]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/futex.c
fork,memcg: fix crash in free_thread_stack on memcg charge fail
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/compat.h>
48 #include <linux/slab.h>
49 #include <linux/poll.h>
50 #include <linux/fs.h>
51 #include <linux/file.h>
52 #include <linux/jhash.h>
53 #include <linux/init.h>
54 #include <linux/futex.h>
55 #include <linux/mount.h>
56 #include <linux/pagemap.h>
57 #include <linux/syscalls.h>
58 #include <linux/signal.h>
59 #include <linux/export.h>
60 #include <linux/magic.h>
61 #include <linux/pid.h>
62 #include <linux/nsproxy.h>
63 #include <linux/ptrace.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/wake_q.h>
66 #include <linux/sched/mm.h>
67 #include <linux/hugetlb.h>
68 #include <linux/freezer.h>
69 #include <linux/bootmem.h>
70 #include <linux/fault-inject.h>
71
72 #include <asm/futex.h>
73
74 #include "locking/rtmutex_common.h"
75
76 /*
77 * READ this before attempting to hack on futexes!
78 *
79 * Basic futex operation and ordering guarantees
80 * =============================================
81 *
82 * The waiter reads the futex value in user space and calls
83 * futex_wait(). This function computes the hash bucket and acquires
84 * the hash bucket lock. After that it reads the futex user space value
85 * again and verifies that the data has not changed. If it has not changed
86 * it enqueues itself into the hash bucket, releases the hash bucket lock
87 * and schedules.
88 *
89 * The waker side modifies the user space value of the futex and calls
90 * futex_wake(). This function computes the hash bucket and acquires the
91 * hash bucket lock. Then it looks for waiters on that futex in the hash
92 * bucket and wakes them.
93 *
94 * In futex wake up scenarios where no tasks are blocked on a futex, taking
95 * the hb spinlock can be avoided and simply return. In order for this
96 * optimization to work, ordering guarantees must exist so that the waiter
97 * being added to the list is acknowledged when the list is concurrently being
98 * checked by the waker, avoiding scenarios like the following:
99 *
100 * CPU 0 CPU 1
101 * val = *futex;
102 * sys_futex(WAIT, futex, val);
103 * futex_wait(futex, val);
104 * uval = *futex;
105 * *futex = newval;
106 * sys_futex(WAKE, futex);
107 * futex_wake(futex);
108 * if (queue_empty())
109 * return;
110 * if (uval == val)
111 * lock(hash_bucket(futex));
112 * queue();
113 * unlock(hash_bucket(futex));
114 * schedule();
115 *
116 * This would cause the waiter on CPU 0 to wait forever because it
117 * missed the transition of the user space value from val to newval
118 * and the waker did not find the waiter in the hash bucket queue.
119 *
120 * The correct serialization ensures that a waiter either observes
121 * the changed user space value before blocking or is woken by a
122 * concurrent waker:
123 *
124 * CPU 0 CPU 1
125 * val = *futex;
126 * sys_futex(WAIT, futex, val);
127 * futex_wait(futex, val);
128 *
129 * waiters++; (a)
130 * smp_mb(); (A) <-- paired with -.
131 * |
132 * lock(hash_bucket(futex)); |
133 * |
134 * uval = *futex; |
135 * | *futex = newval;
136 * | sys_futex(WAKE, futex);
137 * | futex_wake(futex);
138 * |
139 * `--------> smp_mb(); (B)
140 * if (uval == val)
141 * queue();
142 * unlock(hash_bucket(futex));
143 * schedule(); if (waiters)
144 * lock(hash_bucket(futex));
145 * else wake_waiters(futex);
146 * waiters--; (b) unlock(hash_bucket(futex));
147 *
148 * Where (A) orders the waiters increment and the futex value read through
149 * atomic operations (see hb_waiters_inc) and where (B) orders the write
150 * to futex and the waiters read -- this is done by the barriers for both
151 * shared and private futexes in get_futex_key_refs().
152 *
153 * This yields the following case (where X:=waiters, Y:=futex):
154 *
155 * X = Y = 0
156 *
157 * w[X]=1 w[Y]=1
158 * MB MB
159 * r[Y]=y r[X]=x
160 *
161 * Which guarantees that x==0 && y==0 is impossible; which translates back into
162 * the guarantee that we cannot both miss the futex variable change and the
163 * enqueue.
164 *
165 * Note that a new waiter is accounted for in (a) even when it is possible that
166 * the wait call can return error, in which case we backtrack from it in (b).
167 * Refer to the comment in queue_lock().
168 *
169 * Similarly, in order to account for waiters being requeued on another
170 * address we always increment the waiters for the destination bucket before
171 * acquiring the lock. It then decrements them again after releasing it -
172 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
173 * will do the additional required waiter count housekeeping. This is done for
174 * double_lock_hb() and double_unlock_hb(), respectively.
175 */
176
177 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
178 #define futex_cmpxchg_enabled 1
179 #else
180 static int __read_mostly futex_cmpxchg_enabled;
181 #endif
182
183 /*
184 * Futex flags used to encode options to functions and preserve them across
185 * restarts.
186 */
187 #ifdef CONFIG_MMU
188 # define FLAGS_SHARED 0x01
189 #else
190 /*
191 * NOMMU does not have per process address space. Let the compiler optimize
192 * code away.
193 */
194 # define FLAGS_SHARED 0x00
195 #endif
196 #define FLAGS_CLOCKRT 0x02
197 #define FLAGS_HAS_TIMEOUT 0x04
198
199 /*
200 * Priority Inheritance state:
201 */
202 struct futex_pi_state {
203 /*
204 * list of 'owned' pi_state instances - these have to be
205 * cleaned up in do_exit() if the task exits prematurely:
206 */
207 struct list_head list;
208
209 /*
210 * The PI object:
211 */
212 struct rt_mutex pi_mutex;
213
214 struct task_struct *owner;
215 atomic_t refcount;
216
217 union futex_key key;
218 } __randomize_layout;
219
220 /**
221 * struct futex_q - The hashed futex queue entry, one per waiting task
222 * @list: priority-sorted list of tasks waiting on this futex
223 * @task: the task waiting on the futex
224 * @lock_ptr: the hash bucket lock
225 * @key: the key the futex is hashed on
226 * @pi_state: optional priority inheritance state
227 * @rt_waiter: rt_waiter storage for use with requeue_pi
228 * @requeue_pi_key: the requeue_pi target futex key
229 * @bitset: bitset for the optional bitmasked wakeup
230 *
231 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
232 * we can wake only the relevant ones (hashed queues may be shared).
233 *
234 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
235 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
236 * The order of wakeup is always to make the first condition true, then
237 * the second.
238 *
239 * PI futexes are typically woken before they are removed from the hash list via
240 * the rt_mutex code. See unqueue_me_pi().
241 */
242 struct futex_q {
243 struct plist_node list;
244
245 struct task_struct *task;
246 spinlock_t *lock_ptr;
247 union futex_key key;
248 struct futex_pi_state *pi_state;
249 struct rt_mutex_waiter *rt_waiter;
250 union futex_key *requeue_pi_key;
251 u32 bitset;
252 } __randomize_layout;
253
254 static const struct futex_q futex_q_init = {
255 /* list gets initialized in queue_me()*/
256 .key = FUTEX_KEY_INIT,
257 .bitset = FUTEX_BITSET_MATCH_ANY
258 };
259
260 /*
261 * Hash buckets are shared by all the futex_keys that hash to the same
262 * location. Each key may have multiple futex_q structures, one for each task
263 * waiting on a futex.
264 */
265 struct futex_hash_bucket {
266 atomic_t waiters;
267 spinlock_t lock;
268 struct plist_head chain;
269 } ____cacheline_aligned_in_smp;
270
271 /*
272 * The base of the bucket array and its size are always used together
273 * (after initialization only in hash_futex()), so ensure that they
274 * reside in the same cacheline.
275 */
276 static struct {
277 struct futex_hash_bucket *queues;
278 unsigned long hashsize;
279 } __futex_data __read_mostly __aligned(2*sizeof(long));
280 #define futex_queues (__futex_data.queues)
281 #define futex_hashsize (__futex_data.hashsize)
282
283
284 /*
285 * Fault injections for futexes.
286 */
287 #ifdef CONFIG_FAIL_FUTEX
288
289 static struct {
290 struct fault_attr attr;
291
292 bool ignore_private;
293 } fail_futex = {
294 .attr = FAULT_ATTR_INITIALIZER,
295 .ignore_private = false,
296 };
297
298 static int __init setup_fail_futex(char *str)
299 {
300 return setup_fault_attr(&fail_futex.attr, str);
301 }
302 __setup("fail_futex=", setup_fail_futex);
303
304 static bool should_fail_futex(bool fshared)
305 {
306 if (fail_futex.ignore_private && !fshared)
307 return false;
308
309 return should_fail(&fail_futex.attr, 1);
310 }
311
312 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
313
314 static int __init fail_futex_debugfs(void)
315 {
316 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
317 struct dentry *dir;
318
319 dir = fault_create_debugfs_attr("fail_futex", NULL,
320 &fail_futex.attr);
321 if (IS_ERR(dir))
322 return PTR_ERR(dir);
323
324 if (!debugfs_create_bool("ignore-private", mode, dir,
325 &fail_futex.ignore_private)) {
326 debugfs_remove_recursive(dir);
327 return -ENOMEM;
328 }
329
330 return 0;
331 }
332
333 late_initcall(fail_futex_debugfs);
334
335 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
336
337 #else
338 static inline bool should_fail_futex(bool fshared)
339 {
340 return false;
341 }
342 #endif /* CONFIG_FAIL_FUTEX */
343
344 #ifdef CONFIG_COMPAT
345 static void compat_exit_robust_list(struct task_struct *curr);
346 #else
347 static inline void compat_exit_robust_list(struct task_struct *curr) { }
348 #endif
349
350 static inline void futex_get_mm(union futex_key *key)
351 {
352 mmgrab(key->private.mm);
353 /*
354 * Ensure futex_get_mm() implies a full barrier such that
355 * get_futex_key() implies a full barrier. This is relied upon
356 * as smp_mb(); (B), see the ordering comment above.
357 */
358 smp_mb__after_atomic();
359 }
360
361 /*
362 * Reflects a new waiter being added to the waitqueue.
363 */
364 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
365 {
366 #ifdef CONFIG_SMP
367 atomic_inc(&hb->waiters);
368 /*
369 * Full barrier (A), see the ordering comment above.
370 */
371 smp_mb__after_atomic();
372 #endif
373 }
374
375 /*
376 * Reflects a waiter being removed from the waitqueue by wakeup
377 * paths.
378 */
379 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
380 {
381 #ifdef CONFIG_SMP
382 atomic_dec(&hb->waiters);
383 #endif
384 }
385
386 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
387 {
388 #ifdef CONFIG_SMP
389 return atomic_read(&hb->waiters);
390 #else
391 return 1;
392 #endif
393 }
394
395 /**
396 * hash_futex - Return the hash bucket in the global hash
397 * @key: Pointer to the futex key for which the hash is calculated
398 *
399 * We hash on the keys returned from get_futex_key (see below) and return the
400 * corresponding hash bucket in the global hash.
401 */
402 static struct futex_hash_bucket *hash_futex(union futex_key *key)
403 {
404 u32 hash = jhash2((u32*)&key->both.word,
405 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
406 key->both.offset);
407 return &futex_queues[hash & (futex_hashsize - 1)];
408 }
409
410
411 /**
412 * match_futex - Check whether two futex keys are equal
413 * @key1: Pointer to key1
414 * @key2: Pointer to key2
415 *
416 * Return 1 if two futex_keys are equal, 0 otherwise.
417 */
418 static inline int match_futex(union futex_key *key1, union futex_key *key2)
419 {
420 return (key1 && key2
421 && key1->both.word == key2->both.word
422 && key1->both.ptr == key2->both.ptr
423 && key1->both.offset == key2->both.offset);
424 }
425
426 /*
427 * Take a reference to the resource addressed by a key.
428 * Can be called while holding spinlocks.
429 *
430 */
431 static void get_futex_key_refs(union futex_key *key)
432 {
433 if (!key->both.ptr)
434 return;
435
436 /*
437 * On MMU less systems futexes are always "private" as there is no per
438 * process address space. We need the smp wmb nevertheless - yes,
439 * arch/blackfin has MMU less SMP ...
440 */
441 if (!IS_ENABLED(CONFIG_MMU)) {
442 smp_mb(); /* explicit smp_mb(); (B) */
443 return;
444 }
445
446 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
447 case FUT_OFF_INODE:
448 ihold(key->shared.inode); /* implies smp_mb(); (B) */
449 break;
450 case FUT_OFF_MMSHARED:
451 futex_get_mm(key); /* implies smp_mb(); (B) */
452 break;
453 default:
454 /*
455 * Private futexes do not hold reference on an inode or
456 * mm, therefore the only purpose of calling get_futex_key_refs
457 * is because we need the barrier for the lockless waiter check.
458 */
459 smp_mb(); /* explicit smp_mb(); (B) */
460 }
461 }
462
463 /*
464 * Drop a reference to the resource addressed by a key.
465 * The hash bucket spinlock must not be held. This is
466 * a no-op for private futexes, see comment in the get
467 * counterpart.
468 */
469 static void drop_futex_key_refs(union futex_key *key)
470 {
471 if (!key->both.ptr) {
472 /* If we're here then we tried to put a key we failed to get */
473 WARN_ON_ONCE(1);
474 return;
475 }
476
477 if (!IS_ENABLED(CONFIG_MMU))
478 return;
479
480 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
481 case FUT_OFF_INODE:
482 iput(key->shared.inode);
483 break;
484 case FUT_OFF_MMSHARED:
485 mmdrop(key->private.mm);
486 break;
487 }
488 }
489
490 /**
491 * get_futex_key() - Get parameters which are the keys for a futex
492 * @uaddr: virtual address of the futex
493 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
494 * @key: address where result is stored.
495 * @rw: mapping needs to be read/write (values: VERIFY_READ,
496 * VERIFY_WRITE)
497 *
498 * Return: a negative error code or 0
499 *
500 * The key words are stored in @key on success.
501 *
502 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
503 * offset_within_page). For private mappings, it's (uaddr, current->mm).
504 * We can usually work out the index without swapping in the page.
505 *
506 * lock_page() might sleep, the caller should not hold a spinlock.
507 */
508 static int
509 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
510 {
511 unsigned long address = (unsigned long)uaddr;
512 struct mm_struct *mm = current->mm;
513 struct page *page, *tail;
514 struct address_space *mapping;
515 int err, ro = 0;
516
517 /*
518 * The futex address must be "naturally" aligned.
519 */
520 key->both.offset = address % PAGE_SIZE;
521 if (unlikely((address % sizeof(u32)) != 0))
522 return -EINVAL;
523 address -= key->both.offset;
524
525 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
526 return -EFAULT;
527
528 if (unlikely(should_fail_futex(fshared)))
529 return -EFAULT;
530
531 /*
532 * PROCESS_PRIVATE futexes are fast.
533 * As the mm cannot disappear under us and the 'key' only needs
534 * virtual address, we dont even have to find the underlying vma.
535 * Note : We do have to check 'uaddr' is a valid user address,
536 * but access_ok() should be faster than find_vma()
537 */
538 if (!fshared) {
539 key->private.mm = mm;
540 key->private.address = address;
541 get_futex_key_refs(key); /* implies smp_mb(); (B) */
542 return 0;
543 }
544
545 again:
546 /* Ignore any VERIFY_READ mapping (futex common case) */
547 if (unlikely(should_fail_futex(fshared)))
548 return -EFAULT;
549
550 err = get_user_pages_fast(address, 1, 1, &page);
551 /*
552 * If write access is not required (eg. FUTEX_WAIT), try
553 * and get read-only access.
