]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/signal.c
pktcdvd: Fix possible Spectre-v1 for pkt_devs
[mirror_ubuntu-bionic-kernel.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/fs.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 #include <linux/posix-timers.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/signal.h>
46
47 #include <asm/param.h>
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/siginfo.h>
51 #include <asm/cacheflush.h>
52 #include "audit.h" /* audit_signal_info() */
53
54 /*
55 * SLAB caches for signal bits.
56 */
57
58 static struct kmem_cache *sigqueue_cachep;
59
60 int print_fatal_signals __read_mostly;
61
62 static void __user *sig_handler(struct task_struct *t, int sig)
63 {
64 return t->sighand->action[sig - 1].sa.sa_handler;
65 }
66
67 static int sig_handler_ignored(void __user *handler, int sig)
68 {
69 /* Is it explicitly or implicitly ignored? */
70 return handler == SIG_IGN ||
71 (handler == SIG_DFL && sig_kernel_ignore(sig));
72 }
73
74 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
75 {
76 void __user *handler;
77
78 handler = sig_handler(t, sig);
79
80 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
81 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
82 return 1;
83
84 return sig_handler_ignored(handler, sig);
85 }
86
87 static int sig_ignored(struct task_struct *t, int sig, bool force)
88 {
89 /*
90 * Blocked signals are never ignored, since the
91 * signal handler may change by the time it is
92 * unblocked.
93 */
94 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
95 return 0;
96
97 /*
98 * Tracers may want to know about even ignored signal unless it
99 * is SIGKILL which can't be reported anyway but can be ignored
100 * by SIGNAL_UNKILLABLE task.
101 */
102 if (t->ptrace && sig != SIGKILL)
103 return 0;
104
105 return sig_task_ignored(t, sig, force);
106 }
107
108 /*
109 * Re-calculate pending state from the set of locally pending
110 * signals, globally pending signals, and blocked signals.
111 */
112 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
113 {
114 unsigned long ready;
115 long i;
116
117 switch (_NSIG_WORDS) {
118 default:
119 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
120 ready |= signal->sig[i] &~ blocked->sig[i];
121 break;
122
123 case 4: ready = signal->sig[3] &~ blocked->sig[3];
124 ready |= signal->sig[2] &~ blocked->sig[2];
125 ready |= signal->sig[1] &~ blocked->sig[1];
126 ready |= signal->sig[0] &~ blocked->sig[0];
127 break;
128
129 case 2: ready = signal->sig[1] &~ blocked->sig[1];
130 ready |= signal->sig[0] &~ blocked->sig[0];
131 break;
132
133 case 1: ready = signal->sig[0] &~ blocked->sig[0];
134 }
135 return ready != 0;
136 }
137
138 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
139
140 static int recalc_sigpending_tsk(struct task_struct *t)
141 {
142 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
143 PENDING(&t->pending, &t->blocked) ||
144 PENDING(&t->signal->shared_pending, &t->blocked)) {
145 set_tsk_thread_flag(t, TIF_SIGPENDING);
146 return 1;
147 }
148 /*
149 * We must never clear the flag in another thread, or in current
150 * when it's possible the current syscall is returning -ERESTART*.
151 * So we don't clear it here, and only callers who know they should do.
152 */
153 return 0;
154 }
155
156 /*
157 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
158 * This is superfluous when called on current, the wakeup is a harmless no-op.
159 */
160 void recalc_sigpending_and_wake(struct task_struct *t)
161 {
162 if (recalc_sigpending_tsk(t))
163 signal_wake_up(t, 0);
164 }
165
166 void recalc_sigpending(void)
167 {
168 if (!recalc_sigpending_tsk(current) && !freezing(current))
169 clear_thread_flag(TIF_SIGPENDING);
170
171 }
172
173 /* Given the mask, find the first available signal that should be serviced. */
174
175 #define SYNCHRONOUS_MASK \
176 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
177 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
178
179 int next_signal(struct sigpending *pending, sigset_t *mask)
180 {
181 unsigned long i, *s, *m, x;
182 int sig = 0;
183
184 s = pending->signal.sig;
185 m = mask->sig;
186
187 /*
188 * Handle the first word specially: it contains the
189 * synchronous signals that need to be dequeued first.
