]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/module.c
x86/kvm: Expose X86_FEATURE_MD_CLEAR to guests
[mirror_ubuntu-bionic-kernel.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/extable.h>
21 #include <linux/moduleloader.h>
22 #include <linux/trace_events.h>
23 #include <linux/init.h>
24 #include <linux/kallsyms.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/vmalloc.h>
31 #include <linux/elf.h>
32 #include <linux/proc_fs.h>
33 #include <linux/security.h>
34 #include <linux/seq_file.h>
35 #include <linux/syscalls.h>
36 #include <linux/fcntl.h>
37 #include <linux/rcupdate.h>
38 #include <linux/capability.h>
39 #include <linux/cpu.h>
40 #include <linux/moduleparam.h>
41 #include <linux/errno.h>
42 #include <linux/err.h>
43 #include <linux/vermagic.h>
44 #include <linux/notifier.h>
45 #include <linux/sched.h>
46 #include <linux/device.h>
47 #include <linux/string.h>
48 #include <linux/mutex.h>
49 #include <linux/rculist.h>
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <linux/set_memory.h>
53 #include <asm/mmu_context.h>
54 #include <linux/license.h>
55 #include <asm/sections.h>
56 #include <linux/tracepoint.h>
57 #include <linux/ftrace.h>
58 #include <linux/livepatch.h>
59 #include <linux/async.h>
60 #include <linux/percpu.h>
61 #include <linux/kmemleak.h>
62 #include <linux/jump_label.h>
63 #include <linux/pfn.h>
64 #include <linux/bsearch.h>
65 #include <linux/dynamic_debug.h>
66 #include <linux/audit.h>
67 #include <uapi/linux/module.h>
68 #include "module-internal.h"
69
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/module.h>
72
73 #ifndef ARCH_SHF_SMALL
74 #define ARCH_SHF_SMALL 0
75 #endif
76
77 /*
78 * Modules' sections will be aligned on page boundaries
79 * to ensure complete separation of code and data, but
80 * only when CONFIG_STRICT_MODULE_RWX=y
81 */
82 #ifdef CONFIG_STRICT_MODULE_RWX
83 # define debug_align(X) ALIGN(X, PAGE_SIZE)
84 #else
85 # define debug_align(X) (X)
86 #endif
87
88 /* If this is set, the section belongs in the init part of the module */
89 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
90
91 /*
92 * Mutex protects:
93 * 1) List of modules (also safely readable with preempt_disable),
94 * 2) module_use links,
95 * 3) module_addr_min/module_addr_max.
96 * (delete and add uses RCU list operations). */
97 DEFINE_MUTEX(module_mutex);
98 EXPORT_SYMBOL_GPL(module_mutex);
99 static LIST_HEAD(modules);
100
101 #ifdef CONFIG_MODULES_TREE_LOOKUP
102
103 /*
104 * Use a latched RB-tree for __module_address(); this allows us to use
105 * RCU-sched lookups of the address from any context.
106 *
107 * This is conditional on PERF_EVENTS || TRACING because those can really hit
108 * __module_address() hard by doing a lot of stack unwinding; potentially from
109 * NMI context.
110 */
111
112 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
113 {
114 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
115
116 return (unsigned long)layout->base;
117 }
118
119 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
120 {
121 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
122
123 return (unsigned long)layout->size;
124 }
125
126 static __always_inline bool
127 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
128 {
129 return __mod_tree_val(a) < __mod_tree_val(b);
130 }
131
132 static __always_inline int
133 mod_tree_comp(void *key, struct latch_tree_node *n)
134 {
135 unsigned long val = (unsigned long)key;
136 unsigned long start, end;
137
138 start = __mod_tree_val(n);
139 if (val < start)
140 return -1;
141
142 end = start + __mod_tree_size(n);
143 if (val >= end)
144 return 1;
145
146 return 0;
147 }
148
149 static const struct latch_tree_ops mod_tree_ops = {
150 .less = mod_tree_less,
151 .comp = mod_tree_comp,
152 };
153
154 static struct mod_tree_root {
155 struct latch_tree_root root;
156 unsigned long addr_min;
157 unsigned long addr_max;
158 } mod_tree __cacheline_aligned = {
159 .addr_min = -1UL,
160 };
161
162 #define module_addr_min mod_tree.addr_min
163 #define module_addr_max mod_tree.addr_max
164
165 static noinline void __mod_tree_insert(struct mod_tree_node *node)
166 {
167 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
168 }
169
170 static void __mod_tree_remove(struct mod_tree_node *node)
171 {
172 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
173 }
174
175 /*
176 * These modifications: insert, remove_init and remove; are serialized by the
177 * module_mutex.
178 */
179 static void mod_tree_insert(struct module *mod)
180 {
181 mod->core_layout.mtn.mod = mod;
182 mod->init_layout.mtn.mod = mod;
183
184 __mod_tree_insert(&mod->core_layout.mtn);
185 if (mod->init_layout.size)
186 __mod_tree_insert(&mod->init_layout.mtn);
187 }
188
189 static void mod_tree_remove_init(struct module *mod)
190 {
191 if (mod->init_layout.size)
192 __mod_tree_remove(&mod->init_layout.mtn);
193 }
194
195 static void mod_tree_remove(struct module *mod)
196 {
197 __mod_tree_remove(&mod->core_layout.mtn);
198 mod_tree_remove_init(mod);
199 }
200
201 static struct module *mod_find(unsigned long addr)
202 {
203 struct latch_tree_node *ltn;
204
205 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
206 if (!ltn)
207 return NULL;
208
209 return container_of(ltn, struct mod_tree_node, node)->mod;
210 }
211
212 #else /* MODULES_TREE_LOOKUP */
213
214 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
215
216 static void mod_tree_insert(struct module *mod) { }
217 static void mod_tree_remove_init(struct module *mod) { }
218 static void mod_tree_remove(struct module *mod) { }
219
220 static struct module *mod_find(unsigned long addr)
221 {
222 struct module *mod;
223
224 list_for_each_entry_rcu(mod, &modules, list) {
225 if (within_module(addr, mod))
226 return mod;
227 }
228
229 return NULL;
230 }
231
232 #endif /* MODULES_TREE_LOOKUP */
233
234 /*
235 * Bounds of module text, for speeding up __module_address.
236 * Protected by module_mutex.
237 */
238 static void __mod_update_bounds(void *base, unsigned int size)
239 {
240 unsigned long min = (unsigned long)base;
241 unsigned long max = min + size;
242
243 if (min < module_addr_min)
244 module_addr_min = min;
245 if (max > module_addr_max)
246 module_addr_max = max;
247 }
248
249 static void mod_update_bounds(struct module *mod)
250 {
251 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
252 if (mod->init_layout.size)
253 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
254 }
255
256 #ifdef CONFIG_KGDB_KDB
257 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
258 #endif /* CONFIG_KGDB_KDB */
259
260 static void module_assert_mutex(void)
261 {
262 lockdep_assert_held(&module_mutex);
263 }
264
265 static void module_assert_mutex_or_preempt(void)
266 {
267 #ifdef CONFIG_LOCKDEP
268 if (unlikely(!debug_locks))
269 return;
270
271 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
272 !lockdep_is_held(&module_mutex));
273 #endif
274 }
275
276 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
277 #ifndef CONFIG_MODULE_SIG_FORCE
278 module_param(sig_enforce, bool_enable_only, 0644);
279 #endif /* !CONFIG_MODULE_SIG_FORCE */
280
281 /*
282 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
283 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
284 */
285 bool is_module_sig_enforced(void)
286 {
287 return sig_enforce;
288 }
289 EXPORT_SYMBOL(is_module_sig_enforced);
290
291 /* Block module loading/unloading? */
292 int modules_disabled = 0;
293 core_param(nomodule, modules_disabled, bint, 0);
294
295 /* Waiting for a module to finish initializing? */
296 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
297
298 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
299
300 int register_module_notifier(struct notifier_block *nb)
301 {
302 return blocking_notifier_chain_register(&module_notify_list, nb);
303 }
304 EXPORT_SYMBOL(register_module_notifier);
305
306 int unregister_module_notifier(struct notifier_block *nb)
307 {
308 return blocking_notifier_chain_unregister(&module_notify_list, nb);
309 }
310 EXPORT_SYMBOL(unregister_module_notifier);
311
312 struct load_info {
313 const char *name;
314 Elf_Ehdr *hdr;
315 unsigned long len;
316 Elf_Shdr *sechdrs;
317 char *secstrings, *strtab;
318 unsigned long symoffs, stroffs;
319 struct _ddebug *debug;
320 unsigned int num_debug;
321 bool sig_ok;
322 #ifdef CONFIG_KALLSYMS
323 unsigned long mod_kallsyms_init_off;
324 #endif
325 struct {
326 unsigned int sym, str, mod, vers, info, pcpu;
327 } index;
328 };
329
330 /*
331 * We require a truly strong try_module_get(): 0 means success.
332 * Otherwise an error is returned due to ongoing or failed
333 * initialization etc.
334 */
335 static inline int strong_try_module_get(struct module *mod)
336 {
337 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
338 if (mod && mod->state == MODULE_STATE_COMING)
339 return -EBUSY;
340 if (try_module_get(mod))
341 return 0;
342 else
343 return -ENOENT;
344 }
345
346 static inline void add_taint_module(struct module *mod, unsigned flag,
347 enum lockdep_ok lockdep_ok)
348 {
349 add_taint(flag, lockdep_ok);
350 set_bit(flag, &mod->taints);
351 }
352
353 /*
354 * A thread that wants to hold a reference to a module only while it
355 * is running can call this to safely exit. nfsd and lockd use this.
356 */
357 void __noreturn __module_put_and_exit(struct module *mod, long code)
358 {
359 module_put(mod);
360 do_exit(code);
361 }
362 EXPORT_SYMBOL(__module_put_and_exit);
363
364 /* Find a module section: 0 means not found. */
365 static unsigned int find_sec(const struct load_info *info, const char *name)
366 {
367 unsigned int i;
368
369 for (i = 1; i < info->hdr->e_shnum; i++) {
370 Elf_Shdr *shdr = &info->sechdrs[i];
371 /* Alloc bit cleared means "ignore it." */
372 if ((shdr->sh_flags & SHF_ALLOC)
373 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
374 return i;
375 }
376 return 0;
377 }
378
379 /* Find a module section, or NULL. */
380 static void *section_addr(const struct load_info *info, const char *name)
381 {
382 /* Section 0 has sh_addr 0. */
383 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
384 }
385
386 /* Find a module section, or NULL. Fill in number of "objects" in section. */
387 static void *section_objs(const struct load_info *info,
388 const char *name,
389 size_t object_size,
390 unsigned int *num)
391 {
392 unsigned int sec = find_sec(info, name);
393
394 /* Section 0 has sh_addr 0 and sh_size 0. */
395 *num = info->sechdrs[sec].sh_size / object_size;
396 return (void *)info->sechdrs[sec].sh_addr;
397 }
398
399 /* Provided by the linker */
400 extern const struct kernel_symbol __start___ksymtab[];
401 extern const struct kernel_symbol __stop___ksymtab[];
402 extern const struct kernel_symbol __start___ksymtab_gpl[];
403 extern const struct kernel_symbol __stop___ksymtab_gpl[];
404 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
405 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
406 extern const s32 __start___kcrctab[];
407 extern const s32 __start___kcrctab_gpl[];
408 extern const s32 __start___kcrctab_gpl_future[];
409 #ifdef CONFIG_UNUSED_SYMBOLS
410 extern const struct kernel_symbol __start___ksymtab_unused[];
411 extern const struct kernel_symbol __stop___ksymtab_unused[];
412 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
413 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
414 extern const s32 __start___kcrctab_unused[];
415 extern const s32 __start___kcrctab_unused_gpl[];
416 #endif
417
418 #ifndef CONFIG_MODVERSIONS
419 #define symversion(base, idx) NULL
420 #else
421 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
422 #endif
423
424 static bool each_symbol_in_section(const struct symsearch *arr,
425 unsigned int arrsize,
426 struct module *owner,
427 bool (*fn)(const struct symsearch *syms,
428 struct module *owner,
429 void *data),
430 void *data)
431 {
432 unsigned int j;
433
434 for (j = 0; j < arrsize; j++) {
435 if (fn(&arr[j], owner, data))
436 return true;
437 }
438
439 return false;
440 }
441
442 /* Returns true as soon as fn returns true, otherwise false. */
443 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
444 struct module *owner,
445 void *data),
446 void *data)
447 {
448 struct module *mod;
449 static const struct symsearch arr[] = {
450 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
451 NOT_GPL_ONLY, false },
452 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
453 __start___kcrctab_gpl,
454 GPL_ONLY, false },
455 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
456 __start___kcrctab_gpl_future,
457 WILL_BE_GPL_ONLY, false },
458 #ifdef CONFIG_UNUSED_SYMBOLS
459 { __start___ksymtab_unused, __stop___ksymtab_unused,
460 __start___kcrctab_unused,
461 NOT_GPL_ONLY, true },
462 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
463 __start___kcrctab_unused_gpl,
464 GPL_ONLY, true },
465 #endif
466 };
467
468 module_assert_mutex_or_preempt();
469
470 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
471 return true;
472
473 list_for_each_entry_rcu(mod, &modules, list) {
474 struct symsearch arr[] = {
475 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
476 NOT_GPL_ONLY, false },
477 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
478 mod->gpl_crcs,
479 GPL_ONLY, false },
480 { mod->gpl_future_syms,
481 mod->gpl_future_syms + mod->num_gpl_future_syms,
482 mod->gpl_future_crcs,
483 WILL_BE_GPL_ONLY, false },
484 #ifdef CONFIG_UNUSED_SYMBOLS
485 { mod->unused_syms,
486 mod->unused_syms + mod->num_unused_syms,
487 mod->unused_crcs,
488 NOT_GPL_ONLY, true },
489 { mod->unused_gpl_syms,
490 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
491 mod->unused_gpl_crcs,
492 GPL_ONLY, true },
493 #endif
494 };
495
496 if (mod->state == MODULE_STATE_UNFORMED)
497 continue;
498
499 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
500 return true;
501 }
502 return false;
503 }
504 EXPORT_SYMBOL_GPL(each_symbol_section);
505
506 struct find_symbol_arg {
507 /* Input */
508 const char *name;
509 bool gplok;
510 bool warn;
511
512 /* Output */
513 struct module *owner;
514 const s32 *crc;
515 const struct kernel_symbol *sym;
516 };
517
518 static bool check_symbol(const struct symsearch *syms,
519 struct module *owner,
520 unsigned int symnum, void *data)
521 {
522 struct find_symbol_arg *fsa = data;
523
524 if (!fsa->gplok) {
525 if (syms->licence == GPL_ONLY)
526 return false;
527 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
528 pr_warn("Symbol %s is being used by a non-GPL module, "
529 "which will not be allowed in the future\n",
530 fsa->name);
531 }
532 }
533
534 #ifdef CONFIG_UNUSED_SYMBOLS
535 if (syms->unused && fsa->warn) {
536 pr_warn("Symbol %s is marked as UNUSED, however this module is "
537 "using it.\n", fsa->name);
538 pr_warn("This symbol will go away in the future.\n");
539 pr_warn("Please evaluate if this is the right api to use and "
540 "if it really is, submit a report to the linux kernel "
541 "mailing list together with submitting your code for "
542 "inclusion.\n");
543 }
544 #endif
545
546 fsa->owner = owner;
547 fsa->crc = symversion(syms->crcs, symnum);
548 fsa->sym = &syms->start[symnum];
549 return true;
550 }
551
552 static int cmp_name(const void *va, const void *vb)
553 {
554 const char *a;
555 const struct kernel_symbol *b;
556 a = va; b = vb;
557 return strcmp(a, b->name);
558 }
559
560 static bool find_symbol_in_section(const struct symsearch *syms,
561 struct module *owner,
562 void *data)
563 {
564 struct find_symbol_arg *fsa = data;
565 struct kernel_symbol *sym;
566
567 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
568 sizeof(struct kernel_symbol), cmp_name);
569
570 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
571 return true;
572
573 return false;
574 }
575
576 /* Find a symbol and return it, along with, (optional) crc and
577 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
578 const struct kernel_symbol *find_symbol(const char *name,
579 struct module **owner,
580 const s32 **crc,
581 bool gplok,
582 bool warn)
583 {
584 struct find_symbol_arg fsa;
585
586 fsa.name = name;
587 fsa.gplok = gplok;
588 fsa.warn = warn;
589
590 if (each_symbol_section(find_symbol_in_section, &fsa)) {
591 if (owner)
592 *owner = fsa.owner;
593 if (crc)
594 *crc = fsa.crc;
595 return fsa.sym;
596 }
597
598 pr_debug("Failed to find symbol %s\n", name);
599 return NULL;
600 }
601 EXPORT_SYMBOL_GPL(find_symbol);
602
603 /*
604 * Search for module by name: must hold module_mutex (or preempt disabled
605 * for read-only access).