554 */
555 if (err == -EFAULT && rw == VERIFY_READ) {
556 err = get_user_pages_fast(address, 1, 0, &page);
557 ro = 1;
558 }
559 if (err < 0)
560 return err;
561 else
562 err = 0;
563
564 /*
565 * The treatment of mapping from this point on is critical. The page
566 * lock protects many things but in this context the page lock
567 * stabilizes mapping, prevents inode freeing in the shared
568 * file-backed region case and guards against movement to swap cache.
569 *
570 * Strictly speaking the page lock is not needed in all cases being
571 * considered here and page lock forces unnecessarily serialization
572 * From this point on, mapping will be re-verified if necessary and
573 * page lock will be acquired only if it is unavoidable
574 *
575 * Mapping checks require the head page for any compound page so the
576 * head page and mapping is looked up now. For anonymous pages, it
577 * does not matter if the page splits in the future as the key is
578 * based on the address. For filesystem-backed pages, the tail is
579 * required as the index of the page determines the key. For
580 * base pages, there is no tail page and tail == page.
581 */
582 tail = page;
583 page = compound_head(page);
584 mapping = READ_ONCE(page->mapping);
585
586 /*
587 * If page->mapping is NULL, then it cannot be a PageAnon
588 * page; but it might be the ZERO_PAGE or in the gate area or
589 * in a special mapping (all cases which we are happy to fail);
590 * or it may have been a good file page when get_user_pages_fast
591 * found it, but truncated or holepunched or subjected to
592 * invalidate_complete_page2 before we got the page lock (also
593 * cases which we are happy to fail). And we hold a reference,
594 * so refcount care in invalidate_complete_page's remove_mapping
595 * prevents drop_caches from setting mapping to NULL beneath us.
596 *
597 * The case we do have to guard against is when memory pressure made
598 * shmem_writepage move it from filecache to swapcache beneath us:
599 * an unlikely race, but we do need to retry for page->mapping.
600 */
601 if (unlikely(!mapping)) {
602 int shmem_swizzled;
603
604 /*
605 * Page lock is required to identify which special case above
606 * applies. If this is really a shmem page then the page lock
607 * will prevent unexpected transitions.
608 */
609 lock_page(page);
610 shmem_swizzled = PageSwapCache(page) || page->mapping;
611 unlock_page(page);
612 put_page(page);
613
614 if (shmem_swizzled)
615 goto again;
616
617 return -EFAULT;
618 }
619
620 /*
621 * Private mappings are handled in a simple way.
622 *
623 * If the futex key is stored on an anonymous page, then the associated
624 * object is the mm which is implicitly pinned by the calling process.
625 *
626 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
627 * it's a read-only handle, it's expected that futexes attach to
628 * the object not the particular process.
629 */
630 if (PageAnon(page)) {
631 /*
632 * A RO anonymous page will never change and thus doesn't make
633 * sense for futex operations.
634 */
635 if (unlikely(should_fail_futex(fshared)) || ro) {
636 err = -EFAULT;
637 goto out;
638 }
639
640 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
641 key->private.mm = mm;
642 key->private.address = address;
643
644 get_futex_key_refs(key); /* implies smp_mb(); (B) */
645
646 } else {
647 struct inode *inode;
648
649 /*
650 * The associated futex object in this case is the inode and
651 * the page->mapping must be traversed. Ordinarily this should
652 * be stabilised under page lock but it's not strictly
653 * necessary in this case as we just want to pin the inode, not
654 * update the radix tree or anything like that.
655 *
656 * The RCU read lock is taken as the inode is finally freed
657 * under RCU. If the mapping still matches expectations then the
658 * mapping->host can be safely accessed as being a valid inode.
659 */
660 rcu_read_lock();
661
662 if (READ_ONCE(page->mapping) != mapping) {
663 rcu_read_unlock();
664 put_page(page);
665
666 goto again;
667 }
668
669 inode = READ_ONCE(mapping->host);
670 if (!inode) {
671 rcu_read_unlock();
672 put_page(page);
673
674 goto again;
675 }
676
677 /*
678 * Take a reference unless it is about to be freed. Previously
679 * this reference was taken by ihold under the page lock
680 * pinning the inode in place so i_lock was unnecessary. The
681 * only way for this check to fail is if the inode was
682 * truncated in parallel which is almost certainly an
683 * application bug. In such a case, just retry.
684 *
685 * We are not calling into get_futex_key_refs() in file-backed
686 * cases, therefore a successful atomic_inc return below will
687 * guarantee that get_futex_key() will still imply smp_mb(); (B).
688 */
689 if (!atomic_inc_not_zero(&inode->i_count)) {
690 rcu_read_unlock();
691 put_page(page);
692
693 goto again;
694 }
695
696 /* Should be impossible but lets be paranoid for now */
697 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
698 err = -EFAULT;
699 rcu_read_unlock();
700 iput(inode);
701
702 goto out;
703 }
704
705 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
706 key->shared.inode = inode;
707 key->shared.pgoff = basepage_index(tail);
708 rcu_read_unlock();
709 }
710
711 out:
712 put_page(page);
713 return err;
714 }
715
716 static inline void put_futex_key(union futex_key *key)
717 {
718 drop_futex_key_refs(key);
719 }
720
721 /**
722 * fault_in_user_writeable() - Fault in user address and verify RW access
723 * @uaddr: pointer to faulting user space address
724 *
725 * Slow path to fixup the fault we just took in the atomic write
726 * access to @uaddr.
727 *
728 * We have no generic implementation of a non-destructive write to the
729 * user address. We know that we faulted in the atomic pagefault
730 * disabled section so we can as well avoid the #PF overhead by
731 * calling get_user_pages() right away.
732 */
733 static int fault_in_user_writeable(u32 __user *uaddr)
734 {
735 struct mm_struct *mm = current->mm;
736 int ret;
737
738 down_read(&mm->mmap_sem);
739 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
740 FAULT_FLAG_WRITE, NULL);
741 up_read(&mm->mmap_sem);
742
743 return ret < 0 ? ret : 0;
744 }
745
746 /**
747 * futex_top_waiter() - Return the highest priority waiter on a futex
748 * @hb: the hash bucket the futex_q's reside in
749 * @key: the futex key (to distinguish it from other futex futex_q's)
750 *
751 * Must be called with the hb lock held.
752 */
753 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
754 union futex_key *key)
755 {
756 struct futex_q *this;
757
758 plist_for_each_entry(this, &hb->chain, list) {
759 if (match_futex(&this->key, key))
760 return this;
761 }
762 return NULL;
763 }
764
765 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
766 u32 uval, u32 newval)
767 {
768 int ret;
769
770 pagefault_disable();
771 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
772 pagefault_enable();
773
774 return ret;
775 }
776
777 static int get_futex_value_locked(u32 *dest, u32 __user *from)
778 {
779 int ret;
780
781 pagefault_disable();
782 ret = __get_user(*dest, from);
783 pagefault_enable();
784
785 return ret ? -EFAULT : 0;
786 }
787
788
789 /*
790 * PI code:
791 */
792 static int refill_pi_state_cache(void)
793 {
794 struct futex_pi_state *pi_state;
795
796 if (likely(current->pi_state_cache))
797 return 0;
798
799 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
800
801 if (!pi_state)
802 return -ENOMEM;
803
804 INIT_LIST_HEAD(&pi_state->list);
805 /* pi_mutex gets initialized later */
806 pi_state->owner = NULL;
807 atomic_set(&pi_state->refcount, 1);
808 pi_state->key = FUTEX_KEY_INIT;
809
810 current->pi_state_cache = pi_state;
811
812 return 0;
813 }
814
815 static struct futex_pi_state *alloc_pi_state(void)
816 {
817 struct futex_pi_state *pi_state = current->pi_state_cache;
818
819 WARN_ON(!pi_state);
820 current->pi_state_cache = NULL;
821
822 return pi_state;
823 }
824
825 static void get_pi_state(struct futex_pi_state *pi_state)
826 {
827 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
828 }
829
830 /*
831 * Drops a reference to the pi_state object and frees or caches it
832 * when the last reference is gone.
833 */
834 static void put_pi_state(struct futex_pi_state *pi_state)
835 {
836 if (!pi_state)
837 return;
838
839 if (!atomic_dec_and_test(&pi_state->refcount))
840 return;
841
842 /*
843 * If pi_state->owner is NULL, the owner is most probably dying
844 * and has cleaned up the pi_state already
845 */
846 if (pi_state->owner) {
847 struct task_struct *owner;
848
849 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
850 owner = pi_state->owner;
851 if (owner) {
852 raw_spin_lock(&owner->pi_lock);
853 list_del_init(&pi_state->list);
854 raw_spin_unlock(&owner->pi_lock);
855 }
856 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
857 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
858 }
859
860 if (current->pi_state_cache) {
861 kfree(pi_state);
862 } else {
863 /*
864 * pi_state->list is already empty.
865 * clear pi_state->owner.
866 * refcount is at 0 - put it back to 1.
867 */
868 pi_state->owner = NULL;
869 atomic_set(&pi_state->refcount, 1);
870 current->pi_state_cache = pi_state;
871 }
872 }
873
874 /*
875 * Look up the task based on what TID userspace gave us.
876 * We dont trust it.
877 */
878 static struct task_struct *futex_find_get_task(pid_t pid)
879 {
880 struct task_struct *p;
881
882 rcu_read_lock();
883 p = find_task_by_vpid(pid);
884 if (p)
885 get_task_struct(p);
886
887 rcu_read_unlock();
888
889 return p;
890 }
891
892 #ifdef CONFIG_FUTEX_PI
893
894 /*
895 * This task is holding PI mutexes at exit time => bad.
896 * Kernel cleans up PI-state, but userspace is likely hosed.
897 * (Robust-futex cleanup is separate and might save the day for userspace.)
898 */
899 static void exit_pi_state_list(struct task_struct *curr)
900 {
901 struct list_head *next, *head = &curr->pi_state_list;
902 struct futex_pi_state *pi_state;
903 struct futex_hash_bucket *hb;
904 union futex_key key = FUTEX_KEY_INIT;
905
906 if (!futex_cmpxchg_enabled)
907 return;
908 /*
909 * We are a ZOMBIE and nobody can enqueue itself on
910 * pi_state_list anymore, but we have to be careful
911 * versus waiters unqueueing themselves:
912 */
913 raw_spin_lock_irq(&curr->pi_lock);
914 while (!list_empty(head)) {
915 next = head->next;
916 pi_state = list_entry(next, struct futex_pi_state, list);
917 key = pi_state->key;
918 hb = hash_futex(&key);
919
920 /*
921 * We can race against put_pi_state() removing itself from the
922 * list (a waiter going away). put_pi_state() will first
923 * decrement the reference count and then modify the list, so
924 * its possible to see the list entry but fail this reference
925 * acquire.
926 *
927 * In that case; drop the locks to let put_pi_state() make
928 * progress and retry the loop.
929 */
930 if (!atomic_inc_not_zero(&pi_state->refcount)) {
931 raw_spin_unlock_irq(&curr->pi_lock);
932 cpu_relax();
933 raw_spin_lock_irq(&curr->pi_lock);
934 continue;
935 }
936 raw_spin_unlock_irq(&curr->pi_lock);
937
938 spin_lock(&hb->lock);
939 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
940 raw_spin_lock(&curr->pi_lock);
941 /*
942 * We dropped the pi-lock, so re-check whether this
943 * task still owns the PI-state:
944 */
945 if (head->next != next) {
946 /* retain curr->pi_lock for the loop invariant */
947 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
948 spin_unlock(&hb->lock);
949 put_pi_state(pi_state);
950 continue;
951 }
952
953 WARN_ON(pi_state->owner != curr);
954 WARN_ON(list_empty(&pi_state->list));
955 list_del_init(&pi_state->list);
956 pi_state->owner = NULL;
957
958 raw_spin_unlock(&curr->pi_lock);
959 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
960 spin_unlock(&hb->lock);
961
962 rt_mutex_futex_unlock(&pi_state->pi_mutex);
963 put_pi_state(pi_state);
964
965 raw_spin_lock_irq(&curr->pi_lock);
966 }
967 raw_spin_unlock_irq(&curr->pi_lock);
968 }
969 #else
970 static inline void exit_pi_state_list(struct task_struct *curr) { }
971 #endif
972
973 /*
974 * We need to check the following states:
975 *
976 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
977 *
978 * [1] NULL | --- | --- | 0 | 0/1 | Valid
979 * [2] NULL | --- | --- | >0 | 0/1 | Valid
980 *
981 * [3] Found | NULL | -- | Any | 0/1 | Invalid
982 *
983 * [4] Found | Found | NULL | 0 | 1 | Valid
984 * [5] Found | Found | NULL | >0 | 1 | Invalid
985 *
986 * [6] Found | Found | task | 0 | 1 | Valid
987 *
988 * [7] Found | Found | NULL | Any | 0 | Invalid
989 *
990 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
991 * [9] Found | Found | task | 0 | 0 | Invalid
992 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
993 *
994 * [1] Indicates that the kernel can acquire the futex atomically. We
995 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
996 *
997 * [2] Valid, if TID does not belong to a kernel thread. If no matching
998 * thread is found then it indicates that the owner TID has died.
999 *
1000 * [3] Invalid. The waiter is queued on a non PI futex
1001 *
1002 * [4] Valid state after exit_robust_list(), which sets the user space
1003 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1004 *
1005 * [5] The user space value got manipulated between exit_robust_list()
1006 * and exit_pi_state_list()
1007 *
1008 * [6] Valid state after exit_pi_state_list() which sets the new owner in
1009 * the pi_state but cannot access the user space value.
1010 *
1011 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1012 *
1013 * [8] Owner and user space value match
1014 *
1015 * [9] There is no transient state which sets the user space TID to 0
1016 * except exit_robust_list(), but this is indicated by the
1017 * FUTEX_OWNER_DIED bit. See [4]
1018 *
1019 * [10] There is no transient state which leaves owner and user space
1020 * TID out of sync.
1021 *
1022 *
1023 * Serialization and lifetime rules:
1024 *
1025 * hb->lock:
1026 *
1027 * hb -> futex_q, relation
1028 * futex_q -> pi_state, relation
1029 *
1030 * (cannot be raw because hb can contain arbitrary amount
1031 * of futex_q's)
1032 *
1033 * pi_mutex->wait_lock:
1034 *
1035 * {uval, pi_state}
1036 *
1037 * (and pi_mutex 'obviously')
1038 *
1039 * p->pi_lock:
1040 *
1041 * p->pi_state_list -> pi_state->list, relation
1042 *
1043 * pi_state->refcount:
1044 *
1045 * pi_state lifetime
1046 *
1047 *
1048 * Lock order:
1049 *
1050 * hb->lock
1051 * pi_mutex->wait_lock
1052 * p->pi_lock
1053 *
1054 */
1055
1056 /*
1057 * Validate that the existing waiter has a pi_state and sanity check
1058 * the pi_state against the user space value. If correct, attach to
1059 * it.
1060 */
1061 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1062 struct futex_pi_state *pi_state,
1063 struct futex_pi_state **ps)
1064 {
1065 pid_t pid = uval & FUTEX_TID_MASK;
1066 u32 uval2;
1067 int ret;
1068
1069 /*
1070 * Userspace might have messed up non-PI and PI futexes [3]
1071 */
1072 if (unlikely(!pi_state))
1073 return -EINVAL;
1074
1075 /*
1076 * We get here with hb->lock held, and having found a
1077 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1078 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1079 * which in turn means that futex_lock_pi() still has a reference on
1080 * our pi_state.
1081 *
1082 * The waiter holding a reference on @pi_state also protects against
1083 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1084 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1085 * free pi_state before we can take a reference ourselves.