190 */
191 x = *s &~ *m;
192 if (x) {
193 if (x & SYNCHRONOUS_MASK)
194 x &= SYNCHRONOUS_MASK;
195 sig = ffz(~x) + 1;
196 return sig;
197 }
198
199 switch (_NSIG_WORDS) {
200 default:
201 for (i = 1; i < _NSIG_WORDS; ++i) {
202 x = *++s &~ *++m;
203 if (!x)
204 continue;
205 sig = ffz(~x) + i*_NSIG_BPW + 1;
206 break;
207 }
208 break;
209
210 case 2:
211 x = s[1] &~ m[1];
212 if (!x)
213 break;
214 sig = ffz(~x) + _NSIG_BPW + 1;
215 break;
216
217 case 1:
218 /* Nothing to do */
219 break;
220 }
221
222 return sig;
223 }
224
225 static inline void print_dropped_signal(int sig)
226 {
227 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
228
229 if (!print_fatal_signals)
230 return;
231
232 if (!__ratelimit(&ratelimit_state))
233 return;
234
235 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
236 current->comm, current->pid, sig);
237 }
238
239 /**
240 * task_set_jobctl_pending - set jobctl pending bits
241 * @task: target task
242 * @mask: pending bits to set
243 *
244 * Clear @mask from @task->jobctl. @mask must be subset of
245 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
246 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
247 * cleared. If @task is already being killed or exiting, this function
248 * becomes noop.
249 *
250 * CONTEXT:
251 * Must be called with @task->sighand->siglock held.
252 *
253 * RETURNS:
254 * %true if @mask is set, %false if made noop because @task was dying.
255 */
256 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
257 {
258 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
259 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
260 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
261
262 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
263 return false;
264
265 if (mask & JOBCTL_STOP_SIGMASK)
266 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
267
268 task->jobctl |= mask;
269 return true;
270 }
271
272 /**
273 * task_clear_jobctl_trapping - clear jobctl trapping bit
274 * @task: target task
275 *
276 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
277 * Clear it and wake up the ptracer. Note that we don't need any further
278 * locking. @task->siglock guarantees that @task->parent points to the
279 * ptracer.
280 *
281 * CONTEXT:
282 * Must be called with @task->sighand->siglock held.
283 */
284 void task_clear_jobctl_trapping(struct task_struct *task)
285 {
286 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
287 task->jobctl &= ~JOBCTL_TRAPPING;
288 smp_mb(); /* advised by wake_up_bit() */
289 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
290 }
291 }
292
293 /**
294 * task_clear_jobctl_pending - clear jobctl pending bits
295 * @task: target task
296 * @mask: pending bits to clear
297 *
298 * Clear @mask from @task->jobctl. @mask must be subset of
299 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
300 * STOP bits are cleared together.
301 *
302 * If clearing of @mask leaves no stop or trap pending, this function calls
303 * task_clear_jobctl_trapping().
304 *
305 * CONTEXT:
306 * Must be called with @task->sighand->siglock held.
307 */
308 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
309 {
310 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
311
312 if (mask & JOBCTL_STOP_PENDING)
313 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
314
315 task->jobctl &= ~mask;
316
317 if (!(task->jobctl & JOBCTL_PENDING_MASK))
318 task_clear_jobctl_trapping(task);
319 }
320
321 /**
322 * task_participate_group_stop - participate in a group stop
323 * @task: task participating in a group stop
324 *
325 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
326 * Group stop states are cleared and the group stop count is consumed if
327 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
328 * stop, the appropriate %SIGNAL_* flags are set.
329 *
330 * CONTEXT:
331 * Must be called with @task->sighand->siglock held.
332 *
333 * RETURNS:
334 * %true if group stop completion should be notified to the parent, %false
335 * otherwise.
