]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/futex.c
UBUNTU: Ubuntu-4.15.0-38.41
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
87 *
88 * The waker side modifies the user space value of the futex and calls
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
92 *
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
118 *
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
127 *
128 * waiters++; (a)
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
139 * if (uval == val)
140 * queue();
141 * unlock(hash_bucket(futex));
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
146 *
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
174 */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED 0x01
186 #else
187 /*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191 # define FLAGS_SHARED 0x00
192 #endif
193 #define FLAGS_CLOCKRT 0x02
194 #define FLAGS_HAS_TIMEOUT 0x04
195
196 /*
197 * Priority Inheritance state:
198 */
199 struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
215 } __randomize_layout;
216
217 /**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
219 * @list: priority-sorted list of tasks waiting on this futex
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233 * The order of wakeup is always to make the first condition true, then
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
238 */
239 struct futex_q {
240 struct plist_node list;
241
242 struct task_struct *task;
243 spinlock_t *lock_ptr;
244 union futex_key key;
245 struct futex_pi_state *pi_state;
246 struct rt_mutex_waiter *rt_waiter;
247 union futex_key *requeue_pi_key;
248 u32 bitset;
249 } __randomize_layout;
250
251 static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
261 */
262 struct futex_hash_bucket {
263 atomic_t waiters;
264 spinlock_t lock;
265 struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273 static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282 * Fault injections for futexes.
283 */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287 struct fault_attr attr;
288
289 bool ignore_private;
290 } fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
292 .ignore_private = false,
293 };
294
295 static int __init setup_fail_futex(char *str)
296 {
297 return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
301 static bool should_fail_futex(bool fshared)
302 {
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311 static int __init fail_futex_debugfs(void)
312 {
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337 return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343 mmgrab(key->private.mm);
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
347 * as smp_mb(); (B), see the ordering comment above.
348 */
349 smp_mb__after_atomic();
350 }
351
352 /*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358 atomic_inc(&hb->waiters);
359 /*
360 * Full barrier (A), see the ordering comment above.
361 */
362 smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
381 #else
382 return 1;
383 #endif
384 }
385
386 /**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
392 */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
398 return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411 return (key1 && key2
412 && key1->both.word == key2->both.word
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424 if (!key->both.ptr)
425 return;
426
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 break;
441 case FUT_OFF_MMSHARED:
442 futex_get_mm(key); /* implies smp_mb(); (B) */
443 break;
444 default:
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
450 smp_mb(); /* explicit smp_mb(); (B) */
451 }
452 }
453
454 /*
455 * Drop a reference to the resource addressed by a key.
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
459 */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
465 return;
466 }
467
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479 }
480
481 /**
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
488 *
489 * Return: a negative error code or 0
490 *
491 * The key words are stored in @key on success.
492 *
493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
497 * lock_page() might sleep, the caller should not hold a spinlock.
498 */
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502 unsigned long address = (unsigned long)uaddr;
503 struct mm_struct *mm = current->mm;
504 struct page *page, *tail;
505 struct address_space *mapping;
506 int err, ro = 0;
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
511 key->both.offset = address % PAGE_SIZE;
512 if (unlikely((address % sizeof(u32)) != 0))
513 return -EINVAL;
514 address -= key->both.offset;
515
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
530 key->private.mm = mm;
531 key->private.address = address;
532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
533 return 0;
534 }
535
536 again:
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
541 err = get_user_pages_fast(address, 1, 1, &page);
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
550 if (err < 0)
551 return err;
552 else
553 err = 0;
554
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
572 */
573 tail = page;
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
577 /*
578 * If page->mapping is NULL, then it cannot be a PageAnon
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
590 * an unlikely race, but we do need to retry for page->mapping.
591 */
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
602 unlock_page(page);
603 put_page(page);
604
605 if (shmem_swizzled)
606 goto again;
607
608 return -EFAULT;
609 }
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
619 * the object not the particular process.
620 */
621 if (PageAnon(page)) {
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
626 if (unlikely(should_fail_futex(fshared)) || ro) {
627 err = -EFAULT;
628 goto out;
629 }
630
631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632 key->private.mm = mm;
633 key->private.address = address;
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637 } else {
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel which is almost certainly an
674 * application bug. In such a case, just retry.
675 *
676 * We are not calling into get_futex_key_refs() in file-backed
677 * cases, therefore a successful atomic_inc return below will
678 * guarantee that get_futex_key() will still imply smp_mb(); (B).
679 */
680 if (!atomic_inc_not_zero(&inode->i_count)) {
681 rcu_read_unlock();
682 put_page(page);
683
684 goto again;
685 }
686
687 /* Should be impossible but lets be paranoid for now */
688 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689 err = -EFAULT;
690 rcu_read_unlock();
691 iput(inode);
692
693 goto out;
694 }
695
696 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
697 key->shared.inode = inode;
698 key->shared.pgoff = basepage_index(tail);
699 rcu_read_unlock();
700 }
701
702 out:
703 put_page(page);
704 return err;
705 }
706
707 static inline void put_futex_key(union futex_key *key)
708 {
709 drop_futex_key_refs(key);
710 }
711
712 /**
713 * fault_in_user_writeable() - Fault in user address and verify RW access
714 * @uaddr: pointer to faulting user space address
715 *
716 * Slow path to fixup the fault we just took in the atomic write
717 * access to @uaddr.
718 *
719 * We have no generic implementation of a non-destructive write to the
720 * user address. We know that we faulted in the atomic pagefault
721 * disabled section so we can as well avoid the #PF overhead by
722 * calling get_user_pages() right away.
723 */
724 static int fault_in_user_writeable(u32 __user *uaddr)
725 {
726 struct mm_struct *mm = current->mm;
727 int ret;
728
729 down_read(&mm->mmap_sem);
730 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
731 FAULT_FLAG_WRITE, NULL);
732 up_read(&mm->mmap_sem);
733
734 return ret < 0 ? ret : 0;
735 }
736
737 /**
738 * futex_top_waiter() - Return the highest priority waiter on a futex
739 * @hb: the hash bucket the futex_q's reside in
740 * @key: the futex key (to distinguish it from other futex futex_q's)
741 *
742 * Must be called with the hb lock held.
743 */
744 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745 union futex_key *key)
746 {
747 struct futex_q *this;
748
749 plist_for_each_entry(this, &hb->chain, list) {
750 if (match_futex(&this->key, key))
751 return this;
752 }
753 return NULL;
754 }
755
756 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757 u32 uval, u32 newval)
758 {
759 int ret;
760
761 pagefault_disable();
762 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
763 pagefault_enable();
764
765 return ret;
766 }
767
768 static int get_futex_value_locked(u32 *dest, u32 __user *from)
769 {
770 int ret;
771
772 pagefault_disable();
773 ret = __get_user(*dest, from);
774 pagefault_enable();
775
776 return ret ? -EFAULT : 0;
777 }
778
779
780 /*
781 * PI code:
782 */
783 static int refill_pi_state_cache(void)
784 {
785 struct futex_pi_state *pi_state;
786
787 if (likely(current->pi_state_cache))
788 return 0;
789
790 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
791
792 if (!pi_state)
793 return -ENOMEM;
794
795 INIT_LIST_HEAD(&pi_state->list);
796 /* pi_mutex gets initialized later */
797 pi_state->owner = NULL;
798 atomic_set(&pi_state->refcount, 1);
799 pi_state->key = FUTEX_KEY_INIT;
800
801 current->pi_state_cache = pi_state;
802
803 return 0;
804 }
805
806 static struct futex_pi_state *alloc_pi_state(void)
807 {
808 struct futex_pi_state *pi_state = current->pi_state_cache;
809
810 WARN_ON(!pi_state);
811 current->pi_state_cache = NULL;
812
813 return pi_state;
814 }
815
816 static void get_pi_state(struct futex_pi_state *pi_state)
817 {
818 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
819 }
820
821 /*
822 * Drops a reference to the pi_state object and frees or caches it
823 * when the last reference is gone.
824 */
825 static void put_pi_state(struct futex_pi_state *pi_state)
826 {
827 if (!pi_state)
828 return;
829
830 if (!atomic_dec_and_test(&pi_state->refcount))
831 return;
832
833 /*
834 * If pi_state->owner is NULL, the owner is most probably dying
835 * and has cleaned up the pi_state already
836 */
837 if (pi_state->owner) {
838 struct task_struct *owner;
839
840 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
841 owner = pi_state->owner;
842 if (owner) {
843 raw_spin_lock(&owner->pi_lock);
844 list_del_init(&pi_state->list);
845 raw_spin_unlock(&owner->pi_lock);
846 }
847 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
848 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
849 }
850
851 if (current->pi_state_cache) {
852 kfree(pi_state);
853 } else {
854 /*
855 * pi_state->list is already empty.
856 * clear pi_state->owner.
857 * refcount is at 0 - put it back to 1.
858 */
859 pi_state->owner = NULL;
860 atomic_set(&pi_state->refcount, 1);
861 current->pi_state_cache = pi_state;
862 }
863 }
864
865 /*
866 * Look up the task based on what TID userspace gave us.
867 * We dont trust it.
868 */
869 static struct task_struct *futex_find_get_task(pid_t pid)
870 {
871 struct task_struct *p;
872
873 rcu_read_lock();
874 p = find_task_by_vpid(pid);
875 if (p)
876 get_task_struct(p);
877
878 rcu_read_unlock();
879
880 return p;
881 }
882
883 #ifdef CONFIG_FUTEX_PI
884
885 /*
886 * This task is holding PI mutexes at exit time => bad.
887 * Kernel cleans up PI-state, but userspace is likely hosed.
888 * (Robust-futex cleanup is separate and might save the day for userspace.)
889 */
890 void exit_pi_state_list(struct task_struct *curr)
891 {
892 struct list_head *next, *head = &curr->pi_state_list;
893 struct futex_pi_state *pi_state;
894 struct futex_hash_bucket *hb;
895 union futex_key key = FUTEX_KEY_INIT;
896
897 if (!futex_cmpxchg_enabled)
898 return;
899 /*
900 * We are a ZOMBIE and nobody can enqueue itself on
901 * pi_state_list anymore, but we have to be careful
902 * versus waiters unqueueing themselves:
903 */
904 raw_spin_lock_irq(&curr->pi_lock);
905 while (!list_empty(head)) {
906 next = head->next;
907 pi_state = list_entry(next, struct futex_pi_state, list);
908 key = pi_state->key;
909 hb = hash_futex(&key);
910
911 /*
912 * We can race against put_pi_state() removing itself from the
913 * list (a waiter going away). put_pi_state() will first
914 * decrement the reference count and then modify the list, so
915 * its possible to see the list entry but fail this reference
916 * acquire.
917 *
918 * In that case; drop the locks to let put_pi_state() make
919 * progress and retry the loop.
