]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/fair.c
sched/fair: Add tmp_alone_branch assertion
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23
24 #include <linux/sched/mm.h>
25 #include <linux/sched/topology.h>
26
27 #include <linux/latencytop.h>
28 #include <linux/cpumask.h>
29 #include <linux/cpuidle.h>
30 #include <linux/slab.h>
31 #include <linux/profile.h>
32 #include <linux/interrupt.h>
33 #include <linux/mempolicy.h>
34 #include <linux/migrate.h>
35 #include <linux/task_work.h>
36 #include <linux/sched/isolation.h>
37
38 #include <trace/events/sched.h>
39
40 #include "sched.h"
41
42 /*
43 * Targeted preemption latency for CPU-bound tasks:
44 *
45 * NOTE: this latency value is not the same as the concept of
46 * 'timeslice length' - timeslices in CFS are of variable length
47 * and have no persistent notion like in traditional, time-slice
48 * based scheduling concepts.
49 *
50 * (to see the precise effective timeslice length of your workload,
51 * run vmstat and monitor the context-switches (cs) field)
52 *
53 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
54 */
55 unsigned int sysctl_sched_latency = 6000000ULL;
56 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
57
58 /*
59 * The initial- and re-scaling of tunables is configurable
60 *
61 * Options are:
62 *
63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
64 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66 *
67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68 */
69 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70
71 /*
72 * Minimal preemption granularity for CPU-bound tasks:
73 *
74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75 */
76 unsigned int sysctl_sched_min_granularity = 750000ULL;
77 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
78
79 /*
80 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
81 */
82 static unsigned int sched_nr_latency = 8;
83
84 /*
85 * After fork, child runs first. If set to 0 (default) then
86 * parent will (try to) run first.
87 */
88 unsigned int sysctl_sched_child_runs_first __read_mostly;
89
90 /*
91 * SCHED_OTHER wake-up granularity.
92 *
93 * This option delays the preemption effects of decoupled workloads
94 * and reduces their over-scheduling. Synchronous workloads will still
95 * have immediate wakeup/sleep latencies.
96 *
97 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
98 */
99 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
100 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
101
102 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
103
104 #ifdef CONFIG_SMP
105 /*
106 * For asym packing, by default the lower numbered cpu has higher priority.
107 */
108 int __weak arch_asym_cpu_priority(int cpu)
109 {
110 return -cpu;
111 }
112 #endif
113
114 #ifdef CONFIG_CFS_BANDWIDTH
115 /*
116 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
117 * each time a cfs_rq requests quota.
118 *
119 * Note: in the case that the slice exceeds the runtime remaining (either due
120 * to consumption or the quota being specified to be smaller than the slice)
121 * we will always only issue the remaining available time.
122 *
123 * (default: 5 msec, units: microseconds)
124 */
125 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
126 #endif
127
128 /*
129 * The margin used when comparing utilization with CPU capacity:
130 * util * margin < capacity * 1024
131 *
132 * (default: ~20%)
133 */
134 unsigned int capacity_margin = 1280;
135
136 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
137 {
138 lw->weight += inc;
139 lw->inv_weight = 0;
140 }
141
142 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
143 {
144 lw->weight -= dec;
145 lw->inv_weight = 0;
146 }
147
148 static inline void update_load_set(struct load_weight *lw, unsigned long w)
149 {
150 lw->weight = w;
151 lw->inv_weight = 0;
152 }
153
154 /*
155 * Increase the granularity value when there are more CPUs,
156 * because with more CPUs the 'effective latency' as visible
157 * to users decreases. But the relationship is not linear,
158 * so pick a second-best guess by going with the log2 of the
159 * number of CPUs.
160 *
161 * This idea comes from the SD scheduler of Con Kolivas:
162 */
163 static unsigned int get_update_sysctl_factor(void)
164 {
165 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
166 unsigned int factor;
167
168 switch (sysctl_sched_tunable_scaling) {
169 case SCHED_TUNABLESCALING_NONE:
170 factor = 1;
171 break;
172 case SCHED_TUNABLESCALING_LINEAR:
173 factor = cpus;
174 break;
175 case SCHED_TUNABLESCALING_LOG:
176 default:
177 factor = 1 + ilog2(cpus);
178 break;
179 }
180
181 return factor;
182 }
183
184 static void update_sysctl(void)
185 {
186 unsigned int factor = get_update_sysctl_factor();
187
188 #define SET_SYSCTL(name) \
189 (sysctl_##name = (factor) * normalized_sysctl_##name)
190 SET_SYSCTL(sched_min_granularity);
191 SET_SYSCTL(sched_latency);
192 SET_SYSCTL(sched_wakeup_granularity);
193 #undef SET_SYSCTL
194 }
195
196 void sched_init_granularity(void)
197 {
198 update_sysctl();
199 }
200
201 #define WMULT_CONST (~0U)
202 #define WMULT_SHIFT 32
203
204 static void __update_inv_weight(struct load_weight *lw)
205 {
206 unsigned long w;
207
208 if (likely(lw->inv_weight))
209 return;
210
211 w = scale_load_down(lw->weight);
212
213 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
214 lw->inv_weight = 1;
215 else if (unlikely(!w))
216 lw->inv_weight = WMULT_CONST;
217 else
218 lw->inv_weight = WMULT_CONST / w;
219 }
220
221 /*
222 * delta_exec * weight / lw.weight
223 * OR
224 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
225 *
226 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
227 * we're guaranteed shift stays positive because inv_weight is guaranteed to
228 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
229 *
230 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
231 * weight/lw.weight <= 1, and therefore our shift will also be positive.
232 */
233 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
234 {
235 u64 fact = scale_load_down(weight);
236 int shift = WMULT_SHIFT;
237
238 __update_inv_weight(lw);
239
240 if (unlikely(fact >> 32)) {
241 while (fact >> 32) {
242 fact >>= 1;
243 shift--;
244 }
245 }
246
247 /* hint to use a 32x32->64 mul */
248 fact = (u64)(u32)fact * lw->inv_weight;
249
250 while (fact >> 32) {
251 fact >>= 1;
252 shift--;
253 }
254
255 return mul_u64_u32_shr(delta_exec, fact, shift);
256 }
257
258
259 const struct sched_class fair_sched_class;
260
261 /**************************************************************
262 * CFS operations on generic schedulable entities:
263 */
264
265 #ifdef CONFIG_FAIR_GROUP_SCHED
266
267 /* cpu runqueue to which this cfs_rq is attached */
268 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
269 {
270 return cfs_rq->rq;
271 }
272
273 /* An entity is a task if it doesn't "own" a runqueue */
274 #define entity_is_task(se) (!se->my_q)
275
276 static inline struct task_struct *task_of(struct sched_entity *se)
277 {
278 SCHED_WARN_ON(!entity_is_task(se));
279 return container_of(se, struct task_struct, se);
280 }
281
282 /* Walk up scheduling entities hierarchy */
283 #define for_each_sched_entity(se) \
284 for (; se; se = se->parent)
285
286 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
287 {
288 return p->se.cfs_rq;
289 }
290
291 /* runqueue on which this entity is (to be) queued */
292 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
293 {
294 return se->cfs_rq;
295 }
296
297 /* runqueue "owned" by this group */
298 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
299 {
300 return grp->my_q;
301 }
302
303 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
304 {
305 struct rq *rq = rq_of(cfs_rq);
306 int cpu = cpu_of(rq);
307
308 if (cfs_rq->on_list)
309 return;
310
311 cfs_rq->on_list = 1;
312
313 /*
314 * Ensure we either appear before our parent (if already
315 * enqueued) or force our parent to appear after us when it is
316 * enqueued. The fact that we always enqueue bottom-up
317 * reduces this to two cases and a special case for the root
318 * cfs_rq. Furthermore, it also means that we will always reset
319 * tmp_alone_branch either when the branch is connected
320 * to a tree or when we reach the top of the tree
321 */
322 if (cfs_rq->tg->parent &&
323 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
324 /*
325 * If parent is already on the list, we add the child
326 * just before. Thanks to circular linked property of
327 * the list, this means to put the child at the tail
328 * of the list that starts by parent.
329 */
330 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
331 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
332 /*
333 * The branch is now connected to its tree so we can
334 * reset tmp_alone_branch to the beginning of the
335 * list.
336 */
337 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
338 return;
339 }
340
341 if (!cfs_rq->tg->parent) {
342 /*
343 * cfs rq without parent should be put
344 * at the tail of the list.
345 */
346 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
347 &rq->leaf_cfs_rq_list);
348 /*
349 * We have reach the top of a tree so we can reset
350 * tmp_alone_branch to the beginning of the list.
351 */
352 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
353 return;
354 }
355
356 /*
357 * The parent has not already been added so we want to
358 * make sure that it will be put after us.
359 * tmp_alone_branch points to the begin of the branch
360 * where we will add parent.
361 */
362 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
363 /*
364 * update tmp_alone_branch to points to the new begin
365 * of the branch
366 */
367 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
368 }
369
370 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
371 {
372 if (cfs_rq->on_list) {
373 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
374 cfs_rq->on_list = 0;
375 }
376 }
377
378 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
379 {
380 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
381 }
382
383 /* Iterate through all cfs_rq's on a runqueue in bottom-up order */
384 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
385 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
386
387 /* Do the two (enqueued) entities belong to the same group ? */
388 static inline struct cfs_rq *
389 is_same_group(struct sched_entity *se, struct sched_entity *pse)
390 {
391 if (se->cfs_rq == pse->cfs_rq)
392 return se->cfs_rq;
393
394 return NULL;
395 }
396
397 static inline struct sched_entity *parent_entity(struct sched_entity *se)
398 {
399 return se->parent;
400 }
401
402 static void
403 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
404 {
405 int se_depth, pse_depth;
406
407 /*
408 * preemption test can be made between sibling entities who are in the
409 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
410 * both tasks until we find their ancestors who are siblings of common
411 * parent.
412 */
413
414 /* First walk up until both entities are at same depth */
415 se_depth = (*se)->depth;
416 pse_depth = (*pse)->depth;
417
418 while (se_depth > pse_depth) {
419 se_depth--;
420 *se = parent_entity(*se);
421 }
422
423 while (pse_depth > se_depth) {
424 pse_depth--;
425 *pse = parent_entity(*pse);
426 }
427
428 while (!is_same_group(*se, *pse)) {
429 *se = parent_entity(*se);
430 *pse = parent_entity(*pse);
431 }
432 }
433
434 #else /* !CONFIG_FAIR_GROUP_SCHED */
435
436 static inline struct task_struct *task_of(struct sched_entity *se)
437 {
438 return container_of(se, struct task_struct, se);
439 }
440
441 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
442 {
443 return container_of(cfs_rq, struct rq, cfs);
444 }
445
446 #define entity_is_task(se) 1
447
448 #define for_each_sched_entity(se) \
449 for (; se; se = NULL)
450
451 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
452 {
453 return &task_rq(p)->cfs;
454 }
455
456 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
457 {
458 struct task_struct *p = task_of(se);
459 struct rq *rq = task_rq(p);
460
461 return &rq->cfs;
462 }
463
464 /* runqueue "owned" by this group */
465 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
466 {
467 return NULL;
468 }
469
470 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
471 {
472 }
473
474 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
475 {
476 }
477
478 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
479 {
480 }
481
482 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
483 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
484
485 static inline struct sched_entity *parent_entity(struct sched_entity *se)
486 {
487 return NULL;
488 }
489
490 static inline void
491 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
492 {
493 }
494
495 #endif /* CONFIG_FAIR_GROUP_SCHED */
496
497 static __always_inline
498 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
499
500 /**************************************************************
501 * Scheduling class tree data structure manipulation methods:
502 */
503
504 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
505 {
506 s64 delta = (s64)(vruntime - max_vruntime);
507 if (delta > 0)
508 max_vruntime = vruntime;
509
510 return max_vruntime;
511 }
512
513 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
514 {
515 s64 delta = (s64)(vruntime - min_vruntime);
516 if (delta < 0)
517 min_vruntime = vruntime;
518
519 return min_vruntime;
520 }
521
522 static inline int entity_before(struct sched_entity *a,
523 struct sched_entity *b)
524 {
525 return (s64)(a->vruntime - b->vruntime) < 0;
526 }
527
528 static void update_min_vruntime(struct cfs_rq *cfs_rq)
529 {
530 struct sched_entity *curr = cfs_rq->curr;
531 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
532
533 u64 vruntime = cfs_rq->min_vruntime;
534
535 if (curr) {
536 if (curr->on_rq)
537 vruntime = curr->vruntime;
538 else
539 curr = NULL;
540 }
541
542 if (leftmost) { /* non-empty tree */
543 struct sched_entity *se;
544 se = rb_entry(leftmost, struct sched_entity, run_node);
545
546 if (!curr)
547 vruntime = se->vruntime;
548 else
549 vruntime = min_vruntime(vruntime, se->vruntime);
550 }
551
552 /* ensure we never gain time by being placed backwards. */
553 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
554 #ifndef CONFIG_64BIT
555 smp_wmb();
556 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
557 #endif
558 }
559
560 /*
561 * Enqueue an entity into the rb-tree:
562 */
563 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
564 {
565 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
566 struct rb_node *parent = NULL;
567 struct sched_entity *entry;
568 bool leftmost = true;
569
570 /*
571 * Find the right place in the rbtree:
572 */
573 while (*link) {
574 parent = *link;
575 entry = rb_entry(parent, struct sched_entity, run_node);
576 /*
577 * We dont care about collisions. Nodes with
578 * the same key stay together.
579 */
580 if (entity_before(se, entry)) {
581 link = &parent->rb_left;
582 } else {
583 link = &parent->rb_right;
584 leftmost = false;
585 }
586 }
587
588 rb_link_node(&se->run_node, parent, link);
589 rb_insert_color_cached(&se->run_node,
590 &cfs_rq->tasks_timeline, leftmost);
591 }
592
593 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
594 {
595 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
596 }
597
598 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
599 {
600 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
601
602 if (!left)
603 return NULL;
604
605 return rb_entry(left, struct sched_entity, run_node);
606 }
607
608 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
609 {
610 struct rb_node *next = rb_next(&se->run_node);
611
612 if (!next)
613 return NULL;
614
615 return rb_entry(next, struct sched_entity, run_node);
616 }
617
618 #ifdef CONFIG_SCHED_DEBUG
619 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
620 {
621 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
622
623 if (!last)
624 return NULL;
625
626 return rb_entry(last, struct sched_entity, run_node);
627 }
628
629 /**************************************************************
630 * Scheduling class statistics methods:
631 */
632
633 int sched_proc_update_handler(struct ctl_table *table, int write,
634 void __user *buffer, size_t *lenp,
635 loff_t *ppos)
636 {
637 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
638 unsigned int factor = get_update_sysctl_factor();
639
640 if (ret || !write)
641 return ret;
642
643 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
644 sysctl_sched_min_granularity);
645
646 #define WRT_SYSCTL(name) \
647 (normalized_sysctl_##name = sysctl_##name / (factor))
648 WRT_SYSCTL(sched_min_granularity);
649 WRT_SYSCTL(sched_latency);
650 WRT_SYSCTL(sched_wakeup_granularity);
651 #undef WRT_SYSCTL
652
653 return 0;
654 }
655 #endif
656
657 /*
658 * delta /= w
659 */
660 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
661 {
662 if (unlikely(se->load.weight != NICE_0_LOAD))
663 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
664
665 return delta;
666 }
667
668 /*
669 * The idea is to set a period in which each task runs once.
670 *
671 * When there are too many tasks (sched_nr_latency) we have to stretch
672 * this period because otherwise the slices get too small.
673 *
674 * p = (nr <= nl) ? l : l*nr/nl
675 */
676 static u64 __sched_period(unsigned long nr_running)
677 {
678 if (unlikely(nr_running > sched_nr_latency))
679 return nr_running * sysctl_sched_min_granularity;
680 else
681 return sysctl_sched_latency;
682 }
683
684 /*
685 * We calculate the wall-time slice from the period by taking a part
686 * proportional to the weight.
687 *
688 * s = p*P[w/rw]
689 */
690 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
691 {
692 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
693
694 for_each_sched_entity(se) {
695 struct load_weight *load;
696 struct load_weight lw;
697
698 cfs_rq = cfs_rq_of(se);
699 load = &cfs_rq->load;
700
701 if (unlikely(!se->on_rq)) {
702 lw = cfs_rq->load;
703
704 update_load_add(&lw, se->load.weight);
705 load = &lw;
706 }
707 slice = __calc_delta(slice, se->load.weight, load);
708 }
709 return slice;
710 }
711
712 /*
713 * We calculate the vruntime slice of a to-be-inserted task.
714 *
715 * vs = s/w
716 */
717 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
718 {
719 return calc_delta_fair(sched_slice(cfs_rq, se), se);
720 }
721
722 #ifdef CONFIG_SMP
723
724 #include "sched-pelt.h"
725
726 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
727 static unsigned long task_h_load(struct task_struct *p);
728
729 /* Give new sched_entity start runnable values to heavy its load in infant time */
730 void init_entity_runnable_average(struct sched_entity *se)
731 {
732 struct sched_avg *sa = &se->avg;
733
734 memset(sa, 0, sizeof(*sa));
735
736 /*
737 * Tasks are intialized with full load to be seen as heavy tasks until
738 * they get a chance to stabilize to their real load level.
739 * Group entities are intialized with zero load to reflect the fact that
740 * nothing has been attached to the task group yet.
741 */
742 if (entity_is_task(se))
743 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
744
745 se->runnable_weight = se->load.weight;
746
747 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
748 }
749
750 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
751 static void attach_entity_cfs_rq(struct sched_entity *se);
752
753 /*
754 * With new tasks being created, their initial util_avgs are extrapolated
755 * based on the cfs_rq's current util_avg:
756 *
757 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
758 *
759 * However, in many cases, the above util_avg does not give a desired
760 * value. Moreover, the sum of the util_avgs may be divergent, such
761 * as when the series is a harmonic series.
762 *
763 * To solve this problem, we also cap the util_avg of successive tasks to
764 * only 1/2 of the left utilization budget:
765 *
766 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
767 *
768 * where n denotes the nth task and cpu_scale the CPU capacity.
769 *
770 * For example, for a CPU with 1024 of capacity, a simplest series from
771 * the beginning would be like:
772 *
773 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
774 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
775 *
776 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
777 * if util_avg > util_avg_cap.
778 */
779 void post_init_entity_util_avg(struct sched_entity *se)
780 {
781 struct cfs_rq *cfs_rq = cfs_rq_of(se);
782 struct sched_avg *sa = &se->avg;
783 long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
784 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
785
786 if (cap > 0) {
787 if (cfs_rq->avg.util_avg != 0) {
788 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
789 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
790
791 if (sa->util_avg > cap)
792 sa->util_avg = cap;
793 } else {
794 sa->util_avg = cap;
795 }
796 }
797
798 if (entity_is_task(se)) {
799 struct task_struct *p = task_of(se);
800 if (p->sched_class != &fair_sched_class) {
801 /*
802 * For !fair tasks do:
803 *
804 update_cfs_rq_load_avg(now, cfs_rq);
805 attach_entity_load_avg(cfs_rq, se);
806 switched_from_fair(rq, p);
807 *
808 * such that the next switched_to_fair() has the
809 * expected state.
810 */
811 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
812 return;
813 }
814 }
815
816 attach_entity_cfs_rq(se);
817 }
818
819 #else /* !CONFIG_SMP */
820 void init_entity_runnable_average(struct sched_entity *se)
821 {
822 }
823 void post_init_entity_util_avg(struct sched_entity *se)
824 {
825 }
826 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
827 {
828 }
829 #endif /* CONFIG_SMP */
830
831 /*
832 * Update the current task's runtime statistics.
833 */
834 static void update_curr(struct cfs_rq *cfs_rq)
835 {
836 struct sched_entity *curr = cfs_rq->curr;
837 u64 now = rq_clock_task(rq_of(cfs_rq));
838 u64 delta_exec;
839
840 if (unlikely(!curr))
841 return;
842
843 delta_exec = now - curr->exec_start;
844 if (unlikely((s64)delta_exec <= 0))
845 return;
846
847 curr->exec_start = now;
848
849 schedstat_set(curr->statistics.exec_max,
850 max(delta_exec, curr->statistics.exec_max));
851
852 curr->sum_exec_runtime += delta_exec;
853 schedstat_add(cfs_rq->exec_clock, delta_exec);
854
855 curr->vruntime += calc_delta_fair(delta_exec, curr);
856 update_min_vruntime(cfs_rq);
857
858 if (entity_is_task(curr)) {
859 struct task_struct *curtask = task_of(curr);
860
861 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
862 cgroup_account_cputime(curtask, delta_exec);
863 account_group_exec_runtime(curtask, delta_exec);
864 }
865
866 account_cfs_rq_runtime(cfs_rq, delta_exec);
867 }
868
869 static void update_curr_fair(struct rq *rq)
870 {
871 update_curr(cfs_rq_of(&rq->curr->se));
872 }
873
874 static inline void
875 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
876 {
877 u64 wait_start, prev_wait_start;
878
879 if (!schedstat_enabled())
880 return;
881
882 wait_start = rq_clock(rq_of(cfs_rq));
883 prev_wait_start = schedstat_val(se->statistics.wait_start);
884
885 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
886 likely(wait_start > prev_wait_start))
887 wait_start -= prev_wait_start;
888
889 schedstat_set(se->statistics.wait_start, wait_start);
890 }
891
892 static inline void
893 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
894 {
895 struct task_struct *p;
896 u64 delta;
897
898 if (!schedstat_enabled())
899 return;
900
901 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
902
903 if (entity_is_task(se)) {
904 p = task_of(se);
905 if (task_on_rq_migrating(p)) {
906 /*
907 * Preserve migrating task's wait time so wait_start
908 * time stamp can be adjusted to accumulate wait time
909 * prior to migration.
910 */
911 schedstat_set(se->statistics.wait_start, delta);
912 return;
913 }
914 trace_sched_stat_wait(p, delta);
915 }
916
917 schedstat_set(se->statistics.wait_max,
918 max(schedstat_val(se->statistics.wait_max), delta));
919 schedstat_inc(se->statistics.wait_count);
920 schedstat_add(se->statistics.wait_sum, delta);
921 schedstat_set(se->statistics.wait_start, 0);
922 }
923
924 static inline void
925 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
926 {
927 struct task_struct *tsk = NULL;
928 u64 sleep_start, block_start;
929
930 if (!schedstat_enabled())
931 return;
932
933 sleep_start = schedstat_val(se->statistics.sleep_start);
934 block_start = schedstat_val(se->statistics.block_start);
935
936 if (entity_is_task(se))
937 tsk = task_of(se);
938
939 if (sleep_start) {
940 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
941
942 if ((s64)delta < 0)
943 delta = 0;
944
945 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
946 schedstat_set(se->statistics.sleep_max, delta);
947
948 schedstat_set(se->statistics.sleep_start, 0);
949 schedstat_add(se->statistics.sum_sleep_runtime, delta);
950
951 if (tsk) {
952 account_scheduler_latency(tsk, delta >> 10, 1);
953 trace_sched_stat_sleep(tsk, delta);
954 }
955 }
956 if (block_start) {
957 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
958
959 if ((s64)delta < 0)
960 delta = 0;
961
962 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
963 schedstat_set(se->statistics.block_max, delta);
964
965 schedstat_set(se->statistics.block_start, 0);
966 schedstat_add(se->statistics.sum_sleep_runtime, delta);
967
968 if (tsk) {
969 if (tsk->in_iowait) {
970 schedstat_add(se->statistics.iowait_sum, delta);
971 schedstat_inc(se->statistics.iowait_count);
972 trace_sched_stat_iowait(tsk, delta);
973 }
974
975 trace_sched_stat_blocked(tsk, delta);
976
977 /*
978 * Blocking time is in units of nanosecs, so shift by
979 * 20 to get a milliseconds-range estimation of the
980 * amount of time that the task spent sleeping:
981 */
982 if (unlikely(prof_on == SLEEP_PROFILING)) {
983 profile_hits(SLEEP_PROFILING,
984 (void *)get_wchan(tsk),
985 delta >> 20);
986 }
987 account_scheduler_latency(tsk, delta >> 10, 0);
988 }
989 }
990 }
991
992 /*
993 * Task is being enqueued - update stats:
994 */
995 static inline void
996 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
997 {
998 if (!schedstat_enabled())
999 return;
1000
1001 /*
1002 * Are we enqueueing a waiting task? (for current tasks
1003 * a dequeue/enqueue event is a NOP)
1004 */
1005 if (se != cfs_rq->curr)
1006 update_stats_wait_start(cfs_rq, se);
1007
1008 if (flags & ENQUEUE_WAKEUP)
1009 update_stats_enqueue_sleeper(cfs_rq, se);
1010 }
1011
1012 static inline void
1013 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1014 {
1015
1016 if (!schedstat_enabled())
1017 return;
1018
1019 /*
1020 * Mark the end of the wait period if dequeueing a
1021 * waiting task:
1022 */
1023 if (se != cfs_rq->curr)
1024 update_stats_wait_end(cfs_rq, se);
1025
1026 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1027 struct task_struct *tsk = task_of(se);
1028
1029 if (tsk->state & TASK_INTERRUPTIBLE)
1030 schedstat_set(se->statistics.sleep_start,
1031 rq_clock(rq_of(cfs_rq)));
1032 if (tsk->state & TASK_UNINTERRUPTIBLE)
1033 schedstat_set(se->statistics.block_start,
1034 rq_clock(rq_of(cfs_rq)));
1035 }
1036 }
1037
1038 /*
1039 * We are picking a new current task - update its stats:
1040 */
1041 static inline void
1042 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1043 {
1044 /*
1045 * We are starting a new run period:
1046 */
1047 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1048 }
1049
1050 /**************************************************
1051 * Scheduling class queueing methods:
1052 */
1053
1054 #ifdef CONFIG_NUMA_BALANCING
1055 /*
1056 * Approximate time to scan a full NUMA task in ms. The task scan period is
1057 * calculated based on the tasks virtual memory size and
1058 * numa_balancing_scan_size.
1059 */
1060 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1061 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1062
1063 /* Portion of address space to scan in MB */
1064 unsigned int sysctl_numa_balancing_scan_size = 256;
1065
1066 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1067 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1068
1069 struct numa_group {
1070 atomic_t refcount;
1071
1072 spinlock_t lock; /* nr_tasks, tasks */
1073 int nr_tasks;
1074 pid_t gid;
1075 int active_nodes;
1076
1077 struct rcu_head rcu;
1078 unsigned long total_faults;
1079 unsigned long max_faults_cpu;
1080 /*
1081 * Faults_cpu is used to decide whether memory should move
1082 * towards the CPU. As a consequence, these stats are weighted
1083 * more by CPU use than by memory faults.
1084 */
1085 unsigned long *faults_cpu;
1086 unsigned long faults[0];
1087 };
1088
1089 static inline unsigned long group_faults_priv(struct numa_group *ng);
1090 static inline unsigned long group_faults_shared(struct numa_group *ng);
1091
1092 static unsigned int task_nr_scan_windows(struct task_struct *p)
1093 {
1094 unsigned long rss = 0;
1095 unsigned long nr_scan_pages;
1096
1097 /*
1098 * Calculations based on RSS as non-present and empty pages are skipped
1099 * by the PTE scanner and NUMA hinting faults should be trapped based
1100 * on resident pages
1101 */
1102 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1103 rss = get_mm_rss(p->mm);
1104 if (!rss)
1105 rss = nr_scan_pages;
1106
1107 rss = round_up(rss, nr_scan_pages);
1108 return rss / nr_scan_pages;
1109 }
1110
1111 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1112 #define MAX_SCAN_WINDOW 2560
1113
1114 static unsigned int task_scan_min(struct task_struct *p)
1115 {
1116 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1117 unsigned int scan, floor;
1118 unsigned int windows = 1;
1119
1120 if (scan_size < MAX_SCAN_WINDOW)
1121 windows = MAX_SCAN_WINDOW / scan_size;
1122 floor = 1000 / windows;
1123
1124 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1125 return max_t(unsigned int, floor, scan);
1126 }
1127
1128 static unsigned int task_scan_start(struct task_struct *p)
1129 {
1130 unsigned long smin = task_scan_min(p);
1131 unsigned long period = smin;
1132
1133 /* Scale the maximum scan period with the amount of shared memory. */
1134 if (p->numa_group) {
1135 struct numa_group *ng = p->numa_group;
1136 unsigned long shared = group_faults_shared(ng);
1137 unsigned long private = group_faults_priv(ng);
1138
1139 period *= atomic_read(&ng->refcount);
1140 period *= shared + 1;
1141 period /= private + shared + 1;
1142 }
1143
1144 return max(smin, period);
1145 }
1146
1147 static unsigned int task_scan_max(struct task_struct *p)
1148 {
1149 unsigned long smin = task_scan_min(p);
1150 unsigned long smax;
1151
1152 /* Watch for min being lower than max due to floor calculations */
1153 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1154
1155 /* Scale the maximum scan period with the amount of shared memory. */
1156 if (p->numa_group) {
1157 struct numa_group *ng = p->numa_group;
1158 unsigned long shared = group_faults_shared(ng);
1159 unsigned long private = group_faults_priv(ng);
1160 unsigned long period = smax;
1161
1162 period *= atomic_read(&ng->refcount);
1163 period *= shared + 1;
1164 period /= private + shared + 1;
1165
1166 smax = max(smax, period);
1167 }
1168
1169 return max(smin, smax);
1170 }
1171
1172 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1173 {
1174 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1175 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1176 }
1177
1178 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1179 {
1180 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1181 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1182 }
1183
1184 /* Shared or private faults. */
1185 #define NR_NUMA_HINT_FAULT_TYPES 2
1186
1187 /* Memory and CPU locality */
1188 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1189
1190 /* Averaged statistics, and temporary buffers. */
1191 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1192
1193 pid_t task_numa_group_id(struct task_struct *p)
1194 {
1195 return p->numa_group ? p->numa_group->gid : 0;
1196 }
1197
1198 /*
1199 * The averaged statistics, shared & private, memory & cpu,
1200 * occupy the first half of the array. The second half of the
1201 * array is for current counters, which are averaged into the
1202 * first set by task_numa_placement.
1203 */
1204 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1205 {
1206 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1207 }
1208
1209 static inline unsigned long task_faults(struct task_struct *p, int nid)
1210 {
1211 if (!p->numa_faults)
1212 return 0;
1213
1214 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1215 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1216 }
1217
1218 static inline unsigned long group_faults(struct task_struct *p, int nid)
1219 {
1220 if (!p->numa_group)
1221 return 0;
1222
1223 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1224 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1225 }
1226
1227 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1228 {
1229 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1230 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1231 }
1232
1233 static inline unsigned long group_faults_priv(struct numa_group *ng)
1234 {
1235 unsigned long faults = 0;
1236 int node;
1237
1238 for_each_online_node(node) {
1239 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1240 }
1241
1242 return faults;
1243 }
1244
1245 static inline unsigned long group_faults_shared(struct numa_group *ng)
1246 {
1247 unsigned long faults = 0;
1248 int node;
1249
1250 for_each_online_node(node) {
1251 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1252 }
1253
1254 return faults;
1255 }
1256
1257 /*
1258 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1259 * considered part of a numa group's pseudo-interleaving set. Migrations
1260 * between these nodes are slowed down, to allow things to settle down.
1261 */
1262 #define ACTIVE_NODE_FRACTION 3
1263
1264 static bool numa_is_active_node(int nid, struct numa_group *ng)
1265 {
1266 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1267 }
1268
1269 /* Handle placement on systems where not all nodes are directly connected. */
1270 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1271 int maxdist, bool task)
1272 {
1273 unsigned long score = 0;
1274 int node;
1275
1276 /*
1277 * All nodes are directly connected, and the same distance
1278 * from each other. No need for fancy placement algorithms.
1279 */
1280 if (sched_numa_topology_type == NUMA_DIRECT)
1281 return 0;
1282
1283 /*
1284 * This code is called for each node, introducing N^2 complexity,
1285 * which should be ok given the number of nodes rarely exceeds 8.
1286 */
1287 for_each_online_node(node) {
1288 unsigned long faults;
1289 int dist = node_distance(nid, node);
1290
1291 /*
1292 * The furthest away nodes in the system are not interesting
1293 * for placement; nid was already counted.
1294 */
1295 if (dist == sched_max_numa_distance || node == nid)
1296 continue;
1297
1298 /*
1299 * On systems with a backplane NUMA topology, compare groups
1300 * of nodes, and move tasks towards the group with the most
1301 * memory accesses. When comparing two nodes at distance
1302 * "hoplimit", only nodes closer by than "hoplimit" are part
1303 * of each group. Skip other nodes.
1304 */
1305 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1306 dist > maxdist)
1307 continue;
1308
1309 /* Add up the faults from nearby nodes. */
1310 if (task)
1311 faults = task_faults(p, node);
1312 else
1313 faults = group_faults(p, node);
1314
1315 /*
1316 * On systems with a glueless mesh NUMA topology, there are
1317 * no fixed "groups of nodes". Instead, nodes that are not
1318 * directly connected bounce traffic through intermediate
1319 * nodes; a numa_group can occupy any set of nodes.
1320 * The further away a node is, the less the faults count.
1321 * This seems to result in good task placement.
1322 */
1323 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1324 faults *= (sched_max_numa_distance - dist);
1325 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1326 }
1327
1328 score += faults;
1329 }
1330
1331 return score;
1332 }
1333
1334 /*
1335 * These return the fraction of accesses done by a particular task, or
1336 * task group, on a particular numa node. The group weight is given a
1337 * larger multiplier, in order to group tasks together that are almost
1338 * evenly spread out between numa nodes.
1339 */
1340 static inline unsigned long task_weight(struct task_struct *p, int nid,
1341 int dist)
1342 {
1343 unsigned long faults, total_faults;
1344
1345 if (!p->numa_faults)
1346 return 0;
1347
1348 total_faults = p->total_numa_faults;
1349
1350 if (!total_faults)
1351 return 0;
1352
1353 faults = task_faults(p, nid);
1354 faults += score_nearby_nodes(p, nid, dist, true);
1355
1356 return 1000 * faults / total_faults;
1357 }
1358
1359 static inline unsigned long group_weight(struct task_struct *p, int nid,
1360 int dist)
1361 {
1362 unsigned long faults, total_faults;
1363
1364 if (!p->numa_group)
1365 return 0;
1366
1367 total_faults = p->numa_group->total_faults;
1368
1369 if (!total_faults)
1370 return 0;
1371
1372 faults = group_faults(p, nid);
1373 faults += score_nearby_nodes(p, nid, dist, false);
1374
1375 return 1000 * faults / total_faults;
1376 }
1377
1378 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1379 int src_nid, int dst_cpu)
1380 {
1381 struct numa_group *ng = p->numa_group;
1382 int dst_nid = cpu_to_node(dst_cpu);
1383 int last_cpupid, this_cpupid;
1384
1385 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1386
1387 /*
1388 * Multi-stage node selection is used in conjunction with a periodic
1389 * migration fault to build a temporal task<->page relation. By using
1390 * a two-stage filter we remove short/unlikely relations.
1391 *
1392 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1393 * a task's usage of a particular page (n_p) per total usage of this
1394 * page (n_t) (in a given time-span) to a probability.
1395 *
1396 * Our periodic faults will sample this probability and getting the
1397 * same result twice in a row, given these samples are fully
1398 * independent, is then given by P(n)^2, provided our sample period
1399 * is sufficiently short compared to the usage pattern.
1400 *
1401 * This quadric squishes small probabilities, making it less likely we
1402 * act on an unlikely task<->page relation.
1403 */
1404 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1405 if (!cpupid_pid_unset(last_cpupid) &&
1406 cpupid_to_nid(last_cpupid) != dst_nid)
1407 return false;
1408
1409 /* Always allow migrate on private faults */
1410 if (cpupid_match_pid(p, last_cpupid))
1411 return true;
1412
1413 /* A shared fault, but p->numa_group has not been set up yet. */
1414 if (!ng)
1415 return true;
1416
1417 /*
1418 * Destination node is much more heavily used than the source
1419 * node? Allow migration.