606 */
607 static struct module *find_module_all(const char *name, size_t len,
608 bool even_unformed)
609 {
610 struct module *mod;
611
612 module_assert_mutex_or_preempt();
613
614 list_for_each_entry_rcu(mod, &modules, list) {
615 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
616 continue;
617 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
618 return mod;
619 }
620 return NULL;
621 }
622
623 struct module *find_module(const char *name)
624 {
625 module_assert_mutex();
626 return find_module_all(name, strlen(name), false);
627 }
628 EXPORT_SYMBOL_GPL(find_module);
629
630 #ifdef CONFIG_SMP
631
632 static inline void __percpu *mod_percpu(struct module *mod)
633 {
634 return mod->percpu;
635 }
636
637 static int percpu_modalloc(struct module *mod, struct load_info *info)
638 {
639 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
640 unsigned long align = pcpusec->sh_addralign;
641
642 if (!pcpusec->sh_size)
643 return 0;
644
645 if (align > PAGE_SIZE) {
646 pr_warn("%s: per-cpu alignment %li > %li\n",
647 mod->name, align, PAGE_SIZE);
648 align = PAGE_SIZE;
649 }
650
651 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
652 if (!mod->percpu) {
653 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
654 mod->name, (unsigned long)pcpusec->sh_size);
655 return -ENOMEM;
656 }
657 mod->percpu_size = pcpusec->sh_size;
658 return 0;
659 }
660
661 static void percpu_modfree(struct module *mod)
662 {
663 free_percpu(mod->percpu);
664 }
665
666 static unsigned int find_pcpusec(struct load_info *info)
667 {
668 return find_sec(info, ".data..percpu");
669 }
670
671 static void percpu_modcopy(struct module *mod,
672 const void *from, unsigned long size)
673 {
674 int cpu;
675
676 for_each_possible_cpu(cpu)
677 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
678 }
679
680 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
681 {
682 struct module *mod;
683 unsigned int cpu;
684
685 preempt_disable();
686
687 list_for_each_entry_rcu(mod, &modules, list) {
688 if (mod->state == MODULE_STATE_UNFORMED)
689 continue;
690 if (!mod->percpu_size)
691 continue;
692 for_each_possible_cpu(cpu) {
693 void *start = per_cpu_ptr(mod->percpu, cpu);
694 void *va = (void *)addr;
695
696 if (va >= start && va < start + mod->percpu_size) {
697 if (can_addr) {
698 *can_addr = (unsigned long) (va - start);
699 *can_addr += (unsigned long)
700 per_cpu_ptr(mod->percpu,
701 get_boot_cpu_id());
702 }
703 preempt_enable();
704 return true;
705 }
706 }
707 }
708
709 preempt_enable();
710 return false;
711 }
712
713 /**
714 * is_module_percpu_address - test whether address is from module static percpu
715 * @addr: address to test
716 *
717 * Test whether @addr belongs to module static percpu area.
718 *
719 * RETURNS:
720 * %true if @addr is from module static percpu area
721 */
722 bool is_module_percpu_address(unsigned long addr)
723 {
724 return __is_module_percpu_address(addr, NULL);
725 }
726
727 #else /* ... !CONFIG_SMP */
728
729 static inline void __percpu *mod_percpu(struct module *mod)
730 {
731 return NULL;
732 }
733 static int percpu_modalloc(struct module *mod, struct load_info *info)
734 {
735 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
736 if (info->sechdrs[info->index.pcpu].sh_size != 0)
737 return -ENOMEM;
738 return 0;
739 }
740 static inline void percpu_modfree(struct module *mod)
741 {
742 }
743 static unsigned int find_pcpusec(struct load_info *info)
744 {
745 return 0;
746 }
747 static inline void percpu_modcopy(struct module *mod,
748 const void *from, unsigned long size)
749 {
750 /* pcpusec should be 0, and size of that section should be 0. */
751 BUG_ON(size != 0);
752 }
753 bool is_module_percpu_address(unsigned long addr)
754 {
755 return false;
756 }
757
758 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
759 {
760 return false;
761 }
762
763 #endif /* CONFIG_SMP */
764
765 #define MODINFO_ATTR(field) \
766 static void setup_modinfo_##field(struct module *mod, const char *s) \
767 { \
768 mod->field = kstrdup(s, GFP_KERNEL); \
769 } \
770 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
771 struct module_kobject *mk, char *buffer) \
772 { \
773 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
774 } \
775 static int modinfo_##field##_exists(struct module *mod) \
776 { \
777 return mod->field != NULL; \
778 } \
779 static void free_modinfo_##field(struct module *mod) \
780 { \
781 kfree(mod->field); \
782 mod->field = NULL; \
783 } \
784 static struct module_attribute modinfo_##field = { \
785 .attr = { .name = __stringify(field), .mode = 0444 }, \
786 .show = show_modinfo_##field, \
787 .setup = setup_modinfo_##field, \
788 .test = modinfo_##field##_exists, \
789 .free = free_modinfo_##field, \
790 };
791
792 MODINFO_ATTR(version);
793 MODINFO_ATTR(srcversion);
794
795 static char last_unloaded_module[MODULE_NAME_LEN+1];
796
797 #ifdef CONFIG_MODULE_UNLOAD
798
799 EXPORT_TRACEPOINT_SYMBOL(module_get);
800
801 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
802 #define MODULE_REF_BASE 1
803
804 /* Init the unload section of the module. */
805 static int module_unload_init(struct module *mod)
806 {
807 /*
808 * Initialize reference counter to MODULE_REF_BASE.
809 * refcnt == 0 means module is going.
810 */
811 atomic_set(&mod->refcnt, MODULE_REF_BASE);
812
813 INIT_LIST_HEAD(&mod->source_list);
814 INIT_LIST_HEAD(&mod->target_list);
815
816 /* Hold reference count during initialization. */
817 atomic_inc(&mod->refcnt);
818
819 return 0;
820 }
821
822 /* Does a already use b? */
823 static int already_uses(struct module *a, struct module *b)
824 {
825 struct module_use *use;
826
827 list_for_each_entry(use, &b->source_list, source_list) {
828 if (use->source == a) {
829 pr_debug("%s uses %s!\n", a->name, b->name);
830 return 1;
831 }
832 }
833 pr_debug("%s does not use %s!\n", a->name, b->name);
834 return 0;
835 }
836
837 /*
838 * Module a uses b
839 * - we add 'a' as a "source", 'b' as a "target" of module use
840 * - the module_use is added to the list of 'b' sources (so
841 * 'b' can walk the list to see who sourced them), and of 'a'
842 * targets (so 'a' can see what modules it targets).
843 */
844 static int add_module_usage(struct module *a, struct module *b)
845 {
846 struct module_use *use;
847
848 pr_debug("Allocating new usage for %s.\n", a->name);
849 use = kmalloc(sizeof(*use), GFP_ATOMIC);
850 if (!use)
851 return -ENOMEM;
852
853 use->source = a;
854 use->target = b;
855 list_add(&use->source_list, &b->source_list);
856 list_add(&use->target_list, &a->target_list);
857 return 0;
858 }
859
860 /* Module a uses b: caller needs module_mutex() */
861 int ref_module(struct module *a, struct module *b)
862 {
863 int err;
864
865 if (b == NULL || already_uses(a, b))
866 return 0;
867
868 /* If module isn't available, we fail. */
869 err = strong_try_module_get(b);
870 if (err)
871 return err;
872
873 err = add_module_usage(a, b);
874 if (err) {
875 module_put(b);
876 return err;
877 }
878 return 0;
879 }
880 EXPORT_SYMBOL_GPL(ref_module);
881
882 /* Clear the unload stuff of the module. */
883 static void module_unload_free(struct module *mod)
884 {
885 struct module_use *use, *tmp;
886
887 mutex_lock(&module_mutex);
888 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
889 struct module *i = use->target;
890 pr_debug("%s unusing %s\n", mod->name, i->name);
891 module_put(i);
892 list_del(&use->source_list);
893 list_del(&use->target_list);
894 kfree(use);
895 }
896 mutex_unlock(&module_mutex);
897 }
898
899 #ifdef CONFIG_MODULE_FORCE_UNLOAD
900 static inline int try_force_unload(unsigned int flags)
901 {
902 int ret = (flags & O_TRUNC);
903 if (ret)
904 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
905 return ret;
906 }
907 #else
908 static inline int try_force_unload(unsigned int flags)
909 {
910 return 0;
911 }
912 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
913
914 /* Try to release refcount of module, 0 means success. */
915 static int try_release_module_ref(struct module *mod)
916 {
917 int ret;
918
919 /* Try to decrement refcnt which we set at loading */
920 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
921 BUG_ON(ret < 0);
922 if (ret)
923 /* Someone can put this right now, recover with checking */
924 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
925
926 return ret;
927 }
928
929 static int try_stop_module(struct module *mod, int flags, int *forced)
930 {
931 /* If it's not unused, quit unless we're forcing. */
932 if (try_release_module_ref(mod) != 0) {
933 *forced = try_force_unload(flags);
934 if (!(*forced))
935 return -EWOULDBLOCK;
936 }
937
938 /* Mark it as dying. */
939 mod->state = MODULE_STATE_GOING;
940
941 return 0;
942 }
943
944 /**
945 * module_refcount - return the refcount or -1 if unloading
946 *
947 * @mod: the module we're checking
948 *
949 * Returns:
950 * -1 if the module is in the process of unloading
951 * otherwise the number of references in the kernel to the module
952 */
953 int module_refcount(struct module *mod)
954 {
955 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
956 }
957 EXPORT_SYMBOL(module_refcount);
958
959 /* This exists whether we can unload or not */
960 static void free_module(struct module *mod);
961
962 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
963 unsigned int, flags)
964 {
965 struct module *mod;
966 char name[MODULE_NAME_LEN];
967 int ret, forced = 0;
968
969 if (!capable(CAP_SYS_MODULE) || modules_disabled)
970 return -EPERM;
971
972 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
973 return -EFAULT;
974 name[MODULE_NAME_LEN-1] = '\0';
975
976 audit_log_kern_module(name);
977
978 if (mutex_lock_interruptible(&module_mutex) != 0)
979 return -EINTR;
980
981 mod = find_module(name);
982 if (!mod) {
983 ret = -ENOENT;
984 goto out;
985 }
986
987 if (!list_empty(&mod->source_list)) {
988 /* Other modules depend on us: get rid of them first. */
989 ret = -EWOULDBLOCK;
990 goto out;
991 }
992
993 /* Doing init or already dying? */
994 if (mod->state != MODULE_STATE_LIVE) {
995 /* FIXME: if (force), slam module count damn the torpedoes */
996 pr_debug("%s already dying\n", mod->name);
997 ret = -EBUSY;
998 goto out;
999 }
1000
1001 /* If it has an init func, it must have an exit func to unload */
1002 if (mod->init && !mod->exit) {
1003 forced = try_force_unload(flags);
1004 if (!forced) {
1005 /* This module can't be removed */
1006 ret = -EBUSY;
1007 goto out;
1008 }
1009 }
1010
1011 /* Stop the machine so refcounts can't move and disable module. */
1012 ret = try_stop_module(mod, flags, &forced);
1013 if (ret != 0)
1014 goto out;
1015
1016 mutex_unlock(&module_mutex);
1017 /* Final destruction now no one is using it. */
1018 if (mod->exit != NULL)
1019 mod->exit();
1020 blocking_notifier_call_chain(&module_notify_list,
1021 MODULE_STATE_GOING, mod);
1022 klp_module_going(mod);
1023 ftrace_release_mod(mod);
1024
1025 async_synchronize_full();
1026
1027 /* Store the name of the last unloaded module for diagnostic purposes */
1028 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1029
1030 free_module(mod);
1031 return 0;
1032 out:
1033 mutex_unlock(&module_mutex);
1034 return ret;
1035 }
1036
1037 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1038 {
1039 struct module_use *use;
1040 int printed_something = 0;
1041
1042 seq_printf(m, " %i ", module_refcount(mod));
1043
1044 /*
1045 * Always include a trailing , so userspace can differentiate
1046 * between this and the old multi-field proc format.
1047 */
1048 list_for_each_entry(use, &mod->source_list, source_list) {
1049 printed_something = 1;
1050 seq_printf(m, "%s,", use->source->name);
1051 }
1052
1053 if (mod->init != NULL && mod->exit == NULL) {
1054 printed_something = 1;
1055 seq_puts(m, "[permanent],");
1056 }
1057
1058 if (!printed_something)
1059 seq_puts(m, "-");
1060 }
1061
1062 void __symbol_put(const char *symbol)
1063 {
1064 struct module *owner;
1065
1066 preempt_disable();
1067 if (!find_symbol(symbol, &owner, NULL, true, false))
1068 BUG();
1069 module_put(owner);
1070 preempt_enable();
1071 }
1072 EXPORT_SYMBOL(__symbol_put);
1073
1074 /* Note this assumes addr is a function, which it currently always is. */
1075 void symbol_put_addr(void *addr)
1076 {
1077 struct module *modaddr;
1078 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1079
1080 if (core_kernel_text(a))
1081 return;
1082
1083 /*
1084 * Even though we hold a reference on the module; we still need to
1085 * disable preemption in order to safely traverse the data structure.