336 */
337 static bool task_participate_group_stop(struct task_struct *task)
338 {
339 struct signal_struct *sig = task->signal;
340 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
341
342 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
343
344 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
345
346 if (!consume)
347 return false;
348
349 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
350 sig->group_stop_count--;
351
352 /*
353 * Tell the caller to notify completion iff we are entering into a
354 * fresh group stop. Read comment in do_signal_stop() for details.
355 */
356 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
357 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
358 return true;
359 }
360 return false;
361 }
362
363 /*
364 * allocate a new signal queue record
365 * - this may be called without locks if and only if t == current, otherwise an
366 * appropriate lock must be held to stop the target task from exiting
367 */
368 static struct sigqueue *
369 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
370 {
371 struct sigqueue *q = NULL;
372 struct user_struct *user;
373
374 /*
375 * Protect access to @t credentials. This can go away when all
376 * callers hold rcu read lock.
377 */
378 rcu_read_lock();
379 user = get_uid(__task_cred(t)->user);
380 atomic_inc(&user->sigpending);
381 rcu_read_unlock();
382
383 if (override_rlimit ||
384 atomic_read(&user->sigpending) <=
385 task_rlimit(t, RLIMIT_SIGPENDING)) {
386 q = kmem_cache_alloc(sigqueue_cachep, flags);
387 } else {
388 print_dropped_signal(sig);
389 }
390
391 if (unlikely(q == NULL)) {
392 atomic_dec(&user->sigpending);
393 free_uid(user);
394 } else {
395 INIT_LIST_HEAD(&q->list);
396 q->flags = 0;
397 q->user = user;
398 }
399
400 return q;
401 }
402
403 static void __sigqueue_free(struct sigqueue *q)
404 {
405 if (q->flags & SIGQUEUE_PREALLOC)
406 return;
407 atomic_dec(&q->user->sigpending);
408 free_uid(q->user);
409 kmem_cache_free(sigqueue_cachep, q);
410 }
411
412 void flush_sigqueue(struct sigpending *queue)
413 {
414 struct sigqueue *q;
415
416 sigemptyset(&queue->signal);
417 while (!list_empty(&queue->list)) {
418 q = list_entry(queue->list.next, struct sigqueue , list);
419 list_del_init(&q->list);
420 __sigqueue_free(q);
421 }
422 }
423
424 /*
425 * Flush all pending signals for this kthread.
426 */
427 void flush_signals(struct task_struct *t)
428 {
429 unsigned long flags;
430
431 spin_lock_irqsave(&t->sighand->siglock, flags);
432 clear_tsk_thread_flag(t, TIF_SIGPENDING);
433 flush_sigqueue(&t->pending);
434 flush_sigqueue(&t->signal->shared_pending);
435 spin_unlock_irqrestore(&t->sighand->siglock, flags);
436 }
437
438 #ifdef CONFIG_POSIX_TIMERS
439 static void __flush_itimer_signals(struct sigpending *pending)
440 {
441 sigset_t signal, retain;
442 struct sigqueue *q, *n;
443
444 signal = pending->signal;
445 sigemptyset(&retain);
446
447 list_for_each_entry_safe(q, n, &pending->list, list) {
448 int sig = q->info.si_signo;
449
450 if (likely(q->info.si_code != SI_TIMER)) {
451 sigaddset(&retain, sig);
452 } else {
453 sigdelset(&signal, sig);
454 list_del_init(&q->list);
455 __sigqueue_free(q);
456 }
457 }
458
459 sigorsets(&pending->signal, &signal, &retain);
460 }
461
462 void flush_itimer_signals(void)
463 {
464 struct task_struct *tsk = current;
465 unsigned long flags;
466
467 spin_lock_irqsave(&tsk->sighand->siglock, flags);
468 __flush_itimer_signals(&tsk->pending);
469 __flush_itimer_signals(&tsk->signal->shared_pending);
470 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
471 }
472 #endif
473
474 void ignore_signals(struct task_struct *t)
475 {
476 int i;
477
478 for (i = 0; i < _NSIG; ++i)
479 t->sighand->action[i].sa.sa_handler = SIG_IGN;
480
481 flush_signals(t);
482 }
483
484 /*
485 * Flush all handlers for a task.