1420 */
1421 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1422 ACTIVE_NODE_FRACTION)
1423 return true;
1424
1425 /*
1426 * Distribute memory according to CPU & memory use on each node,
1427 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1428 *
1429 * faults_cpu(dst) 3 faults_cpu(src)
1430 * --------------- * - > ---------------
1431 * faults_mem(dst) 4 faults_mem(src)
1432 */
1433 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1434 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1435 }
1436
1437 static unsigned long weighted_cpuload(struct rq *rq);
1438 static unsigned long source_load(int cpu, int type);
1439 static unsigned long target_load(int cpu, int type);
1440 static unsigned long capacity_of(int cpu);
1441
1442 /* Cached statistics for all CPUs within a node */
1443 struct numa_stats {
1444 unsigned long nr_running;
1445 unsigned long load;
1446
1447 /* Total compute capacity of CPUs on a node */
1448 unsigned long compute_capacity;
1449
1450 /* Approximate capacity in terms of runnable tasks on a node */
1451 unsigned long task_capacity;
1452 int has_free_capacity;
1453 };
1454
1455 /*
1456 * XXX borrowed from update_sg_lb_stats
1457 */
1458 static void update_numa_stats(struct numa_stats *ns, int nid)
1459 {
1460 int smt, cpu, cpus = 0;
1461 unsigned long capacity;
1462
1463 memset(ns, 0, sizeof(*ns));
1464 for_each_cpu(cpu, cpumask_of_node(nid)) {
1465 struct rq *rq = cpu_rq(cpu);
1466
1467 ns->nr_running += rq->nr_running;
1468 ns->load += weighted_cpuload(rq);
1469 ns->compute_capacity += capacity_of(cpu);
1470
1471 cpus++;
1472 }
1473
1474 /*
1475 * If we raced with hotplug and there are no CPUs left in our mask
1476 * the @ns structure is NULL'ed and task_numa_compare() will
1477 * not find this node attractive.
1478 *
1479 * We'll either bail at !has_free_capacity, or we'll detect a huge
1480 * imbalance and bail there.
1481 */
1482 if (!cpus)
1483 return;
1484
1485 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1486 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1487 capacity = cpus / smt; /* cores */
1488
1489 ns->task_capacity = min_t(unsigned, capacity,
1490 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1491 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1492 }
1493
1494 struct task_numa_env {
1495 struct task_struct *p;
1496
1497 int src_cpu, src_nid;
1498 int dst_cpu, dst_nid;
1499
1500 struct numa_stats src_stats, dst_stats;
1501
1502 int imbalance_pct;
1503 int dist;
1504
1505 struct task_struct *best_task;
1506 long best_imp;
1507 int best_cpu;
1508 };
1509
1510 static void task_numa_assign(struct task_numa_env *env,
1511 struct task_struct *p, long imp)
1512 {
1513 if (env->best_task)
1514 put_task_struct(env->best_task);
1515 if (p)
1516 get_task_struct(p);
1517
1518 env->best_task = p;
1519 env->best_imp = imp;
1520 env->best_cpu = env->dst_cpu;
1521 }
1522
1523 static bool load_too_imbalanced(long src_load, long dst_load,
1524 struct task_numa_env *env)
1525 {
1526 long imb, old_imb;
1527 long orig_src_load, orig_dst_load;
1528 long src_capacity, dst_capacity;
1529
1530 /*
1531 * The load is corrected for the CPU capacity available on each node.
1532 *
1533 * src_load dst_load
1534 * ------------ vs ---------
1535 * src_capacity dst_capacity
1536 */
1537 src_capacity = env->src_stats.compute_capacity;
1538 dst_capacity = env->dst_stats.compute_capacity;
1539
1540 /* We care about the slope of the imbalance, not the direction. */
1541 if (dst_load < src_load)
1542 swap(dst_load, src_load);
1543
1544 /* Is the difference below the threshold? */
1545 imb = dst_load * src_capacity * 100 -
1546 src_load * dst_capacity * env->imbalance_pct;
1547 if (imb <= 0)
1548 return false;
1549
1550 /*
1551 * The imbalance is above the allowed threshold.
1552 * Compare it with the old imbalance.
1553 */
1554 orig_src_load = env->src_stats.load;
1555 orig_dst_load = env->dst_stats.load;
1556
1557 if (orig_dst_load < orig_src_load)
1558 swap(orig_dst_load, orig_src_load);
1559
1560 old_imb = orig_dst_load * src_capacity * 100 -
1561 orig_src_load * dst_capacity * env->imbalance_pct;
1562
1563 /* Would this change make things worse? */
1564 return (imb > old_imb);
1565 }
1566
1567 /*
1568 * This checks if the overall compute and NUMA accesses of the system would
1569 * be improved if the source tasks was migrated to the target dst_cpu taking
1570 * into account that it might be best if task running on the dst_cpu should
1571 * be exchanged with the source task
1572 */
1573 static void task_numa_compare(struct task_numa_env *env,
1574 long taskimp, long groupimp)
1575 {
1576 struct rq *src_rq = cpu_rq(env->src_cpu);
1577 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1578 struct task_struct *cur;
1579 long src_load, dst_load;
1580 long load;
1581 long imp = env->p->numa_group ? groupimp : taskimp;
1582 long moveimp = imp;
1583 int dist = env->dist;
1584
1585 rcu_read_lock();
1586 cur = task_rcu_dereference(&dst_rq->curr);
1587 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1588 cur = NULL;
1589
1590 /*
1591 * Because we have preemption enabled we can get migrated around and
1592 * end try selecting ourselves (current == env->p) as a swap candidate.
1593 */
1594 if (cur == env->p)
1595 goto unlock;
1596
1597 /*
1598 * "imp" is the fault differential for the source task between the
1599 * source and destination node. Calculate the total differential for
1600 * the source task and potential destination task. The more negative
1601 * the value is, the more rmeote accesses that would be expected to
1602 * be incurred if the tasks were swapped.
1603 */
1604 if (cur) {
1605 /* Skip this swap candidate if cannot move to the source cpu */
1606 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1607 goto unlock;
1608
1609 /*
1610 * If dst and source tasks are in the same NUMA group, or not
1611 * in any group then look only at task weights.
1612 */
1613 if (cur->numa_group == env->p->numa_group) {
1614 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1615 task_weight(cur, env->dst_nid, dist);
1616 /*
1617 * Add some hysteresis to prevent swapping the
1618 * tasks within a group over tiny differences.
1619 */
1620 if (cur->numa_group)
1621 imp -= imp/16;
1622 } else {
1623 /*
1624 * Compare the group weights. If a task is all by
1625 * itself (not part of a group), use the task weight
1626 * instead.
1627 */
1628 if (cur->numa_group)
1629 imp += group_weight(cur, env->src_nid, dist) -
1630 group_weight(cur, env->dst_nid, dist);
1631 else
1632 imp += task_weight(cur, env->src_nid, dist) -
1633 task_weight(cur, env->dst_nid, dist);
1634 }
1635 }
1636
1637 if (imp <= env->best_imp && moveimp <= env->best_imp)
1638 goto unlock;
1639
1640 if (!cur) {
1641 /* Is there capacity at our destination? */
1642 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1643 !env->dst_stats.has_free_capacity)
1644 goto unlock;
1645
1646 goto balance;
1647 }
1648
1649 /* Balance doesn't matter much if we're running a task per cpu */
1650 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1651 dst_rq->nr_running == 1)
1652 goto assign;
1653
1654 /*
1655 * In the overloaded case, try and keep the load balanced.
1656 */
1657 balance:
1658 load = task_h_load(env->p);
1659 dst_load = env->dst_stats.load + load;
1660 src_load = env->src_stats.load - load;
1661
1662 if (moveimp > imp && moveimp > env->best_imp) {
1663 /*
1664 * If the improvement from just moving env->p direction is
1665 * better than swapping tasks around, check if a move is
1666 * possible. Store a slightly smaller score than moveimp,
1667 * so an actually idle CPU will win.
1668 */
1669 if (!load_too_imbalanced(src_load, dst_load, env)) {
1670 imp = moveimp - 1;
1671 cur = NULL;
1672 goto assign;
1673 }
1674 }
1675
1676 if (imp <= env->best_imp)
1677 goto unlock;
1678
1679 if (cur) {
1680 load = task_h_load(cur);
1681 dst_load -= load;
1682 src_load += load;
1683 }
1684
1685 if (load_too_imbalanced(src_load, dst_load, env))
1686 goto unlock;
1687
1688 /*
1689 * One idle CPU per node is evaluated for a task numa move.
1690 * Call select_idle_sibling to maybe find a better one.
1691 */
1692 if (!cur) {
1693 /*
1694 * select_idle_siblings() uses an per-cpu cpumask that
1695 * can be used from IRQ context.
1696 */
1697 local_irq_disable();
1698 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1699 env->dst_cpu);
1700 local_irq_enable();
1701 }
1702
1703 assign:
1704 task_numa_assign(env, cur, imp);
1705 unlock:
1706 rcu_read_unlock();
1707 }
1708
1709 static void task_numa_find_cpu(struct task_numa_env *env,
1710 long taskimp, long groupimp)
1711 {
1712 int cpu;
1713
1714 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1715 /* Skip this CPU if the source task cannot migrate */
1716 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1717 continue;
1718
1719 env->dst_cpu = cpu;
1720 task_numa_compare(env, taskimp, groupimp);
1721 }
1722 }
1723
1724 /* Only move tasks to a NUMA node less busy than the current node. */
1725 static bool numa_has_capacity(struct task_numa_env *env)
1726 {
1727 struct numa_stats *src = &env->src_stats;
1728 struct numa_stats *dst = &env->dst_stats;
1729
1730 if (src->has_free_capacity && !dst->has_free_capacity)
1731 return false;
1732
1733 /*
1734 * Only consider a task move if the source has a higher load
1735 * than the destination, corrected for CPU capacity on each node.
1736 *
1737 * src->load dst->load
1738 * --------------------- vs ---------------------
1739 * src->compute_capacity dst->compute_capacity
1740 */
1741 if (src->load * dst->compute_capacity * env->imbalance_pct >
1742
1743 dst->load * src->compute_capacity * 100)
1744 return true;
1745
1746 return false;
1747 }
1748
1749 static int task_numa_migrate(struct task_struct *p)
1750 {
1751 struct task_numa_env env = {
1752 .p = p,
1753
1754 .src_cpu = task_cpu(p),
1755 .src_nid = task_node(p),
1756
1757 .imbalance_pct = 112,
1758
1759 .best_task = NULL,
1760 .best_imp = 0,
1761 .best_cpu = -1,
1762 };
1763 struct sched_domain *sd;
1764 unsigned long taskweight, groupweight;
1765 int nid, ret, dist;
1766 long taskimp, groupimp;
1767
1768 /*
1769 * Pick the lowest SD_NUMA domain, as that would have the smallest
1770 * imbalance and would be the first to start moving tasks about.
1771 *
1772 * And we want to avoid any moving of tasks about, as that would create
1773 * random movement of tasks -- counter the numa conditions we're trying
1774 * to satisfy here.
1775 */
1776 rcu_read_lock();
1777 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1778 if (sd)
1779 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1780 rcu_read_unlock();
1781
1782 /*
1783 * Cpusets can break the scheduler domain tree into smaller
1784 * balance domains, some of which do not cross NUMA boundaries.
1785 * Tasks that are "trapped" in such domains cannot be migrated
1786 * elsewhere, so there is no point in (re)trying.
1787 */
1788 if (unlikely(!sd)) {
1789 p->numa_preferred_nid = task_node(p);
1790 return -EINVAL;
1791 }
1792
1793 env.dst_nid = p->numa_preferred_nid;
1794 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1795 taskweight = task_weight(p, env.src_nid, dist);
1796 groupweight = group_weight(p, env.src_nid, dist);
1797 update_numa_stats(&env.src_stats, env.src_nid);
1798 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1799 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1800 update_numa_stats(&env.dst_stats, env.dst_nid);
1801
1802 /* Try to find a spot on the preferred nid. */
1803 if (numa_has_capacity(&env))
1804 task_numa_find_cpu(&env, taskimp, groupimp);
1805
1806 /*
1807 * Look at other nodes in these cases:
1808 * - there is no space available on the preferred_nid
1809 * - the task is part of a numa_group that is interleaved across
1810 * multiple NUMA nodes; in order to better consolidate the group,
1811 * we need to check other locations.
1812 */
1813 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1814 for_each_online_node(nid) {
1815 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1816 continue;
1817
1818 dist = node_distance(env.src_nid, env.dst_nid);
1819 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1820 dist != env.dist) {
1821 taskweight = task_weight(p, env.src_nid, dist);
1822 groupweight = group_weight(p, env.src_nid, dist);
1823 }
1824
1825 /* Only consider nodes where both task and groups benefit */
1826 taskimp = task_weight(p, nid, dist) - taskweight;
1827 groupimp = group_weight(p, nid, dist) - groupweight;
1828 if (taskimp < 0 && groupimp < 0)
1829 continue;
1830
1831 env.dist = dist;
1832 env.dst_nid = nid;
1833 update_numa_stats(&env.dst_stats, env.dst_nid);
1834 if (numa_has_capacity(&env))
1835 task_numa_find_cpu(&env, taskimp, groupimp);
1836 }
1837 }
1838
1839 /*
1840 * If the task is part of a workload that spans multiple NUMA nodes,
1841 * and is migrating into one of the workload's active nodes, remember
1842 * this node as the task's preferred numa node, so the workload can
1843 * settle down.
1844 * A task that migrated to a second choice node will be better off
1845 * trying for a better one later. Do not set the preferred node here.
1846 */
1847 if (p->numa_group) {
1848 struct numa_group *ng = p->numa_group;
1849
1850 if (env.best_cpu == -1)
1851 nid = env.src_nid;
1852 else
1853 nid = env.dst_nid;
1854
1855 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1856 sched_setnuma(p, env.dst_nid);
1857 }
1858
1859 /* No better CPU than the current one was found. */
1860 if (env.best_cpu == -1)
1861 return -EAGAIN;
1862
1863 /*
1864 * Reset the scan period if the task is being rescheduled on an
1865 * alternative node to recheck if the tasks is now properly placed.
1866 */
1867 p->numa_scan_period = task_scan_start(p);
1868
1869 if (env.best_task == NULL) {
1870 ret = migrate_task_to(p, env.best_cpu);
1871 if (ret != 0)
1872 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1873 return ret;
1874 }
1875
1876 ret = migrate_swap(p, env.best_task);
1877 if (ret != 0)
1878 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1879 put_task_struct(env.best_task);
1880 return ret;
1881 }
1882
1883 /* Attempt to migrate a task to a CPU on the preferred node. */
1884 static void numa_migrate_preferred(struct task_struct *p)
1885 {
1886 unsigned long interval = HZ;
1887
1888 /* This task has no NUMA fault statistics yet */
1889 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1890 return;
1891
1892 /* Periodically retry migrating the task to the preferred node */
1893 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1894 p->numa_migrate_retry = jiffies + interval;
1895
1896 /* Success if task is already running on preferred CPU */
1897 if (task_node(p) == p->numa_preferred_nid)
1898 return;
1899
1900 /* Otherwise, try migrate to a CPU on the preferred node */
1901 task_numa_migrate(p);
1902 }
1903
1904 /*
1905 * Find out how many nodes on the workload is actively running on. Do this by
1906 * tracking the nodes from which NUMA hinting faults are triggered. This can
1907 * be different from the set of nodes where the workload's memory is currently
1908 * located.
1909 */
1910 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1911 {
1912 unsigned long faults, max_faults = 0;
1913 int nid, active_nodes = 0;
1914
1915 for_each_online_node(nid) {
1916 faults = group_faults_cpu(numa_group, nid);
1917 if (faults > max_faults)
1918 max_faults = faults;
1919 }
1920
1921 for_each_online_node(nid) {
1922 faults = group_faults_cpu(numa_group, nid);
1923 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1924 active_nodes++;
1925 }
1926
1927 numa_group->max_faults_cpu = max_faults;
1928 numa_group->active_nodes = active_nodes;
1929 }
1930
1931 /*
1932 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1933 * increments. The more local the fault statistics are, the higher the scan
1934 * period will be for the next scan window. If local/(local+remote) ratio is
1935 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1936 * the scan period will decrease. Aim for 70% local accesses.
1937 */
1938 #define NUMA_PERIOD_SLOTS 10
1939 #define NUMA_PERIOD_THRESHOLD 7
1940
1941 /*
1942 * Increase the scan period (slow down scanning) if the majority of
1943 * our memory is already on our local node, or if the majority of
1944 * the page accesses are shared with other processes.
1945 * Otherwise, decrease the scan period.
1946 */
1947 static void update_task_scan_period(struct task_struct *p,
1948 unsigned long shared, unsigned long private)
1949 {
1950 unsigned int period_slot;
1951 int lr_ratio, ps_ratio;
1952 int diff;
1953
1954 unsigned long remote = p->numa_faults_locality[0];
1955 unsigned long local = p->numa_faults_locality[1];
1956
1957 /*
1958 * If there were no record hinting faults then either the task is
1959 * completely idle or all activity is areas that are not of interest
1960 * to automatic numa balancing. Related to that, if there were failed
1961 * migration then it implies we are migrating too quickly or the local
1962 * node is overloaded. In either case, scan slower
1963 */
1964 if (local + shared == 0 || p->numa_faults_locality[2]) {
1965 p->numa_scan_period = min(p->numa_scan_period_max,
1966 p->numa_scan_period << 1);
1967
1968 p->mm->numa_next_scan = jiffies +
1969 msecs_to_jiffies(p->numa_scan_period);
1970
1971 return;
1972 }
1973
1974 /*
1975 * Prepare to scale scan period relative to the current period.
1976 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1977 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1978 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1979 */
1980 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1981 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1982 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1983
1984 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1985 /*
1986 * Most memory accesses are local. There is no need to
1987 * do fast NUMA scanning, since memory is already local.
1988 */
1989 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1990 if (!slot)
1991 slot = 1;
1992 diff = slot * period_slot;
1993 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1994 /*
1995 * Most memory accesses are shared with other tasks.
1996 * There is no point in continuing fast NUMA scanning,
1997 * since other tasks may just move the memory elsewhere.
1998 */
1999 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2000 if (!slot)
2001 slot = 1;
2002 diff = slot * period_slot;
2003 } else {
2004 /*
2005 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2006 * yet they are not on the local NUMA node. Speed up
2007 * NUMA scanning to get the memory moved over.
2008 */
2009 int ratio = max(lr_ratio, ps_ratio);
2010 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2011 }
2012
2013 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2014 task_scan_min(p), task_scan_max(p));
2015 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2016 }
2017
2018 /*
2019 * Get the fraction of time the task has been running since the last
2020 * NUMA placement cycle. The scheduler keeps similar statistics, but
2021 * decays those on a 32ms period, which is orders of magnitude off
2022 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2023 * stats only if the task is so new there are no NUMA statistics yet.
2024 */
2025 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2026 {
2027 u64 runtime, delta, now;
2028 /* Use the start of this time slice to avoid calculations. */
2029 now = p->se.exec_start;
2030 runtime = p->se.sum_exec_runtime;
2031
2032 if (p->last_task_numa_placement) {
2033 delta = runtime - p->last_sum_exec_runtime;
2034 *period = now - p->last_task_numa_placement;
2035
2036 /* Avoid time going backwards, prevent potential divide error: */
2037 if (unlikely((s64)*period < 0))
2038 *period = 0;
2039 } else {
2040 delta = p->se.avg.load_sum;
2041 *period = LOAD_AVG_MAX;
2042 }
2043
2044 p->last_sum_exec_runtime = runtime;
2045 p->last_task_numa_placement = now;
2046
2047 return delta;
2048 }
2049
2050 /*
2051 * Determine the preferred nid for a task in a numa_group. This needs to
2052 * be done in a way that produces consistent results with group_weight,
2053 * otherwise workloads might not converge.
2054 */
2055 static int preferred_group_nid(struct task_struct *p, int nid)
2056 {
2057 nodemask_t nodes;
2058 int dist;
2059
2060 /* Direct connections between all NUMA nodes. */
2061 if (sched_numa_topology_type == NUMA_DIRECT)
2062 return nid;
2063
2064 /*
2065 * On a system with glueless mesh NUMA topology, group_weight
2066 * scores nodes according to the number of NUMA hinting faults on
2067 * both the node itself, and on nearby nodes.
2068 */
2069 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2070 unsigned long score, max_score = 0;
2071 int node, max_node = nid;
2072
2073 dist = sched_max_numa_distance;
2074
2075 for_each_online_node(node) {
2076 score = group_weight(p, node, dist);
2077 if (score > max_score) {
2078 max_score = score;
2079 max_node = node;
2080 }
2081 }
2082 return max_node;
2083 }
2084
2085 /*
2086 * Finding the preferred nid in a system with NUMA backplane
2087 * interconnect topology is more involved. The goal is to locate
2088 * tasks from numa_groups near each other in the system, and
2089 * untangle workloads from different sides of the system. This requires
2090 * searching down the hierarchy of node groups, recursively searching
2091 * inside the highest scoring group of nodes. The nodemask tricks
2092 * keep the complexity of the search down.
2093 */
2094 nodes = node_online_map;
2095 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2096 unsigned long max_faults = 0;
2097 nodemask_t max_group = NODE_MASK_NONE;
2098 int a, b;
2099
2100 /* Are there nodes at this distance from each other? */
2101 if (!find_numa_distance(dist))
2102 continue;
2103
2104 for_each_node_mask(a, nodes) {
2105 unsigned long faults = 0;
2106 nodemask_t this_group;
2107 nodes_clear(this_group);
2108
2109 /* Sum group's NUMA faults; includes a==b case. */
2110 for_each_node_mask(b, nodes) {
2111 if (node_distance(a, b) < dist) {
2112 faults += group_faults(p, b);
2113 node_set(b, this_group);
2114 node_clear(b, nodes);
2115 }
2116 }
2117
2118 /* Remember the top group. */
2119 if (faults > max_faults) {
2120 max_faults = faults;
2121 max_group = this_group;
2122 /*
2123 * subtle: at the smallest distance there is
2124 * just one node left in each "group", the
2125 * winner is the preferred nid.
2126 */
2127 nid = a;
2128 }
2129 }
2130 /* Next round, evaluate the nodes within max_group. */
2131 if (!max_faults)
2132 break;
2133 nodes = max_group;
2134 }
2135 return nid;
2136 }
2137
2138 static void task_numa_placement(struct task_struct *p)
2139 {
2140 int seq, nid, max_nid = -1, max_group_nid = -1;
2141 unsigned long max_faults = 0, max_group_faults = 0;
2142 unsigned long fault_types[2] = { 0, 0 };
2143 unsigned long total_faults;
2144 u64 runtime, period;
2145 spinlock_t *group_lock = NULL;
2146
2147 /*
2148 * The p->mm->numa_scan_seq field gets updated without
2149 * exclusive access. Use READ_ONCE() here to ensure
2150 * that the field is read in a single access:
2151 */
2152 seq = READ_ONCE(p->mm->numa_scan_seq);
2153 if (p->numa_scan_seq == seq)
2154 return;
2155 p->numa_scan_seq = seq;
2156 p->numa_scan_period_max = task_scan_max(p);
2157
2158 total_faults = p->numa_faults_locality[0] +
2159 p->numa_faults_locality[1];
2160 runtime = numa_get_avg_runtime(p, &period);
2161
2162 /* If the task is part of a group prevent parallel updates to group stats */
2163 if (p->numa_group) {
2164 group_lock = &p->numa_group->lock;
2165 spin_lock_irq(group_lock);
2166 }
2167
2168 /* Find the node with the highest number of faults */
2169 for_each_online_node(nid) {
2170 /* Keep track of the offsets in numa_faults array */
2171 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2172 unsigned long faults = 0, group_faults = 0;
2173 int priv;
2174
2175 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2176 long diff, f_diff, f_weight;
2177
2178 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2179 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2180 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2181 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2182
2183 /* Decay existing window, copy faults since last scan */
2184 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2185 fault_types[priv] += p->numa_faults[membuf_idx];
2186 p->numa_faults[membuf_idx] = 0;
2187
2188 /*
2189 * Normalize the faults_from, so all tasks in a group
2190 * count according to CPU use, instead of by the raw
2191 * number of faults. Tasks with little runtime have
2192 * little over-all impact on throughput, and thus their
2193 * faults are less important.
2194 */
2195 f_weight = div64_u64(runtime << 16, period + 1);
2196 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2197 (total_faults + 1);
2198 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2199 p->numa_faults[cpubuf_idx] = 0;
2200
2201 p->numa_faults[mem_idx] += diff;
2202 p->numa_faults[cpu_idx] += f_diff;
2203 faults += p->numa_faults[mem_idx];
2204 p->total_numa_faults += diff;
2205 if (p->numa_group) {
2206 /*
2207 * safe because we can only change our own group
2208 *
2209 * mem_idx represents the offset for a given
2210 * nid and priv in a specific region because it
2211 * is at the beginning of the numa_faults array.
2212 */
2213 p->numa_group->faults[mem_idx] += diff;
2214 p->numa_group->faults_cpu[mem_idx] += f_diff;
2215 p->numa_group->total_faults += diff;
2216 group_faults += p->numa_group->faults[mem_idx];
2217 }
2218 }
2219
2220 if (faults > max_faults) {
2221 max_faults = faults;
2222 max_nid = nid;
2223 }
2224
2225 if (group_faults > max_group_faults) {
2226 max_group_faults = group_faults;
2227 max_group_nid = nid;
2228 }
2229 }
2230
2231 update_task_scan_period(p, fault_types[0], fault_types[1]);
2232
2233 if (p->numa_group) {
2234 numa_group_count_active_nodes(p->numa_group);
2235 spin_unlock_irq(group_lock);
2236 max_nid = preferred_group_nid(p, max_group_nid);
2237 }
2238
2239 if (max_faults) {
2240 /* Set the new preferred node */
2241 if (max_nid != p->numa_preferred_nid)
2242 sched_setnuma(p, max_nid);
2243
2244 if (task_node(p) != p->numa_preferred_nid)
2245 numa_migrate_preferred(p);
2246 }
2247 }
2248
2249 static inline int get_numa_group(struct numa_group *grp)
2250 {
2251 return atomic_inc_not_zero(&grp->refcount);
2252 }
2253
2254 static inline void put_numa_group(struct numa_group *grp)
2255 {
2256 if (atomic_dec_and_test(&grp->refcount))
2257 kfree_rcu(grp, rcu);
2258 }
2259
2260 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2261 int *priv)
2262 {
2263 struct numa_group *grp, *my_grp;
2264 struct task_struct *tsk;
2265 bool join = false;
2266 int cpu = cpupid_to_cpu(cpupid);
2267 int i;
2268
2269 if (unlikely(!p->numa_group)) {
2270 unsigned int size = sizeof(struct numa_group) +
2271 4*nr_node_ids*sizeof(unsigned long);
2272
2273 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2274 if (!grp)
2275 return;
2276
2277 atomic_set(&grp->refcount, 1);
2278 grp->active_nodes = 1;
2279 grp->max_faults_cpu = 0;
2280 spin_lock_init(&grp->lock);
2281 grp->gid = p->pid;
2282 /* Second half of the array tracks nids where faults happen */
2283 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2284 nr_node_ids;
2285
2286 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2287 grp->faults[i] = p->numa_faults[i];
2288
2289 grp->total_faults = p->total_numa_faults;
2290
2291 grp->nr_tasks++;
2292 rcu_assign_pointer(p->numa_group, grp);
2293 }
2294
2295 rcu_read_lock();
2296 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2297
2298 if (!cpupid_match_pid(tsk, cpupid))
2299 goto no_join;
2300
2301 grp = rcu_dereference(tsk->numa_group);
2302 if (!grp)
2303 goto no_join;
2304
2305 my_grp = p->numa_group;
2306 if (grp == my_grp)
2307 goto no_join;
2308
2309 /*
2310 * Only join the other group if its bigger; if we're the bigger group,
2311 * the other task will join us.
2312 */
2313 if (my_grp->nr_tasks > grp->nr_tasks)
2314 goto no_join;
2315
2316 /*
2317 * Tie-break on the grp address.
2318 */
2319 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2320 goto no_join;
2321
2322 /* Always join threads in the same process. */
2323 if (tsk->mm == current->mm)
2324 join = true;
2325
2326 /* Simple filter to avoid false positives due to PID collisions */
2327 if (flags & TNF_SHARED)
2328 join = true;
2329
2330 /* Update priv based on whether false sharing was detected */
2331 *priv = !join;
2332
2333 if (join && !get_numa_group(grp))
2334 goto no_join;
2335
2336 rcu_read_unlock();
2337
2338 if (!join)
2339 return;
2340
2341 BUG_ON(irqs_disabled());
2342 double_lock_irq(&my_grp->lock, &grp->lock);
2343
2344 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2345 my_grp->faults[i] -= p->numa_faults[i];
2346 grp->faults[i] += p->numa_faults[i];
2347 }
2348 my_grp->total_faults -= p->total_numa_faults;
2349 grp->total_faults += p->total_numa_faults;
2350
2351 my_grp->nr_tasks--;
2352 grp->nr_tasks++;
2353
2354 spin_unlock(&my_grp->lock);
2355 spin_unlock_irq(&grp->lock);
2356
2357 rcu_assign_pointer(p->numa_group, grp);
2358
2359 put_numa_group(my_grp);
2360 return;
2361
2362 no_join:
2363 rcu_read_unlock();
2364 return;
2365 }
2366
2367 /*
2368 * Get rid of NUMA staticstics associated with a task (either current or dead).
2369 * If @final is set, the task is dead and has reached refcount zero, so we can
2370 * safely free all relevant data structures. Otherwise, there might be
2371 * concurrent reads from places like load balancing and procfs, and we should
2372 * reset the data back to default state without freeing ->numa_faults.
2373 */
2374 void task_numa_free(struct task_struct *p, bool final)
2375 {
2376 struct numa_group *grp = p->numa_group;
2377 unsigned long *numa_faults = p->numa_faults;
2378 unsigned long flags;
2379 int i;
2380
2381 if (!numa_faults)
2382 return;
2383
2384 if (grp) {
2385 spin_lock_irqsave(&grp->lock, flags);
2386 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2387 grp->faults[i] -= p->numa_faults[i];
2388 grp->total_faults -= p->total_numa_faults;
2389
2390 grp->nr_tasks--;
2391 spin_unlock_irqrestore(&grp->lock, flags);
2392 RCU_INIT_POINTER(p->numa_group, NULL);
2393 put_numa_group(grp);
2394 }
2395
2396 if (final) {
2397 p->numa_faults = NULL;
2398 kfree(numa_faults);
2399 } else {
2400 p->total_numa_faults = 0;
2401 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2402 numa_faults[i] = 0;
2403 }
2404 }
2405
2406 /*
2407 * Got a PROT_NONE fault for a page on @node.
2408 */
2409 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2410 {
2411 struct task_struct *p = current;
2412 bool migrated = flags & TNF_MIGRATED;
2413 int cpu_node = task_node(current);
2414 int local = !!(flags & TNF_FAULT_LOCAL);
2415 struct numa_group *ng;
2416 int priv;
2417
2418 if (!static_branch_likely(&sched_numa_balancing))
2419 return;
2420
2421 /* for example, ksmd faulting in a user's mm */
2422 if (!p->mm)
2423 return;
2424
2425 /* Allocate buffer to track faults on a per-node basis */
2426 if (unlikely(!p->numa_faults)) {
2427 int size = sizeof(*p->numa_faults) *
2428 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2429
2430 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2431 if (!p->numa_faults)
2432 return;
2433
2434 p->total_numa_faults = 0;
2435 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2436 }
2437
2438 /*
2439 * First accesses are treated as private, otherwise consider accesses
2440 * to be private if the accessing pid has not changed
2441 */
2442 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2443 priv = 1;
2444 } else {
2445 priv = cpupid_match_pid(p, last_cpupid);
2446 if (!priv && !(flags & TNF_NO_GROUP))
2447 task_numa_group(p, last_cpupid, flags, &priv);
2448 }
2449
2450 /*
2451 * If a workload spans multiple NUMA nodes, a shared fault that
2452 * occurs wholly within the set of nodes that the workload is
2453 * actively using should be counted as local. This allows the
2454 * scan rate to slow down when a workload has settled down.
2455 */
2456 ng = p->numa_group;
2457 if (!priv && !local && ng && ng->active_nodes > 1 &&
2458 numa_is_active_node(cpu_node, ng) &&
2459 numa_is_active_node(mem_node, ng))
2460 local = 1;
2461
2462 task_numa_placement(p);
2463
2464 /*
2465 * Retry task to preferred node migration periodically, in case it
2466 * case it previously failed, or the scheduler moved us.
2467 */
2468 if (time_after(jiffies, p->numa_migrate_retry))
2469 numa_migrate_preferred(p);
2470
2471 if (migrated)
2472 p->numa_pages_migrated += pages;
2473 if (flags & TNF_MIGRATE_FAIL)
2474 p->numa_faults_locality[2] += pages;
2475
2476 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2477 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2478 p->numa_faults_locality[local] += pages;
2479 }
2480
2481 static void reset_ptenuma_scan(struct task_struct *p)
2482 {
2483 /*
2484 * We only did a read acquisition of the mmap sem, so
2485 * p->mm->numa_scan_seq is written to without exclusive access
2486 * and the update is not guaranteed to be atomic. That's not
2487 * much of an issue though, since this is just used for
2488 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2489 * expensive, to avoid any form of compiler optimizations:
2490 */
2491 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2492 p->mm->numa_scan_offset = 0;
2493 }
2494
2495 /*
2496 * The expensive part of numa migration is done from task_work context.
2497 * Triggered from task_tick_numa().
2498 */
2499 void task_numa_work(struct callback_head *work)
2500 {
2501 unsigned long migrate, next_scan, now = jiffies;
2502 struct task_struct *p = current;
2503 struct mm_struct *mm = p->mm;
2504 u64 runtime = p->se.sum_exec_runtime;
2505 struct vm_area_struct *vma;
2506 unsigned long start, end;
2507 unsigned long nr_pte_updates = 0;
2508 long pages, virtpages;
2509
2510 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2511
2512 work->next = work; /* protect against double add */
2513 /*
2514 * Who cares about NUMA placement when they're dying.
2515 *
2516 * NOTE: make sure not to dereference p->mm before this check,
2517 * exit_task_work() happens _after_ exit_mm() so we could be called
2518 * without p->mm even though we still had it when we enqueued this
2519 * work.
2520 */
2521 if (p->flags & PF_EXITING)
2522 return;
2523
2524 if (!mm->numa_next_scan) {
2525 mm->numa_next_scan = now +
2526 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2527 }
2528
2529 /*
2530 * Enforce maximal scan/migration frequency..
2531 */
2532 migrate = mm->numa_next_scan;
2533 if (time_before(now, migrate))
2534 return;
2535
2536 if (p->numa_scan_period == 0) {
2537 p->numa_scan_period_max = task_scan_max(p);
2538 p->numa_scan_period = task_scan_start(p);
2539 }
2540
2541 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2542 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2543 return;
2544
2545 /*
2546 * Delay this task enough that another task of this mm will likely win
2547 * the next time around.
2548 */
2549 p->node_stamp += 2 * TICK_NSEC;
2550
2551 start = mm->numa_scan_offset;
2552 pages = sysctl_numa_balancing_scan_size;
2553 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2554 virtpages = pages * 8; /* Scan up to this much virtual space */
2555 if (!pages)
2556 return;
2557
2558
2559 if (!down_read_trylock(&mm->mmap_sem))
2560 return;
2561 vma = find_vma(mm, start);
2562 if (!vma) {
2563 reset_ptenuma_scan(p);
2564 start = 0;
2565 vma = mm->mmap;
2566 }
2567 for (; vma; vma = vma->vm_next) {
2568 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2569 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2570 continue;
2571 }
2572
2573 /*
2574 * Shared library pages mapped by multiple processes are not
2575 * migrated as it is expected they are cache replicated. Avoid
2576 * hinting faults in read-only file-backed mappings or the vdso
2577 * as migrating the pages will be of marginal benefit.