1086 */
1087 WARN_ON(!atomic_read(&pi_state->refcount));
1088
1089 /*
1090 * Now that we have a pi_state, we can acquire wait_lock
1091 * and do the state validation.
1092 */
1093 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1094
1095 /*
1096 * Since {uval, pi_state} is serialized by wait_lock, and our current
1097 * uval was read without holding it, it can have changed. Verify it
1098 * still is what we expect it to be, otherwise retry the entire
1099 * operation.
1100 */
1101 if (get_futex_value_locked(&uval2, uaddr))
1102 goto out_efault;
1103
1104 if (uval != uval2)
1105 goto out_eagain;
1106
1107 /*
1108 * Handle the owner died case:
1109 */
1110 if (uval & FUTEX_OWNER_DIED) {
1111 /*
1112 * exit_pi_state_list sets owner to NULL and wakes the
1113 * topmost waiter. The task which acquires the
1114 * pi_state->rt_mutex will fixup owner.
1115 */
1116 if (!pi_state->owner) {
1117 /*
1118 * No pi state owner, but the user space TID
1119 * is not 0. Inconsistent state. [5]
1120 */
1121 if (pid)
1122 goto out_einval;
1123 /*
1124 * Take a ref on the state and return success. [4]
1125 */
1126 goto out_attach;
1127 }
1128
1129 /*
1130 * If TID is 0, then either the dying owner has not
1131 * yet executed exit_pi_state_list() or some waiter
1132 * acquired the rtmutex in the pi state, but did not
1133 * yet fixup the TID in user space.
1134 *
1135 * Take a ref on the state and return success. [6]
1136 */
1137 if (!pid)
1138 goto out_attach;
1139 } else {
1140 /*
1141 * If the owner died bit is not set, then the pi_state
1142 * must have an owner. [7]
1143 */
1144 if (!pi_state->owner)
1145 goto out_einval;
1146 }
1147
1148 /*
1149 * Bail out if user space manipulated the futex value. If pi
1150 * state exists then the owner TID must be the same as the
1151 * user space TID. [9/10]
1152 */
1153 if (pid != task_pid_vnr(pi_state->owner))
1154 goto out_einval;
1155
1156 out_attach:
1157 get_pi_state(pi_state);
1158 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1159 *ps = pi_state;
1160 return 0;
1161
1162 out_einval:
1163 ret = -EINVAL;
1164 goto out_error;
1165
1166 out_eagain:
1167 ret = -EAGAIN;
1168 goto out_error;
1169
1170 out_efault:
1171 ret = -EFAULT;
1172 goto out_error;
1173
1174 out_error:
1175 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1176 return ret;
1177 }
1178
1179 /**
1180 * wait_for_owner_exiting - Block until the owner has exited
1181 * @exiting: Pointer to the exiting task
1182 *
1183 * Caller must hold a refcount on @exiting.
1184 */
1185 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1186 {
1187 if (ret != -EBUSY) {
1188 WARN_ON_ONCE(exiting);
1189 return;
1190 }
1191
1192 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1193 return;
1194
1195 mutex_lock(&exiting->futex_exit_mutex);
1196 /*
1197 * No point in doing state checking here. If the waiter got here
1198 * while the task was in exec()->exec_futex_release() then it can
1199 * have any FUTEX_STATE_* value when the waiter has acquired the
1200 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1201 * already. Highly unlikely and not a problem. Just one more round
1202 * through the futex maze.
1203 */
1204 mutex_unlock(&exiting->futex_exit_mutex);
1205
1206 put_task_struct(exiting);
1207 }
1208
1209 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1210 struct task_struct *tsk)
1211 {
1212 u32 uval2;
1213
1214 /*
1215 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1216 * caller that the alleged owner is busy.
1217 */
1218 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1219 return -EBUSY;
1220
1221 /*
1222 * Reread the user space value to handle the following situation:
1223 *
1224 * CPU0 CPU1
1225 *
1226 * sys_exit() sys_futex()
1227 * do_exit() futex_lock_pi()
1228 * futex_lock_pi_atomic()
1229 * exit_signals(tsk) No waiters:
1230 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1231 * mm_release(tsk) Set waiter bit
1232 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1233 * Set owner died attach_to_pi_owner() {
1234 * *uaddr = 0xC0000000; tsk = get_task(PID);
1235 * } if (!tsk->flags & PF_EXITING) {
1236 * ... attach();
1237 * tsk->futex_state = } else {
1238 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1239 * FUTEX_STATE_DEAD)
1240 * return -EAGAIN;
1241 * return -ESRCH; <--- FAIL
1242 * }
1243 *
1244 * Returning ESRCH unconditionally is wrong here because the
1245 * user space value has been changed by the exiting task.
1246 *
1247 * The same logic applies to the case where the exiting task is
1248 * already gone.
1249 */
1250 if (get_futex_value_locked(&uval2, uaddr))
1251 return -EFAULT;
1252
1253 /* If the user space value has changed, try again. */
1254 if (uval2 != uval)
1255 return -EAGAIN;
1256
1257 /*
1258 * The exiting task did not have a robust list, the robust list was
1259 * corrupted or the user space value in *uaddr is simply bogus.
1260 * Give up and tell user space.
1261 */
1262 return -ESRCH;
1263 }
1264
1265 /*
1266 * Lookup the task for the TID provided from user space and attach to
1267 * it after doing proper sanity checks.
1268 */
1269 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1270 struct futex_pi_state **ps,
1271 struct task_struct **exiting)
1272 {
1273 pid_t pid = uval & FUTEX_TID_MASK;
1274 struct futex_pi_state *pi_state;
1275 struct task_struct *p;
1276
1277 /*
1278 * We are the first waiter - try to look up the real owner and attach
1279 * the new pi_state to it, but bail out when TID = 0 [1]
1280 *
1281 * The !pid check is paranoid. None of the call sites should end up
1282 * with pid == 0, but better safe than sorry. Let the caller retry
1283 */
1284 if (!pid)
1285 return -EAGAIN;
1286 p = futex_find_get_task(pid);
1287 if (!p)
1288 return handle_exit_race(uaddr, uval, NULL);
1289
1290 if (unlikely(p->flags & PF_KTHREAD)) {
1291 put_task_struct(p);
1292 return -EPERM;
1293 }
1294
1295 /*
1296 * We need to look at the task state to figure out, whether the
1297 * task is exiting. To protect against the change of the task state
1298 * in futex_exit_release(), we do this protected by p->pi_lock:
1299 */
1300 raw_spin_lock_irq(&p->pi_lock);
1301 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1302 /*
1303 * The task is on the way out. When the futex state is
1304 * FUTEX_STATE_DEAD, we know that the task has finished
1305 * the cleanup:
1306 */
1307 int ret = handle_exit_race(uaddr, uval, p);
1308
1309 raw_spin_unlock_irq(&p->pi_lock);
1310 /*
1311 * If the owner task is between FUTEX_STATE_EXITING and
1312 * FUTEX_STATE_DEAD then store the task pointer and keep
1313 * the reference on the task struct. The calling code will
1314 * drop all locks, wait for the task to reach
1315 * FUTEX_STATE_DEAD and then drop the refcount. This is
1316 * required to prevent a live lock when the current task
1317 * preempted the exiting task between the two states.
1318 */
1319 if (ret == -EBUSY)
1320 *exiting = p;
1321 else
1322 put_task_struct(p);
1323 return ret;
1324 }
1325
1326 /*
1327 * No existing pi state. First waiter. [2]
1328 *
1329 * This creates pi_state, we have hb->lock held, this means nothing can
1330 * observe this state, wait_lock is irrelevant.
1331 */
1332 pi_state = alloc_pi_state();
1333
1334 /*
1335 * Initialize the pi_mutex in locked state and make @p
1336 * the owner of it:
1337 */
1338 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1339
1340 /* Store the key for possible exit cleanups: */
1341 pi_state->key = *key;
1342
1343 WARN_ON(!list_empty(&pi_state->list));
1344 list_add(&pi_state->list, &p->pi_state_list);
1345 /*
1346 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1347 * because there is no concurrency as the object is not published yet.
1348 */
1349 pi_state->owner = p;
1350 raw_spin_unlock_irq(&p->pi_lock);
1351
1352 put_task_struct(p);
1353
1354 *ps = pi_state;
1355
1356 return 0;
1357 }
1358
1359 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1360 struct futex_hash_bucket *hb,
1361 union futex_key *key, struct futex_pi_state **ps,
1362 struct task_struct **exiting)
1363 {
1364 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1365
1366 /*
1367 * If there is a waiter on that futex, validate it and
1368 * attach to the pi_state when the validation succeeds.
1369 */
1370 if (top_waiter)
1371 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1372
1373 /*
1374 * We are the first waiter - try to look up the owner based on
1375 * @uval and attach to it.
1376 */
1377 return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1378 }
1379
1380 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1381 {
1382 int err;
1383 u32 uninitialized_var(curval);
1384
1385 if (unlikely(should_fail_futex(true)))
1386 return -EFAULT;
1387
1388 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1389 if (unlikely(err))
1390 return err;
1391
1392 /* If user space value changed, let the caller retry */
1393 return curval != uval ? -EAGAIN : 0;
1394 }
1395
1396 /**
1397 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1398 * @uaddr: the pi futex user address
1399 * @hb: the pi futex hash bucket
1400 * @key: the futex key associated with uaddr and hb
1401 * @ps: the pi_state pointer where we store the result of the
1402 * lookup
1403 * @task: the task to perform the atomic lock work for. This will
1404 * be "current" except in the case of requeue pi.
1405 * @exiting: Pointer to store the task pointer of the owner task
1406 * which is in the middle of exiting
1407 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1408 *
1409 * Return:
1410 * - 0 - ready to wait;
1411 * - 1 - acquired the lock;
1412 * - <0 - error
1413 *
1414 * The hb->lock and futex_key refs shall be held by the caller.
1415 *
1416 * @exiting is only set when the return value is -EBUSY. If so, this holds
1417 * a refcount on the exiting task on return and the caller needs to drop it
1418 * after waiting for the exit to complete.
1419 */
1420 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1421 union futex_key *key,
1422 struct futex_pi_state **ps,
1423 struct task_struct *task,
1424 struct task_struct **exiting,
1425 int set_waiters)
1426 {
1427 u32 uval, newval, vpid = task_pid_vnr(task);
1428 struct futex_q *top_waiter;
1429 int ret;
1430
1431 /*
1432 * Read the user space value first so we can validate a few
1433 * things before proceeding further.
1434 */
1435 if (get_futex_value_locked(&uval, uaddr))
1436 return -EFAULT;
1437
1438 if (unlikely(should_fail_futex(true)))
1439 return -EFAULT;
1440
1441 /*
1442 * Detect deadlocks.
1443 */
1444 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1445 return -EDEADLK;
1446
1447 if ((unlikely(should_fail_futex(true))))
1448 return -EDEADLK;
1449
1450 /*
1451 * Lookup existing state first. If it exists, try to attach to
1452 * its pi_state.
1453 */
1454 top_waiter = futex_top_waiter(hb, key);
1455 if (top_waiter)
1456 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1457
1458 /*
1459 * No waiter and user TID is 0. We are here because the
1460 * waiters or the owner died bit is set or called from
1461 * requeue_cmp_pi or for whatever reason something took the
1462 * syscall.
1463 */
1464 if (!(uval & FUTEX_TID_MASK)) {
1465 /*
1466 * We take over the futex. No other waiters and the user space
1467 * TID is 0. We preserve the owner died bit.
1468 */
1469 newval = uval & FUTEX_OWNER_DIED;
1470 newval |= vpid;
1471
1472 /* The futex requeue_pi code can enforce the waiters bit */
1473 if (set_waiters)
1474 newval |= FUTEX_WAITERS;
1475
1476 ret = lock_pi_update_atomic(uaddr, uval, newval);
1477 /* If the take over worked, return 1 */
1478 return ret < 0 ? ret : 1;
1479 }
1480
1481 /*
1482 * First waiter. Set the waiters bit before attaching ourself to
1483 * the owner. If owner tries to unlock, it will be forced into
1484 * the kernel and blocked on hb->lock.
1485 */
1486 newval = uval | FUTEX_WAITERS;
1487 ret = lock_pi_update_atomic(uaddr, uval, newval);
1488 if (ret)
1489 return ret;
1490 /*
1491 * If the update of the user space value succeeded, we try to
1492 * attach to the owner. If that fails, no harm done, we only
1493 * set the FUTEX_WAITERS bit in the user space variable.
1494 */
1495 return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1496 }
1497
1498 /**
1499 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1500 * @q: The futex_q to unqueue
1501 *
1502 * The q->lock_ptr must not be NULL and must be held by the caller.
1503 */
1504 static void __unqueue_futex(struct futex_q *q)
1505 {
1506 struct futex_hash_bucket *hb;
1507
1508 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1509 || WARN_ON(plist_node_empty(&q->list)))
1510 return;
1511
1512 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1513 plist_del(&q->list, &hb->chain);
1514 hb_waiters_dec(hb);
1515 }
1516
1517 /*
1518 * The hash bucket lock must be held when this is called.
1519 * Afterwards, the futex_q must not be accessed. Callers
1520 * must ensure to later call wake_up_q() for the actual
1521 * wakeups to occur.
1522 */
1523 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1524 {
1525 struct task_struct *p = q->task;
1526
1527 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1528 return;
1529
1530 get_task_struct(p);
1531 __unqueue_futex(q);
1532 /*
1533 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1534 * is written, without taking any locks. This is possible in the event
1535 * of a spurious wakeup, for example. A memory barrier is required here
1536 * to prevent the following store to lock_ptr from getting ahead of the
1537 * plist_del in __unqueue_futex().
1538 */
1539 smp_store_release(&q->lock_ptr, NULL);
1540
1541 /*
1542 * Queue the task for later wakeup for after we've released
1543 * the hb->lock. wake_q_add() grabs reference to p.
1544 */
1545 wake_q_add(wake_q, p);
1546 put_task_struct(p);
1547 }
1548
1549 /*
1550 * Caller must hold a reference on @pi_state.
1551 */
1552 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1553 {
1554 u32 uninitialized_var(curval), newval;
1555 struct task_struct *new_owner;
1556 bool postunlock = false;
1557 DEFINE_WAKE_Q(wake_q);
1558 int ret = 0;
1559
1560 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1561 if (WARN_ON_ONCE(!new_owner)) {
1562 /*
1563 * As per the comment in futex_unlock_pi() this should not happen.
1564 *
1565 * When this happens, give up our locks and try again, giving
1566 * the futex_lock_pi() instance time to complete, either by
1567 * waiting on the rtmutex or removing itself from the futex
1568 * queue.
1569 */
1570 ret = -EAGAIN;
1571 goto out_unlock;
1572 }
1573
1574 /*
1575 * We pass it to the next owner. The WAITERS bit is always kept
1576 * enabled while there is PI state around. We cleanup the owner
1577 * died bit, because we are the owner.
1578 */
1579 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1580
1581 if (unlikely(should_fail_futex(true)))
1582 ret = -EFAULT;
1583
1584 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1585 if (!ret && (curval != uval)) {
1586 /*
1587 * If a unconditional UNLOCK_PI operation (user space did not
1588 * try the TID->0 transition) raced with a waiter setting the
1589 * FUTEX_WAITERS flag between get_user() and locking the hash
1590 * bucket lock, retry the operation.
1591 */
1592 if ((FUTEX_TID_MASK & curval) == uval)
1593 ret = -EAGAIN;
1594 else
1595 ret = -EINVAL;
1596 }
1597
1598 if (ret)
1599 goto out_unlock;
1600
1601 /*
1602 * This is a point of no return; once we modify the uval there is no
1603 * going back and subsequent operations must not fail.