920 */
921 if (!atomic_inc_not_zero(&pi_state->refcount)) {
922 raw_spin_unlock_irq(&curr->pi_lock);
923 cpu_relax();
924 raw_spin_lock_irq(&curr->pi_lock);
925 continue;
926 }
927 raw_spin_unlock_irq(&curr->pi_lock);
928
929 spin_lock(&hb->lock);
930 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
931 raw_spin_lock(&curr->pi_lock);
932 /*
933 * We dropped the pi-lock, so re-check whether this
934 * task still owns the PI-state:
935 */
936 if (head->next != next) {
937 /* retain curr->pi_lock for the loop invariant */
938 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
939 spin_unlock(&hb->lock);
940 put_pi_state(pi_state);
941 continue;
942 }
943
944 WARN_ON(pi_state->owner != curr);
945 WARN_ON(list_empty(&pi_state->list));
946 list_del_init(&pi_state->list);
947 pi_state->owner = NULL;
948
949 raw_spin_unlock(&curr->pi_lock);
950 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
951 spin_unlock(&hb->lock);
952
953 rt_mutex_futex_unlock(&pi_state->pi_mutex);
954 put_pi_state(pi_state);
955
956 raw_spin_lock_irq(&curr->pi_lock);
957 }
958 raw_spin_unlock_irq(&curr->pi_lock);
959 }
960
961 #endif
962
963 /*
964 * We need to check the following states:
965 *
966 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
967 *
968 * [1] NULL | --- | --- | 0 | 0/1 | Valid
969 * [2] NULL | --- | --- | >0 | 0/1 | Valid
970 *
971 * [3] Found | NULL | -- | Any | 0/1 | Invalid
972 *
973 * [4] Found | Found | NULL | 0 | 1 | Valid
974 * [5] Found | Found | NULL | >0 | 1 | Invalid
975 *
976 * [6] Found | Found | task | 0 | 1 | Valid
977 *
978 * [7] Found | Found | NULL | Any | 0 | Invalid
979 *
980 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
981 * [9] Found | Found | task | 0 | 0 | Invalid
982 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
983 *
984 * [1] Indicates that the kernel can acquire the futex atomically. We
985 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
986 *
987 * [2] Valid, if TID does not belong to a kernel thread. If no matching
988 * thread is found then it indicates that the owner TID has died.
989 *
990 * [3] Invalid. The waiter is queued on a non PI futex
991 *
992 * [4] Valid state after exit_robust_list(), which sets the user space
993 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
994 *
995 * [5] The user space value got manipulated between exit_robust_list()
996 * and exit_pi_state_list()
997 *
998 * [6] Valid state after exit_pi_state_list() which sets the new owner in
999 * the pi_state but cannot access the user space value.
1000 *
1001 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1002 *
1003 * [8] Owner and user space value match
1004 *
1005 * [9] There is no transient state which sets the user space TID to 0
1006 * except exit_robust_list(), but this is indicated by the
1007 * FUTEX_OWNER_DIED bit. See [4]
1008 *
1009 * [10] There is no transient state which leaves owner and user space
1010 * TID out of sync.
1011 *
1012 *
1013 * Serialization and lifetime rules:
1014 *
1015 * hb->lock:
1016 *
1017 * hb -> futex_q, relation
1018 * futex_q -> pi_state, relation
1019 *
1020 * (cannot be raw because hb can contain arbitrary amount
1021 * of futex_q's)
1022 *
1023 * pi_mutex->wait_lock:
1024 *
1025 * {uval, pi_state}
1026 *
1027 * (and pi_mutex 'obviously')
1028 *
1029 * p->pi_lock:
1030 *
1031 * p->pi_state_list -> pi_state->list, relation
1032 *
1033 * pi_state->refcount:
1034 *
1035 * pi_state lifetime
1036 *
1037 *
1038 * Lock order:
1039 *
1040 * hb->lock
1041 * pi_mutex->wait_lock
1042 * p->pi_lock
1043 *
1044 */
1045
1046 /*
1047 * Validate that the existing waiter has a pi_state and sanity check
1048 * the pi_state against the user space value. If correct, attach to
1049 * it.
1050 */
1051 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1052 struct futex_pi_state *pi_state,
1053 struct futex_pi_state **ps)
1054 {
1055 pid_t pid = uval & FUTEX_TID_MASK;
1056 u32 uval2;
1057 int ret;
1058
1059 /*
1060 * Userspace might have messed up non-PI and PI futexes [3]
1061 */
1062 if (unlikely(!pi_state))
1063 return -EINVAL;
1064
1065 /*
1066 * We get here with hb->lock held, and having found a
1067 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1068 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1069 * which in turn means that futex_lock_pi() still has a reference on
1070 * our pi_state.
1071 *
1072 * The waiter holding a reference on @pi_state also protects against
1073 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1074 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1075 * free pi_state before we can take a reference ourselves.
1076 */
1077 WARN_ON(!atomic_read(&pi_state->refcount));
1078
1079 /*
1080 * Now that we have a pi_state, we can acquire wait_lock
1081 * and do the state validation.
1082 */
1083 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1084
1085 /*
1086 * Since {uval, pi_state} is serialized by wait_lock, and our current
1087 * uval was read without holding it, it can have changed. Verify it
1088 * still is what we expect it to be, otherwise retry the entire
1089 * operation.
1090 */
1091 if (get_futex_value_locked(&uval2, uaddr))
1092 goto out_efault;
1093
1094 if (uval != uval2)
1095 goto out_eagain;
1096
1097 /*
1098 * Handle the owner died case:
1099 */
1100 if (uval & FUTEX_OWNER_DIED) {
1101 /*
1102 * exit_pi_state_list sets owner to NULL and wakes the
1103 * topmost waiter. The task which acquires the
1104 * pi_state->rt_mutex will fixup owner.
1105 */
1106 if (!pi_state->owner) {
1107 /*
1108 * No pi state owner, but the user space TID
1109 * is not 0. Inconsistent state. [5]
1110 */
1111 if (pid)
1112 goto out_einval;
1113 /*
1114 * Take a ref on the state and return success. [4]
1115 */
1116 goto out_attach;
1117 }
1118
1119 /*
1120 * If TID is 0, then either the dying owner has not
1121 * yet executed exit_pi_state_list() or some waiter
1122 * acquired the rtmutex in the pi state, but did not
1123 * yet fixup the TID in user space.
1124 *
1125 * Take a ref on the state and return success. [6]
1126 */
1127 if (!pid)
1128 goto out_attach;
1129 } else {
1130 /*
1131 * If the owner died bit is not set, then the pi_state
1132 * must have an owner. [7]
1133 */
1134 if (!pi_state->owner)
1135 goto out_einval;
1136 }
1137
1138 /*
1139 * Bail out if user space manipulated the futex value. If pi
1140 * state exists then the owner TID must be the same as the
1141 * user space TID. [9/10]
1142 */
1143 if (pid != task_pid_vnr(pi_state->owner))
1144 goto out_einval;
1145
1146 out_attach:
1147 get_pi_state(pi_state);
1148 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1149 *ps = pi_state;
1150 return 0;
1151
1152 out_einval:
1153 ret = -EINVAL;
1154 goto out_error;
1155
1156 out_eagain:
1157 ret = -EAGAIN;
1158 goto out_error;
1159
1160 out_efault:
1161 ret = -EFAULT;
1162 goto out_error;
1163
1164 out_error:
1165 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1166 return ret;
1167 }
1168
1169 /*
1170 * Lookup the task for the TID provided from user space and attach to
1171 * it after doing proper sanity checks.
1172 */
1173 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1174 struct futex_pi_state **ps)
1175 {
1176 pid_t pid = uval & FUTEX_TID_MASK;
1177 struct futex_pi_state *pi_state;
1178 struct task_struct *p;
1179
1180 /*
1181 * We are the first waiter - try to look up the real owner and attach
1182 * the new pi_state to it, but bail out when TID = 0 [1]
1183 */
1184 if (!pid)
1185 return -ESRCH;
1186 p = futex_find_get_task(pid);
1187 if (!p)
1188 return -ESRCH;
1189
1190 if (unlikely(p->flags & PF_KTHREAD)) {
1191 put_task_struct(p);
1192 return -EPERM;
1193 }
1194
1195 /*
1196 * We need to look at the task state flags to figure out,
1197 * whether the task is exiting. To protect against the do_exit
1198 * change of the task flags, we do this protected by
1199 * p->pi_lock:
1200 */
1201 raw_spin_lock_irq(&p->pi_lock);
1202 if (unlikely(p->flags & PF_EXITING)) {
1203 /*
1204 * The task is on the way out. When PF_EXITPIDONE is
1205 * set, we know that the task has finished the
1206 * cleanup:
1207 */
1208 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1209
1210 raw_spin_unlock_irq(&p->pi_lock);
1211 put_task_struct(p);
1212 return ret;
1213 }
1214
1215 /*
1216 * No existing pi state. First waiter. [2]
1217 *
1218 * This creates pi_state, we have hb->lock held, this means nothing can
1219 * observe this state, wait_lock is irrelevant.
1220 */
1221 pi_state = alloc_pi_state();
1222
1223 /*
1224 * Initialize the pi_mutex in locked state and make @p
1225 * the owner of it:
1226 */
1227 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1228
1229 /* Store the key for possible exit cleanups: */
1230 pi_state->key = *key;
1231
1232 WARN_ON(!list_empty(&pi_state->list));
1233 list_add(&pi_state->list, &p->pi_state_list);
1234 /*
1235 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1236 * because there is no concurrency as the object is not published yet.
1237 */
1238 pi_state->owner = p;
1239 raw_spin_unlock_irq(&p->pi_lock);
1240
1241 put_task_struct(p);
1242
1243 *ps = pi_state;
1244
1245 return 0;
1246 }
1247
1248 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1249 struct futex_hash_bucket *hb,
1250 union futex_key *key, struct futex_pi_state **ps)
1251 {
1252 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1253
1254 /*
1255 * If there is a waiter on that futex, validate it and
1256 * attach to the pi_state when the validation succeeds.
1257 */
1258 if (top_waiter)
1259 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1260
1261 /*
1262 * We are the first waiter - try to look up the owner based on
1263 * @uval and attach to it.
1264 */
1265 return attach_to_pi_owner(uval, key, ps);
1266 }
1267
1268 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1269 {
1270 u32 uninitialized_var(curval);
1271
1272 if (unlikely(should_fail_futex(true)))
1273 return -EFAULT;
1274
1275 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1276 return -EFAULT;
1277
1278 /* If user space value changed, let the caller retry */
1279 return curval != uval ? -EAGAIN : 0;
1280 }
1281
1282 /**
1283 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1284 * @uaddr: the pi futex user address
1285 * @hb: the pi futex hash bucket
1286 * @key: the futex key associated with uaddr and hb
1287 * @ps: the pi_state pointer where we store the result of the
1288 * lookup
1289 * @task: the task to perform the atomic lock work for. This will
1290 * be "current" except in the case of requeue pi.
1291 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1292 *
1293 * Return:
1294 * - 0 - ready to wait;
1295 * - 1 - acquired the lock;
1296 * - <0 - error
1297 *
1298 * The hb->lock and futex_key refs shall be held by the caller.
1299 */
1300 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1301 union futex_key *key,
1302 struct futex_pi_state **ps,
1303 struct task_struct *task, int set_waiters)
1304 {
1305 u32 uval, newval, vpid = task_pid_vnr(task);
1306 struct futex_q *top_waiter;
1307 int ret;
1308
1309 /*
1310 * Read the user space value first so we can validate a few
1311 * things before proceeding further.
1312 */
1313 if (get_futex_value_locked(&uval, uaddr))
1314 return -EFAULT;
1315
1316 if (unlikely(should_fail_futex(true)))
1317 return -EFAULT;
1318
1319 /*
1320 * Detect deadlocks.
1321 */
1322 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1323 return -EDEADLK;
1324
1325 if ((unlikely(should_fail_futex(true))))
1326 return -EDEADLK;
1327
1328 /*
1329 * Lookup existing state first. If it exists, try to attach to
1330 * its pi_state.
1331 */
1332 top_waiter = futex_top_waiter(hb, key);
1333 if (top_waiter)
1334 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1335
1336 /*
1337 * No waiter and user TID is 0. We are here because the
1338 * waiters or the owner died bit is set or called from
1339 * requeue_cmp_pi or for whatever reason something took the
1340 * syscall.
1341 */
1342 if (!(uval & FUTEX_TID_MASK)) {
1343 /*
1344 * We take over the futex. No other waiters and the user space
1345 * TID is 0. We preserve the owner died bit.
