]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/kexec_core.c
bpf: devmap: fix wrong interface selection in notifier_call
[mirror_ubuntu-bionic-kernel.git] / kernel / kexec_core.c
1 /*
2 * kexec.c - kexec system call core code.
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
41 #include <linux/frame.h>
42
43 #include <asm/page.h>
44 #include <asm/sections.h>
45
46 #include <crypto/hash.h>
47 #include <crypto/sha.h>
48 #include "kexec_internal.h"
49
50 DEFINE_MUTEX(kexec_mutex);
51
52 /* Per cpu memory for storing cpu states in case of system crash. */
53 note_buf_t __percpu *crash_notes;
54
55 /* Flag to indicate we are going to kexec a new kernel */
56 bool kexec_in_progress = false;
57
58
59 /* Location of the reserved area for the crash kernel */
60 struct resource crashk_res = {
61 .name = "Crash kernel",
62 .start = 0,
63 .end = 0,
64 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
65 .desc = IORES_DESC_CRASH_KERNEL
66 };
67 struct resource crashk_low_res = {
68 .name = "Crash kernel",
69 .start = 0,
70 .end = 0,
71 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
72 .desc = IORES_DESC_CRASH_KERNEL
73 };
74
75 int kexec_should_crash(struct task_struct *p)
76 {
77 /*
78 * If crash_kexec_post_notifiers is enabled, don't run
79 * crash_kexec() here yet, which must be run after panic
80 * notifiers in panic().
81 */
82 if (crash_kexec_post_notifiers)
83 return 0;
84 /*
85 * There are 4 panic() calls in do_exit() path, each of which
86 * corresponds to each of these 4 conditions.
87 */
88 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
89 return 1;
90 return 0;
91 }
92
93 int kexec_crash_loaded(void)
94 {
95 return !!kexec_crash_image;
96 }
97 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
98
99 /*
100 * When kexec transitions to the new kernel there is a one-to-one
101 * mapping between physical and virtual addresses. On processors
102 * where you can disable the MMU this is trivial, and easy. For
103 * others it is still a simple predictable page table to setup.
104 *
105 * In that environment kexec copies the new kernel to its final
106 * resting place. This means I can only support memory whose
107 * physical address can fit in an unsigned long. In particular
108 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
109 * If the assembly stub has more restrictive requirements
110 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
111 * defined more restrictively in <asm/kexec.h>.
112 *
113 * The code for the transition from the current kernel to the
114 * the new kernel is placed in the control_code_buffer, whose size
115 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
116 * page of memory is necessary, but some architectures require more.
117 * Because this memory must be identity mapped in the transition from
118 * virtual to physical addresses it must live in the range
119 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
120 * modifiable.
121 *
122 * The assembly stub in the control code buffer is passed a linked list
123 * of descriptor pages detailing the source pages of the new kernel,
124 * and the destination addresses of those source pages. As this data
125 * structure is not used in the context of the current OS, it must
126 * be self-contained.
127 *
128 * The code has been made to work with highmem pages and will use a
129 * destination page in its final resting place (if it happens
130 * to allocate it). The end product of this is that most of the
131 * physical address space, and most of RAM can be used.
132 *
133 * Future directions include:
134 * - allocating a page table with the control code buffer identity
135 * mapped, to simplify machine_kexec and make kexec_on_panic more
136 * reliable.
137 */
138
139 /*
140 * KIMAGE_NO_DEST is an impossible destination address..., for
141 * allocating pages whose destination address we do not care about.
142 */
143 #define KIMAGE_NO_DEST (-1UL)
144 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
145
146 static struct page *kimage_alloc_page(struct kimage *image,
147 gfp_t gfp_mask,
148 unsigned long dest);
149
150 int sanity_check_segment_list(struct kimage *image)
151 {
152 int i;
153 unsigned long nr_segments = image->nr_segments;
154 unsigned long total_pages = 0;
155
156 /*
157 * Verify we have good destination addresses. The caller is
158 * responsible for making certain we don't attempt to load
159 * the new image into invalid or reserved areas of RAM. This
160 * just verifies it is an address we can use.
161 *
162 * Since the kernel does everything in page size chunks ensure
163 * the destination addresses are page aligned. Too many
164 * special cases crop of when we don't do this. The most
165 * insidious is getting overlapping destination addresses
166 * simply because addresses are changed to page size
167 * granularity.