1604 */
1605
1606 raw_spin_lock(&pi_state->owner->pi_lock);
1607 WARN_ON(list_empty(&pi_state->list));
1608 list_del_init(&pi_state->list);
1609 raw_spin_unlock(&pi_state->owner->pi_lock);
1610
1611 raw_spin_lock(&new_owner->pi_lock);
1612 WARN_ON(!list_empty(&pi_state->list));
1613 list_add(&pi_state->list, &new_owner->pi_state_list);
1614 pi_state->owner = new_owner;
1615 raw_spin_unlock(&new_owner->pi_lock);
1616
1617 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1618
1619 out_unlock:
1620 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1621
1622 if (postunlock)
1623 rt_mutex_postunlock(&wake_q);
1624
1625 return ret;
1626 }
1627
1628 /*
1629 * Express the locking dependencies for lockdep:
1630 */
1631 static inline void
1632 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1633 {
1634 if (hb1 <= hb2) {
1635 spin_lock(&hb1->lock);
1636 if (hb1 < hb2)
1637 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1638 } else { /* hb1 > hb2 */
1639 spin_lock(&hb2->lock);
1640 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1641 }
1642 }
1643
1644 static inline void
1645 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1646 {
1647 spin_unlock(&hb1->lock);
1648 if (hb1 != hb2)
1649 spin_unlock(&hb2->lock);
1650 }
1651
1652 /*
1653 * Wake up waiters matching bitset queued on this futex (uaddr).
1654 */
1655 static int
1656 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1657 {
1658 struct futex_hash_bucket *hb;
1659 struct futex_q *this, *next;
1660 union futex_key key = FUTEX_KEY_INIT;
1661 int ret;
1662 DEFINE_WAKE_Q(wake_q);
1663
1664 if (!bitset)
1665 return -EINVAL;
1666
1667 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1668 if (unlikely(ret != 0))
1669 goto out;
1670
1671 hb = hash_futex(&key);
1672
1673 /* Make sure we really have tasks to wakeup */
1674 if (!hb_waiters_pending(hb))
1675 goto out_put_key;
1676
1677 spin_lock(&hb->lock);
1678
1679 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1680 if (match_futex (&this->key, &key)) {
1681 if (this->pi_state || this->rt_waiter) {
1682 ret = -EINVAL;
1683 break;
1684 }
1685
1686 /* Check if one of the bits is set in both bitsets */
1687 if (!(this->bitset & bitset))
1688 continue;
1689
1690 mark_wake_futex(&wake_q, this);
1691 if (++ret >= nr_wake)
1692 break;
1693 }
1694 }
1695
1696 spin_unlock(&hb->lock);
1697 wake_up_q(&wake_q);
1698 out_put_key:
1699 put_futex_key(&key);
1700 out:
1701 return ret;
1702 }
1703
1704 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1705 {
1706 unsigned int op = (encoded_op & 0x70000000) >> 28;
1707 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1708 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1709 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1710 int oldval, ret;
1711
1712 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1713 if (oparg < 0 || oparg > 31) {
1714 char comm[sizeof(current->comm)];
1715 /*
1716 * kill this print and return -EINVAL when userspace
1717 * is sane again
1718 */
1719 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1720 get_task_comm(comm, current), oparg);
1721 oparg &= 31;
1722 }
1723 oparg = 1 << oparg;
1724 }
1725
1726 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1727 return -EFAULT;
1728
1729 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1730 if (ret)
1731 return ret;
1732
1733 switch (cmp) {
1734 case FUTEX_OP_CMP_EQ:
1735 return oldval == cmparg;
1736 case FUTEX_OP_CMP_NE:
1737 return oldval != cmparg;
1738 case FUTEX_OP_CMP_LT:
1739 return oldval < cmparg;
1740 case FUTEX_OP_CMP_GE:
1741 return oldval >= cmparg;
1742 case FUTEX_OP_CMP_LE:
1743 return oldval <= cmparg;
1744 case FUTEX_OP_CMP_GT:
1745 return oldval > cmparg;
1746 default:
1747 return -ENOSYS;
1748 }
1749 }
1750
1751 /*
1752 * Wake up all waiters hashed on the physical page that is mapped
1753 * to this virtual address:
1754 */
1755 static int
1756 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1757 int nr_wake, int nr_wake2, int op)
1758 {
1759 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1760 struct futex_hash_bucket *hb1, *hb2;
1761 struct futex_q *this, *next;
1762 int ret, op_ret;
1763 DEFINE_WAKE_Q(wake_q);
1764
1765 retry:
1766 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1767 if (unlikely(ret != 0))
1768 goto out;
1769 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1770 if (unlikely(ret != 0))
1771 goto out_put_key1;
1772
1773 hb1 = hash_futex(&key1);
1774 hb2 = hash_futex(&key2);
1775
1776 retry_private:
1777 double_lock_hb(hb1, hb2);
1778 op_ret = futex_atomic_op_inuser(op, uaddr2);
1779 if (unlikely(op_ret < 0)) {
1780 double_unlock_hb(hb1, hb2);
1781
1782 if (!IS_ENABLED(CONFIG_MMU) ||
1783 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1784 /*
1785 * we don't get EFAULT from MMU faults if we don't have
1786 * an MMU, but we might get them from range checking
1787 */
1788 ret = op_ret;
1789 goto out_put_keys;
1790 }
1791
1792 if (op_ret == -EFAULT) {
1793 ret = fault_in_user_writeable(uaddr2);
1794 if (ret)
1795 goto out_put_keys;
1796 }
1797
1798 if (!(flags & FLAGS_SHARED)) {
1799 cond_resched();
1800 goto retry_private;
1801 }
1802
1803 put_futex_key(&key2);
1804 put_futex_key(&key1);
1805 cond_resched();
1806 goto retry;
1807 }
1808
1809 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1810 if (match_futex (&this->key, &key1)) {
1811 if (this->pi_state || this->rt_waiter) {
1812 ret = -EINVAL;
1813 goto out_unlock;
1814 }
1815 mark_wake_futex(&wake_q, this);
1816 if (++ret >= nr_wake)
1817 break;
1818 }
1819 }
1820
1821 if (op_ret > 0) {
1822 op_ret = 0;
1823 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1824 if (match_futex (&this->key, &key2)) {
1825 if (this->pi_state || this->rt_waiter) {
1826 ret = -EINVAL;
1827 goto out_unlock;
1828 }
1829 mark_wake_futex(&wake_q, this);
1830 if (++op_ret >= nr_wake2)
1831 break;
1832 }
1833 }
1834 ret += op_ret;
1835 }
1836
1837 out_unlock:
1838 double_unlock_hb(hb1, hb2);
1839 wake_up_q(&wake_q);
1840 out_put_keys:
1841 put_futex_key(&key2);
1842 out_put_key1:
1843 put_futex_key(&key1);
1844 out:
1845 return ret;
1846 }
1847
1848 /**
1849 * requeue_futex() - Requeue a futex_q from one hb to another
1850 * @q: the futex_q to requeue
1851 * @hb1: the source hash_bucket
1852 * @hb2: the target hash_bucket
1853 * @key2: the new key for the requeued futex_q
1854 */
1855 static inline
1856 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1857 struct futex_hash_bucket *hb2, union futex_key *key2)
1858 {
1859
1860 /*
1861 * If key1 and key2 hash to the same bucket, no need to
1862 * requeue.
1863 */
1864 if (likely(&hb1->chain != &hb2->chain)) {
1865 plist_del(&q->list, &hb1->chain);
1866 hb_waiters_dec(hb1);
1867 hb_waiters_inc(hb2);
1868 plist_add(&q->list, &hb2->chain);
1869 q->lock_ptr = &hb2->lock;
1870 }
1871 get_futex_key_refs(key2);
1872 q->key = *key2;
1873 }
1874
1875 /**
1876 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1877 * @q: the futex_q
1878 * @key: the key of the requeue target futex
1879 * @hb: the hash_bucket of the requeue target futex
1880 *
1881 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1882 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1883 * to the requeue target futex so the waiter can detect the wakeup on the right
1884 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1885 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1886 * to protect access to the pi_state to fixup the owner later. Must be called
1887 * with both q->lock_ptr and hb->lock held.
1888 */
1889 static inline
1890 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1891 struct futex_hash_bucket *hb)
1892 {
1893 get_futex_key_refs(key);
1894 q->key = *key;
1895
1896 __unqueue_futex(q);
1897
1898 WARN_ON(!q->rt_waiter);
1899 q->rt_waiter = NULL;
1900
1901 q->lock_ptr = &hb->lock;
1902
1903 wake_up_state(q->task, TASK_NORMAL);
1904 }
1905
1906 /**
1907 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1908 * @pifutex: the user address of the to futex
1909 * @hb1: the from futex hash bucket, must be locked by the caller
1910 * @hb2: the to futex hash bucket, must be locked by the caller
1911 * @key1: the from futex key
1912 * @key2: the to futex key
1913 * @ps: address to store the pi_state pointer
1914 * @exiting: Pointer to store the task pointer of the owner task
1915 * which is in the middle of exiting
1916 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1917 *
1918 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1919 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1920 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1921 * hb1 and hb2 must be held by the caller.
1922 *
1923 * @exiting is only set when the return value is -EBUSY. If so, this holds
1924 * a refcount on the exiting task on return and the caller needs to drop it
1925 * after waiting for the exit to complete.
1926 *
1927 * Return:
1928 * - 0 - failed to acquire the lock atomically;
1929 * - >0 - acquired the lock, return value is vpid of the top_waiter
1930 * - <0 - error
1931 */
1932 static int
1933 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1934 struct futex_hash_bucket *hb2, union futex_key *key1,
1935 union futex_key *key2, struct futex_pi_state **ps,
1936 struct task_struct **exiting, int set_waiters)
1937 {
1938 struct futex_q *top_waiter = NULL;
1939 u32 curval;
1940 int ret, vpid;
1941
1942 if (get_futex_value_locked(&curval, pifutex))
1943 return -EFAULT;
1944
1945 if (unlikely(should_fail_futex(true)))
1946 return -EFAULT;
1947
1948 /*
1949 * Find the top_waiter and determine if there are additional waiters.
1950 * If the caller intends to requeue more than 1 waiter to pifutex,
1951 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1952 * as we have means to handle the possible fault. If not, don't set
1953 * the bit unecessarily as it will force the subsequent unlock to enter
1954 * the kernel.
1955 */
1956 top_waiter = futex_top_waiter(hb1, key1);
1957
1958 /* There are no waiters, nothing for us to do. */
1959 if (!top_waiter)
1960 return 0;
1961
1962 /* Ensure we requeue to the expected futex. */
1963 if (!match_futex(top_waiter->requeue_pi_key, key2))
1964 return -EINVAL;
1965
1966 /*
1967 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1968 * the contended case or if set_waiters is 1. The pi_state is returned
1969 * in ps in contended cases.
1970 */
1971 vpid = task_pid_vnr(top_waiter->task);
1972 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1973 exiting, set_waiters);
1974 if (ret == 1) {
1975 requeue_pi_wake_futex(top_waiter, key2, hb2);
1976 return vpid;
1977 }
1978 return ret;
1979 }
1980
1981 /**
1982 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1983 * @uaddr1: source futex user address
1984 * @flags: futex flags (FLAGS_SHARED, etc.)
1985 * @uaddr2: target futex user address
1986 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1987 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1988 * @cmpval: @uaddr1 expected value (or %NULL)
1989 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1990 * pi futex (pi to pi requeue is not supported)
1991 *
1992 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1993 * uaddr2 atomically on behalf of the top waiter.
1994 *
1995 * Return:
1996 * - >=0 - on success, the number of tasks requeued or woken;
1997 * - <0 - on error
1998 */
1999 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
2000 u32 __user *uaddr2, int nr_wake, int nr_requeue,
2001 u32 *cmpval, int requeue_pi)
2002 {
2003 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
2004 int drop_count = 0, task_count = 0, ret;
2005 struct futex_pi_state *pi_state = NULL;
2006 struct futex_hash_bucket *hb1, *hb2;
2007 struct futex_q *this, *next;
2008 DEFINE_WAKE_Q(wake_q);
2009
2010 if (nr_wake < 0 || nr_requeue < 0)
2011 return -EINVAL;
2012
2013 /*
2014 * When PI not supported: return -ENOSYS if requeue_pi is true,
2015 * consequently the compiler knows requeue_pi is always false past
2016 * this point which will optimize away all the conditional code
2017 * further down.
2018 */
2019 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
2020 return -ENOSYS;
2021
2022 if (requeue_pi) {
2023 /*
2024 * Requeue PI only works on two distinct uaddrs. This
2025 * check is only valid for private futexes. See below.
2026 */
2027 if (uaddr1 == uaddr2)
2028 return -EINVAL;
2029
2030 /*
2031 * requeue_pi requires a pi_state, try to allocate it now
2032 * without any locks in case it fails.
2033 */
2034 if (refill_pi_state_cache())
2035 return -ENOMEM;
2036 /*
2037 * requeue_pi must wake as many tasks as it can, up to nr_wake
2038 * + nr_requeue, since it acquires the rt_mutex prior to
2039 * returning to userspace, so as to not leave the rt_mutex with
2040 * waiters and no owner. However, second and third wake-ups
2041 * cannot be predicted as they involve race conditions with the
2042 * first wake and a fault while looking up the pi_state. Both
2043 * pthread_cond_signal() and pthread_cond_broadcast() should
2044 * use nr_wake=1.
2045 */
2046 if (nr_wake != 1)
2047 return -EINVAL;
2048 }
2049
2050 retry:
2051 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
2052 if (unlikely(ret != 0))
2053 goto out;
2054 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
2055 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
2056 if (unlikely(ret != 0))
2057 goto out_put_key1;
2058
2059 /*
2060 * The check above which compares uaddrs is not sufficient for
2061 * shared futexes. We need to compare the keys:
2062 */
2063 if (requeue_pi && match_futex(&key1, &key2)) {
2064 ret = -EINVAL;
2065 goto out_put_keys;
2066 }
2067
2068 hb1 = hash_futex(&key1);
2069 hb2 = hash_futex(&key2);
2070
2071 retry_private:
2072 hb_waiters_inc(hb2);
2073 double_lock_hb(hb1, hb2);
2074
2075 if (likely(cmpval != NULL)) {
2076 u32 curval;
2077
2078 ret = get_futex_value_locked(&curval, uaddr1);
2079
2080 if (unlikely(ret)) {
2081 double_unlock_hb(hb1, hb2);
2082 hb_waiters_dec(hb2);
2083
2084 ret = get_user(curval, uaddr1);
2085 if (ret)
2086 goto out_put_keys;
2087
2088 if (!(flags & FLAGS_SHARED))
2089 goto retry_private;
2090
2091 put_futex_key(&key2);
2092 put_futex_key(&key1);
2093 goto retry;
2094 }
2095 if (curval != *cmpval) {
2096 ret = -EAGAIN;
2097 goto out_unlock;
2098 }
2099 }
2100
2101 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2102 struct task_struct *exiting = NULL;
2103
2104 /*
2105 * Attempt to acquire uaddr2 and wake the top waiter. If we
2106 * intend to requeue waiters, force setting the FUTEX_WAITERS
2107 * bit. We force this here where we are able to easily handle
2108 * faults rather in the requeue loop below.
2109 */
2110 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2111 &key2, &pi_state,
2112 &exiting, nr_requeue);
2113
2114 /*
2115 * At this point the top_waiter has either taken uaddr2 or is
2116 * waiting on it. If the former, then the pi_state will not
2117 * exist yet, look it up one more time to ensure we have a
2118 * reference to it. If the lock was taken, ret contains the
2119 * vpid of the top waiter task.
2120 * If the lock was not taken, we have pi_state and an initial
2121 * refcount on it. In case of an error we have nothing.