1086 */
1087 preempt_disable();
1088 modaddr = __module_text_address(a);
1089 BUG_ON(!modaddr);
1090 module_put(modaddr);
1091 preempt_enable();
1092 }
1093 EXPORT_SYMBOL_GPL(symbol_put_addr);
1094
1095 static ssize_t show_refcnt(struct module_attribute *mattr,
1096 struct module_kobject *mk, char *buffer)
1097 {
1098 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1099 }
1100
1101 static struct module_attribute modinfo_refcnt =
1102 __ATTR(refcnt, 0444, show_refcnt, NULL);
1103
1104 void __module_get(struct module *module)
1105 {
1106 if (module) {
1107 preempt_disable();
1108 atomic_inc(&module->refcnt);
1109 trace_module_get(module, _RET_IP_);
1110 preempt_enable();
1111 }
1112 }
1113 EXPORT_SYMBOL(__module_get);
1114
1115 bool try_module_get(struct module *module)
1116 {
1117 bool ret = true;
1118
1119 if (module) {
1120 preempt_disable();
1121 /* Note: here, we can fail to get a reference */
1122 if (likely(module_is_live(module) &&
1123 atomic_inc_not_zero(&module->refcnt) != 0))
1124 trace_module_get(module, _RET_IP_);
1125 else
1126 ret = false;
1127
1128 preempt_enable();
1129 }
1130 return ret;
1131 }
1132 EXPORT_SYMBOL(try_module_get);
1133
1134 void module_put(struct module *module)
1135 {
1136 int ret;
1137
1138 if (module) {
1139 preempt_disable();
1140 ret = atomic_dec_if_positive(&module->refcnt);
1141 WARN_ON(ret < 0); /* Failed to put refcount */
1142 trace_module_put(module, _RET_IP_);
1143 preempt_enable();
1144 }
1145 }
1146 EXPORT_SYMBOL(module_put);
1147
1148 #else /* !CONFIG_MODULE_UNLOAD */
1149 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1150 {
1151 /* We don't know the usage count, or what modules are using. */
1152 seq_puts(m, " - -");
1153 }
1154
1155 static inline void module_unload_free(struct module *mod)
1156 {
1157 }
1158
1159 int ref_module(struct module *a, struct module *b)
1160 {
1161 return strong_try_module_get(b);
1162 }
1163 EXPORT_SYMBOL_GPL(ref_module);
1164
1165 static inline int module_unload_init(struct module *mod)
1166 {
1167 return 0;
1168 }
1169 #endif /* CONFIG_MODULE_UNLOAD */
1170
1171 static size_t module_flags_taint(struct module *mod, char *buf)
1172 {
1173 size_t l = 0;
1174 int i;
1175
1176 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1177 if (taint_flags[i].module && test_bit(i, &mod->taints))
1178 buf[l++] = taint_flags[i].c_true;
1179 }
1180
1181 return l;
1182 }
1183
1184 static ssize_t show_initstate(struct module_attribute *mattr,
1185 struct module_kobject *mk, char *buffer)
1186 {
1187 const char *state = "unknown";
1188
1189 switch (mk->mod->state) {
1190 case MODULE_STATE_LIVE:
1191 state = "live";
1192 break;
1193 case MODULE_STATE_COMING:
1194 state = "coming";
1195 break;
1196 case MODULE_STATE_GOING:
1197 state = "going";
1198 break;
1199 default:
1200 BUG();
1201 }
1202 return sprintf(buffer, "%s\n", state);
1203 }
1204
1205 static struct module_attribute modinfo_initstate =
1206 __ATTR(initstate, 0444, show_initstate, NULL);
1207
1208 static ssize_t store_uevent(struct module_attribute *mattr,
1209 struct module_kobject *mk,
1210 const char *buffer, size_t count)
1211 {
1212 kobject_synth_uevent(&mk->kobj, buffer, count);
1213 return count;
1214 }
1215
1216 struct module_attribute module_uevent =
1217 __ATTR(uevent, 0200, NULL, store_uevent);
1218
1219 static ssize_t show_coresize(struct module_attribute *mattr,
1220 struct module_kobject *mk, char *buffer)
1221 {
1222 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1223 }
1224
1225 static struct module_attribute modinfo_coresize =
1226 __ATTR(coresize, 0444, show_coresize, NULL);
1227
1228 static ssize_t show_initsize(struct module_attribute *mattr,
1229 struct module_kobject *mk, char *buffer)
1230 {
1231 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1232 }
1233
1234 static struct module_attribute modinfo_initsize =
1235 __ATTR(initsize, 0444, show_initsize, NULL);
1236
1237 static ssize_t show_taint(struct module_attribute *mattr,
1238 struct module_kobject *mk, char *buffer)
1239 {
1240 size_t l;
1241
1242 l = module_flags_taint(mk->mod, buffer);
1243 buffer[l++] = '\n';
1244 return l;
1245 }
1246
1247 static struct module_attribute modinfo_taint =
1248 __ATTR(taint, 0444, show_taint, NULL);
1249
1250 static struct module_attribute *modinfo_attrs[] = {
1251 &module_uevent,
1252 &modinfo_version,
1253 &modinfo_srcversion,
1254 &modinfo_initstate,
1255 &modinfo_coresize,
1256 &modinfo_initsize,
1257 &modinfo_taint,
1258 #ifdef CONFIG_MODULE_UNLOAD
1259 &modinfo_refcnt,
1260 #endif
1261 NULL,
1262 };
1263
1264 static const char vermagic[] = VERMAGIC_STRING;
1265
1266 static int try_to_force_load(struct module *mod, const char *reason)
1267 {
1268 #ifdef CONFIG_MODULE_FORCE_LOAD
1269 if (!test_taint(TAINT_FORCED_MODULE))
1270 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1271 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1272 return 0;
1273 #else
1274 return -ENOEXEC;
1275 #endif
1276 }
1277
1278 #ifdef CONFIG_MODVERSIONS
1279
1280 static u32 resolve_rel_crc(const s32 *crc)
1281 {
1282 return *(u32 *)((void *)crc + *crc);
1283 }
1284
1285 static int check_version(const struct load_info *info,
1286 const char *symname,
1287 struct module *mod,
1288 const s32 *crc)
1289 {
1290 Elf_Shdr *sechdrs = info->sechdrs;
1291 unsigned int versindex = info->index.vers;
1292 unsigned int i, num_versions;
1293 struct modversion_info *versions;
1294
1295 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1296 if (!crc)
1297 return 1;
1298
1299 /* No versions at all? modprobe --force does this. */
1300 if (versindex == 0)
1301 return try_to_force_load(mod, symname) == 0;
1302
1303 versions = (void *) sechdrs[versindex].sh_addr;
1304 num_versions = sechdrs[versindex].sh_size
1305 / sizeof(struct modversion_info);
1306
1307 for (i = 0; i < num_versions; i++) {
1308 u32 crcval;
1309
1310 if (strcmp(versions[i].name, symname) != 0)
1311 continue;
1312
1313 if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1314 crcval = resolve_rel_crc(crc);
1315 else
1316 crcval = *crc;
1317 if (versions[i].crc == crcval)
1318 return 1;
1319 pr_debug("Found checksum %X vs module %lX\n",
1320 crcval, versions[i].crc);
1321 goto bad_version;
1322 }
1323
1324 /* Broken toolchain. Warn once, then let it go.. */
1325 pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1326 return 1;
1327
1328 bad_version:
1329 pr_warn("%s: disagrees about version of symbol %s\n",
1330 info->name, symname);
1331 return 0;
1332 }
1333
1334 static inline int check_modstruct_version(const struct load_info *info,
1335 struct module *mod)
1336 {
1337 const s32 *crc;
1338
1339 /*
1340 * Since this should be found in kernel (which can't be removed), no
1341 * locking is necessary -- use preempt_disable() to placate lockdep.
1342 */
1343 preempt_disable();
1344 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1345 &crc, true, false)) {
1346 preempt_enable();
1347 BUG();
1348 }
1349 preempt_enable();
1350 return check_version(info, VMLINUX_SYMBOL_STR(module_layout),
1351 mod, crc);
1352 }
1353
1354 /* First part is kernel version, which we ignore if module has crcs. */
1355 static inline int same_magic(const char *amagic, const char *bmagic,
1356 bool has_crcs)
1357 {
1358 if (has_crcs) {
1359 amagic += strcspn(amagic, " ");
1360 bmagic += strcspn(bmagic, " ");
1361 }
1362 return strcmp(amagic, bmagic) == 0;
1363 }
1364 #else
1365 static inline int check_version(const struct load_info *info,
1366 const char *symname,
1367 struct module *mod,
1368 const s32 *crc)
1369 {
1370 return 1;
1371 }
1372
1373 static inline int check_modstruct_version(const struct load_info *info,
1374 struct module *mod)
1375 {
1376 return 1;
1377 }
1378
1379 static inline int same_magic(const char *amagic, const char *bmagic,
1380 bool has_crcs)
1381 {
1382 return strcmp(amagic, bmagic) == 0;
1383 }
1384 #endif /* CONFIG_MODVERSIONS */
1385
1386 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1387 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1388 const struct load_info *info,
1389 const char *name,
1390 char ownername[])
1391 {
1392 struct module *owner;
1393 const struct kernel_symbol *sym;
1394 const s32 *crc;
1395 int err;
1396
1397 /*
1398 * The module_mutex should not be a heavily contended lock;
1399 * if we get the occasional sleep here, we'll go an extra iteration
1400 * in the wait_event_interruptible(), which is harmless.
1401 */
1402 sched_annotate_sleep();
1403 mutex_lock(&module_mutex);
1404 sym = find_symbol(name, &owner, &crc,
1405 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1406 if (!sym)
1407 goto unlock;
1408
1409 if (!check_version(info, name, mod, crc)) {
1410 sym = ERR_PTR(-EINVAL);
1411 goto getname;
1412 }
1413
1414 err = ref_module(mod, owner);
1415 if (err) {
1416 sym = ERR_PTR(err);
1417 goto getname;
1418 }
1419
1420 getname:
1421 /* We must make copy under the lock if we failed to get ref. */
1422 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1423 unlock:
1424 mutex_unlock(&module_mutex);
1425 return sym;
1426 }
1427
1428 static const struct kernel_symbol *
1429 resolve_symbol_wait(struct module *mod,
1430 const struct load_info *info,
1431 const char *name)
1432 {
1433 const struct kernel_symbol *ksym;
1434 char owner[MODULE_NAME_LEN];
1435
1436 if (wait_event_interruptible_timeout(module_wq,
1437 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1438 || PTR_ERR(ksym) != -EBUSY,
1439 30 * HZ) <= 0) {
1440 pr_warn("%s: gave up waiting for init of module %s.\n",
1441 mod->name, owner);
1442 }
1443 return ksym;
1444 }
1445
1446 /*
1447 * /sys/module/foo/sections stuff
1448 * J. Corbet <corbet@lwn.net>
1449 */
1450 #ifdef CONFIG_SYSFS
1451
1452 #ifdef CONFIG_KALLSYMS
1453 static inline bool sect_empty(const Elf_Shdr *sect)
1454 {
1455 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1456 }
1457
1458 struct module_sect_attr {
1459 struct module_attribute mattr;
1460 char *name;
1461 unsigned long address;
1462 };
1463
1464 struct module_sect_attrs {
1465 struct attribute_group grp;
1466 unsigned int nsections;
1467 struct module_sect_attr attrs[0];
1468 };
1469
1470 static ssize_t module_sect_show(struct module_attribute *mattr,
1471 struct module_kobject *mk, char *buf)
1472 {
1473 struct module_sect_attr *sattr =
1474 container_of(mattr, struct module_sect_attr, mattr);
1475 return sprintf(buf, "0x%px\n", kptr_restrict < 2 ?
1476 (void *)sattr->address : NULL);
1477 }
1478
1479 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1480 {
1481 unsigned int section;
1482
1483 for (section = 0; section < sect_attrs->nsections; section++)
1484 kfree(sect_attrs->attrs[section].name);
1485 kfree(sect_attrs);
1486 }
1487
1488 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1489 {
1490 unsigned int nloaded = 0, i, size[2];
1491 struct module_sect_attrs *sect_attrs;
1492 struct module_sect_attr *sattr;
1493 struct attribute **gattr;
1494
1495 /* Count loaded sections and allocate structures */
1496 for (i = 0; i < info->hdr->e_shnum; i++)
1497 if (!sect_empty(&info->sechdrs[i]))
1498 nloaded++;
1499 size[0] = ALIGN(sizeof(*sect_attrs)
1500 + nloaded * sizeof(sect_attrs->attrs[0]),
1501 sizeof(sect_attrs->grp.attrs[0]));
1502 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1503 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1504 if (sect_attrs == NULL)
1505 return;
1506
1507 /* Setup section attributes. */
1508 sect_attrs->grp.name = "sections";
1509 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1510
1511 sect_attrs->nsections = 0;
1512 sattr = &sect_attrs->attrs[0];
1513 gattr = &sect_attrs->grp.attrs[0];
1514 for (i = 0; i < info->hdr->e_shnum; i++) {
1515 Elf_Shdr *sec = &info->sechdrs[i];
1516 if (sect_empty(sec))
1517 continue;
1518 sattr->address = sec->sh_addr;
1519 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1520 GFP_KERNEL);
1521 if (sattr->name == NULL)
1522 goto out;
1523 sect_attrs->nsections++;
1524 sysfs_attr_init(&sattr->mattr.attr);
1525 sattr->mattr.show = module_sect_show;
1526 sattr->mattr.store = NULL;
1527 sattr->mattr.attr.name = sattr->name;
1528 sattr->mattr.attr.mode = S_IRUSR;
1529 *(gattr++) = &(sattr++)->mattr.attr;
1530 }
1531 *gattr = NULL;
1532
1533 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1534 goto out;
1535
1536 mod->sect_attrs = sect_attrs;
1537 return;
1538 out:
1539 free_sect_attrs(sect_attrs);
1540 }
1541
1542 static void remove_sect_attrs(struct module *mod)
1543 {
1544 if (mod->sect_attrs) {
1545 sysfs_remove_group(&mod->mkobj.kobj,
1546 &mod->sect_attrs->grp);
1547 /* We are positive that no one is using any sect attrs
1548 * at this point. Deallocate immediately. */
1549 free_sect_attrs(mod->sect_attrs);
1550 mod->sect_attrs = NULL;
1551 }
1552 }
1553
1554 /*
1555 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1556 */
1557
1558 struct module_notes_attrs {
1559 struct kobject *dir;
1560 unsigned int notes;
1561 struct bin_attribute attrs[0];
1562 };
1563
1564 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1565 struct bin_attribute *bin_attr,
1566 char *buf, loff_t pos, size_t count)
1567 {
1568 /*
1569 * The caller checked the pos and count against our size.