168 */
169 for (i = 0; i < nr_segments; i++) {
170 unsigned long mstart, mend;
171
172 mstart = image->segment[i].mem;
173 mend = mstart + image->segment[i].memsz;
174 if (mstart > mend)
175 return -EADDRNOTAVAIL;
176 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
177 return -EADDRNOTAVAIL;
178 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
179 return -EADDRNOTAVAIL;
180 }
181
182 /* Verify our destination addresses do not overlap.
183 * If we alloed overlapping destination addresses
184 * through very weird things can happen with no
185 * easy explanation as one segment stops on another.
186 */
187 for (i = 0; i < nr_segments; i++) {
188 unsigned long mstart, mend;
189 unsigned long j;
190
191 mstart = image->segment[i].mem;
192 mend = mstart + image->segment[i].memsz;
193 for (j = 0; j < i; j++) {
194 unsigned long pstart, pend;
195
196 pstart = image->segment[j].mem;
197 pend = pstart + image->segment[j].memsz;
198 /* Do the segments overlap ? */
199 if ((mend > pstart) && (mstart < pend))
200 return -EINVAL;
201 }
202 }
203
204 /* Ensure our buffer sizes are strictly less than
205 * our memory sizes. This should always be the case,
206 * and it is easier to check up front than to be surprised
207 * later on.
208 */
209 for (i = 0; i < nr_segments; i++) {
210 if (image->segment[i].bufsz > image->segment[i].memsz)
211 return -EINVAL;
212 }
213
214 /*
215 * Verify that no more than half of memory will be consumed. If the
216 * request from userspace is too large, a large amount of time will be
217 * wasted allocating pages, which can cause a soft lockup.
218 */
219 for (i = 0; i < nr_segments; i++) {
220 if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2)
221 return -EINVAL;
222
223 total_pages += PAGE_COUNT(image->segment[i].memsz);
224 }
225
226 if (total_pages > totalram_pages / 2)
227 return -EINVAL;
228
229 /*
230 * Verify we have good destination addresses. Normally
231 * the caller is responsible for making certain we don't
232 * attempt to load the new image into invalid or reserved
233 * areas of RAM. But crash kernels are preloaded into a
234 * reserved area of ram. We must ensure the addresses
235 * are in the reserved area otherwise preloading the
236 * kernel could corrupt things.
237 */
238
239 if (image->type == KEXEC_TYPE_CRASH) {
240 for (i = 0; i < nr_segments; i++) {
241 unsigned long mstart, mend;
242
243 mstart = image->segment[i].mem;
244 mend = mstart + image->segment[i].memsz - 1;
245 /* Ensure we are within the crash kernel limits */
246 if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
247 (mend > phys_to_boot_phys(crashk_res.end)))
248 return -EADDRNOTAVAIL;
249 }
250 }
251
252 return 0;
253 }
254
255 struct kimage *do_kimage_alloc_init(void)
256 {
257 struct kimage *image;
258
259 /* Allocate a controlling structure */
260 image = kzalloc(sizeof(*image), GFP_KERNEL);
261 if (!image)
262 return NULL;
263
264 image->head = 0;
265 image->entry = &image->head;
266 image->last_entry = &image->head;
267 image->control_page = ~0; /* By default this does not apply */
268 image->type = KEXEC_TYPE_DEFAULT;
269
270 /* Initialize the list of control pages */
271 INIT_LIST_HEAD(&image->control_pages);
272
273 /* Initialize the list of destination pages */
274 INIT_LIST_HEAD(&image->dest_pages);
275
276 /* Initialize the list of unusable pages */
277 INIT_LIST_HEAD(&image->unusable_pages);
278
279 return image;
280 }
281
282 int kimage_is_destination_range(struct kimage *image,
283 unsigned long start,
284 unsigned long end)
285 {
286 unsigned long i;
287
288 for (i = 0; i < image->nr_segments; i++) {
289 unsigned long mstart, mend;
290
291 mstart = image->segment[i].mem;
292 mend = mstart + image->segment[i].memsz;
293 if ((end > mstart) && (start < mend))
294 return 1;
295 }
296
297 return 0;
298 }
299
300 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
301 {
302 struct page *pages;
303
304 if (fatal_signal_pending(current))
305 return NULL;
306 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
307 if (pages) {
308 unsigned int count, i;
309
310 pages->mapping = NULL;
311 set_page_private(pages, order);
312 count = 1 << order;
313 for (i = 0; i < count; i++)
314 SetPageReserved(pages + i);
315
316 arch_kexec_post_alloc_pages(page_address(pages), count,
317 gfp_mask);
318
319 if (gfp_mask & __GFP_ZERO)
320 for (i = 0; i < count; i++)
321 clear_highpage(pages + i);
322 }
323
324 return pages;
325 }
326
327 static void kimage_free_pages(struct page *page)
328 {
329 unsigned int order, count, i;
330
331 order = page_private(page);
332 count = 1 << order;
333
334 arch_kexec_pre_free_pages(page_address(page), count);
335
336 for (i = 0; i < count; i++)
337 ClearPageReserved(page + i);
338 __free_pages(page, order);
339 }
340
341 void kimage_free_page_list(struct list_head *list)
342 {
343 struct page *page, *next;
344
345 list_for_each_entry_safe(page, next, list, lru) {
346 list_del(&page->lru);
347 kimage_free_pages(page);
348 }
349 }
350
351 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
352 unsigned int order)
353 {
354 /* Control pages are special, they are the intermediaries
355 * that are needed while we copy the rest of the pages
356 * to their final resting place. As such they must
357 * not conflict with either the destination addresses
358 * or memory the kernel is already using.