2122 */
2123 if (ret > 0) {
2124 WARN_ON(pi_state);
2125 drop_count++;
2126 task_count++;
2127 /*
2128 * If we acquired the lock, then the user space value
2129 * of uaddr2 should be vpid. It cannot be changed by
2130 * the top waiter as it is blocked on hb2 lock if it
2131 * tries to do so. If something fiddled with it behind
2132 * our back the pi state lookup might unearth it. So
2133 * we rather use the known value than rereading and
2134 * handing potential crap to lookup_pi_state.
2135 *
2136 * If that call succeeds then we have pi_state and an
2137 * initial refcount on it.
2138 */
2139 ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2140 &pi_state, &exiting);
2141 }
2142
2143 switch (ret) {
2144 case 0:
2145 /* We hold a reference on the pi state. */
2146 break;
2147
2148 /* If the above failed, then pi_state is NULL */
2149 case -EFAULT:
2150 double_unlock_hb(hb1, hb2);
2151 hb_waiters_dec(hb2);
2152 put_futex_key(&key2);
2153 put_futex_key(&key1);
2154 ret = fault_in_user_writeable(uaddr2);
2155 if (!ret)
2156 goto retry;
2157 goto out;
2158 case -EBUSY:
2159 case -EAGAIN:
2160 /*
2161 * Two reasons for this:
2162 * - EBUSY: Owner is exiting and we just wait for the
2163 * exit to complete.
2164 * - EAGAIN: The user space value changed.
2165 */
2166 double_unlock_hb(hb1, hb2);
2167 hb_waiters_dec(hb2);
2168 put_futex_key(&key2);
2169 put_futex_key(&key1);
2170 /*
2171 * Handle the case where the owner is in the middle of
2172 * exiting. Wait for the exit to complete otherwise
2173 * this task might loop forever, aka. live lock.
2174 */
2175 wait_for_owner_exiting(ret, exiting);
2176 cond_resched();
2177 goto retry;
2178 default:
2179 goto out_unlock;
2180 }
2181 }
2182
2183 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2184 if (task_count - nr_wake >= nr_requeue)
2185 break;
2186
2187 if (!match_futex(&this->key, &key1))
2188 continue;
2189
2190 /*
2191 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2192 * be paired with each other and no other futex ops.
2193 *
2194 * We should never be requeueing a futex_q with a pi_state,
2195 * which is awaiting a futex_unlock_pi().
2196 */
2197 if ((requeue_pi && !this->rt_waiter) ||
2198 (!requeue_pi && this->rt_waiter) ||
2199 this->pi_state) {
2200 ret = -EINVAL;
2201 break;
2202 }
2203
2204 /*
2205 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2206 * lock, we already woke the top_waiter. If not, it will be
2207 * woken by futex_unlock_pi().
2208 */
2209 if (++task_count <= nr_wake && !requeue_pi) {
2210 mark_wake_futex(&wake_q, this);
2211 continue;
2212 }
2213
2214 /* Ensure we requeue to the expected futex for requeue_pi. */
2215 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2216 ret = -EINVAL;
2217 break;
2218 }
2219
2220 /*
2221 * Requeue nr_requeue waiters and possibly one more in the case
2222 * of requeue_pi if we couldn't acquire the lock atomically.
2223 */
2224 if (requeue_pi) {
2225 /*
2226 * Prepare the waiter to take the rt_mutex. Take a
2227 * refcount on the pi_state and store the pointer in
2228 * the futex_q object of the waiter.
2229 */
2230 get_pi_state(pi_state);
2231 this->pi_state = pi_state;
2232 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2233 this->rt_waiter,
2234 this->task);
2235 if (ret == 1) {
2236 /*
2237 * We got the lock. We do neither drop the
2238 * refcount on pi_state nor clear
2239 * this->pi_state because the waiter needs the
2240 * pi_state for cleaning up the user space
2241 * value. It will drop the refcount after
2242 * doing so.
2243 */
2244 requeue_pi_wake_futex(this, &key2, hb2);
2245 drop_count++;
2246 continue;
2247 } else if (ret) {
2248 /*
2249 * rt_mutex_start_proxy_lock() detected a
2250 * potential deadlock when we tried to queue
2251 * that waiter. Drop the pi_state reference
2252 * which we took above and remove the pointer
2253 * to the state from the waiters futex_q
2254 * object.
2255 */
2256 this->pi_state = NULL;
2257 put_pi_state(pi_state);
2258 /*
2259 * We stop queueing more waiters and let user
2260 * space deal with the mess.
2261 */
2262 break;
2263 }
2264 }
2265 requeue_futex(this, hb1, hb2, &key2);
2266 drop_count++;
2267 }
2268
2269 /*
2270 * We took an extra initial reference to the pi_state either
2271 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2272 * need to drop it here again.
2273 */
2274 put_pi_state(pi_state);
2275
2276 out_unlock:
2277 double_unlock_hb(hb1, hb2);
2278 wake_up_q(&wake_q);
2279 hb_waiters_dec(hb2);
2280
2281 /*
2282 * drop_futex_key_refs() must be called outside the spinlocks. During
2283 * the requeue we moved futex_q's from the hash bucket at key1 to the
2284 * one at key2 and updated their key pointer. We no longer need to
2285 * hold the references to key1.
2286 */
2287 while (--drop_count >= 0)
2288 drop_futex_key_refs(&key1);
2289
2290 out_put_keys:
2291 put_futex_key(&key2);
2292 out_put_key1:
2293 put_futex_key(&key1);
2294 out:
2295 return ret ? ret : task_count;
2296 }
2297
2298 /* The key must be already stored in q->key. */
2299 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2300 __acquires(&hb->lock)
2301 {
2302 struct futex_hash_bucket *hb;
2303
2304 hb = hash_futex(&q->key);
2305
2306 /*
2307 * Increment the counter before taking the lock so that
2308 * a potential waker won't miss a to-be-slept task that is
2309 * waiting for the spinlock. This is safe as all queue_lock()
2310 * users end up calling queue_me(). Similarly, for housekeeping,
2311 * decrement the counter at queue_unlock() when some error has
2312 * occurred and we don't end up adding the task to the list.
2313 */
2314 hb_waiters_inc(hb);
2315
2316 q->lock_ptr = &hb->lock;
2317
2318 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2319 return hb;
2320 }
2321
2322 static inline void
2323 queue_unlock(struct futex_hash_bucket *hb)
2324 __releases(&hb->lock)
2325 {
2326 spin_unlock(&hb->lock);
2327 hb_waiters_dec(hb);
2328 }
2329
2330 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2331 {
2332 int prio;
2333
2334 /*
2335 * The priority used to register this element is
2336 * - either the real thread-priority for the real-time threads
2337 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2338 * - or MAX_RT_PRIO for non-RT threads.
2339 * Thus, all RT-threads are woken first in priority order, and
2340 * the others are woken last, in FIFO order.
2341 */
2342 prio = min(current->normal_prio, MAX_RT_PRIO);
2343
2344 plist_node_init(&q->list, prio);
2345 plist_add(&q->list, &hb->chain);
2346 q->task = current;
2347 }
2348
2349 /**
2350 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2351 * @q: The futex_q to enqueue
2352 * @hb: The destination hash bucket
2353 *
2354 * The hb->lock must be held by the caller, and is released here. A call to
2355 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2356 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2357 * or nothing if the unqueue is done as part of the wake process and the unqueue
2358 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2359 * an example).
2360 */
2361 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2362 __releases(&hb->lock)
2363 {
2364 __queue_me(q, hb);
2365 spin_unlock(&hb->lock);
2366 }
2367
2368 /**
2369 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2370 * @q: The futex_q to unqueue
2371 *
2372 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2373 * be paired with exactly one earlier call to queue_me().
2374 *
2375 * Return:
2376 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2377 * - 0 - if the futex_q was already removed by the waking thread
2378 */
2379 static int unqueue_me(struct futex_q *q)
2380 {
2381 spinlock_t *lock_ptr;
2382 int ret = 0;
2383
2384 /* In the common case we don't take the spinlock, which is nice. */
2385 retry:
2386 /*
2387 * q->lock_ptr can change between this read and the following spin_lock.
2388 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2389 * optimizing lock_ptr out of the logic below.
2390 */
2391 lock_ptr = READ_ONCE(q->lock_ptr);
2392 if (lock_ptr != NULL) {
2393 spin_lock(lock_ptr);
2394 /*
2395 * q->lock_ptr can change between reading it and
2396 * spin_lock(), causing us to take the wrong lock. This
2397 * corrects the race condition.
2398 *
2399 * Reasoning goes like this: if we have the wrong lock,
2400 * q->lock_ptr must have changed (maybe several times)
2401 * between reading it and the spin_lock(). It can
2402 * change again after the spin_lock() but only if it was
2403 * already changed before the spin_lock(). It cannot,
2404 * however, change back to the original value. Therefore
2405 * we can detect whether we acquired the correct lock.
2406 */
2407 if (unlikely(lock_ptr != q->lock_ptr)) {
2408 spin_unlock(lock_ptr);
2409 goto retry;
2410 }
2411 __unqueue_futex(q);
2412
2413 BUG_ON(q->pi_state);
2414
2415 spin_unlock(lock_ptr);
2416 ret = 1;
2417 }
2418
2419 drop_futex_key_refs(&q->key);
2420 return ret;
2421 }
2422
2423 /*
2424 * PI futexes can not be requeued and must remove themself from the
2425 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2426 * and dropped here.
2427 */
2428 static void unqueue_me_pi(struct futex_q *q)
2429 __releases(q->lock_ptr)
2430 {
2431 __unqueue_futex(q);
2432
2433 BUG_ON(!q->pi_state);
2434 put_pi_state(q->pi_state);
2435 q->pi_state = NULL;
2436
2437 spin_unlock(q->lock_ptr);
2438 }
2439
2440 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2441 struct task_struct *argowner)
2442 {
2443 struct futex_pi_state *pi_state = q->pi_state;
2444 u32 uval, uninitialized_var(curval), newval;
2445 struct task_struct *oldowner, *newowner;
2446 u32 newtid;
2447 int ret, err = 0;
2448
2449 lockdep_assert_held(q->lock_ptr);
2450
2451 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2452
2453 oldowner = pi_state->owner;
2454
2455 /*
2456 * We are here because either:
2457 *
2458 * - we stole the lock and pi_state->owner needs updating to reflect
2459 * that (@argowner == current),
2460 *
2461 * or:
2462 *
2463 * - someone stole our lock and we need to fix things to point to the
2464 * new owner (@argowner == NULL).
2465 *
2466 * Either way, we have to replace the TID in the user space variable.
2467 * This must be atomic as we have to preserve the owner died bit here.
2468 *
2469 * Note: We write the user space value _before_ changing the pi_state
2470 * because we can fault here. Imagine swapped out pages or a fork
2471 * that marked all the anonymous memory readonly for cow.
2472 *
2473 * Modifying pi_state _before_ the user space value would leave the
2474 * pi_state in an inconsistent state when we fault here, because we
2475 * need to drop the locks to handle the fault. This might be observed
2476 * in the PID check in lookup_pi_state.
2477 */
2478 retry:
2479 if (!argowner) {
2480 if (oldowner != current) {
2481 /*
2482 * We raced against a concurrent self; things are
2483 * already fixed up. Nothing to do.
2484 */
2485 ret = 0;
2486 goto out_unlock;
2487 }
2488
2489 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2490 /* We got the lock after all, nothing to fix. */
2491 ret = 0;
2492 goto out_unlock;
2493 }
2494
2495 /*
2496 * Since we just failed the trylock; there must be an owner.
2497 */
2498 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2499 BUG_ON(!newowner);
2500 } else {
2501 WARN_ON_ONCE(argowner != current);
2502 if (oldowner == current) {
2503 /*
2504 * We raced against a concurrent self; things are
2505 * already fixed up. Nothing to do.
2506 */
2507 ret = 0;
2508 goto out_unlock;
2509 }
2510 newowner = argowner;
2511 }
2512
2513 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2514 /* Owner died? */
2515 if (!pi_state->owner)
2516 newtid |= FUTEX_OWNER_DIED;
2517
2518 err = get_futex_value_locked(&uval, uaddr);
2519 if (err)
2520 goto handle_err;
2521
2522 for (;;) {
2523 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2524
2525 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2526 if (err)
2527 goto handle_err;
2528
2529 if (curval == uval)
2530 break;
2531 uval = curval;
2532 }
2533
2534 /*
2535 * We fixed up user space. Now we need to fix the pi_state
2536 * itself.
2537 */
2538 if (pi_state->owner != NULL) {
2539 raw_spin_lock(&pi_state->owner->pi_lock);
2540 WARN_ON(list_empty(&pi_state->list));
2541 list_del_init(&pi_state->list);
2542 raw_spin_unlock(&pi_state->owner->pi_lock);
2543 }
2544
2545 pi_state->owner = newowner;
2546
2547 raw_spin_lock(&newowner->pi_lock);
2548 WARN_ON(!list_empty(&pi_state->list));
2549 list_add(&pi_state->list, &newowner->pi_state_list);
2550 raw_spin_unlock(&newowner->pi_lock);
2551 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2552
2553 return 0;
2554
2555 /*
2556 * In order to reschedule or handle a page fault, we need to drop the
2557 * locks here. In the case of a fault, this gives the other task
2558 * (either the highest priority waiter itself or the task which stole
2559 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2560 * are back from handling the fault we need to check the pi_state after
2561 * reacquiring the locks and before trying to do another fixup. When
2562 * the fixup has been done already we simply return.
2563 *
2564 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2565 * drop hb->lock since the caller owns the hb -> futex_q relation.
2566 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2567 */
2568 handle_err:
2569 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2570 spin_unlock(q->lock_ptr);
2571
2572 switch (err) {
2573 case -EFAULT:
2574 ret = fault_in_user_writeable(uaddr);
2575 break;
2576
2577 case -EAGAIN:
2578 cond_resched();
2579 ret = 0;
2580 break;
2581
2582 default:
2583 WARN_ON_ONCE(1);
2584 ret = err;
2585 break;
2586 }
2587
2588 spin_lock(q->lock_ptr);
2589 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2590
2591 /*
2592 * Check if someone else fixed it for us:
2593 */
2594 if (pi_state->owner != oldowner) {
2595 ret = 0;
2596 goto out_unlock;
2597 }
2598
2599 if (ret)
2600 goto out_unlock;
2601
2602 goto retry;
2603
2604 out_unlock:
2605 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2606 return ret;
2607 }
2608
2609 static long futex_wait_restart(struct restart_block *restart);
2610
2611 /**
2612 * fixup_owner() - Post lock pi_state and corner case management
2613 * @uaddr: user address of the futex
2614 * @q: futex_q (contains pi_state and access to the rt_mutex)
2615 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2616 *
2617 * After attempting to lock an rt_mutex, this function is called to cleanup
2618 * the pi_state owner as well as handle race conditions that may allow us to
2619 * acquire the lock. Must be called with the hb lock held.
2620 *
2621 * Return:
2622 * - 1 - success, lock taken;
2623 * - 0 - success, lock not taken;
2624 * - <0 - on error (-EFAULT)
2625 */
2626 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2627 {
2628 int ret = 0;
2629
2630 if (locked) {
2631 /*
2632 * Got the lock. We might not be the anticipated owner if we
2633 * did a lock-steal - fix up the PI-state in that case:
2634 *
2635 * Speculative pi_state->owner read (we don't hold wait_lock);
2636 * since we own the lock pi_state->owner == current is the
2637 * stable state, anything else needs more attention.
2638 */
2639 if (q->pi_state->owner != current)
2640 ret = fixup_pi_state_owner(uaddr, q, current);
2641 goto out;
2642 }
2643
2644 /*
2645 * If we didn't get the lock; check if anybody stole it from us. In
2646 * that case, we need to fix up the uval to point to them instead of
2647 * us, otherwise bad things happen. [10]
2648 *
2649 * Another speculative read; pi_state->owner == current is unstable
2650 * but needs our attention.