1346 */
1347 newval = uval & FUTEX_OWNER_DIED;
1348 newval |= vpid;
1349
1350 /* The futex requeue_pi code can enforce the waiters bit */
1351 if (set_waiters)
1352 newval |= FUTEX_WAITERS;
1353
1354 ret = lock_pi_update_atomic(uaddr, uval, newval);
1355 /* If the take over worked, return 1 */
1356 return ret < 0 ? ret : 1;
1357 }
1358
1359 /*
1360 * First waiter. Set the waiters bit before attaching ourself to
1361 * the owner. If owner tries to unlock, it will be forced into
1362 * the kernel and blocked on hb->lock.
1363 */
1364 newval = uval | FUTEX_WAITERS;
1365 ret = lock_pi_update_atomic(uaddr, uval, newval);
1366 if (ret)
1367 return ret;
1368 /*
1369 * If the update of the user space value succeeded, we try to
1370 * attach to the owner. If that fails, no harm done, we only
1371 * set the FUTEX_WAITERS bit in the user space variable.
1372 */
1373 return attach_to_pi_owner(uval, key, ps);
1374 }
1375
1376 /**
1377 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1378 * @q: The futex_q to unqueue
1379 *
1380 * The q->lock_ptr must not be NULL and must be held by the caller.
1381 */
1382 static void __unqueue_futex(struct futex_q *q)
1383 {
1384 struct futex_hash_bucket *hb;
1385
1386 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1387 || WARN_ON(plist_node_empty(&q->list)))
1388 return;
1389
1390 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1391 plist_del(&q->list, &hb->chain);
1392 hb_waiters_dec(hb);
1393 }
1394
1395 /*
1396 * The hash bucket lock must be held when this is called.
1397 * Afterwards, the futex_q must not be accessed. Callers
1398 * must ensure to later call wake_up_q() for the actual
1399 * wakeups to occur.
1400 */
1401 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1402 {
1403 struct task_struct *p = q->task;
1404
1405 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1406 return;
1407
1408 /*
1409 * Queue the task for later wakeup for after we've released
1410 * the hb->lock. wake_q_add() grabs reference to p.
1411 */
1412 wake_q_add(wake_q, p);
1413 __unqueue_futex(q);
1414 /*
1415 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1416 * is written, without taking any locks. This is possible in the event
1417 * of a spurious wakeup, for example. A memory barrier is required here
1418 * to prevent the following store to lock_ptr from getting ahead of the
1419 * plist_del in __unqueue_futex().
1420 */
1421 smp_store_release(&q->lock_ptr, NULL);
1422 }
1423
1424 /*
1425 * Caller must hold a reference on @pi_state.
1426 */
1427 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1428 {
1429 u32 uninitialized_var(curval), newval;
1430 struct task_struct *new_owner;
1431 bool postunlock = false;
1432 DEFINE_WAKE_Q(wake_q);
1433 int ret = 0;
1434
1435 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1436 if (WARN_ON_ONCE(!new_owner)) {
1437 /*
1438 * As per the comment in futex_unlock_pi() this should not happen.
1439 *
1440 * When this happens, give up our locks and try again, giving
1441 * the futex_lock_pi() instance time to complete, either by
1442 * waiting on the rtmutex or removing itself from the futex
1443 * queue.
1444 */
1445 ret = -EAGAIN;
1446 goto out_unlock;
1447 }
1448
1449 /*
1450 * We pass it to the next owner. The WAITERS bit is always kept
1451 * enabled while there is PI state around. We cleanup the owner
1452 * died bit, because we are the owner.
1453 */
1454 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1455
1456 if (unlikely(should_fail_futex(true)))
1457 ret = -EFAULT;
1458
1459 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1460 ret = -EFAULT;
1461
1462 } else if (curval != uval) {
1463 /*
1464 * If a unconditional UNLOCK_PI operation (user space did not
1465 * try the TID->0 transition) raced with a waiter setting the
1466 * FUTEX_WAITERS flag between get_user() and locking the hash
1467 * bucket lock, retry the operation.
1468 */
1469 if ((FUTEX_TID_MASK & curval) == uval)
1470 ret = -EAGAIN;
1471 else
1472 ret = -EINVAL;
1473 }
1474
1475 if (ret)
1476 goto out_unlock;
1477
1478 /*
1479 * This is a point of no return; once we modify the uval there is no
1480 * going back and subsequent operations must not fail.
1481 */
1482
1483 raw_spin_lock(&pi_state->owner->pi_lock);
1484 WARN_ON(list_empty(&pi_state->list));
1485 list_del_init(&pi_state->list);
1486 raw_spin_unlock(&pi_state->owner->pi_lock);
1487
1488 raw_spin_lock(&new_owner->pi_lock);
1489 WARN_ON(!list_empty(&pi_state->list));
1490 list_add(&pi_state->list, &new_owner->pi_state_list);
1491 pi_state->owner = new_owner;
1492 raw_spin_unlock(&new_owner->pi_lock);
1493
1494 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1495
1496 out_unlock:
1497 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1498
1499 if (postunlock)
1500 rt_mutex_postunlock(&wake_q);
1501
1502 return ret;
1503 }
1504
1505 /*
1506 * Express the locking dependencies for lockdep:
1507 */
1508 static inline void
1509 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1510 {
1511 if (hb1 <= hb2) {
1512 spin_lock(&hb1->lock);
1513 if (hb1 < hb2)
1514 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1515 } else { /* hb1 > hb2 */
1516 spin_lock(&hb2->lock);
1517 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1518 }
1519 }
1520
1521 static inline void
1522 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1523 {
1524 spin_unlock(&hb1->lock);
1525 if (hb1 != hb2)
1526 spin_unlock(&hb2->lock);
1527 }
1528
1529 /*
1530 * Wake up waiters matching bitset queued on this futex (uaddr).
1531 */
1532 static int
1533 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1534 {
1535 struct futex_hash_bucket *hb;
1536 struct futex_q *this, *next;
1537 union futex_key key = FUTEX_KEY_INIT;
1538 int ret;
1539 DEFINE_WAKE_Q(wake_q);
1540
1541 if (!bitset)
1542 return -EINVAL;
1543
1544 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1545 if (unlikely(ret != 0))
1546 goto out;
1547
1548 hb = hash_futex(&key);
1549
1550 /* Make sure we really have tasks to wakeup */
1551 if (!hb_waiters_pending(hb))
1552 goto out_put_key;
1553
1554 spin_lock(&hb->lock);
1555
1556 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1557 if (match_futex (&this->key, &key)) {
1558 if (this->pi_state || this->rt_waiter) {
1559 ret = -EINVAL;
1560 break;
1561 }
1562
1563 /* Check if one of the bits is set in both bitsets */
1564 if (!(this->bitset & bitset))
1565 continue;
1566
1567 mark_wake_futex(&wake_q, this);
1568 if (++ret >= nr_wake)
1569 break;
1570 }
1571 }
1572
1573 spin_unlock(&hb->lock);
1574 wake_up_q(&wake_q);
1575 out_put_key:
1576 put_futex_key(&key);
1577 out:
1578 return ret;
1579 }
1580
1581 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1582 {
1583 unsigned int op = (encoded_op & 0x70000000) >> 28;
1584 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1585 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1586 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1587 int oldval, ret;
1588
1589 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1590 if (oparg < 0 || oparg > 31) {
1591 char comm[sizeof(current->comm)];
1592 /*
1593 * kill this print and return -EINVAL when userspace
1594 * is sane again
1595 */
1596 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1597 get_task_comm(comm, current), oparg);
1598 oparg &= 31;
1599 }
1600 oparg = 1 << oparg;
1601 }
1602
1603 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1604 return -EFAULT;
1605
1606 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1607 if (ret)
1608 return ret;
1609
1610 switch (cmp) {
1611 case FUTEX_OP_CMP_EQ:
1612 return oldval == cmparg;
1613 case FUTEX_OP_CMP_NE:
1614 return oldval != cmparg;
1615 case FUTEX_OP_CMP_LT:
1616 return oldval < cmparg;
1617 case FUTEX_OP_CMP_GE:
1618 return oldval >= cmparg;
1619 case FUTEX_OP_CMP_LE:
1620 return oldval <= cmparg;
1621 case FUTEX_OP_CMP_GT:
1622 return oldval > cmparg;
1623 default:
1624 return -ENOSYS;
1625 }
1626 }
1627
1628 /*
1629 * Wake up all waiters hashed on the physical page that is mapped
1630 * to this virtual address:
1631 */
1632 static int
1633 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1634 int nr_wake, int nr_wake2, int op)
1635 {
1636 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1637 struct futex_hash_bucket *hb1, *hb2;
1638 struct futex_q *this, *next;
1639 int ret, op_ret;
1640 DEFINE_WAKE_Q(wake_q);
1641
1642 retry:
1643 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1644 if (unlikely(ret != 0))
1645 goto out;
1646 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1647 if (unlikely(ret != 0))
1648 goto out_put_key1;
1649
1650 hb1 = hash_futex(&key1);
1651 hb2 = hash_futex(&key2);
1652
1653 retry_private:
1654 double_lock_hb(hb1, hb2);
1655 op_ret = futex_atomic_op_inuser(op, uaddr2);
1656 if (unlikely(op_ret < 0)) {
1657
1658 double_unlock_hb(hb1, hb2);
1659
1660 #ifndef CONFIG_MMU
1661 /*
1662 * we don't get EFAULT from MMU faults if we don't have an MMU,
1663 * but we might get them from range checking
1664 */
1665 ret = op_ret;
1666 goto out_put_keys;
1667 #endif
1668
1669 if (unlikely(op_ret != -EFAULT)) {
1670 ret = op_ret;
1671 goto out_put_keys;
1672 }
1673
1674 ret = fault_in_user_writeable(uaddr2);
1675 if (ret)
1676 goto out_put_keys;
1677
1678 if (!(flags & FLAGS_SHARED))
1679 goto retry_private;
1680
1681 put_futex_key(&key2);
1682 put_futex_key(&key1);
1683 goto retry;
1684 }
1685
1686 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1687 if (match_futex (&this->key, &key1)) {
1688 if (this->pi_state || this->rt_waiter) {
1689 ret = -EINVAL;
1690 goto out_unlock;
1691 }
1692 mark_wake_futex(&wake_q, this);
1693 if (++ret >= nr_wake)
1694 break;
1695 }
1696 }
1697
1698 if (op_ret > 0) {
1699 op_ret = 0;
1700 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1701 if (match_futex (&this->key, &key2)) {
1702 if (this->pi_state || this->rt_waiter) {
1703 ret = -EINVAL;
1704 goto out_unlock;
1705 }
1706 mark_wake_futex(&wake_q, this);
1707 if (++op_ret >= nr_wake2)
1708 break;
1709 }
1710 }
1711 ret += op_ret;
1712 }
1713
1714 out_unlock:
1715 double_unlock_hb(hb1, hb2);
1716 wake_up_q(&wake_q);
1717 out_put_keys:
1718 put_futex_key(&key2);
1719 out_put_key1:
1720 put_futex_key(&key1);
1721 out:
1722 return ret;
1723 }
1724
1725 /**
1726 * requeue_futex() - Requeue a futex_q from one hb to another
1727 * @q: the futex_q to requeue
1728 * @hb1: the source hash_bucket
1729 * @hb2: the target hash_bucket
1730 * @key2: the new key for the requeued futex_q
1731 */
1732 static inline
1733 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1734 struct futex_hash_bucket *hb2, union futex_key *key2)
1735 {
1736
1737 /*
1738 * If key1 and key2 hash to the same bucket, no need to
1739 * requeue.
