irq(&tasklist_lock);
1860
1861 /* CLONE_PARENT re-uses the old parent */
1862 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1863 p->real_parent = current->real_parent;
1864 p->parent_exec_id = current->parent_exec_id;
1865 } else {
1866 p->real_parent = current;
1867 p->parent_exec_id = current->self_exec_id;
1868 }
1869
1870 klp_copy_process(p);
1871
1872 spin_lock(&current->sighand->siglock);
1873
1874 /*
1875 * Copy seccomp details explicitly here, in case they were changed
1876 * before holding sighand lock.
1877 */
1878 copy_seccomp(p);
1879
1880 /*
1881 * Process group and session signals need to be delivered to just the
1882 * parent before the fork or both the parent and the child after the
1883 * fork. Restart if a signal comes in before we add the new process to
1884 * it's process group.
1885 * A fatal signal pending means that current will exit, so the new
1886 * thread can't slip out of an OOM kill (or normal SIGKILL).
1887 */
1888 recalc_sigpending();
1889 if (signal_pending(current)) {
1890 retval = -ERESTARTNOINTR;
1891 goto bad_fork_cancel_cgroup;
1892 }
1893 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1894 retval = -ENOMEM;
1895 goto bad_fork_cancel_cgroup;
1896 }
1897
1898 if (likely(p->pid)) {
1899 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1900
1901 init_task_pid(p, PIDTYPE_PID, pid);
1902 if (thread_group_leader(p)) {
1903 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1904 init_task_pid(p, PIDTYPE_SID, task_session(current));
1905
1906 if (is_child_reaper(pid)) {
1907 ns_of_pid(pid)->child_reaper = p;
1908 p->signal->flags |= SIGNAL_UNKILLABLE;
1909 }
1910
1911 p->signal->leader_pid = pid;
1912 p->signal->tty = tty_kref_get(current->signal->tty);
1913 /*
1914 * Inherit has_child_subreaper flag under the same
1915 * tasklist_lock with adding child to the process tree
1916 * for propagate_has_child_subreaper optimization.
1917 */
1918 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1919 p->real_parent->signal->is_child_subreaper;
1920 list_add_tail(&p->sibling, &p->real_parent->children);
1921 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1922 attach_pid(p, PIDTYPE_PGID);
1923 attach_pid(p, PIDTYPE_SID);
1924 __this_cpu_inc(process_counts);
1925 } else {
1926 current->signal->nr_threads++;
1927 atomic_inc(&current->signal->live);
1928 atomic_inc(&current->signal->sigcnt);
1929 list_add_tail_rcu(&p->thread_group,
1930 &p->group_leader->thread_group);
1931 list_add_tail_rcu(&p->thread_node,
1932 &p->signal->thread_head);
1933 }
1934 attach_pid(p, PIDTYPE_PID);
1935 nr_threads++;
1936 }
1937
1938 total_forks++;
1939 spin_unlock(&current->sighand->siglock);
1940 syscall_tracepoint_update(p);
1941 write_unlock_irq(&tasklist_lock);
1942
1943 proc_fork_connector(p);
1944 cgroup_post_fork(p);
1945 cgroup_threadgroup_change_end(current);
1946 perf_event_fork(p);
1947
1948 trace_task_newtask(p, clone_flags);
1949 uprobe_copy_process(p, clone_flags);
1950
1951 return p;
1952
1953 bad_fork_cancel_cgroup:
1954 spin_unlock(&current->sighand->siglock);
1955 write_unlock_irq(&tasklist_lock);
1956 cgroup_cancel_fork(p);
1957 bad_fork_free_pid:
1958 cgroup_threadgroup_change_end(current);