2578 */
2579 if (!vma->vm_mm ||
2580 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2581 continue;
2582
2583 /*
2584 * Skip inaccessible VMAs to avoid any confusion between
2585 * PROT_NONE and NUMA hinting ptes
2586 */
2587 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2588 continue;
2589
2590 do {
2591 start = max(start, vma->vm_start);
2592 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2593 end = min(end, vma->vm_end);
2594 nr_pte_updates = change_prot_numa(vma, start, end);
2595
2596 /*
2597 * Try to scan sysctl_numa_balancing_size worth of
2598 * hpages that have at least one present PTE that
2599 * is not already pte-numa. If the VMA contains
2600 * areas that are unused or already full of prot_numa
2601 * PTEs, scan up to virtpages, to skip through those
2602 * areas faster.
2603 */
2604 if (nr_pte_updates)
2605 pages -= (end - start) >> PAGE_SHIFT;
2606 virtpages -= (end - start) >> PAGE_SHIFT;
2607
2608 start = end;
2609 if (pages <= 0 || virtpages <= 0)
2610 goto out;
2611
2612 cond_resched();
2613 } while (end != vma->vm_end);
2614 }
2615
2616 out:
2617 /*
2618 * It is possible to reach the end of the VMA list but the last few
2619 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2620 * would find the !migratable VMA on the next scan but not reset the
2621 * scanner to the start so check it now.
2622 */
2623 if (vma)
2624 mm->numa_scan_offset = start;
2625 else
2626 reset_ptenuma_scan(p);
2627 up_read(&mm->mmap_sem);
2628
2629 /*
2630 * Make sure tasks use at least 32x as much time to run other code
2631 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2632 * Usually update_task_scan_period slows down scanning enough; on an
2633 * overloaded system we need to limit overhead on a per task basis.
2634 */
2635 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2636 u64 diff = p->se.sum_exec_runtime - runtime;
2637 p->node_stamp += 32 * diff;
2638 }
2639 }
2640
2641 /*
2642 * Drive the periodic memory faults..
2643 */
2644 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2645 {
2646 struct callback_head *work = &curr->numa_work;
2647 u64 period, now;
2648
2649 /*
2650 * We don't care about NUMA placement if we don't have memory.
2651 */
2652 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2653 return;
2654
2655 /*
2656 * Using runtime rather than walltime has the dual advantage that
2657 * we (mostly) drive the selection from busy threads and that the
2658 * task needs to have done some actual work before we bother with
2659 * NUMA placement.
2660 */
2661 now = curr->se.sum_exec_runtime;
2662 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2663
2664 if (now > curr->node_stamp + period) {
2665 if (!curr->node_stamp)
2666 curr->numa_scan_period = task_scan_start(curr);
2667 curr->node_stamp += period;
2668
2669 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2670 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2671 task_work_add(curr, work, true);
2672 }
2673 }
2674 }
2675
2676 #else
2677 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2678 {
2679 }
2680
2681 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2682 {
2683 }
2684
2685 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2686 {
2687 }
2688
2689 #endif /* CONFIG_NUMA_BALANCING */
2690
2691 static void
2692 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2693 {
2694 update_load_add(&cfs_rq->load, se->load.weight);
2695 if (!parent_entity(se))
2696 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2697 #ifdef CONFIG_SMP
2698 if (entity_is_task(se)) {
2699 struct rq *rq = rq_of(cfs_rq);
2700
2701 account_numa_enqueue(rq, task_of(se));
2702 list_add(&se->group_node, &rq->cfs_tasks);
2703 }
2704 #endif
2705 cfs_rq->nr_running++;
2706 }
2707
2708 static void
2709 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2710 {
2711 update_load_sub(&cfs_rq->load, se->load.weight);
2712 if (!parent_entity(se))
2713 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2714 #ifdef CONFIG_SMP
2715 if (entity_is_task(se)) {
2716 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2717 list_del_init(&se->group_node);
2718 }
2719 #endif
2720 cfs_rq->nr_running--;
2721 }
2722
2723 /*
2724 * Signed add and clamp on underflow.
2725 *
2726 * Explicitly do a load-store to ensure the intermediate value never hits
2727 * memory. This allows lockless observations without ever seeing the negative
2728 * values.
2729 */
2730 #define add_positive(_ptr, _val) do { \
2731 typeof(_ptr) ptr = (_ptr); \
2732 typeof(_val) val = (_val); \
2733 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2734 \
2735 res = var + val; \
2736 \
2737 if (val < 0 && res > var) \
2738 res = 0; \
2739 \
2740 WRITE_ONCE(*ptr, res); \
2741 } while (0)
2742
2743 /*
2744 * Unsigned subtract and clamp on underflow.
2745 *
2746 * Explicitly do a load-store to ensure the intermediate value never hits
2747 * memory. This allows lockless observations without ever seeing the negative
2748 * values.
2749 */
2750 #define sub_positive(_ptr, _val) do { \
2751 typeof(_ptr) ptr = (_ptr); \
2752 typeof(*ptr) val = (_val); \
2753 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2754 res = var - val; \
2755 if (res > var) \
2756 res = 0; \
2757 WRITE_ONCE(*ptr, res); \
2758 } while (0)
2759
2760 /*
2761 * Remove and clamp on negative, from a local variable.
2762 *
2763 * A variant of sub_positive(), which does not use explicit load-store
2764 * and is thus optimized for local variable updates.
2765 */
2766 #define lsub_positive(_ptr, _val) do { \
2767 typeof(_ptr) ptr = (_ptr); \
2768 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
2769 } while (0)
2770
2771 #ifdef CONFIG_SMP
2772 /*
2773 * XXX we want to get rid of these helpers and use the full load resolution.
2774 */
2775 static inline long se_weight(struct sched_entity *se)
2776 {
2777 return scale_load_down(se->load.weight);
2778 }
2779
2780 static inline long se_runnable(struct sched_entity *se)
2781 {
2782 return scale_load_down(se->runnable_weight);
2783 }
2784
2785 static inline void
2786 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2787 {
2788 cfs_rq->runnable_weight += se->runnable_weight;
2789
2790 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2791 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2792 }
2793
2794 static inline void
2795 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2796 {
2797 cfs_rq->runnable_weight -= se->runnable_weight;
2798
2799 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2800 sub_positive(&cfs_rq->avg.runnable_load_sum,
2801 se_runnable(se) * se->avg.runnable_load_sum);
2802 }
2803
2804 static inline void
2805 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2806 {
2807 cfs_rq->avg.load_avg += se->avg.load_avg;
2808 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2809 }
2810
2811 static inline void
2812 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2813 {
2814 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2815 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2816 }
2817 #else
2818 static inline void
2819 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2820 static inline void
2821 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2822 static inline void
2823 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2824 static inline void
2825 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2826 #endif
2827
2828 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2829 unsigned long weight, unsigned long runnable)
2830 {
2831 if (se->on_rq) {
2832 /* commit outstanding execution time */
2833 if (cfs_rq->curr == se)
2834 update_curr(cfs_rq);
2835 account_entity_dequeue(cfs_rq, se);
2836 dequeue_runnable_load_avg(cfs_rq, se);
2837 }
2838 dequeue_load_avg(cfs_rq, se);
2839
2840 se->runnable_weight = runnable;
2841 update_load_set(&se->load, weight);
2842
2843 #ifdef CONFIG_SMP
2844 do {
2845 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2846
2847 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2848 se->avg.runnable_load_avg =
2849 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2850 } while (0);
2851 #endif
2852
2853 enqueue_load_avg(cfs_rq, se);
2854 if (se->on_rq) {
2855 account_entity_enqueue(cfs_rq, se);
2856 enqueue_runnable_load_avg(cfs_rq, se);
2857 }
2858 }
2859
2860 void reweight_task(struct task_struct *p, int prio)
2861 {
2862 struct sched_entity *se = &p->se;
2863 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2864 struct load_weight *load = &se->load;
2865 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2866
2867 reweight_entity(cfs_rq, se, weight, weight);
2868 load->inv_weight = sched_prio_to_wmult[prio];
2869 }
2870
2871 #ifdef CONFIG_FAIR_GROUP_SCHED
2872 # ifdef CONFIG_SMP
2873 /*
2874 * All this does is approximate the hierarchical proportion which includes that
2875 * global sum we all love to hate.
2876 *
2877 * That is, the weight of a group entity, is the proportional share of the
2878 * group weight based on the group runqueue weights. That is:
2879 *
2880 * tg->weight * grq->load.weight
2881 * ge->load.weight = ----------------------------- (1)
2882 * \Sum grq->load.weight
2883 *
2884 * Now, because computing that sum is prohibitively expensive to compute (been
2885 * there, done that) we approximate it with this average stuff. The average
2886 * moves slower and therefore the approximation is cheaper and more stable.
2887 *
2888 * So instead of the above, we substitute:
2889 *
2890 * grq->load.weight -> grq->avg.load_avg (2)
2891 *
2892 * which yields the following:
2893 *
2894 * tg->weight * grq->avg.load_avg
2895 * ge->load.weight = ------------------------------ (3)
2896 * tg->load_avg
2897 *
2898 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2899 *
2900 * That is shares_avg, and it is right (given the approximation (2)).
2901 *
2902 * The problem with it is that because the average is slow -- it was designed
2903 * to be exactly that of course -- this leads to transients in boundary
2904 * conditions. In specific, the case where the group was idle and we start the
2905 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2906 * yielding bad latency etc..
2907 *
2908 * Now, in that special case (1) reduces to:
2909 *
2910 * tg->weight * grq->load.weight
2911 * ge->load.weight = ----------------------------- = tg->weight (4)
2912 * grp->load.weight
2913 *
2914 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2915 *
2916 * So what we do is modify our approximation (3) to approach (4) in the (near)
2917 * UP case, like:
2918 *
2919 * ge->load.weight =
2920 *
2921 * tg->weight * grq->load.weight
2922 * --------------------------------------------------- (5)
2923 * tg->load_avg - grq->avg.load_avg + grq->load.weight
2924 *
2925 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2926 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2927 *
2928 *
2929 * tg->weight * grq->load.weight
2930 * ge->load.weight = ----------------------------- (6)
2931 * tg_load_avg'
2932 *
2933 * Where:
2934 *
2935 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2936 * max(grq->load.weight, grq->avg.load_avg)
2937 *
2938 * And that is shares_weight and is icky. In the (near) UP case it approaches
2939 * (4) while in the normal case it approaches (3). It consistently
2940 * overestimates the ge->load.weight and therefore:
2941 *
2942 * \Sum ge->load.weight >= tg->weight
2943 *
2944 * hence icky!
2945 */
2946 static long calc_group_shares(struct cfs_rq *cfs_rq)
2947 {
2948 long tg_weight, tg_shares, load, shares;
2949 struct task_group *tg = cfs_rq->tg;
2950
2951 tg_shares = READ_ONCE(tg->shares);
2952
2953 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2954
2955 tg_weight = atomic_long_read(&tg->load_avg);
2956
2957 /* Ensure tg_weight >= load */
2958 tg_weight -= cfs_rq->tg_load_avg_contrib;
2959 tg_weight += load;
2960
2961 shares = (tg_shares * load);
2962 if (tg_weight)
2963 shares /= tg_weight;
2964
2965 /*
2966 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2967 * of a group with small tg->shares value. It is a floor value which is
2968 * assigned as a minimum load.weight to the sched_entity representing
2969 * the group on a CPU.
2970 *
2971 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2972 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2973 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2974 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2975 * instead of 0.
2976 */
2977 return clamp_t(long, shares, MIN_SHARES, tg_shares);
2978 }
2979
2980 /*
2981 * This calculates the effective runnable weight for a group entity based on
2982 * the group entity weight calculated above.
2983 *
2984 * Because of the above approximation (2), our group entity weight is
2985 * an load_avg based ratio (3). This means that it includes blocked load and
2986 * does not represent the runnable weight.
2987 *
2988 * Approximate the group entity's runnable weight per ratio from the group
2989 * runqueue:
2990 *
2991 * grq->avg.runnable_load_avg
2992 * ge->runnable_weight = ge->load.weight * -------------------------- (7)
2993 * grq->avg.load_avg
2994 *
2995 * However, analogous to above, since the avg numbers are slow, this leads to
2996 * transients in the from-idle case. Instead we use:
2997 *
2998 * ge->runnable_weight = ge->load.weight *
2999 *
3000 * max(grq->avg.runnable_load_avg, grq->runnable_weight)
3001 * ----------------------------------------------------- (8)
3002 * max(grq->avg.load_avg, grq->load.weight)
3003 *
3004 * Where these max() serve both to use the 'instant' values to fix the slow
3005 * from-idle and avoid the /0 on to-idle, similar to (6).
3006 */
3007 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
3008 {
3009 long runnable, load_avg;
3010
3011 load_avg = max(cfs_rq->avg.load_avg,
3012 scale_load_down(cfs_rq->load.weight));
3013
3014 runnable = max(cfs_rq->avg.runnable_load_avg,
3015 scale_load_down(cfs_rq->runnable_weight));
3016
3017 runnable *= shares;
3018 if (load_avg)
3019 runnable /= load_avg;
3020
3021 return clamp_t(long, runnable, MIN_SHARES, shares);
3022 }
3023 # endif /* CONFIG_SMP */
3024
3025 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3026
3027 /*
3028 * Recomputes the group entity based on the current state of its group
3029 * runqueue.
3030 */
3031 static void update_cfs_group(struct sched_entity *se)
3032 {
3033 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3034 long shares, runnable;
3035
3036 if (!gcfs_rq)
3037 return;
3038
3039 if (throttled_hierarchy(gcfs_rq))
3040 return;
3041
3042 #ifndef CONFIG_SMP
3043 runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3044
3045 if (likely(se->load.weight == shares))
3046 return;
3047 #else
3048 shares = calc_group_shares(gcfs_rq);
3049 runnable = calc_group_runnable(gcfs_rq, shares);
3050 #endif
3051
3052 reweight_entity(cfs_rq_of(se), se, shares, runnable);
3053 }
3054
3055 #else /* CONFIG_FAIR_GROUP_SCHED */
3056 static inline void update_cfs_group(struct sched_entity *se)
3057 {
3058 }
3059 #endif /* CONFIG_FAIR_GROUP_SCHED */
3060
3061 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3062 {
3063 struct rq *rq = rq_of(cfs_rq);
3064
3065 if (&rq->cfs == cfs_rq) {
3066 /*
3067 * There are a few boundary cases this might miss but it should
3068 * get called often enough that that should (hopefully) not be
3069 * a real problem -- added to that it only calls on the local
3070 * CPU, so if we enqueue remotely we'll miss an update, but
3071 * the next tick/schedule should update.
3072 *
3073 * It will not get called when we go idle, because the idle
3074 * thread is a different class (!fair), nor will the utilization
3075 * number include things like RT tasks.
3076 *
3077 * As is, the util number is not freq-invariant (we'd have to
3078 * implement arch_scale_freq_capacity() for that).
3079 *
3080 * See cpu_util().
3081 */
3082 cpufreq_update_util(rq, 0);
3083 }
3084 }
3085
3086 #ifdef CONFIG_SMP
3087 /*
3088 * Approximate:
3089 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
3090 */
3091 static u64 decay_load(u64 val, u64 n)
3092 {
3093 unsigned int local_n;
3094
3095 if (unlikely(n > LOAD_AVG_PERIOD * 63))
3096 return 0;
3097
3098 /* after bounds checking we can collapse to 32-bit */
3099 local_n = n;
3100
3101 /*
3102 * As y^PERIOD = 1/2, we can combine
3103 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
3104 * With a look-up table which covers y^n (n<PERIOD)
3105 *
3106 * To achieve constant time decay_load.
3107 */
3108 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
3109 val >>= local_n / LOAD_AVG_PERIOD;
3110 local_n %= LOAD_AVG_PERIOD;
3111 }
3112
3113 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
3114 return val;
3115 }
3116
3117 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
3118 {
3119 u32 c1, c2, c3 = d3; /* y^0 == 1 */
3120
3121 /*
3122 * c1 = d1 y^p
3123 */
3124 c1 = decay_load((u64)d1, periods);
3125
3126 /*
3127 * p-1
3128 * c2 = 1024 \Sum y^n
3129 * n=1
3130 *
3131 * inf inf
3132 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
3133 * n=0 n=p
3134 */
3135 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
3136
3137 return c1 + c2 + c3;
3138 }
3139
3140 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
3141
3142 /*
3143 * Accumulate the three separate parts of the sum; d1 the remainder
3144 * of the last (incomplete) period, d2 the span of full periods and d3
3145 * the remainder of the (incomplete) current period.
3146 *
3147 * d1 d2 d3
3148 * ^ ^ ^
3149 * | | |
3150 * |<->|<----------------->|<--->|
3151 * ... |---x---|------| ... |------|-----x (now)
3152 *
3153 * p-1
3154 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
3155 * n=1
3156 *
3157 * = u y^p + (Step 1)
3158 *
3159 * p-1
3160 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
3161 * n=1
3162 */
3163 static __always_inline u32
3164 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
3165 unsigned long load, unsigned long runnable, int running)
3166 {
3167 unsigned long scale_freq, scale_cpu;
3168 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
3169 u64 periods;
3170
3171 scale_freq = arch_scale_freq_capacity(NULL, cpu);
3172 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
3173
3174 delta += sa->period_contrib;
3175 periods = delta / 1024; /* A period is 1024us (~1ms) */
3176
3177 /*
3178 * Step 1: decay old *_sum if we crossed period boundaries.
3179 */
3180 if (periods) {
3181 sa->load_sum = decay_load(sa->load_sum, periods);
3182 sa->runnable_load_sum =
3183 decay_load(sa->runnable_load_sum, periods);
3184 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
3185
3186 /*
3187 * Step 2
3188 */
3189 delta %= 1024;
3190 contrib = __accumulate_pelt_segments(periods,
3191 1024 - sa->period_contrib, delta);
3192 }
3193 sa->period_contrib = delta;
3194
3195 contrib = cap_scale(contrib, scale_freq);
3196 if (load)
3197 sa->load_sum += load * contrib;
3198 if (runnable)
3199 sa->runnable_load_sum += runnable * contrib;
3200 if (running)
3201 sa->util_sum += contrib * scale_cpu;
3202
3203 return periods;
3204 }
3205
3206 /*
3207 * We can represent the historical contribution to runnable average as the
3208 * coefficients of a geometric series. To do this we sub-divide our runnable
3209 * history into segments of approximately 1ms (1024us); label the segment that
3210 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
3211 *
3212 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
3213 * p0 p1 p2
3214 * (now) (~1ms ago) (~2ms ago)
3215 *
3216 * Let u_i denote the fraction of p_i that the entity was runnable.
3217 *
3218 * We then designate the fractions u_i as our co-efficients, yielding the
3219 * following representation of historical load:
3220 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
3221 *
3222 * We choose y based on the with of a reasonably scheduling period, fixing:
3223 * y^32 = 0.5
3224 *
3225 * This means that the contribution to load ~32ms ago (u_32) will be weighted
3226 * approximately half as much as the contribution to load within the last ms
3227 * (u_0).
3228 *
3229 * When a period "rolls over" and we have new u_0`, multiplying the previous
3230 * sum again by y is sufficient to update:
3231 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
3232 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
3233 */
3234 static __always_inline int
3235 ___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
3236 unsigned long load, unsigned long runnable, int running)
3237 {
3238 u64 delta;
3239
3240 delta = now - sa->last_update_time;
3241 /*
3242 * This should only happen when time goes backwards, which it
3243 * unfortunately does during sched clock init when we swap over to TSC.
3244 */
3245 if ((s64)delta < 0) {
3246 sa->last_update_time = now;
3247 return 0;
3248 }
3249
3250 /*
3251 * Use 1024ns as the unit of measurement since it's a reasonable
3252 * approximation of 1us and fast to compute.
3253 */
3254 delta >>= 10;
3255 if (!delta)
3256 return 0;
3257
3258 sa->last_update_time += delta << 10;
3259
3260 /*
3261 * running is a subset of runnable (weight) so running can't be set if
3262 * runnable is clear. But there are some corner cases where the current
3263 * se has been already dequeued but cfs_rq->curr still points to it.
3264 * This means that weight will be 0 but not running for a sched_entity
3265 * but also for a cfs_rq if the latter becomes idle. As an example,
3266 * this happens during idle_balance() which calls
3267 * update_blocked_averages()
3268 */
3269 if (!load)
3270 runnable = running = 0;
3271
3272 /*
3273 * Now we know we crossed measurement unit boundaries. The *_avg
3274 * accrues by two steps:
3275 *
3276 * Step 1: accumulate *_sum since last_update_time. If we haven't
3277 * crossed period boundaries, finish.
3278 */
3279 if (!accumulate_sum(delta, cpu, sa, load, runnable, running))
3280 return 0;
3281
3282 return 1;
3283 }
3284
3285 static __always_inline void
3286 ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable)
3287 {
3288 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3289
3290 /*
3291 * Step 2: update *_avg.
3292 */
3293 sa->load_avg = div_u64(load * sa->load_sum, divider);
3294 sa->runnable_load_avg = div_u64(runnable * sa->runnable_load_sum, divider);
3295 sa->util_avg = sa->util_sum / divider;
3296 }
3297
3298 /*
3299 * sched_entity:
3300 *
3301 * task:
3302 * se_runnable() == se_weight()
3303 *
3304 * group: [ see update_cfs_group() ]
3305 * se_weight() = tg->weight * grq->load_avg / tg->load_avg
3306 * se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg
3307 *
3308 * load_sum := runnable_sum
3309 * load_avg = se_weight(se) * runnable_avg
3310 *
3311 * runnable_load_sum := runnable_sum
3312 * runnable_load_avg = se_runnable(se) * runnable_avg
3313 *
3314 * XXX collapse load_sum and runnable_load_sum
3315 *
3316 * cfq_rs:
3317 *
3318 * load_sum = \Sum se_weight(se) * se->avg.load_sum
3319 * load_avg = \Sum se->avg.load_avg
3320 *
3321 * runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum
3322 * runnable_load_avg = \Sum se->avg.runable_load_avg
3323 */
3324
3325 static int
3326 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3327 {
3328 if (entity_is_task(se))
3329 se->runnable_weight = se->load.weight;
3330
3331 if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) {
3332 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3333 return 1;
3334 }
3335
3336 return 0;
3337 }
3338
3339 static int
3340 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3341 {
3342 if (entity_is_task(se))
3343 se->runnable_weight = se->load.weight;
3344
3345 if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq,
3346 cfs_rq->curr == se)) {
3347
3348 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3349 return 1;
3350 }
3351
3352 return 0;
3353 }
3354
3355 static int
3356 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3357 {
3358 if (___update_load_sum(now, cpu, &cfs_rq->avg,
3359 scale_load_down(cfs_rq->load.weight),
3360 scale_load_down(cfs_rq->runnable_weight),
3361 cfs_rq->curr != NULL)) {
3362
3363 ___update_load_avg(&cfs_rq->avg, 1, 1);
3364 return 1;
3365 }
3366
3367 return 0;
3368 }
3369
3370 #ifdef CONFIG_FAIR_GROUP_SCHED
3371 /**
3372 * update_tg_load_avg - update the tg's load avg
3373 * @cfs_rq: the cfs_rq whose avg changed
3374 * @force: update regardless of how small the difference
3375 *
3376 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3377 * However, because tg->load_avg is a global value there are performance
3378 * considerations.
3379 *
3380 * In order to avoid having to look at the other cfs_rq's, we use a
3381 * differential update where we store the last value we propagated. This in
3382 * turn allows skipping updates if the differential is 'small'.
3383 *
3384 * Updating tg's load_avg is necessary before update_cfs_share().
3385 */
3386 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3387 {
3388 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3389
3390 /*
3391 * No need to update load_avg for root_task_group as it is not used.
3392 */
3393 if (cfs_rq->tg == &root_task_group)
3394 return;
3395
3396 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3397 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3398 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3399 }
3400 }
3401
3402 /*
3403 * Called within set_task_rq() right before setting a task's cpu. The
3404 * caller only guarantees p->pi_lock is held; no other assumptions,
3405 * including the state of rq->lock, should be made.
3406 */
3407 void set_task_rq_fair(struct sched_entity *se,
3408 struct cfs_rq *prev, struct cfs_rq *next)
3409 {
3410 u64 p_last_update_time;
3411 u64 n_last_update_time;
3412
3413 if (!sched_feat(ATTACH_AGE_LOAD))
3414 return;
3415
3416 /*
3417 * We are supposed to update the task to "current" time, then its up to
3418 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3419 * getting what current time is, so simply throw away the out-of-date
3420 * time. This will result in the wakee task is less decayed, but giving
3421 * the wakee more load sounds not bad.
3422 */
3423 if (!(se->avg.last_update_time && prev))
3424 return;
3425
3426 #ifndef CONFIG_64BIT
3427 {
3428 u64 p_last_update_time_copy;
3429 u64 n_last_update_time_copy;
3430
3431 do {
3432 p_last_update_time_copy = prev->load_last_update_time_copy;
3433 n_last_update_time_copy = next->load_last_update_time_copy;
3434
3435 smp_rmb();
3436
3437 p_last_update_time = prev->avg.last_update_time;
3438 n_last_update_time = next->avg.last_update_time;
3439
3440 } while (p_last_update_time != p_last_update_time_copy ||
3441 n_last_update_time != n_last_update_time_copy);
3442 }
3443 #else
3444 p_last_update_time = prev->avg.last_update_time;
3445 n_last_update_time = next->avg.last_update_time;
3446 #endif
3447 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3448 se->avg.last_update_time = n_last_update_time;
3449 }
3450
3451
3452 /*
3453 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3454 * propagate its contribution. The key to this propagation is the invariant
3455 * that for each group:
3456 *
3457 * ge->avg == grq->avg (1)
3458 *
3459 * _IFF_ we look at the pure running and runnable sums. Because they
3460 * represent the very same entity, just at different points in the hierarchy.
3461 *
3462 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3463 * sum over (but still wrong, because the group entity and group rq do not have
3464 * their PELT windows aligned).
3465 *
3466 * However, update_tg_cfs_runnable() is more complex. So we have:
3467 *
3468 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3469 *
3470 * And since, like util, the runnable part should be directly transferable,
3471 * the following would _appear_ to be the straight forward approach:
3472 *
3473 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3474 *
3475 * And per (1) we have:
3476 *
3477 * ge->avg.runnable_avg == grq->avg.runnable_avg
3478 *
3479 * Which gives:
3480 *
3481 * ge->load.weight * grq->avg.load_avg
3482 * ge->avg.load_avg = ----------------------------------- (4)
3483 * grq->load.weight
3484 *
3485 * Except that is wrong!
3486 *
3487 * Because while for entities historical weight is not important and we
3488 * really only care about our future and therefore can consider a pure
3489 * runnable sum, runqueues can NOT do this.
3490 *
3491 * We specifically want runqueues to have a load_avg that includes
3492 * historical weights. Those represent the blocked load, the load we expect
3493 * to (shortly) return to us. This only works by keeping the weights as
3494 * integral part of the sum. We therefore cannot decompose as per (3).
3495 *
3496 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3497 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3498 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3499 * runnable section of these tasks overlap (or not). If they were to perfectly
3500 * align the rq as a whole would be runnable 2/3 of the time. If however we
3501 * always have at least 1 runnable task, the rq as a whole is always runnable.
3502 *
3503 * So we'll have to approximate.. :/
3504 *
3505 * Given the constraint:
3506 *
3507 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3508 *
3509 * We can construct a rule that adds runnable to a rq by assuming minimal
3510 * overlap.
3511 *
3512 * On removal, we'll assume each task is equally runnable; which yields:
3513 *
3514 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3515 *
3516 * XXX: only do this for the part of runnable > running ?
3517 *
3518 */
3519
3520 static inline void
3521 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3522 {
3523 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3524
3525 /* Nothing to update */
3526 if (!delta)
3527 return;
3528
3529 /*
3530 * The relation between sum and avg is:
3531 *
3532 * LOAD_AVG_MAX - 1024 + sa->period_contrib
3533 *
3534 * however, the PELT windows are not aligned between grq and gse.
3535 */
3536
3537 /* Set new sched_entity's utilization */
3538 se->avg.util_avg = gcfs_rq->avg.util_avg;
3539 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3540
3541 /* Update parent cfs_rq utilization */
3542 add_positive(&cfs_rq->avg.util_avg, delta);
3543 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3544 }
3545
3546 static inline void
3547 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3548 {
3549 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3550 unsigned long runnable_load_avg, load_avg;
3551 u64 runnable_load_sum, load_sum = 0;
3552 s64 delta_sum;
3553
3554 if (!runnable_sum)
3555 return;
3556
3557 gcfs_rq->prop_runnable_sum = 0;
3558
3559 if (runnable_sum >= 0) {
3560 /*
3561 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3562 * the CPU is saturated running == runnable.
3563 */
3564 runnable_sum += se->avg.load_sum;
3565 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3566 } else {
3567 /*
3568 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3569 * assuming all tasks are equally runnable.
3570 */
3571 if (scale_load_down(gcfs_rq->load.weight)) {
3572 load_sum = div_s64(gcfs_rq->avg.load_sum,
3573 scale_load_down(gcfs_rq->load.weight));
3574 }
3575
3576 /* But make sure to not inflate se's runnable */
3577 runnable_sum = min(se->avg.load_sum, load_sum);
3578 }
3579
3580 /*
3581 * runnable_sum can't be lower than running_sum
3582 * As running sum is scale with cpu capacity wehreas the runnable sum
3583 * is not we rescale running_sum 1st
3584 */
3585 running_sum = se->avg.util_sum /
3586 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3587 runnable_sum = max(runnable_sum, running_sum);
3588
3589 load_sum = (s64)se_weight(se) * runnable_sum;
3590 load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3591
3592 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3593 delta_avg = load_avg - se->avg.load_avg;
3594
3595 se->avg.load_sum = runnable_sum;
3596 se->avg.load_avg = load_avg;
3597 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3598 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3599
3600 runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3601 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3602 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3603 delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3604
3605 se->avg.runnable_load_sum = runnable_sum;
3606 se->avg.runnable_load_avg = runnable_load_avg;
3607
3608 if (se->on_rq) {
3609 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3610 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3611 }
3612 }
3613
3614 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3615 {
3616 cfs_rq->propagate = 1;
3617 cfs_rq->prop_runnable_sum += runnable_sum;
3618 }
3619
3620 /* Update task and its cfs_rq load average */
3621 static inline int propagate_entity_load_avg(struct sched_entity *se)
3622 {
3623 struct cfs_rq *cfs_rq, *gcfs_rq;
3624
3625 if (entity_is_task(se))
3626 return 0;
3627
3628 gcfs_rq = group_cfs_rq(se);
3629 if (!gcfs_rq->propagate)
3630 return 0;
3631
3632 gcfs_rq->propagate = 0;
3633
3634 cfs_rq = cfs_rq_of(se);
3635
3636 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3637
3638 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3639 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3640
3641 return 1;
3642 }
3643
3644 /*
3645 * Check if we need to update the load and the utilization of a blocked
3646 * group_entity:
3647 */
3648 static inline bool skip_blocked_update(struct sched_entity *se)
3649 {
3650 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3651
3652 /*
3653 * If sched_entity still have not zero load or utilization, we have to
3654 * decay it:
3655 */
3656 if (se->avg.load_avg || se->avg.util_avg)
3657 return false;
3658
3659 /*
3660 * If there is a pending propagation, we have to update the load and
3661 * the utilization of the sched_entity:
3662 */
3663 if (gcfs_rq->propagate)
3664 return false;
3665
3666 /*
3667 * Otherwise, the load and the utilization of the sched_entity is
3668 * already zero and there is no pending propagation, so it will be a
3669 * waste of time to try to decay it:
3670 */
3671 return true;
3672 }
3673
3674 #else /* CONFIG_FAIR_GROUP_SCHED */
3675
3676 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3677
3678 static inline int propagate_entity_load_avg(struct sched_entity *se)
3679 {
3680 return 0;
3681 }
3682
3683 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3684
3685 #endif /* CONFIG_FAIR_GROUP_SCHED */
3686
3687 /**
3688 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3689 * @now: current time, as per cfs_rq_clock_task()
3690 * @cfs_rq: cfs_rq to update
3691 *
3692 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3693 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3694 * post_init_entity_util_avg().
3695 *
3696 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3697 *
3698 * Returns true if the load decayed or we removed load.
3699 *
3700 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3701 * call update_tg_load_avg() when this function returns true.
3702 */
3703 static inline int
3704 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3705 {
3706 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3707 struct sched_avg *sa = &cfs_rq->avg;
3708 int decayed = 0;
3709
3710 if (cfs_rq->removed.nr) {
3711 unsigned long r;
3712 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3713
3714 raw_spin_lock(&cfs_rq->removed.lock);
3715 swap(cfs_rq->removed.util_avg, removed_util);
3716 swap(cfs_rq->removed.load_avg, removed_load);
3717 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3718 cfs_rq->removed.nr = 0;
3719 raw_spin_unlock(&cfs_rq->removed.lock);
3720
3721 r = removed_load;
3722 sub_positive(&sa->load_avg, r);
3723 sub_positive(&sa->load_sum, r * divider);
3724
3725 r = removed_util;
3726 sub_positive(&sa->util_avg, r);
3727 sub_positive(&sa->util_sum, r * divider);
3728
3729 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3730
3731 decayed = 1;
3732 }
3733
3734 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3735
3736 #ifndef CONFIG_64BIT
3737 smp_wmb();
3738 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3739 #endif
3740
3741 if (decayed)
3742 cfs_rq_util_change(cfs_rq);
3743
3744 return decayed;
3745 }
3746
3747 /**
3748 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3749 * @cfs_rq: cfs_rq to attach to
3750 * @se: sched_entity to attach
3751 *
3752 * Must call update_cfs_rq_load_avg() before this, since we rely on
3753 * cfs_rq->avg.last_update_time being current.
3754 */
3755 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3756 {
3757 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3758
3759 /*
3760 * When we attach the @se to the @cfs_rq, we must align the decay
3761 * window because without that, really weird and wonderful things can
3762 * happen.
3763 *
3764 * XXX illustrate
3765 */
3766 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3767 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3768
3769 /*
3770 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3771 * period_contrib. This isn't strictly correct, but since we're
3772 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3773 * _sum a little.
3774 */
3775 se->avg.util_sum = se->avg.util_avg * divider;
3776
3777 se->avg.load_sum = divider;
3778 if (se_weight(se)) {
3779 se->avg.load_sum =
3780 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3781 }
3782
3783 se->avg.runnable_load_sum = se->avg.load_sum;
3784
3785 enqueue_load_avg(cfs_rq, se);
3786 cfs_rq->avg.util_avg += se->avg.util_avg;
3787 cfs_rq->avg.util_sum += se->avg.util_sum;
3788
3789 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3790
3791 cfs_rq_util_change(cfs_rq);
3792 }
3793
3794 /**
3795 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3796 * @cfs_rq: cfs_rq to detach from
3797 * @se: sched_entity to detach
3798 *
3799 * Must call update_cfs_rq_load_avg() before this, since we rely on
3800 * cfs_rq->avg.last_update_time being current.
3801 */
3802 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3803 {
3804 dequeue_load_avg(cfs_rq, se);
3805 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3806 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3807
3808 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3809
3810 cfs_rq_util_change(cfs_rq);
3811 }
3812
3813 /*
3814 * Optional action to be done while updating the load average
3815 */
3816 #define UPDATE_TG 0x1
3817 #define SKIP_AGE_LOAD 0x2
3818 #define DO_ATTACH 0x4
3819
3820 /* Update task and its cfs_rq load average */
3821 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3822 {
3823 u64 now = cfs_rq_clock_task(cfs_rq);
3824 struct rq *rq = rq_of(cfs_rq);
3825 int cpu = cpu_of(rq);
3826 int decayed;
3827
3828 /*
3829 * Track task load average for carrying it to new CPU after migrated, and
3830 * track group sched_entity load average for task_h_load calc in migration
3831 */
3832 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3833 __update_load_avg_se(now, cpu, cfs_rq, se);
3834
3835 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3836 decayed |= propagate_entity_load_avg(se);
3837
3838 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3839
3840 attach_entity_load_avg(cfs_rq, se);
3841 update_tg_load_avg(cfs_rq, 0);
3842
3843 } else if (decayed && (flags & UPDATE_TG))
3844 update_tg_load_avg(cfs_rq, 0);
3845 }
3846
3847 #ifndef CONFIG_64BIT
3848 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3849 {
3850 u64 last_update_time_copy;
3851 u64 last_update_time;
3852
3853 do {
3854 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3855 smp_rmb();
3856 last_update_time = cfs_rq->avg.last_update_time;
3857 } while (last_update_time != last_update_time_copy);
3858
3859 return last_update_time;
3860 }
3861 #else
3862 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3863 {
3864 return cfs_rq->avg.last_update_time;
3865 }
3866 #endif
3867
3868 /*
3869 * Synchronize entity load avg of dequeued entity without locking
3870 * the previous rq.