1570 */
1571 memcpy(buf, bin_attr->private + pos, count);
1572 return count;
1573 }
1574
1575 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1576 unsigned int i)
1577 {
1578 if (notes_attrs->dir) {
1579 while (i-- > 0)
1580 sysfs_remove_bin_file(notes_attrs->dir,
1581 &notes_attrs->attrs[i]);
1582 kobject_put(notes_attrs->dir);
1583 }
1584 kfree(notes_attrs);
1585 }
1586
1587 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1588 {
1589 unsigned int notes, loaded, i;
1590 struct module_notes_attrs *notes_attrs;
1591 struct bin_attribute *nattr;
1592
1593 /* failed to create section attributes, so can't create notes */
1594 if (!mod->sect_attrs)
1595 return;
1596
1597 /* Count notes sections and allocate structures. */
1598 notes = 0;
1599 for (i = 0; i < info->hdr->e_shnum; i++)
1600 if (!sect_empty(&info->sechdrs[i]) &&
1601 (info->sechdrs[i].sh_type == SHT_NOTE))
1602 ++notes;
1603
1604 if (notes == 0)
1605 return;
1606
1607 notes_attrs = kzalloc(sizeof(*notes_attrs)
1608 + notes * sizeof(notes_attrs->attrs[0]),
1609 GFP_KERNEL);
1610 if (notes_attrs == NULL)
1611 return;
1612
1613 notes_attrs->notes = notes;
1614 nattr = &notes_attrs->attrs[0];
1615 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1616 if (sect_empty(&info->sechdrs[i]))
1617 continue;
1618 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1619 sysfs_bin_attr_init(nattr);
1620 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1621 nattr->attr.mode = S_IRUGO;
1622 nattr->size = info->sechdrs[i].sh_size;
1623 nattr->private = (void *) info->sechdrs[i].sh_addr;
1624 nattr->read = module_notes_read;
1625 ++nattr;
1626 }
1627 ++loaded;
1628 }
1629
1630 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1631 if (!notes_attrs->dir)
1632 goto out;
1633
1634 for (i = 0; i < notes; ++i)
1635 if (sysfs_create_bin_file(notes_attrs->dir,
1636 &notes_attrs->attrs[i]))
1637 goto out;
1638
1639 mod->notes_attrs = notes_attrs;
1640 return;
1641
1642 out:
1643 free_notes_attrs(notes_attrs, i);
1644 }
1645
1646 static void remove_notes_attrs(struct module *mod)
1647 {
1648 if (mod->notes_attrs)
1649 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1650 }
1651
1652 #else
1653
1654 static inline void add_sect_attrs(struct module *mod,
1655 const struct load_info *info)
1656 {
1657 }
1658
1659 static inline void remove_sect_attrs(struct module *mod)
1660 {
1661 }
1662
1663 static inline void add_notes_attrs(struct module *mod,
1664 const struct load_info *info)
1665 {
1666 }
1667
1668 static inline void remove_notes_attrs(struct module *mod)
1669 {
1670 }
1671 #endif /* CONFIG_KALLSYMS */
1672
1673 static void del_usage_links(struct module *mod)
1674 {
1675 #ifdef CONFIG_MODULE_UNLOAD
1676 struct module_use *use;
1677
1678 mutex_lock(&module_mutex);
1679 list_for_each_entry(use, &mod->target_list, target_list)
1680 sysfs_remove_link(use->target->holders_dir, mod->name);
1681 mutex_unlock(&module_mutex);
1682 #endif
1683 }
1684
1685 static int add_usage_links(struct module *mod)
1686 {
1687 int ret = 0;
1688 #ifdef CONFIG_MODULE_UNLOAD
1689 struct module_use *use;
1690
1691 mutex_lock(&module_mutex);
1692 list_for_each_entry(use, &mod->target_list, target_list) {
1693 ret = sysfs_create_link(use->target->holders_dir,
1694 &mod->mkobj.kobj, mod->name);
1695 if (ret)
1696 break;
1697 }
1698 mutex_unlock(&module_mutex);
1699 if (ret)
1700 del_usage_links(mod);
1701 #endif
1702 return ret;
1703 }
1704
1705 static int module_add_modinfo_attrs(struct module *mod)
1706 {
1707 struct module_attribute *attr;
1708 struct module_attribute *temp_attr;
1709 int error = 0;
1710 int i;
1711
1712 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1713 (ARRAY_SIZE(modinfo_attrs) + 1)),
1714 GFP_KERNEL);
1715 if (!mod->modinfo_attrs)
1716 return -ENOMEM;
1717
1718 temp_attr = mod->modinfo_attrs;
1719 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1720 if (!attr->test || attr->test(mod)) {
1721 memcpy(temp_attr, attr, sizeof(*temp_attr));
1722 sysfs_attr_init(&temp_attr->attr);
1723 error = sysfs_create_file(&mod->mkobj.kobj,
1724 &temp_attr->attr);
1725 ++temp_attr;
1726 }
1727 }
1728 return error;
1729 }
1730
1731 static void module_remove_modinfo_attrs(struct module *mod)
1732 {
1733 struct module_attribute *attr;
1734 int i;
1735
1736 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1737 /* pick a field to test for end of list */
1738 if (!attr->attr.name)
1739 break;
1740 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1741 if (attr->free)
1742 attr->free(mod);
1743 }
1744 kfree(mod->modinfo_attrs);
1745 }
1746
1747 static void mod_kobject_put(struct module *mod)
1748 {
1749 DECLARE_COMPLETION_ONSTACK(c);
1750 mod->mkobj.kobj_completion = &c;
1751 kobject_put(&mod->mkobj.kobj);
1752 wait_for_completion(&c);
1753 }
1754
1755 static int mod_sysfs_init(struct module *mod)
1756 {
1757 int err;
1758 struct kobject *kobj;
1759
1760 if (!module_sysfs_initialized) {
1761 pr_err("%s: module sysfs not initialized\n", mod->name);
1762 err = -EINVAL;
1763 goto out;
1764 }
1765
1766 kobj = kset_find_obj(module_kset, mod->name);
1767 if (kobj) {
1768 pr_err("%s: module is already loaded\n", mod->name);
1769 kobject_put(kobj);
1770 err = -EINVAL;
1771 goto out;
1772 }
1773
1774 mod->mkobj.mod = mod;
1775
1776 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1777 mod->mkobj.kobj.kset = module_kset;
1778 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1779 "%s", mod->name);
1780 if (err)
1781 mod_kobject_put(mod);
1782
1783 /* delay uevent until full sysfs population */
1784 out:
1785 return err;
1786 }
1787
1788 static int mod_sysfs_setup(struct module *mod,
1789 const struct load_info *info,
1790 struct kernel_param *kparam,
1791 unsigned int num_params)
1792 {
1793 int err;
1794
1795 err = mod_sysfs_init(mod);
1796 if (err)
1797 goto out;
1798
1799 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1800 if (!mod->holders_dir) {
1801 err = -ENOMEM;
1802 goto out_unreg;
1803 }
1804
1805 err = module_param_sysfs_setup(mod, kparam, num_params);
1806 if (err)
1807 goto out_unreg_holders;
1808
1809 err = module_add_modinfo_attrs(mod);
1810 if (err)
1811 goto out_unreg_param;
1812
1813 err = add_usage_links(mod);
1814 if (err)
1815 goto out_unreg_modinfo_attrs;
1816
1817 add_sect_attrs(mod, info);
1818 add_notes_attrs(mod, info);
1819
1820 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1821 return 0;
1822
1823 out_unreg_modinfo_attrs:
1824 module_remove_modinfo_attrs(mod);
1825 out_unreg_param:
1826 module_param_sysfs_remove(mod);
1827 out_unreg_holders:
1828 kobject_put(mod->holders_dir);
1829 out_unreg:
1830 mod_kobject_put(mod);
1831 out:
1832 return err;
1833 }
1834
1835 static void mod_sysfs_fini(struct module *mod)
1836 {
1837 remove_notes_attrs(mod);
1838 remove_sect_attrs(mod);
1839 mod_kobject_put(mod);
1840 }
1841
1842 static void init_param_lock(struct module *mod)
1843 {
1844 mutex_init(&mod->param_lock);
1845 }
1846 #else /* !CONFIG_SYSFS */
1847
1848 static int mod_sysfs_setup(struct module *mod,
1849 const struct load_info *info,
1850 struct kernel_param *kparam,
1851 unsigned int num_params)
1852 {
1853 return 0;
1854 }
1855
1856 static void mod_sysfs_fini(struct module *mod)
1857 {
1858 }
1859
1860 static void module_remove_modinfo_attrs(struct module *mod)
1861 {
1862 }
1863
1864 static void del_usage_links(struct module *mod)
1865 {
1866 }
1867
1868 static void init_param_lock(struct module *mod)
1869 {
1870 }
1871 #endif /* CONFIG_SYSFS */
1872
1873 static void mod_sysfs_teardown(struct module *mod)
1874 {
1875 del_usage_links(mod);
1876 module_remove_modinfo_attrs(mod);
1877 module_param_sysfs_remove(mod);
1878 kobject_put(mod->mkobj.drivers_dir);
1879 kobject_put(mod->holders_dir);
1880 mod_sysfs_fini(mod);
1881 }
1882
1883 #ifdef CONFIG_STRICT_MODULE_RWX
1884 /*
1885 * LKM RO/NX protection: protect module's text/ro-data
1886 * from modification and any data from execution.
1887 *
1888 * General layout of module is:
1889 * [text] [read-only-data] [ro-after-init] [writable data]
1890 * text_size -----^ ^ ^ ^
1891 * ro_size ------------------------| | |
1892 * ro_after_init_size -----------------------------| |
1893 * size -----------------------------------------------------------|
1894 *
1895 * These values are always page-aligned (as is base)
1896 */
1897 static void frob_text(const struct module_layout *layout,
1898 int (*set_memory)(unsigned long start, int num_pages))
1899 {
1900 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1901 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1902 set_memory((unsigned long)layout->base,
1903 layout->text_size >> PAGE_SHIFT);
1904 }
1905
1906 static void frob_rodata(const struct module_layout *layout,
1907 int (*set_memory)(unsigned long start, int num_pages))
1908 {
1909 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1910 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1911 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1912 set_memory((unsigned long)layout->base + layout->text_size,
1913 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1914 }
1915
1916 static void frob_ro_after_init(const struct module_layout *layout,
1917 int (*set_memory)(unsigned long start, int num_pages))
1918 {
1919 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1920 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1921 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1922 set_memory((unsigned long)layout->base + layout->ro_size,
1923 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1924 }
1925
1926 static void frob_writable_data(const struct module_layout *layout,
1927 int (*set_memory)(unsigned long start, int num_pages))
1928 {
1929 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1930 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1931 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1932 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1933 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1934 }
1935
1936 /* livepatching wants to disable read-only so it can frob module. */
1937 void module_disable_ro(const struct module *mod)
1938 {
1939 if (!rodata_enabled)
1940 return;
1941
1942 frob_text(&mod->core_layout, set_memory_rw);
1943 frob_rodata(&mod->core_layout, set_memory_rw);
1944 frob_ro_after_init(&mod->core_layout, set_memory_rw);
1945 frob_text(&mod->init_layout, set_memory_rw);
1946 frob_rodata(&mod->init_layout, set_memory_rw);
1947 }
1948
1949 void module_enable_ro(const struct module *mod, bool after_init)
1950 {
1951 if (!rodata_enabled)
1952 return;
1953
1954 frob_text(&mod->core_layout, set_memory_ro);
1955 frob_rodata(&mod->core_layout, set_memory_ro);
1956 frob_text(&mod->init_layout, set_memory_ro);
1957 frob_rodata(&mod->init_layout, set_memory_ro);
1958
1959 if (after_init)
1960 frob_ro_after_init(&mod->core_layout, set_memory_ro);
1961 }
1962
1963 static void module_enable_nx(const struct module *mod)
1964 {
1965 frob_rodata(&mod->core_layout, set_memory_nx);
1966 frob_ro_after_init(&mod->core_layout, set_memory_nx);
1967 frob_writable_data(&mod->core_layout, set_memory_nx);
1968 frob_rodata(&mod->init_layout, set_memory_nx);
1969 frob_writable_data(&mod->init_layout, set_memory_nx);
1970 }
1971
1972 static void module_disable_nx(const struct module *mod)
1973 {
1974 frob_rodata(&mod->core_layout, set_memory_x);
1975 frob_ro_after_init(&mod->core_layout, set_memory_x);
1976 frob_writable_data(&mod->core_layout, set_memory_x);
1977 frob_rodata(&mod->init_layout, set_memory_x);
1978 frob_writable_data(&mod->init_layout, set_memory_x);
1979 }
1980
1981 /* Iterate through all modules and set each module's text as RW */
1982 void set_all_modules_text_rw(void)
1983 {
1984 struct module *mod;
1985
1986 if (!rodata_enabled)
1987 return;
1988
1989 mutex_lock(&module_mutex);
1990 list_for_each_entry_rcu(mod, &modules, list) {
1991 if (mod->state == MODULE_STATE_UNFORMED)
1992 continue;
1993
1994 frob_text(&mod->core_layout, set_memory_rw);
1995 frob_text(&mod->init_layout, set_memory_rw);
1996 }
1997 mutex_unlock(&module_mutex);
1998 }
1999
2000 /* Iterate through all modules and set each module's text as RO */
2001 void set_all_modules_text_ro(void)
2002 {
2003 struct module *mod;
2004
2005 if (!rodata_enabled)
2006 return;
2007
2008 mutex_lock(&module_mutex);
2009 list_for_each_entry_rcu(mod, &modules, list) {
2010 /*
2011 * Ignore going modules since it's possible that ro
2012 * protection has already been disabled, otherwise we'll
2013 * run into protection faults at module deallocation.
2014 */
2015 if (mod->state == MODULE_STATE_UNFORMED ||
2016 mod->state == MODULE_STATE_GOING)
2017 continue;
2018
2019 frob_text(&mod->core_layout, set_memory_ro);
2020 frob_text(&mod->init_layout, set_memory_ro);
2021 }
2022 mutex_unlock(&module_mutex);
2023 }
2024
2025 static void disable_ro_nx(const struct module_layout *layout)
2026 {
2027 if (rodata_enabled) {
2028 frob_text(layout, set_memory_rw);
2029 frob_rodata(layout, set_memory_rw);
2030 frob_ro_after_init(layout, set_memory_rw);
2031 }
2032 frob_rodata(layout, set_memory_x);
2033 frob_ro_after_init(layout, set_memory_x);
2034 frob_writable_data(layout, set_memory_x);
2035 }
2036
2037 #else
2038 static void disable_ro_nx(const struct module_layout *layout) { }
2039 static void module_enable_nx(const struct module *mod) { }
2040 static void module_disable_nx(const struct module *mod) { }
2041 #endif
2042
2043 #ifdef CONFIG_LIVEPATCH
2044 /*
2045 * Persist Elf information about a module. Copy the Elf header,
2046 * section header table, section string table, and symtab section
2047 * index from info to mod->klp_info.
2048 */
2049 static int copy_module_elf(struct module *mod, struct load_info *info)
2050 {
2051 unsigned int size, symndx;
2052 int ret;
2053
2054 size = sizeof(*mod->klp_info);
2055 mod->klp_info = kmalloc(size, GFP_KERNEL);
2056 if (mod->klp_info == NULL)
2057 return -ENOMEM;
2058
2059 /* Elf header */
2060 size = sizeof(mod->klp_info->hdr);
2061 memcpy(&mod->klp_info->hdr, info->hdr, size);
2062
2063 /* Elf section header table */
2064 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2065 mod->klp_info->sechdrs = kmalloc(size, GFP_KERNEL);
2066 if (mod->klp_info->sechdrs == NULL) {
2067 ret = -ENOMEM;
2068 goto free_info;
2069 }
2070 memcpy(mod->klp_info->sechdrs, info->sechdrs, size);
2071
2072 /* Elf section name string table */
2073 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2074 mod->klp_info->secstrings = kmalloc(size, GFP_KERNEL);
2075 if (mod->klp_info->secstrings == NULL) {
2076 ret = -ENOMEM;
2077 goto free_sechdrs;
2078 }
2079 memcpy(mod->klp_info->secstrings, info->secstrings, size);
2080
2081 /* Elf symbol section index */
2082 symndx = info->index.sym;
2083 mod->klp_info->symndx = symndx;
2084
2085 /*
2086 * For livepatch modules, core_kallsyms.symtab is a complete
2087 * copy of the original symbol table. Adjust sh_addr to point
2088 * to core_kallsyms.symtab since the copy of the symtab in module
2089 * init memory is freed at the end of do_init_module().
2090 */
2091 mod->klp_info->sechdrs[symndx].sh_addr = \
2092 (unsigned long) mod->core_kallsyms.symtab;
2093
2094 return 0;
2095
2096 free_sechdrs:
2097 kfree(mod->klp_info->sechdrs);
2098 free_info:
2099 kfree(mod->klp_info);
2100 return ret;
2101 }
2102
2103 static void free_module_elf(struct module *mod)
2104 {
2105 kfree(mod->klp_info->sechdrs);
2106 kfree(mod->klp_info->secstrings);
2107 kfree(mod->klp_info);
2108 }
2109 #else /* !CONFIG_LIVEPATCH */
2110 static int copy_module_elf(struct module *mod, struct load_info *info)
2111 {
2112 return 0;
2113 }
2114
2115 static void free_module_elf(struct module *mod)
2116 {
2117 }
2118 #endif /* CONFIG_LIVEPATCH */
2119
2120 void __weak module_memfree(void *module_region)
2121 {
2122 vfree(module_region);
2123 }
2124
2125 void __weak module_arch_cleanup(struct module *mod)
2126 {
2127 }
2128
2129 void __weak module_arch_freeing_init(struct module *mod)
2130 {
2131 }
2132
2133 /* Free a module, remove from lists, etc. */
2134 static void free_module(struct module *mod)
2135 {
2136 trace_module_free(mod);
2137
2138 mod_sysfs_teardown(mod);
2139
2140 /* We leave it in list to prevent duplicate loads, but make sure
2141 * that noone uses it while it's being deconstructed. */
2142 mutex_lock(&module_mutex);
2143 mod->state = MODULE_STATE_UNFORMED;
2144 mutex_unlock(&module_mutex);
2145
2146 /* Remove dynamic debug info */
2147 ddebug_remove_module(mod->name);
2148
2149 /* Arch-specific cleanup. */
2150 module_arch_cleanup(mod);
2151
2152 /* Module unload stuff */
2153 module_unload_free(mod);
2154
2155 /* Free any allocated parameters. */
2156 destroy_params(mod->kp, mod->num_kp);
2157
2158 if (is_livepatch_module(mod))
2159 free_module_elf(mod);
2160
2161 /* Now we can delete it from the lists */
2162 mutex_lock(&module_mutex);
2163 /* Unlink carefully: kallsyms could be walking list. */
2164 list_del_rcu(&mod->list);
2165 mod_tree_remove(mod);
2166 /* Remove this module from bug list, this uses list_del_rcu */
2167 module_bug_cleanup(mod);
2168 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2169 synchronize_sched();
2170 mutex_unlock(&module_mutex);
2171
2172 /* This may be empty, but that's OK */
2173 disable_ro_nx(&mod->init_layout);
2174 module_arch_freeing_init(mod);
2175 module_memfree(mod->init_layout.base);
2176 kfree(mod->args);
2177 percpu_modfree(mod);
2178
2179 /* Free lock-classes; relies on the preceding sync_rcu(). */
2180 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2181
2182 /* Finally, free the core (containing the module structure) */
2183 disable_ro_nx(&mod->core_layout);
2184 module_memfree(mod->core_layout.base);
2185
2186 #ifdef CONFIG_MPU
2187 update_protections(current->mm);
2188 #endif
2189 }
2190
2191 void *__symbol_get(const char *symbol)
2192 {
2193 struct module *owner;
2194 const struct kernel_symbol *sym;
2195
2196 preempt_disable();
2197 sym = find_symbol(symbol, &owner, NULL, true, true);
2198 if (sym && strong_try_module_get(owner))
2199 sym = NULL;
2200 preempt_enable();
2201
2202 return sym ? (void *)sym->value : NULL;
2203 }
2204 EXPORT_SYMBOL_GPL(__symbol_get);
2205
2206 /*
2207 * Ensure that an exported symbol [global namespace] does not already exist
2208 * in the kernel or in some other module's exported symbol table.
2209 *
2210 * You must hold the module_mutex.