1740 */
1741 if (likely(&hb1->chain != &hb2->chain)) {
1742 plist_del(&q->list, &hb1->chain);
1743 hb_waiters_dec(hb1);
1744 hb_waiters_inc(hb2);
1745 plist_add(&q->list, &hb2->chain);
1746 q->lock_ptr = &hb2->lock;
1747 }
1748 get_futex_key_refs(key2);
1749 q->key = *key2;
1750 }
1751
1752 /**
1753 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1754 * @q: the futex_q
1755 * @key: the key of the requeue target futex
1756 * @hb: the hash_bucket of the requeue target futex
1757 *
1758 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1759 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1760 * to the requeue target futex so the waiter can detect the wakeup on the right
1761 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1762 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1763 * to protect access to the pi_state to fixup the owner later. Must be called
1764 * with both q->lock_ptr and hb->lock held.
1765 */
1766 static inline
1767 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1768 struct futex_hash_bucket *hb)
1769 {
1770 get_futex_key_refs(key);
1771 q->key = *key;
1772
1773 __unqueue_futex(q);
1774
1775 WARN_ON(!q->rt_waiter);
1776 q->rt_waiter = NULL;
1777
1778 q->lock_ptr = &hb->lock;
1779
1780 wake_up_state(q->task, TASK_NORMAL);
1781 }
1782
1783 /**
1784 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1785 * @pifutex: the user address of the to futex
1786 * @hb1: the from futex hash bucket, must be locked by the caller
1787 * @hb2: the to futex hash bucket, must be locked by the caller
1788 * @key1: the from futex key
1789 * @key2: the to futex key
1790 * @ps: address to store the pi_state pointer
1791 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1792 *
1793 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1794 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1795 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1796 * hb1 and hb2 must be held by the caller.
1797 *
1798 * Return:
1799 * - 0 - failed to acquire the lock atomically;
1800 * - >0 - acquired the lock, return value is vpid of the top_waiter
1801 * - <0 - error
1802 */
1803 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1804 struct futex_hash_bucket *hb1,
1805 struct futex_hash_bucket *hb2,
1806 union futex_key *key1, union futex_key *key2,
1807 struct futex_pi_state **ps, int set_waiters)
1808 {
1809 struct futex_q *top_waiter = NULL;
1810 u32 curval;
1811 int ret, vpid;
1812
1813 if (get_futex_value_locked(&curval, pifutex))
1814 return -EFAULT;
1815
1816 if (unlikely(should_fail_futex(true)))
1817 return -EFAULT;
1818
1819 /*
1820 * Find the top_waiter and determine if there are additional waiters.
1821 * If the caller intends to requeue more than 1 waiter to pifutex,
1822 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1823 * as we have means to handle the possible fault. If not, don't set
1824 * the bit unecessarily as it will force the subsequent unlock to enter
1825 * the kernel.
1826 */
1827 top_waiter = futex_top_waiter(hb1, key1);
1828
1829 /* There are no waiters, nothing for us to do. */
1830 if (!top_waiter)
1831 return 0;
1832
1833 /* Ensure we requeue to the expected futex. */
1834 if (!match_futex(top_waiter->requeue_pi_key, key2))
1835 return -EINVAL;
1836
1837 /*
1838 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1839 * the contended case or if set_waiters is 1. The pi_state is returned
1840 * in ps in contended cases.
1841 */
1842 vpid = task_pid_vnr(top_waiter->task);
1843 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1844 set_waiters);
1845 if (ret == 1) {
1846 requeue_pi_wake_futex(top_waiter, key2, hb2);
1847 return vpid;
1848 }
1849 return ret;
1850 }
1851
1852 /**
1853 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1854 * @uaddr1: source futex user address
1855 * @flags: futex flags (FLAGS_SHARED, etc.)
1856 * @uaddr2: target futex user address
1857 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1858 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1859 * @cmpval: @uaddr1 expected value (or %NULL)
1860 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1861 * pi futex (pi to pi requeue is not supported)
1862 *
1863 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1864 * uaddr2 atomically on behalf of the top waiter.
1865 *
1866 * Return:
1867 * - >=0 - on success, the number of tasks requeued or woken;
1868 * - <0 - on error
1869 */
1870 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1871 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1872 u32 *cmpval, int requeue_pi)
1873 {
1874 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1875 int drop_count = 0, task_count = 0, ret;
1876 struct futex_pi_state *pi_state = NULL;
1877 struct futex_hash_bucket *hb1, *hb2;
1878 struct futex_q *this, *next;
1879 DEFINE_WAKE_Q(wake_q);
1880
1881 if (nr_wake < 0 || nr_requeue < 0)
1882 return -EINVAL;
1883
1884 /*
1885 * When PI not supported: return -ENOSYS if requeue_pi is true,
1886 * consequently the compiler knows requeue_pi is always false past
1887 * this point which will optimize away all the conditional code
1888 * further down.
1889 */
1890 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1891 return -ENOSYS;
1892
1893 if (requeue_pi) {
1894 /*
1895 * Requeue PI only works on two distinct uaddrs. This
1896 * check is only valid for private futexes. See below.
1897 */
1898 if (uaddr1 == uaddr2)
1899 return -EINVAL;
1900
1901 /*
1902 * requeue_pi requires a pi_state, try to allocate it now
1903 * without any locks in case it fails.
1904 */
1905 if (refill_pi_state_cache())
1906 return -ENOMEM;
1907 /*
1908 * requeue_pi must wake as many tasks as it can, up to nr_wake
1909 * + nr_requeue, since it acquires the rt_mutex prior to
1910 * returning to userspace, so as to not leave the rt_mutex with
1911 * waiters and no owner. However, second and third wake-ups
1912 * cannot be predicted as they involve race conditions with the
1913 * first wake and a fault while looking up the pi_state. Both
1914 * pthread_cond_signal() and pthread_cond_broadcast() should
1915 * use nr_wake=1.
1916 */
1917 if (nr_wake != 1)
1918 return -EINVAL;
1919 }
1920
1921 retry:
1922 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1923 if (unlikely(ret != 0))
1924 goto out;
1925 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1926 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1927 if (unlikely(ret != 0))
1928 goto out_put_key1;
1929
1930 /*
1931 * The check above which compares uaddrs is not sufficient for
1932 * shared futexes. We need to compare the keys:
1933 */
1934 if (requeue_pi && match_futex(&key1, &key2)) {
1935 ret = -EINVAL;
1936 goto out_put_keys;
1937 }
1938
1939 hb1 = hash_futex(&key1);
1940 hb2 = hash_futex(&key2);
1941
1942 retry_private:
1943 hb_waiters_inc(hb2);
1944 double_lock_hb(hb1, hb2);
1945
1946 if (likely(cmpval != NULL)) {
1947 u32 curval;
1948
1949 ret = get_futex_value_locked(&curval, uaddr1);
1950
1951 if (unlikely(ret)) {
1952 double_unlock_hb(hb1, hb2);
1953 hb_waiters_dec(hb2);
1954
1955 ret = get_user(curval, uaddr1);
1956 if (ret)
1957 goto out_put_keys;
1958
1959 if (!(flags & FLAGS_SHARED))
1960 goto retry_private;
1961
1962 put_futex_key(&key2);
1963 put_futex_key(&key1);
1964 goto retry;
1965 }
1966 if (curval != *cmpval) {
1967 ret = -EAGAIN;
1968 goto out_unlock;
1969 }
1970 }
1971
1972 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1973 /*
1974 * Attempt to acquire uaddr2 and wake the top waiter. If we
1975 * intend to requeue waiters, force setting the FUTEX_WAITERS
1976 * bit. We force this here where we are able to easily handle
1977 * faults rather in the requeue loop below.
1978 */
1979 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1980 &key2, &pi_state, nr_requeue);
1981
1982 /*
1983 * At this point the top_waiter has either taken uaddr2 or is
1984 * waiting on it. If the former, then the pi_state will not
1985 * exist yet, look it up one more time to ensure we have a
1986 * reference to it. If the lock was taken, ret contains the
1987 * vpid of the top waiter task.
1988 * If the lock was not taken, we have pi_state and an initial
1989 * refcount on it. In case of an error we have nothing.
1990 */
1991 if (ret > 0) {
1992 WARN_ON(pi_state);
1993 drop_count++;
1994 task_count++;
1995 /*
1996 * If we acquired the lock, then the user space value
1997 * of uaddr2 should be vpid. It cannot be changed by
1998 * the top waiter as it is blocked on hb2 lock if it
1999 * tries to do so. If something fiddled with it behind
2000 * our back the pi state lookup might unearth it. So
2001 * we rather use the known value than rereading and
2002 * handing potential crap to lookup_pi_state.
2003 *
2004 * If that call succeeds then we have pi_state and an
2005 * initial refcount on it.
2006 */
2007 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2008 }
2009
2010 switch (ret) {
2011 case 0:
2012 /* We hold a reference on the pi state. */
2013 break;
2014
2015 /* If the above failed, then pi_state is NULL */
2016 case -EFAULT:
2017 double_unlock_hb(hb1, hb2);
2018 hb_waiters_dec(hb2);
2019 put_futex_key(&key2);
2020 put_futex_key(&key1);
2021 ret = fault_in_user_writeable(uaddr2);
2022 if (!ret)
2023 goto retry;
2024 goto out;
2025 case -EAGAIN:
2026 /*
2027 * Two reasons for this:
2028 * - Owner is exiting and we just wait for the
2029 * exit to complete.
2030 * - The user space value changed.
2031 */
2032 double_unlock_hb(hb1, hb2);
2033 hb_waiters_dec(hb2);
2034 put_futex_key(&key2);
2035 put_futex_key(&key1);
2036 cond_resched();
2037 goto retry;
2038 default:
2039 goto out_unlock;
2040 }
2041 }
2042
2043 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2044 if (task_count - nr_wake >= nr_requeue)
2045 break;
2046
2047 if (!match_futex(&this->key, &key1))
2048 continue;
2049
2050 /*
2051 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2052 * be paired with each other and no other futex ops.
2053 *
2054 * We should never be requeueing a futex_q with a pi_state,
2055 * which is awaiting a futex_unlock_pi().
2056 */
2057 if ((requeue_pi && !this->rt_waiter) ||
2058 (!requeue_pi && this->rt_waiter) ||
2059 this->pi_state) {
2060 ret = -EINVAL;
2061 break;
2062 }
2063
2064 /*
2065 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2066 * lock, we already woke the top_waiter. If not, it will be
2067 * woken by futex_unlock_pi().
2068 */
2069 if (++task_count <= nr_wake && !requeue_pi) {
2070 mark_wake_futex(&wake_q, this);
2071 continue;
2072 }
2073
2074 /* Ensure we requeue to the expected futex for requeue_pi. */
2075 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2076 ret = -EINVAL;
2077 break;
2078 }
2079
2080 /*
2081 * Requeue nr_requeue waiters and possibly one more in the case
2082 * of requeue_pi if we couldn't acquire the lock atomically.
2083 */
2084 if (requeue_pi) {
2085 /*
2086 * Prepare the waiter to take the rt_mutex. Take a
2087 * refcount on the pi_state and store the pointer in
2088 * the futex_q object of the waiter.
2089 */
2090 get_pi_state(pi_state);
2091 this->pi_state = pi_state;
2092 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2093 this->rt_waiter,
2094 this->task);
2095 if (ret == 1) {
2096 /*
2097 * We got the lock. We do neither drop the
2098 * refcount on pi_state nor clear
2099 * this->pi_state because the waiter needs the
2100 * pi_state for cleaning up the user space
2101 * value. It will drop the refcount after
2102 * doing so.