486 */
487
488 void
489 flush_signal_handlers(struct task_struct *t, int force_default)
490 {
491 int i;
492 struct k_sigaction *ka = &t->sighand->action[0];
493 for (i = _NSIG ; i != 0 ; i--) {
494 if (force_default || ka->sa.sa_handler != SIG_IGN)
495 ka->sa.sa_handler = SIG_DFL;
496 ka->sa.sa_flags = 0;
497 #ifdef __ARCH_HAS_SA_RESTORER
498 ka->sa.sa_restorer = NULL;
499 #endif
500 sigemptyset(&ka->sa.sa_mask);
501 ka++;
502 }
503 }
504
505 int unhandled_signal(struct task_struct *tsk, int sig)
506 {
507 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
508 if (is_global_init(tsk))
509 return 1;
510 if (handler != SIG_IGN && handler != SIG_DFL)
511 return 0;
512 /* if ptraced, let the tracer determine */
513 return !tsk->ptrace;
514 }
515
516 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
517 bool *resched_timer)
518 {
519 struct sigqueue *q, *first = NULL;
520
521 /*
522 * Collect the siginfo appropriate to this signal. Check if
523 * there is another siginfo for the same signal.
524 */
525 list_for_each_entry(q, &list->list, list) {
526 if (q->info.si_signo == sig) {
527 if (first)
528 goto still_pending;
529 first = q;
530 }
531 }
532
533 sigdelset(&list->signal, sig);
534
535 if (first) {
536 still_pending:
537 list_del_init(&first->list);
538 copy_siginfo(info, &first->info);
539
540 *resched_timer =
541 (first->flags & SIGQUEUE_PREALLOC) &&
542 (info->si_code == SI_TIMER) &&
543 (info->si_sys_private);
544
545 __sigqueue_free(first);
546 } else {
547 /*
548 * Ok, it wasn't in the queue. This must be
549 * a fast-pathed signal or we must have been
550 * out of queue space. So zero out the info.
551 */
552 info->si_signo = sig;
553 info->si_errno = 0;
554 info->si_code = SI_USER;
555 info->si_pid = 0;
556 info->si_uid = 0;
557 }
558 }
559
560 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
561 siginfo_t *info, bool *resched_timer)
562 {
563 int sig = next_signal(pending, mask);
564
565 if (sig)
566 collect_signal(sig, pending, info, resched_timer);
567 return sig;
568 }
569
570 /*
571 * Dequeue a signal and return the element to the caller, which is
572 * expected to free it.
573 *
574 * All callers have to hold the siglock.
575 */
576 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
577 {
578 bool resched_timer = false;
579 int signr;
580
581 /* We only dequeue private signals from ourselves, we don't let
582 * signalfd steal them
583 */
584 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
585 if (!signr) {
586 signr = __dequeue_signal(&tsk->signal->shared_pending,
587 mask, info, &resched_timer);
588 #ifdef CONFIG_POSIX_TIMERS
589 /*
590 * itimer signal ?
591 *
592 * itimers are process shared and we restart periodic
593 * itimers in the signal delivery path to prevent DoS
594 * attacks in the high resolution timer case. This is
595 * compliant with the old way of self-restarting
596 * itimers, as the SIGALRM is a legacy signal and only
597 * queued once. Changing the restart behaviour to
598 * restart the timer in the signal dequeue path is
599 * reducing the timer noise on heavy loaded !highres
600 * systems too.