359 *
360 * The only case where we really need more than one of
361 * these are for architectures where we cannot disable
362 * the MMU and must instead generate an identity mapped
363 * page table for all of the memory.
364 *
365 * At worst this runs in O(N) of the image size.
366 */
367 struct list_head extra_pages;
368 struct page *pages;
369 unsigned int count;
370
371 count = 1 << order;
372 INIT_LIST_HEAD(&extra_pages);
373
374 /* Loop while I can allocate a page and the page allocated
375 * is a destination page.
376 */
377 do {
378 unsigned long pfn, epfn, addr, eaddr;
379
380 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
381 if (!pages)
382 break;
383 pfn = page_to_boot_pfn(pages);
384 epfn = pfn + count;
385 addr = pfn << PAGE_SHIFT;
386 eaddr = epfn << PAGE_SHIFT;
387 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
388 kimage_is_destination_range(image, addr, eaddr)) {
389 list_add(&pages->lru, &extra_pages);
390 pages = NULL;
391 }
392 } while (!pages);
393
394 if (pages) {
395 /* Remember the allocated page... */
396 list_add(&pages->lru, &image->control_pages);
397
398 /* Because the page is already in it's destination
399 * location we will never allocate another page at
400 * that address. Therefore kimage_alloc_pages
401 * will not return it (again) and we don't need
402 * to give it an entry in image->segment[].
403 */
404 }
405 /* Deal with the destination pages I have inadvertently allocated.
406 *
407 * Ideally I would convert multi-page allocations into single
408 * page allocations, and add everything to image->dest_pages.
409 *
410 * For now it is simpler to just free the pages.
411 */
412 kimage_free_page_list(&extra_pages);
413
414 return pages;
415 }
416
417 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
418 unsigned int order)
419 {
420 /* Control pages are special, they are the intermediaries
421 * that are needed while we copy the rest of the pages
422 * to their final resting place. As such they must
423 * not conflict with either the destination addresses
424 * or memory the kernel is already using.
425 *
426 * Control pages are also the only pags we must allocate
427 * when loading a crash kernel. All of the other pages
428 * are specified by the segments and we just memcpy
429 * into them directly.
430 *
431 * The only case where we really need more than one of
432 * these are for architectures where we cannot disable
433 * the MMU and must instead generate an identity mapped
434 * page table for all of the memory.
435 *
436 * Given the low demand this implements a very simple
437 * allocator that finds the first hole of the appropriate
438 * size in the reserved memory region, and allocates all
439 * of the memory up to and including the hole.