2103 */
2104 requeue_pi_wake_futex(this, &key2, hb2);
2105 drop_count++;
2106 continue;
2107 } else if (ret) {
2108 /*
2109 * rt_mutex_start_proxy_lock() detected a
2110 * potential deadlock when we tried to queue
2111 * that waiter. Drop the pi_state reference
2112 * which we took above and remove the pointer
2113 * to the state from the waiters futex_q
2114 * object.
2115 */
2116 this->pi_state = NULL;
2117 put_pi_state(pi_state);
2118 /*
2119 * We stop queueing more waiters and let user
2120 * space deal with the mess.
2121 */
2122 break;
2123 }
2124 }
2125 requeue_futex(this, hb1, hb2, &key2);
2126 drop_count++;
2127 }
2128
2129 /*
2130 * We took an extra initial reference to the pi_state either
2131 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2132 * need to drop it here again.
2133 */
2134 put_pi_state(pi_state);
2135
2136 out_unlock:
2137 double_unlock_hb(hb1, hb2);
2138 wake_up_q(&wake_q);
2139 hb_waiters_dec(hb2);
2140
2141 /*
2142 * drop_futex_key_refs() must be called outside the spinlocks. During
2143 * the requeue we moved futex_q's from the hash bucket at key1 to the
2144 * one at key2 and updated their key pointer. We no longer need to
2145 * hold the references to key1.
2146 */
2147 while (--drop_count >= 0)
2148 drop_futex_key_refs(&key1);
2149
2150 out_put_keys:
2151 put_futex_key(&key2);
2152 out_put_key1:
2153 put_futex_key(&key1);
2154 out:
2155 return ret ? ret : task_count;
2156 }
2157
2158 /* The key must be already stored in q->key. */
2159 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2160 __acquires(&hb->lock)
2161 {
2162 struct futex_hash_bucket *hb;
2163
2164 hb = hash_futex(&q->key);
2165
2166 /*
2167 * Increment the counter before taking the lock so that
2168 * a potential waker won't miss a to-be-slept task that is
2169 * waiting for the spinlock. This is safe as all queue_lock()
2170 * users end up calling queue_me(). Similarly, for housekeeping,
2171 * decrement the counter at queue_unlock() when some error has
2172 * occurred and we don't end up adding the task to the list.
2173 */
2174 hb_waiters_inc(hb);
2175
2176 q->lock_ptr = &hb->lock;
2177
2178 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2179 return hb;
2180 }
2181
2182 static inline void
2183 queue_unlock(struct futex_hash_bucket *hb)
2184 __releases(&hb->lock)
2185 {
2186 spin_unlock(&hb->lock);
2187 hb_waiters_dec(hb);
2188 }
2189
2190 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2191 {
2192 int prio;
2193
2194 /*
2195 * The priority used to register this element is
2196 * - either the real thread-priority for the real-time threads
2197 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2198 * - or MAX_RT_PRIO for non-RT threads.
2199 * Thus, all RT-threads are woken first in priority order, and
2200 * the others are woken last, in FIFO order.
2201 */
2202 prio = min(current->normal_prio, MAX_RT_PRIO);
2203
2204 plist_node_init(&q->list, prio);
2205 plist_add(&q->list, &hb->chain);
2206 q->task = current;
2207 }
2208
2209 /**
2210 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2211 * @q: The futex_q to enqueue
2212 * @hb: The destination hash bucket
2213 *
2214 * The hb->lock must be held by the caller, and is released here. A call to
2215 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2216 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2217 * or nothing if the unqueue is done as part of the wake process and the unqueue
2218 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2219 * an example).
2220 */
2221 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2222 __releases(&hb->lock)
2223 {
2224 __queue_me(q, hb);
2225 spin_unlock(&hb->lock);
2226 }
2227
2228 /**
2229 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2230 * @q: The futex_q to unqueue
2231 *
2232 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2233 * be paired with exactly one earlier call to queue_me().
2234 *
2235 * Return:
2236 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2237 * - 0 - if the futex_q was already removed by the waking thread
2238 */
2239 static int unqueue_me(struct futex_q *q)
2240 {
2241 spinlock_t *lock_ptr;
2242 int ret = 0;
2243
2244 /* In the common case we don't take the spinlock, which is nice. */
2245 retry:
2246 /*
2247 * q->lock_ptr can change between this read and the following spin_lock.
2248 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2249 * optimizing lock_ptr out of the logic below.
2250 */
2251 lock_ptr = READ_ONCE(q->lock_ptr);
2252 if (lock_ptr != NULL) {
2253 spin_lock(lock_ptr);
2254 /*
2255 * q->lock_ptr can change between reading it and
2256 * spin_lock(), causing us to take the wrong lock. This
2257 * corrects the race condition.
2258 *
2259 * Reasoning goes like this: if we have the wrong lock,
2260 * q->lock_ptr must have changed (maybe several times)
2261 * between reading it and the spin_lock(). It can
2262 * change again after the spin_lock() but only if it was
2263 * already changed before the spin_lock(). It cannot,
2264 * however, change back to the original value. Therefore
2265 * we can detect whether we acquired the correct lock.
2266 */
2267 if (unlikely(lock_ptr != q->lock_ptr)) {
2268 spin_unlock(lock_ptr);
2269 goto retry;
2270 }
2271 __unqueue_futex(q);
2272
2273 BUG_ON(q->pi_state);
2274
2275 spin_unlock(lock_ptr);
2276 ret = 1;
2277 }
2278
2279 drop_futex_key_refs(&q->key);
2280 return ret;
2281 }
2282
2283 /*
2284 * PI futexes can not be requeued and must remove themself from the
2285 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2286 * and dropped here.
2287 */
2288 static void unqueue_me_pi(struct futex_q *q)
2289 __releases(q->lock_ptr)
2290 {
2291 __unqueue_futex(q);
2292
2293 BUG_ON(!q->pi_state);
2294 put_pi_state(q->pi_state);
2295 q->pi_state = NULL;
2296
2297 spin_unlock(q->lock_ptr);
2298 }
2299
2300 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2301 struct task_struct *argowner)
2302 {
2303 struct futex_pi_state *pi_state = q->pi_state;
2304 u32 uval, uninitialized_var(curval), newval;
2305 struct task_struct *oldowner, *newowner;
2306 u32 newtid;
2307 int ret;
2308
2309 lockdep_assert_held(q->lock_ptr);
2310
2311 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2312
2313 oldowner = pi_state->owner;
2314
2315 /*
2316 * We are here because either:
2317 *
2318 * - we stole the lock and pi_state->owner needs updating to reflect
2319 * that (@argowner == current),
2320 *
2321 * or:
2322 *
2323 * - someone stole our lock and we need to fix things to point to the
2324 * new owner (@argowner == NULL).
2325 *
2326 * Either way, we have to replace the TID in the user space variable.
2327 * This must be atomic as we have to preserve the owner died bit here.
2328 *
2329 * Note: We write the user space value _before_ changing the pi_state
2330 * because we can fault here. Imagine swapped out pages or a fork
2331 * that marked all the anonymous memory readonly for cow.
2332 *
2333 * Modifying pi_state _before_ the user space value would leave the
2334 * pi_state in an inconsistent state when we fault here, because we
2335 * need to drop the locks to handle the fault. This might be observed
2336 * in the PID check in lookup_pi_state.
2337 */
2338 retry:
2339 if (!argowner) {
2340 if (oldowner != current) {
2341 /*
2342 * We raced against a concurrent self; things are
2343 * already fixed up. Nothing to do.
2344 */
2345 ret = 0;
2346 goto out_unlock;
2347 }
2348
2349 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2350 /* We got the lock after all, nothing to fix. */
2351 ret = 0;
2352 goto out_unlock;
2353 }
2354
2355 /*
2356 * Since we just failed the trylock; there must be an owner.
2357 */
2358 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2359 BUG_ON(!newowner);
2360 } else {
2361 WARN_ON_ONCE(argowner != current);
2362 if (oldowner == current) {
2363 /*
2364 * We raced against a concurrent self; things are
2365 * already fixed up. Nothing to do.
2366 */
2367 ret = 0;
2368 goto out_unlock;
2369 }
2370 newowner = argowner;
2371 }
2372
2373 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2374 /* Owner died? */
2375 if (!pi_state->owner)
2376 newtid |= FUTEX_OWNER_DIED;
2377
2378 if (get_futex_value_locked(&uval, uaddr))
2379 goto handle_fault;
2380
2381 for (;;) {
2382 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2383
2384 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2385 goto handle_fault;
2386 if (curval == uval)
2387 break;
2388 uval = curval;
2389 }
2390
2391 /*
2392 * We fixed up user space. Now we need to fix the pi_state
2393 * itself.
2394 */
2395 if (pi_state->owner != NULL) {
2396 raw_spin_lock(&pi_state->owner->pi_lock);
2397 WARN_ON(list_empty(&pi_state->list));
2398 list_del_init(&pi_state->list);
2399 raw_spin_unlock(&pi_state->owner->pi_lock);
2400 }
2401
2402 pi_state->owner = newowner;
2403
2404 raw_spin_lock(&newowner->pi_lock);
2405 WARN_ON(!list_empty(&pi_state->list));
2406 list_add(&pi_state->list, &newowner->pi_state_list);
2407 raw_spin_unlock(&newowner->pi_lock);
2408 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2409
2410 return 0;
2411
2412 /*
2413 * To handle the page fault we need to drop the locks here. That gives
2414 * the other task (either the highest priority waiter itself or the
2415 * task which stole the rtmutex) the chance to try the fixup of the
2416 * pi_state. So once we are back from handling the fault we need to
2417 * check the pi_state after reacquiring the locks and before trying to
2418 * do another fixup. When the fixup has been done already we simply
2419 * return.
2420 *
2421 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2422 * drop hb->lock since the caller owns the hb -> futex_q relation.
2423 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2424 */
2425 handle_fault:
2426 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2427 spin_unlock(q->lock_ptr);
2428
2429 ret = fault_in_user_writeable(uaddr);
2430
2431 spin_lock(q->lock_ptr);
2432 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2433
2434 /*
2435 * Check if someone else fixed it for us:
2436 */
2437 if (pi_state->owner != oldowner) {
2438 ret = 0;
2439 goto out_unlock;
2440 }
2441
2442 if (ret)
2443 goto out_unlock;
2444
2445 goto retry;
2446
2447 out_unlock:
2448 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2449 return ret;
2450 }
2451
2452 static long futex_wait_restart(struct restart_block *restart);
2453
2454 /**
2455 * fixup_owner() - Post lock pi_state and corner case management
2456 * @uaddr: user address of the futex
2457 * @q: futex_q (contains pi_state and access to the rt_mutex)
2458 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2459 *
2460 * After attempting to lock an rt_mutex, this function is called to cleanup
2461 * the pi_state owner as well as handle race conditions that may allow us to
2462 * acquire the lock. Must be called with the hb lock held.
2463 *
2464 * Return:
2465 * - 1 - success, lock taken;
2466 * - 0 - success, lock not taken;
2467 * - <0 - on error (-EFAULT)
2468 */
2469 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2470 {
2471 int ret = 0;
2472
2473 if (locked) {
2474 /*
2475 * Got the lock. We might not be the anticipated owner if we
2476 * did a lock-steal - fix up the PI-state in that case:
2477 *
2478 * Speculative pi_state->owner read (we don't hold wait_lock);
2479 * since we own the lock pi_state->owner == current is the
2480 * stable state, anything else needs more attention.
2481 */
2482 if (q->pi_state->owner != current)
2483 ret = fixup_pi_state_owner(uaddr, q, current);
2484 goto out;
2485 }
2486
2487 /*
2488 * If we didn't get the lock; check if anybody stole it from us. In
2489 * that case, we need to fix up the uval to point to them instead of
2490 * us, otherwise bad things happen. [10]
2491 *
2492 * Another speculative read; pi_state->owner == current is unstable
2493 * but needs our attention.