1959 if (pid != &init_struct_pid)
1960 free_pid(pid);
1961 bad_fork_cleanup_thread:
1962 exit_thread(p);
1963 bad_fork_cleanup_io:
1964 if (p->io_context)
1965 exit_io_context(p);
1966 bad_fork_cleanup_namespaces:
1967 exit_task_namespaces(p);
1968 bad_fork_cleanup_mm:
1969 if (p->mm)
1970 mmput(p->mm);
1971 bad_fork_cleanup_signal:
1972 if (!(clone_flags & CLONE_THREAD))
1973 free_signal_struct(p->signal);
1974 bad_fork_cleanup_sighand:
1975 __cleanup_sighand(p->sighand);
1976 bad_fork_cleanup_fs:
1977 exit_fs(p); /* blocking */
1978 bad_fork_cleanup_files:
1979 exit_files(p); /* blocking */
1980 bad_fork_cleanup_semundo:
1981 exit_sem(p);
1982 bad_fork_cleanup_security:
1983 security_task_free(p);
1984 bad_fork_cleanup_audit:
1985 audit_free(p);
1986 bad_fork_cleanup_perf:
1987 perf_event_free_task(p);
1988 bad_fork_cleanup_policy:
1989 lockdep_free_task(p);
1990 #ifdef CONFIG_NUMA
1991 mpol_put(p->mempolicy);
1992 bad_fork_cleanup_threadgroup_lock:
1993 #endif
1994 delayacct_tsk_free(p);
1995 bad_fork_cleanup_count:
1996 atomic_dec(&p->cred->user->processes);
1997 exit_creds(p);
1998 bad_fork_free:
1999 p->state = TASK_DEAD;
2000 put_task_stack(p);
2001 free_task(p);
2002 fork_out:
2003 return ERR_PTR(retval);
2004 }
2005
2006 static inline void init_idle_pids(struct pid_link *links)
2007 {
2008 enum pid_type type;
2009
2010 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2011 INIT_HLIST_NODE(&links[type].node); /* not really needed */
2012 links[type].pid = &init_struct_pid;
2013 }
2014 }
2015
2016 struct task_struct *fork_idle(int cpu)
2017 {
2018 struct task_struct *task;
2019 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2020 cpu_to_node(cpu));
2021 if (!IS_ERR(task)) {
2022 init_idle_pids(task->pids);
2023 init_idle(task, cpu);
2024 }
2025
2026 return task;
2027 }
2028
2029 /*
2030 * Ok, this is the main fork-routine.
2031 *
2032 * It copies the process, and if successful kick-starts
2033 * it and waits for it to finish using the VM if required.
2034 */
2035 long _do_fork(unsigned long clone_flags,
2036 unsigned long stack_start,
2037 unsigned long stack_size,
2038 int __user *parent_tidptr,
2039 int __user *child_tidptr,
2040 unsigned long tls)
2041 {
2042 struct task_struct *p;
2043 int trace = 0;
2044 long nr;
2045
2046 /*
2047 * Determine whether and which event to report to ptracer. When
2048 * called from kernel_thread or CLONE_UNTRACED is explicitly
2049 * requested, no event is reported; otherwise, report if the event
2050 * for the type of forking is enabled.
2051 */
2052 if (!(clone_flags & CLONE_UNTRACED)) {
2053 if (clone_flags & CLONE_VFORK)
2054 trace = PTRACE_EVENT_VFORK;
2055 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2056 trace = PTRACE_EVENT_CLONE;
2057 else
2058 trace = PTRACE_EVENT_FORK;
2059
2060 if (likely(!ptrace_event_enabled(current, trace)))
2061 trace = 0;
2062 }
2063
2064 p = copy_process(clone_flags, stack_start, stack_size,
2065 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2066 add_latent_entropy();
2067 /*
2068 * Do this prior waking up the new thread - the thread pointer
2069 * might get invalid after that point, if the thread exits quickly.