3871 */
3872 void sync_entity_load_avg(struct sched_entity *se)
3873 {
3874 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3875 u64 last_update_time;
3876
3877 last_update_time = cfs_rq_last_update_time(cfs_rq);
3878 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3879 }
3880
3881 /*
3882 * Task first catches up with cfs_rq, and then subtract
3883 * itself from the cfs_rq (task must be off the queue now).
3884 */
3885 void remove_entity_load_avg(struct sched_entity *se)
3886 {
3887 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3888 unsigned long flags;
3889
3890 /*
3891 * tasks cannot exit without having gone through wake_up_new_task() ->
3892 * post_init_entity_util_avg() which will have added things to the
3893 * cfs_rq, so we can remove unconditionally.
3894 *
3895 * Similarly for groups, they will have passed through
3896 * post_init_entity_util_avg() before unregister_sched_fair_group()
3897 * calls this.
3898 */
3899
3900 sync_entity_load_avg(se);
3901
3902 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3903 ++cfs_rq->removed.nr;
3904 cfs_rq->removed.util_avg += se->avg.util_avg;
3905 cfs_rq->removed.load_avg += se->avg.load_avg;
3906 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */
3907 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3908 }
3909
3910 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3911 {
3912 return cfs_rq->avg.runnable_load_avg;
3913 }
3914
3915 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3916 {
3917 return cfs_rq->avg.load_avg;
3918 }
3919
3920 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3921
3922 #else /* CONFIG_SMP */
3923
3924 static inline int
3925 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3926 {
3927 return 0;
3928 }
3929
3930 #define UPDATE_TG 0x0
3931 #define SKIP_AGE_LOAD 0x0
3932 #define DO_ATTACH 0x0
3933
3934 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3935 {
3936 cfs_rq_util_change(cfs_rq);
3937 }
3938
3939 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3940
3941 static inline void
3942 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3943 static inline void
3944 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3945
3946 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3947 {
3948 return 0;
3949 }
3950
3951 #endif /* CONFIG_SMP */
3952
3953 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3954 {
3955 #ifdef CONFIG_SCHED_DEBUG
3956 s64 d = se->vruntime - cfs_rq->min_vruntime;
3957
3958 if (d < 0)
3959 d = -d;
3960
3961 if (d > 3*sysctl_sched_latency)
3962 schedstat_inc(cfs_rq->nr_spread_over);
3963 #endif
3964 }
3965
3966 static void
3967 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3968 {
3969 u64 vruntime = cfs_rq->min_vruntime;
3970
3971 /*
3972 * The 'current' period is already promised to the current tasks,
3973 * however the extra weight of the new task will slow them down a
3974 * little, place the new task so that it fits in the slot that
3975 * stays open at the end.
3976 */
3977 if (initial && sched_feat(START_DEBIT))
3978 vruntime += sched_vslice(cfs_rq, se);
3979
3980 /* sleeps up to a single latency don't count. */
3981 if (!initial) {
3982 unsigned long thresh = sysctl_sched_latency;
3983
3984 /*
3985 * Halve their sleep time's effect, to allow
3986 * for a gentler effect of sleepers:
3987 */
3988 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3989 thresh >>= 1;
3990
3991 vruntime -= thresh;
3992 }
3993
3994 /* ensure we never gain time by being placed backwards. */
3995 se->vruntime = max_vruntime(se->vruntime, vruntime);
3996 }
3997
3998 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3999
4000 static inline void check_schedstat_required(void)
4001 {
4002 #ifdef CONFIG_SCHEDSTATS
4003 if (schedstat_enabled())
4004 return;
4005
4006 /* Force schedstat enabled if a dependent tracepoint is active */
4007 if (trace_sched_stat_wait_enabled() ||
4008 trace_sched_stat_sleep_enabled() ||
4009 trace_sched_stat_iowait_enabled() ||
4010 trace_sched_stat_blocked_enabled() ||
4011 trace_sched_stat_runtime_enabled()) {
4012 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4013 "stat_blocked and stat_runtime require the "
4014 "kernel parameter schedstats=enable or "
4015 "kernel.sched_schedstats=1\n");
4016 }
4017 #endif
4018 }
4019
4020
4021 /*
4022 * MIGRATION
4023 *
4024 * dequeue
4025 * update_curr()
4026 * update_min_vruntime()
4027 * vruntime -= min_vruntime
4028 *
4029 * enqueue
4030 * update_curr()
4031 * update_min_vruntime()
4032 * vruntime += min_vruntime
4033 *
4034 * this way the vruntime transition between RQs is done when both
4035 * min_vruntime are up-to-date.
4036 *
4037 * WAKEUP (remote)
4038 *
4039 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4040 * vruntime -= min_vruntime
4041 *
4042 * enqueue
4043 * update_curr()
4044 * update_min_vruntime()
4045 * vruntime += min_vruntime
4046 *
4047 * this way we don't have the most up-to-date min_vruntime on the originating
4048 * CPU and an up-to-date min_vruntime on the destination CPU.
4049 */
4050
4051 static void
4052 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4053 {
4054 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4055 bool curr = cfs_rq->curr == se;
4056
4057 /*
4058 * If we're the current task, we must renormalise before calling
4059 * update_curr().
4060 */
4061 if (renorm && curr)
4062 se->vruntime += cfs_rq->min_vruntime;
4063
4064 update_curr(cfs_rq);
4065
4066 /*
4067 * Otherwise, renormalise after, such that we're placed at the current
4068 * moment in time, instead of some random moment in the past. Being
4069 * placed in the past could significantly boost this task to the
4070 * fairness detriment of existing tasks.
4071 */
4072 if (renorm && !curr)
4073 se->vruntime += cfs_rq->min_vruntime;
4074
4075 /*
4076 * When enqueuing a sched_entity, we must:
4077 * - Update loads to have both entity and cfs_rq synced with now.
4078 * - Add its load to cfs_rq->runnable_avg
4079 * - For group_entity, update its weight to reflect the new share of
4080 * its group cfs_rq
4081 * - Add its new weight to cfs_rq->load.weight
4082 */
4083 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4084 update_cfs_group(se);
4085 enqueue_runnable_load_avg(cfs_rq, se);
4086 account_entity_enqueue(cfs_rq, se);
4087
4088 if (flags & ENQUEUE_WAKEUP)
4089 place_entity(cfs_rq, se, 0);
4090
4091 check_schedstat_required();
4092 update_stats_enqueue(cfs_rq, se, flags);
4093 check_spread(cfs_rq, se);
4094 if (!curr)
4095 __enqueue_entity(cfs_rq, se);
4096 se->on_rq = 1;
4097
4098 if (cfs_rq->nr_running == 1) {
4099 list_add_leaf_cfs_rq(cfs_rq);
4100 check_enqueue_throttle(cfs_rq);
4101 }
4102 }
4103
4104 static void __clear_buddies_last(struct sched_entity *se)
4105 {
4106 for_each_sched_entity(se) {
4107 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4108 if (cfs_rq->last != se)
4109 break;
4110
4111 cfs_rq->last = NULL;
4112 }
4113 }
4114
4115 static void __clear_buddies_next(struct sched_entity *se)
4116 {
4117 for_each_sched_entity(se) {
4118 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4119 if (cfs_rq->next != se)
4120 break;
4121
4122 cfs_rq->next = NULL;
4123 }
4124 }
4125
4126 static void __clear_buddies_skip(struct sched_entity *se)
4127 {
4128 for_each_sched_entity(se) {
4129 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4130 if (cfs_rq->skip != se)
4131 break;
4132
4133 cfs_rq->skip = NULL;
4134 }
4135 }
4136
4137 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4138 {
4139 if (cfs_rq->last == se)
4140 __clear_buddies_last(se);
4141
4142 if (cfs_rq->next == se)
4143 __clear_buddies_next(se);
4144
4145 if (cfs_rq->skip == se)
4146 __clear_buddies_skip(se);
4147 }
4148
4149 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4150
4151 static void
4152 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4153 {
4154 /*
4155 * Update run-time statistics of the 'current'.
4156 */
4157 update_curr(cfs_rq);
4158
4159 /*
4160 * When dequeuing a sched_entity, we must:
4161 * - Update loads to have both entity and cfs_rq synced with now.
4162 * - Substract its load from the cfs_rq->runnable_avg.
4163 * - Substract its previous weight from cfs_rq->load.weight.
4164 * - For group entity, update its weight to reflect the new share
4165 * of its group cfs_rq.
4166 */
4167 update_load_avg(cfs_rq, se, UPDATE_TG);
4168 dequeue_runnable_load_avg(cfs_rq, se);
4169
4170 update_stats_dequeue(cfs_rq, se, flags);
4171
4172 clear_buddies(cfs_rq, se);
4173
4174 if (se != cfs_rq->curr)
4175 __dequeue_entity(cfs_rq, se);
4176 se->on_rq = 0;
4177 account_entity_dequeue(cfs_rq, se);
4178
4179 /*
4180 * Normalize after update_curr(); which will also have moved
4181 * min_vruntime if @se is the one holding it back. But before doing
4182 * update_min_vruntime() again, which will discount @se's position and
4183 * can move min_vruntime forward still more.
4184 */
4185 if (!(flags & DEQUEUE_SLEEP))
4186 se->vruntime -= cfs_rq->min_vruntime;
4187
4188 /* return excess runtime on last dequeue */
4189 return_cfs_rq_runtime(cfs_rq);
4190
4191 update_cfs_group(se);
4192
4193 /*
4194 * Now advance min_vruntime if @se was the entity holding it back,
4195 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4196 * put back on, and if we advance min_vruntime, we'll be placed back
4197 * further than we started -- ie. we'll be penalized.
4198 */
4199 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4200 update_min_vruntime(cfs_rq);
4201 }
4202
4203 /*
4204 * Preempt the current task with a newly woken task if needed:
4205 */
4206 static void
4207 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4208 {
4209 unsigned long ideal_runtime, delta_exec;
4210 struct sched_entity *se;
4211 s64 delta;
4212
4213 ideal_runtime = sched_slice(cfs_rq, curr);
4214 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4215 if (delta_exec > ideal_runtime) {
4216 resched_curr(rq_of(cfs_rq));
4217 /*
4218 * The current task ran long enough, ensure it doesn't get
4219 * re-elected due to buddy favours.
4220 */
4221 clear_buddies(cfs_rq, curr);
4222 return;
4223 }
4224
4225 /*
4226 * Ensure that a task that missed wakeup preemption by a
4227 * narrow margin doesn't have to wait for a full slice.
4228 * This also mitigates buddy induced latencies under load.
4229 */
4230 if (delta_exec < sysctl_sched_min_granularity)
4231 return;
4232
4233 se = __pick_first_entity(cfs_rq);
4234 delta = curr->vruntime - se->vruntime;
4235
4236 if (delta < 0)
4237 return;
4238
4239 if (delta > ideal_runtime)
4240 resched_curr(rq_of(cfs_rq));
4241 }
4242
4243 static void
4244 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4245 {
4246 /* 'current' is not kept within the tree. */
4247 if (se->on_rq) {
4248 /*
4249 * Any task has to be enqueued before it get to execute on
4250 * a CPU. So account for the time it spent waiting on the
4251 * runqueue.
4252 */
4253 update_stats_wait_end(cfs_rq, se);
4254 __dequeue_entity(cfs_rq, se);
4255 update_load_avg(cfs_rq, se, UPDATE_TG);
4256 }
4257
4258 update_stats_curr_start(cfs_rq, se);
4259 cfs_rq->curr = se;
4260
4261 /*
4262 * Track our maximum slice length, if the CPU's load is at
4263 * least twice that of our own weight (i.e. dont track it
4264 * when there are only lesser-weight tasks around):
4265 */
4266 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4267 schedstat_set(se->statistics.slice_max,
4268 max((u64)schedstat_val(se->statistics.slice_max),
4269 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4270 }
4271
4272 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4273 }
4274
4275 static int
4276 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4277
4278 /*
4279 * Pick the next process, keeping these things in mind, in this order:
4280 * 1) keep things fair between processes/task groups
4281 * 2) pick the "next" process, since someone really wants that to run
4282 * 3) pick the "last" process, for cache locality
4283 * 4) do not run the "skip" process, if something else is available
4284 */
4285 static struct sched_entity *
4286 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4287 {
4288 struct sched_entity *left = __pick_first_entity(cfs_rq);
4289 struct sched_entity *se;
4290
4291 /*
4292 * If curr is set we have to see if its left of the leftmost entity
4293 * still in the tree, provided there was anything in the tree at all.
4294 */
4295 if (!left || (curr && entity_before(curr, left)))
4296 left = curr;
4297
4298 se = left; /* ideally we run the leftmost entity */
4299
4300 /*
4301 * Avoid running the skip buddy, if running something else can
4302 * be done without getting too unfair.
4303 */
4304 if (cfs_rq->skip == se) {
4305 struct sched_entity *second;
4306
4307 if (se == curr) {
4308 second = __pick_first_entity(cfs_rq);
4309 } else {
4310 second = __pick_next_entity(se);
4311 if (!second || (curr && entity_before(curr, second)))
4312 second = curr;
4313 }
4314
4315 if (second && wakeup_preempt_entity(second, left) < 1)
4316 se = second;
4317 }
4318
4319 /*
4320 * Prefer last buddy, try to return the CPU to a preempted task.
4321 */
4322 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4323 se = cfs_rq->last;
4324
4325 /*
4326 * Someone really wants this to run. If it's not unfair, run it.
4327 */
4328 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4329 se = cfs_rq->next;
4330
4331 clear_buddies(cfs_rq, se);
4332
4333 return se;
4334 }
4335
4336 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4337
4338 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4339 {
4340 /*
4341 * If still on the runqueue then deactivate_task()
4342 * was not called and update_curr() has to be done:
4343 */
4344 if (prev->on_rq)
4345 update_curr(cfs_rq);
4346
4347 /* throttle cfs_rqs exceeding runtime */
4348 check_cfs_rq_runtime(cfs_rq);
4349
4350 check_spread(cfs_rq, prev);
4351
4352 if (prev->on_rq) {
4353 update_stats_wait_start(cfs_rq, prev);
4354 /* Put 'current' back into the tree. */
4355 __enqueue_entity(cfs_rq, prev);
4356 /* in !on_rq case, update occurred at dequeue */
4357 update_load_avg(cfs_rq, prev, 0);
4358 }
4359 cfs_rq->curr = NULL;
4360 }
4361
4362 static void
4363 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4364 {
4365 /*
4366 * Update run-time statistics of the 'current'.
4367 */
4368 update_curr(cfs_rq);
4369
4370 /*
4371 * Ensure that runnable average is periodically updated.
4372 */
4373 update_load_avg(cfs_rq, curr, UPDATE_TG);
4374 update_cfs_group(curr);
4375
4376 #ifdef CONFIG_SCHED_HRTICK
4377 /*
4378 * queued ticks are scheduled to match the slice, so don't bother
4379 * validating it and just reschedule.
4380 */
4381 if (queued) {
4382 resched_curr(rq_of(cfs_rq));
4383 return;
4384 }
4385 /*
4386 * don't let the period tick interfere with the hrtick preemption
4387 */
4388 if (!sched_feat(DOUBLE_TICK) &&
4389 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4390 return;
4391 #endif
4392
4393 if (cfs_rq->nr_running > 1)
4394 check_preempt_tick(cfs_rq, curr);
4395 }
4396
4397
4398 /**************************************************
4399 * CFS bandwidth control machinery
4400 */
4401
4402 #ifdef CONFIG_CFS_BANDWIDTH
4403
4404 #ifdef HAVE_JUMP_LABEL
4405 static struct static_key __cfs_bandwidth_used;
4406
4407 static inline bool cfs_bandwidth_used(void)
4408 {
4409 return static_key_false(&__cfs_bandwidth_used);
4410 }
4411
4412 void cfs_bandwidth_usage_inc(void)
4413 {
4414 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4415 }
4416
4417 void cfs_bandwidth_usage_dec(void)
4418 {
4419 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4420 }
4421 #else /* HAVE_JUMP_LABEL */
4422 static bool cfs_bandwidth_used(void)
4423 {
4424 return true;
4425 }
4426
4427 void cfs_bandwidth_usage_inc(void) {}
4428 void cfs_bandwidth_usage_dec(void) {}
4429 #endif /* HAVE_JUMP_LABEL */
4430
4431 /*
4432 * default period for cfs group bandwidth.
4433 * default: 0.1s, units: nanoseconds
4434 */
4435 static inline u64 default_cfs_period(void)
4436 {
4437 return 100000000ULL;
4438 }
4439
4440 static inline u64 sched_cfs_bandwidth_slice(void)
4441 {
4442 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4443 }
4444
4445 /*
4446 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4447 * directly instead of rq->clock to avoid adding additional synchronization
4448 * around rq->lock.
4449 *
4450 * requires cfs_b->lock
4451 */
4452 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4453 {
4454 if (cfs_b->quota != RUNTIME_INF)
4455 cfs_b->runtime = cfs_b->quota;
4456 }
4457
4458 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4459 {
4460 return &tg->cfs_bandwidth;
4461 }
4462
4463 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4464 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4465 {
4466 if (unlikely(cfs_rq->throttle_count))
4467 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4468
4469 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4470 }
4471
4472 /* returns 0 on failure to allocate runtime */
4473 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4474 {
4475 struct task_group *tg = cfs_rq->tg;
4476 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4477 u64 amount = 0, min_amount;
4478
4479 /* note: this is a positive sum as runtime_remaining <= 0 */
4480 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4481
4482 raw_spin_lock(&cfs_b->lock);
4483 if (cfs_b->quota == RUNTIME_INF)
4484 amount = min_amount;
4485 else {
4486 start_cfs_bandwidth(cfs_b);
4487
4488 if (cfs_b->runtime > 0) {
4489 amount = min(cfs_b->runtime, min_amount);
4490 cfs_b->runtime -= amount;
4491 cfs_b->idle = 0;
4492 }
4493 }
4494 raw_spin_unlock(&cfs_b->lock);
4495
4496 cfs_rq->runtime_remaining += amount;
4497
4498 return cfs_rq->runtime_remaining > 0;
4499 }
4500
4501 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4502 {
4503 /* dock delta_exec before expiring quota (as it could span periods) */
4504 cfs_rq->runtime_remaining -= delta_exec;
4505
4506 if (likely(cfs_rq->runtime_remaining > 0))
4507 return;
4508
4509 if (cfs_rq->throttled)
4510 return;
4511 /*
4512 * if we're unable to extend our runtime we resched so that the active
4513 * hierarchy can be throttled
4514 */
4515 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4516 resched_curr(rq_of(cfs_rq));
4517 }
4518
4519 static __always_inline
4520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4521 {
4522 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4523 return;
4524
4525 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4526 }
4527
4528 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4529 {
4530 return cfs_bandwidth_used() && cfs_rq->throttled;
4531 }
4532
4533 /* check whether cfs_rq, or any parent, is throttled */
4534 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4535 {
4536 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4537 }
4538
4539 /*
4540 * Ensure that neither of the group entities corresponding to src_cpu or
4541 * dest_cpu are members of a throttled hierarchy when performing group
4542 * load-balance operations.
4543 */
4544 static inline int throttled_lb_pair(struct task_group *tg,
4545 int src_cpu, int dest_cpu)
4546 {
4547 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4548
4549 src_cfs_rq = tg->cfs_rq[src_cpu];
4550 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4551
4552 return throttled_hierarchy(src_cfs_rq) ||
4553 throttled_hierarchy(dest_cfs_rq);
4554 }
4555
4556 /* updated child weight may affect parent so we have to do this bottom up */
4557 static int tg_unthrottle_up(struct task_group *tg, void *data)
4558 {
4559 struct rq *rq = data;
4560 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4561
4562 cfs_rq->throttle_count--;
4563 if (!cfs_rq->throttle_count) {
4564 /* adjust cfs_rq_clock_task() */
4565 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4566 cfs_rq->throttled_clock_task;
4567 }
4568
4569 return 0;
4570 }
4571
4572 static int tg_throttle_down(struct task_group *tg, void *data)
4573 {
4574 struct rq *rq = data;
4575 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4576
4577 /* group is entering throttled state, stop time */
4578 if (!cfs_rq->throttle_count)
4579 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4580 cfs_rq->throttle_count++;
4581
4582 return 0;
4583 }
4584
4585 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4586 {
4587 struct rq *rq = rq_of(cfs_rq);
4588 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4589 struct sched_entity *se;
4590 long task_delta, dequeue = 1;
4591 bool empty;
4592
4593 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4594
4595 /* freeze hierarchy runnable averages while throttled */
4596 rcu_read_lock();
4597 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4598 rcu_read_unlock();
4599
4600 task_delta = cfs_rq->h_nr_running;
4601 for_each_sched_entity(se) {
4602 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4603 /* throttled entity or throttle-on-deactivate */
4604 if (!se->on_rq)
4605 break;
4606
4607 if (dequeue)
4608 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4609 qcfs_rq->h_nr_running -= task_delta;
4610
4611 if (qcfs_rq->load.weight)
4612 dequeue = 0;
4613 }
4614
4615 if (!se)
4616 sub_nr_running(rq, task_delta);
4617
4618 cfs_rq->throttled = 1;
4619 cfs_rq->throttled_clock = rq_clock(rq);
4620 raw_spin_lock(&cfs_b->lock);
4621 empty = list_empty(&cfs_b->throttled_cfs_rq);
4622
4623 /*
4624 * Add to the _head_ of the list, so that an already-started
4625 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4626 * not running add to the tail so that later runqueues don't get starved.
4627 */
4628 if (cfs_b->distribute_running)
4629 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4630 else
4631 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4632
4633 /*
4634 * If we're the first throttled task, make sure the bandwidth
4635 * timer is running.
4636 */
4637 if (empty)
4638 start_cfs_bandwidth(cfs_b);
4639
4640 raw_spin_unlock(&cfs_b->lock);
4641 }
4642
4643 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4644 {
4645 struct rq *rq = rq_of(cfs_rq);
4646 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4647 struct sched_entity *se;
4648 int enqueue = 1;
4649 long task_delta;
4650
4651 se = cfs_rq->tg->se[cpu_of(rq)];
4652
4653 cfs_rq->throttled = 0;
4654
4655 update_rq_clock(rq);
4656
4657 raw_spin_lock(&cfs_b->lock);
4658 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4659 list_del_rcu(&cfs_rq->throttled_list);
4660 raw_spin_unlock(&cfs_b->lock);
4661
4662 /* update hierarchical throttle state */
4663 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4664
4665 if (!cfs_rq->load.weight)
4666 return;
4667
4668 task_delta = cfs_rq->h_nr_running;
4669 for_each_sched_entity(se) {
4670 if (se->on_rq)
4671 enqueue = 0;
4672
4673 cfs_rq = cfs_rq_of(se);
4674 if (enqueue)
4675 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4676 cfs_rq->h_nr_running += task_delta;
4677
4678 if (cfs_rq_throttled(cfs_rq))
4679 break;
4680 }
4681
4682 if (!se)
4683 add_nr_running(rq, task_delta);
4684
4685 /* determine whether we need to wake up potentially idle cpu */
4686 if (rq->curr == rq->idle && rq->cfs.nr_running)
4687 resched_curr(rq);
4688 }
4689
4690 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining)
4691 {
4692 struct cfs_rq *cfs_rq;
4693 u64 runtime;
4694 u64 starting_runtime = remaining;
4695
4696 rcu_read_lock();
4697 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4698 throttled_list) {
4699 struct rq *rq = rq_of(cfs_rq);
4700 struct rq_flags rf;
4701
4702 rq_lock(rq, &rf);
4703 if (!cfs_rq_throttled(cfs_rq))
4704 goto next;
4705
4706 /* By the above check, this should never be true */
4707 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4708
4709 runtime = -cfs_rq->runtime_remaining + 1;
4710 if (runtime > remaining)
4711 runtime = remaining;
4712 remaining -= runtime;
4713
4714 cfs_rq->runtime_remaining += runtime;
4715
4716 /* we check whether we're throttled above */
4717 if (cfs_rq->runtime_remaining > 0)
4718 unthrottle_cfs_rq(cfs_rq);
4719
4720 next:
4721 rq_unlock(rq, &rf);
4722
4723 if (!remaining)
4724 break;
4725 }
4726 rcu_read_unlock();
4727
4728 return starting_runtime - remaining;
4729 }
4730
4731 /*
4732 * Responsible for refilling a task_group's bandwidth and unthrottling its
4733 * cfs_rqs as appropriate. If there has been no activity within the last
4734 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4735 * used to track this state.
4736 */
4737 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4738 {
4739 u64 runtime;
4740 int throttled;
4741
4742 /* no need to continue the timer with no bandwidth constraint */
4743 if (cfs_b->quota == RUNTIME_INF)
4744 goto out_deactivate;
4745
4746 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4747 cfs_b->nr_periods += overrun;
4748
4749 /*
4750 * idle depends on !throttled (for the case of a large deficit), and if
4751 * we're going inactive then everything else can be deferred
4752 */
4753 if (cfs_b->idle && !throttled)
4754 goto out_deactivate;
4755
4756 __refill_cfs_bandwidth_runtime(cfs_b);
4757
4758 if (!throttled) {
4759 /* mark as potentially idle for the upcoming period */
4760 cfs_b->idle = 1;
4761 return 0;
4762 }
4763
4764 /* account preceding periods in which throttling occurred */
4765 cfs_b->nr_throttled += overrun;
4766
4767 /*
4768 * This check is repeated as we are holding onto the new bandwidth while
4769 * we unthrottle. This can potentially race with an unthrottled group
4770 * trying to acquire new bandwidth from the global pool. This can result
4771 * in us over-using our runtime if it is all used during this loop, but
4772 * only by limited amounts in that extreme case.
4773 */
4774 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4775 runtime = cfs_b->runtime;
4776 cfs_b->distribute_running = 1;
4777 raw_spin_unlock(&cfs_b->lock);
4778 /* we can't nest cfs_b->lock while distributing bandwidth */
4779 runtime = distribute_cfs_runtime(cfs_b, runtime);
4780 raw_spin_lock(&cfs_b->lock);
4781
4782 cfs_b->distribute_running = 0;
4783 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4784
4785 lsub_positive(&cfs_b->runtime, runtime);
4786 }
4787
4788 /*
4789 * While we are ensured activity in the period following an
4790 * unthrottle, this also covers the case in which the new bandwidth is
4791 * insufficient to cover the existing bandwidth deficit. (Forcing the
4792 * timer to remain active while there are any throttled entities.)
4793 */
4794 cfs_b->idle = 0;
4795
4796 return 0;
4797
4798 out_deactivate:
4799 return 1;
4800 }
4801
4802 /* a cfs_rq won't donate quota below this amount */
4803 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4804 /* minimum remaining period time to redistribute slack quota */
4805 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4806 /* how long we wait to gather additional slack before distributing */
4807 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4808
4809 /*
4810 * Are we near the end of the current quota period?
4811 *
4812 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4813 * hrtimer base being cleared by hrtimer_start. In the case of
4814 * migrate_hrtimers, base is never cleared, so we are fine.
4815 */
4816 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4817 {
4818 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4819 u64 remaining;
4820
4821 /* if the call-back is running a quota refresh is already occurring */
4822 if (hrtimer_callback_running(refresh_timer))
4823 return 1;
4824
4825 /* is a quota refresh about to occur? */
4826 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4827 if (remaining < min_expire)
4828 return 1;
4829
4830 return 0;
4831 }
4832
4833 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4834 {
4835 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4836
4837 /* if there's a quota refresh soon don't bother with slack */
4838 if (runtime_refresh_within(cfs_b, min_left))
4839 return;
4840
4841 hrtimer_start(&cfs_b->slack_timer,
4842 ns_to_ktime(cfs_bandwidth_slack_period),
4843 HRTIMER_MODE_REL);
4844 }
4845
4846 /* we know any runtime found here is valid as update_curr() precedes return */
4847 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4848 {
4849 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4850 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4851
4852 if (slack_runtime <= 0)
4853 return;
4854
4855 raw_spin_lock(&cfs_b->lock);
4856 if (cfs_b->quota != RUNTIME_INF) {
4857 cfs_b->runtime += slack_runtime;
4858
4859 /* we are under rq->lock, defer unthrottling using a timer */
4860 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4861 !list_empty(&cfs_b->throttled_cfs_rq))
4862 start_cfs_slack_bandwidth(cfs_b);
4863 }
4864 raw_spin_unlock(&cfs_b->lock);
4865
4866 /* even if it's not valid for return we don't want to try again */
4867 cfs_rq->runtime_remaining -= slack_runtime;
4868 }
4869
4870 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4871 {
4872 if (!cfs_bandwidth_used())
4873 return;
4874
4875 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4876 return;
4877
4878 __return_cfs_rq_runtime(cfs_rq);
4879 }
4880
4881 /*
4882 * This is done with a timer (instead of inline with bandwidth return) since
4883 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4884 */
4885 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4886 {
4887 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4888
4889 /* confirm we're still not at a refresh boundary */
4890 raw_spin_lock(&cfs_b->lock);
4891 if (cfs_b->distribute_running) {
4892 raw_spin_unlock(&cfs_b->lock);
4893 return;
4894 }
4895
4896 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4897 raw_spin_unlock(&cfs_b->lock);
4898 return;
4899 }
4900
4901 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4902 runtime = cfs_b->runtime;
4903
4904 if (runtime)
4905 cfs_b->distribute_running = 1;
4906
4907 raw_spin_unlock(&cfs_b->lock);
4908
4909 if (!runtime)
4910 return;
4911
4912 runtime = distribute_cfs_runtime(cfs_b, runtime);
4913
4914 raw_spin_lock(&cfs_b->lock);
4915 lsub_positive(&cfs_b->runtime, runtime);
4916 cfs_b->distribute_running = 0;
4917 raw_spin_unlock(&cfs_b->lock);
4918 }
4919
4920 /*
4921 * When a group wakes up we want to make sure that its quota is not already
4922 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4923 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4924 */
4925 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4926 {
4927 if (!cfs_bandwidth_used())
4928 return;
4929
4930 /* an active group must be handled by the update_curr()->put() path */
4931 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4932 return;
4933
4934 /* ensure the group is not already throttled */
4935 if (cfs_rq_throttled(cfs_rq))
4936 return;
4937
4938 /* update runtime allocation */
4939 account_cfs_rq_runtime(cfs_rq, 0);
4940 if (cfs_rq->runtime_remaining <= 0)
4941 throttle_cfs_rq(cfs_rq);
4942 }
4943
4944 static void sync_throttle(struct task_group *tg, int cpu)
4945 {
4946 struct cfs_rq *pcfs_rq, *cfs_rq;
4947
4948 if (!cfs_bandwidth_used())
4949 return;
4950
4951 if (!tg->parent)
4952 return;
4953
4954 cfs_rq = tg->cfs_rq[cpu];
4955 pcfs_rq = tg->parent->cfs_rq[cpu];
4956
4957 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4958 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4959 }
4960
4961 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4962 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4963 {
4964 if (!cfs_bandwidth_used())
4965 return false;
4966
4967 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4968 return false;
4969
4970 /*
4971 * it's possible for a throttled entity to be forced into a running
4972 * state (e.g. set_curr_task), in this case we're finished.
4973 */
4974 if (cfs_rq_throttled(cfs_rq))
4975 return true;
4976
4977 throttle_cfs_rq(cfs_rq);
4978 return true;
4979 }
4980
4981 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4982 {
4983 struct cfs_bandwidth *cfs_b =
4984 container_of(timer, struct cfs_bandwidth, slack_timer);
4985
4986 do_sched_cfs_slack_timer(cfs_b);
4987
4988 return HRTIMER_NORESTART;
4989 }
4990
4991 extern const u64 max_cfs_quota_period;
4992
4993 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4994 {
4995 struct cfs_bandwidth *cfs_b =
4996 container_of(timer, struct cfs_bandwidth, period_timer);
4997 int overrun;
4998 int idle = 0;
4999 int count = 0;
5000
5001 raw_spin_lock(&cfs_b->lock);
5002 for (;;) {
5003 overrun = hrtimer_forward_now(timer, cfs_b->period);
5004 if (!overrun)
5005 break;
5006
5007 if (++count > 3) {
5008 u64 new, old = ktime_to_ns(cfs_b->period);
5009
5010 /*
5011 * Grow period by a factor of 2 to avoid losing precision.
5012 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5013 * to fail.
5014 */
5015 new = old * 2;
5016 if (new < max_cfs_quota_period) {
5017 cfs_b->period = ns_to_ktime(new);
5018 cfs_b->quota *= 2;
5019
5020 pr_warn_ratelimited(
5021 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5022 smp_processor_id(),
5023 div_u64(new, NSEC_PER_USEC),
5024 div_u64(cfs_b->quota, NSEC_PER_USEC));
5025 } else {
5026 pr_warn_ratelimited(
5027 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5028 smp_processor_id(),
5029 div_u64(old, NSEC_PER_USEC),
5030 div_u64(cfs_b->quota, NSEC_PER_USEC));
5031 }
5032
5033 /* reset count so we don't come right back in here */
5034 count = 0;
5035 }
5036
5037 idle = do_sched_cfs_period_timer(cfs_b, overrun);
5038 }
5039 if (idle)
5040 cfs_b->period_active = 0;
5041 raw_spin_unlock(&cfs_b->lock);
5042
5043 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5044 }
5045
5046 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5047 {
5048 raw_spin_lock_init(&cfs_b->lock);
5049 cfs_b->runtime = 0;
5050 cfs_b->quota = RUNTIME_INF;
5051 cfs_b->period = ns_to_ktime(default_cfs_period());
5052
5053 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5054 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5055 cfs_b->period_timer.function = sched_cfs_period_timer;
5056 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5057 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5058 cfs_b->distribute_running = 0;
5059 }
5060
5061 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5062 {
5063 cfs_rq->runtime_enabled = 0;
5064 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5065 }
5066
5067 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5068 {
5069 lockdep_assert_held(&cfs_b->lock);
5070
5071 if (!cfs_b->period_active) {
5072 cfs_b->period_active = 1;
5073 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5074 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5075 }
5076 }
5077
5078 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5079 {
5080 /* init_cfs_bandwidth() was not called */
5081 if (!cfs_b->throttled_cfs_rq.next)
5082 return;
5083
5084 hrtimer_cancel(&cfs_b->period_timer);
5085 hrtimer_cancel(&cfs_b->slack_timer);
5086 }
5087
5088 /*
5089 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
5090 *
5091 * The race is harmless, since modifying bandwidth settings of unhooked group
5092 * bits doesn't do much.
5093 */
5094
5095 /* cpu online calback */
5096 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5097 {
5098 struct task_group *tg;
5099
5100 lockdep_assert_held(&rq->lock);
5101
5102 rcu_read_lock();
5103 list_for_each_entry_rcu(tg, &task_groups, list) {
5104 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5105 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5106
5107 raw_spin_lock(&cfs_b->lock);
5108 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5109 raw_spin_unlock(&cfs_b->lock);
5110 }
5111 rcu_read_unlock();
5112 }
5113
5114 /* cpu offline callback */
5115 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5116 {
5117 struct task_group *tg;
5118
5119 lockdep_assert_held(&rq->lock);
5120
5121 rcu_read_lock();
5122 list_for_each_entry_rcu(tg, &task_groups, list) {
5123 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5124
5125 if (!cfs_rq->runtime_enabled)
5126 continue;
5127
5128 /*
5129 * clock_task is not advancing so we just need to make sure
5130 * there's some valid quota amount
5131 */
5132 cfs_rq->runtime_remaining = 1;
5133 /*
5134 * Offline rq is schedulable till cpu is completely disabled
5135 * in take_cpu_down(), so we prevent new cfs throttling here.