2211 */
2212 static int verify_export_symbols(struct module *mod)
2213 {
2214 unsigned int i;
2215 struct module *owner;
2216 const struct kernel_symbol *s;
2217 struct {
2218 const struct kernel_symbol *sym;
2219 unsigned int num;
2220 } arr[] = {
2221 { mod->syms, mod->num_syms },
2222 { mod->gpl_syms, mod->num_gpl_syms },
2223 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2224 #ifdef CONFIG_UNUSED_SYMBOLS
2225 { mod->unused_syms, mod->num_unused_syms },
2226 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2227 #endif
2228 };
2229
2230 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2231 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2232 if (find_symbol(s->name, &owner, NULL, true, false)) {
2233 pr_err("%s: exports duplicate symbol %s"
2234 " (owned by %s)\n",
2235 mod->name, s->name, module_name(owner));
2236 return -ENOEXEC;
2237 }
2238 }
2239 }
2240 return 0;
2241 }
2242
2243 /* Change all symbols so that st_value encodes the pointer directly. */
2244 static int simplify_symbols(struct module *mod, const struct load_info *info)
2245 {
2246 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2247 Elf_Sym *sym = (void *)symsec->sh_addr;
2248 unsigned long secbase;
2249 unsigned int i;
2250 int ret = 0;
2251 const struct kernel_symbol *ksym;
2252
2253 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2254 const char *name = info->strtab + sym[i].st_name;
2255
2256 switch (sym[i].st_shndx) {
2257 case SHN_COMMON:
2258 /* Ignore common symbols */
2259 if (!strncmp(name, "__gnu_lto", 9))
2260 break;
2261
2262 /* We compiled with -fno-common. These are not
2263 supposed to happen. */
2264 pr_debug("Common symbol: %s\n", name);
2265 pr_warn("%s: please compile with -fno-common\n",
2266 mod->name);
2267 ret = -ENOEXEC;
2268 break;
2269
2270 case SHN_ABS:
2271 /* Don't need to do anything */
2272 pr_debug("Absolute symbol: 0x%08lx\n",
2273 (long)sym[i].st_value);
2274 break;
2275
2276 case SHN_LIVEPATCH:
2277 /* Livepatch symbols are resolved by livepatch */
2278 break;
2279
2280 case SHN_UNDEF:
2281 ksym = resolve_symbol_wait(mod, info, name);
2282 /* Ok if resolved. */
2283 if (ksym && !IS_ERR(ksym)) {
2284 sym[i].st_value = ksym->value;
2285 break;
2286 }
2287
2288 /* Ok if weak. */
2289 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2290 break;
2291
2292 pr_warn("%s: Unknown symbol %s (err %li)\n",
2293 mod->name, name, PTR_ERR(ksym));
2294 ret = PTR_ERR(ksym) ?: -ENOENT;
2295 break;
2296
2297 default:
2298 /* Divert to percpu allocation if a percpu var. */
2299 if (sym[i].st_shndx == info->index.pcpu)
2300 secbase = (unsigned long)mod_percpu(mod);
2301 else
2302 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2303 sym[i].st_value += secbase;
2304 break;
2305 }
2306 }
2307
2308 return ret;
2309 }
2310
2311 static int apply_relocations(struct module *mod, const struct load_info *info)
2312 {
2313 unsigned int i;
2314 int err = 0;
2315
2316 /* Now do relocations. */
2317 for (i = 1; i < info->hdr->e_shnum; i++) {
2318 unsigned int infosec = info->sechdrs[i].sh_info;
2319
2320 /* Not a valid relocation section? */
2321 if (infosec >= info->hdr->e_shnum)
2322 continue;
2323
2324 /* Don't bother with non-allocated sections */
2325 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2326 continue;
2327
2328 /* Livepatch relocation sections are applied by livepatch */
2329 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2330 continue;
2331
2332 if (info->sechdrs[i].sh_type == SHT_REL)
2333 err = apply_relocate(info->sechdrs, info->strtab,
2334 info->index.sym, i, mod);
2335 else if (info->sechdrs[i].sh_type == SHT_RELA)
2336 err = apply_relocate_add(info->sechdrs, info->strtab,
2337 info->index.sym, i, mod);
2338 if (err < 0)
2339 break;
2340 }
2341 return err;
2342 }
2343
2344 /* Additional bytes needed by arch in front of individual sections */
2345 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2346 unsigned int section)
2347 {
2348 /* default implementation just returns zero */
2349 return 0;
2350 }
2351
2352 /* Update size with this section: return offset. */
2353 static long get_offset(struct module *mod, unsigned int *size,
2354 Elf_Shdr *sechdr, unsigned int section)
2355 {
2356 long ret;
2357
2358 *size += arch_mod_section_prepend(mod, section);
2359 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2360 *size = ret + sechdr->sh_size;
2361 return ret;
2362 }
2363
2364 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2365 might -- code, read-only data, read-write data, small data. Tally
2366 sizes, and place the offsets into sh_entsize fields: high bit means it
2367 belongs in init. */
2368 static void layout_sections(struct module *mod, struct load_info *info)
2369 {
2370 static unsigned long const masks[][2] = {
2371 /* NOTE: all executable code must be the first section
2372 * in this array; otherwise modify the text_size
2373 * finder in the two loops below */
2374 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2375 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2376 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2377 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2378 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2379 };
2380 unsigned int m, i;
2381
2382 for (i = 0; i < info->hdr->e_shnum; i++)
2383 info->sechdrs[i].sh_entsize = ~0UL;
2384
2385 pr_debug("Core section allocation order:\n");
2386 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2387 for (i = 0; i < info->hdr->e_shnum; ++i) {
2388 Elf_Shdr *s = &info->sechdrs[i];
2389 const char *sname = info->secstrings + s->sh_name;
2390
2391 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2392 || (s->sh_flags & masks[m][1])
2393 || s->sh_entsize != ~0UL
2394 || strstarts(sname, ".init"))
2395 continue;
2396 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2397 pr_debug("\t%s\n", sname);
2398 }
2399 switch (m) {
2400 case 0: /* executable */
2401 mod->core_layout.size = debug_align(mod->core_layout.size);
2402 mod->core_layout.text_size = mod->core_layout.size;
2403 break;
2404 case 1: /* RO: text and ro-data */
2405 mod->core_layout.size = debug_align(mod->core_layout.size);
2406 mod->core_layout.ro_size = mod->core_layout.size;
2407 break;
2408 case 2: /* RO after init */
2409 mod->core_layout.size = debug_align(mod->core_layout.size);
2410 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2411 break;
2412 case 4: /* whole core */
2413 mod->core_layout.size = debug_align(mod->core_layout.size);
2414 break;
2415 }
2416 }
2417
2418 pr_debug("Init section allocation order:\n");
2419 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2420 for (i = 0; i < info->hdr->e_shnum; ++i) {
2421 Elf_Shdr *s = &info->sechdrs[i];
2422 const char *sname = info->secstrings + s->sh_name;
2423
2424 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2425 || (s->sh_flags & masks[m][1])
2426 || s->sh_entsize != ~0UL
2427 || !strstarts(sname, ".init"))
2428 continue;
2429 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2430 | INIT_OFFSET_MASK);
2431 pr_debug("\t%s\n", sname);
2432 }
2433 switch (m) {
2434 case 0: /* executable */
2435 mod->init_layout.size = debug_align(mod->init_layout.size);
2436 mod->init_layout.text_size = mod->init_layout.size;
2437 break;
2438 case 1: /* RO: text and ro-data */
2439 mod->init_layout.size = debug_align(mod->init_layout.size);
2440 mod->init_layout.ro_size = mod->init_layout.size;
2441 break;
2442 case 2:
2443 /*
2444 * RO after init doesn't apply to init_layout (only
2445 * core_layout), so it just takes the value of ro_size.
2446 */
2447 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2448 break;
2449 case 4: /* whole init */
2450 mod->init_layout.size = debug_align(mod->init_layout.size);
2451 break;
2452 }
2453 }
2454 }
2455
2456 static void set_license(struct module *mod, const char *license)
2457 {
2458 if (!license)
2459 license = "unspecified";
2460
2461 if (!license_is_gpl_compatible(license)) {
2462 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2463 pr_warn("%s: module license '%s' taints kernel.\n",
2464 mod->name, license);
2465 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2466 LOCKDEP_NOW_UNRELIABLE);
2467 }
2468 }
2469
2470 /* Parse tag=value strings from .modinfo section */
2471 static char *next_string(char *string, unsigned long *secsize)
2472 {
2473 /* Skip non-zero chars */
2474 while (string[0]) {
2475 string++;
2476 if ((*secsize)-- <= 1)
2477 return NULL;
2478 }
2479
2480 /* Skip any zero padding. */
2481 while (!string[0]) {
2482 string++;
2483 if ((*secsize)-- <= 1)
2484 return NULL;
2485 }
2486 return string;
2487 }
2488
2489 static char *get_modinfo(struct load_info *info, const char *tag)
2490 {
2491 char *p;
2492 unsigned int taglen = strlen(tag);
2493 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2494 unsigned long size = infosec->sh_size;
2495
2496 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2497 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2498 return p + taglen + 1;
2499 }
2500 return NULL;
2501 }
2502
2503 static void setup_modinfo(struct module *mod, struct load_info *info)
2504 {
2505 struct module_attribute *attr;
2506 int i;
2507
2508 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2509 if (attr->setup)
2510 attr->setup(mod, get_modinfo(info, attr->attr.name));
2511 }
2512 }
2513
2514 static void free_modinfo(struct module *mod)
2515 {
2516 struct module_attribute *attr;
2517 int i;
2518
2519 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2520 if (attr->free)
2521 attr->free(mod);
2522 }
2523 }
2524
2525 #ifdef CONFIG_KALLSYMS
2526
2527 /* lookup symbol in given range of kernel_symbols */
2528 static const struct kernel_symbol *lookup_symbol(const char *name,
2529 const struct kernel_symbol *start,
2530 const struct kernel_symbol *stop)
2531 {
2532 return bsearch(name, start, stop - start,
2533 sizeof(struct kernel_symbol), cmp_name);
2534 }
2535
2536 static int is_exported(const char *name, unsigned long value,
2537 const struct module *mod)
2538 {
2539 const struct kernel_symbol *ks;
2540 if (!mod)
2541 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2542 else
2543 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2544 return ks != NULL && ks->value == value;
2545 }
2546
2547 /* As per nm */
2548 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2549 {
2550 const Elf_Shdr *sechdrs = info->sechdrs;
2551
2552 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2553 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2554 return 'v';
2555 else
2556 return 'w';
2557 }
2558 if (sym->st_shndx == SHN_UNDEF)
2559 return 'U';
2560 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2561 return 'a';
2562 if (sym->st_shndx >= SHN_LORESERVE)
2563 return '?';
2564 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2565 return 't';
2566 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2567 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2568 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2569 return 'r';
2570 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2571 return 'g';
2572 else
2573 return 'd';
2574 }
2575 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2576 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2577 return 's';
2578 else
2579 return 'b';
2580 }
2581 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2582 ".debug")) {
2583 return 'n';
2584 }
2585 return '?';
2586 }
2587
2588 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2589 unsigned int shnum, unsigned int pcpundx)
2590 {
2591 const Elf_Shdr *sec;
2592
2593 if (src->st_shndx == SHN_UNDEF
2594 || src->st_shndx >= shnum
2595 || !src->st_name)
2596 return false;
2597
2598 #ifdef CONFIG_KALLSYMS_ALL
2599 if (src->st_shndx == pcpundx)
2600 return true;
2601 #endif
2602
2603 sec = sechdrs + src->st_shndx;
2604 if (!(sec->sh_flags & SHF_ALLOC)
2605 #ifndef CONFIG_KALLSYMS_ALL
2606 || !(sec->sh_flags & SHF_EXECINSTR)
2607 #endif
2608 || (sec->sh_entsize & INIT_OFFSET_MASK))
2609 return false;
2610
2611 return true;
2612 }
2613
2614 /*
2615 * We only allocate and copy the strings needed by the parts of symtab
2616 * we keep. This is simple, but has the effect of making multiple
2617 * copies of duplicates. We could be more sophisticated, see
2618 * linux-kernel thread starting with
2619 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2620 */
2621 static void layout_symtab(struct module *mod, struct load_info *info)
2622 {
2623 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2624 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2625 const Elf_Sym *src;
2626 unsigned int i, nsrc, ndst, strtab_size = 0;
2627
2628 /* Put symbol section at end of init part of module. */
2629 symsect->sh_flags |= SHF_ALLOC;
2630 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2631 info->index.sym) | INIT_OFFSET_MASK;
2632 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2633
2634 src = (void *)info->hdr + symsect->sh_offset;
2635 nsrc = symsect->sh_size / sizeof(*src);
2636
2637 /* Compute total space required for the core symbols' strtab. */
2638 for (ndst = i = 0; i < nsrc; i++) {
2639 if (i == 0 || is_livepatch_module(mod) ||
2640 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2641 info->index.pcpu)) {
2642 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2643 ndst++;
2644 }
2645 }
2646
2647 /* Append room for core symbols at end of core part. */
2648 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2649 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2650 mod->core_layout.size += strtab_size;
2651 mod->core_layout.size = debug_align(mod->core_layout.size);
2652
2653 /* Put string table section at end of init part of module. */
2654 strsect->sh_flags |= SHF_ALLOC;
2655 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2656 info->index.str) | INIT_OFFSET_MASK;
2657 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2658
2659 /* We'll tack temporary mod_kallsyms on the end. */
2660 mod->init_layout.size = ALIGN(mod->init_layout.size,
2661 __alignof__(struct mod_kallsyms));
2662 info->mod_kallsyms_init_off = mod->init_layout.size;
2663 mod->init_layout.size += sizeof(struct mod_kallsyms);
2664 mod->init_layout.size = debug_align(mod->init_layout.size);
2665 }
2666
2667 /*
2668 * We use the full symtab and strtab which layout_symtab arranged to
2669 * be appended to the init section. Later we switch to the cut-down
2670 * core-only ones.