601 */
602 if (unlikely(signr == SIGALRM)) {
603 struct hrtimer *tmr = &tsk->signal->real_timer;
604
605 if (!hrtimer_is_queued(tmr) &&
606 tsk->signal->it_real_incr != 0) {
607 hrtimer_forward(tmr, tmr->base->get_time(),
608 tsk->signal->it_real_incr);
609 hrtimer_restart(tmr);
610 }
611 }
612 #endif
613 }
614
615 recalc_sigpending();
616 if (!signr)
617 return 0;
618
619 if (unlikely(sig_kernel_stop(signr))) {
620 /*
621 * Set a marker that we have dequeued a stop signal. Our
622 * caller might release the siglock and then the pending
623 * stop signal it is about to process is no longer in the
624 * pending bitmasks, but must still be cleared by a SIGCONT
625 * (and overruled by a SIGKILL). So those cases clear this
626 * shared flag after we've set it. Note that this flag may
627 * remain set after the signal we return is ignored or
628 * handled. That doesn't matter because its only purpose
629 * is to alert stop-signal processing code when another
630 * processor has come along and cleared the flag.
631 */
632 current->jobctl |= JOBCTL_STOP_DEQUEUED;
633 }
634 #ifdef CONFIG_POSIX_TIMERS
635 if (resched_timer) {
636 /*
637 * Release the siglock to ensure proper locking order
638 * of timer locks outside of siglocks. Note, we leave
639 * irqs disabled here, since the posix-timers code is
640 * about to disable them again anyway.
641 */
642 spin_unlock(&tsk->sighand->siglock);
643 posixtimer_rearm(info);
644 spin_lock(&tsk->sighand->siglock);
645 }
646 #endif
647 return signr;
648 }
649
650 /*
651 * Tell a process that it has a new active signal..
652 *
653 * NOTE! we rely on the previous spin_lock to
654 * lock interrupts for us! We can only be called with
655 * "siglock" held, and the local interrupt must
656 * have been disabled when that got acquired!
657 *
658 * No need to set need_resched since signal event passing
659 * goes through ->blocked
660 */
661 void signal_wake_up_state(struct task_struct *t, unsigned int state)
662 {
663 set_tsk_thread_flag(t, TIF_SIGPENDING);
664 /*
665 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
666 * case. We don't check t->state here because there is a race with it
667 * executing another processor and just now entering stopped state.
668 * By using wake_up_state, we ensure the process will wake up and
669 * handle its death signal.
670 */
671 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
672 kick_process(t);
673 }
674
675 /*
676 * Remove signals in mask from the pending set and queue.
677 * Returns 1 if any signals were found.
678 *
679 * All callers must be holding the siglock.
680 */
681 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
682 {
683 struct sigqueue *q, *n;
684 sigset_t m;
685
686 sigandsets(&m, mask, &s->signal);
687 if (sigisemptyset(&m))
688 return 0;
689
690 sigandnsets(&s->signal, &s->signal, mask);
691 list_for_each_entry_safe(q, n, &s->list, list) {
692 if (sigismember(mask, q->info.si_signo)) {
693 list_del_init(&q->list);
694 __sigqueue_free(q);
695 }
696 }
697 return 1;
698 }
699
700 static inline int is_si_special(const struct siginfo *info)
701 {
702 return info <= SEND_SIG_FORCED;
703 }
704
705 static inline bool si_fromuser(const struct siginfo *info)
706 {
707 return info == SEND_SIG_NOINFO ||
708 (!is_si_special(info) && SI_FROMUSER(info));
709 }
710
711 /*
712 * called with RCU read lock from check_kill_permission()
713 */
714 static int kill_ok_by_cred(struct task_struct *t)
715 {
716 const struct cred *cred = current_cred();
717 const struct cred *tcred = __task_cred(t);
718
719 if (uid_eq(cred->euid, tcred->suid) ||
720 uid_eq(cred->euid, tcred->uid) ||
721 uid_eq(cred->uid, tcred->suid) ||
722 uid_eq(cred->uid, tcred->uid))
723 return 1;
724
725 if (ns_capable(tcred->user_ns, CAP_KILL))
726 return 1;
727
728 return 0;
729 }
730
731 /*
732 * Bad permissions for sending the signal
733 * - the caller must hold the RCU read lock
734 */
735 static int check_kill_permission(int sig, struct siginfo *info,
736 struct task_struct *t)
737 {
738 struct pid *sid;
739 int error;
740
741 if (!valid_signal(sig))
742 return -EINVAL;
743
744 if (!si_fromuser(info))
745 return 0;
746
747 error = audit_signal_info(sig, t); /* Let audit system see the signal */
748 if (error)
749 return error;
750
751 if (!same_thread_group(current, t) &&
752 !kill_ok_by_cred(t)) {
753 switch (sig) {
754 case SIGCONT:
755 sid = task_session(t);
756 /*
757 * We don't return the error if sid == NULL. The
758 * task was unhashed, the caller must notice this.