2651 */
2652 if (q->pi_state->owner == current) {
2653 ret = fixup_pi_state_owner(uaddr, q, NULL);
2654 goto out;
2655 }
2656
2657 /*
2658 * Paranoia check. If we did not take the lock, then we should not be
2659 * the owner of the rt_mutex.
2660 */
2661 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2662 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2663 "pi-state %p\n", ret,
2664 q->pi_state->pi_mutex.owner,
2665 q->pi_state->owner);
2666 }
2667
2668 out:
2669 return ret ? ret : locked;
2670 }
2671
2672 /**
2673 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2674 * @hb: the futex hash bucket, must be locked by the caller
2675 * @q: the futex_q to queue up on
2676 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2677 */
2678 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2679 struct hrtimer_sleeper *timeout)
2680 {
2681 /*
2682 * The task state is guaranteed to be set before another task can
2683 * wake it. set_current_state() is implemented using smp_store_mb() and
2684 * queue_me() calls spin_unlock() upon completion, both serializing
2685 * access to the hash list and forcing another memory barrier.
2686 */
2687 set_current_state(TASK_INTERRUPTIBLE);
2688 queue_me(q, hb);
2689
2690 /* Arm the timer */
2691 if (timeout)
2692 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2693
2694 /*
2695 * If we have been removed from the hash list, then another task
2696 * has tried to wake us, and we can skip the call to schedule().
2697 */
2698 if (likely(!plist_node_empty(&q->list))) {
2699 /*
2700 * If the timer has already expired, current will already be
2701 * flagged for rescheduling. Only call schedule if there
2702 * is no timeout, or if it has yet to expire.
2703 */
2704 if (!timeout || timeout->task)
2705 freezable_schedule();
2706 }
2707 __set_current_state(TASK_RUNNING);
2708 }
2709
2710 /**
2711 * futex_wait_setup() - Prepare to wait on a futex
2712 * @uaddr: the futex userspace address
2713 * @val: the expected value
2714 * @flags: futex flags (FLAGS_SHARED, etc.)
2715 * @q: the associated futex_q
2716 * @hb: storage for hash_bucket pointer to be returned to caller
2717 *
2718 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2719 * compare it with the expected value. Handle atomic faults internally.
2720 * Return with the hb lock held and a q.key reference on success, and unlocked
2721 * with no q.key reference on failure.
2722 *
2723 * Return:
2724 * - 0 - uaddr contains val and hb has been locked;
2725 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2726 */
2727 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2728 struct futex_q *q, struct futex_hash_bucket **hb)
2729 {
2730 u32 uval;
2731 int ret;
2732
2733 /*
2734 * Access the page AFTER the hash-bucket is locked.
2735 * Order is important:
2736 *
2737 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2738 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2739 *
2740 * The basic logical guarantee of a futex is that it blocks ONLY
2741 * if cond(var) is known to be true at the time of blocking, for
2742 * any cond. If we locked the hash-bucket after testing *uaddr, that
2743 * would open a race condition where we could block indefinitely with
2744 * cond(var) false, which would violate the guarantee.
2745 *
2746 * On the other hand, we insert q and release the hash-bucket only
2747 * after testing *uaddr. This guarantees that futex_wait() will NOT
2748 * absorb a wakeup if *uaddr does not match the desired values
2749 * while the syscall executes.
2750 */
2751 retry:
2752 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2753 if (unlikely(ret != 0))
2754 return ret;
2755
2756 retry_private:
2757 *hb = queue_lock(q);
2758
2759 ret = get_futex_value_locked(&uval, uaddr);
2760
2761 if (ret) {
2762 queue_unlock(*hb);
2763
2764 ret = get_user(uval, uaddr);
2765 if (ret)
2766 goto out;
2767
2768 if (!(flags & FLAGS_SHARED))
2769 goto retry_private;
2770
2771 put_futex_key(&q->key);
2772 goto retry;
2773 }
2774
2775 if (uval != val) {
2776 queue_unlock(*hb);
2777 ret = -EWOULDBLOCK;
2778 }
2779
2780 out:
2781 if (ret)
2782 put_futex_key(&q->key);
2783 return ret;
2784 }
2785
2786 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2787 ktime_t *abs_time, u32 bitset)
2788 {
2789 struct hrtimer_sleeper timeout, *to = NULL;
2790 struct restart_block *restart;
2791 struct futex_hash_bucket *hb;
2792 struct futex_q q = futex_q_init;
2793 int ret;
2794
2795 if (!bitset)
2796 return -EINVAL;
2797 q.bitset = bitset;
2798
2799 if (abs_time) {
2800 to = &timeout;
2801
2802 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2803 CLOCK_REALTIME : CLOCK_MONOTONIC,
2804 HRTIMER_MODE_ABS);
2805 hrtimer_init_sleeper(to, current);
2806 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2807 current->timer_slack_ns);
2808 }
2809
2810 retry:
2811 /*
2812 * Prepare to wait on uaddr. On success, holds hb lock and increments
2813 * q.key refs.
2814 */
2815 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2816 if (ret)
2817 goto out;
2818
2819 /* queue_me and wait for wakeup, timeout, or a signal. */
2820 futex_wait_queue_me(hb, &q, to);
2821
2822 /* If we were woken (and unqueued), we succeeded, whatever. */
2823 ret = 0;
2824 /* unqueue_me() drops q.key ref */
2825 if (!unqueue_me(&q))
2826 goto out;
2827 ret = -ETIMEDOUT;
2828 if (to && !to->task)
2829 goto out;
2830
2831 /*
2832 * We expect signal_pending(current), but we might be the
2833 * victim of a spurious wakeup as well.
2834 */
2835 if (!signal_pending(current))
2836 goto retry;
2837
2838 ret = -ERESTARTSYS;
2839 if (!abs_time)
2840 goto out;
2841
2842 restart = &current->restart_block;
2843 restart->fn = futex_wait_restart;
2844 restart->futex.uaddr = uaddr;
2845 restart->futex.val = val;
2846 restart->futex.time = *abs_time;
2847 restart->futex.bitset = bitset;
2848 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2849
2850 ret = -ERESTART_RESTARTBLOCK;
2851
2852 out:
2853 if (to) {
2854 hrtimer_cancel(&to->timer);
2855 destroy_hrtimer_on_stack(&to->timer);
2856 }
2857 return ret;
2858 }
2859
2860
2861 static long futex_wait_restart(struct restart_block *restart)
2862 {
2863 u32 __user *uaddr = restart->futex.uaddr;
2864 ktime_t t, *tp = NULL;
2865
2866 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2867 t = restart->futex.time;
2868 tp = &t;
2869 }
2870 restart->fn = do_no_restart_syscall;
2871
2872 return (long)futex_wait(uaddr, restart->futex.flags,
2873 restart->futex.val, tp, restart->futex.bitset);
2874 }
2875
2876
2877 /*
2878 * Userspace tried a 0 -> TID atomic transition of the futex value
2879 * and failed. The kernel side here does the whole locking operation:
2880 * if there are waiters then it will block as a consequence of relying
2881 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2882 * a 0 value of the futex too.).
2883 *
2884 * Also serves as futex trylock_pi()'ing, and due semantics.
2885 */
2886 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2887 ktime_t *time, int trylock)
2888 {
2889 struct hrtimer_sleeper timeout, *to = NULL;
2890 struct futex_pi_state *pi_state = NULL;
2891 struct task_struct *exiting = NULL;
2892 struct rt_mutex_waiter rt_waiter;
2893 struct futex_hash_bucket *hb;
2894 struct futex_q q = futex_q_init;
2895 int res, ret;
2896
2897 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2898 return -ENOSYS;
2899
2900 if (refill_pi_state_cache())
2901 return -ENOMEM;
2902
2903 if (time) {
2904 to = &timeout;
2905 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2906 HRTIMER_MODE_ABS);
2907 hrtimer_init_sleeper(to, current);
2908 hrtimer_set_expires(&to->timer, *time);
2909 }
2910
2911 retry:
2912 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2913 if (unlikely(ret != 0))
2914 goto out;
2915
2916 retry_private:
2917 hb = queue_lock(&q);
2918
2919 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2920 &exiting, 0);
2921 if (unlikely(ret)) {
2922 /*
2923 * Atomic work succeeded and we got the lock,
2924 * or failed. Either way, we do _not_ block.
2925 */
2926 switch (ret) {
2927 case 1:
2928 /* We got the lock. */
2929 ret = 0;
2930 goto out_unlock_put_key;
2931 case -EFAULT:
2932 goto uaddr_faulted;
2933 case -EBUSY:
2934 case -EAGAIN:
2935 /*
2936 * Two reasons for this:
2937 * - EBUSY: Task is exiting and we just wait for the
2938 * exit to complete.
2939 * - EAGAIN: The user space value changed.
2940 */
2941 queue_unlock(hb);
2942 put_futex_key(&q.key);
2943 /*
2944 * Handle the case where the owner is in the middle of
2945 * exiting. Wait for the exit to complete otherwise
2946 * this task might loop forever, aka. live lock.
2947 */
2948 wait_for_owner_exiting(ret, exiting);
2949 cond_resched();
2950 goto retry;
2951 default:
2952 goto out_unlock_put_key;
2953 }
2954 }
2955
2956 WARN_ON(!q.pi_state);
2957
2958 /*
2959 * Only actually queue now that the atomic ops are done:
2960 */
2961 __queue_me(&q, hb);
2962
2963 if (trylock) {
2964 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2965 /* Fixup the trylock return value: */
2966 ret = ret ? 0 : -EWOULDBLOCK;
2967 goto no_block;
2968 }
2969
2970 rt_mutex_init_waiter(&rt_waiter);
2971
2972 /*
2973 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2974 * hold it while doing rt_mutex_start_proxy(), because then it will
2975 * include hb->lock in the blocking chain, even through we'll not in
2976 * fact hold it while blocking. This will lead it to report -EDEADLK
2977 * and BUG when futex_unlock_pi() interleaves with this.
2978 *
2979 * Therefore acquire wait_lock while holding hb->lock, but drop the
2980 * latter before calling __rt_mutex_start_proxy_lock(). This
2981 * interleaves with futex_unlock_pi() -- which does a similar lock
2982 * handoff -- such that the latter can observe the futex_q::pi_state
2983 * before __rt_mutex_start_proxy_lock() is done.
2984 */
2985 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2986 spin_unlock(q.lock_ptr);
2987 /*
2988 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2989 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2990 * it sees the futex_q::pi_state.
2991 */
2992 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2993 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2994
2995 if (ret) {
2996 if (ret == 1)
2997 ret = 0;
2998 goto cleanup;
2999 }
3000
3001 if (unlikely(to))
3002 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
3003
3004 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
3005
3006 cleanup:
3007 spin_lock(q.lock_ptr);
3008 /*
3009 * If we failed to acquire the lock (deadlock/signal/timeout), we must
3010 * first acquire the hb->lock before removing the lock from the
3011 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
3012 * lists consistent.
3013 *
3014 * In particular; it is important that futex_unlock_pi() can not
3015 * observe this inconsistency.
3016 */
3017 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
3018 ret = 0;
3019
3020 no_block:
3021 /*
3022 * Fixup the pi_state owner and possibly acquire the lock if we
3023 * haven't already.
3024 */
3025 res = fixup_owner(uaddr, &q, !ret);
3026 /*
3027 * If fixup_owner() returned an error, proprogate that. If it acquired
3028 * the lock, clear our -ETIMEDOUT or -EINTR.
3029 */
3030 if (res)
3031 ret = (res < 0) ? res : 0;
3032
3033 /*
3034 * If fixup_owner() faulted and was unable to handle the fault, unlock
3035 * it and return the fault to userspace.
3036 */
3037 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
3038 pi_state = q.pi_state;
3039 get_pi_state(pi_state);
3040 }
3041
3042 /* Unqueue and drop the lock */
3043 unqueue_me_pi(&q);
3044
3045 if (pi_state) {
3046 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3047 put_pi_state(pi_state);
3048 }
3049
3050 goto out_put_key;
3051
3052 out_unlock_put_key:
3053 queue_unlock(hb);
3054
3055 out_put_key:
3056 put_futex_key(&q.key);
3057 out:
3058 if (to) {
3059 hrtimer_cancel(&to->timer);
3060 destroy_hrtimer_on_stack(&to->timer);
3061 }
3062 return ret != -EINTR ? ret : -ERESTARTNOINTR;
3063
3064 uaddr_faulted:
3065 queue_unlock(hb);
3066
3067 ret = fault_in_user_writeable(uaddr);
3068 if (ret)
3069 goto out_put_key;
3070
3071 if (!(flags & FLAGS_SHARED))
3072 goto retry_private;
3073
3074 put_futex_key(&q.key);
3075 goto retry;
3076 }
3077
3078 /*
3079 * Userspace attempted a TID -> 0 atomic transition, and failed.
3080 * This is the in-kernel slowpath: we look up the PI state (if any),
3081 * and do the rt-mutex unlock.
3082 */
3083 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
3084 {
3085 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
3086 union futex_key key = FUTEX_KEY_INIT;
3087 struct futex_hash_bucket *hb;
3088 struct futex_q *top_waiter;
3089 int ret;
3090
3091 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3092 return -ENOSYS;
3093
3094 retry:
3095 if (get_user(uval, uaddr))
3096 return -EFAULT;
3097 /*
3098 * We release only a lock we actually own:
3099 */
3100 if ((uval & FUTEX_TID_MASK) != vpid)
3101 return -EPERM;
3102
3103 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
3104 if (ret)
3105 return ret;
3106
3107 hb = hash_futex(&key);
3108 spin_lock(&hb->lock);
3109
3110 /*
3111 * Check waiters first. We do not trust user space values at
3112 * all and we at least want to know if user space fiddled
3113 * with the futex value instead of blindly unlocking.
3114 */
3115 top_waiter = futex_top_waiter(hb, &key);
3116 if (top_waiter) {
3117 struct futex_pi_state *pi_state = top_waiter->pi_state;
3118
3119 ret = -EINVAL;
3120 if (!pi_state)
3121 goto out_unlock;
3122
3123 /*
3124 * If current does not own the pi_state then the futex is
3125 * inconsistent and user space fiddled with the futex value.
3126 */
3127 if (pi_state->owner != current)
3128 goto out_unlock;
3129
3130 get_pi_state(pi_state);
3131 /*
3132 * By taking wait_lock while still holding hb->lock, we ensure
3133 * there is no point where we hold neither; and therefore
3134 * wake_futex_pi() must observe a state consistent with what we
3135 * observed.
3136 *
3137 * In particular; this forces __rt_mutex_start_proxy() to
3138 * complete such that we're guaranteed to observe the
3139 * rt_waiter. Also see the WARN in wake_futex_pi().
3140 */
3141 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3142 spin_unlock(&hb->lock);
3143
3144 /* drops pi_state->pi_mutex.wait_lock */
3145 ret = wake_futex_pi(uaddr, uval, pi_state);
3146
3147 put_pi_state(pi_state);
3148
3149 /*
3150 * Success, we're done! No tricky corner cases.
3151 */
3152 if (!ret)
3153 goto out_putkey;
3154 /*
3155 * The atomic access to the futex value generated a
3156 * pagefault, so retry the user-access and the wakeup:
3157 */
3158 if (ret == -EFAULT)
3159 goto pi_faulted;
3160 /*
3161 * A unconditional UNLOCK_PI op raced against a waiter
3162 * setting the FUTEX_WAITERS bit. Try again.
3163 */
3164 if (ret == -EAGAIN)
3165 goto pi_retry;
3166 /*
3167 * wake_futex_pi has detected invalid state. Tell user
3168 * space.
3169 */
3170 goto out_putkey;
3171 }
3172
3173 /*
3174 * We have no kernel internal state, i.e. no waiters in the
3175 * kernel. Waiters which are about to queue themselves are stuck
3176 * on hb->lock. So we can safely ignore them. We do neither
3177 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3178 * owner.