440 */
441 unsigned long hole_start, hole_end, size;
442 struct page *pages;
443
444 pages = NULL;
445 size = (1 << order) << PAGE_SHIFT;
446 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
447 hole_end = hole_start + size - 1;
448 while (hole_end <= crashk_res.end) {
449 unsigned long i;
450
451 cond_resched();
452
453 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
454 break;
455 /* See if I overlap any of the segments */
456 for (i = 0; i < image->nr_segments; i++) {
457 unsigned long mstart, mend;
458
459 mstart = image->segment[i].mem;
460 mend = mstart + image->segment[i].memsz - 1;
461 if ((hole_end >= mstart) && (hole_start <= mend)) {
462 /* Advance the hole to the end of the segment */
463 hole_start = (mend + (size - 1)) & ~(size - 1);
464 hole_end = hole_start + size - 1;
465 break;
466 }
467 }
468 /* If I don't overlap any segments I have found my hole! */
469 if (i == image->nr_segments) {
470 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
471 image->control_page = hole_end;
472 break;
473 }
474 }
475
476 /* Ensure that these pages are decrypted if SME is enabled. */
477 if (pages)
478 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
479
480 return pages;
481 }
482
483
484 struct page *kimage_alloc_control_pages(struct kimage *image,
485 unsigned int order)
486 {
487 struct page *pages = NULL;
488
489 switch (image->type) {
490 case KEXEC_TYPE_DEFAULT:
491 pages = kimage_alloc_normal_control_pages(image, order);
492 break;
493 case KEXEC_TYPE_CRASH:
494 pages = kimage_alloc_crash_control_pages(image, order);
495 break;
496 }
497
498 return pages;
499 }
500
501 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
502 {
503 struct page *vmcoreinfo_page;
504 void *safecopy;
505
506 if (image->type != KEXEC_TYPE_CRASH)
507 return 0;
508
509 /*
510 * For kdump, allocate one vmcoreinfo safe copy from the
511 * crash memory. as we have arch_kexec_protect_crashkres()
512 * after kexec syscall, we naturally protect it from write
513 * (even read) access under kernel direct mapping. But on
514 * the other hand, we still need to operate it when crash
515 * happens to generate vmcoreinfo note, hereby we rely on
516 * vmap for this purpose.
517 */
518 vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
519 if (!vmcoreinfo_page) {
520 pr_warn("Could not allocate vmcoreinfo buffer\n");
521 return -ENOMEM;
522 }
523 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
524 if (!safecopy) {
525 pr_warn("Could not vmap vmcoreinfo buffer\n");
526 return -ENOMEM;
527 }
528
529 image->vmcoreinfo_data_copy = safecopy;
530 crash_update_vmcoreinfo_safecopy(safecopy);
531
532 return 0;
533 }
534
535 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
536 {
537 if (*image->entry != 0)
538 image->entry++;
539
540 if (image->entry == image->last_entry) {
541 kimage_entry_t *ind_page;
542 struct page *page;
543
544 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
545 if (!page)
546 return -ENOMEM;
547
548 ind_page = page_address(page);
549 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
550 image->entry = ind_page;
551 image->last_entry = ind_page +
552 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
553 }
554 *image->entry = entry;
555 image->entry++;
556 *image->entry = 0;
557
558 return 0;
559 }
560
561 static int kimage_set_destination(struct kimage *image,
562 unsigned long destination)
563 {
564 int result;
565
566 destination &= PAGE_MASK;
567 result = kimage_add_entry(image, destination | IND_DESTINATION);
568
569 return result;
570 }
571
572
573 static int kimage_add_page(struct kimage *image, unsigned long page)
574 {
575 int result;
576
577 page &= PAGE_MASK;
578 result = kimage_add_entry(image, page | IND_SOURCE);
579
580 return result;
581 }
582
583
584 static void kimage_free_extra_pages(struct kimage *image)
585 {
586 /* Walk through and free any extra destination pages I may have */
587 kimage_free_page_list(&image->dest_pages);
588
589 /* Walk through and free any unusable pages I have cached */
590 kimage_free_page_list(&image->unusable_pages);
591
592 }
593 void kimage_terminate(struct kimage *image)
594 {
595 if (*image->entry != 0)
596 image->entry++;
597
598 *image->entry = IND_DONE;
599 }
600
601 #define for_each_kimage_entry(image, ptr, entry) \
602 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
603 ptr = (entry & IND_INDIRECTION) ? \
604 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
605
606 static void kimage_free_entry(kimage_entry_t entry)
607 {
608 struct page *page;
609
610 page = boot_pfn_to_page(entry >> PAGE_SHIFT);
611 kimage_free_pages(page);
612 }
613
614 void kimage_free(struct kimage *image)
615 {
616 kimage_entry_t *ptr, entry;
617 kimage_entry_t ind = 0;
618
619 if (!image)
620 return;
621
622 if (image->vmcoreinfo_data_copy) {
623 crash_update_vmcoreinfo_safecopy(NULL);
624 vunmap(image->vmcoreinfo_data_copy);
625 }
626
627 kimage_free_extra_pages(image);
628 for_each_kimage_entry(image, ptr, entry) {
629 if (entry & IND_INDIRECTION) {
630 /* Free the previous indirection page */
631 if (ind & IND_INDIRECTION)
632 kimage_free_entry(ind);
633 /* Save this indirection page until we are
634 * done with it.