5136 */
5137 cfs_rq->runtime_enabled = 0;
5138
5139 if (cfs_rq_throttled(cfs_rq))
5140 unthrottle_cfs_rq(cfs_rq);
5141 }
5142 rcu_read_unlock();
5143 }
5144
5145 #else /* CONFIG_CFS_BANDWIDTH */
5146 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5147 {
5148 return rq_clock_task(rq_of(cfs_rq));
5149 }
5150
5151 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5152 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5153 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5154 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5155 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5156
5157 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5158 {
5159 return 0;
5160 }
5161
5162 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5163 {
5164 return 0;
5165 }
5166
5167 static inline int throttled_lb_pair(struct task_group *tg,
5168 int src_cpu, int dest_cpu)
5169 {
5170 return 0;
5171 }
5172
5173 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5174
5175 #ifdef CONFIG_FAIR_GROUP_SCHED
5176 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5177 #endif
5178
5179 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5180 {
5181 return NULL;
5182 }
5183 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5184 static inline void update_runtime_enabled(struct rq *rq) {}
5185 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5186
5187 #endif /* CONFIG_CFS_BANDWIDTH */
5188
5189 /**************************************************
5190 * CFS operations on tasks:
5191 */
5192
5193 #ifdef CONFIG_SCHED_HRTICK
5194 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5195 {
5196 struct sched_entity *se = &p->se;
5197 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5198
5199 SCHED_WARN_ON(task_rq(p) != rq);
5200
5201 if (rq->cfs.h_nr_running > 1) {
5202 u64 slice = sched_slice(cfs_rq, se);
5203 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5204 s64 delta = slice - ran;
5205
5206 if (delta < 0) {
5207 if (rq->curr == p)
5208 resched_curr(rq);
5209 return;
5210 }
5211 hrtick_start(rq, delta);
5212 }
5213 }
5214
5215 /*
5216 * called from enqueue/dequeue and updates the hrtick when the
5217 * current task is from our class and nr_running is low enough
5218 * to matter.
5219 */
5220 static void hrtick_update(struct rq *rq)
5221 {
5222 struct task_struct *curr = rq->curr;
5223
5224 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5225 return;
5226
5227 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5228 hrtick_start_fair(rq, curr);
5229 }
5230 #else /* !CONFIG_SCHED_HRTICK */
5231 static inline void
5232 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5233 {
5234 }
5235
5236 static inline void hrtick_update(struct rq *rq)
5237 {
5238 }
5239 #endif
5240
5241 /*
5242 * The enqueue_task method is called before nr_running is
5243 * increased. Here we update the fair scheduling stats and
5244 * then put the task into the rbtree:
5245 */
5246 static void
5247 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5248 {
5249 struct cfs_rq *cfs_rq;
5250 struct sched_entity *se = &p->se;
5251
5252 /*
5253 * If in_iowait is set, the code below may not trigger any cpufreq
5254 * utilization updates, so do it here explicitly with the IOWAIT flag
5255 * passed.
5256 */
5257 if (p->in_iowait)
5258 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5259
5260 for_each_sched_entity(se) {
5261 if (se->on_rq)
5262 break;
5263 cfs_rq = cfs_rq_of(se);
5264 enqueue_entity(cfs_rq, se, flags);
5265
5266 /*
5267 * end evaluation on encountering a throttled cfs_rq
5268 *
5269 * note: in the case of encountering a throttled cfs_rq we will
5270 * post the final h_nr_running increment below.
5271 */
5272 if (cfs_rq_throttled(cfs_rq))
5273 break;
5274 cfs_rq->h_nr_running++;
5275
5276 flags = ENQUEUE_WAKEUP;
5277 }
5278
5279 for_each_sched_entity(se) {
5280 cfs_rq = cfs_rq_of(se);
5281 cfs_rq->h_nr_running++;
5282
5283 if (cfs_rq_throttled(cfs_rq))
5284 break;
5285
5286 update_load_avg(cfs_rq, se, UPDATE_TG);
5287 update_cfs_group(se);
5288 }
5289
5290 if (!se)
5291 add_nr_running(rq, 1);
5292
5293 assert_list_leaf_cfs_rq(rq);
5294
5295 hrtick_update(rq);
5296 }
5297
5298 static void set_next_buddy(struct sched_entity *se);
5299
5300 /*
5301 * The dequeue_task method is called before nr_running is
5302 * decreased. We remove the task from the rbtree and
5303 * update the fair scheduling stats:
5304 */
5305 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5306 {
5307 struct cfs_rq *cfs_rq;
5308 struct sched_entity *se = &p->se;
5309 int task_sleep = flags & DEQUEUE_SLEEP;
5310
5311 for_each_sched_entity(se) {
5312 cfs_rq = cfs_rq_of(se);
5313 dequeue_entity(cfs_rq, se, flags);
5314
5315 /*
5316 * end evaluation on encountering a throttled cfs_rq
5317 *
5318 * note: in the case of encountering a throttled cfs_rq we will
5319 * post the final h_nr_running decrement below.
5320 */
5321 if (cfs_rq_throttled(cfs_rq))
5322 break;
5323 cfs_rq->h_nr_running--;
5324
5325 /* Don't dequeue parent if it has other entities besides us */
5326 if (cfs_rq->load.weight) {
5327 /* Avoid re-evaluating load for this entity: */
5328 se = parent_entity(se);
5329 /*
5330 * Bias pick_next to pick a task from this cfs_rq, as
5331 * p is sleeping when it is within its sched_slice.
5332 */
5333 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5334 set_next_buddy(se);
5335 break;
5336 }
5337 flags |= DEQUEUE_SLEEP;
5338 }
5339
5340 for_each_sched_entity(se) {
5341 cfs_rq = cfs_rq_of(se);
5342 cfs_rq->h_nr_running--;
5343
5344 if (cfs_rq_throttled(cfs_rq))
5345 break;
5346
5347 update_load_avg(cfs_rq, se, UPDATE_TG);
5348 update_cfs_group(se);
5349 }
5350
5351 if (!se)
5352 sub_nr_running(rq, 1);
5353
5354 hrtick_update(rq);
5355 }
5356
5357 #ifdef CONFIG_SMP
5358
5359 /* Working cpumask for: load_balance, load_balance_newidle. */
5360 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5361 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5362
5363 #ifdef CONFIG_NO_HZ_COMMON
5364 /*
5365 * per rq 'load' arrray crap; XXX kill this.
5366 */
5367
5368 /*
5369 * The exact cpuload calculated at every tick would be:
5370 *
5371 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5372 *
5373 * If a cpu misses updates for n ticks (as it was idle) and update gets
5374 * called on the n+1-th tick when cpu may be busy, then we have:
5375 *
5376 * load_n = (1 - 1/2^i)^n * load_0
5377 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
5378 *
5379 * decay_load_missed() below does efficient calculation of
5380 *
5381 * load' = (1 - 1/2^i)^n * load
5382 *
5383 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5384 * This allows us to precompute the above in said factors, thereby allowing the
5385 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5386 * fixed_power_int())
5387 *
5388 * The calculation is approximated on a 128 point scale.
5389 */
5390 #define DEGRADE_SHIFT 7
5391
5392 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5393 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5394 { 0, 0, 0, 0, 0, 0, 0, 0 },
5395 { 64, 32, 8, 0, 0, 0, 0, 0 },
5396 { 96, 72, 40, 12, 1, 0, 0, 0 },
5397 { 112, 98, 75, 43, 15, 1, 0, 0 },
5398 { 120, 112, 98, 76, 45, 16, 2, 0 }
5399 };
5400
5401 /*
5402 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5403 * would be when CPU is idle and so we just decay the old load without
5404 * adding any new load.
5405 */
5406 static unsigned long
5407 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5408 {
5409 int j = 0;
5410
5411 if (!missed_updates)
5412 return load;
5413
5414 if (missed_updates >= degrade_zero_ticks[idx])
5415 return 0;
5416
5417 if (idx == 1)
5418 return load >> missed_updates;
5419
5420 while (missed_updates) {
5421 if (missed_updates % 2)
5422 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5423
5424 missed_updates >>= 1;
5425 j++;
5426 }
5427 return load;
5428 }
5429 #endif /* CONFIG_NO_HZ_COMMON */
5430
5431 /**
5432 * __cpu_load_update - update the rq->cpu_load[] statistics
5433 * @this_rq: The rq to update statistics for
5434 * @this_load: The current load
5435 * @pending_updates: The number of missed updates
5436 *
5437 * Update rq->cpu_load[] statistics. This function is usually called every
5438 * scheduler tick (TICK_NSEC).
5439 *
5440 * This function computes a decaying average:
5441 *
5442 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5443 *
5444 * Because of NOHZ it might not get called on every tick which gives need for
5445 * the @pending_updates argument.
5446 *
5447 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5448 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5449 * = A * (A * load[i]_n-2 + B) + B
5450 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5451 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5452 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5453 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5454 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5455 *
5456 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5457 * any change in load would have resulted in the tick being turned back on.
5458 *
5459 * For regular NOHZ, this reduces to:
5460 *
5461 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5462 *
5463 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5464 * term.
5465 */
5466 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5467 unsigned long pending_updates)
5468 {
5469 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5470 int i, scale;
5471
5472 this_rq->nr_load_updates++;
5473
5474 /* Update our load: */
5475 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5476 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5477 unsigned long old_load, new_load;
5478
5479 /* scale is effectively 1 << i now, and >> i divides by scale */
5480
5481 old_load = this_rq->cpu_load[i];
5482 #ifdef CONFIG_NO_HZ_COMMON
5483 old_load = decay_load_missed(old_load, pending_updates - 1, i);
5484 if (tickless_load) {
5485 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5486 /*
5487 * old_load can never be a negative value because a
5488 * decayed tickless_load cannot be greater than the
5489 * original tickless_load.
5490 */
5491 old_load += tickless_load;
5492 }
5493 #endif
5494 new_load = this_load;
5495 /*
5496 * Round up the averaging division if load is increasing. This
5497 * prevents us from getting stuck on 9 if the load is 10, for
5498 * example.
5499 */
5500 if (new_load > old_load)
5501 new_load += scale - 1;
5502
5503 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5504 }
5505
5506 sched_avg_update(this_rq);
5507 }
5508
5509 /* Used instead of source_load when we know the type == 0 */
5510 static unsigned long weighted_cpuload(struct rq *rq)
5511 {
5512 return cfs_rq_runnable_load_avg(&rq->cfs);
5513 }
5514
5515 #ifdef CONFIG_NO_HZ_COMMON
5516 /*
5517 * There is no sane way to deal with nohz on smp when using jiffies because the
5518 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5519 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5520 *
5521 * Therefore we need to avoid the delta approach from the regular tick when
5522 * possible since that would seriously skew the load calculation. This is why we
5523 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5524 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5525 * loop exit, nohz_idle_balance, nohz full exit...)
5526 *
5527 * This means we might still be one tick off for nohz periods.
5528 */
5529
5530 static void cpu_load_update_nohz(struct rq *this_rq,
5531 unsigned long curr_jiffies,
5532 unsigned long load)
5533 {
5534 unsigned long pending_updates;
5535
5536 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5537 if (pending_updates) {
5538 this_rq->last_load_update_tick = curr_jiffies;
5539 /*
5540 * In the regular NOHZ case, we were idle, this means load 0.
5541 * In the NOHZ_FULL case, we were non-idle, we should consider
5542 * its weighted load.
5543 */
5544 cpu_load_update(this_rq, load, pending_updates);
5545 }
5546 }
5547
5548 /*
5549 * Called from nohz_idle_balance() to update the load ratings before doing the
5550 * idle balance.
5551 */
5552 static void cpu_load_update_idle(struct rq *this_rq)
5553 {
5554 /*
5555 * bail if there's load or we're actually up-to-date.
5556 */
5557 if (weighted_cpuload(this_rq))
5558 return;
5559
5560 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5561 }
5562
5563 /*
5564 * Record CPU load on nohz entry so we know the tickless load to account
5565 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5566 * than other cpu_load[idx] but it should be fine as cpu_load readers
5567 * shouldn't rely into synchronized cpu_load[*] updates.
5568 */
5569 void cpu_load_update_nohz_start(void)
5570 {
5571 struct rq *this_rq = this_rq();
5572
5573 /*
5574 * This is all lockless but should be fine. If weighted_cpuload changes
5575 * concurrently we'll exit nohz. And cpu_load write can race with
5576 * cpu_load_update_idle() but both updater would be writing the same.
5577 */
5578 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5579 }
5580
5581 /*
5582 * Account the tickless load in the end of a nohz frame.
5583 */
5584 void cpu_load_update_nohz_stop(void)
5585 {
5586 unsigned long curr_jiffies = READ_ONCE(jiffies);
5587 struct rq *this_rq = this_rq();
5588 unsigned long load;
5589 struct rq_flags rf;
5590
5591 if (curr_jiffies == this_rq->last_load_update_tick)
5592 return;
5593
5594 load = weighted_cpuload(this_rq);
5595 rq_lock(this_rq, &rf);
5596 update_rq_clock(this_rq);
5597 cpu_load_update_nohz(this_rq, curr_jiffies, load);
5598 rq_unlock(this_rq, &rf);
5599 }
5600 #else /* !CONFIG_NO_HZ_COMMON */
5601 static inline void cpu_load_update_nohz(struct rq *this_rq,
5602 unsigned long curr_jiffies,
5603 unsigned long load) { }
5604 #endif /* CONFIG_NO_HZ_COMMON */
5605
5606 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5607 {
5608 #ifdef CONFIG_NO_HZ_COMMON
5609 /* See the mess around cpu_load_update_nohz(). */
5610 this_rq->last_load_update_tick = READ_ONCE(jiffies);
5611 #endif
5612 cpu_load_update(this_rq, load, 1);
5613 }
5614
5615 /*
5616 * Called from scheduler_tick()
5617 */
5618 void cpu_load_update_active(struct rq *this_rq)
5619 {
5620 unsigned long load = weighted_cpuload(this_rq);
5621
5622 if (tick_nohz_tick_stopped())
5623 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5624 else
5625 cpu_load_update_periodic(this_rq, load);
5626 }
5627
5628 /*
5629 * Return a low guess at the load of a migration-source cpu weighted
5630 * according to the scheduling class and "nice" value.
5631 *
5632 * We want to under-estimate the load of migration sources, to
5633 * balance conservatively.
5634 */
5635 static unsigned long source_load(int cpu, int type)
5636 {
5637 struct rq *rq = cpu_rq(cpu);
5638 unsigned long total = weighted_cpuload(rq);
5639
5640 if (type == 0 || !sched_feat(LB_BIAS))
5641 return total;
5642
5643 return min(rq->cpu_load[type-1], total);
5644 }
5645
5646 /*
5647 * Return a high guess at the load of a migration-target cpu weighted
5648 * according to the scheduling class and "nice" value.
5649 */
5650 static unsigned long target_load(int cpu, int type)
5651 {
5652 struct rq *rq = cpu_rq(cpu);
5653 unsigned long total = weighted_cpuload(rq);
5654
5655 if (type == 0 || !sched_feat(LB_BIAS))
5656 return total;
5657
5658 return max(rq->cpu_load[type-1], total);
5659 }
5660
5661 static unsigned long capacity_of(int cpu)
5662 {
5663 return cpu_rq(cpu)->cpu_capacity;
5664 }
5665
5666 static unsigned long capacity_orig_of(int cpu)
5667 {
5668 return cpu_rq(cpu)->cpu_capacity_orig;
5669 }
5670
5671 static unsigned long cpu_avg_load_per_task(int cpu)
5672 {
5673 struct rq *rq = cpu_rq(cpu);
5674 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5675 unsigned long load_avg = weighted_cpuload(rq);
5676
5677 if (nr_running)
5678 return load_avg / nr_running;
5679
5680 return 0;
5681 }
5682
5683 static void record_wakee(struct task_struct *p)
5684 {
5685 /*
5686 * Only decay a single time; tasks that have less then 1 wakeup per
5687 * jiffy will not have built up many flips.
5688 */
5689 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5690 current->wakee_flips >>= 1;
5691 current->wakee_flip_decay_ts = jiffies;
5692 }
5693
5694 if (current->last_wakee != p) {
5695 current->last_wakee = p;
5696 current->wakee_flips++;
5697 }
5698 }
5699
5700 /*
5701 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5702 *
5703 * A waker of many should wake a different task than the one last awakened
5704 * at a frequency roughly N times higher than one of its wakees.
5705 *
5706 * In order to determine whether we should let the load spread vs consolidating
5707 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5708 * partner, and a factor of lls_size higher frequency in the other.
5709 *
5710 * With both conditions met, we can be relatively sure that the relationship is
5711 * non-monogamous, with partner count exceeding socket size.
5712 *
5713 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5714 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5715 * socket size.
5716 */
5717 static int wake_wide(struct task_struct *p)
5718 {
5719 unsigned int master = current->wakee_flips;
5720 unsigned int slave = p->wakee_flips;
5721 int factor = this_cpu_read(sd_llc_size);
5722
5723 if (master < slave)
5724 swap(master, slave);
5725 if (slave < factor || master < slave * factor)
5726 return 0;
5727 return 1;
5728 }
5729
5730 /*
5731 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5732 * soonest. For the purpose of speed we only consider the waking and previous
5733 * CPU.
5734 *
5735 * wake_affine_idle() - only considers 'now', it check if the waking CPU is (or
5736 * will be) idle.
5737 *
5738 * wake_affine_weight() - considers the weight to reflect the average
5739 * scheduling latency of the CPUs. This seems to work
5740 * for the overloaded case.
5741 */
5742
5743 static bool
5744 wake_affine_idle(struct sched_domain *sd, struct task_struct *p,
5745 int this_cpu, int prev_cpu, int sync)
5746 {
5747 if (idle_cpu(this_cpu))
5748 return true;
5749
5750 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5751 return true;
5752
5753 return false;
5754 }
5755
5756 static bool
5757 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5758 int this_cpu, int prev_cpu, int sync)
5759 {
5760 s64 this_eff_load, prev_eff_load;
5761 unsigned long task_load;
5762
5763 this_eff_load = target_load(this_cpu, sd->wake_idx);
5764 prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5765
5766 if (sync) {
5767 unsigned long current_load = task_h_load(current);
5768
5769 if (current_load > this_eff_load)
5770 return true;
5771
5772 this_eff_load -= current_load;
5773 }
5774
5775 task_load = task_h_load(p);
5776
5777 this_eff_load += task_load;
5778 if (sched_feat(WA_BIAS))
5779 this_eff_load *= 100;
5780 this_eff_load *= capacity_of(prev_cpu);
5781
5782 prev_eff_load -= task_load;
5783 if (sched_feat(WA_BIAS))
5784 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5785 prev_eff_load *= capacity_of(this_cpu);
5786
5787 return this_eff_load <= prev_eff_load;
5788 }
5789
5790 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5791 int prev_cpu, int sync)
5792 {
5793 int this_cpu = smp_processor_id();
5794 bool affine = false;
5795
5796 if (sched_feat(WA_IDLE) && !affine)
5797 affine = wake_affine_idle(sd, p, this_cpu, prev_cpu, sync);
5798
5799 if (sched_feat(WA_WEIGHT) && !affine)
5800 affine = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5801
5802 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5803 if (affine) {
5804 schedstat_inc(sd->ttwu_move_affine);
5805 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5806 }
5807
5808 return affine;
5809 }
5810
5811 static inline int task_util(struct task_struct *p);
5812 static int cpu_util_wake(int cpu, struct task_struct *p);
5813
5814 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5815 {
5816 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5817 }
5818
5819 /*
5820 * find_idlest_group finds and returns the least busy CPU group within the
5821 * domain.
5822 *
5823 * Assumes p is allowed on at least one CPU in sd.
5824 */
5825 static struct sched_group *
5826 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5827 int this_cpu, int sd_flag)
5828 {
5829 struct sched_group *idlest = NULL, *group = sd->groups;
5830 struct sched_group *most_spare_sg = NULL;
5831 unsigned long min_runnable_load = ULONG_MAX;
5832 unsigned long this_runnable_load = ULONG_MAX;
5833 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5834 unsigned long most_spare = 0, this_spare = 0;
5835 int load_idx = sd->forkexec_idx;
5836 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5837 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5838 (sd->imbalance_pct-100) / 100;
5839
5840 if (sd_flag & SD_BALANCE_WAKE)
5841 load_idx = sd->wake_idx;
5842
5843 do {
5844 unsigned long load, avg_load, runnable_load;
5845 unsigned long spare_cap, max_spare_cap;
5846 int local_group;
5847 int i;
5848
5849 /* Skip over this group if it has no CPUs allowed */
5850 if (!cpumask_intersects(sched_group_span(group),
5851 &p->cpus_allowed))
5852 continue;
5853
5854 local_group = cpumask_test_cpu(this_cpu,
5855 sched_group_span(group));
5856
5857 /*
5858 * Tally up the load of all CPUs in the group and find
5859 * the group containing the CPU with most spare capacity.
5860 */
5861 avg_load = 0;
5862 runnable_load = 0;
5863 max_spare_cap = 0;
5864
5865 for_each_cpu(i, sched_group_span(group)) {
5866 /* Bias balancing toward cpus of our domain */
5867 if (local_group)
5868 load = source_load(i, load_idx);
5869 else
5870 load = target_load(i, load_idx);
5871
5872 runnable_load += load;
5873
5874 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5875
5876 spare_cap = capacity_spare_wake(i, p);
5877
5878 if (spare_cap > max_spare_cap)
5879 max_spare_cap = spare_cap;
5880 }
5881
5882 /* Adjust by relative CPU capacity of the group */
5883 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5884 group->sgc->capacity;
5885 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5886 group->sgc->capacity;
5887
5888 if (local_group) {
5889 this_runnable_load = runnable_load;
5890 this_avg_load = avg_load;
5891 this_spare = max_spare_cap;
5892 } else {
5893 if (min_runnable_load > (runnable_load + imbalance)) {
5894 /*
5895 * The runnable load is significantly smaller
5896 * so we can pick this new cpu
5897 */
5898 min_runnable_load = runnable_load;
5899 min_avg_load = avg_load;
5900 idlest = group;
5901 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5902 (100*min_avg_load > imbalance_scale*avg_load)) {
5903 /*
5904 * The runnable loads are close so take the
5905 * blocked load into account through avg_load.
5906 */
5907 min_avg_load = avg_load;
5908 idlest = group;
5909 }
5910
5911 if (most_spare < max_spare_cap) {
5912 most_spare = max_spare_cap;
5913 most_spare_sg = group;
5914 }
5915 }
5916 } while (group = group->next, group != sd->groups);
5917
5918 /*
5919 * The cross-over point between using spare capacity or least load
5920 * is too conservative for high utilization tasks on partially
5921 * utilized systems if we require spare_capacity > task_util(p),
5922 * so we allow for some task stuffing by using
5923 * spare_capacity > task_util(p)/2.
5924 *
5925 * Spare capacity can't be used for fork because the utilization has
5926 * not been set yet, we must first select a rq to compute the initial
5927 * utilization.
5928 */
5929 if (sd_flag & SD_BALANCE_FORK)
5930 goto skip_spare;
5931
5932 if (this_spare > task_util(p) / 2 &&
5933 imbalance_scale*this_spare > 100*most_spare)
5934 return NULL;
5935
5936 if (most_spare > task_util(p) / 2)
5937 return most_spare_sg;
5938
5939 skip_spare:
5940 if (!idlest)
5941 return NULL;
5942
5943 if (min_runnable_load > (this_runnable_load + imbalance))
5944 return NULL;
5945
5946 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5947 (100*this_avg_load < imbalance_scale*min_avg_load))
5948 return NULL;
5949
5950 return idlest;
5951 }
5952
5953 /*
5954 * find_idlest_group_cpu - find the idlest cpu among the cpus in group.
5955 */
5956 static int
5957 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5958 {
5959 unsigned long load, min_load = ULONG_MAX;
5960 unsigned int min_exit_latency = UINT_MAX;
5961 u64 latest_idle_timestamp = 0;
5962 int least_loaded_cpu = this_cpu;
5963 int shallowest_idle_cpu = -1;
5964 int i;
5965
5966 /* Check if we have any choice: */
5967 if (group->group_weight == 1)
5968 return cpumask_first(sched_group_span(group));
5969
5970 /* Traverse only the allowed CPUs */
5971 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5972 if (idle_cpu(i)) {
5973 struct rq *rq = cpu_rq(i);
5974 struct cpuidle_state *idle = idle_get_state(rq);
5975 if (idle && idle->exit_latency < min_exit_latency) {
5976 /*
5977 * We give priority to a CPU whose idle state
5978 * has the smallest exit latency irrespective
5979 * of any idle timestamp.
5980 */
5981 min_exit_latency = idle->exit_latency;
5982 latest_idle_timestamp = rq->idle_stamp;
5983 shallowest_idle_cpu = i;
5984 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5985 rq->idle_stamp > latest_idle_timestamp) {
5986 /*
5987 * If equal or no active idle state, then
5988 * the most recently idled CPU might have
5989 * a warmer cache.
5990 */
5991 latest_idle_timestamp = rq->idle_stamp;
5992 shallowest_idle_cpu = i;
5993 }
5994 } else if (shallowest_idle_cpu == -1) {
5995 load = weighted_cpuload(cpu_rq(i));
5996 if (load < min_load || (load == min_load && i == this_cpu)) {
5997 min_load = load;
5998 least_loaded_cpu = i;
5999 }
6000 }
6001 }
6002
6003 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6004 }
6005
6006 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6007 int cpu, int prev_cpu, int sd_flag)
6008 {
6009 int new_cpu = cpu;
6010
6011 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
6012 return prev_cpu;
6013
6014 while (sd) {
6015 struct sched_group *group;
6016 struct sched_domain *tmp;
6017 int weight;
6018
6019 if (!(sd->flags & sd_flag)) {
6020 sd = sd->child;
6021 continue;
6022 }
6023
6024 group = find_idlest_group(sd, p, cpu, sd_flag);
6025 if (!group) {
6026 sd = sd->child;
6027 continue;
6028 }
6029
6030 new_cpu = find_idlest_group_cpu(group, p, cpu);
6031 if (new_cpu == cpu) {
6032 /* Now try balancing at a lower domain level of cpu */
6033 sd = sd->child;
6034 continue;
6035 }
6036
6037 /* Now try balancing at a lower domain level of new_cpu */
6038 cpu = new_cpu;
6039 weight = sd->span_weight;
6040 sd = NULL;
6041 for_each_domain(cpu, tmp) {
6042 if (weight <= tmp->span_weight)
6043 break;
6044 if (tmp->flags & sd_flag)
6045 sd = tmp;
6046 }
6047 /* while loop will break here if sd == NULL */
6048 }
6049
6050 return new_cpu;
6051 }
6052
6053 #ifdef CONFIG_SCHED_SMT
6054 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6055 EXPORT_SYMBOL_GPL(sched_smt_present);
6056
6057 static inline void set_idle_cores(int cpu, int val)
6058 {
6059 struct sched_domain_shared *sds;
6060
6061 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6062 if (sds)
6063 WRITE_ONCE(sds->has_idle_cores, val);
6064 }
6065
6066 static inline bool test_idle_cores(int cpu, bool def)
6067 {
6068 struct sched_domain_shared *sds;
6069
6070 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6071 if (sds)
6072 return READ_ONCE(sds->has_idle_cores);
6073
6074 return def;
6075 }
6076
6077 /*
6078 * Scans the local SMT mask to see if the entire core is idle, and records this
6079 * information in sd_llc_shared->has_idle_cores.
6080 *
6081 * Since SMT siblings share all cache levels, inspecting this limited remote
6082 * state should be fairly cheap.
6083 */
6084 void __update_idle_core(struct rq *rq)
6085 {
6086 int core = cpu_of(rq);
6087 int cpu;
6088
6089 rcu_read_lock();
6090 if (test_idle_cores(core, true))
6091 goto unlock;
6092
6093 for_each_cpu(cpu, cpu_smt_mask(core)) {
6094 if (cpu == core)
6095 continue;
6096
6097 if (!idle_cpu(cpu))
6098 goto unlock;
6099 }
6100
6101 set_idle_cores(core, 1);
6102 unlock:
6103 rcu_read_unlock();
6104 }
6105
6106 /*
6107 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6108 * there are no idle cores left in the system; tracked through
6109 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6110 */
6111 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6112 {
6113 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6114 int core, cpu;
6115
6116 if (!static_branch_likely(&sched_smt_present))
6117 return -1;
6118
6119 if (!test_idle_cores(target, false))
6120 return -1;
6121
6122 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6123
6124 for_each_cpu_wrap(core, cpus, target) {
6125 bool idle = true;
6126
6127 for_each_cpu(cpu, cpu_smt_mask(core)) {
6128 cpumask_clear_cpu(cpu, cpus);
6129 if (!idle_cpu(cpu))
6130 idle = false;
6131 }
6132
6133 if (idle)
6134 return core;
6135 }
6136
6137 /*
6138 * Failed to find an idle core; stop looking for one.
6139 */
6140 set_idle_cores(target, 0);
6141
6142 return -1;
6143 }
6144
6145 /*
6146 * Scan the local SMT mask for idle CPUs.
6147 */
6148 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6149 {
6150 int cpu;
6151
6152 if (!static_branch_likely(&sched_smt_present))
6153 return -1;
6154
6155 for_each_cpu(cpu, cpu_smt_mask(target)) {
6156 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6157 continue;
6158 if (idle_cpu(cpu))
6159 return cpu;
6160 }
6161
6162 return -1;
6163 }
6164
6165 #else /* CONFIG_SCHED_SMT */
6166
6167 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6168 {
6169 return -1;
6170 }
6171
6172 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6173 {
6174 return -1;
6175 }
6176
6177 #endif /* CONFIG_SCHED_SMT */
6178
6179 /*
6180 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6181 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6182 * average idle time for this rq (as found in rq->avg_idle).
6183 */
6184 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6185 {
6186 struct sched_domain *this_sd;
6187 u64 avg_cost, avg_idle;
6188 u64 time, cost;
6189 s64 delta;
6190 int cpu, nr = INT_MAX;
6191
6192 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6193 if (!this_sd)
6194 return -1;
6195
6196 /*
6197 * Due to large variance we need a large fuzz factor; hackbench in
6198 * particularly is sensitive here.
6199 */
6200 avg_idle = this_rq()->avg_idle / 512;
6201 avg_cost = this_sd->avg_scan_cost + 1;
6202
6203 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6204 return -1;
6205
6206 if (sched_feat(SIS_PROP)) {
6207 u64 span_avg = sd->span_weight * avg_idle;
6208 if (span_avg > 4*avg_cost)
6209 nr = div_u64(span_avg, avg_cost);
6210 else
6211 nr = 4;
6212 }
6213
6214 time = local_clock();
6215
6216 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6217 if (!--nr)
6218 return -1;
6219 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6220 continue;
6221 if (idle_cpu(cpu))
6222 break;
6223 }
6224
6225 time = local_clock() - time;
6226 cost = this_sd->avg_scan_cost;
6227 delta = (s64)(time - cost) / 8;
6228 this_sd->avg_scan_cost += delta;
6229
6230 return cpu;
6231 }
6232
6233 /*
6234 * Try and locate an idle core/thread in the LLC cache domain.
6235 */
6236 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6237 {
6238 struct sched_domain *sd;
6239 int i;
6240
6241 if (idle_cpu(target))
6242 return target;
6243
6244 /*
6245 * If the previous cpu is cache affine and idle, don't be stupid.
6246 */
6247 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
6248 return prev;
6249
6250 sd = rcu_dereference(per_cpu(sd_llc, target));
6251 if (!sd)
6252 return target;
6253
6254 i = select_idle_core(p, sd, target);
6255 if ((unsigned)i < nr_cpumask_bits)
6256 return i;
6257
6258 i = select_idle_cpu(p, sd, target);
6259 if ((unsigned)i < nr_cpumask_bits)
6260 return i;
6261
6262 i = select_idle_smt(p, sd, target);
6263 if ((unsigned)i < nr_cpumask_bits)
6264 return i;
6265
6266 return target;
6267 }
6268
6269 /*
6270 * cpu_util returns the amount of capacity of a CPU that is used by CFS
6271 * tasks. The unit of the return value must be the one of capacity so we can
6272 * compare the utilization with the capacity of the CPU that is available for
6273 * CFS task (ie cpu_capacity).
6274 *
6275 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6276 * recent utilization of currently non-runnable tasks on a CPU. It represents
6277 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6278 * capacity_orig is the cpu_capacity available at the highest frequency
6279 * (arch_scale_freq_capacity()).
6280 * The utilization of a CPU converges towards a sum equal to or less than the
6281 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6282 * the running time on this CPU scaled by capacity_curr.
6283 *
6284 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6285 * higher than capacity_orig because of unfortunate rounding in
6286 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6287 * the average stabilizes with the new running time. We need to check that the
6288 * utilization stays within the range of [0..capacity_orig] and cap it if
6289 * necessary. Without utilization capping, a group could be seen as overloaded
6290 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6291 * available capacity. We allow utilization to overshoot capacity_curr (but not
6292 * capacity_orig) as it useful for predicting the capacity required after task
6293 * migrations (scheduler-driven DVFS).
6294 */
6295 static int cpu_util(int cpu)
6296 {
6297 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
6298 unsigned long capacity = capacity_orig_of(cpu);
6299
6300 return (util >= capacity) ? capacity : util;
6301 }
6302
6303 static inline int task_util(struct task_struct *p)
6304 {
6305 return p->se.avg.util_avg;
6306 }
6307
6308 /*
6309 * cpu_util_wake: Compute cpu utilization with any contributions from
6310 * the waking task p removed.
6311 */
6312 static int cpu_util_wake(int cpu, struct task_struct *p)
6313 {
6314 unsigned long util, capacity;
6315
6316 /* Task has no contribution or is new */
6317 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
6318 return cpu_util(cpu);
6319
6320 capacity = capacity_orig_of(cpu);
6321 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
6322
6323 return (util >= capacity) ? capacity : util;
6324 }
6325
6326 /*
6327 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6328 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6329 *
6330 * In that case WAKE_AFFINE doesn't make sense and we'll let
6331 * BALANCE_WAKE sort things out.
6332 */
6333 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6334 {
6335 long min_cap, max_cap;
6336
6337 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6338 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6339
6340 /* Minimum capacity is close to max, no need to abort wake_affine */
6341 if (max_cap - min_cap < max_cap >> 3)
6342 return 0;
6343
6344 /* Bring task utilization in sync with prev_cpu */
6345 sync_entity_load_avg(&p->se);
6346
6347 return min_cap * 1024 < task_util(p) * capacity_margin;
6348 }
6349
6350 /*
6351 * select_task_rq_fair: Select target runqueue for the waking task in domains
6352 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6353 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6354 *
6355 * Balances load by selecting the idlest cpu in the idlest group, or under
6356 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
6357 *
6358 * Returns the target cpu number.
6359 *
6360 * preempt must be disabled.
6361 */
6362 static int
6363 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6364 {
6365 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
6366 int cpu = smp_processor_id();
6367 int new_cpu = prev_cpu;
6368 int want_affine = 0;
6369 int sync = wake_flags & WF_SYNC;
6370
6371 if (sd_flag & SD_BALANCE_WAKE) {
6372 record_wakee(p);
6373 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6374 && cpumask_test_cpu(cpu, &p->cpus_allowed);
6375 }
6376
6377 rcu_read_lock();
6378 for_each_domain(cpu, tmp) {
6379 if (!(tmp->flags & SD_LOAD_BALANCE))
6380 break;
6381
6382 /*
6383 * If both cpu and prev_cpu are part of this domain,
6384 * cpu is a valid SD_WAKE_AFFINE target.
6385 */
6386 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6387 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6388 affine_sd = tmp;
6389 break;
6390 }
6391
6392 if (tmp->flags & sd_flag)
6393 sd = tmp;
6394 else if (!want_affine)
6395 break;
6396 }
6397
6398 if (affine_sd) {
6399 sd = NULL; /* Prefer wake_affine over balance flags */
6400 if (cpu == prev_cpu)
6401 goto pick_cpu;
6402
6403 if (wake_affine(affine_sd, p, prev_cpu, sync))
6404 new_cpu = cpu;
6405 }
6406
6407 if (sd && !(sd_flag & SD_BALANCE_FORK)) {
6408 /*
6409 * We're going to need the task's util for capacity_spare_wake
6410 * in find_idlest_group. Sync it up to prev_cpu's
6411 * last_update_time.