2671 */
2672 static void add_kallsyms(struct module *mod, const struct load_info *info)
2673 {
2674 unsigned int i, ndst;
2675 const Elf_Sym *src;
2676 Elf_Sym *dst;
2677 char *s;
2678 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2679
2680 /* Set up to point into init section. */
2681 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2682
2683 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2684 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2685 /* Make sure we get permanent strtab: don't use info->strtab. */
2686 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2687
2688 /* Set types up while we still have access to sections. */
2689 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2690 mod->kallsyms->symtab[i].st_info
2691 = elf_type(&mod->kallsyms->symtab[i], info);
2692
2693 /* Now populate the cut down core kallsyms for after init. */
2694 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2695 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2696 src = mod->kallsyms->symtab;
2697 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2698 if (i == 0 || is_livepatch_module(mod) ||
2699 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2700 info->index.pcpu)) {
2701 dst[ndst] = src[i];
2702 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2703 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2704 KSYM_NAME_LEN) + 1;
2705 }
2706 }
2707 mod->core_kallsyms.num_symtab = ndst;
2708 }
2709 #else
2710 static inline void layout_symtab(struct module *mod, struct load_info *info)
2711 {
2712 }
2713
2714 static void add_kallsyms(struct module *mod, const struct load_info *info)
2715 {
2716 }
2717 #endif /* CONFIG_KALLSYMS */
2718
2719 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2720 {
2721 if (!debug)
2722 return;
2723 #ifdef CONFIG_DYNAMIC_DEBUG
2724 if (ddebug_add_module(debug, num, mod->name))
2725 pr_err("dynamic debug error adding module: %s\n",
2726 debug->modname);
2727 #endif
2728 }
2729
2730 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2731 {
2732 if (debug)
2733 ddebug_remove_module(mod->name);
2734 }
2735
2736 void * __weak module_alloc(unsigned long size)
2737 {
2738 return vmalloc_exec(size);
2739 }
2740
2741 #ifdef CONFIG_DEBUG_KMEMLEAK
2742 static void kmemleak_load_module(const struct module *mod,
2743 const struct load_info *info)
2744 {
2745 unsigned int i;
2746
2747 /* only scan the sections containing data */
2748 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2749
2750 for (i = 1; i < info->hdr->e_shnum; i++) {
2751 /* Scan all writable sections that's not executable */
2752 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2753 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2754 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2755 continue;
2756
2757 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2758 info->sechdrs[i].sh_size, GFP_KERNEL);
2759 }
2760 }
2761 #else
2762 static inline void kmemleak_load_module(const struct module *mod,
2763 const struct load_info *info)
2764 {
2765 }
2766 #endif
2767
2768 #ifdef CONFIG_MODULE_SIG
2769 static int module_sig_check(struct load_info *info, int flags)
2770 {
2771 int err = -ENOKEY;
2772 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2773 const void *mod = info->hdr;
2774
2775 /*
2776 * Require flags == 0, as a module with version information
2777 * removed is no longer the module that was signed
2778 */
2779 if (flags == 0 &&
2780 info->len > markerlen &&
2781 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2782 /* We truncate the module to discard the signature */
2783 info->len -= markerlen;
2784 err = mod_verify_sig(mod, &info->len);
2785 }
2786
2787 if (!err) {
2788 info->sig_ok = true;
2789 return 0;
2790 }
2791
2792 /* Not having a signature is only an error if we're strict. */
2793 if (err == -ENOKEY && !sig_enforce &&
2794 !kernel_is_locked_down("Loading of unsigned modules"))
2795 err = 0;
2796
2797 return err;
2798 }
2799 #else /* !CONFIG_MODULE_SIG */
2800 static int module_sig_check(struct load_info *info, int flags)
2801 {
2802 return 0;
2803 }
2804 #endif /* !CONFIG_MODULE_SIG */
2805
2806 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2807 static int elf_header_check(struct load_info *info)
2808 {
2809 if (info->len < sizeof(*(info->hdr)))
2810 return -ENOEXEC;
2811
2812 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2813 || info->hdr->e_type != ET_REL
2814 || !elf_check_arch(info->hdr)
2815 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2816 return -ENOEXEC;
2817
2818 if (info->hdr->e_shoff >= info->len
2819 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2820 info->len - info->hdr->e_shoff))
2821 return -ENOEXEC;
2822
2823 return 0;
2824 }
2825
2826 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2827
2828 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2829 {
2830 do {
2831 unsigned long n = min(len, COPY_CHUNK_SIZE);
2832
2833 if (copy_from_user(dst, usrc, n) != 0)
2834 return -EFAULT;
2835 cond_resched();
2836 dst += n;
2837 usrc += n;
2838 len -= n;
2839 } while (len);
2840 return 0;
2841 }
2842
2843 #ifdef CONFIG_LIVEPATCH
2844 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2845 {
2846 if (get_modinfo(info, "livepatch")) {
2847 mod->klp = true;
2848 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2849 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2850 mod->name);
2851 }
2852
2853 return 0;
2854 }
2855 #else /* !CONFIG_LIVEPATCH */
2856 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2857 {
2858 if (get_modinfo(info, "livepatch")) {
2859 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2860 mod->name);
2861 return -ENOEXEC;
2862 }
2863
2864 return 0;
2865 }
2866 #endif /* CONFIG_LIVEPATCH */
2867
2868 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2869 {
2870 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2871 return;
2872
2873 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2874 mod->name);
2875 }
2876
2877 /* Sets info->hdr and info->len. */
2878 static int copy_module_from_user(const void __user *umod, unsigned long len,
2879 struct load_info *info)
2880 {
2881 int err;
2882
2883 info->len = len;
2884 if (info->len < sizeof(*(info->hdr)))
2885 return -ENOEXEC;
2886
2887 err = security_kernel_read_file(NULL, READING_MODULE);
2888 if (err)
2889 return err;
2890
2891 /* Suck in entire file: we'll want most of it. */
2892 info->hdr = __vmalloc(info->len,
2893 GFP_KERNEL | __GFP_NOWARN, PAGE_KERNEL);
2894 if (!info->hdr)
2895 return -ENOMEM;
2896
2897 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2898 vfree(info->hdr);
2899 return -EFAULT;
2900 }
2901
2902 return 0;
2903 }
2904
2905 static void free_copy(struct load_info *info)
2906 {
2907 vfree(info->hdr);
2908 }
2909
2910 static int rewrite_section_headers(struct load_info *info, int flags)
2911 {
2912 unsigned int i;
2913
2914 /* This should always be true, but let's be sure. */
2915 info->sechdrs[0].sh_addr = 0;
2916
2917 for (i = 1; i < info->hdr->e_shnum; i++) {
2918 Elf_Shdr *shdr = &info->sechdrs[i];
2919 if (shdr->sh_type != SHT_NOBITS
2920 && info->len < shdr->sh_offset + shdr->sh_size) {
2921 pr_err("Module len %lu truncated\n", info->len);
2922 return -ENOEXEC;
2923 }
2924
2925 /* Mark all sections sh_addr with their address in the
2926 temporary image. */
2927 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2928
2929 #ifndef CONFIG_MODULE_UNLOAD
2930 /* Don't load .exit sections */
2931 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2932 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2933 #endif
2934 }
2935
2936 /* Track but don't keep modinfo and version sections. */
2937 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2938 info->index.vers = 0; /* Pretend no __versions section! */
2939 else
2940 info->index.vers = find_sec(info, "__versions");
2941 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2942
2943 info->index.info = find_sec(info, ".modinfo");
2944 if (!info->index.info)
2945 info->name = "(missing .modinfo section)";
2946 else
2947 info->name = get_modinfo(info, "name");
2948 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2949
2950 return 0;
2951 }
2952
2953 /*
2954 * Set up our basic convenience variables (pointers to section headers,
2955 * search for module section index etc), and do some basic section
2956 * verification.
2957 *
2958 * Return the temporary module pointer (we'll replace it with the final
2959 * one when we move the module sections around).
2960 */
2961 static struct module *setup_load_info(struct load_info *info, int flags)
2962 {
2963 unsigned int i;
2964 int err;
2965 struct module *mod;
2966
2967 /* Set up the convenience variables */
2968 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2969 info->secstrings = (void *)info->hdr
2970 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2971
2972 err = rewrite_section_headers(info, flags);
2973 if (err)
2974 return ERR_PTR(err);
2975
2976 /* Find internal symbols and strings. */
2977 for (i = 1; i < info->hdr->e_shnum; i++) {
2978 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2979 info->index.sym = i;
2980 info->index.str = info->sechdrs[i].sh_link;
2981 info->strtab = (char *)info->hdr
2982 + info->sechdrs[info->index.str].sh_offset;
2983 break;
2984 }
2985 }
2986
2987 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2988 if (!info->index.mod) {
2989 pr_warn("%s: No module found in object\n",
2990 info->name ?: "(missing .modinfo name field)");
2991 return ERR_PTR(-ENOEXEC);
2992 }
2993 /* This is temporary: point mod into copy of data. */
2994 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2995
2996 /*
2997 * If we didn't load the .modinfo 'name' field, fall back to
2998 * on-disk struct mod 'name' field.
2999 */
3000 if (!info->name)
3001 info->name = mod->name;
3002
3003 if (info->index.sym == 0) {
3004 pr_warn("%s: module has no symbols (stripped?)\n", info->name);
3005 return ERR_PTR(-ENOEXEC);
3006 }
3007
3008 info->index.pcpu = find_pcpusec(info);
3009
3010 /* Check module struct version now, before we try to use module. */
3011 if (!check_modstruct_version(info, mod))
3012 return ERR_PTR(-ENOEXEC);
3013
3014 return mod;
3015 }
3016
3017 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3018 {
3019 const char *modmagic = get_modinfo(info, "vermagic");
3020 int err;
3021
3022 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3023 modmagic = NULL;
3024
3025 /* This is allowed: modprobe --force will invalidate it. */
3026 if (!modmagic) {
3027 err = try_to_force_load(mod, "bad vermagic");
3028 if (err)
3029 return err;
3030 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3031 pr_err("%s: version magic '%s' should be '%s'\n",
3032 info->name, modmagic, vermagic);
3033 return -ENOEXEC;
3034 }
3035
3036 if (!get_modinfo(info, "intree")) {
3037 if (!test_taint(TAINT_OOT_MODULE))
3038 pr_warn("%s: loading out-of-tree module taints kernel.\n",
3039 mod->name);
3040 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3041 }
3042
3043 check_modinfo_retpoline(mod, info);
3044
3045 if (get_modinfo(info, "staging")) {
3046 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3047 pr_warn("%s: module is from the staging directory, the quality "
3048 "is unknown, you have been warned.\n", mod->name);
3049 }
3050
3051 err = check_modinfo_livepatch(mod, info);
3052 if (err)
3053 return err;
3054
3055 /* Set up license info based on the info section */
3056 set_license(mod, get_modinfo(info, "license"));
3057
3058 return 0;
3059 }
3060
3061 static int find_module_sections(struct module *mod, struct load_info *info)
3062 {
3063 mod->kp = section_objs(info, "__param",
3064 sizeof(*mod->kp), &mod->num_kp);
3065 mod->syms = section_objs(info, "__ksymtab",
3066 sizeof(*mod->syms), &mod->num_syms);
3067 mod->crcs = section_addr(info, "__kcrctab");
3068 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3069 sizeof(*mod->gpl_syms),
3070 &mod->num_gpl_syms);
3071 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3072 mod->gpl_future_syms = section_objs(info,
3073 "__ksymtab_gpl_future",
3074 sizeof(*mod->gpl_future_syms),
3075 &mod->num_gpl_future_syms);
3076 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3077
3078 #ifdef CONFIG_UNUSED_SYMBOLS
3079 mod->unused_syms = section_objs(info, "__ksymtab_unused",
3080 sizeof(*mod->unused_syms),
3081 &mod->num_unused_syms);
3082 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3083 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3084 sizeof(*mod->unused_gpl_syms),
3085 &mod->num_unused_gpl_syms);
3086 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3087 #endif
3088 #ifdef CONFIG_CONSTRUCTORS
3089 mod->ctors = section_objs(info, ".ctors",
3090 sizeof(*mod->ctors), &mod->num_ctors);
3091 if (!mod->ctors)
3092 mod->ctors = section_objs(info, ".init_array",
3093 sizeof(*mod->ctors), &mod->num_ctors);
3094 else if (find_sec(info, ".init_array")) {
3095 /*
3096 * This shouldn't happen with same compiler and binutils
3097 * building all parts of the module.
3098 */
3099 pr_warn("%s: has both .ctors and .init_array.\n",
3100 mod->name);
3101 return -EINVAL;
3102 }
3103 #endif
3104
3105 #ifdef CONFIG_TRACEPOINTS
3106 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3107 sizeof(*mod->tracepoints_ptrs),
3108 &mod->num_tracepoints);
3109 #endif
3110 #ifdef HAVE_JUMP_LABEL
3111 mod->jump_entries = section_objs(info, "__jump_table",
3112 sizeof(*mod->jump_entries),
3113 &mod->num_jump_entries);
3114 #endif
3115 #ifdef CONFIG_EVENT_TRACING
3116 mod->trace_events = section_objs(info, "_ftrace_events",
3117 sizeof(*mod->trace_events),
3118 &mod->num_trace_events);
3119 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3120 sizeof(*mod->trace_evals),
3121 &mod->num_trace_evals);
3122 #endif
3123 #ifdef CONFIG_TRACING
3124 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3125 sizeof(*mod->trace_bprintk_fmt_start),
3126 &mod->num_trace_bprintk_fmt);
3127 #endif
3128 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3129 /* sechdrs[0].sh_size is always zero */
3130 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3131 sizeof(*mod->ftrace_callsites),
3132 &mod->num_ftrace_callsites);
3133 #endif
3134
3135 mod->extable = section_objs(info, "__ex_table",
3136 sizeof(*mod->extable), &mod->num_exentries);
3137
3138 if (section_addr(info, "__obsparm"))
3139 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3140
3141 info->debug = section_objs(info, "__verbose",
3142 sizeof(*info->debug), &info->num_debug);
3143
3144 return 0;
3145 }
3146
3147 static int move_module(struct module *mod, struct load_info *info)
3148 {
3149 int i;
3150 void *ptr;
3151
3152 /* Do the allocs. */
3153 ptr = module_alloc(mod->core_layout.size);
3154 /*
3155 * The pointer to this block is stored in the module structure
3156 * which is inside the block. Just mark it as not being a
3157 * leak.
3158 */
3159 kmemleak_not_leak(ptr);
3160 if (!ptr)
3161 return -ENOMEM;
3162
3163 memset(ptr, 0, mod->core_layout.size);
3164 mod->core_layout.base = ptr;
3165
3166 if (mod->init_layout.size) {
3167 ptr = module_alloc(mod->init_layout.size);
3168 /*
3169 * The pointer to this block is stored in the module structure
3170 * which is inside the block. This block doesn't need to be
3171 * scanned as it contains data and code that will be freed
3172 * after the module is initialized.
3173 */
3174 kmemleak_ignore(ptr);
3175 if (!ptr) {
3176 module_memfree(mod->core_layout.base);
3177 return -ENOMEM;
3178 }
3179 memset(ptr, 0, mod->init_layout.size);
3180 mod->init_layout.base = ptr;
3181 } else
3182 mod->init_layout.base = NULL;
3183
3184 /* Transfer each section which specifies SHF_ALLOC */
3185 pr_debug("final section addresses:\n");
3186 for (i = 0; i < info->hdr->e_shnum; i++) {
3187 void *dest;
3188 Elf_Shdr *shdr = &info->sechdrs[i];
3189
3190 if (!(shdr->sh_flags & SHF_ALLOC))
3191 continue;
3192
3193 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3194 dest = mod->init_layout.base
3195 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3196 else
3197 dest = mod->core_layout.base + shdr->sh_entsize;
3198
3199 if (shdr->sh_type != SHT_NOBITS)
3200 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3201 /* Update sh_addr to point to copy in image. */
3202 shdr->sh_addr = (unsigned long)dest;
3203 pr_debug("\t0x%lx %s\n",
3204 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3205 }
3206
3207 return 0;
3208 }
3209
3210 static int check_module_license_and_versions(struct module *mod)
3211 {
3212 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3213
3214 /*
3215 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3216 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3217 * using GPL-only symbols it needs.
3218 */
3219 if (strcmp(mod->name, "ndiswrapper") == 0)
3220 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3221
3222 /* driverloader was caught wrongly pretending to be under GPL */
3223 if (strcmp(mod->name, "driverloader") == 0)
3224 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3225 LOCKDEP_NOW_UNRELIABLE);
3226
3227 /* lve claims to be GPL but upstream won't provide source */
3228 if (strcmp(mod->name, "lve") == 0)
3229 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3230 LOCKDEP_NOW_UNRELIABLE);
3231
3232 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3233 pr_warn("%s: module license taints kernel.\n", mod->name);
3234
3235 #ifdef CONFIG_MODVERSIONS
3236 if ((mod->num_syms && !mod->crcs)
3237 || (mod->num_gpl_syms && !mod->gpl_crcs)
3238 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3239 #ifdef CONFIG_UNUSED_SYMBOLS
3240 || (mod->num_unused_syms && !mod->unused_crcs)
3241 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3242 #endif
3243 ) {
3244 return try_to_force_load(mod,
3245 "no versions for exported symbols");
3246 }
3247 #endif
3248 return 0;
3249 }
3250
3251 static void flush_module_icache(const struct module *mod)
3252 {
3253 mm_segment_t old_fs;
3254
3255 /* flush the icache in correct context */
3256 old_fs = get_fs();
3257 set_fs(KERNEL_DS);
3258
3259 /*
3260 * Flush the instruction cache, since we've played with text.
3261 * Do it before processing of module parameters, so the module
3262 * can provide parameter accessor functions of its own.
3263 */
3264 if (mod->init_layout.base)
3265 flush_icache_range((unsigned long)mod->init_layout.base,
3266 (unsigned long)mod->init_layout.base
3267 + mod->init_layout.size);
3268 flush_icache_range((unsigned long)mod->core_layout.base,
3269 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3270
3271 set_fs(old_fs);
3272 }
3273
3274 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3275 Elf_Shdr *sechdrs,
3276 char *secstrings,
3277 struct module *mod)
3278 {
3279 return 0;
3280 }
3281
3282 /* module_blacklist is a comma-separated list of module names */
3283 static char *module_blacklist;
3284 static bool blacklisted(const char *module_name)
3285 {
3286 const char *p;
3287 size_t len;
3288
3289 if (!module_blacklist)
3290 return false;
3291
3292 for (p = module_blacklist; *p; p += len) {
3293 len = strcspn(p, ",");
3294 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3295 return true;
3296 if (p[len] == ',')
3297 len++;
3298 }
3299 return false;
3300 }
3301 core_param(module_blacklist, module_blacklist, charp, 0400);
3302
3303 static struct module *layout_and_allocate(struct load_info *info, int flags)
3304 {
3305 /* Module within temporary copy. */
3306 struct module *mod;
3307 unsigned int ndx;
3308 int err;
3309
3310 mod = setup_load_info(info, flags);
3311 if (IS_ERR(mod))
3312 return mod;
3313
3314 if (blacklisted(info->name))
3315 return ERR_PTR(-EPERM);
3316
3317 err = check_modinfo(mod, info, flags);
3318 if (err)
3319 return ERR_PTR(err);
3320
3321 /* Allow arches to frob section contents and sizes. */
3322 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3323 info->secstrings, mod);
3324 if (err < 0)
3325 return ERR_PTR(err);
3326
3327 /* We will do a special allocation for per-cpu sections later. */
3328 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3329
3330 /*
3331 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3332 * layout_sections() can put it in the right place.