2070 */
2071 if (!IS_ERR(p)) {
2072 struct completion vfork;
2073 struct pid *pid;
2074
2075 trace_sched_process_fork(current, p);
2076
2077 pid = get_task_pid(p, PIDTYPE_PID);
2078 nr = pid_vnr(pid);
2079
2080 if (clone_flags & CLONE_PARENT_SETTID)
2081 put_user(nr, parent_tidptr);
2082
2083 if (clone_flags & CLONE_VFORK) {
2084 p->vfork_done = &vfork;
2085 init_completion(&vfork);
2086 get_task_struct(p);
2087 }
2088
2089 wake_up_new_task(p);
2090
2091 /* forking complete and child started to run, tell ptracer */
2092 if (unlikely(trace))
2093 ptrace_event_pid(trace, pid);
2094
2095 if (clone_flags & CLONE_VFORK) {
2096 if (!wait_for_vfork_done(p, &vfork))
2097 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2098 }
2099
2100 put_pid(pid);
2101 } else {
2102 nr = PTR_ERR(p);
2103 }
2104 return nr;
2105 }
2106
2107 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2108 /* For compatibility with architectures that call do_fork directly rather than
2109 * using the syscall entry points below. */
2110 long do_fork(unsigned long clone_flags,
2111 unsigned long stack_start,
2112 unsigned long stack_size,
2113 int __user *parent_tidptr,
2114 int __user *child_tidptr)
2115 {
2116 return _do_fork(clone_flags, stack_start, stack_size,
2117 parent_tidptr, child_tidptr, 0);
2118 }
2119 #endif
2120
2121 /*
2122 * Create a kernel thread.
2123 */
2124 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2125 {
2126 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2127 (unsigned long)arg, NULL, NULL, 0);
2128 }
2129
2130 #ifdef __ARCH_WANT_SYS_FORK
2131 SYSCALL_DEFINE0(fork)
2132 {
2133 #ifdef CONFIG_MMU
2134 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2135 #else
2136 /* can not support in nommu mode */
2137 return -EINVAL;
2138 #endif
2139 }
2140 #endif
2141
2142 #ifdef __ARCH_WANT_SYS_VFORK
2143 SYSCALL_DEFINE0(vfork)
2144 {
2145 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2146 0, NULL, NULL, 0);
2147 }
2148 #endif
2149
2150 #ifdef __ARCH_WANT_SYS_CLONE
2151 #ifdef CONFIG_CLONE_BACKWARDS
2152 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2153 int __user *, parent_tidptr,
2154 unsigned long, tls,
2155 int __user *, child_tidptr)
2156 #elif defined(CONFIG_CLONE_BACKWARDS2)
2157 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2158 int __user *, parent_tidptr,
2159 int __user *, child_tidptr,
2160 unsigned long, tls)
2161 #elif defined(CONFIG_CLONE_BACKWARDS3)
2162 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2163 int, stack_size,
2164 int __user *, parent_tidptr,
2165 int __user *, child_tidptr,
2166 unsigned long, tls)
2167 #else
2168 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2169 int __user *, parent_tidptr,
2170 int __user *, child_tidptr,
2171 unsigned long, tls)
2172 #endif
2173 {
2174 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2175 }
2176 #endif
2177
2178 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2179 {
2180 struct task_struct *leader, *parent, *child;
2181 int res;
2182
2183 read_lock(&tasklist_lock);
2184 leader = top = top->group_leader;
2185 down:
2186 for_each_thread(leader, parent) {
2187 list_for_each_entry(child, &parent->children, sibling) {
2188 res = visitor(child, data);
2189 if (res) {
2190 if (res < 0)
2191 goto out;
2192 leader = child;
2193 goto down;
2194 }
2195 up:
2196 ;
2197 }
2198 }
2199
2200 if (leader != top) {
2201 child = leader;
2202 parent = child->real_parent;
2203 leader = parent->group_leader;
2204 goto up;
2205 }
2206 out:
2207 read_unlock(&tasklist_lock);
2208 }
2209
2210 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2211 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2212 #endif
2213
2214 static void sighand_ctor(void *data)
2215 {
2216 struct sighand_struct *sighand = data;
2217
2218 spin_lock_init(&sighand->siglock);
2219 init_waitqueue_head(&sighand->signalfd_wqh);
2220 }
2221
2222 void __init proc_caches_init(void)
2223 {
2224 sighand_cachep = kmem_cache_create("sighand_cache",
2225 sizeof(struct sighand_struct), 0,
2226 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2227 SLAB_ACCOUNT, sighand_ctor);
2228 signal_cachep = kmem_cache_create("signal_cache",
2229 sizeof(struct signal_struct), 0,
2230 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2231 NULL);
2232 files_cachep = kmem_cache_create("files_cache",
2233 sizeof(struct files_struct), 0,
2234 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2235 NULL);
2236 fs_cachep = kmem_cache_create("fs_cache",
2237 sizeof(struct fs_struct), 0,
2238 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2239 NULL);
2240 /*
2241 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2242 * whole struct cpumask for the OFFSTACK case. We could change
2243 * this to *only* allocate as much of it as required by the
2244 * maximum number of CPU's we can ever have. The cpumask_allocation
2245 * is at the end of the structure, exactly for that reason.