6412 */
6413 sync_entity_load_avg(&p->se);
6414 }
6415
6416 if (!sd) {
6417 pick_cpu:
6418 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
6419 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6420
6421 } else {
6422 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6423 }
6424 rcu_read_unlock();
6425
6426 return new_cpu;
6427 }
6428
6429 static void detach_entity_cfs_rq(struct sched_entity *se);
6430
6431 /*
6432 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6433 * cfs_rq_of(p) references at time of call are still valid and identify the
6434 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6435 */
6436 static void migrate_task_rq_fair(struct task_struct *p)
6437 {
6438 /*
6439 * As blocked tasks retain absolute vruntime the migration needs to
6440 * deal with this by subtracting the old and adding the new
6441 * min_vruntime -- the latter is done by enqueue_entity() when placing
6442 * the task on the new runqueue.
6443 */
6444 if (p->state == TASK_WAKING) {
6445 struct sched_entity *se = &p->se;
6446 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6447 u64 min_vruntime;
6448
6449 #ifndef CONFIG_64BIT
6450 u64 min_vruntime_copy;
6451
6452 do {
6453 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6454 smp_rmb();
6455 min_vruntime = cfs_rq->min_vruntime;
6456 } while (min_vruntime != min_vruntime_copy);
6457 #else
6458 min_vruntime = cfs_rq->min_vruntime;
6459 #endif
6460
6461 se->vruntime -= min_vruntime;
6462 }
6463
6464 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6465 /*
6466 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6467 * rq->lock and can modify state directly.
6468 */
6469 lockdep_assert_held(&task_rq(p)->lock);
6470 detach_entity_cfs_rq(&p->se);
6471
6472 } else {
6473 /*
6474 * We are supposed to update the task to "current" time, then
6475 * its up to date and ready to go to new CPU/cfs_rq. But we
6476 * have difficulty in getting what current time is, so simply
6477 * throw away the out-of-date time. This will result in the
6478 * wakee task is less decayed, but giving the wakee more load
6479 * sounds not bad.
6480 */
6481 remove_entity_load_avg(&p->se);
6482 }
6483
6484 /* Tell new CPU we are migrated */
6485 p->se.avg.last_update_time = 0;
6486
6487 /* We have migrated, no longer consider this task hot */
6488 p->se.exec_start = 0;
6489 }
6490
6491 static void task_dead_fair(struct task_struct *p)
6492 {
6493 remove_entity_load_avg(&p->se);
6494 }
6495 #endif /* CONFIG_SMP */
6496
6497 static unsigned long
6498 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6499 {
6500 unsigned long gran = sysctl_sched_wakeup_granularity;
6501
6502 /*
6503 * Since its curr running now, convert the gran from real-time
6504 * to virtual-time in his units.
6505 *
6506 * By using 'se' instead of 'curr' we penalize light tasks, so
6507 * they get preempted easier. That is, if 'se' < 'curr' then
6508 * the resulting gran will be larger, therefore penalizing the
6509 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6510 * be smaller, again penalizing the lighter task.
6511 *
6512 * This is especially important for buddies when the leftmost
6513 * task is higher priority than the buddy.
6514 */
6515 return calc_delta_fair(gran, se);
6516 }
6517
6518 /*
6519 * Should 'se' preempt 'curr'.
6520 *
6521 * |s1
6522 * |s2
6523 * |s3
6524 * g
6525 * |<--->|c
6526 *
6527 * w(c, s1) = -1
6528 * w(c, s2) = 0
6529 * w(c, s3) = 1
6530 *
6531 */
6532 static int
6533 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6534 {
6535 s64 gran, vdiff = curr->vruntime - se->vruntime;
6536
6537 if (vdiff <= 0)
6538 return -1;
6539
6540 gran = wakeup_gran(curr, se);
6541 if (vdiff > gran)
6542 return 1;
6543
6544 return 0;
6545 }
6546
6547 static void set_last_buddy(struct sched_entity *se)
6548 {
6549 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6550 return;
6551
6552 for_each_sched_entity(se) {
6553 if (SCHED_WARN_ON(!se->on_rq))
6554 return;
6555 cfs_rq_of(se)->last = se;
6556 }
6557 }
6558
6559 static void set_next_buddy(struct sched_entity *se)
6560 {
6561 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6562 return;
6563
6564 for_each_sched_entity(se) {
6565 if (SCHED_WARN_ON(!se->on_rq))
6566 return;
6567 cfs_rq_of(se)->next = se;
6568 }
6569 }
6570
6571 static void set_skip_buddy(struct sched_entity *se)
6572 {
6573 for_each_sched_entity(se)
6574 cfs_rq_of(se)->skip = se;
6575 }
6576
6577 /*
6578 * Preempt the current task with a newly woken task if needed:
6579 */
6580 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6581 {
6582 struct task_struct *curr = rq->curr;
6583 struct sched_entity *se = &curr->se, *pse = &p->se;
6584 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6585 int scale = cfs_rq->nr_running >= sched_nr_latency;
6586 int next_buddy_marked = 0;
6587
6588 if (unlikely(se == pse))
6589 return;
6590
6591 /*
6592 * This is possible from callers such as attach_tasks(), in which we
6593 * unconditionally check_prempt_curr() after an enqueue (which may have
6594 * lead to a throttle). This both saves work and prevents false
6595 * next-buddy nomination below.
6596 */
6597 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6598 return;
6599
6600 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6601 set_next_buddy(pse);
6602 next_buddy_marked = 1;
6603 }
6604
6605 /*
6606 * We can come here with TIF_NEED_RESCHED already set from new task
6607 * wake up path.
6608 *
6609 * Note: this also catches the edge-case of curr being in a throttled
6610 * group (e.g. via set_curr_task), since update_curr() (in the
6611 * enqueue of curr) will have resulted in resched being set. This
6612 * prevents us from potentially nominating it as a false LAST_BUDDY
6613 * below.
6614 */
6615 if (test_tsk_need_resched(curr))
6616 return;
6617
6618 /* Idle tasks are by definition preempted by non-idle tasks. */
6619 if (unlikely(curr->policy == SCHED_IDLE) &&
6620 likely(p->policy != SCHED_IDLE))
6621 goto preempt;
6622
6623 /*
6624 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6625 * is driven by the tick):
6626 */
6627 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6628 return;
6629
6630 find_matching_se(&se, &pse);
6631 update_curr(cfs_rq_of(se));
6632 BUG_ON(!pse);
6633 if (wakeup_preempt_entity(se, pse) == 1) {
6634 /*
6635 * Bias pick_next to pick the sched entity that is
6636 * triggering this preemption.
6637 */
6638 if (!next_buddy_marked)
6639 set_next_buddy(pse);
6640 goto preempt;
6641 }
6642
6643 return;
6644
6645 preempt:
6646 resched_curr(rq);
6647 /*
6648 * Only set the backward buddy when the current task is still
6649 * on the rq. This can happen when a wakeup gets interleaved
6650 * with schedule on the ->pre_schedule() or idle_balance()
6651 * point, either of which can * drop the rq lock.
6652 *
6653 * Also, during early boot the idle thread is in the fair class,
6654 * for obvious reasons its a bad idea to schedule back to it.
6655 */
6656 if (unlikely(!se->on_rq || curr == rq->idle))
6657 return;
6658
6659 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6660 set_last_buddy(se);
6661 }
6662
6663 static struct task_struct *
6664 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6665 {
6666 struct cfs_rq *cfs_rq = &rq->cfs;
6667 struct sched_entity *se;
6668 struct task_struct *p;
6669 int new_tasks;
6670
6671 again:
6672 if (!cfs_rq->nr_running)
6673 goto idle;
6674
6675 #ifdef CONFIG_FAIR_GROUP_SCHED
6676 if (prev->sched_class != &fair_sched_class)
6677 goto simple;
6678
6679 /*
6680 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6681 * likely that a next task is from the same cgroup as the current.
6682 *
6683 * Therefore attempt to avoid putting and setting the entire cgroup
6684 * hierarchy, only change the part that actually changes.
6685 */
6686
6687 do {
6688 struct sched_entity *curr = cfs_rq->curr;
6689
6690 /*
6691 * Since we got here without doing put_prev_entity() we also
6692 * have to consider cfs_rq->curr. If it is still a runnable
6693 * entity, update_curr() will update its vruntime, otherwise
6694 * forget we've ever seen it.
6695 */
6696 if (curr) {
6697 if (curr->on_rq)
6698 update_curr(cfs_rq);
6699 else
6700 curr = NULL;
6701
6702 /*
6703 * This call to check_cfs_rq_runtime() will do the
6704 * throttle and dequeue its entity in the parent(s).
6705 * Therefore the nr_running test will indeed
6706 * be correct.
6707 */
6708 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6709 cfs_rq = &rq->cfs;
6710
6711 if (!cfs_rq->nr_running)
6712 goto idle;
6713
6714 goto simple;
6715 }
6716 }
6717
6718 se = pick_next_entity(cfs_rq, curr);
6719 cfs_rq = group_cfs_rq(se);
6720 } while (cfs_rq);
6721
6722 p = task_of(se);
6723
6724 /*
6725 * Since we haven't yet done put_prev_entity and if the selected task
6726 * is a different task than we started out with, try and touch the
6727 * least amount of cfs_rqs.
6728 */
6729 if (prev != p) {
6730 struct sched_entity *pse = &prev->se;
6731
6732 while (!(cfs_rq = is_same_group(se, pse))) {
6733 int se_depth = se->depth;
6734 int pse_depth = pse->depth;
6735
6736 if (se_depth <= pse_depth) {
6737 put_prev_entity(cfs_rq_of(pse), pse);
6738 pse = parent_entity(pse);
6739 }
6740 if (se_depth >= pse_depth) {
6741 set_next_entity(cfs_rq_of(se), se);
6742 se = parent_entity(se);
6743 }
6744 }
6745
6746 put_prev_entity(cfs_rq, pse);
6747 set_next_entity(cfs_rq, se);
6748 }
6749
6750 goto done;
6751 simple:
6752 #endif
6753
6754 put_prev_task(rq, prev);
6755
6756 do {
6757 se = pick_next_entity(cfs_rq, NULL);
6758 set_next_entity(cfs_rq, se);
6759 cfs_rq = group_cfs_rq(se);
6760 } while (cfs_rq);
6761
6762 p = task_of(se);
6763
6764 done: __maybe_unused
6765 #ifdef CONFIG_SMP
6766 /*
6767 * Move the next running task to the front of
6768 * the list, so our cfs_tasks list becomes MRU
6769 * one.
6770 */
6771 list_move(&p->se.group_node, &rq->cfs_tasks);
6772 #endif
6773
6774 if (hrtick_enabled(rq))
6775 hrtick_start_fair(rq, p);
6776
6777 return p;
6778
6779 idle:
6780 new_tasks = idle_balance(rq, rf);
6781
6782 /*
6783 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6784 * possible for any higher priority task to appear. In that case we
6785 * must re-start the pick_next_entity() loop.
6786 */
6787 if (new_tasks < 0)
6788 return RETRY_TASK;
6789
6790 if (new_tasks > 0)
6791 goto again;
6792
6793 return NULL;
6794 }
6795
6796 /*
6797 * Account for a descheduled task:
6798 */
6799 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6800 {
6801 struct sched_entity *se = &prev->se;
6802 struct cfs_rq *cfs_rq;
6803
6804 for_each_sched_entity(se) {
6805 cfs_rq = cfs_rq_of(se);
6806 put_prev_entity(cfs_rq, se);
6807 }
6808 }
6809
6810 /*
6811 * sched_yield() is very simple
6812 *
6813 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6814 */
6815 static void yield_task_fair(struct rq *rq)
6816 {
6817 struct task_struct *curr = rq->curr;
6818 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6819 struct sched_entity *se = &curr->se;
6820
6821 /*
6822 * Are we the only task in the tree?
6823 */
6824 if (unlikely(rq->nr_running == 1))
6825 return;
6826
6827 clear_buddies(cfs_rq, se);
6828
6829 if (curr->policy != SCHED_BATCH) {
6830 update_rq_clock(rq);
6831 /*
6832 * Update run-time statistics of the 'current'.
6833 */
6834 update_curr(cfs_rq);
6835 /*
6836 * Tell update_rq_clock() that we've just updated,
6837 * so we don't do microscopic update in schedule()
6838 * and double the fastpath cost.
6839 */
6840 rq_clock_skip_update(rq, true);
6841 }
6842
6843 set_skip_buddy(se);
6844 }
6845
6846 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6847 {
6848 struct sched_entity *se = &p->se;
6849
6850 /* throttled hierarchies are not runnable */
6851 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6852 return false;
6853
6854 /* Tell the scheduler that we'd really like pse to run next. */
6855 set_next_buddy(se);
6856
6857 yield_task_fair(rq);
6858
6859 return true;
6860 }
6861
6862 #ifdef CONFIG_SMP
6863 /**************************************************
6864 * Fair scheduling class load-balancing methods.
6865 *
6866 * BASICS
6867 *
6868 * The purpose of load-balancing is to achieve the same basic fairness the
6869 * per-cpu scheduler provides, namely provide a proportional amount of compute
6870 * time to each task. This is expressed in the following equation:
6871 *
6872 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6873 *
6874 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6875 * W_i,0 is defined as:
6876 *
6877 * W_i,0 = \Sum_j w_i,j (2)
6878 *
6879 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6880 * is derived from the nice value as per sched_prio_to_weight[].
6881 *
6882 * The weight average is an exponential decay average of the instantaneous
6883 * weight:
6884 *
6885 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6886 *
6887 * C_i is the compute capacity of cpu i, typically it is the
6888 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6889 * can also include other factors [XXX].
6890 *
6891 * To achieve this balance we define a measure of imbalance which follows
6892 * directly from (1):
6893 *
6894 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
6895 *
6896 * We them move tasks around to minimize the imbalance. In the continuous
6897 * function space it is obvious this converges, in the discrete case we get
6898 * a few fun cases generally called infeasible weight scenarios.
6899 *
6900 * [XXX expand on:
6901 * - infeasible weights;
6902 * - local vs global optima in the discrete case. ]
6903 *
6904 *
6905 * SCHED DOMAINS
6906 *
6907 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6908 * for all i,j solution, we create a tree of cpus that follows the hardware
6909 * topology where each level pairs two lower groups (or better). This results
6910 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6911 * tree to only the first of the previous level and we decrease the frequency
6912 * of load-balance at each level inv. proportional to the number of cpus in
6913 * the groups.
6914 *
6915 * This yields:
6916 *
6917 * log_2 n 1 n
6918 * \Sum { --- * --- * 2^i } = O(n) (5)
6919 * i = 0 2^i 2^i
6920 * `- size of each group
6921 * | | `- number of cpus doing load-balance
6922 * | `- freq
6923 * `- sum over all levels
6924 *
6925 * Coupled with a limit on how many tasks we can migrate every balance pass,
6926 * this makes (5) the runtime complexity of the balancer.
6927 *
6928 * An important property here is that each CPU is still (indirectly) connected
6929 * to every other cpu in at most O(log n) steps:
6930 *
6931 * The adjacency matrix of the resulting graph is given by:
6932 *
6933 * log_2 n
6934 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6935 * k = 0
6936 *
6937 * And you'll find that:
6938 *
6939 * A^(log_2 n)_i,j != 0 for all i,j (7)
6940 *
6941 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6942 * The task movement gives a factor of O(m), giving a convergence complexity
6943 * of:
6944 *
6945 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6946 *
6947 *
6948 * WORK CONSERVING
6949 *
6950 * In order to avoid CPUs going idle while there's still work to do, new idle
6951 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6952 * tree itself instead of relying on other CPUs to bring it work.
6953 *
6954 * This adds some complexity to both (5) and (8) but it reduces the total idle
6955 * time.
6956 *
6957 * [XXX more?]
6958 *
6959 *
6960 * CGROUPS
6961 *
6962 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6963 *
6964 * s_k,i
6965 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6966 * S_k
6967 *
6968 * Where
6969 *
6970 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6971 *
6972 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6973 *
6974 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6975 * property.
6976 *
6977 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6978 * rewrite all of this once again.]
6979 */
6980
6981 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6982
6983 enum fbq_type { regular, remote, all };
6984
6985 #define LBF_ALL_PINNED 0x01
6986 #define LBF_NEED_BREAK 0x02
6987 #define LBF_DST_PINNED 0x04
6988 #define LBF_SOME_PINNED 0x08
6989
6990 struct lb_env {
6991 struct sched_domain *sd;
6992
6993 struct rq *src_rq;
6994 int src_cpu;
6995
6996 int dst_cpu;
6997 struct rq *dst_rq;
6998
6999 struct cpumask *dst_grpmask;
7000 int new_dst_cpu;
7001 enum cpu_idle_type idle;
7002 long imbalance;
7003 /* The set of CPUs under consideration for load-balancing */
7004 struct cpumask *cpus;
7005
7006 unsigned int flags;
7007
7008 unsigned int loop;
7009 unsigned int loop_break;
7010 unsigned int loop_max;
7011
7012 enum fbq_type fbq_type;
7013 struct list_head tasks;
7014 };
7015
7016 /*
7017 * Is this task likely cache-hot:
7018 */
7019 static int task_hot(struct task_struct *p, struct lb_env *env)
7020 {
7021 s64 delta;
7022
7023 lockdep_assert_held(&env->src_rq->lock);
7024
7025 if (p->sched_class != &fair_sched_class)
7026 return 0;
7027
7028 if (unlikely(p->policy == SCHED_IDLE))
7029 return 0;
7030
7031 /*
7032 * Buddy candidates are cache hot:
7033 */
7034 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7035 (&p->se == cfs_rq_of(&p->se)->next ||
7036 &p->se == cfs_rq_of(&p->se)->last))
7037 return 1;
7038
7039 if (sysctl_sched_migration_cost == -1)
7040 return 1;
7041 if (sysctl_sched_migration_cost == 0)
7042 return 0;
7043
7044 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7045
7046 return delta < (s64)sysctl_sched_migration_cost;
7047 }
7048
7049 #ifdef CONFIG_NUMA_BALANCING
7050 /*
7051 * Returns 1, if task migration degrades locality
7052 * Returns 0, if task migration improves locality i.e migration preferred.
7053 * Returns -1, if task migration is not affected by locality.
7054 */
7055 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7056 {
7057 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7058 unsigned long src_faults, dst_faults;
7059 int src_nid, dst_nid;
7060
7061 if (!static_branch_likely(&sched_numa_balancing))
7062 return -1;
7063
7064 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7065 return -1;
7066
7067 src_nid = cpu_to_node(env->src_cpu);
7068 dst_nid = cpu_to_node(env->dst_cpu);
7069
7070 if (src_nid == dst_nid)
7071 return -1;
7072
7073 /* Migrating away from the preferred node is always bad. */
7074 if (src_nid == p->numa_preferred_nid) {
7075 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7076 return 1;
7077 else
7078 return -1;
7079 }
7080
7081 /* Encourage migration to the preferred node. */
7082 if (dst_nid == p->numa_preferred_nid)
7083 return 0;
7084
7085 /* Leaving a core idle is often worse than degrading locality. */
7086 if (env->idle != CPU_NOT_IDLE)
7087 return -1;
7088
7089 if (numa_group) {
7090 src_faults = group_faults(p, src_nid);
7091 dst_faults = group_faults(p, dst_nid);
7092 } else {
7093 src_faults = task_faults(p, src_nid);
7094 dst_faults = task_faults(p, dst_nid);
7095 }
7096
7097 return dst_faults < src_faults;
7098 }
7099
7100 #else
7101 static inline int migrate_degrades_locality(struct task_struct *p,
7102 struct lb_env *env)
7103 {
7104 return -1;
7105 }
7106 #endif
7107
7108 /*
7109 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7110 */
7111 static
7112 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7113 {
7114 int tsk_cache_hot;
7115
7116 lockdep_assert_held(&env->src_rq->lock);
7117
7118 /*
7119 * We do not migrate tasks that are:
7120 * 1) throttled_lb_pair, or
7121 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7122 * 3) running (obviously), or
7123 * 4) are cache-hot on their current CPU.
7124 */
7125 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7126 return 0;
7127
7128 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7129 int cpu;
7130
7131 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7132
7133 env->flags |= LBF_SOME_PINNED;
7134
7135 /*
7136 * Remember if this task can be migrated to any other cpu in
7137 * our sched_group. We may want to revisit it if we couldn't
7138 * meet load balance goals by pulling other tasks on src_cpu.
7139 *
7140 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7141 * already computed one in current iteration.
7142 */
7143 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7144 return 0;
7145
7146 /* Prevent to re-select dst_cpu via env's cpus */
7147 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7148 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7149 env->flags |= LBF_DST_PINNED;
7150 env->new_dst_cpu = cpu;
7151 break;
7152 }
7153 }
7154
7155 return 0;
7156 }
7157
7158 /* Record that we found atleast one task that could run on dst_cpu */
7159 env->flags &= ~LBF_ALL_PINNED;
7160
7161 if (task_running(env->src_rq, p)) {
7162 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7163 return 0;
7164 }
7165
7166 /*
7167 * Aggressive migration if:
7168 * 1) destination numa is preferred
7169 * 2) task is cache cold, or
7170 * 3) too many balance attempts have failed.
7171 */
7172 tsk_cache_hot = migrate_degrades_locality(p, env);
7173 if (tsk_cache_hot == -1)
7174 tsk_cache_hot = task_hot(p, env);
7175
7176 if (tsk_cache_hot <= 0 ||
7177 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7178 if (tsk_cache_hot == 1) {
7179 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7180 schedstat_inc(p->se.statistics.nr_forced_migrations);
7181 }
7182 return 1;
7183 }
7184
7185 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7186 return 0;
7187 }
7188
7189 /*
7190 * detach_task() -- detach the task for the migration specified in env
7191 */
7192 static void detach_task(struct task_struct *p, struct lb_env *env)
7193 {
7194 lockdep_assert_held(&env->src_rq->lock);
7195
7196 p->on_rq = TASK_ON_RQ_MIGRATING;
7197 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7198 set_task_cpu(p, env->dst_cpu);
7199 }
7200
7201 /*
7202 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7203 * part of active balancing operations within "domain".
7204 *
7205 * Returns a task if successful and NULL otherwise.
7206 */
7207 static struct task_struct *detach_one_task(struct lb_env *env)
7208 {
7209 struct task_struct *p;
7210
7211 lockdep_assert_held(&env->src_rq->lock);
7212
7213 list_for_each_entry_reverse(p,
7214 &env->src_rq->cfs_tasks, se.group_node) {
7215 if (!can_migrate_task(p, env))
7216 continue;
7217
7218 detach_task(p, env);
7219
7220 /*
7221 * Right now, this is only the second place where
7222 * lb_gained[env->idle] is updated (other is detach_tasks)
7223 * so we can safely collect stats here rather than
7224 * inside detach_tasks().
7225 */
7226 schedstat_inc(env->sd->lb_gained[env->idle]);
7227 return p;
7228 }
7229 return NULL;
7230 }
7231
7232 static const unsigned int sched_nr_migrate_break = 32;
7233
7234 /*
7235 * detach_tasks() -- tries to detach up to imbalance weighted load from
7236 * busiest_rq, as part of a balancing operation within domain "sd".
7237 *
7238 * Returns number of detached tasks if successful and 0 otherwise.
7239 */
7240 static int detach_tasks(struct lb_env *env)
7241 {
7242 struct list_head *tasks = &env->src_rq->cfs_tasks;
7243 struct task_struct *p;
7244 unsigned long load;
7245 int detached = 0;
7246
7247 lockdep_assert_held(&env->src_rq->lock);
7248
7249 if (env->imbalance <= 0)
7250 return 0;
7251
7252 while (!list_empty(tasks)) {
7253 /*
7254 * We don't want to steal all, otherwise we may be treated likewise,
7255 * which could at worst lead to a livelock crash.
7256 */
7257 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7258 break;
7259
7260 p = list_last_entry(tasks, struct task_struct, se.group_node);
7261
7262 env->loop++;
7263 /* We've more or less seen every task there is, call it quits */
7264 if (env->loop > env->loop_max)
7265 break;
7266
7267 /* take a breather every nr_migrate tasks */
7268 if (env->loop > env->loop_break) {
7269 env->loop_break += sched_nr_migrate_break;
7270 env->flags |= LBF_NEED_BREAK;
7271 break;
7272 }
7273
7274 if (!can_migrate_task(p, env))
7275 goto next;
7276
7277 load = task_h_load(p);
7278
7279 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7280 goto next;
7281
7282 if ((load / 2) > env->imbalance)
7283 goto next;
7284
7285 detach_task(p, env);
7286 list_add(&p->se.group_node, &env->tasks);
7287
7288 detached++;
7289 env->imbalance -= load;
7290
7291 #ifdef CONFIG_PREEMPT
7292 /*
7293 * NEWIDLE balancing is a source of latency, so preemptible
7294 * kernels will stop after the first task is detached to minimize
7295 * the critical section.
7296 */
7297 if (env->idle == CPU_NEWLY_IDLE)
7298 break;
7299 #endif
7300
7301 /*
7302 * We only want to steal up to the prescribed amount of
7303 * weighted load.
7304 */
7305 if (env->imbalance <= 0)
7306 break;
7307
7308 continue;
7309 next:
7310 list_move(&p->se.group_node, tasks);
7311 }
7312
7313 /*
7314 * Right now, this is one of only two places we collect this stat
7315 * so we can safely collect detach_one_task() stats here rather
7316 * than inside detach_one_task().
7317 */
7318 schedstat_add(env->sd->lb_gained[env->idle], detached);
7319
7320 return detached;
7321 }
7322
7323 /*
7324 * attach_task() -- attach the task detached by detach_task() to its new rq.
7325 */
7326 static void attach_task(struct rq *rq, struct task_struct *p)
7327 {
7328 lockdep_assert_held(&rq->lock);
7329
7330 BUG_ON(task_rq(p) != rq);
7331 activate_task(rq, p, ENQUEUE_NOCLOCK);
7332 p->on_rq = TASK_ON_RQ_QUEUED;
7333 check_preempt_curr(rq, p, 0);
7334 }
7335
7336 /*
7337 * attach_one_task() -- attaches the task returned from detach_one_task() to
7338 * its new rq.
7339 */
7340 static void attach_one_task(struct rq *rq, struct task_struct *p)
7341 {
7342 struct rq_flags rf;
7343
7344 rq_lock(rq, &rf);
7345 update_rq_clock(rq);
7346 attach_task(rq, p);
7347 rq_unlock(rq, &rf);
7348 }
7349
7350 /*
7351 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7352 * new rq.
7353 */
7354 static void attach_tasks(struct lb_env *env)
7355 {
7356 struct list_head *tasks = &env->tasks;
7357 struct task_struct *p;
7358 struct rq_flags rf;
7359
7360 rq_lock(env->dst_rq, &rf);
7361 update_rq_clock(env->dst_rq);
7362
7363 while (!list_empty(tasks)) {
7364 p = list_first_entry(tasks, struct task_struct, se.group_node);
7365 list_del_init(&p->se.group_node);
7366
7367 attach_task(env->dst_rq, p);
7368 }
7369
7370 rq_unlock(env->dst_rq, &rf);
7371 }
7372
7373 #ifdef CONFIG_FAIR_GROUP_SCHED
7374
7375 static void update_blocked_averages(int cpu)
7376 {
7377 struct rq *rq = cpu_rq(cpu);
7378 struct cfs_rq *cfs_rq;
7379 struct rq_flags rf;
7380
7381 rq_lock_irqsave(rq, &rf);
7382 update_rq_clock(rq);
7383
7384 /*
7385 * Iterates the task_group tree in a bottom up fashion, see
7386 * list_add_leaf_cfs_rq() for details.
7387 */
7388 for_each_leaf_cfs_rq(rq, cfs_rq) {
7389 struct sched_entity *se;
7390
7391 /* throttled entities do not contribute to load */
7392 if (throttled_hierarchy(cfs_rq))
7393 continue;
7394
7395 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7396 update_tg_load_avg(cfs_rq, 0);
7397
7398 /* Propagate pending load changes to the parent, if any: */
7399 se = cfs_rq->tg->se[cpu];
7400 if (se && !skip_blocked_update(se))
7401 update_load_avg(cfs_rq_of(se), se, 0);
7402 }
7403 rq_unlock_irqrestore(rq, &rf);
7404 }
7405
7406 /*
7407 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7408 * This needs to be done in a top-down fashion because the load of a child
7409 * group is a fraction of its parents load.
7410 */
7411 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7412 {
7413 struct rq *rq = rq_of(cfs_rq);
7414 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7415 unsigned long now = jiffies;
7416 unsigned long load;
7417
7418 if (cfs_rq->last_h_load_update == now)
7419 return;
7420
7421 WRITE_ONCE(cfs_rq->h_load_next, NULL);
7422 for_each_sched_entity(se) {
7423 cfs_rq = cfs_rq_of(se);
7424 WRITE_ONCE(cfs_rq->h_load_next, se);
7425 if (cfs_rq->last_h_load_update == now)
7426 break;
7427 }
7428
7429 if (!se) {
7430 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7431 cfs_rq->last_h_load_update = now;
7432 }
7433
7434 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7435 load = cfs_rq->h_load;
7436 load = div64_ul(load * se->avg.load_avg,
7437 cfs_rq_load_avg(cfs_rq) + 1);
7438 cfs_rq = group_cfs_rq(se);
7439 cfs_rq->h_load = load;
7440 cfs_rq->last_h_load_update = now;
7441 }
7442 }
7443
7444 static unsigned long task_h_load(struct task_struct *p)
7445 {
7446 struct cfs_rq *cfs_rq = task_cfs_rq(p);
7447
7448 update_cfs_rq_h_load(cfs_rq);
7449 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7450 cfs_rq_load_avg(cfs_rq) + 1);
7451 }
7452 #else
7453 static inline void update_blocked_averages(int cpu)
7454 {
7455 struct rq *rq = cpu_rq(cpu);
7456 struct cfs_rq *cfs_rq = &rq->cfs;
7457 struct rq_flags rf;
7458
7459 rq_lock_irqsave(rq, &rf);
7460 update_rq_clock(rq);
7461 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7462 rq_unlock_irqrestore(rq, &rf);
7463 }
7464
7465 static unsigned long task_h_load(struct task_struct *p)
7466 {
7467 return p->se.avg.load_avg;
7468 }
7469 #endif
7470
7471 /********** Helpers for find_busiest_group ************************/
7472
7473 enum group_type {
7474 group_other = 0,
7475 group_imbalanced,
7476 group_overloaded,
7477 };
7478
7479 /*
7480 * sg_lb_stats - stats of a sched_group required for load_balancing
7481 */
7482 struct sg_lb_stats {
7483 unsigned long avg_load; /*Avg load across the CPUs of the group */
7484 unsigned long group_load; /* Total load over the CPUs of the group */
7485 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7486 unsigned long load_per_task;
7487 unsigned long group_capacity;
7488 unsigned long group_util; /* Total utilization of the group */
7489 unsigned int sum_nr_running; /* Nr tasks running in the group */
7490 unsigned int idle_cpus;
7491 unsigned int group_weight;
7492 enum group_type group_type;
7493 int group_no_capacity;
7494 #ifdef CONFIG_NUMA_BALANCING
7495 unsigned int nr_numa_running;
7496 unsigned int nr_preferred_running;
7497 #endif
7498 };
7499
7500 /*
7501 * sd_lb_stats - Structure to store the statistics of a sched_domain
7502 * during load balancing.
7503 */
7504 struct sd_lb_stats {
7505 struct sched_group *busiest; /* Busiest group in this sd */
7506 struct sched_group *local; /* Local group in this sd */
7507 unsigned long total_running;
7508 unsigned long total_load; /* Total load of all groups in sd */
7509 unsigned long total_capacity; /* Total capacity of all groups in sd */
7510 unsigned long avg_load; /* Average load across all groups in sd */
7511
7512 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7513 struct sg_lb_stats local_stat; /* Statistics of the local group */
7514 };
7515
7516 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7517 {
7518 /*
7519 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7520 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7521 * We must however clear busiest_stat::avg_load because
7522 * update_sd_pick_busiest() reads this before assignment.
7523 */
7524 *sds = (struct sd_lb_stats){
7525 .busiest = NULL,
7526 .local = NULL,
7527 .total_running = 0UL,
7528 .total_load = 0UL,
7529 .total_capacity = 0UL,
7530 .busiest_stat = {
7531 .avg_load = 0UL,
7532 .sum_nr_running = 0,
7533 .group_type = group_other,
7534 },
7535 };
7536 }
7537
7538 /**
7539 * get_sd_load_idx - Obtain the load index for a given sched domain.
7540 * @sd: The sched_domain whose load_idx is to be obtained.
7541 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7542 *
7543 * Return: The load index.
7544 */
7545 static inline int get_sd_load_idx(struct sched_domain *sd,
7546 enum cpu_idle_type idle)
7547 {
7548 int load_idx;
7549
7550 switch (idle) {
7551 case CPU_NOT_IDLE:
7552 load_idx = sd->busy_idx;
7553 break;
7554
7555 case CPU_NEWLY_IDLE:
7556 load_idx = sd->newidle_idx;
7557 break;
7558 default:
7559 load_idx = sd->idle_idx;
7560 break;
7561 }
7562
7563 return load_idx;
7564 }
7565
7566 static unsigned long scale_rt_capacity(int cpu)
7567 {
7568 struct rq *rq = cpu_rq(cpu);
7569 u64 total, used, age_stamp, avg;
7570 s64 delta;
7571
7572 /*
7573 * Since we're reading these variables without serialization make sure
7574 * we read them once before doing sanity checks on them.
7575 */
7576 age_stamp = READ_ONCE(rq->age_stamp);
7577 avg = READ_ONCE(rq->rt_avg);
7578 delta = __rq_clock_broken(rq) - age_stamp;
7579
7580 if (unlikely(delta < 0))
7581 delta = 0;
7582
7583 total = sched_avg_period() + delta;
7584
7585 used = div_u64(avg, total);
7586
7587 if (likely(used < SCHED_CAPACITY_SCALE))
7588 return SCHED_CAPACITY_SCALE - used;
7589
7590 return 1;
7591 }
7592
7593 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7594 {
7595 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7596 struct sched_group *sdg = sd->groups;
7597
7598 cpu_rq(cpu)->cpu_capacity_orig = capacity;
7599
7600 capacity *= scale_rt_capacity(cpu);
7601 capacity >>= SCHED_CAPACITY_SHIFT;
7602
7603 if (!capacity)
7604 capacity = 1;
7605
7606 cpu_rq(cpu)->cpu_capacity = capacity;
7607 sdg->sgc->capacity = capacity;
7608 sdg->sgc->min_capacity = capacity;
7609 }
7610
7611 void update_group_capacity(struct sched_domain *sd, int cpu)
7612 {
7613 struct sched_domain *child = sd->child;
7614 struct sched_group *group, *sdg = sd->groups;
7615 unsigned long capacity, min_capacity;
7616 unsigned long interval;
7617
7618 interval = msecs_to_jiffies(sd->balance_interval);
7619 interval = clamp(interval, 1UL, max_load_balance_interval);
7620 sdg->sgc->next_update = jiffies + interval;
7621
7622 if (!child) {
7623 update_cpu_capacity(sd, cpu);
7624 return;
7625 }
7626
7627 capacity = 0;
7628 min_capacity = ULONG_MAX;
7629
7630 if (child->flags & SD_OVERLAP) {
7631 /*
7632 * SD_OVERLAP domains cannot assume that child groups
7633 * span the current group.
7634 */
7635
7636 for_each_cpu(cpu, sched_group_span(sdg)) {
7637 struct sched_group_capacity *sgc;
7638 struct rq *rq = cpu_rq(cpu);
7639
7640 /*
7641 * build_sched_domains() -> init_sched_groups_capacity()
7642 * gets here before we've attached the domains to the
7643 * runqueues.
7644 *
7645 * Use capacity_of(), which is set irrespective of domains
7646 * in update_cpu_capacity().
7647 *
7648 * This avoids capacity from being 0 and
7649 * causing divide-by-zero issues on boot.
7650 */
7651 if (unlikely(!rq->sd)) {
7652 capacity += capacity_of(cpu);
7653 } else {
7654 sgc = rq->sd->groups->sgc;
7655 capacity += sgc->capacity;
7656 }
7657
7658 min_capacity = min(capacity, min_capacity);
7659 }
7660 } else {
7661 /*
7662 * !SD_OVERLAP domains can assume that child groups
7663 * span the current group.