3333 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3334 */
3335 ndx = find_sec(info, ".data..ro_after_init");
3336 if (ndx)
3337 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3338
3339 /* Determine total sizes, and put offsets in sh_entsize. For now
3340 this is done generically; there doesn't appear to be any
3341 special cases for the architectures. */
3342 layout_sections(mod, info);
3343 layout_symtab(mod, info);
3344
3345 /* Allocate and move to the final place */
3346 err = move_module(mod, info);
3347 if (err)
3348 return ERR_PTR(err);
3349
3350 /* Module has been copied to its final place now: return it. */
3351 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3352 kmemleak_load_module(mod, info);
3353 return mod;
3354 }
3355
3356 /* mod is no longer valid after this! */
3357 static void module_deallocate(struct module *mod, struct load_info *info)
3358 {
3359 percpu_modfree(mod);
3360 module_arch_freeing_init(mod);
3361 module_memfree(mod->init_layout.base);
3362 module_memfree(mod->core_layout.base);
3363 }
3364
3365 int __weak module_finalize(const Elf_Ehdr *hdr,
3366 const Elf_Shdr *sechdrs,
3367 struct module *me)
3368 {
3369 return 0;
3370 }
3371
3372 static int post_relocation(struct module *mod, const struct load_info *info)
3373 {
3374 /* Sort exception table now relocations are done. */
3375 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3376
3377 /* Copy relocated percpu area over. */
3378 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3379 info->sechdrs[info->index.pcpu].sh_size);
3380
3381 /* Setup kallsyms-specific fields. */
3382 add_kallsyms(mod, info);
3383
3384 /* Arch-specific module finalizing. */
3385 return module_finalize(info->hdr, info->sechdrs, mod);
3386 }
3387
3388 /* Is this module of this name done loading? No locks held. */
3389 static bool finished_loading(const char *name)
3390 {
3391 struct module *mod;
3392 bool ret;
3393
3394 /*
3395 * The module_mutex should not be a heavily contended lock;
3396 * if we get the occasional sleep here, we'll go an extra iteration
3397 * in the wait_event_interruptible(), which is harmless.
3398 */
3399 sched_annotate_sleep();
3400 mutex_lock(&module_mutex);
3401 mod = find_module_all(name, strlen(name), true);
3402 ret = !mod || mod->state == MODULE_STATE_LIVE
3403 || mod->state == MODULE_STATE_GOING;
3404 mutex_unlock(&module_mutex);
3405
3406 return ret;
3407 }
3408
3409 /* Call module constructors. */
3410 static void do_mod_ctors(struct module *mod)
3411 {
3412 #ifdef CONFIG_CONSTRUCTORS
3413 unsigned long i;
3414
3415 for (i = 0; i < mod->num_ctors; i++)
3416 mod->ctors[i]();
3417 #endif
3418 }
3419
3420 /* For freeing module_init on success, in case kallsyms traversing */
3421 struct mod_initfree {
3422 struct rcu_head rcu;
3423 void *module_init;
3424 };
3425
3426 static void do_free_init(struct rcu_head *head)
3427 {
3428 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3429 module_memfree(m->module_init);
3430 kfree(m);
3431 }
3432
3433 /*
3434 * This is where the real work happens.
3435 *
3436 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3437 * helper command 'lx-symbols'.
3438 */
3439 static noinline int do_init_module(struct module *mod)
3440 {
3441 int ret = 0;
3442 struct mod_initfree *freeinit;
3443
3444 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3445 if (!freeinit) {
3446 ret = -ENOMEM;
3447 goto fail;
3448 }
3449 freeinit->module_init = mod->init_layout.base;
3450
3451 /*
3452 * We want to find out whether @mod uses async during init. Clear
3453 * PF_USED_ASYNC. async_schedule*() will set it.
3454 */
3455 current->flags &= ~PF_USED_ASYNC;
3456
3457 do_mod_ctors(mod);
3458 /* Start the module */
3459 if (mod->init != NULL)
3460 ret = do_one_initcall(mod->init);
3461 if (ret < 0) {
3462 goto fail_free_freeinit;
3463 }
3464 if (ret > 0) {
3465 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3466 "follow 0/-E convention\n"
3467 "%s: loading module anyway...\n",
3468 __func__, mod->name, ret, __func__);
3469 dump_stack();
3470 }
3471
3472 /* Now it's a first class citizen! */
3473 mod->state = MODULE_STATE_LIVE;
3474 blocking_notifier_call_chain(&module_notify_list,
3475 MODULE_STATE_LIVE, mod);
3476
3477 /*
3478 * We need to finish all async code before the module init sequence
3479 * is done. This has potential to deadlock. For example, a newly
3480 * detected block device can trigger request_module() of the
3481 * default iosched from async probing task. Once userland helper
3482 * reaches here, async_synchronize_full() will wait on the async
3483 * task waiting on request_module() and deadlock.
3484 *
3485 * This deadlock is avoided by perfomring async_synchronize_full()
3486 * iff module init queued any async jobs. This isn't a full
3487 * solution as it will deadlock the same if module loading from
3488 * async jobs nests more than once; however, due to the various
3489 * constraints, this hack seems to be the best option for now.
3490 * Please refer to the following thread for details.
3491 *
3492 * http://thread.gmane.org/gmane.linux.kernel/1420814
3493 */
3494 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3495 async_synchronize_full();
3496
3497 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3498 mod->init_layout.size);
3499 mutex_lock(&module_mutex);
3500 /* Drop initial reference. */
3501 module_put(mod);
3502 trim_init_extable(mod);
3503 #ifdef CONFIG_KALLSYMS
3504 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3505 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3506 #endif
3507 module_enable_ro(mod, true);
3508 mod_tree_remove_init(mod);
3509 disable_ro_nx(&mod->init_layout);
3510 module_arch_freeing_init(mod);
3511 mod->init_layout.base = NULL;
3512 mod->init_layout.size = 0;
3513 mod->init_layout.ro_size = 0;
3514 mod->init_layout.ro_after_init_size = 0;
3515 mod->init_layout.text_size = 0;
3516 /*
3517 * We want to free module_init, but be aware that kallsyms may be
3518 * walking this with preempt disabled. In all the failure paths, we
3519 * call synchronize_sched(), but we don't want to slow down the success
3520 * path, so use actual RCU here.
3521 * Note that module_alloc() on most architectures creates W+X page
3522 * mappings which won't be cleaned up until do_free_init() runs. Any
3523 * code such as mark_rodata_ro() which depends on those mappings to
3524 * be cleaned up needs to sync with the queued work - ie
3525 * rcu_barrier_sched()
3526 */
3527 call_rcu_sched(&freeinit->rcu, do_free_init);
3528 mutex_unlock(&module_mutex);
3529 wake_up_all(&module_wq);
3530
3531 return 0;
3532
3533 fail_free_freeinit:
3534 kfree(freeinit);
3535 fail:
3536 /* Try to protect us from buggy refcounters. */
3537 mod->state = MODULE_STATE_GOING;
3538 synchronize_sched();
3539 module_put(mod);
3540 blocking_notifier_call_chain(&module_notify_list,
3541 MODULE_STATE_GOING, mod);
3542 klp_module_going(mod);
3543 ftrace_release_mod(mod);
3544 free_module(mod);
3545 wake_up_all(&module_wq);
3546 return ret;
3547 }
3548
3549 static int may_init_module(void)
3550 {
3551 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3552 return -EPERM;
3553
3554 return 0;
3555 }
3556
3557 /*
3558 * We try to place it in the list now to make sure it's unique before
3559 * we dedicate too many resources. In particular, temporary percpu
3560 * memory exhaustion.
3561 */
3562 static int add_unformed_module(struct module *mod)
3563 {
3564 int err;
3565 struct module *old;
3566
3567 mod->state = MODULE_STATE_UNFORMED;
3568
3569 again:
3570 mutex_lock(&module_mutex);
3571 old = find_module_all(mod->name, strlen(mod->name), true);
3572 if (old != NULL) {
3573 if (old->state == MODULE_STATE_COMING
3574 || old->state == MODULE_STATE_UNFORMED) {
3575 /* Wait in case it fails to load. */
3576 mutex_unlock(&module_mutex);
3577 err = wait_event_interruptible(module_wq,
3578 finished_loading(mod->name));
3579 if (err)
3580 goto out_unlocked;
3581 goto again;
3582 }
3583 err = -EEXIST;
3584 goto out;
3585 }
3586 mod_update_bounds(mod);
3587 list_add_rcu(&mod->list, &modules);
3588 mod_tree_insert(mod);
3589 err = 0;
3590
3591 out:
3592 mutex_unlock(&module_mutex);
3593 out_unlocked:
3594 return err;
3595 }
3596
3597 static int complete_formation(struct module *mod, struct load_info *info)
3598 {
3599 int err;
3600
3601 mutex_lock(&module_mutex);
3602
3603 /* Find duplicate symbols (must be called under lock). */
3604 err = verify_export_symbols(mod);
3605 if (err < 0)
3606 goto out;
3607
3608 /* This relies on module_mutex for list integrity. */
3609 module_bug_finalize(info->hdr, info->sechdrs, mod);
3610
3611 module_enable_ro(mod, false);
3612 module_enable_nx(mod);
3613
3614 /* Mark state as coming so strong_try_module_get() ignores us,
3615 * but kallsyms etc. can see us. */
3616 mod->state = MODULE_STATE_COMING;
3617 mutex_unlock(&module_mutex);
3618
3619 return 0;
3620
3621 out:
3622 mutex_unlock(&module_mutex);
3623 return err;
3624 }
3625
3626 static int prepare_coming_module(struct module *mod)
3627 {
3628 int err;
3629
3630 ftrace_module_enable(mod);
3631 err = klp_module_coming(mod);
3632 if (err)
3633 return err;
3634
3635 blocking_notifier_call_chain(&module_notify_list,
3636 MODULE_STATE_COMING, mod);
3637 return 0;
3638 }
3639
3640 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3641 void *arg)
3642 {
3643 struct module *mod = arg;
3644 int ret;
3645
3646 if (strcmp(param, "async_probe") == 0) {
3647 mod->async_probe_requested = true;
3648 return 0;
3649 }
3650
3651 /* Check for magic 'dyndbg' arg */
3652 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3653 if (ret != 0)
3654 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3655 return 0;
3656 }
3657
3658 /* Allocate and load the module: note that size of section 0 is always
3659 zero, and we rely on this for optional sections. */
3660 static int load_module(struct load_info *info, const char __user *uargs,
3661 int flags)
3662 {
3663 struct module *mod;
3664 long err;
3665 char *after_dashes;
3666
3667 err = module_sig_check(info, flags);
3668 if (err)
3669 goto free_copy;
3670
3671 err = elf_header_check(info);
3672 if (err)
3673 goto free_copy;
3674
3675 /* Figure out module layout, and allocate all the memory. */
3676 mod = layout_and_allocate(info, flags);
3677 if (IS_ERR(mod)) {
3678 err = PTR_ERR(mod);
3679 goto free_copy;
3680 }
3681
3682 audit_log_kern_module(mod->name);
3683
3684 /* Reserve our place in the list. */
3685 err = add_unformed_module(mod);
3686 if (err)
3687 goto free_module;
3688
3689 #ifdef CONFIG_MODULE_SIG
3690 mod->sig_ok = info->sig_ok;
3691 if (!mod->sig_ok) {
3692 pr_notice_once("%s: module verification failed: signature "
3693 "and/or required key missing - tainting "
3694 "kernel\n", mod->name);
3695 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3696 }
3697 #endif
3698
3699 /* To avoid stressing percpu allocator, do this once we're unique. */
3700 err = percpu_modalloc(mod, info);
3701 if (err)
3702 goto unlink_mod;
3703
3704 /* Now module is in final location, initialize linked lists, etc. */
3705 err = module_unload_init(mod);
3706 if (err)
3707 goto unlink_mod;
3708
3709 init_param_lock(mod);
3710
3711 /* Now we've got everything in the final locations, we can
3712 * find optional sections. */
3713 err = find_module_sections(mod, info);
3714 if (err)
3715 goto free_unload;
3716
3717 err = check_module_license_and_versions(mod);
3718 if (err)
3719 goto free_unload;
3720
3721 /* Set up MODINFO_ATTR fields */
3722 setup_modinfo(mod, info);
3723
3724 /* Fix up syms, so that st_value is a pointer to location. */
3725 err = simplify_symbols(mod, info);
3726 if (err < 0)
3727 goto free_modinfo;
3728
3729 err = apply_relocations(mod, info);
3730 if (err < 0)
3731 goto free_modinfo;
3732
3733 err = post_relocation(mod, info);
3734 if (err < 0)
3735 goto free_modinfo;
3736
3737 flush_module_icache(mod);
3738
3739 /* Now copy in args */
3740 mod->args = strndup_user(uargs, ~0UL >> 1);
3741 if (IS_ERR(mod->args)) {
3742 err = PTR_ERR(mod->args);
3743 goto free_arch_cleanup;
3744 }
3745
3746 dynamic_debug_setup(mod, info->debug, info->num_debug);
3747
3748 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3749 ftrace_module_init(mod);
3750
3751 /* Finally it's fully formed, ready to start executing. */
3752 err = complete_formation(mod, info);
3753 if (err)
3754 goto ddebug_cleanup;
3755
3756 err = prepare_coming_module(mod);
3757 if (err)
3758 goto bug_cleanup;
3759
3760 /* Module is ready to execute: parsing args may do that. */
3761 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3762 -32768, 32767, mod,
3763 unknown_module_param_cb);
3764 if (IS_ERR(after_dashes)) {
3765 err = PTR_ERR(after_dashes);
3766 goto coming_cleanup;
3767 } else if (after_dashes) {
3768 pr_warn("%s: parameters '%s' after `--' ignored\n",
3769 mod->name, after_dashes);
3770 }
3771
3772 /* Link in to sysfs. */
3773 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3774 if (err < 0)
3775 goto coming_cleanup;
3776
3777 if (is_livepatch_module(mod)) {
3778 err = copy_module_elf(mod, info);
3779 if (err < 0)
3780 goto sysfs_cleanup;
3781 }
3782
3783 /* Get rid of temporary copy. */
3784 free_copy(info);
3785
3786 /* Done! */
3787 trace_module_load(mod);
3788
3789 return do_init_module(mod);
3790
3791 sysfs_cleanup:
3792 mod_sysfs_teardown(mod);
3793 coming_cleanup:
3794 mod->state = MODULE_STATE_GOING;
3795 destroy_params(mod->kp, mod->num_kp);
3796 blocking_notifier_call_chain(&module_notify_list,
3797 MODULE_STATE_GOING, mod);
3798 klp_module_going(mod);
3799 bug_cleanup:
3800 /* module_bug_cleanup needs module_mutex protection */
3801 mutex_lock(&module_mutex);
3802 module_bug_cleanup(mod);
3803 mutex_unlock(&module_mutex);
3804
3805 /* we can't deallocate the module until we clear memory protection */
3806 module_disable_ro(mod);
3807 module_disable_nx(mod);
3808
3809 ddebug_cleanup:
3810 dynamic_debug_remove(mod, info->debug);
3811 synchronize_sched();
3812 kfree(mod->args);
3813 free_arch_cleanup:
3814 module_arch_cleanup(mod);
3815 free_modinfo:
3816 free_modinfo(mod);
3817 free_unload:
3818 module_unload_free(mod);
3819 unlink_mod:
3820 mutex_lock(&module_mutex);
3821 /* Unlink carefully: kallsyms could be walking list. */
3822 list_del_rcu(&mod->list);
3823 mod_tree_remove(mod);
3824 wake_up_all(&module_wq);
3825 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3826 synchronize_sched();
3827 mutex_unlock(&module_mutex);
3828 free_module:
3829 /*
3830 * Ftrace needs to clean up what it initialized.
3831 * This does nothing if ftrace_module_init() wasn't called,
3832 * but it must be called outside of module_mutex.