635 */
636 ind = entry;
637 } else if (entry & IND_SOURCE)
638 kimage_free_entry(entry);
639 }
640 /* Free the final indirection page */
641 if (ind & IND_INDIRECTION)
642 kimage_free_entry(ind);
643
644 /* Handle any machine specific cleanup */
645 machine_kexec_cleanup(image);
646
647 /* Free the kexec control pages... */
648 kimage_free_page_list(&image->control_pages);
649
650 /*
651 * Free up any temporary buffers allocated. This might hit if
652 * error occurred much later after buffer allocation.
653 */
654 if (image->file_mode)
655 kimage_file_post_load_cleanup(image);
656
657 kfree(image);
658 }
659
660 static kimage_entry_t *kimage_dst_used(struct kimage *image,
661 unsigned long page)
662 {
663 kimage_entry_t *ptr, entry;
664 unsigned long destination = 0;
665
666 for_each_kimage_entry(image, ptr, entry) {
667 if (entry & IND_DESTINATION)
668 destination = entry & PAGE_MASK;
669 else if (entry & IND_SOURCE) {
670 if (page == destination)
671 return ptr;
672 destination += PAGE_SIZE;
673 }
674 }
675
676 return NULL;
677 }
678
679 static struct page *kimage_alloc_page(struct kimage *image,
680 gfp_t gfp_mask,
681 unsigned long destination)
682 {
683 /*
684 * Here we implement safeguards to ensure that a source page
685 * is not copied to its destination page before the data on
686 * the destination page is no longer useful.
687 *
688 * To do this we maintain the invariant that a source page is
689 * either its own destination page, or it is not a
690 * destination page at all.
691 *
692 * That is slightly stronger than required, but the proof
693 * that no problems will not occur is trivial, and the
694 * implementation is simply to verify.
695 *
696 * When allocating all pages normally this algorithm will run
697 * in O(N) time, but in the worst case it will run in O(N^2)
698 * time. If the runtime is a problem the data structures can
699 * be fixed.
700 */
701 struct page *page;
702 unsigned long addr;
703
704 /*
705 * Walk through the list of destination pages, and see if I
706 * have a match.
707 */
708 list_for_each_entry(page, &image->dest_pages, lru) {
709 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
710 if (addr == destination) {
711 list_del(&page->lru);
712 return page;
713 }
714 }
715 page = NULL;
716 while (1) {
717 kimage_entry_t *old;
718
719 /* Allocate a page, if we run out of memory give up */
720 page = kimage_alloc_pages(gfp_mask, 0);
721 if (!page)
722 return NULL;
723 /* If the page cannot be used file it away */
724 if (page_to_boot_pfn(page) >
725 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
726 list_add(&page->lru, &image->unusable_pages);
727 continue;
728 }
729 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
730
731 /* If it is the destination page we want use it */
732 if (addr == destination)
733 break;
734
735 /* If the page is not a destination page use it */
736 if (!kimage_is_destination_range(image, addr,
737 addr + PAGE_SIZE))
738 break;
739
740 /*
741 * I know that the page is someones destination page.
742 * See if there is already a source page for this
743 * destination page. And if so swap the source pages.
744 */
745 old = kimage_dst_used(image, addr);
746 if (old) {
747 /* If so move it */
748 unsigned long old_addr;
749 struct page *old_page;
750
751 old_addr = *old & PAGE_MASK;
752 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
753 copy_highpage(page, old_page);
754 *old = addr | (*old & ~PAGE_MASK);
755
756 /* The old page I have found cannot be a
757 * destination page, so return it if it's
758 * gfp_flags honor the ones passed in.