2494 */
2495 if (q->pi_state->owner == current) {
2496 ret = fixup_pi_state_owner(uaddr, q, NULL);
2497 goto out;
2498 }
2499
2500 /*
2501 * Paranoia check. If we did not take the lock, then we should not be
2502 * the owner of the rt_mutex.
2503 */
2504 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2505 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2506 "pi-state %p\n", ret,
2507 q->pi_state->pi_mutex.owner,
2508 q->pi_state->owner);
2509 }
2510
2511 out:
2512 return ret ? ret : locked;
2513 }
2514
2515 /**
2516 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2517 * @hb: the futex hash bucket, must be locked by the caller
2518 * @q: the futex_q to queue up on
2519 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2520 */
2521 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2522 struct hrtimer_sleeper *timeout)
2523 {
2524 /*
2525 * The task state is guaranteed to be set before another task can
2526 * wake it. set_current_state() is implemented using smp_store_mb() and
2527 * queue_me() calls spin_unlock() upon completion, both serializing
2528 * access to the hash list and forcing another memory barrier.
2529 */
2530 set_current_state(TASK_INTERRUPTIBLE);
2531 queue_me(q, hb);
2532
2533 /* Arm the timer */
2534 if (timeout)
2535 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2536
2537 /*
2538 * If we have been removed from the hash list, then another task
2539 * has tried to wake us, and we can skip the call to schedule().
2540 */
2541 if (likely(!plist_node_empty(&q->list))) {
2542 /*
2543 * If the timer has already expired, current will already be
2544 * flagged for rescheduling. Only call schedule if there
2545 * is no timeout, or if it has yet to expire.
2546 */
2547 if (!timeout || timeout->task)
2548 freezable_schedule();
2549 }
2550 __set_current_state(TASK_RUNNING);
2551 }
2552
2553 /**
2554 * futex_wait_setup() - Prepare to wait on a futex
2555 * @uaddr: the futex userspace address
2556 * @val: the expected value
2557 * @flags: futex flags (FLAGS_SHARED, etc.)
2558 * @q: the associated futex_q
2559 * @hb: storage for hash_bucket pointer to be returned to caller
2560 *
2561 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2562 * compare it with the expected value. Handle atomic faults internally.
2563 * Return with the hb lock held and a q.key reference on success, and unlocked
2564 * with no q.key reference on failure.
2565 *
2566 * Return:
2567 * - 0 - uaddr contains val and hb has been locked;
2568 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2569 */
2570 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2571 struct futex_q *q, struct futex_hash_bucket **hb)
2572 {
2573 u32 uval;
2574 int ret;
2575
2576 /*
2577 * Access the page AFTER the hash-bucket is locked.
2578 * Order is important:
2579 *
2580 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2581 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2582 *
2583 * The basic logical guarantee of a futex is that it blocks ONLY
2584 * if cond(var) is known to be true at the time of blocking, for
2585 * any cond. If we locked the hash-bucket after testing *uaddr, that
2586 * would open a race condition where we could block indefinitely with
2587 * cond(var) false, which would violate the guarantee.
2588 *
2589 * On the other hand, we insert q and release the hash-bucket only
2590 * after testing *uaddr. This guarantees that futex_wait() will NOT
2591 * absorb a wakeup if *uaddr does not match the desired values
2592 * while the syscall executes.
2593 */
2594 retry:
2595 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2596 if (unlikely(ret != 0))
2597 return ret;
2598
2599 retry_private:
2600 *hb = queue_lock(q);
2601
2602 ret = get_futex_value_locked(&uval, uaddr);
2603
2604 if (ret) {
2605 queue_unlock(*hb);
2606
2607 ret = get_user(uval, uaddr);
2608 if (ret)
2609 goto out;
2610
2611 if (!(flags & FLAGS_SHARED))
2612 goto retry_private;
2613
2614 put_futex_key(&q->key);
2615 goto retry;
2616 }
2617
2618 if (uval != val) {
2619 queue_unlock(*hb);
2620 ret = -EWOULDBLOCK;
2621 }
2622
2623 out:
2624 if (ret)
2625 put_futex_key(&q->key);
2626 return ret;
2627 }
2628
2629 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2630 ktime_t *abs_time, u32 bitset)
2631 {
2632 struct hrtimer_sleeper timeout, *to = NULL;
2633 struct restart_block *restart;
2634 struct futex_hash_bucket *hb;
2635 struct futex_q q = futex_q_init;
2636 int ret;
2637
2638 if (!bitset)
2639 return -EINVAL;
2640 q.bitset = bitset;
2641
2642 if (abs_time) {
2643 to = &timeout;
2644
2645 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2646 CLOCK_REALTIME : CLOCK_MONOTONIC,
2647 HRTIMER_MODE_ABS);
2648 hrtimer_init_sleeper(to, current);
2649 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2650 current->timer_slack_ns);
2651 }
2652
2653 retry:
2654 /*
2655 * Prepare to wait on uaddr. On success, holds hb lock and increments
2656 * q.key refs.
2657 */
2658 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2659 if (ret)
2660 goto out;
2661
2662 /* queue_me and wait for wakeup, timeout, or a signal. */
2663 futex_wait_queue_me(hb, &q, to);
2664
2665 /* If we were woken (and unqueued), we succeeded, whatever. */
2666 ret = 0;
2667 /* unqueue_me() drops q.key ref */
2668 if (!unqueue_me(&q))
2669 goto out;
2670 ret = -ETIMEDOUT;
2671 if (to && !to->task)
2672 goto out;
2673
2674 /*
2675 * We expect signal_pending(current), but we might be the
2676 * victim of a spurious wakeup as well.
2677 */
2678 if (!signal_pending(current))
2679 goto retry;
2680
2681 ret = -ERESTARTSYS;
2682 if (!abs_time)
2683 goto out;
2684
2685 restart = &current->restart_block;
2686 restart->fn = futex_wait_restart;
2687 restart->futex.uaddr = uaddr;
2688 restart->futex.val = val;
2689 restart->futex.time = *abs_time;
2690 restart->futex.bitset = bitset;
2691 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2692
2693 ret = -ERESTART_RESTARTBLOCK;
2694
2695 out:
2696 if (to) {
2697 hrtimer_cancel(&to->timer);
2698 destroy_hrtimer_on_stack(&to->timer);
2699 }
2700 return ret;
2701 }
2702
2703
2704 static long futex_wait_restart(struct restart_block *restart)
2705 {
2706 u32 __user *uaddr = restart->futex.uaddr;
2707 ktime_t t, *tp = NULL;
2708
2709 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2710 t = restart->futex.time;
2711 tp = &t;
2712 }
2713 restart->fn = do_no_restart_syscall;
2714
2715 return (long)futex_wait(uaddr, restart->futex.flags,
2716 restart->futex.val, tp, restart->futex.bitset);
2717 }
2718
2719
2720 /*
2721 * Userspace tried a 0 -> TID atomic transition of the futex value
2722 * and failed. The kernel side here does the whole locking operation:
2723 * if there are waiters then it will block as a consequence of relying
2724 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2725 * a 0 value of the futex too.).
2726 *
2727 * Also serves as futex trylock_pi()'ing, and due semantics.
2728 */
2729 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2730 ktime_t *time, int trylock)
2731 {
2732 struct hrtimer_sleeper timeout, *to = NULL;
2733 struct futex_pi_state *pi_state = NULL;
2734 struct rt_mutex_waiter rt_waiter;
2735 struct futex_hash_bucket *hb;
2736 struct futex_q q = futex_q_init;
2737 int res, ret;
2738
2739 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2740 return -ENOSYS;
2741
2742 if (refill_pi_state_cache())
2743 return -ENOMEM;
2744
2745 if (time) {
2746 to = &timeout;
2747 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2748 HRTIMER_MODE_ABS);
2749 hrtimer_init_sleeper(to, current);
2750 hrtimer_set_expires(&to->timer, *time);
2751 }
2752
2753 retry:
2754 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2755 if (unlikely(ret != 0))
2756 goto out;
2757
2758 retry_private:
2759 hb = queue_lock(&q);
2760
2761 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2762 if (unlikely(ret)) {
2763 /*
2764 * Atomic work succeeded and we got the lock,
2765 * or failed. Either way, we do _not_ block.
2766 */
2767 switch (ret) {
2768 case 1:
2769 /* We got the lock. */
2770 ret = 0;
2771 goto out_unlock_put_key;
2772 case -EFAULT:
2773 goto uaddr_faulted;
2774 case -EAGAIN:
2775 /*
2776 * Two reasons for this:
2777 * - Task is exiting and we just wait for the
2778 * exit to complete.
2779 * - The user space value changed.
2780 */
2781 queue_unlock(hb);
2782 put_futex_key(&q.key);
2783 cond_resched();
2784 goto retry;
2785 default:
2786 goto out_unlock_put_key;
2787 }
2788 }
2789
2790 WARN_ON(!q.pi_state);
2791
2792 /*
2793 * Only actually queue now that the atomic ops are done:
2794 */
2795 __queue_me(&q, hb);
2796
2797 if (trylock) {
2798 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2799 /* Fixup the trylock return value: */
2800 ret = ret ? 0 : -EWOULDBLOCK;
2801 goto no_block;
2802 }
2803
2804 rt_mutex_init_waiter(&rt_waiter);
2805
2806 /*
2807 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2808 * hold it while doing rt_mutex_start_proxy(), because then it will
2809 * include hb->lock in the blocking chain, even through we'll not in
2810 * fact hold it while blocking. This will lead it to report -EDEADLK
2811 * and BUG when futex_unlock_pi() interleaves with this.
2812 *
2813 * Therefore acquire wait_lock while holding hb->lock, but drop the
2814 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2815 * serializes against futex_unlock_pi() as that does the exact same
2816 * lock handoff sequence.
2817 */
2818 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2819 spin_unlock(q.lock_ptr);
2820 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2821 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2822
2823 if (ret) {
2824 if (ret == 1)
2825 ret = 0;
2826
2827 spin_lock(q.lock_ptr);
2828 goto no_block;
2829 }
2830
2831
2832 if (unlikely(to))
2833 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2834
2835 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2836
2837 spin_lock(q.lock_ptr);
2838 /*
2839 * If we failed to acquire the lock (signal/timeout), we must
2840 * first acquire the hb->lock before removing the lock from the
2841 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2842 * wait lists consistent.
2843 *
2844 * In particular; it is important that futex_unlock_pi() can not
2845 * observe this inconsistency.
2846 */
2847 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2848 ret = 0;
2849
2850 no_block:
2851 /*
2852 * Fixup the pi_state owner and possibly acquire the lock if we
2853 * haven't already.
2854 */
2855 res = fixup_owner(uaddr, &q, !ret);
2856 /*
2857 * If fixup_owner() returned an error, proprogate that. If it acquired
2858 * the lock, clear our -ETIMEDOUT or -EINTR.
2859 */
2860 if (res)
2861 ret = (res < 0) ? res : 0;
2862
2863 /*
2864 * If fixup_owner() faulted and was unable to handle the fault, unlock
2865 * it and return the fault to userspace.