3179 */
3180 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3181 spin_unlock(&hb->lock);
3182 switch (ret) {
3183 case -EFAULT:
3184 goto pi_faulted;
3185
3186 case -EAGAIN:
3187 goto pi_retry;
3188
3189 default:
3190 WARN_ON_ONCE(1);
3191 goto out_putkey;
3192 }
3193 }
3194
3195 /*
3196 * If uval has changed, let user space handle it.
3197 */
3198 ret = (curval == uval) ? 0 : -EAGAIN;
3199
3200 out_unlock:
3201 spin_unlock(&hb->lock);
3202 out_putkey:
3203 put_futex_key(&key);
3204 return ret;
3205
3206 pi_retry:
3207 put_futex_key(&key);
3208 cond_resched();
3209 goto retry;
3210
3211 pi_faulted:
3212 put_futex_key(&key);
3213
3214 ret = fault_in_user_writeable(uaddr);
3215 if (!ret)
3216 goto retry;
3217
3218 return ret;
3219 }
3220
3221 /**
3222 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3223 * @hb: the hash_bucket futex_q was original enqueued on
3224 * @q: the futex_q woken while waiting to be requeued
3225 * @key2: the futex_key of the requeue target futex
3226 * @timeout: the timeout associated with the wait (NULL if none)
3227 *
3228 * Detect if the task was woken on the initial futex as opposed to the requeue
3229 * target futex. If so, determine if it was a timeout or a signal that caused
3230 * the wakeup and return the appropriate error code to the caller. Must be
3231 * called with the hb lock held.
3232 *
3233 * Return:
3234 * - 0 = no early wakeup detected;
3235 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3236 */
3237 static inline
3238 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3239 struct futex_q *q, union futex_key *key2,
3240 struct hrtimer_sleeper *timeout)
3241 {
3242 int ret = 0;
3243
3244 /*
3245 * With the hb lock held, we avoid races while we process the wakeup.
3246 * We only need to hold hb (and not hb2) to ensure atomicity as the
3247 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3248 * It can't be requeued from uaddr2 to something else since we don't
3249 * support a PI aware source futex for requeue.
3250 */
3251 if (!match_futex(&q->key, key2)) {
3252 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3253 /*
3254 * We were woken prior to requeue by a timeout or a signal.
3255 * Unqueue the futex_q and determine which it was.
3256 */
3257 plist_del(&q->list, &hb->chain);
3258 hb_waiters_dec(hb);
3259
3260 /* Handle spurious wakeups gracefully */
3261 ret = -EWOULDBLOCK;
3262 if (timeout && !timeout->task)
3263 ret = -ETIMEDOUT;
3264 else if (signal_pending(current))
3265 ret = -ERESTARTNOINTR;
3266 }
3267 return ret;
3268 }
3269
3270 /**
3271 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3272 * @uaddr: the futex we initially wait on (non-pi)
3273 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3274 * the same type, no requeueing from private to shared, etc.
3275 * @val: the expected value of uaddr
3276 * @abs_time: absolute timeout
3277 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3278 * @uaddr2: the pi futex we will take prior to returning to user-space
3279 *
3280 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3281 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3282 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3283 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3284 * without one, the pi logic would not know which task to boost/deboost, if
3285 * there was a need to.
3286 *
3287 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3288 * via the following--
3289 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3290 * 2) wakeup on uaddr2 after a requeue
3291 * 3) signal
3292 * 4) timeout
3293 *
3294 * If 3, cleanup and return -ERESTARTNOINTR.
3295 *
3296 * If 2, we may then block on trying to take the rt_mutex and return via:
3297 * 5) successful lock
3298 * 6) signal
3299 * 7) timeout
3300 * 8) other lock acquisition failure
3301 *
3302 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3303 *
3304 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3305 *
3306 * Return:
3307 * - 0 - On success;
3308 * - <0 - On error
3309 */
3310 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3311 u32 val, ktime_t *abs_time, u32 bitset,
3312 u32 __user *uaddr2)
3313 {
3314 struct hrtimer_sleeper timeout, *to = NULL;
3315 struct futex_pi_state *pi_state = NULL;
3316 struct rt_mutex_waiter rt_waiter;
3317 struct futex_hash_bucket *hb;
3318 union futex_key key2 = FUTEX_KEY_INIT;
3319 struct futex_q q = futex_q_init;
3320 int res, ret;
3321
3322 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3323 return -ENOSYS;
3324
3325 if (uaddr == uaddr2)
3326 return -EINVAL;
3327
3328 if (!bitset)
3329 return -EINVAL;
3330
3331 if (abs_time) {
3332 to = &timeout;
3333 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3334 CLOCK_REALTIME : CLOCK_MONOTONIC,
3335 HRTIMER_MODE_ABS);
3336 hrtimer_init_sleeper(to, current);
3337 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3338 current->timer_slack_ns);
3339 }
3340
3341 /*
3342 * The waiter is allocated on our stack, manipulated by the requeue
3343 * code while we sleep on uaddr.
3344 */
3345 rt_mutex_init_waiter(&rt_waiter);
3346
3347 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3348 if (unlikely(ret != 0))
3349 goto out;
3350
3351 q.bitset = bitset;
3352 q.rt_waiter = &rt_waiter;
3353 q.requeue_pi_key = &key2;
3354
3355 /*
3356 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3357 * count.
3358 */
3359 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3360 if (ret)
3361 goto out_key2;
3362
3363 /*
3364 * The check above which compares uaddrs is not sufficient for
3365 * shared futexes. We need to compare the keys:
3366 */
3367 if (match_futex(&q.key, &key2)) {
3368 queue_unlock(hb);
3369 ret = -EINVAL;
3370 goto out_put_keys;
3371 }
3372
3373 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3374 futex_wait_queue_me(hb, &q, to);
3375
3376 spin_lock(&hb->lock);
3377 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3378 spin_unlock(&hb->lock);
3379 if (ret)
3380 goto out_put_keys;
3381
3382 /*
3383 * In order for us to be here, we know our q.key == key2, and since
3384 * we took the hb->lock above, we also know that futex_requeue() has
3385 * completed and we no longer have to concern ourselves with a wakeup
3386 * race with the atomic proxy lock acquisition by the requeue code. The
3387 * futex_requeue dropped our key1 reference and incremented our key2
3388 * reference count.
3389 */
3390
3391 /* Check if the requeue code acquired the second futex for us. */
3392 if (!q.rt_waiter) {
3393 /*
3394 * Got the lock. We might not be the anticipated owner if we
3395 * did a lock-steal - fix up the PI-state in that case.
3396 */
3397 if (q.pi_state && (q.pi_state->owner != current)) {
3398 spin_lock(q.lock_ptr);
3399 ret = fixup_pi_state_owner(uaddr2, &q, current);
3400 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3401 pi_state = q.pi_state;
3402 get_pi_state(pi_state);
3403 }
3404 /*
3405 * Drop the reference to the pi state which
3406 * the requeue_pi() code acquired for us.
3407 */
3408 put_pi_state(q.pi_state);
3409 spin_unlock(q.lock_ptr);
3410 }
3411 } else {
3412 struct rt_mutex *pi_mutex;
3413
3414 /*
3415 * We have been woken up by futex_unlock_pi(), a timeout, or a
3416 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3417 * the pi_state.
3418 */
3419 WARN_ON(!q.pi_state);
3420 pi_mutex = &q.pi_state->pi_mutex;
3421 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3422
3423 spin_lock(q.lock_ptr);
3424 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3425 ret = 0;
3426
3427 debug_rt_mutex_free_waiter(&rt_waiter);
3428 /*
3429 * Fixup the pi_state owner and possibly acquire the lock if we
3430 * haven't already.
3431 */
3432 res = fixup_owner(uaddr2, &q, !ret);
3433 /*
3434 * If fixup_owner() returned an error, proprogate that. If it
3435 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3436 */
3437 if (res)
3438 ret = (res < 0) ? res : 0;
3439
3440 /*
3441 * If fixup_pi_state_owner() faulted and was unable to handle
3442 * the fault, unlock the rt_mutex and return the fault to
3443 * userspace.
3444 */
3445 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3446 pi_state = q.pi_state;
3447 get_pi_state(pi_state);
3448 }
3449
3450 /* Unqueue and drop the lock. */
3451 unqueue_me_pi(&q);
3452 }
3453
3454 if (pi_state) {
3455 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3456 put_pi_state(pi_state);
3457 }
3458
3459 if (ret == -EINTR) {
3460 /*
3461 * We've already been requeued, but cannot restart by calling
3462 * futex_lock_pi() directly. We could restart this syscall, but
3463 * it would detect that the user space "val" changed and return
3464 * -EWOULDBLOCK. Save the overhead of the restart and return
3465 * -EWOULDBLOCK directly.
3466 */
3467 ret = -EWOULDBLOCK;
3468 }
3469
3470 out_put_keys:
3471 put_futex_key(&q.key);
3472 out_key2:
3473 put_futex_key(&key2);
3474
3475 out:
3476 if (to) {
3477 hrtimer_cancel(&to->timer);
3478 destroy_hrtimer_on_stack(&to->timer);
3479 }
3480 return ret;
3481 }
3482
3483 /*
3484 * Support for robust futexes: the kernel cleans up held futexes at
3485 * thread exit time.
3486 *
3487 * Implementation: user-space maintains a per-thread list of locks it
3488 * is holding. Upon do_exit(), the kernel carefully walks this list,
3489 * and marks all locks that are owned by this thread with the
3490 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3491 * always manipulated with the lock held, so the list is private and
3492 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3493 * field, to allow the kernel to clean up if the thread dies after
3494 * acquiring the lock, but just before it could have added itself to
3495 * the list. There can only be one such pending lock.
3496 */
3497
3498 /**
3499 * sys_set_robust_list() - Set the robust-futex list head of a task
3500 * @head: pointer to the list-head
3501 * @len: length of the list-head, as userspace expects
3502 */
3503 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3504 size_t, len)
3505 {
3506 if (!futex_cmpxchg_enabled)
3507 return -ENOSYS;
3508 /*
3509 * The kernel knows only one size for now:
3510 */
3511 if (unlikely(len != sizeof(*head)))
3512 return -EINVAL;
3513
3514 current->robust_list = head;
3515
3516 return 0;
3517 }
3518
3519 /**
3520 * sys_get_robust_list() - Get the robust-futex list head of a task
3521 * @pid: pid of the process [zero for current task]
3522 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3523 * @len_ptr: pointer to a length field, the kernel fills in the header size
3524 */
3525 SYSCALL_DEFINE3(get_robust_list, int, pid,
3526 struct robust_list_head __user * __user *, head_ptr,
3527 size_t __user *, len_ptr)
3528 {
3529 struct robust_list_head __user *head;
3530 unsigned long ret;
3531 struct task_struct *p;
3532
3533 if (!futex_cmpxchg_enabled)
3534 return -ENOSYS;
3535
3536 rcu_read_lock();
3537
3538 ret = -ESRCH;
3539 if (!pid)
3540 p = current;
3541 else {
3542 p = find_task_by_vpid(pid);
3543 if (!p)
3544 goto err_unlock;
3545 }
3546
3547 ret = -EPERM;
3548 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3549 goto err_unlock;
3550
3551 head = p->robust_list;
3552 rcu_read_unlock();
3553
3554 if (put_user(sizeof(*head), len_ptr))
3555 return -EFAULT;
3556 return put_user(head, head_ptr);
3557
3558 err_unlock:
3559 rcu_read_unlock();
3560
3561 return ret;
3562 }
3563
3564 /* Constants for the pending_op argument of handle_futex_death */
3565 #define HANDLE_DEATH_PENDING true
3566 #define HANDLE_DEATH_LIST false
3567
3568 /*
3569 * Process a futex-list entry, check whether it's owned by the
3570 * dying task, and do notification if so:
3571 */
3572 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3573 bool pi, bool pending_op)
3574 {
3575 u32 uval, uninitialized_var(nval), mval;
3576 int err;
3577
3578 /* Futex address must be 32bit aligned */
3579 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3580 return -1;
3581
3582 retry:
3583 if (get_user(uval, uaddr))
3584 return -1;
3585
3586 /*
3587 * Special case for regular (non PI) futexes. The unlock path in
3588 * user space has two race scenarios:
3589 *
3590 * 1. The unlock path releases the user space futex value and
3591 * before it can execute the futex() syscall to wake up
3592 * waiters it is killed.
3593 *
3594 * 2. A woken up waiter is killed before it can acquire the
3595 * futex in user space.
3596 *
3597 * In both cases the TID validation below prevents a wakeup of
3598 * potential waiters which can cause these waiters to block
3599 * forever.
3600 *
3601 * In both cases the following conditions are met:
3602 *
3603 * 1) task->robust_list->list_op_pending != NULL
3604 * @pending_op == true
3605 * 2) User space futex value == 0
3606 * 3) Regular futex: @pi == false
3607 *
3608 * If these conditions are met, it is safe to attempt waking up a
3609 * potential waiter without touching the user space futex value and
3610 * trying to set the OWNER_DIED bit. The user space futex value is
3611 * uncontended and the rest of the user space mutex state is
3612 * consistent, so a woken waiter will just take over the
3613 * uncontended futex. Setting the OWNER_DIED bit would create
3614 * inconsistent state and malfunction of the user space owner died
3615 * handling.
3616 */
3617 if (pending_op && !pi && !uval) {
3618 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3619 return 0;
3620 }
3621
3622 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3623 return 0;
3624
3625 /*
3626 * Ok, this dying thread is truly holding a futex
3627 * of interest. Set the OWNER_DIED bit atomically
3628 * via cmpxchg, and if the value had FUTEX_WAITERS
3629 * set, wake up a waiter (if any). (We have to do a
3630 * futex_wake() even if OWNER_DIED is already set -
3631 * to handle the rare but possible case of recursive
3632 * thread-death.) The rest of the cleanup is done in
3633 * userspace.
3634 */
3635 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3636
3637 /*
3638 * We are not holding a lock here, but we want to have
3639 * the pagefault_disable/enable() protection because
3640 * we want to handle the fault gracefully. If the
3641 * access fails we try to fault in the futex with R/W
3642 * verification via get_user_pages. get_user() above
3643 * does not guarantee R/W access. If that fails we
3644 * give up and leave the futex locked.
3645 */
3646 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3647 switch (err) {
3648 case -EFAULT:
3649 if (fault_in_user_writeable(uaddr))
3650 return -1;
3651 goto retry;
3652
3653 case -EAGAIN:
3654 cond_resched();
3655 goto retry;
3656
3657 default:
3658 WARN_ON_ONCE(1);
3659 return err;
3660 }
3661 }
3662
3663 if (nval != uval)
3664 goto retry;
3665
3666 /*
3667 * Wake robust non-PI futexes here. The wakeup of
3668 * PI futexes happens in exit_pi_state():
3669 */
3670 if (!pi && (uval & FUTEX_WAITERS))
3671 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3672
3673 return 0;
3674 }
3675
3676 /*
3677 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3678 */
3679 static inline int fetch_robust_entry(struct robust_list __user **entry,
3680 struct robust_list __user * __user *head,
3681 unsigned int *pi)
3682 {
3683 unsigned long uentry;
3684
3685 if (get_user(uentry, (unsigned long __user *)head))
3686 return -EFAULT;
3687
3688 *entry = (void __user *)(uentry & ~1UL);
3689 *pi = uentry & 1;
3690
3691 return 0;
3692 }
3693
3694 /*
3695 * Walk curr->robust_list (very carefully, it's a userspace list!)
3696 * and mark any locks found there dead, and notify any waiters.
3697 *
3698 * We silently return on any sign of list-walking problem.