759 */
760 if (!(gfp_mask & __GFP_HIGHMEM) &&
761 PageHighMem(old_page)) {
762 kimage_free_pages(old_page);
763 continue;
764 }
765 addr = old_addr;
766 page = old_page;
767 break;
768 }
769 /* Place the page on the destination list, to be used later */
770 list_add(&page->lru, &image->dest_pages);
771 }
772
773 return page;
774 }
775
776 static int kimage_load_normal_segment(struct kimage *image,
777 struct kexec_segment *segment)
778 {
779 unsigned long maddr;
780 size_t ubytes, mbytes;
781 int result;
782 unsigned char __user *buf = NULL;
783 unsigned char *kbuf = NULL;
784
785 result = 0;
786 if (image->file_mode)
787 kbuf = segment->kbuf;
788 else
789 buf = segment->buf;
790 ubytes = segment->bufsz;
791 mbytes = segment->memsz;
792 maddr = segment->mem;
793
794 result = kimage_set_destination(image, maddr);
795 if (result < 0)
796 goto out;
797
798 while (mbytes) {
799 struct page *page;
800 char *ptr;
801 size_t uchunk, mchunk;
802
803 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
804 if (!page) {
805 result = -ENOMEM;
806 goto out;
807 }
808 result = kimage_add_page(image, page_to_boot_pfn(page)
809 << PAGE_SHIFT);
810 if (result < 0)
811 goto out;
812
813 ptr = kmap(page);
814 /* Start with a clear page */
815 clear_page(ptr);
816 ptr += maddr & ~PAGE_MASK;
817 mchunk = min_t(size_t, mbytes,
818 PAGE_SIZE - (maddr & ~PAGE_MASK));
819 uchunk = min(ubytes, mchunk);
820
821 /* For file based kexec, source pages are in kernel memory */
822 if (image->file_mode)
823 memcpy(ptr, kbuf, uchunk);
824 else
825 result = copy_from_user(ptr, buf, uchunk);
826 kunmap(page);
827 if (result) {
828 result = -EFAULT;
829 goto out;
830 }
831 ubytes -= uchunk;
832 maddr += mchunk;
833 if (image->file_mode)
834 kbuf += mchunk;
835 else
836 buf += mchunk;
837 mbytes -= mchunk;
838 }
839 out:
840 return result;
841 }
842
843 static int kimage_load_crash_segment(struct kimage *image,
844 struct kexec_segment *segment)
845 {
846 /* For crash dumps kernels we simply copy the data from
847 * user space to it's destination.
848 * We do things a page at a time for the sake of kmap.
849 */
850 unsigned long maddr;
851 size_t ubytes, mbytes;
852 int result;
853 unsigned char __user *buf = NULL;
854 unsigned char *kbuf = NULL;
855
856 result = 0;
857 if (image->file_mode)
858 kbuf = segment->kbuf;
859 else
860 buf = segment->buf;
861 ubytes = segment->bufsz;
862 mbytes = segment->memsz;
863 maddr = segment->mem;
864 while (mbytes) {
865 struct page *page;
866 char *ptr;
867 size_t uchunk, mchunk;
868
869 page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
870 if (!page) {
871 result = -ENOMEM;
872 goto out;
873 }
874 arch_kexec_post_alloc_pages(page_address(page), 1, 0);
875 ptr = kmap(page);
876 ptr += maddr & ~PAGE_MASK;
877 mchunk = min_t(size_t, mbytes,
878 PAGE_SIZE - (maddr & ~PAGE_MASK));
879 uchunk = min(ubytes, mchunk);
880 if (mchunk > uchunk) {
881 /* Zero the trailing part of the page */
882 memset(ptr + uchunk, 0, mchunk - uchunk);
883 }
884
885 /* For file based kexec, source pages are in kernel memory */
886 if (image->file_mode)
887 memcpy(ptr, kbuf, uchunk);
888 else
889 result = copy_from_user(ptr, buf, uchunk);
890 kexec_flush_icache_page(page);
891 kunmap(page);
892 arch_kexec_pre_free_pages(page_address(page), 1);
893 if (result) {
894 result = -EFAULT;
895 goto out;
896 }
897 ubytes -= uchunk;
898 maddr += mchunk;
899 if (image->file_mode)
900 kbuf += mchunk;
901 else
902 buf += mchunk;
903 mbytes -= mchunk;
904 }
905 out:
906 return result;
907 }
908
909 int kimage_load_segment(struct kimage *image,
910 struct kexec_segment *segment)
911 {
912 int result = -ENOMEM;
913
914 switch (image->type) {
915 case KEXEC_TYPE_DEFAULT:
916 result = kimage_load_normal_segment(image, segment);
917 break;
918 case KEXEC_TYPE_CRASH:
919 result = kimage_load_crash_segment(image, segment);
920 break;
921 }
922
923 return result;
924 }
925
926 struct kimage *kexec_image;
927 struct kimage *kexec_crash_image;
928 int kexec_load_disabled;
929
930 /*
931 * No panic_cpu check version of crash_kexec(). This function is called
932 * only when panic_cpu holds the current CPU number; this is the only CPU
933 * which processes crash_kexec routines.