2246 */
2247 mm_cachep = kmem_cache_create("mm_struct",
2248 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2249 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2250 NULL);
2251 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2252 mmap_init();
2253 nsproxy_cache_init();
2254 }
2255
2256 /*
2257 * Check constraints on flags passed to the unshare system call.
2258 */
2259 static int check_unshare_flags(unsigned long unshare_flags)
2260 {
2261 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2262 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2263 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2264 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2265 return -EINVAL;
2266 /*
2267 * Not implemented, but pretend it works if there is nothing
2268 * to unshare. Note that unsharing the address space or the
2269 * signal handlers also need to unshare the signal queues (aka
2270 * CLONE_THREAD).
2271 */
2272 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2273 if (!thread_group_empty(current))
2274 return -EINVAL;
2275 }
2276 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2277 if (atomic_read(&current->sighand->count) > 1)
2278 return -EINVAL;
2279 }
2280 if (unshare_flags & CLONE_VM) {
2281 if (!current_is_single_threaded())
2282 return -EINVAL;
2283 }
2284
2285 return 0;
2286 }
2287
2288 /*
2289 * Unshare the filesystem structure if it is being shared
2290 */
2291 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2292 {
2293 struct fs_struct *fs = current->fs;
2294
2295 if (!(unshare_flags & CLONE_FS) || !fs)
2296 return 0;
2297
2298 /* don't need lock here; in the worst case we'll do useless copy */
2299 if (fs->users == 1)
2300 return 0;
2301
2302 *new_fsp = copy_fs_struct(fs);
2303 if (!*new_fsp)
2304 return -ENOMEM;
2305
2306 return 0;
2307 }
2308
2309 /*
2310 * Unshare file descriptor table if it is being shared
2311 */
2312 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2313 {
2314 struct files_struct *fd = current->files;
2315 int error = 0;
2316
2317 if ((unshare_flags & CLONE_FILES) &&
2318 (fd && atomic_read(&fd->count) > 1)) {
2319 *new_fdp = dup_fd(fd, &error);
2320 if (!*new_fdp)
2321 return error;
2322 }
2323
2324 return 0;
2325 }
2326
2327 /*
2328 * unshare allows a process to 'unshare' part of the process
2329 * context which was originally shared using clone. copy_*
2330 * functions used by do_fork() cannot be used here directly
2331 * because they modify an inactive task_struct that is being
2332 * constructed. Here we are modifying the current, active,
2333 * task_struct.
2334 */
2335 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2336 {
2337 struct fs_struct *fs, *new_fs = NULL;
2338 struct files_struct *fd, *new_fd = NULL;
2339 struct cred *new_cred = NULL;
2340 struct nsproxy *new_nsproxy = NULL;
2341 int do_sysvsem = 0;
2342 int err;
2343
2344 /*
2345 * If unsharing a user namespace must also unshare the thread group
2346 * and unshare the filesystem root and working directories.
2347 */
2348 if (unshare_flags & CLONE_NEWUSER)
2349 unshare_flags |= CLONE_THREAD | CLONE_FS;
2350 /*
2351 * If unsharing vm, must also unshare signal handlers.
2352 */
2353 if (unshare_flags & CLONE_VM)
2354 unshare_flags |= CLONE_SIGHAND;
2355 /*
2356 * If unsharing a signal handlers, must also unshare the signal queues.
2357 */
2358 if (unshare_flags & CLONE_SIGHAND)
2359 unshare_flags |= CLONE_THREAD;
2360 /*
2361 * If unsharing namespace, must also unshare filesystem information.