3833 */
3834 ftrace_release_mod(mod);
3835 /* Free lock-classes; relies on the preceding sync_rcu() */
3836 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3837
3838 module_deallocate(mod, info);
3839 free_copy:
3840 free_copy(info);
3841 return err;
3842 }
3843
3844 SYSCALL_DEFINE3(init_module, void __user *, umod,
3845 unsigned long, len, const char __user *, uargs)
3846 {
3847 int err;
3848 struct load_info info = { };
3849
3850 err = may_init_module();
3851 if (err)
3852 return err;
3853
3854 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3855 umod, len, uargs);
3856
3857 err = copy_module_from_user(umod, len, &info);
3858 if (err)
3859 return err;
3860
3861 return load_module(&info, uargs, 0);
3862 }
3863
3864 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3865 {
3866 struct load_info info = { };
3867 loff_t size;
3868 void *hdr;
3869 int err;
3870
3871 err = may_init_module();
3872 if (err)
3873 return err;
3874
3875 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3876
3877 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3878 |MODULE_INIT_IGNORE_VERMAGIC))
3879 return -EINVAL;
3880
3881 err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3882 READING_MODULE);
3883 if (err)
3884 return err;
3885 info.hdr = hdr;
3886 info.len = size;
3887
3888 return load_module(&info, uargs, flags);
3889 }
3890
3891 static inline int within(unsigned long addr, void *start, unsigned long size)
3892 {
3893 return ((void *)addr >= start && (void *)addr < start + size);
3894 }
3895
3896 #ifdef CONFIG_KALLSYMS
3897 /*
3898 * This ignores the intensely annoying "mapping symbols" found
3899 * in ARM ELF files: $a, $t and $d.
3900 */
3901 static inline int is_arm_mapping_symbol(const char *str)
3902 {
3903 if (str[0] == '.' && str[1] == 'L')
3904 return true;
3905 return str[0] == '$' && strchr("axtd", str[1])
3906 && (str[2] == '\0' || str[2] == '.');
3907 }
3908
3909 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3910 {
3911 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3912 }
3913
3914 static const char *get_ksymbol(struct module *mod,
3915 unsigned long addr,
3916 unsigned long *size,
3917 unsigned long *offset)
3918 {
3919 unsigned int i, best = 0;
3920 unsigned long nextval;
3921 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3922
3923 /* At worse, next value is at end of module */
3924 if (within_module_init(addr, mod))
3925 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3926 else
3927 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3928
3929 /* Scan for closest preceding symbol, and next symbol. (ELF
3930 starts real symbols at 1). */
3931 for (i = 1; i < kallsyms->num_symtab; i++) {
3932 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3933 continue;
3934
3935 /* We ignore unnamed symbols: they're uninformative
3936 * and inserted at a whim. */
3937 if (*symname(kallsyms, i) == '\0'
3938 || is_arm_mapping_symbol(symname(kallsyms, i)))
3939 continue;
3940
3941 if (kallsyms->symtab[i].st_value <= addr
3942 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3943 best = i;
3944 if (kallsyms->symtab[i].st_value > addr
3945 && kallsyms->symtab[i].st_value < nextval)
3946 nextval = kallsyms->symtab[i].st_value;
3947 }
3948
3949 if (!best)
3950 return NULL;
3951
3952 if (size)
3953 *size = nextval - kallsyms->symtab[best].st_value;
3954 if (offset)
3955 *offset = addr - kallsyms->symtab[best].st_value;
3956 return symname(kallsyms, best);
3957 }
3958
3959 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3960 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3961 const char *module_address_lookup(unsigned long addr,
3962 unsigned long *size,
3963 unsigned long *offset,
3964 char **modname,
3965 char *namebuf)
3966 {
3967 const char *ret = NULL;
3968 struct module *mod;
3969
3970 preempt_disable();
3971 mod = __module_address(addr);
3972 if (mod) {
3973 if (modname)
3974 *modname = mod->name;
3975 ret = get_ksymbol(mod, addr, size, offset);
3976 }
3977 /* Make a copy in here where it's safe */
3978 if (ret) {
3979 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3980 ret = namebuf;
3981 }
3982 preempt_enable();
3983
3984 return ret;
3985 }
3986
3987 int lookup_module_symbol_name(unsigned long addr, char *symname)
3988 {
3989 struct module *mod;
3990
3991 preempt_disable();
3992 list_for_each_entry_rcu(mod, &modules, list) {
3993 if (mod->state == MODULE_STATE_UNFORMED)
3994 continue;
3995 if (within_module(addr, mod)) {
3996 const char *sym;
3997
3998 sym = get_ksymbol(mod, addr, NULL, NULL);
3999 if (!sym)
4000 goto out;
4001 strlcpy(symname, sym, KSYM_NAME_LEN);
4002 preempt_enable();
4003 return 0;
4004 }
4005 }
4006 out:
4007 preempt_enable();
4008 return -ERANGE;
4009 }
4010
4011 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4012 unsigned long *offset, char *modname, char *name)
4013 {
4014 struct module *mod;
4015
4016 preempt_disable();
4017 list_for_each_entry_rcu(mod, &modules, list) {
4018 if (mod->state == MODULE_STATE_UNFORMED)
4019 continue;
4020 if (within_module(addr, mod)) {
4021 const char *sym;
4022
4023 sym = get_ksymbol(mod, addr, size, offset);
4024 if (!sym)
4025 goto out;
4026 if (modname)
4027 strlcpy(modname, mod->name, MODULE_NAME_LEN);
4028 if (name)
4029 strlcpy(name, sym, KSYM_NAME_LEN);
4030 preempt_enable();
4031 return 0;
4032 }
4033 }
4034 out:
4035 preempt_enable();
4036 return -ERANGE;
4037 }
4038
4039 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4040 char *name, char *module_name, int *exported)
4041 {
4042 struct module *mod;
4043
4044 preempt_disable();
4045 list_for_each_entry_rcu(mod, &modules, list) {
4046 struct mod_kallsyms *kallsyms;
4047
4048 if (mod->state == MODULE_STATE_UNFORMED)
4049 continue;
4050 kallsyms = rcu_dereference_sched(mod->kallsyms);
4051 if (symnum < kallsyms->num_symtab) {
4052 *value = kallsyms->symtab[symnum].st_value;
4053 *type = kallsyms->symtab[symnum].st_info;
4054 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
4055 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4056 *exported = is_exported(name, *value, mod);
4057 preempt_enable();
4058 return 0;
4059 }
4060 symnum -= kallsyms->num_symtab;
4061 }
4062 preempt_enable();
4063 return -ERANGE;
4064 }
4065
4066 static unsigned long mod_find_symname(struct module *mod, const char *name)
4067 {
4068 unsigned int i;
4069 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4070
4071 for (i = 0; i < kallsyms->num_symtab; i++)
4072 if (strcmp(name, symname(kallsyms, i)) == 0 &&
4073 kallsyms->symtab[i].st_info != 'U')
4074 return kallsyms->symtab[i].st_value;
4075 return 0;
4076 }
4077
4078 /* Look for this name: can be of form module:name. */
4079 unsigned long module_kallsyms_lookup_name(const char *name)
4080 {
4081 struct module *mod;
4082 char *colon;
4083 unsigned long ret = 0;
4084
4085 /* Don't lock: we're in enough trouble already. */
4086 preempt_disable();
4087 if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4088 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4089 ret = mod_find_symname(mod, colon+1);
4090 } else {
4091 list_for_each_entry_rcu(mod, &modules, list) {
4092 if (mod->state == MODULE_STATE_UNFORMED)
4093 continue;
4094 if ((ret = mod_find_symname(mod, name)) != 0)
4095 break;
4096 }
4097 }
4098 preempt_enable();
4099 return ret;
4100 }
4101
4102 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4103 struct module *, unsigned long),
4104 void *data)
4105 {
4106 struct module *mod;
4107 unsigned int i;
4108 int ret;
4109
4110 module_assert_mutex();
4111
4112 list_for_each_entry(mod, &modules, list) {
4113 /* We hold module_mutex: no need for rcu_dereference_sched */
4114 struct mod_kallsyms *kallsyms = mod->kallsyms;
4115
4116 if (mod->state == MODULE_STATE_UNFORMED)
4117 continue;
4118 for (i = 0; i < kallsyms->num_symtab; i++) {
4119 ret = fn(data, symname(kallsyms, i),
4120 mod, kallsyms->symtab[i].st_value);
4121 if (ret != 0)
4122 return ret;
4123 }
4124 }
4125 return 0;
4126 }
4127 #endif /* CONFIG_KALLSYMS */
4128
4129 /* Maximum number of characters written by module_flags() */
4130 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4131
4132 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4133 static char *module_flags(struct module *mod, char *buf)
4134 {
4135 int bx = 0;
4136
4137 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4138 if (mod->taints ||
4139 mod->state == MODULE_STATE_GOING ||
4140 mod->state == MODULE_STATE_COMING) {
4141 buf[bx++] = '(';
4142 bx += module_flags_taint(mod, buf + bx);
4143 /* Show a - for module-is-being-unloaded */
4144 if (mod->state == MODULE_STATE_GOING)
4145 buf[bx++] = '-';
4146 /* Show a + for module-is-being-loaded */
4147 if (mod->state == MODULE_STATE_COMING)
4148 buf[bx++] = '+';
4149 buf[bx++] = ')';
4150 }
4151 buf[bx] = '\0';
4152
4153 return buf;
4154 }
4155
4156 #ifdef CONFIG_PROC_FS
4157 /* Called by the /proc file system to return a list of modules. */
4158 static void *m_start(struct seq_file *m, loff_t *pos)
4159 {
4160 mutex_lock(&module_mutex);
4161 return seq_list_start(&modules, *pos);
4162 }
4163
4164 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4165 {
4166 return seq_list_next(p, &modules, pos);
4167 }
4168
4169 static void m_stop(struct seq_file *m, void *p)
4170 {
4171 mutex_unlock(&module_mutex);
4172 }
4173
4174 static int m_show(struct seq_file *m, void *p)
4175 {
4176 struct module *mod = list_entry(p, struct module, list);
4177 char buf[MODULE_FLAGS_BUF_SIZE];
4178 void *value;
4179
4180 /* We always ignore unformed modules. */
4181 if (mod->state == MODULE_STATE_UNFORMED)
4182 return 0;
4183
4184 seq_printf(m, "%s %u",
4185 mod->name, mod->init_layout.size + mod->core_layout.size);
4186 print_unload_info(m, mod);
4187
4188 /* Informative for users. */
4189 seq_printf(m, " %s",
4190 mod->state == MODULE_STATE_GOING ? "Unloading" :
4191 mod->state == MODULE_STATE_COMING ? "Loading" :
4192 "Live");
4193 /* Used by oprofile and other similar tools. */
4194 value = m->private ? NULL : mod->core_layout.base;
4195 seq_printf(m, " 0x%px", value);
4196
4197 /* Taints info */
4198 if (mod->taints)
4199 seq_printf(m, " %s", module_flags(mod, buf));
4200
4201 seq_puts(m, "\n");
4202 return 0;
4203 }
4204
4205 /* Format: modulename size refcount deps address
4206
4207 Where refcount is a number or -, and deps is a comma-separated list
4208 of depends or -.
4209 */
4210 static const struct seq_operations modules_op = {
4211 .start = m_start,
4212 .next = m_next,
4213 .stop = m_stop,
4214 .show = m_show
4215 };
4216
4217 /*
4218 * This also sets the "private" pointer to non-NULL if the
4219 * kernel pointers should be hidden (so you can just test
4220 * "m->private" to see if you should keep the values private).
4221 *
4222 * We use the same logic as for /proc/kallsyms.
4223 */
4224 static int modules_open(struct inode *inode, struct file *file)
4225 {
4226 int err = seq_open(file, &modules_op);
4227
4228 if (!err) {
4229 struct seq_file *m = file->private_data;
4230 m->private = kallsyms_show_value() ? NULL : (void *)8ul;
4231 }
4232
4233 return err;
4234 }
4235
4236 static const struct file_operations proc_modules_operations = {
4237 .open = modules_open,
4238 .read = seq_read,
4239 .llseek = seq_lseek,
4240 .release = seq_release,
4241 };
4242
4243 static int __init proc_modules_init(void)
4244 {
4245 proc_create("modules", 0, NULL, &proc_modules_operations);
4246 return 0;
4247 }
4248 module_init(proc_modules_init);
4249 #endif
4250
4251 /* Given an address, look for it in the module exception tables. */
4252 const struct exception_table_entry *search_module_extables(unsigned long addr)
4253 {
4254 const struct exception_table_entry *e = NULL;
4255 struct module *mod;
4256
4257 preempt_disable();
4258 mod = __module_address(addr);
4259 if (!mod)
4260 goto out;
4261
4262 if (!mod->num_exentries)
4263 goto out;
4264
4265 e = search_extable(mod->extable,
4266 mod->num_exentries,
4267 addr);
4268 out:
4269 preempt_enable();
4270
4271 /*
4272 * Now, if we found one, we are running inside it now, hence
4273 * we cannot unload the module, hence no refcnt needed.
4274 */
4275 return e;
4276 }
4277
4278 /*
4279 * is_module_address - is this address inside a module?
4280 * @addr: the address to check.
4281 *
4282 * See is_module_text_address() if you simply want to see if the address
4283 * is code (not data).
4284 */
4285 bool is_module_address(unsigned long addr)
4286 {
4287 bool ret;
4288
4289 preempt_disable();
4290 ret = __module_address(addr) != NULL;
4291 preempt_enable();
4292
4293 return ret;
4294 }
4295
4296 /*
4297 * __module_address - get the module which contains an address.
4298 * @addr: the address.
4299 *
4300 * Must be called with preempt disabled or module mutex held so that
4301 * module doesn't get freed during this.
4302 */
4303 struct module *__module_address(unsigned long addr)
4304 {
4305 struct module *mod;
4306
4307 if (addr < module_addr_min || addr > module_addr_max)
4308 return NULL;
4309
4310 module_assert_mutex_or_preempt();
4311
4312 mod = mod_find(addr);
4313 if (mod) {
4314 BUG_ON(!within_module(addr, mod));
4315 if (mod->state == MODULE_STATE_UNFORMED)
4316 mod = NULL;
4317 }
4318 return mod;
4319 }
4320 EXPORT_SYMBOL_GPL(__module_address);
4321
4322 /*
4323 * is_module_text_address - is this address inside module code?
4324 * @addr: the address to check.
4325 *
4326 * See is_module_address() if you simply want to see if the address is
4327 * anywhere in a module. See kernel_text_address() for testing if an
4328 * address corresponds to kernel or module code.
4329 */
4330 bool is_module_text_address(unsigned long addr)
4331 {
4332 bool ret;
4333
4334 preempt_disable();
4335 ret = __module_text_address(addr) != NULL;
4336 preempt_enable();
4337
4338 return ret;
4339 }
4340
4341 /*
4342 * __module_text_address - get the module whose code contains an address.
4343 * @addr: the address.
4344 *
4345 * Must be called with preempt disabled or module mutex held so that
4346 * module doesn't get freed during this.
4347 */
4348 struct module *__module_text_address(unsigned long addr)
4349 {
4350 struct module *mod = __module_address(addr);
4351 if (mod) {
4352 /* Make sure it's within the text section. */
4353 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4354 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4355 mod = NULL;
4356 }
4357 return mod;
4358 }
4359 EXPORT_SYMBOL_GPL(__module_text_address);
4360
4361 /* Don't grab lock, we're oopsing. */
4362 void print_modules(void)
4363 {
4364 struct module *mod;
4365 char buf[MODULE_FLAGS_BUF_SIZE];
4366
4367 printk(KERN_DEFAULT "Modules linked in:");
4368 /* Most callers should already have preempt disabled, but make sure */
4369 preempt_disable();
4370 list_for_each_entry_rcu(mod, &modules, list) {
4371 if (mod->state == MODULE_STATE_UNFORMED)
4372 continue;
4373 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4374 }
4375 preempt_enable();
4376 if (last_unloaded_module[0])
4377 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4378 pr_cont("\n");
4379 }
4380
4381 #ifdef CONFIG_MODVERSIONS
4382 /* Generate the signature for all relevant module structures here.
4383 * If these change, we don't want to try to parse the module. */
4384 void module_layout(struct module *mod,
4385 struct modversion_info *ver,
4386 struct kernel_param *kp,
4387 struct kernel_symbol *ks,
4388 struct tracepoint * const *tp)
4389 {
4390 }
4391 EXPORT_SYMBOL(module_layout);
4392 #endif