934 */
935 void __noclone __crash_kexec(struct pt_regs *regs)
936 {
937 /* Take the kexec_mutex here to prevent sys_kexec_load
938 * running on one cpu from replacing the crash kernel
939 * we are using after a panic on a different cpu.
940 *
941 * If the crash kernel was not located in a fixed area
942 * of memory the xchg(&kexec_crash_image) would be
943 * sufficient. But since I reuse the memory...
944 */
945 if (mutex_trylock(&kexec_mutex)) {
946 if (kexec_crash_image) {
947 struct pt_regs fixed_regs;
948
949 crash_setup_regs(&fixed_regs, regs);
950 crash_save_vmcoreinfo();
951 machine_crash_shutdown(&fixed_regs);
952 machine_kexec(kexec_crash_image);
953 }
954 mutex_unlock(&kexec_mutex);
955 }
956 }
957 STACK_FRAME_NON_STANDARD(__crash_kexec);
958
959 void crash_kexec(struct pt_regs *regs)
960 {
961 int old_cpu, this_cpu;
962
963 /*
964 * Only one CPU is allowed to execute the crash_kexec() code as with
965 * panic(). Otherwise parallel calls of panic() and crash_kexec()
966 * may stop each other. To exclude them, we use panic_cpu here too.
967 */
968 this_cpu = raw_smp_processor_id();
969 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
970 if (old_cpu == PANIC_CPU_INVALID) {
971 /* This is the 1st CPU which comes here, so go ahead. */
972 printk_safe_flush_on_panic();
973 __crash_kexec(regs);
974
975 /*
976 * Reset panic_cpu to allow another panic()/crash_kexec()
977 * call.
978 */
979 atomic_set(&panic_cpu, PANIC_CPU_INVALID);
980 }
981 }
982
983 size_t crash_get_memory_size(void)
984 {
985 size_t size = 0;
986
987 mutex_lock(&kexec_mutex);
988 if (crashk_res.end != crashk_res.start)
989 size = resource_size(&crashk_res);
990 mutex_unlock(&kexec_mutex);
991 return size;
992 }
993
994 void __weak crash_free_reserved_phys_range(unsigned long begin,
995 unsigned long end)
996 {
997 unsigned long addr;
998
999 for (addr = begin; addr < end; addr += PAGE_SIZE)
1000 free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
1001 }
1002
1003 int crash_shrink_memory(unsigned long new_size)
1004 {
1005 int ret = 0;
1006 unsigned long start, end;
1007 unsigned long old_size;
1008 struct resource *ram_res;
1009
1010 mutex_lock(&kexec_mutex);
1011
1012 if (kexec_crash_image) {
1013 ret = -ENOENT;
1014 goto unlock;
1015 }
1016 start = crashk_res.start;
1017 end = crashk_res.end;
1018 old_size = (end == 0) ? 0 : end - start + 1;
1019 if (new_size >= old_size) {
1020 ret = (new_size == old_size) ? 0 : -EINVAL;
1021 goto unlock;
1022 }
1023
1024 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1025 if (!ram_res) {
1026 ret = -ENOMEM;
1027 goto unlock;
1028 }
1029
1030 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1031 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1032
1033 crash_free_reserved_phys_range(end, crashk_res.end);
1034
1035 if ((start == end) && (crashk_res.parent != NULL))
1036 release_resource(&crashk_res);
1037
1038 ram_res->start = end;
1039 ram_res->end = crashk_res.end;
1040 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1041 ram_res->name = "System RAM";
1042
1043 crashk_res.end = end - 1;
1044
1045 insert_resource(&iomem_resource, ram_res);
1046
1047 unlock:
1048 mutex_unlock(&kexec_mutex);
1049 return ret;
1050 }
1051
1052 void crash_save_cpu(struct pt_regs *regs, int cpu)
1053 {
1054 struct elf_prstatus prstatus;
1055 u32 *buf;
1056
1057 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1058 return;
1059
1060 /* Using ELF notes here is opportunistic.
1061 * I need a well defined structure format
1062 * for the data I pass, and I need tags
1063 * on the data to indicate what information I have
1064 * squirrelled away. ELF notes happen to provide
1065 * all of that, so there is no need to invent something new.