7664 */
7665
7666 group = child->groups;
7667 do {
7668 struct sched_group_capacity *sgc = group->sgc;
7669
7670 capacity += sgc->capacity;
7671 min_capacity = min(sgc->min_capacity, min_capacity);
7672 group = group->next;
7673 } while (group != child->groups);
7674 }
7675
7676 sdg->sgc->capacity = capacity;
7677 sdg->sgc->min_capacity = min_capacity;
7678 }
7679
7680 /*
7681 * Check whether the capacity of the rq has been noticeably reduced by side
7682 * activity. The imbalance_pct is used for the threshold.
7683 * Return true is the capacity is reduced
7684 */
7685 static inline int
7686 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7687 {
7688 return ((rq->cpu_capacity * sd->imbalance_pct) <
7689 (rq->cpu_capacity_orig * 100));
7690 }
7691
7692 /*
7693 * Group imbalance indicates (and tries to solve) the problem where balancing
7694 * groups is inadequate due to ->cpus_allowed constraints.
7695 *
7696 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7697 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7698 * Something like:
7699 *
7700 * { 0 1 2 3 } { 4 5 6 7 }
7701 * * * * *
7702 *
7703 * If we were to balance group-wise we'd place two tasks in the first group and
7704 * two tasks in the second group. Clearly this is undesired as it will overload
7705 * cpu 3 and leave one of the cpus in the second group unused.
7706 *
7707 * The current solution to this issue is detecting the skew in the first group
7708 * by noticing the lower domain failed to reach balance and had difficulty
7709 * moving tasks due to affinity constraints.
7710 *
7711 * When this is so detected; this group becomes a candidate for busiest; see
7712 * update_sd_pick_busiest(). And calculate_imbalance() and
7713 * find_busiest_group() avoid some of the usual balance conditions to allow it
7714 * to create an effective group imbalance.
7715 *
7716 * This is a somewhat tricky proposition since the next run might not find the
7717 * group imbalance and decide the groups need to be balanced again. A most
7718 * subtle and fragile situation.
7719 */
7720
7721 static inline int sg_imbalanced(struct sched_group *group)
7722 {
7723 return group->sgc->imbalance;
7724 }
7725
7726 /*
7727 * group_has_capacity returns true if the group has spare capacity that could
7728 * be used by some tasks.
7729 * We consider that a group has spare capacity if the * number of task is
7730 * smaller than the number of CPUs or if the utilization is lower than the
7731 * available capacity for CFS tasks.
7732 * For the latter, we use a threshold to stabilize the state, to take into
7733 * account the variance of the tasks' load and to return true if the available
7734 * capacity in meaningful for the load balancer.
7735 * As an example, an available capacity of 1% can appear but it doesn't make
7736 * any benefit for the load balance.
7737 */
7738 static inline bool
7739 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7740 {
7741 if (sgs->sum_nr_running < sgs->group_weight)
7742 return true;
7743
7744 if ((sgs->group_capacity * 100) >
7745 (sgs->group_util * env->sd->imbalance_pct))
7746 return true;
7747
7748 return false;
7749 }
7750
7751 /*
7752 * group_is_overloaded returns true if the group has more tasks than it can
7753 * handle.
7754 * group_is_overloaded is not equals to !group_has_capacity because a group
7755 * with the exact right number of tasks, has no more spare capacity but is not
7756 * overloaded so both group_has_capacity and group_is_overloaded return
7757 * false.
7758 */
7759 static inline bool
7760 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7761 {
7762 if (sgs->sum_nr_running <= sgs->group_weight)
7763 return false;
7764
7765 if ((sgs->group_capacity * 100) <
7766 (sgs->group_util * env->sd->imbalance_pct))
7767 return true;
7768
7769 return false;
7770 }
7771
7772 /*
7773 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7774 * per-CPU capacity than sched_group ref.
7775 */
7776 static inline bool
7777 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7778 {
7779 return sg->sgc->min_capacity * capacity_margin <
7780 ref->sgc->min_capacity * 1024;
7781 }
7782
7783 static inline enum
7784 group_type group_classify(struct sched_group *group,
7785 struct sg_lb_stats *sgs)
7786 {
7787 if (sgs->group_no_capacity)
7788 return group_overloaded;
7789
7790 if (sg_imbalanced(group))
7791 return group_imbalanced;
7792
7793 return group_other;
7794 }
7795
7796 /**
7797 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7798 * @env: The load balancing environment.
7799 * @group: sched_group whose statistics are to be updated.
7800 * @load_idx: Load index of sched_domain of this_cpu for load calc.
7801 * @local_group: Does group contain this_cpu.
7802 * @sgs: variable to hold the statistics for this group.
7803 * @overload: Indicate more than one runnable task for any CPU.
7804 */
7805 static inline void update_sg_lb_stats(struct lb_env *env,
7806 struct sched_group *group, int load_idx,
7807 int local_group, struct sg_lb_stats *sgs,
7808 bool *overload)
7809 {
7810 unsigned long load;
7811 int i, nr_running;
7812
7813 memset(sgs, 0, sizeof(*sgs));
7814
7815 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7816 struct rq *rq = cpu_rq(i);
7817
7818 /* Bias balancing toward cpus of our domain */
7819 if (local_group)
7820 load = target_load(i, load_idx);
7821 else
7822 load = source_load(i, load_idx);
7823
7824 sgs->group_load += load;
7825 sgs->group_util += cpu_util(i);
7826 sgs->sum_nr_running += rq->cfs.h_nr_running;
7827
7828 nr_running = rq->nr_running;
7829 if (nr_running > 1)
7830 *overload = true;
7831
7832 #ifdef CONFIG_NUMA_BALANCING
7833 sgs->nr_numa_running += rq->nr_numa_running;
7834 sgs->nr_preferred_running += rq->nr_preferred_running;
7835 #endif
7836 sgs->sum_weighted_load += weighted_cpuload(rq);
7837 /*
7838 * No need to call idle_cpu() if nr_running is not 0
7839 */
7840 if (!nr_running && idle_cpu(i))
7841 sgs->idle_cpus++;
7842 }
7843
7844 /* Adjust by relative CPU capacity of the group */
7845 sgs->group_capacity = group->sgc->capacity;
7846 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7847
7848 if (sgs->sum_nr_running)
7849 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7850
7851 sgs->group_weight = group->group_weight;
7852
7853 sgs->group_no_capacity = group_is_overloaded(env, sgs);
7854 sgs->group_type = group_classify(group, sgs);
7855 }
7856
7857 /**
7858 * update_sd_pick_busiest - return 1 on busiest group
7859 * @env: The load balancing environment.
7860 * @sds: sched_domain statistics
7861 * @sg: sched_group candidate to be checked for being the busiest
7862 * @sgs: sched_group statistics
7863 *
7864 * Determine if @sg is a busier group than the previously selected
7865 * busiest group.
7866 *
7867 * Return: %true if @sg is a busier group than the previously selected
7868 * busiest group. %false otherwise.
7869 */
7870 static bool update_sd_pick_busiest(struct lb_env *env,
7871 struct sd_lb_stats *sds,
7872 struct sched_group *sg,
7873 struct sg_lb_stats *sgs)
7874 {
7875 struct sg_lb_stats *busiest = &sds->busiest_stat;
7876
7877 if (sgs->group_type > busiest->group_type)
7878 return true;
7879
7880 if (sgs->group_type < busiest->group_type)
7881 return false;
7882
7883 if (sgs->avg_load <= busiest->avg_load)
7884 return false;
7885
7886 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7887 goto asym_packing;
7888
7889 /*
7890 * Candidate sg has no more than one task per CPU and
7891 * has higher per-CPU capacity. Migrating tasks to less
7892 * capable CPUs may harm throughput. Maximize throughput,
7893 * power/energy consequences are not considered.
7894 */
7895 if (sgs->sum_nr_running <= sgs->group_weight &&
7896 group_smaller_cpu_capacity(sds->local, sg))
7897 return false;
7898
7899 asym_packing:
7900 /* This is the busiest node in its class. */
7901 if (!(env->sd->flags & SD_ASYM_PACKING))
7902 return true;
7903
7904 /* No ASYM_PACKING if target cpu is already busy */
7905 if (env->idle == CPU_NOT_IDLE)
7906 return true;
7907 /*
7908 * ASYM_PACKING needs to move all the work to the highest
7909 * prority CPUs in the group, therefore mark all groups
7910 * of lower priority than ourself as busy.
7911 */
7912 if (sgs->sum_nr_running &&
7913 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7914 if (!sds->busiest)
7915 return true;
7916
7917 /* Prefer to move from lowest priority cpu's work */
7918 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7919 sg->asym_prefer_cpu))
7920 return true;
7921 }
7922
7923 return false;
7924 }
7925
7926 #ifdef CONFIG_NUMA_BALANCING
7927 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7928 {
7929 if (sgs->sum_nr_running > sgs->nr_numa_running)
7930 return regular;
7931 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7932 return remote;
7933 return all;
7934 }
7935
7936 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7937 {
7938 if (rq->nr_running > rq->nr_numa_running)
7939 return regular;
7940 if (rq->nr_running > rq->nr_preferred_running)
7941 return remote;
7942 return all;
7943 }
7944 #else
7945 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7946 {
7947 return all;
7948 }
7949
7950 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7951 {
7952 return regular;
7953 }
7954 #endif /* CONFIG_NUMA_BALANCING */
7955
7956 /**
7957 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7958 * @env: The load balancing environment.
7959 * @sds: variable to hold the statistics for this sched_domain.
7960 */
7961 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7962 {
7963 struct sched_domain *child = env->sd->child;
7964 struct sched_group *sg = env->sd->groups;
7965 struct sg_lb_stats *local = &sds->local_stat;
7966 struct sg_lb_stats tmp_sgs;
7967 int load_idx, prefer_sibling = 0;
7968 bool overload = false;
7969
7970 if (child && child->flags & SD_PREFER_SIBLING)
7971 prefer_sibling = 1;
7972
7973 load_idx = get_sd_load_idx(env->sd, env->idle);
7974
7975 do {
7976 struct sg_lb_stats *sgs = &tmp_sgs;
7977 int local_group;
7978
7979 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
7980 if (local_group) {
7981 sds->local = sg;
7982 sgs = local;
7983
7984 if (env->idle != CPU_NEWLY_IDLE ||
7985 time_after_eq(jiffies, sg->sgc->next_update))
7986 update_group_capacity(env->sd, env->dst_cpu);
7987 }
7988
7989 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7990 &overload);
7991
7992 if (local_group)
7993 goto next_group;
7994
7995 /*
7996 * In case the child domain prefers tasks go to siblings
7997 * first, lower the sg capacity so that we'll try
7998 * and move all the excess tasks away. We lower the capacity
7999 * of a group only if the local group has the capacity to fit
8000 * these excess tasks. The extra check prevents the case where
8001 * you always pull from the heaviest group when it is already
8002 * under-utilized (possible with a large weight task outweighs
8003 * the tasks on the system).
8004 */
8005 if (prefer_sibling && sds->local &&
8006 group_has_capacity(env, local) &&
8007 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8008 sgs->group_no_capacity = 1;
8009 sgs->group_type = group_classify(sg, sgs);
8010 }
8011
8012 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8013 sds->busiest = sg;
8014 sds->busiest_stat = *sgs;
8015 }
8016
8017 next_group:
8018 /* Now, start updating sd_lb_stats */
8019 sds->total_running += sgs->sum_nr_running;
8020 sds->total_load += sgs->group_load;
8021 sds->total_capacity += sgs->group_capacity;
8022
8023 sg = sg->next;
8024 } while (sg != env->sd->groups);
8025
8026 if (env->sd->flags & SD_NUMA)
8027 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8028
8029 if (!env->sd->parent) {
8030 /* update overload indicator if we are at root domain */
8031 if (env->dst_rq->rd->overload != overload)
8032 env->dst_rq->rd->overload = overload;
8033 }
8034 }
8035
8036 /**
8037 * check_asym_packing - Check to see if the group is packed into the
8038 * sched domain.
8039 *
8040 * This is primarily intended to used at the sibling level. Some
8041 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8042 * case of POWER7, it can move to lower SMT modes only when higher
8043 * threads are idle. When in lower SMT modes, the threads will
8044 * perform better since they share less core resources. Hence when we
8045 * have idle threads, we want them to be the higher ones.
8046 *
8047 * This packing function is run on idle threads. It checks to see if
8048 * the busiest CPU in this domain (core in the P7 case) has a higher
8049 * CPU number than the packing function is being run on. Here we are
8050 * assuming lower CPU number will be equivalent to lower a SMT thread
8051 * number.
8052 *
8053 * Return: 1 when packing is required and a task should be moved to
8054 * this CPU. The amount of the imbalance is returned in env->imbalance.
8055 *
8056 * @env: The load balancing environment.
8057 * @sds: Statistics of the sched_domain which is to be packed
8058 */
8059 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8060 {
8061 int busiest_cpu;
8062
8063 if (!(env->sd->flags & SD_ASYM_PACKING))
8064 return 0;
8065
8066 if (env->idle == CPU_NOT_IDLE)
8067 return 0;
8068
8069 if (!sds->busiest)
8070 return 0;
8071
8072 busiest_cpu = sds->busiest->asym_prefer_cpu;
8073 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8074 return 0;
8075
8076 env->imbalance = DIV_ROUND_CLOSEST(
8077 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8078 SCHED_CAPACITY_SCALE);
8079
8080 return 1;
8081 }
8082
8083 /**
8084 * fix_small_imbalance - Calculate the minor imbalance that exists
8085 * amongst the groups of a sched_domain, during
8086 * load balancing.
8087 * @env: The load balancing environment.
8088 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8089 */
8090 static inline
8091 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8092 {
8093 unsigned long tmp, capa_now = 0, capa_move = 0;
8094 unsigned int imbn = 2;
8095 unsigned long scaled_busy_load_per_task;
8096 struct sg_lb_stats *local, *busiest;
8097
8098 local = &sds->local_stat;
8099 busiest = &sds->busiest_stat;
8100
8101 if (!local->sum_nr_running)
8102 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8103 else if (busiest->load_per_task > local->load_per_task)
8104 imbn = 1;
8105
8106 scaled_busy_load_per_task =
8107 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8108 busiest->group_capacity;
8109
8110 if (busiest->avg_load + scaled_busy_load_per_task >=
8111 local->avg_load + (scaled_busy_load_per_task * imbn)) {
8112 env->imbalance = busiest->load_per_task;
8113 return;
8114 }
8115
8116 /*
8117 * OK, we don't have enough imbalance to justify moving tasks,
8118 * however we may be able to increase total CPU capacity used by
8119 * moving them.
8120 */
8121
8122 capa_now += busiest->group_capacity *
8123 min(busiest->load_per_task, busiest->avg_load);
8124 capa_now += local->group_capacity *
8125 min(local->load_per_task, local->avg_load);
8126 capa_now /= SCHED_CAPACITY_SCALE;
8127
8128 /* Amount of load we'd subtract */
8129 if (busiest->avg_load > scaled_busy_load_per_task) {
8130 capa_move += busiest->group_capacity *
8131 min(busiest->load_per_task,
8132 busiest->avg_load - scaled_busy_load_per_task);
8133 }
8134
8135 /* Amount of load we'd add */
8136 if (busiest->avg_load * busiest->group_capacity <
8137 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8138 tmp = (busiest->avg_load * busiest->group_capacity) /
8139 local->group_capacity;
8140 } else {
8141 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8142 local->group_capacity;
8143 }
8144 capa_move += local->group_capacity *
8145 min(local->load_per_task, local->avg_load + tmp);
8146 capa_move /= SCHED_CAPACITY_SCALE;
8147
8148 /* Move if we gain throughput */
8149 if (capa_move > capa_now)
8150 env->imbalance = busiest->load_per_task;
8151 }
8152
8153 /**
8154 * calculate_imbalance - Calculate the amount of imbalance present within the
8155 * groups of a given sched_domain during load balance.
8156 * @env: load balance environment
8157 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8158 */
8159 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8160 {
8161 unsigned long max_pull, load_above_capacity = ~0UL;
8162 struct sg_lb_stats *local, *busiest;
8163
8164 local = &sds->local_stat;
8165 busiest = &sds->busiest_stat;
8166
8167 if (busiest->group_type == group_imbalanced) {
8168 /*
8169 * In the group_imb case we cannot rely on group-wide averages
8170 * to ensure cpu-load equilibrium, look at wider averages. XXX
8171 */
8172 busiest->load_per_task =
8173 min(busiest->load_per_task, sds->avg_load);
8174 }
8175
8176 /*
8177 * Avg load of busiest sg can be less and avg load of local sg can
8178 * be greater than avg load across all sgs of sd because avg load
8179 * factors in sg capacity and sgs with smaller group_type are
8180 * skipped when updating the busiest sg:
8181 */
8182 if (busiest->avg_load <= sds->avg_load ||
8183 local->avg_load >= sds->avg_load) {
8184 env->imbalance = 0;
8185 return fix_small_imbalance(env, sds);
8186 }
8187
8188 /*
8189 * If there aren't any idle cpus, avoid creating some.
8190 */
8191 if (busiest->group_type == group_overloaded &&
8192 local->group_type == group_overloaded) {
8193 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8194 if (load_above_capacity > busiest->group_capacity) {
8195 load_above_capacity -= busiest->group_capacity;
8196 load_above_capacity *= scale_load_down(NICE_0_LOAD);
8197 load_above_capacity /= busiest->group_capacity;
8198 } else
8199 load_above_capacity = ~0UL;
8200 }
8201
8202 /*
8203 * We're trying to get all the cpus to the average_load, so we don't
8204 * want to push ourselves above the average load, nor do we wish to
8205 * reduce the max loaded cpu below the average load. At the same time,
8206 * we also don't want to reduce the group load below the group
8207 * capacity. Thus we look for the minimum possible imbalance.
8208 */
8209 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8210
8211 /* How much load to actually move to equalise the imbalance */
8212 env->imbalance = min(
8213 max_pull * busiest->group_capacity,
8214 (sds->avg_load - local->avg_load) * local->group_capacity
8215 ) / SCHED_CAPACITY_SCALE;
8216
8217 /*
8218 * if *imbalance is less than the average load per runnable task
8219 * there is no guarantee that any tasks will be moved so we'll have
8220 * a think about bumping its value to force at least one task to be
8221 * moved
8222 */
8223 if (env->imbalance < busiest->load_per_task)
8224 return fix_small_imbalance(env, sds);
8225 }
8226
8227 /******* find_busiest_group() helpers end here *********************/
8228
8229 /**
8230 * find_busiest_group - Returns the busiest group within the sched_domain
8231 * if there is an imbalance.
8232 *
8233 * Also calculates the amount of weighted load which should be moved
8234 * to restore balance.
8235 *
8236 * @env: The load balancing environment.
8237 *
8238 * Return: - The busiest group if imbalance exists.
8239 */
8240 static struct sched_group *find_busiest_group(struct lb_env *env)
8241 {
8242 struct sg_lb_stats *local, *busiest;
8243 struct sd_lb_stats sds;
8244
8245 init_sd_lb_stats(&sds);
8246
8247 /*
8248 * Compute the various statistics relavent for load balancing at
8249 * this level.
8250 */
8251 update_sd_lb_stats(env, &sds);
8252 local = &sds.local_stat;
8253 busiest = &sds.busiest_stat;
8254
8255 /* ASYM feature bypasses nice load balance check */
8256 if (check_asym_packing(env, &sds))
8257 return sds.busiest;
8258
8259 /* There is no busy sibling group to pull tasks from */
8260 if (!sds.busiest || busiest->sum_nr_running == 0)
8261 goto out_balanced;
8262
8263 /* XXX broken for overlapping NUMA groups */
8264 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8265 / sds.total_capacity;
8266
8267 /*
8268 * If the busiest group is imbalanced the below checks don't
8269 * work because they assume all things are equal, which typically
8270 * isn't true due to cpus_allowed constraints and the like.
8271 */
8272 if (busiest->group_type == group_imbalanced)
8273 goto force_balance;
8274
8275 /*
8276 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8277 * capacities from resulting in underutilization due to avg_load.
8278 */
8279 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8280 busiest->group_no_capacity)
8281 goto force_balance;
8282
8283 /*
8284 * If the local group is busier than the selected busiest group
8285 * don't try and pull any tasks.
8286 */
8287 if (local->avg_load >= busiest->avg_load)
8288 goto out_balanced;
8289
8290 /*
8291 * Don't pull any tasks if this group is already above the domain
8292 * average load.
8293 */
8294 if (local->avg_load >= sds.avg_load)
8295 goto out_balanced;
8296
8297 if (env->idle == CPU_IDLE) {
8298 /*
8299 * This cpu is idle. If the busiest group is not overloaded
8300 * and there is no imbalance between this and busiest group
8301 * wrt idle cpus, it is balanced. The imbalance becomes
8302 * significant if the diff is greater than 1 otherwise we
8303 * might end up to just move the imbalance on another group
8304 */
8305 if ((busiest->group_type != group_overloaded) &&
8306 (local->idle_cpus <= (busiest->idle_cpus + 1)))
8307 goto out_balanced;
8308 } else {
8309 /*
8310 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8311 * imbalance_pct to be conservative.
8312 */
8313 if (100 * busiest->avg_load <=
8314 env->sd->imbalance_pct * local->avg_load)
8315 goto out_balanced;
8316 }
8317
8318 force_balance:
8319 /* Looks like there is an imbalance. Compute it */
8320 calculate_imbalance(env, &sds);
8321 return sds.busiest;
8322
8323 out_balanced:
8324 env->imbalance = 0;
8325 return NULL;
8326 }
8327
8328 /*
8329 * find_busiest_queue - find the busiest runqueue among the cpus in group.
8330 */
8331 static struct rq *find_busiest_queue(struct lb_env *env,
8332 struct sched_group *group)
8333 {
8334 struct rq *busiest = NULL, *rq;
8335 unsigned long busiest_load = 0, busiest_capacity = 1;
8336 int i;
8337
8338 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8339 unsigned long capacity, wl;
8340 enum fbq_type rt;
8341
8342 rq = cpu_rq(i);
8343 rt = fbq_classify_rq(rq);
8344
8345 /*
8346 * We classify groups/runqueues into three groups:
8347 * - regular: there are !numa tasks
8348 * - remote: there are numa tasks that run on the 'wrong' node
8349 * - all: there is no distinction
8350 *
8351 * In order to avoid migrating ideally placed numa tasks,
8352 * ignore those when there's better options.
8353 *
8354 * If we ignore the actual busiest queue to migrate another
8355 * task, the next balance pass can still reduce the busiest
8356 * queue by moving tasks around inside the node.
8357 *
8358 * If we cannot move enough load due to this classification
8359 * the next pass will adjust the group classification and
8360 * allow migration of more tasks.
8361 *
8362 * Both cases only affect the total convergence complexity.
8363 */
8364 if (rt > env->fbq_type)
8365 continue;
8366
8367 capacity = capacity_of(i);
8368
8369 wl = weighted_cpuload(rq);
8370
8371 /*
8372 * When comparing with imbalance, use weighted_cpuload()
8373 * which is not scaled with the cpu capacity.
8374 */
8375
8376 if (rq->nr_running == 1 && wl > env->imbalance &&
8377 !check_cpu_capacity(rq, env->sd))
8378 continue;
8379
8380 /*
8381 * For the load comparisons with the other cpu's, consider
8382 * the weighted_cpuload() scaled with the cpu capacity, so
8383 * that the load can be moved away from the cpu that is
8384 * potentially running at a lower capacity.
8385 *
8386 * Thus we're looking for max(wl_i / capacity_i), crosswise
8387 * multiplication to rid ourselves of the division works out
8388 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8389 * our previous maximum.
8390 */
8391 if (wl * busiest_capacity > busiest_load * capacity) {
8392 busiest_load = wl;
8393 busiest_capacity = capacity;
8394 busiest = rq;
8395 }
8396 }
8397
8398 return busiest;
8399 }
8400
8401 /*
8402 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8403 * so long as it is large enough.
8404 */
8405 #define MAX_PINNED_INTERVAL 512
8406
8407 static int need_active_balance(struct lb_env *env)
8408 {
8409 struct sched_domain *sd = env->sd;
8410
8411 if (env->idle == CPU_NEWLY_IDLE) {
8412
8413 /*
8414 * ASYM_PACKING needs to force migrate tasks from busy but
8415 * lower priority CPUs in order to pack all tasks in the
8416 * highest priority CPUs.
8417 */
8418 if ((sd->flags & SD_ASYM_PACKING) &&
8419 sched_asym_prefer(env->dst_cpu, env->src_cpu))
8420 return 1;
8421 }
8422
8423 /*
8424 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8425 * It's worth migrating the task if the src_cpu's capacity is reduced
8426 * because of other sched_class or IRQs if more capacity stays
8427 * available on dst_cpu.
8428 */
8429 if ((env->idle != CPU_NOT_IDLE) &&
8430 (env->src_rq->cfs.h_nr_running == 1)) {
8431 if ((check_cpu_capacity(env->src_rq, sd)) &&
8432 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8433 return 1;
8434 }
8435
8436 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8437 }
8438
8439 static int active_load_balance_cpu_stop(void *data);
8440
8441 static int should_we_balance(struct lb_env *env)
8442 {
8443 struct sched_group *sg = env->sd->groups;
8444 int cpu, balance_cpu = -1;
8445
8446 /*
8447 * Ensure the balancing environment is consistent; can happen
8448 * when the softirq triggers 'during' hotplug.
8449 */
8450 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8451 return 0;
8452
8453 /*
8454 * In the newly idle case, we will allow all the cpu's
8455 * to do the newly idle load balance.
8456 */
8457 if (env->idle == CPU_NEWLY_IDLE)
8458 return 1;
8459
8460 /* Try to find first idle cpu */
8461 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8462 if (!idle_cpu(cpu))
8463 continue;
8464
8465 balance_cpu = cpu;
8466 break;
8467 }
8468
8469 if (balance_cpu == -1)
8470 balance_cpu = group_balance_cpu(sg);
8471
8472 /*
8473 * First idle cpu or the first cpu(busiest) in this sched group
8474 * is eligible for doing load balancing at this and above domains.
8475 */
8476 return balance_cpu == env->dst_cpu;
8477 }
8478
8479 /*
8480 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8481 * tasks if there is an imbalance.
8482 */
8483 static int load_balance(int this_cpu, struct rq *this_rq,
8484 struct sched_domain *sd, enum cpu_idle_type idle,
8485 int *continue_balancing)
8486 {
8487 int ld_moved, cur_ld_moved, active_balance = 0;
8488 struct sched_domain *sd_parent = sd->parent;
8489 struct sched_group *group;
8490 struct rq *busiest;
8491 struct rq_flags rf;
8492 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8493
8494 struct lb_env env = {
8495 .sd = sd,
8496 .dst_cpu = this_cpu,
8497 .dst_rq = this_rq,
8498 .dst_grpmask = sched_group_span(sd->groups),
8499 .idle = idle,
8500 .loop_break = sched_nr_migrate_break,
8501 .cpus = cpus,
8502 .fbq_type = all,
8503 .tasks = LIST_HEAD_INIT(env.tasks),
8504 };
8505
8506 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8507
8508 schedstat_inc(sd->lb_count[idle]);
8509
8510 redo:
8511 if (!should_we_balance(&env)) {
8512 *continue_balancing = 0;
8513 goto out_balanced;
8514 }
8515
8516 group = find_busiest_group(&env);
8517 if (!group) {
8518 schedstat_inc(sd->lb_nobusyg[idle]);
8519 goto out_balanced;
8520 }
8521
8522 busiest = find_busiest_queue(&env, group);
8523 if (!busiest) {
8524 schedstat_inc(sd->lb_nobusyq[idle]);
8525 goto out_balanced;
8526 }
8527
8528 BUG_ON(busiest == env.dst_rq);
8529
8530 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8531
8532 env.src_cpu = busiest->cpu;
8533 env.src_rq = busiest;
8534
8535 ld_moved = 0;
8536 if (busiest->nr_running > 1) {
8537 /*
8538 * Attempt to move tasks. If find_busiest_group has found
8539 * an imbalance but busiest->nr_running <= 1, the group is
8540 * still unbalanced. ld_moved simply stays zero, so it is
8541 * correctly treated as an imbalance.
8542 */
8543 env.flags |= LBF_ALL_PINNED;
8544 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8545
8546 more_balance:
8547 rq_lock_irqsave(busiest, &rf);
8548 update_rq_clock(busiest);
8549
8550 /*
8551 * cur_ld_moved - load moved in current iteration
8552 * ld_moved - cumulative load moved across iterations
8553 */
8554 cur_ld_moved = detach_tasks(&env);
8555
8556 /*
8557 * We've detached some tasks from busiest_rq. Every
8558 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8559 * unlock busiest->lock, and we are able to be sure
8560 * that nobody can manipulate the tasks in parallel.
8561 * See task_rq_lock() family for the details.
8562 */
8563
8564 rq_unlock(busiest, &rf);
8565
8566 if (cur_ld_moved) {
8567 attach_tasks(&env);
8568 ld_moved += cur_ld_moved;
8569 }
8570
8571 local_irq_restore(rf.flags);
8572
8573 if (env.flags & LBF_NEED_BREAK) {
8574 env.flags &= ~LBF_NEED_BREAK;
8575 goto more_balance;
8576 }
8577
8578 /*
8579 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8580 * us and move them to an alternate dst_cpu in our sched_group
8581 * where they can run. The upper limit on how many times we
8582 * iterate on same src_cpu is dependent on number of cpus in our
8583 * sched_group.
8584 *
8585 * This changes load balance semantics a bit on who can move
8586 * load to a given_cpu. In addition to the given_cpu itself
8587 * (or a ilb_cpu acting on its behalf where given_cpu is
8588 * nohz-idle), we now have balance_cpu in a position to move
8589 * load to given_cpu. In rare situations, this may cause
8590 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8591 * _independently_ and at _same_ time to move some load to
8592 * given_cpu) causing exceess load to be moved to given_cpu.
8593 * This however should not happen so much in practice and
8594 * moreover subsequent load balance cycles should correct the
8595 * excess load moved.
8596 */
8597 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8598
8599 /* Prevent to re-select dst_cpu via env's cpus */
8600 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8601
8602 env.dst_rq = cpu_rq(env.new_dst_cpu);
8603 env.dst_cpu = env.new_dst_cpu;
8604 env.flags &= ~LBF_DST_PINNED;
8605 env.loop = 0;
8606 env.loop_break = sched_nr_migrate_break;
8607
8608 /*
8609 * Go back to "more_balance" rather than "redo" since we
8610 * need to continue with same src_cpu.
8611 */
8612 goto more_balance;
8613 }
8614
8615 /*
8616 * We failed to reach balance because of affinity.
8617 */
8618 if (sd_parent) {
8619 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8620
8621 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8622 *group_imbalance = 1;
8623 }
8624
8625 /* All tasks on this runqueue were pinned by CPU affinity */
8626 if (unlikely(env.flags & LBF_ALL_PINNED)) {
8627 cpumask_clear_cpu(cpu_of(busiest), cpus);
8628 /*
8629 * Attempting to continue load balancing at the current
8630 * sched_domain level only makes sense if there are
8631 * active CPUs remaining as possible busiest CPUs to
8632 * pull load from which are not contained within the
8633 * destination group that is receiving any migrated
8634 * load.
8635 */
8636 if (!cpumask_subset(cpus, env.dst_grpmask)) {
8637 env.loop = 0;
8638 env.loop_break = sched_nr_migrate_break;
8639 goto redo;
8640 }
8641 goto out_all_pinned;
8642 }
8643 }
8644
8645 if (!ld_moved) {
8646 schedstat_inc(sd->lb_failed[idle]);
8647 /*
8648 * Increment the failure counter only on periodic balance.
8649 * We do not want newidle balance, which can be very
8650 * frequent, pollute the failure counter causing
8651 * excessive cache_hot migrations and active balances.
8652 */
8653 if (idle != CPU_NEWLY_IDLE)
8654 sd->nr_balance_failed++;
8655
8656 if (need_active_balance(&env)) {
8657 unsigned long flags;
8658
8659 raw_spin_lock_irqsave(&busiest->lock, flags);
8660
8661 /* don't kick the active_load_balance_cpu_stop,
8662 * if the curr task on busiest cpu can't be
8663 * moved to this_cpu
8664 */
8665 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8666 raw_spin_unlock_irqrestore(&busiest->lock,
8667 flags);
8668 env.flags |= LBF_ALL_PINNED;
8669 goto out_one_pinned;
8670 }
8671
8672 /*
8673 * ->active_balance synchronizes accesses to
8674 * ->active_balance_work. Once set, it's cleared
8675 * only after active load balance is finished.
8676 */
8677 if (!busiest->active_balance) {
8678 busiest->active_balance = 1;
8679 busiest->push_cpu = this_cpu;
8680 active_balance = 1;
8681 }
8682 raw_spin_unlock_irqrestore(&busiest->lock, flags);
8683
8684 if (active_balance) {
8685 stop_one_cpu_nowait(cpu_of(busiest),
8686 active_load_balance_cpu_stop, busiest,
8687 &busiest->active_balance_work);
8688 }
8689
8690 /* We've kicked active balancing, force task migration. */
8691 sd->nr_balance_failed = sd->cache_nice_tries+1;
8692 }
8693 } else
8694 sd->nr_balance_failed = 0;
8695
8696 if (likely(!active_balance)) {
8697 /* We were unbalanced, so reset the balancing interval */
8698 sd->balance_interval = sd->min_interval;
8699 } else {
8700 /*
8701 * If we've begun active balancing, start to back off. This
8702 * case may not be covered by the all_pinned logic if there
8703 * is only 1 task on the busy runqueue (because we don't call
8704 * detach_tasks).
8705 */
8706 if (sd->balance_interval < sd->max_interval)
8707 sd->balance_interval *= 2;
8708 }
8709
8710 goto out;
8711
8712 out_balanced:
8713 /*
8714 * We reach balance although we may have faced some affinity
8715 * constraints. Clear the imbalance flag only if other tasks got
8716 * a chance to move and fix the imbalance.
8717 */
8718 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
8719 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8720
8721 if (*group_imbalance)
8722 *group_imbalance = 0;
8723 }
8724
8725 out_all_pinned:
8726 /*
8727 * We reach balance because all tasks are pinned at this level so
8728 * we can't migrate them. Let the imbalance flag set so parent level
8729 * can try to migrate them.
8730 */
8731 schedstat_inc(sd->lb_balanced[idle]);
8732
8733 sd->nr_balance_failed = 0;
8734
8735 out_one_pinned:
8736 ld_moved = 0;
8737
8738 /*
8739 * idle_balance() disregards balance intervals, so we could repeatedly
8740 * reach this code, which would lead to balance_interval skyrocketting
8741 * in a short amount of time. Skip the balance_interval increase logic
8742 * to avoid that.
8743 */
8744 if (env.idle == CPU_NEWLY_IDLE)
8745 goto out;
8746
8747 /* tune up the balancing interval */
8748 if (((env.flags & LBF_ALL_PINNED) &&
8749 sd->balance_interval < MAX_PINNED_INTERVAL) ||
8750 (sd->balance_interval < sd->max_interval))
8751 sd->balance_interval *= 2;
8752 out:
8753 return ld_moved;
8754 }
8755
8756 static inline unsigned long
8757 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8758 {
8759 unsigned long interval = sd->balance_interval;
8760
8761 if (cpu_busy)
8762 interval *= sd->busy_factor;
8763
8764 /* scale ms to jiffies */
8765 interval = msecs_to_jiffies(interval);
8766 interval = clamp(interval, 1UL, max_load_balance_interval);
8767
8768 return interval;
8769 }
8770
8771 static inline void
8772 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8773 {
8774 unsigned long interval, next;
8775
8776 /* used by idle balance, so cpu_busy = 0 */
8777 interval = get_sd_balance_interval(sd, 0);
8778 next = sd->last_balance + interval;
8779
8780 if (time_after(*next_balance, next))
8781 *next_balance = next;
8782 }
8783
8784 /*
8785 * idle_balance is called by schedule() if this_cpu is about to become
8786 * idle. Attempts to pull tasks from other CPUs.