2866 */
2867 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2868 pi_state = q.pi_state;
2869 get_pi_state(pi_state);
2870 }
2871
2872 /* Unqueue and drop the lock */
2873 unqueue_me_pi(&q);
2874
2875 if (pi_state) {
2876 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2877 put_pi_state(pi_state);
2878 }
2879
2880 goto out_put_key;
2881
2882 out_unlock_put_key:
2883 queue_unlock(hb);
2884
2885 out_put_key:
2886 put_futex_key(&q.key);
2887 out:
2888 if (to) {
2889 hrtimer_cancel(&to->timer);
2890 destroy_hrtimer_on_stack(&to->timer);
2891 }
2892 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2893
2894 uaddr_faulted:
2895 queue_unlock(hb);
2896
2897 ret = fault_in_user_writeable(uaddr);
2898 if (ret)
2899 goto out_put_key;
2900
2901 if (!(flags & FLAGS_SHARED))
2902 goto retry_private;
2903
2904 put_futex_key(&q.key);
2905 goto retry;
2906 }
2907
2908 /*
2909 * Userspace attempted a TID -> 0 atomic transition, and failed.
2910 * This is the in-kernel slowpath: we look up the PI state (if any),
2911 * and do the rt-mutex unlock.
2912 */
2913 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2914 {
2915 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2916 union futex_key key = FUTEX_KEY_INIT;
2917 struct futex_hash_bucket *hb;
2918 struct futex_q *top_waiter;
2919 int ret;
2920
2921 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2922 return -ENOSYS;
2923
2924 retry:
2925 if (get_user(uval, uaddr))
2926 return -EFAULT;
2927 /*
2928 * We release only a lock we actually own:
2929 */
2930 if ((uval & FUTEX_TID_MASK) != vpid)
2931 return -EPERM;
2932
2933 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2934 if (ret)
2935 return ret;
2936
2937 hb = hash_futex(&key);
2938 spin_lock(&hb->lock);
2939
2940 /*
2941 * Check waiters first. We do not trust user space values at
2942 * all and we at least want to know if user space fiddled
2943 * with the futex value instead of blindly unlocking.
2944 */
2945 top_waiter = futex_top_waiter(hb, &key);
2946 if (top_waiter) {
2947 struct futex_pi_state *pi_state = top_waiter->pi_state;
2948
2949 ret = -EINVAL;
2950 if (!pi_state)
2951 goto out_unlock;
2952
2953 /*
2954 * If current does not own the pi_state then the futex is
2955 * inconsistent and user space fiddled with the futex value.
2956 */
2957 if (pi_state->owner != current)
2958 goto out_unlock;
2959
2960 get_pi_state(pi_state);
2961 /*
2962 * By taking wait_lock while still holding hb->lock, we ensure
2963 * there is no point where we hold neither; and therefore
2964 * wake_futex_pi() must observe a state consistent with what we
2965 * observed.
2966 */
2967 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2968 spin_unlock(&hb->lock);
2969
2970 /* drops pi_state->pi_mutex.wait_lock */
2971 ret = wake_futex_pi(uaddr, uval, pi_state);
2972
2973 put_pi_state(pi_state);
2974
2975 /*
2976 * Success, we're done! No tricky corner cases.
2977 */
2978 if (!ret)
2979 goto out_putkey;
2980 /*
2981 * The atomic access to the futex value generated a
2982 * pagefault, so retry the user-access and the wakeup:
2983 */
2984 if (ret == -EFAULT)
2985 goto pi_faulted;
2986 /*
2987 * A unconditional UNLOCK_PI op raced against a waiter
2988 * setting the FUTEX_WAITERS bit. Try again.
2989 */
2990 if (ret == -EAGAIN) {
2991 put_futex_key(&key);
2992 goto retry;
2993 }
2994 /*
2995 * wake_futex_pi has detected invalid state. Tell user
2996 * space.
2997 */
2998 goto out_putkey;
2999 }
3000
3001 /*
3002 * We have no kernel internal state, i.e. no waiters in the
3003 * kernel. Waiters which are about to queue themselves are stuck
3004 * on hb->lock. So we can safely ignore them. We do neither
3005 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3006 * owner.
3007 */
3008 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
3009 spin_unlock(&hb->lock);
3010 goto pi_faulted;
3011 }
3012
3013 /*
3014 * If uval has changed, let user space handle it.
3015 */
3016 ret = (curval == uval) ? 0 : -EAGAIN;
3017
3018 out_unlock:
3019 spin_unlock(&hb->lock);
3020 out_putkey:
3021 put_futex_key(&key);
3022 return ret;
3023
3024 pi_faulted:
3025 put_futex_key(&key);
3026
3027 ret = fault_in_user_writeable(uaddr);
3028 if (!ret)
3029 goto retry;
3030
3031 return ret;
3032 }
3033
3034 /**
3035 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3036 * @hb: the hash_bucket futex_q was original enqueued on
3037 * @q: the futex_q woken while waiting to be requeued
3038 * @key2: the futex_key of the requeue target futex
3039 * @timeout: the timeout associated with the wait (NULL if none)
3040 *
3041 * Detect if the task was woken on the initial futex as opposed to the requeue
3042 * target futex. If so, determine if it was a timeout or a signal that caused
3043 * the wakeup and return the appropriate error code to the caller. Must be
3044 * called with the hb lock held.
3045 *
3046 * Return:
3047 * - 0 = no early wakeup detected;
3048 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3049 */
3050 static inline
3051 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3052 struct futex_q *q, union futex_key *key2,
3053 struct hrtimer_sleeper *timeout)
3054 {
3055 int ret = 0;
3056
3057 /*
3058 * With the hb lock held, we avoid races while we process the wakeup.
3059 * We only need to hold hb (and not hb2) to ensure atomicity as the
3060 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3061 * It can't be requeued from uaddr2 to something else since we don't
3062 * support a PI aware source futex for requeue.
3063 */
3064 if (!match_futex(&q->key, key2)) {
3065 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3066 /*
3067 * We were woken prior to requeue by a timeout or a signal.
3068 * Unqueue the futex_q and determine which it was.
3069 */
3070 plist_del(&q->list, &hb->chain);
3071 hb_waiters_dec(hb);
3072
3073 /* Handle spurious wakeups gracefully */
3074 ret = -EWOULDBLOCK;
3075 if (timeout && !timeout->task)
3076 ret = -ETIMEDOUT;
3077 else if (signal_pending(current))
3078 ret = -ERESTARTNOINTR;
3079 }
3080 return ret;
3081 }
3082
3083 /**
3084 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3085 * @uaddr: the futex we initially wait on (non-pi)
3086 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3087 * the same type, no requeueing from private to shared, etc.
3088 * @val: the expected value of uaddr
3089 * @abs_time: absolute timeout
3090 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3091 * @uaddr2: the pi futex we will take prior to returning to user-space
3092 *
3093 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3094 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3095 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3096 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3097 * without one, the pi logic would not know which task to boost/deboost, if
3098 * there was a need to.
3099 *
3100 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3101 * via the following--
3102 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3103 * 2) wakeup on uaddr2 after a requeue
3104 * 3) signal
3105 * 4) timeout
3106 *
3107 * If 3, cleanup and return -ERESTARTNOINTR.
3108 *
3109 * If 2, we may then block on trying to take the rt_mutex and return via:
3110 * 5) successful lock
3111 * 6) signal
3112 * 7) timeout
3113 * 8) other lock acquisition failure
3114 *
3115 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3116 *
3117 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3118 *
3119 * Return:
3120 * - 0 - On success;
3121 * - <0 - On error
3122 */
3123 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3124 u32 val, ktime_t *abs_time, u32 bitset,
3125 u32 __user *uaddr2)
3126 {
3127 struct hrtimer_sleeper timeout, *to = NULL;
3128 struct futex_pi_state *pi_state = NULL;
3129 struct rt_mutex_waiter rt_waiter;
3130 struct futex_hash_bucket *hb;
3131 union futex_key key2 = FUTEX_KEY_INIT;
3132 struct futex_q q = futex_q_init;
3133 int res, ret;
3134
3135 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3136 return -ENOSYS;
3137
3138 if (uaddr == uaddr2)
3139 return -EINVAL;
3140
3141 if (!bitset)
3142 return -EINVAL;
3143
3144 if (abs_time) {
3145 to = &timeout;
3146 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3147 CLOCK_REALTIME : CLOCK_MONOTONIC,
3148 HRTIMER_MODE_ABS);
3149 hrtimer_init_sleeper(to, current);
3150 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3151 current->timer_slack_ns);
3152 }
3153
3154 /*
3155 * The waiter is allocated on our stack, manipulated by the requeue
3156 * code while we sleep on uaddr.
3157 */
3158 rt_mutex_init_waiter(&rt_waiter);
3159
3160 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3161 if (unlikely(ret != 0))
3162 goto out;
3163
3164 q.bitset = bitset;
3165 q.rt_waiter = &rt_waiter;
3166 q.requeue_pi_key = &key2;
3167
3168 /*
3169 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3170 * count.
3171 */
3172 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3173 if (ret)
3174 goto out_key2;
3175
3176 /*
3177 * The check above which compares uaddrs is not sufficient for
3178 * shared futexes. We need to compare the keys:
3179 */
3180 if (match_futex(&q.key, &key2)) {
3181 queue_unlock(hb);
3182 ret = -EINVAL;
3183 goto out_put_keys;
3184 }
3185
3186 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3187 futex_wait_queue_me(hb, &q, to);
3188
3189 spin_lock(&hb->lock);
3190 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3191 spin_unlock(&hb->lock);
3192 if (ret)
3193 goto out_put_keys;
3194
3195 /*
3196 * In order for us to be here, we know our q.key == key2, and since
3197 * we took the hb->lock above, we also know that futex_requeue() has
3198 * completed and we no longer have to concern ourselves with a wakeup
3199 * race with the atomic proxy lock acquisition by the requeue code. The
3200 * futex_requeue dropped our key1 reference and incremented our key2
3201 * reference count.
3202 */
3203
3204 /* Check if the requeue code acquired the second futex for us. */
3205 if (!q.rt_waiter) {
3206 /*
3207 * Got the lock. We might not be the anticipated owner if we
3208 * did a lock-steal - fix up the PI-state in that case.
3209 */
3210 if (q.pi_state && (q.pi_state->owner != current)) {
3211 spin_lock(q.lock_ptr);
3212 ret = fixup_pi_state_owner(uaddr2, &q, current);
3213 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3214 pi_state = q.pi_state;
3215 get_pi_state(pi_state);
3216 }
3217 /*
3218 * Drop the reference to the pi state which
3219 * the requeue_pi() code acquired for us.
3220 */
3221 put_pi_state(q.pi_state);
3222 spin_unlock(q.lock_ptr);
3223 }
3224 } else {
3225 struct rt_mutex *pi_mutex;
3226
3227 /*
3228 * We have been woken up by futex_unlock_pi(), a timeout, or a
3229 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3230 * the pi_state.
3231 */
3232 WARN_ON(!q.pi_state);
3233 pi_mutex = &q.pi_state->pi_mutex;
3234 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3235
3236 spin_lock(q.lock_ptr);
3237 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3238 ret = 0;
3239
3240 debug_rt_mutex_free_waiter(&rt_waiter);
3241 /*
3242 * Fixup the pi_state owner and possibly acquire the lock if we
3243 * haven't already.
3244 */
3245 res = fixup_owner(uaddr2, &q, !ret);
3246 /*
3247 * If fixup_owner() returned an error, proprogate that. If it
3248 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3249 */
3250 if (res)
3251 ret = (res < 0) ? res : 0;
3252
3253 /*
3254 * If fixup_pi_state_owner() faulted and was unable to handle
3255 * the fault, unlock the rt_mutex and return the fault to
3256 * userspace.
3257 */
3258 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3259 pi_state = q.pi_state;
3260 get_pi_state(pi_state);
3261 }
3262
3263 /* Unqueue and drop the lock. */
3264 unqueue_me_pi(&q);
3265 }
3266
3267 if (pi_state) {
3268 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3269 put_pi_state(pi_state);
3270 }
3271
3272 if (ret == -EINTR) {
3273 /*
3274 * We've already been requeued, but cannot restart by calling
3275 * futex_lock_pi() directly. We could restart this syscall, but
3276 * it would detect that the user space "val" changed and return
3277 * -EWOULDBLOCK. Save the overhead of the restart and return
3278 * -EWOULDBLOCK directly.