1066 */
1067 buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1068 if (!buf)
1069 return;
1070 memset(&prstatus, 0, sizeof(prstatus));
1071 prstatus.pr_pid = current->pid;
1072 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1073 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1074 &prstatus, sizeof(prstatus));
1075 final_note(buf);
1076 }
1077
1078 static int __init crash_notes_memory_init(void)
1079 {
1080 /* Allocate memory for saving cpu registers. */
1081 size_t size, align;
1082
1083 /*
1084 * crash_notes could be allocated across 2 vmalloc pages when percpu
1085 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1086 * pages are also on 2 continuous physical pages. In this case the
1087 * 2nd part of crash_notes in 2nd page could be lost since only the
1088 * starting address and size of crash_notes are exported through sysfs.
1089 * Here round up the size of crash_notes to the nearest power of two
1090 * and pass it to __alloc_percpu as align value. This can make sure
1091 * crash_notes is allocated inside one physical page.
1092 */
1093 size = sizeof(note_buf_t);
1094 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1095
1096 /*
1097 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1098 * definitely will be in 2 pages with that.
1099 */
1100 BUILD_BUG_ON(size > PAGE_SIZE);
1101
1102 crash_notes = __alloc_percpu(size, align);
1103 if (!crash_notes) {
1104 pr_warn("Memory allocation for saving cpu register states failed\n");
1105 return -ENOMEM;
1106 }
1107 return 0;
1108 }
1109 subsys_initcall(crash_notes_memory_init);
1110
1111
1112 /*
1113 * Move into place and start executing a preloaded standalone
1114 * executable. If nothing was preloaded return an error.
1115 */
1116 int kernel_kexec(void)
1117 {
1118 int error = 0;
1119
1120 if (!mutex_trylock(&kexec_mutex))
1121 return -EBUSY;
1122 if (!kexec_image) {
1123 error = -EINVAL;
1124 goto Unlock;
1125 }
1126
1127 #ifdef CONFIG_KEXEC_JUMP
1128 if (kexec_image->preserve_context) {
1129 lock_system_sleep();
1130 pm_prepare_console();
1131 error = freeze_processes();
1132 if (error) {
1133 error = -EBUSY;
1134 goto Restore_console;
1135 }
1136 suspend_console();
1137 error = dpm_suspend_start(PMSG_FREEZE);
1138 if (error)
1139 goto Resume_console;
1140 /* At this point, dpm_suspend_start() has been called,
1141 * but *not* dpm_suspend_end(). We *must* call
1142 * dpm_suspend_end() now. Otherwise, drivers for
1143 * some devices (e.g. interrupt controllers) become
1144 * desynchronized with the actual state of the
1145 * hardware at resume time, and evil weirdness ensues.
1146 */
1147 error = dpm_suspend_end(PMSG_FREEZE);
1148 if (error)
1149 goto Resume_devices;
1150 error = disable_nonboot_cpus();
1151 if (error)
1152 goto Enable_cpus;
1153 local_irq_disable();
1154 error = syscore_suspend();
1155 if (error)
1156 goto Enable_irqs;
1157 } else
1158 #endif
1159 {
1160 kexec_in_progress = true;
1161 kernel_restart_prepare(NULL);
1162 migrate_to_reboot_cpu();
1163
1164 /*
1165 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1166 * no further code needs to use CPU hotplug (which is true in
1167 * the reboot case). However, the kexec path depends on using
1168 * CPU hotplug again; so re-enable it here.
1169 */
1170 cpu_hotplug_enable();
1171 pr_emerg("Starting new kernel\n");
1172 machine_shutdown();
1173 }
1174
1175 machine_kexec(kexec_image);
1176
1177 #ifdef CONFIG_KEXEC_JUMP
1178 if (kexec_image->preserve_context) {
1179 syscore_resume();
1180 Enable_irqs:
1181 local_irq_enable();
1182 Enable_cpus:
1183 enable_nonboot_cpus();
1184 dpm_resume_start(PMSG_RESTORE);
1185 Resume_devices:
1186 dpm_resume_end(PMSG_RESTORE);
1187 Resume_console:
1188 resume_console();
1189 thaw_processes();
1190 Restore_console:
1191 pm_restore_console();
1192 unlock_system_sleep();
1193 }
1194 #endif
1195
1196 Unlock:
1197 mutex_unlock(&kexec_mutex);
1198 return error;
1199 }
1200
1201 /*
1202 * Protection mechanism for crashkernel reserved memory after
1203 * the kdump kernel is loaded.
1204 *
1205 * Provide an empty default implementation here -- architecture
1206 * code may override this
1207 */
1208 void __weak arch_kexec_protect_crashkres(void)
1209 {}
1210
1211 void __weak arch_kexec_unprotect_crashkres(void)
1212 {}