8787 */
8788 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8789 {
8790 unsigned long next_balance = jiffies + HZ;
8791 int this_cpu = this_rq->cpu;
8792 struct sched_domain *sd;
8793 int pulled_task = 0;
8794 u64 curr_cost = 0;
8795
8796 /*
8797 * We must set idle_stamp _before_ calling idle_balance(), such that we
8798 * measure the duration of idle_balance() as idle time.
8799 */
8800 this_rq->idle_stamp = rq_clock(this_rq);
8801
8802 /*
8803 * Do not pull tasks towards !active CPUs...
8804 */
8805 if (!cpu_active(this_cpu))
8806 return 0;
8807
8808 /*
8809 * This is OK, because current is on_cpu, which avoids it being picked
8810 * for load-balance and preemption/IRQs are still disabled avoiding
8811 * further scheduler activity on it and we're being very careful to
8812 * re-start the picking loop.
8813 */
8814 rq_unpin_lock(this_rq, rf);
8815
8816 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8817 !this_rq->rd->overload) {
8818 rcu_read_lock();
8819 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8820 if (sd)
8821 update_next_balance(sd, &next_balance);
8822 rcu_read_unlock();
8823
8824 goto out;
8825 }
8826
8827 raw_spin_unlock(&this_rq->lock);
8828
8829 update_blocked_averages(this_cpu);
8830 rcu_read_lock();
8831 for_each_domain(this_cpu, sd) {
8832 int continue_balancing = 1;
8833 u64 t0, domain_cost;
8834
8835 if (!(sd->flags & SD_LOAD_BALANCE))
8836 continue;
8837
8838 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8839 update_next_balance(sd, &next_balance);
8840 break;
8841 }
8842
8843 if (sd->flags & SD_BALANCE_NEWIDLE) {
8844 t0 = sched_clock_cpu(this_cpu);
8845
8846 pulled_task = load_balance(this_cpu, this_rq,
8847 sd, CPU_NEWLY_IDLE,
8848 &continue_balancing);
8849
8850 domain_cost = sched_clock_cpu(this_cpu) - t0;
8851 if (domain_cost > sd->max_newidle_lb_cost)
8852 sd->max_newidle_lb_cost = domain_cost;
8853
8854 curr_cost += domain_cost;
8855 }
8856
8857 update_next_balance(sd, &next_balance);
8858
8859 /*
8860 * Stop searching for tasks to pull if there are
8861 * now runnable tasks on this rq.
8862 */
8863 if (pulled_task || this_rq->nr_running > 0)
8864 break;
8865 }
8866 rcu_read_unlock();
8867
8868 raw_spin_lock(&this_rq->lock);
8869
8870 if (curr_cost > this_rq->max_idle_balance_cost)
8871 this_rq->max_idle_balance_cost = curr_cost;
8872
8873 /*
8874 * While browsing the domains, we released the rq lock, a task could
8875 * have been enqueued in the meantime. Since we're not going idle,
8876 * pretend we pulled a task.
8877 */
8878 if (this_rq->cfs.h_nr_running && !pulled_task)
8879 pulled_task = 1;
8880
8881 out:
8882 /* Move the next balance forward */
8883 if (time_after(this_rq->next_balance, next_balance))
8884 this_rq->next_balance = next_balance;
8885
8886 /* Is there a task of a high priority class? */
8887 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8888 pulled_task = -1;
8889
8890 if (pulled_task)
8891 this_rq->idle_stamp = 0;
8892
8893 rq_repin_lock(this_rq, rf);
8894
8895 return pulled_task;
8896 }
8897
8898 /*
8899 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8900 * running tasks off the busiest CPU onto idle CPUs. It requires at
8901 * least 1 task to be running on each physical CPU where possible, and
8902 * avoids physical / logical imbalances.
8903 */
8904 static int active_load_balance_cpu_stop(void *data)
8905 {
8906 struct rq *busiest_rq = data;
8907 int busiest_cpu = cpu_of(busiest_rq);
8908 int target_cpu = busiest_rq->push_cpu;
8909 struct rq *target_rq = cpu_rq(target_cpu);
8910 struct sched_domain *sd;
8911 struct task_struct *p = NULL;
8912 struct rq_flags rf;
8913
8914 rq_lock_irq(busiest_rq, &rf);
8915 /*
8916 * Between queueing the stop-work and running it is a hole in which
8917 * CPUs can become inactive. We should not move tasks from or to
8918 * inactive CPUs.
8919 */
8920 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8921 goto out_unlock;
8922
8923 /* make sure the requested cpu hasn't gone down in the meantime */
8924 if (unlikely(busiest_cpu != smp_processor_id() ||
8925 !busiest_rq->active_balance))
8926 goto out_unlock;
8927
8928 /* Is there any task to move? */
8929 if (busiest_rq->nr_running <= 1)
8930 goto out_unlock;
8931
8932 /*
8933 * This condition is "impossible", if it occurs
8934 * we need to fix it. Originally reported by
8935 * Bjorn Helgaas on a 128-cpu setup.
8936 */
8937 BUG_ON(busiest_rq == target_rq);
8938
8939 /* Search for an sd spanning us and the target CPU. */
8940 rcu_read_lock();
8941 for_each_domain(target_cpu, sd) {
8942 if ((sd->flags & SD_LOAD_BALANCE) &&
8943 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8944 break;
8945 }
8946
8947 if (likely(sd)) {
8948 struct lb_env env = {
8949 .sd = sd,
8950 .dst_cpu = target_cpu,
8951 .dst_rq = target_rq,
8952 .src_cpu = busiest_rq->cpu,
8953 .src_rq = busiest_rq,
8954 .idle = CPU_IDLE,
8955 /*
8956 * can_migrate_task() doesn't need to compute new_dst_cpu
8957 * for active balancing. Since we have CPU_IDLE, but no
8958 * @dst_grpmask we need to make that test go away with lying
8959 * about DST_PINNED.
8960 */
8961 .flags = LBF_DST_PINNED,
8962 };
8963
8964 schedstat_inc(sd->alb_count);
8965 update_rq_clock(busiest_rq);
8966
8967 p = detach_one_task(&env);
8968 if (p) {
8969 schedstat_inc(sd->alb_pushed);
8970 /* Active balancing done, reset the failure counter. */
8971 sd->nr_balance_failed = 0;
8972 } else {
8973 schedstat_inc(sd->alb_failed);
8974 }
8975 }
8976 rcu_read_unlock();
8977 out_unlock:
8978 busiest_rq->active_balance = 0;
8979 rq_unlock(busiest_rq, &rf);
8980
8981 if (p)
8982 attach_one_task(target_rq, p);
8983
8984 local_irq_enable();
8985
8986 return 0;
8987 }
8988
8989 static inline int on_null_domain(struct rq *rq)
8990 {
8991 return unlikely(!rcu_dereference_sched(rq->sd));
8992 }
8993
8994 #ifdef CONFIG_NO_HZ_COMMON
8995 /*
8996 * idle load balancing details
8997 * - When one of the busy CPUs notice that there may be an idle rebalancing
8998 * needed, they will kick the idle load balancer, which then does idle
8999 * load balancing for all the idle CPUs.
9000 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9001 * anywhere yet.
9002 */
9003 static struct {
9004 cpumask_var_t idle_cpus_mask;
9005 atomic_t nr_cpus;
9006 unsigned long next_balance; /* in jiffy units */
9007 } nohz ____cacheline_aligned;
9008
9009 static inline int find_new_ilb(void)
9010 {
9011 int ilb;
9012
9013 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
9014 housekeeping_cpumask(HK_FLAG_MISC)) {
9015 if (idle_cpu(ilb))
9016 return ilb;
9017 }
9018
9019 return nr_cpu_ids;
9020 }
9021
9022 /*
9023 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9024 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
9025 */
9026 static void nohz_balancer_kick(void)
9027 {
9028 int ilb_cpu;
9029
9030 nohz.next_balance++;
9031
9032 ilb_cpu = find_new_ilb();
9033
9034 if (ilb_cpu >= nr_cpu_ids)
9035 return;
9036
9037 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
9038 return;
9039 /*
9040 * Use smp_send_reschedule() instead of resched_cpu().
9041 * This way we generate a sched IPI on the target cpu which
9042 * is idle. And the softirq performing nohz idle load balance
9043 * will be run before returning from the IPI.
9044 */
9045 smp_send_reschedule(ilb_cpu);
9046 return;
9047 }
9048
9049 void nohz_balance_exit_idle(unsigned int cpu)
9050 {
9051 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
9052 /*
9053 * Completely isolated CPUs don't ever set, so we must test.
9054 */
9055 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
9056 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
9057 atomic_dec(&nohz.nr_cpus);
9058 }
9059 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
9060 }
9061 }
9062
9063 static inline void set_cpu_sd_state_busy(void)
9064 {
9065 struct sched_domain *sd;
9066 int cpu = smp_processor_id();
9067
9068 rcu_read_lock();
9069 sd = rcu_dereference(per_cpu(sd_llc, cpu));
9070
9071 if (!sd || !sd->nohz_idle)
9072 goto unlock;
9073 sd->nohz_idle = 0;
9074
9075 atomic_inc(&sd->shared->nr_busy_cpus);
9076 unlock:
9077 rcu_read_unlock();
9078 }
9079
9080 void set_cpu_sd_state_idle(void)
9081 {
9082 struct sched_domain *sd;
9083 int cpu = smp_processor_id();
9084
9085 rcu_read_lock();
9086 sd = rcu_dereference(per_cpu(sd_llc, cpu));
9087
9088 if (!sd || sd->nohz_idle)
9089 goto unlock;
9090 sd->nohz_idle = 1;
9091
9092 atomic_dec(&sd->shared->nr_busy_cpus);
9093 unlock:
9094 rcu_read_unlock();
9095 }
9096
9097 /*
9098 * This routine will record that the cpu is going idle with tick stopped.
9099 * This info will be used in performing idle load balancing in the future.
9100 */
9101 void nohz_balance_enter_idle(int cpu)
9102 {
9103 /*
9104 * If this cpu is going down, then nothing needs to be done.
9105 */
9106 if (!cpu_active(cpu))
9107 return;
9108
9109 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
9110 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9111 return;
9112
9113 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
9114 return;
9115
9116 /*
9117 * If we're a completely isolated CPU, we don't play.
9118 */
9119 if (on_null_domain(cpu_rq(cpu)))
9120 return;
9121
9122 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9123 atomic_inc(&nohz.nr_cpus);
9124 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
9125 }
9126 #endif
9127
9128 static DEFINE_SPINLOCK(balancing);
9129
9130 /*
9131 * Scale the max load_balance interval with the number of CPUs in the system.
9132 * This trades load-balance latency on larger machines for less cross talk.
9133 */
9134 void update_max_interval(void)
9135 {
9136 max_load_balance_interval = HZ*num_online_cpus()/10;
9137 }
9138
9139 /*
9140 * It checks each scheduling domain to see if it is due to be balanced,
9141 * and initiates a balancing operation if so.
9142 *
9143 * Balancing parameters are set up in init_sched_domains.
9144 */
9145 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9146 {
9147 int continue_balancing = 1;
9148 int cpu = rq->cpu;
9149 unsigned long interval;
9150 struct sched_domain *sd;
9151 /* Earliest time when we have to do rebalance again */
9152 unsigned long next_balance = jiffies + 60*HZ;
9153 int update_next_balance = 0;
9154 int need_serialize, need_decay = 0;
9155 u64 max_cost = 0;
9156
9157 update_blocked_averages(cpu);
9158
9159 rcu_read_lock();
9160 for_each_domain(cpu, sd) {
9161 /*
9162 * Decay the newidle max times here because this is a regular
9163 * visit to all the domains. Decay ~1% per second.
9164 */
9165 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9166 sd->max_newidle_lb_cost =
9167 (sd->max_newidle_lb_cost * 253) / 256;
9168 sd->next_decay_max_lb_cost = jiffies + HZ;
9169 need_decay = 1;
9170 }
9171 max_cost += sd->max_newidle_lb_cost;
9172
9173 if (!(sd->flags & SD_LOAD_BALANCE))
9174 continue;
9175
9176 /*
9177 * Stop the load balance at this level. There is another
9178 * CPU in our sched group which is doing load balancing more
9179 * actively.
9180 */
9181 if (!continue_balancing) {
9182 if (need_decay)
9183 continue;
9184 break;
9185 }
9186
9187 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9188
9189 need_serialize = sd->flags & SD_SERIALIZE;
9190 if (need_serialize) {
9191 if (!spin_trylock(&balancing))
9192 goto out;
9193 }
9194
9195 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9196 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9197 /*
9198 * The LBF_DST_PINNED logic could have changed
9199 * env->dst_cpu, so we can't know our idle
9200 * state even if we migrated tasks. Update it.
9201 */
9202 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9203 }
9204 sd->last_balance = jiffies;
9205 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9206 }
9207 if (need_serialize)
9208 spin_unlock(&balancing);
9209 out:
9210 if (time_after(next_balance, sd->last_balance + interval)) {
9211 next_balance = sd->last_balance + interval;
9212 update_next_balance = 1;
9213 }
9214 }
9215 if (need_decay) {
9216 /*
9217 * Ensure the rq-wide value also decays but keep it at a
9218 * reasonable floor to avoid funnies with rq->avg_idle.
9219 */
9220 rq->max_idle_balance_cost =
9221 max((u64)sysctl_sched_migration_cost, max_cost);
9222 }
9223 rcu_read_unlock();
9224
9225 /*
9226 * next_balance will be updated only when there is a need.
9227 * When the cpu is attached to null domain for ex, it will not be
9228 * updated.
9229 */
9230 if (likely(update_next_balance)) {
9231 rq->next_balance = next_balance;
9232
9233 #ifdef CONFIG_NO_HZ_COMMON
9234 /*
9235 * If this CPU has been elected to perform the nohz idle
9236 * balance. Other idle CPUs have already rebalanced with
9237 * nohz_idle_balance() and nohz.next_balance has been
9238 * updated accordingly. This CPU is now running the idle load
9239 * balance for itself and we need to update the
9240 * nohz.next_balance accordingly.
9241 */
9242 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9243 nohz.next_balance = rq->next_balance;
9244 #endif
9245 }
9246 }
9247
9248 #ifdef CONFIG_NO_HZ_COMMON
9249 /*
9250 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9251 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9252 */
9253 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9254 {
9255 int this_cpu = this_rq->cpu;
9256 struct rq *rq;
9257 int balance_cpu;
9258 /* Earliest time when we have to do rebalance again */
9259 unsigned long next_balance = jiffies + 60*HZ;
9260 int update_next_balance = 0;
9261
9262 if (idle != CPU_IDLE ||
9263 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
9264 goto end;
9265
9266 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9267 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9268 continue;
9269
9270 /*
9271 * If this cpu gets work to do, stop the load balancing
9272 * work being done for other cpus. Next load
9273 * balancing owner will pick it up.
9274 */
9275 if (need_resched())
9276 break;
9277
9278 rq = cpu_rq(balance_cpu);
9279
9280 /*
9281 * If time for next balance is due,
9282 * do the balance.
9283 */
9284 if (time_after_eq(jiffies, rq->next_balance)) {
9285 struct rq_flags rf;
9286
9287 rq_lock_irq(rq, &rf);
9288 update_rq_clock(rq);
9289 cpu_load_update_idle(rq);
9290 rq_unlock_irq(rq, &rf);
9291
9292 rebalance_domains(rq, CPU_IDLE);
9293 }
9294
9295 if (time_after(next_balance, rq->next_balance)) {
9296 next_balance = rq->next_balance;
9297 update_next_balance = 1;
9298 }
9299 }
9300
9301 /*
9302 * next_balance will be updated only when there is a need.
9303 * When the CPU is attached to null domain for ex, it will not be
9304 * updated.
9305 */
9306 if (likely(update_next_balance))
9307 nohz.next_balance = next_balance;
9308 end:
9309 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
9310 }
9311
9312 /*
9313 * Current heuristic for kicking the idle load balancer in the presence
9314 * of an idle cpu in the system.
9315 * - This rq has more than one task.
9316 * - This rq has at least one CFS task and the capacity of the CPU is
9317 * significantly reduced because of RT tasks or IRQs.
9318 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
9319 * multiple busy cpu.
9320 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9321 * domain span are idle.
9322 */
9323 static inline bool nohz_kick_needed(struct rq *rq)
9324 {
9325 unsigned long now = jiffies;
9326 struct sched_domain_shared *sds;
9327 struct sched_domain *sd;
9328 int nr_busy, i, cpu = rq->cpu;
9329 bool kick = false;
9330
9331 if (unlikely(rq->idle_balance))
9332 return false;
9333
9334 /*
9335 * We may be recently in ticked or tickless idle mode. At the first
9336 * busy tick after returning from idle, we will update the busy stats.
9337 */
9338 set_cpu_sd_state_busy();
9339 nohz_balance_exit_idle(cpu);
9340
9341 /*
9342 * None are in tickless mode and hence no need for NOHZ idle load
9343 * balancing.
9344 */
9345 if (likely(!atomic_read(&nohz.nr_cpus)))
9346 return false;
9347
9348 if (time_before(now, nohz.next_balance))
9349 return false;
9350
9351 if (rq->nr_running >= 2)
9352 return true;
9353
9354 rcu_read_lock();
9355 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9356 if (sds) {
9357 /*
9358 * XXX: write a coherent comment on why we do this.
9359 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9360 */
9361 nr_busy = atomic_read(&sds->nr_busy_cpus);
9362 if (nr_busy > 1) {
9363 kick = true;
9364 goto unlock;
9365 }
9366
9367 }
9368
9369 sd = rcu_dereference(rq->sd);
9370 if (sd) {
9371 if ((rq->cfs.h_nr_running >= 1) &&
9372 check_cpu_capacity(rq, sd)) {
9373 kick = true;
9374 goto unlock;
9375 }
9376 }
9377
9378 sd = rcu_dereference(per_cpu(sd_asym, cpu));
9379 if (sd) {
9380 for_each_cpu(i, sched_domain_span(sd)) {
9381 if (i == cpu ||
9382 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9383 continue;
9384
9385 if (sched_asym_prefer(i, cpu)) {
9386 kick = true;
9387 goto unlock;
9388 }
9389 }
9390 }
9391 unlock:
9392 rcu_read_unlock();
9393 return kick;
9394 }
9395 #else
9396 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
9397 #endif
9398
9399 /*
9400 * run_rebalance_domains is triggered when needed from the scheduler tick.
9401 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9402 */
9403 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9404 {
9405 struct rq *this_rq = this_rq();
9406 enum cpu_idle_type idle = this_rq->idle_balance ?
9407 CPU_IDLE : CPU_NOT_IDLE;
9408
9409 /*
9410 * If this cpu has a pending nohz_balance_kick, then do the
9411 * balancing on behalf of the other idle cpus whose ticks are
9412 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9413 * give the idle cpus a chance to load balance. Else we may
9414 * load balance only within the local sched_domain hierarchy
9415 * and abort nohz_idle_balance altogether if we pull some load.
9416 */
9417 nohz_idle_balance(this_rq, idle);
9418 rebalance_domains(this_rq, idle);
9419 }
9420
9421 /*
9422 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9423 */
9424 void trigger_load_balance(struct rq *rq)
9425 {
9426 /* Don't need to rebalance while attached to NULL domain */
9427 if (unlikely(on_null_domain(rq)))
9428 return;
9429
9430 if (time_after_eq(jiffies, rq->next_balance))
9431 raise_softirq(SCHED_SOFTIRQ);
9432 #ifdef CONFIG_NO_HZ_COMMON
9433 if (nohz_kick_needed(rq))
9434 nohz_balancer_kick();
9435 #endif
9436 }
9437
9438 static void rq_online_fair(struct rq *rq)
9439 {
9440 update_sysctl();
9441
9442 update_runtime_enabled(rq);
9443 }
9444
9445 static void rq_offline_fair(struct rq *rq)
9446 {
9447 update_sysctl();
9448
9449 /* Ensure any throttled groups are reachable by pick_next_task */
9450 unthrottle_offline_cfs_rqs(rq);
9451 }
9452
9453 #endif /* CONFIG_SMP */
9454
9455 /*
9456 * scheduler tick hitting a task of our scheduling class:
9457 */
9458 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9459 {
9460 struct cfs_rq *cfs_rq;
9461 struct sched_entity *se = &curr->se;
9462
9463 for_each_sched_entity(se) {
9464 cfs_rq = cfs_rq_of(se);
9465 entity_tick(cfs_rq, se, queued);
9466 }
9467
9468 if (static_branch_unlikely(&sched_numa_balancing))
9469 task_tick_numa(rq, curr);
9470 }
9471
9472 /*
9473 * called on fork with the child task as argument from the parent's context
9474 * - child not yet on the tasklist
9475 * - preemption disabled
9476 */
9477 static void task_fork_fair(struct task_struct *p)
9478 {
9479 struct cfs_rq *cfs_rq;
9480 struct sched_entity *se = &p->se, *curr;
9481 struct rq *rq = this_rq();
9482 struct rq_flags rf;
9483
9484 rq_lock(rq, &rf);
9485 update_rq_clock(rq);
9486
9487 cfs_rq = task_cfs_rq(current);
9488 curr = cfs_rq->curr;
9489 if (curr) {
9490 update_curr(cfs_rq);
9491 se->vruntime = curr->vruntime;
9492 }
9493 place_entity(cfs_rq, se, 1);
9494
9495 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9496 /*
9497 * Upon rescheduling, sched_class::put_prev_task() will place
9498 * 'current' within the tree based on its new key value.
9499 */
9500 swap(curr->vruntime, se->vruntime);
9501 resched_curr(rq);
9502 }
9503
9504 se->vruntime -= cfs_rq->min_vruntime;
9505 rq_unlock(rq, &rf);
9506 }
9507
9508 /*
9509 * Priority of the task has changed. Check to see if we preempt
9510 * the current task.
9511 */
9512 static void
9513 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9514 {
9515 if (!task_on_rq_queued(p))
9516 return;
9517
9518 /*
9519 * Reschedule if we are currently running on this runqueue and
9520 * our priority decreased, or if we are not currently running on
9521 * this runqueue and our priority is higher than the current's
9522 */
9523 if (rq->curr == p) {
9524 if (p->prio > oldprio)
9525 resched_curr(rq);
9526 } else
9527 check_preempt_curr(rq, p, 0);
9528 }
9529
9530 static inline bool vruntime_normalized(struct task_struct *p)
9531 {
9532 struct sched_entity *se = &p->se;
9533
9534 /*
9535 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9536 * the dequeue_entity(.flags=0) will already have normalized the
9537 * vruntime.
9538 */
9539 if (p->on_rq)
9540 return true;
9541
9542 /*
9543 * When !on_rq, vruntime of the task has usually NOT been normalized.
9544 * But there are some cases where it has already been normalized:
9545 *
9546 * - A forked child which is waiting for being woken up by
9547 * wake_up_new_task().
9548 * - A task which has been woken up by try_to_wake_up() and
9549 * waiting for actually being woken up by sched_ttwu_pending().
9550 */
9551 if (!se->sum_exec_runtime ||
9552 (p->state == TASK_WAKING && p->sched_remote_wakeup))
9553 return true;
9554
9555 return false;
9556 }
9557
9558 #ifdef CONFIG_FAIR_GROUP_SCHED
9559 /*
9560 * Propagate the changes of the sched_entity across the tg tree to make it
9561 * visible to the root
9562 */
9563 static void propagate_entity_cfs_rq(struct sched_entity *se)
9564 {
9565 struct cfs_rq *cfs_rq;
9566
9567 /* Start to propagate at parent */
9568 se = se->parent;
9569
9570 for_each_sched_entity(se) {
9571 cfs_rq = cfs_rq_of(se);
9572
9573 if (cfs_rq_throttled(cfs_rq))
9574 break;
9575
9576 update_load_avg(cfs_rq, se, UPDATE_TG);
9577 }
9578 }
9579 #else
9580 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9581 #endif
9582
9583 static void detach_entity_cfs_rq(struct sched_entity *se)
9584 {
9585 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9586
9587 /* Catch up with the cfs_rq and remove our load when we leave */
9588 update_load_avg(cfs_rq, se, 0);
9589 detach_entity_load_avg(cfs_rq, se);
9590 update_tg_load_avg(cfs_rq, false);
9591 propagate_entity_cfs_rq(se);
9592 }
9593
9594 static void attach_entity_cfs_rq(struct sched_entity *se)
9595 {
9596 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9597
9598 #ifdef CONFIG_FAIR_GROUP_SCHED
9599 /*
9600 * Since the real-depth could have been changed (only FAIR
9601 * class maintain depth value), reset depth properly.
9602 */
9603 se->depth = se->parent ? se->parent->depth + 1 : 0;
9604 #endif
9605
9606 /* Synchronize entity with its cfs_rq */
9607 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9608 attach_entity_load_avg(cfs_rq, se);
9609 update_tg_load_avg(cfs_rq, false);
9610 propagate_entity_cfs_rq(se);
9611 }
9612
9613 static void detach_task_cfs_rq(struct task_struct *p)
9614 {
9615 struct sched_entity *se = &p->se;
9616 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9617
9618 if (!vruntime_normalized(p)) {
9619 /*
9620 * Fix up our vruntime so that the current sleep doesn't
9621 * cause 'unlimited' sleep bonus.
9622 */
9623 place_entity(cfs_rq, se, 0);
9624 se->vruntime -= cfs_rq->min_vruntime;
9625 }
9626
9627 detach_entity_cfs_rq(se);
9628 }
9629
9630 static void attach_task_cfs_rq(struct task_struct *p)
9631 {
9632 struct sched_entity *se = &p->se;
9633 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9634
9635 attach_entity_cfs_rq(se);
9636
9637 if (!vruntime_normalized(p))
9638 se->vruntime += cfs_rq->min_vruntime;
9639 }
9640
9641 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9642 {
9643 detach_task_cfs_rq(p);
9644 }
9645
9646 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9647 {
9648 attach_task_cfs_rq(p);
9649
9650 if (task_on_rq_queued(p)) {
9651 /*
9652 * We were most likely switched from sched_rt, so
9653 * kick off the schedule if running, otherwise just see
9654 * if we can still preempt the current task.
9655 */
9656 if (rq->curr == p)
9657 resched_curr(rq);
9658 else
9659 check_preempt_curr(rq, p, 0);
9660 }
9661 }
9662
9663 /* Account for a task changing its policy or group.
9664 *
9665 * This routine is mostly called to set cfs_rq->curr field when a task
9666 * migrates between groups/classes.
9667 */
9668 static void set_curr_task_fair(struct rq *rq)
9669 {
9670 struct sched_entity *se = &rq->curr->se;
9671
9672 for_each_sched_entity(se) {
9673 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9674
9675 set_next_entity(cfs_rq, se);
9676 /* ensure bandwidth has been allocated on our new cfs_rq */
9677 account_cfs_rq_runtime(cfs_rq, 0);
9678 }
9679 }
9680
9681 void init_cfs_rq(struct cfs_rq *cfs_rq)
9682 {
9683 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9684 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9685 #ifndef CONFIG_64BIT
9686 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9687 #endif
9688 #ifdef CONFIG_SMP
9689 raw_spin_lock_init(&cfs_rq->removed.lock);
9690 #endif
9691 }
9692
9693 #ifdef CONFIG_FAIR_GROUP_SCHED
9694 static void task_set_group_fair(struct task_struct *p)
9695 {
9696 struct sched_entity *se = &p->se;
9697
9698 set_task_rq(p, task_cpu(p));
9699 se->depth = se->parent ? se->parent->depth + 1 : 0;
9700 }
9701
9702 static void task_move_group_fair(struct task_struct *p)
9703 {
9704 detach_task_cfs_rq(p);
9705 set_task_rq(p, task_cpu(p));
9706
9707 #ifdef CONFIG_SMP
9708 /* Tell se's cfs_rq has been changed -- migrated */
9709 p->se.avg.last_update_time = 0;
9710 #endif
9711 attach_task_cfs_rq(p);
9712 }
9713
9714 static void task_change_group_fair(struct task_struct *p, int type)
9715 {
9716 switch (type) {
9717 case TASK_SET_GROUP:
9718 task_set_group_fair(p);
9719 break;
9720
9721 case TASK_MOVE_GROUP:
9722 task_move_group_fair(p);
9723 break;
9724 }
9725 }
9726
9727 void free_fair_sched_group(struct task_group *tg)
9728 {
9729 int i;
9730
9731 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9732
9733 for_each_possible_cpu(i) {
9734 if (tg->cfs_rq)
9735 kfree(tg->cfs_rq[i]);
9736 if (tg->se)
9737 kfree(tg->se[i]);
9738 }
9739
9740 kfree(tg->cfs_rq);
9741 kfree(tg->se);
9742 }
9743
9744 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9745 {
9746 struct sched_entity *se;
9747 struct cfs_rq *cfs_rq;
9748 int i;
9749
9750 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9751 if (!tg->cfs_rq)
9752 goto err;
9753 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9754 if (!tg->se)
9755 goto err;
9756
9757 tg->shares = NICE_0_LOAD;
9758
9759 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9760
9761 for_each_possible_cpu(i) {
9762 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9763 GFP_KERNEL, cpu_to_node(i));
9764 if (!cfs_rq)
9765 goto err;
9766
9767 se = kzalloc_node(sizeof(struct sched_entity),
9768 GFP_KERNEL, cpu_to_node(i));
9769 if (!se)
9770 goto err_free_rq;
9771
9772 init_cfs_rq(cfs_rq);
9773 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9774 init_entity_runnable_average(se);
9775 }
9776
9777 return 1;
9778
9779 err_free_rq:
9780 kfree(cfs_rq);
9781 err:
9782 return 0;
9783 }
9784
9785 void online_fair_sched_group(struct task_group *tg)
9786 {
9787 struct sched_entity *se;
9788 struct rq_flags rf;
9789 struct rq *rq;
9790 int i;
9791
9792 for_each_possible_cpu(i) {
9793 rq = cpu_rq(i);
9794 se = tg->se[i];
9795 rq_lock_irq(rq, &rf);
9796 update_rq_clock(rq);
9797 attach_entity_cfs_rq(se);
9798 sync_throttle(tg, i);
9799 rq_unlock_irq(rq, &rf);
9800 }
9801 }
9802
9803 void unregister_fair_sched_group(struct task_group *tg)
9804 {
9805 unsigned long flags;
9806 struct rq *rq;
9807 int cpu;
9808
9809 for_each_possible_cpu(cpu) {
9810 if (tg->se[cpu])
9811 remove_entity_load_avg(tg->se[cpu]);
9812
9813 /*
9814 * Only empty task groups can be destroyed; so we can speculatively
9815 * check on_list without danger of it being re-added.
9816 */
9817 if (!tg->cfs_rq[cpu]->on_list)
9818 continue;
9819
9820 rq = cpu_rq(cpu);
9821
9822 raw_spin_lock_irqsave(&rq->lock, flags);
9823 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9824 raw_spin_unlock_irqrestore(&rq->lock, flags);
9825 }
9826 }
9827
9828 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9829 struct sched_entity *se, int cpu,
9830 struct sched_entity *parent)
9831 {
9832 struct rq *rq = cpu_rq(cpu);
9833
9834 cfs_rq->tg = tg;
9835 cfs_rq->rq = rq;
9836 init_cfs_rq_runtime(cfs_rq);
9837
9838 tg->cfs_rq[cpu] = cfs_rq;
9839 tg->se[cpu] = se;
9840
9841 /* se could be NULL for root_task_group */
9842 if (!se)
9843 return;
9844
9845 if (!parent) {
9846 se->cfs_rq = &rq->cfs;
9847 se->depth = 0;
9848 } else {
9849 se->cfs_rq = parent->my_q;
9850 se->depth = parent->depth + 1;
9851 }
9852
9853 se->my_q = cfs_rq;
9854 /* guarantee group entities always have weight */
9855 update_load_set(&se->load, NICE_0_LOAD);
9856 se->parent = parent;
9857 }
9858
9859 static DEFINE_MUTEX(shares_mutex);
9860
9861 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9862 {
9863 int i;
9864
9865 /*
9866 * We can't change the weight of the root cgroup.
9867 */
9868 if (!tg->se[0])
9869 return -EINVAL;
9870
9871 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9872
9873 mutex_lock(&shares_mutex);
9874 if (tg->shares == shares)
9875 goto done;
9876
9877 tg->shares = shares;
9878 for_each_possible_cpu(i) {
9879 struct rq *rq = cpu_rq(i);
9880 struct sched_entity *se = tg->se[i];
9881 struct rq_flags rf;
9882
9883 /* Propagate contribution to hierarchy */
9884 rq_lock_irqsave(rq, &rf);
9885 update_rq_clock(rq);
9886 for_each_sched_entity(se) {
9887 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9888 update_cfs_group(se);
9889 }
9890 rq_unlock_irqrestore(rq, &rf);
9891 }
9892
9893 done:
9894 mutex_unlock(&shares_mutex);
9895 return 0;
9896 }
9897 #else /* CONFIG_FAIR_GROUP_SCHED */
9898
9899 void free_fair_sched_group(struct task_group *tg) { }
9900
9901 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9902 {
9903 return 1;
9904 }
9905
9906 void online_fair_sched_group(struct task_group *tg) { }
9907
9908 void unregister_fair_sched_group(struct task_group *tg) { }
9909
9910 #endif /* CONFIG_FAIR_GROUP_SCHED */
9911
9912
9913 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9914 {
9915 struct sched_entity *se = &task->se;
9916 unsigned int rr_interval = 0;
9917
9918 /*
9919 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9920 * idle runqueue:
9921 */
9922 if (rq->cfs.load.weight)
9923 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9924
9925 return rr_interval;
9926 }
9927
9928 /*
9929 * All the scheduling class methods:
9930 */
9931 const struct sched_class fair_sched_class = {
9932 .next = &idle_sched_class,
9933 .enqueue_task = enqueue_task_fair,
9934 .dequeue_task = dequeue_task_fair,
9935 .yield_task = yield_task_fair,
9936 .yield_to_task = yield_to_task_fair,
9937
9938 .check_preempt_curr = check_preempt_wakeup,
9939
9940 .pick_next_task = pick_next_task_fair,
9941 .put_prev_task = put_prev_task_fair,
9942
9943 #ifdef CONFIG_SMP
9944 .select_task_rq = select_task_rq_fair,
9945 .migrate_task_rq = migrate_task_rq_fair,
9946
9947 .rq_online = rq_online_fair,
9948 .rq_offline = rq_offline_fair,
9949
9950 .task_dead = task_dead_fair,
9951 .set_cpus_allowed = set_cpus_allowed_common,
9952 #endif
9953
9954 .set_curr_task = set_curr_task_fair,
9955 .task_tick = task_tick_fair,
9956 .task_fork = task_fork_fair,
9957
9958 .prio_changed = prio_changed_fair,
9959 .switched_from = switched_from_fair,
9960 .switched_to = switched_to_fair,
9961
9962 .get_rr_interval = get_rr_interval_fair,
9963
9964 .update_curr = update_curr_fair,
9965
9966 #ifdef CONFIG_FAIR_GROUP_SCHED
9967 .task_change_group = task_change_group_fair,
9968 #endif
9969 };
9970
9971 #ifdef CONFIG_SCHED_DEBUG
9972 void print_cfs_stats(struct seq_file *m, int cpu)
9973 {
9974 struct cfs_rq *cfs_rq;
9975
9976 rcu_read_lock();
9977 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
9978 print_cfs_rq(m, cpu, cfs_rq);
9979 rcu_read_unlock();
9980 }
9981
9982 #ifdef CONFIG_NUMA_BALANCING
9983 void show_numa_stats(struct task_struct *p, struct seq_file *m)
9984 {
9985 int node;
9986 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9987
9988 for_each_online_node(node) {
9989 if (p->numa_faults) {
9990 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9991 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9992 }
9993 if (p->numa_group) {
9994 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9995 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9996 }
9997 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9998 }
9999 }
10000 #endif /* CONFIG_NUMA_BALANCING */
10001 #endif /* CONFIG_SCHED_DEBUG */
10002
10003 __init void init_sched_fair_class(void)
10004 {
10005 #ifdef CONFIG_SMP
10006 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10007
10008 #ifdef CONFIG_NO_HZ_COMMON
10009 nohz.next_balance = jiffies;
10010 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10011 #endif
10012 #endif /* SMP */
10013
10014 }