2362 */
2363 if (unshare_flags & CLONE_NEWNS)
2364 unshare_flags |= CLONE_FS;
2365
2366 if ((unshare_flags & CLONE_NEWUSER) && !unprivileged_userns_clone) {
2367 err = -EPERM;
2368 if (!capable(CAP_SYS_ADMIN))
2369 goto bad_unshare_out;
2370 }
2371
2372 err = check_unshare_flags(unshare_flags);
2373 if (err)
2374 goto bad_unshare_out;
2375 /*
2376 * CLONE_NEWIPC must also detach from the undolist: after switching
2377 * to a new ipc namespace, the semaphore arrays from the old
2378 * namespace are unreachable.
2379 */
2380 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2381 do_sysvsem = 1;
2382 err = unshare_fs(unshare_flags, &new_fs);
2383 if (err)
2384 goto bad_unshare_out;
2385 err = unshare_fd(unshare_flags, &new_fd);
2386 if (err)
2387 goto bad_unshare_cleanup_fs;
2388 err = unshare_userns(unshare_flags, &new_cred);
2389 if (err)
2390 goto bad_unshare_cleanup_fd;
2391 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2392 new_cred, new_fs);
2393 if (err)
2394 goto bad_unshare_cleanup_cred;
2395
2396 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2397 if (do_sysvsem) {
2398 /*
2399 * CLONE_SYSVSEM is equivalent to sys_exit().
2400 */
2401 exit_sem(current);
2402 }
2403 if (unshare_flags & CLONE_NEWIPC) {
2404 /* Orphan segments in old ns (see sem above). */
2405 exit_shm(current);
2406 shm_init_task(current);
2407 }
2408
2409 if (new_nsproxy)
2410 switch_task_namespaces(current, new_nsproxy);
2411
2412 task_lock(current);
2413
2414 if (new_fs) {
2415 fs = current->fs;
2416 spin_lock(&fs->lock);
2417 current->fs = new_fs;
2418 if (--fs->users)
2419 new_fs = NULL;
2420 else
2421 new_fs = fs;
2422 spin_unlock(&fs->lock);
2423 }
2424
2425 if (new_fd) {
2426 fd = current->files;
2427 current->files = new_fd;
2428 new_fd = fd;
2429 }
2430
2431 task_unlock(current);
2432
2433 if (new_cred) {
2434 /* Install the new user namespace */
2435 commit_creds(new_cred);
2436 new_cred = NULL;
2437 }
2438 }
2439
2440 perf_event_namespaces(current);
2441
2442 bad_unshare_cleanup_cred:
2443 if (new_cred)
2444 put_cred(new_cred);
2445 bad_unshare_cleanup_fd:
2446 if (new_fd)
2447 put_files_struct(new_fd);
2448
2449 bad_unshare_cleanup_fs:
2450 if (new_fs)
2451 free_fs_struct(new_fs);
2452
2453 bad_unshare_out:
2454 return err;
2455 }
2456
2457 /*
2458 * Helper to unshare the files of the current task.
2459 * We don't want to expose copy_files internals to
2460 * the exec layer of the kernel.
2461 */
2462
2463 int unshare_files(struct files_struct **displaced)
2464 {
2465 struct task_struct *task = current;
2466 struct files_struct *copy = NULL;
2467 int error;
2468
2469 error = unshare_fd(CLONE_FILES, &copy);
2470 if (error || !copy) {
2471 *displaced = NULL;
2472 return error;
2473 }
2474 *displaced = task->files;
2475 task_lock(task);
2476 task->files = copy;
2477 task_unlock(task);
2478 return 0;
2479 }
2480
2481 int sysctl_max_threads(struct ctl_table *table, int write,
2482 void __user *buffer, size_t *lenp, loff_t *ppos)
2483 {
2484 struct ctl_table t;
2485 int ret;
2486 int threads = max_threads;
2487 int min = MIN_THREADS;
2488 int max = MAX_THREADS;
2489
2490 t = *table;
2491 t.data = &threads;
2492 t.extra1 = &min;
2493 t.extra2 = &max;
2494
2495 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2496 if (ret || !write)
2497 return ret;
2498
2499 set_max_threads(threads);
2500
2501 return 0;
2502 }