3279 */
3280 ret = -EWOULDBLOCK;
3281 }
3282
3283 out_put_keys:
3284 put_futex_key(&q.key);
3285 out_key2:
3286 put_futex_key(&key2);
3287
3288 out:
3289 if (to) {
3290 hrtimer_cancel(&to->timer);
3291 destroy_hrtimer_on_stack(&to->timer);
3292 }
3293 return ret;
3294 }
3295
3296 /*
3297 * Support for robust futexes: the kernel cleans up held futexes at
3298 * thread exit time.
3299 *
3300 * Implementation: user-space maintains a per-thread list of locks it
3301 * is holding. Upon do_exit(), the kernel carefully walks this list,
3302 * and marks all locks that are owned by this thread with the
3303 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3304 * always manipulated with the lock held, so the list is private and
3305 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3306 * field, to allow the kernel to clean up if the thread dies after
3307 * acquiring the lock, but just before it could have added itself to
3308 * the list. There can only be one such pending lock.
3309 */
3310
3311 /**
3312 * sys_set_robust_list() - Set the robust-futex list head of a task
3313 * @head: pointer to the list-head
3314 * @len: length of the list-head, as userspace expects
3315 */
3316 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3317 size_t, len)
3318 {
3319 if (!futex_cmpxchg_enabled)
3320 return -ENOSYS;
3321 /*
3322 * The kernel knows only one size for now:
3323 */
3324 if (unlikely(len != sizeof(*head)))
3325 return -EINVAL;
3326
3327 current->robust_list = head;
3328
3329 return 0;
3330 }
3331
3332 /**
3333 * sys_get_robust_list() - Get the robust-futex list head of a task
3334 * @pid: pid of the process [zero for current task]
3335 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3336 * @len_ptr: pointer to a length field, the kernel fills in the header size
3337 */
3338 SYSCALL_DEFINE3(get_robust_list, int, pid,
3339 struct robust_list_head __user * __user *, head_ptr,
3340 size_t __user *, len_ptr)
3341 {
3342 struct robust_list_head __user *head;
3343 unsigned long ret;
3344 struct task_struct *p;
3345
3346 if (!futex_cmpxchg_enabled)
3347 return -ENOSYS;
3348
3349 rcu_read_lock();
3350
3351 ret = -ESRCH;
3352 if (!pid)
3353 p = current;
3354 else {
3355 p = find_task_by_vpid(pid);
3356 if (!p)
3357 goto err_unlock;
3358 }
3359
3360 ret = -EPERM;
3361 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3362 goto err_unlock;
3363
3364 head = p->robust_list;
3365 rcu_read_unlock();
3366
3367 if (put_user(sizeof(*head), len_ptr))
3368 return -EFAULT;
3369 return put_user(head, head_ptr);
3370
3371 err_unlock:
3372 rcu_read_unlock();
3373
3374 return ret;
3375 }
3376
3377 /*
3378 * Process a futex-list entry, check whether it's owned by the
3379 * dying task, and do notification if so:
3380 */
3381 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3382 {
3383 u32 uval, uninitialized_var(nval), mval;
3384
3385 retry:
3386 if (get_user(uval, uaddr))
3387 return -1;
3388
3389 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3390 /*
3391 * Ok, this dying thread is truly holding a futex
3392 * of interest. Set the OWNER_DIED bit atomically
3393 * via cmpxchg, and if the value had FUTEX_WAITERS
3394 * set, wake up a waiter (if any). (We have to do a
3395 * futex_wake() even if OWNER_DIED is already set -
3396 * to handle the rare but possible case of recursive
3397 * thread-death.) The rest of the cleanup is done in
3398 * userspace.
3399 */
3400 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3401 /*
3402 * We are not holding a lock here, but we want to have
3403 * the pagefault_disable/enable() protection because
3404 * we want to handle the fault gracefully. If the
3405 * access fails we try to fault in the futex with R/W
3406 * verification via get_user_pages. get_user() above
3407 * does not guarantee R/W access. If that fails we
3408 * give up and leave the futex locked.
3409 */
3410 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3411 if (fault_in_user_writeable(uaddr))
3412 return -1;
3413 goto retry;
3414 }
3415 if (nval != uval)
3416 goto retry;
3417
3418 /*
3419 * Wake robust non-PI futexes here. The wakeup of
3420 * PI futexes happens in exit_pi_state():
3421 */
3422 if (!pi && (uval & FUTEX_WAITERS))
3423 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3424 }
3425 return 0;
3426 }
3427
3428 /*
3429 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3430 */
3431 static inline int fetch_robust_entry(struct robust_list __user **entry,
3432 struct robust_list __user * __user *head,
3433 unsigned int *pi)
3434 {
3435 unsigned long uentry;
3436
3437 if (get_user(uentry, (unsigned long __user *)head))
3438 return -EFAULT;
3439
3440 *entry = (void __user *)(uentry & ~1UL);
3441 *pi = uentry & 1;
3442
3443 return 0;
3444 }
3445
3446 /*
3447 * Walk curr->robust_list (very carefully, it's a userspace list!)
3448 * and mark any locks found there dead, and notify any waiters.
3449 *
3450 * We silently return on any sign of list-walking problem.
3451 */
3452 void exit_robust_list(struct task_struct *curr)
3453 {
3454 struct robust_list_head __user *head = curr->robust_list;
3455 struct robust_list __user *entry, *next_entry, *pending;
3456 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3457 unsigned int uninitialized_var(next_pi);
3458 unsigned long futex_offset;
3459 int rc;
3460
3461 if (!futex_cmpxchg_enabled)
3462 return;
3463
3464 /*
3465 * Fetch the list head (which was registered earlier, via
3466 * sys_set_robust_list()):
3467 */
3468 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3469 return;
3470 /*
3471 * Fetch the relative futex offset:
3472 */
3473 if (get_user(futex_offset, &head->futex_offset))
3474 return;
3475 /*
3476 * Fetch any possibly pending lock-add first, and handle it
3477 * if it exists:
3478 */
3479 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3480 return;
3481
3482 next_entry = NULL; /* avoid warning with gcc */
3483 while (entry != &head->list) {
3484 /*
3485 * Fetch the next entry in the list before calling
3486 * handle_futex_death:
3487 */
3488 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3489 /*
3490 * A pending lock might already be on the list, so
3491 * don't process it twice:
3492 */
3493 if (entry != pending)
3494 if (handle_futex_death((void __user *)entry + futex_offset,
3495 curr, pi))
3496 return;
3497 if (rc)
3498 return;
3499 entry = next_entry;
3500 pi = next_pi;
3501 /*
3502 * Avoid excessively long or circular lists:
3503 */
3504 if (!--limit)
3505 break;
3506
3507 cond_resched();
3508 }
3509
3510 if (pending)
3511 handle_futex_death((void __user *)pending + futex_offset,
3512 curr, pip);
3513 }
3514
3515 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3516 u32 __user *uaddr2, u32 val2, u32 val3)
3517 {
3518 int cmd = op & FUTEX_CMD_MASK;
3519 unsigned int flags = 0;
3520
3521 if (!(op & FUTEX_PRIVATE_FLAG))
3522 flags |= FLAGS_SHARED;
3523
3524 if (op & FUTEX_CLOCK_REALTIME) {
3525 flags |= FLAGS_CLOCKRT;
3526 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3527 cmd != FUTEX_WAIT_REQUEUE_PI)
3528 return -ENOSYS;
3529 }
3530
3531 switch (cmd) {
3532 case FUTEX_LOCK_PI:
3533 case FUTEX_UNLOCK_PI:
3534 case FUTEX_TRYLOCK_PI:
3535 case FUTEX_WAIT_REQUEUE_PI:
3536 case FUTEX_CMP_REQUEUE_PI:
3537 if (!futex_cmpxchg_enabled)
3538 return -ENOSYS;
3539 }
3540
3541 switch (cmd) {
3542 case FUTEX_WAIT:
3543 val3 = FUTEX_BITSET_MATCH_ANY;
3544 case FUTEX_WAIT_BITSET:
3545 return futex_wait(uaddr, flags, val, timeout, val3);
3546 case FUTEX_WAKE:
3547 val3 = FUTEX_BITSET_MATCH_ANY;
3548 case FUTEX_WAKE_BITSET:
3549 return futex_wake(uaddr, flags, val, val3);
3550 case FUTEX_REQUEUE:
3551 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3552 case FUTEX_CMP_REQUEUE:
3553 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3554 case FUTEX_WAKE_OP:
3555 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3556 case FUTEX_LOCK_PI:
3557 return futex_lock_pi(uaddr, flags, timeout, 0);
3558 case FUTEX_UNLOCK_PI:
3559 return futex_unlock_pi(uaddr, flags);
3560 case FUTEX_TRYLOCK_PI:
3561 return futex_lock_pi(uaddr, flags, NULL, 1);
3562 case FUTEX_WAIT_REQUEUE_PI:
3563 val3 = FUTEX_BITSET_MATCH_ANY;
3564 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3565 uaddr2);
3566 case FUTEX_CMP_REQUEUE_PI:
3567 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3568 }
3569 return -ENOSYS;
3570 }
3571
3572
3573 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3574 struct timespec __user *, utime, u32 __user *, uaddr2,
3575 u32, val3)
3576 {
3577 struct timespec ts;
3578 ktime_t t, *tp = NULL;
3579 u32 val2 = 0;
3580 int cmd = op & FUTEX_CMD_MASK;
3581
3582 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3583 cmd == FUTEX_WAIT_BITSET ||
3584 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3585 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3586 return -EFAULT;
3587 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3588 return -EFAULT;
3589 if (!timespec_valid(&ts))
3590 return -EINVAL;
3591
3592 t = timespec_to_ktime(ts);
3593 if (cmd == FUTEX_WAIT)
3594 t = ktime_add_safe(ktime_get(), t);
3595 tp = &t;
3596 }
3597 /*
3598 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3599 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3600 */
3601 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3602 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3603 val2 = (u32) (unsigned long) utime;
3604
3605 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3606 }
3607
3608 static void __init futex_detect_cmpxchg(void)
3609 {
3610 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3611 u32 curval;
3612
3613 /*
3614 * This will fail and we want it. Some arch implementations do
3615 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3616 * functionality. We want to know that before we call in any
3617 * of the complex code paths. Also we want to prevent
3618 * registration of robust lists in that case. NULL is
3619 * guaranteed to fault and we get -EFAULT on functional
3620 * implementation, the non-functional ones will return
3621 * -ENOSYS.
3622 */
3623 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3624 futex_cmpxchg_enabled = 1;
3625 #endif
3626 }
3627
3628 static int __init futex_init(void)
3629 {
3630 unsigned int futex_shift;
3631 unsigned long i;
3632
3633 #if CONFIG_BASE_SMALL
3634 futex_hashsize = 16;
3635 #else
3636 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3637 #endif
3638
3639 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3640 futex_hashsize, 0,
3641 futex_hashsize < 256 ? HASH_SMALL : 0,
3642 &futex_shift, NULL,
3643 futex_hashsize, futex_hashsize);
3644 futex_hashsize = 1UL << futex_shift;
3645
3646 futex_detect_cmpxchg();
3647
3648 for (i = 0; i < futex_hashsize; i++) {
3649 atomic_set(&futex_queues[i].waiters, 0);
3650 plist_head_init(&futex_queues[i].chain);
3651 spin_lock_init(&futex_queues[i].lock);
3652 }
3653
3654 return 0;
3655 }
3656 core_initcall(futex_init);