3699 */
3700 static void exit_robust_list(struct task_struct *curr)
3701 {
3702 struct robust_list_head __user *head = curr->robust_list;
3703 struct robust_list __user *entry, *next_entry, *pending;
3704 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3705 unsigned int uninitialized_var(next_pi);
3706 unsigned long futex_offset;
3707 int rc;
3708
3709 if (!futex_cmpxchg_enabled)
3710 return;
3711
3712 /*
3713 * Fetch the list head (which was registered earlier, via
3714 * sys_set_robust_list()):
3715 */
3716 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3717 return;
3718 /*
3719 * Fetch the relative futex offset:
3720 */
3721 if (get_user(futex_offset, &head->futex_offset))
3722 return;
3723 /*
3724 * Fetch any possibly pending lock-add first, and handle it
3725 * if it exists:
3726 */
3727 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3728 return;
3729
3730 next_entry = NULL; /* avoid warning with gcc */
3731 while (entry != &head->list) {
3732 /*
3733 * Fetch the next entry in the list before calling
3734 * handle_futex_death:
3735 */
3736 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3737 /*
3738 * A pending lock might already be on the list, so
3739 * don't process it twice:
3740 */
3741 if (entry != pending) {
3742 if (handle_futex_death((void __user *)entry + futex_offset,
3743 curr, pi, HANDLE_DEATH_LIST))
3744 return;
3745 }
3746 if (rc)
3747 return;
3748 entry = next_entry;
3749 pi = next_pi;
3750 /*
3751 * Avoid excessively long or circular lists:
3752 */
3753 if (!--limit)
3754 break;
3755
3756 cond_resched();
3757 }
3758
3759 if (pending) {
3760 handle_futex_death((void __user *)pending + futex_offset,
3761 curr, pip, HANDLE_DEATH_PENDING);
3762 }
3763 }
3764
3765 static void futex_cleanup(struct task_struct *tsk)
3766 {
3767 if (unlikely(tsk->robust_list)) {
3768 exit_robust_list(tsk);
3769 tsk->robust_list = NULL;
3770 }
3771
3772 #ifdef CONFIG_COMPAT
3773 if (unlikely(tsk->compat_robust_list)) {
3774 compat_exit_robust_list(tsk);
3775 tsk->compat_robust_list = NULL;
3776 }
3777 #endif
3778
3779 if (unlikely(!list_empty(&tsk->pi_state_list)))
3780 exit_pi_state_list(tsk);
3781 }
3782
3783 /**
3784 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3785 * @tsk: task to set the state on
3786 *
3787 * Set the futex exit state of the task lockless. The futex waiter code
3788 * observes that state when a task is exiting and loops until the task has
3789 * actually finished the futex cleanup. The worst case for this is that the
3790 * waiter runs through the wait loop until the state becomes visible.
3791 *
3792 * This is called from the recursive fault handling path in do_exit().
3793 *
3794 * This is best effort. Either the futex exit code has run already or
3795 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3796 * take it over. If not, the problem is pushed back to user space. If the
3797 * futex exit code did not run yet, then an already queued waiter might
3798 * block forever, but there is nothing which can be done about that.
3799 */
3800 void futex_exit_recursive(struct task_struct *tsk)
3801 {
3802 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3803 if (tsk->futex_state == FUTEX_STATE_EXITING)
3804 mutex_unlock(&tsk->futex_exit_mutex);
3805 tsk->futex_state = FUTEX_STATE_DEAD;
3806 }
3807
3808 static void futex_cleanup_begin(struct task_struct *tsk)
3809 {
3810 /*
3811 * Prevent various race issues against a concurrent incoming waiter
3812 * including live locks by forcing the waiter to block on
3813 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3814 * attach_to_pi_owner().
3815 */
3816 mutex_lock(&tsk->futex_exit_mutex);
3817
3818 /*
3819 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3820 *
3821 * This ensures that all subsequent checks of tsk->futex_state in
3822 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3823 * tsk->pi_lock held.
3824 *
3825 * It guarantees also that a pi_state which was queued right before
3826 * the state change under tsk->pi_lock by a concurrent waiter must
3827 * be observed in exit_pi_state_list().
3828 */
3829 raw_spin_lock_irq(&tsk->pi_lock);
3830 tsk->futex_state = FUTEX_STATE_EXITING;
3831 raw_spin_unlock_irq(&tsk->pi_lock);
3832 }
3833
3834 static void futex_cleanup_end(struct task_struct *tsk, int state)
3835 {
3836 /*
3837 * Lockless store. The only side effect is that an observer might
3838 * take another loop until it becomes visible.
3839 */
3840 tsk->futex_state = state;
3841 /*
3842 * Drop the exit protection. This unblocks waiters which observed
3843 * FUTEX_STATE_EXITING to reevaluate the state.
3844 */
3845 mutex_unlock(&tsk->futex_exit_mutex);
3846 }
3847
3848 void futex_exec_release(struct task_struct *tsk)
3849 {
3850 /*
3851 * The state handling is done for consistency, but in the case of
3852 * exec() there is no way to prevent futher damage as the PID stays
3853 * the same. But for the unlikely and arguably buggy case that a
3854 * futex is held on exec(), this provides at least as much state
3855 * consistency protection which is possible.
3856 */
3857 futex_cleanup_begin(tsk);
3858 futex_cleanup(tsk);
3859 /*
3860 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3861 * exec a new binary.
3862 */
3863 futex_cleanup_end(tsk, FUTEX_STATE_OK);
3864 }
3865
3866 void futex_exit_release(struct task_struct *tsk)
3867 {
3868 futex_cleanup_begin(tsk);
3869 futex_cleanup(tsk);
3870 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3871 }
3872
3873 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3874 u32 __user *uaddr2, u32 val2, u32 val3)
3875 {
3876 int cmd = op & FUTEX_CMD_MASK;
3877 unsigned int flags = 0;
3878
3879 if (!(op & FUTEX_PRIVATE_FLAG))
3880 flags |= FLAGS_SHARED;
3881
3882 if (op & FUTEX_CLOCK_REALTIME) {
3883 flags |= FLAGS_CLOCKRT;
3884 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3885 cmd != FUTEX_WAIT_REQUEUE_PI)
3886 return -ENOSYS;
3887 }
3888
3889 switch (cmd) {
3890 case FUTEX_LOCK_PI:
3891 case FUTEX_UNLOCK_PI:
3892 case FUTEX_TRYLOCK_PI:
3893 case FUTEX_WAIT_REQUEUE_PI:
3894 case FUTEX_CMP_REQUEUE_PI:
3895 if (!futex_cmpxchg_enabled)
3896 return -ENOSYS;
3897 }
3898
3899 switch (cmd) {
3900 case FUTEX_WAIT:
3901 val3 = FUTEX_BITSET_MATCH_ANY;
3902 case FUTEX_WAIT_BITSET:
3903 return futex_wait(uaddr, flags, val, timeout, val3);
3904 case FUTEX_WAKE:
3905 val3 = FUTEX_BITSET_MATCH_ANY;
3906 case FUTEX_WAKE_BITSET:
3907 return futex_wake(uaddr, flags, val, val3);
3908 case FUTEX_REQUEUE:
3909 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3910 case FUTEX_CMP_REQUEUE:
3911 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3912 case FUTEX_WAKE_OP:
3913 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3914 case FUTEX_LOCK_PI:
3915 return futex_lock_pi(uaddr, flags, timeout, 0);
3916 case FUTEX_UNLOCK_PI:
3917 return futex_unlock_pi(uaddr, flags);
3918 case FUTEX_TRYLOCK_PI:
3919 return futex_lock_pi(uaddr, flags, NULL, 1);
3920 case FUTEX_WAIT_REQUEUE_PI:
3921 val3 = FUTEX_BITSET_MATCH_ANY;
3922 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3923 uaddr2);
3924 case FUTEX_CMP_REQUEUE_PI:
3925 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3926 }
3927 return -ENOSYS;
3928 }
3929
3930
3931 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3932 struct timespec __user *, utime, u32 __user *, uaddr2,
3933 u32, val3)
3934 {
3935 struct timespec ts;
3936 ktime_t t, *tp = NULL;
3937 u32 val2 = 0;
3938 int cmd = op & FUTEX_CMD_MASK;
3939
3940 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3941 cmd == FUTEX_WAIT_BITSET ||
3942 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3943 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3944 return -EFAULT;
3945 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3946 return -EFAULT;
3947 if (!timespec_valid(&ts))
3948 return -EINVAL;
3949
3950 t = timespec_to_ktime(ts);
3951 if (cmd == FUTEX_WAIT)
3952 t = ktime_add_safe(ktime_get(), t);
3953 tp = &t;
3954 }
3955 /*
3956 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3957 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3958 */
3959 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3960 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3961 val2 = (u32) (unsigned long) utime;
3962
3963 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3964 }
3965
3966 #ifdef CONFIG_COMPAT
3967 /*
3968 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3969 */
3970 static inline int
3971 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3972 compat_uptr_t __user *head, unsigned int *pi)
3973 {
3974 if (get_user(*uentry, head))
3975 return -EFAULT;
3976
3977 *entry = compat_ptr((*uentry) & ~1);
3978 *pi = (unsigned int)(*uentry) & 1;
3979
3980 return 0;
3981 }
3982
3983 static void __user *futex_uaddr(struct robust_list __user *entry,
3984 compat_long_t futex_offset)
3985 {
3986 compat_uptr_t base = ptr_to_compat(entry);
3987 void __user *uaddr = compat_ptr(base + futex_offset);
3988
3989 return uaddr;
3990 }
3991
3992 /*
3993 * Walk curr->robust_list (very carefully, it's a userspace list!)
3994 * and mark any locks found there dead, and notify any waiters.
3995 *
3996 * We silently return on any sign of list-walking problem.
3997 */
3998 static void compat_exit_robust_list(struct task_struct *curr)
3999 {
4000 struct compat_robust_list_head __user *head = curr->compat_robust_list;
4001 struct robust_list __user *entry, *next_entry, *pending;
4002 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
4003 unsigned int uninitialized_var(next_pi);
4004 compat_uptr_t uentry, next_uentry, upending;
4005 compat_long_t futex_offset;
4006 int rc;
4007
4008 if (!futex_cmpxchg_enabled)
4009 return;
4010
4011 /*
4012 * Fetch the list head (which was registered earlier, via
4013 * sys_set_robust_list()):
4014 */
4015 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
4016 return;
4017 /*
4018 * Fetch the relative futex offset:
4019 */
4020 if (get_user(futex_offset, &head->futex_offset))
4021 return;
4022 /*
4023 * Fetch any possibly pending lock-add first, and handle it
4024 * if it exists:
4025 */
4026 if (compat_fetch_robust_entry(&upending, &pending,
4027 &head->list_op_pending, &pip))
4028 return;
4029
4030 next_entry = NULL; /* avoid warning with gcc */
4031 while (entry != (struct robust_list __user *) &head->list) {
4032 /*
4033 * Fetch the next entry in the list before calling
4034 * handle_futex_death:
4035 */
4036 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
4037 (compat_uptr_t __user *)&entry->next, &next_pi);
4038 /*
4039 * A pending lock might already be on the list, so
4040 * dont process it twice:
4041 */
4042 if (entry != pending) {
4043 void __user *uaddr = futex_uaddr(entry, futex_offset);
4044
4045 if (handle_futex_death(uaddr, curr, pi,
4046 HANDLE_DEATH_LIST))
4047 return;
4048 }
4049 if (rc)
4050 return;
4051 uentry = next_uentry;
4052 entry = next_entry;
4053 pi = next_pi;
4054 /*
4055 * Avoid excessively long or circular lists:
4056 */
4057 if (!--limit)
4058 break;
4059
4060 cond_resched();
4061 }
4062 if (pending) {
4063 void __user *uaddr = futex_uaddr(pending, futex_offset);
4064
4065 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
4066 }
4067 }
4068
4069 COMPAT_SYSCALL_DEFINE2(set_robust_list,
4070 struct compat_robust_list_head __user *, head,
4071 compat_size_t, len)
4072 {
4073 if (!futex_cmpxchg_enabled)
4074 return -ENOSYS;
4075
4076 if (unlikely(len != sizeof(*head)))
4077 return -EINVAL;
4078
4079 current->compat_robust_list = head;
4080
4081 return 0;
4082 }
4083
4084 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
4085 compat_uptr_t __user *, head_ptr,
4086 compat_size_t __user *, len_ptr)
4087 {
4088 struct compat_robust_list_head __user *head;
4089 unsigned long ret;
4090 struct task_struct *p;
4091
4092 if (!futex_cmpxchg_enabled)
4093 return -ENOSYS;
4094
4095 rcu_read_lock();
4096
4097 ret = -ESRCH;
4098 if (!pid)
4099 p = current;
4100 else {
4101 p = find_task_by_vpid(pid);
4102 if (!p)
4103 goto err_unlock;
4104 }
4105
4106 ret = -EPERM;
4107 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
4108 goto err_unlock;
4109
4110 head = p->compat_robust_list;
4111 rcu_read_unlock();
4112
4113 if (put_user(sizeof(*head), len_ptr))
4114 return -EFAULT;
4115 return put_user(ptr_to_compat(head), head_ptr);
4116
4117 err_unlock:
4118 rcu_read_unlock();
4119
4120 return ret;
4121 }
4122
4123 COMPAT_SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
4124 struct compat_timespec __user *, utime, u32 __user *, uaddr2,
4125 u32, val3)
4126 {
4127 struct timespec ts;
4128 ktime_t t, *tp = NULL;
4129 int val2 = 0;
4130 int cmd = op & FUTEX_CMD_MASK;
4131
4132 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
4133 cmd == FUTEX_WAIT_BITSET ||
4134 cmd == FUTEX_WAIT_REQUEUE_PI)) {
4135 if (compat_get_timespec(&ts, utime))
4136 return -EFAULT;
4137 if (!timespec_valid(&ts))
4138 return -EINVAL;
4139
4140 t = timespec_to_ktime(ts);
4141 if (cmd == FUTEX_WAIT)
4142 t = ktime_add_safe(ktime_get(), t);
4143 tp = &t;
4144 }
4145 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4146 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4147 val2 = (int) (unsigned long) utime;
4148
4149 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4150 }
4151 #endif /* CONFIG_COMPAT */
4152
4153 static void __init futex_detect_cmpxchg(void)
4154 {
4155 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4156 u32 curval;
4157
4158 /*
4159 * This will fail and we want it. Some arch implementations do
4160 * runtime detection of the futex_atomic_cmpxchg_inatomic()
4161 * functionality. We want to know that before we call in any
4162 * of the complex code paths. Also we want to prevent
4163 * registration of robust lists in that case. NULL is
4164 * guaranteed to fault and we get -EFAULT on functional
4165 * implementation, the non-functional ones will return
4166 * -ENOSYS.
4167 */
4168 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4169 futex_cmpxchg_enabled = 1;
4170 #endif
4171 }
4172
4173 static int __init futex_init(void)
4174 {
4175 unsigned int futex_shift;
4176 unsigned long i;
4177
4178 #if CONFIG_BASE_SMALL
4179 futex_hashsize = 16;
4180 #else
4181 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4182 #endif
4183
4184 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4185 futex_hashsize, 0,
4186 futex_hashsize < 256 ? HASH_SMALL : 0,
4187 &futex_shift, NULL,
4188 futex_hashsize, futex_hashsize);
4189 futex_hashsize = 1UL << futex_shift;
4190
4191 futex_detect_cmpxchg();
4192
4193 for (i = 0; i < futex_hashsize; i++) {
4194 atomic_set(&futex_queues[i].waiters, 0);
4195 plist_head_init(&futex_queues[i].chain);
4196 spin_lock_init(&futex_queues[i].lock);
4197 }
4198
4199 return 0;
4200 }
4201 core_initcall(futex_init);