759 */
760 if (!sid || sid == task_session(current))
761 break;
762 default:
763 return -EPERM;
764 }
765 }
766
767 return security_task_kill(t, info, sig, 0);
768 }
769
770 /**
771 * ptrace_trap_notify - schedule trap to notify ptracer
772 * @t: tracee wanting to notify tracer
773 *
774 * This function schedules sticky ptrace trap which is cleared on the next
775 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
776 * ptracer.
777 *
778 * If @t is running, STOP trap will be taken. If trapped for STOP and
779 * ptracer is listening for events, tracee is woken up so that it can
780 * re-trap for the new event. If trapped otherwise, STOP trap will be
781 * eventually taken without returning to userland after the existing traps
782 * are finished by PTRACE_CONT.
783 *
784 * CONTEXT:
785 * Must be called with @task->sighand->siglock held.
786 */
787 static void ptrace_trap_notify(struct task_struct *t)
788 {
789 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
790 assert_spin_locked(&t->sighand->siglock);
791
792 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
793 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
794 }
795
796 /*
797 * Handle magic process-wide effects of stop/continue signals. Unlike
798 * the signal actions, these happen immediately at signal-generation
799 * time regardless of blocking, ignoring, or handling. This does the
800 * actual continuing for SIGCONT, but not the actual stopping for stop
801 * signals. The process stop is done as a signal action for SIG_DFL.
802 *
803 * Returns true if the signal should be actually delivered, otherwise
804 * it should be dropped.
805 */
806 static bool prepare_signal(int sig, struct task_struct *p, bool force)
807 {
808 struct signal_struct *signal = p->signal;
809 struct task_struct *t;
810 sigset_t flush;
811
812 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
813 if (!(signal->flags & SIGNAL_GROUP_EXIT))
814 return sig == SIGKILL;
815 /*
816 * The process is in the middle of dying, nothing to do.
817 */
818 } else if (sig_kernel_stop(sig)) {
819 /*
820 * This is a stop signal. Remove SIGCONT from all queues.
821 */
822 siginitset(&flush, sigmask(SIGCONT));
823 flush_sigqueue_mask(&flush, &signal->shared_pending);
824 for_each_thread(p, t)
825 flush_sigqueue_mask(&flush, &t->pending);
826 } else if (sig == SIGCONT) {
827 unsigned int why;
828 /*
829 * Remove all stop signals from all queues, wake all threads.
830 */
831 siginitset(&flush, SIG_KERNEL_STOP_MASK);
832 flush_sigqueue_mask(&flush, &signal->shared_pending);
833 for_each_thread(p, t) {
834 flush_sigqueue_mask(&flush, &t->pending);
835 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
836 if (likely(!(t->ptrace & PT_SEIZED)))
837 wake_up_state(t, __TASK_STOPPED);
838 else
839 ptrace_trap_notify(t);
840 }
841
842 /*
843 * Notify the parent with CLD_CONTINUED if we were stopped.
844 *
845 * If we were in the middle of a group stop, we pretend it
846 * was already finished, and then continued. Since SIGCHLD
847 * doesn't queue we report only CLD_STOPPED, as if the next
848 * CLD_CONTINUED was dropped.
849 */
850 why = 0;
851 if (signal->flags & SIGNAL_STOP_STOPPED)
852 why |= SIGNAL_CLD_CONTINUED;
853 else if (signal->group_stop_count)
854 why |= SIGNAL_CLD_STOPPED;
855
856 if (why) {
857 /*
858 * The first thread which returns from do_signal_stop()
859 * will take ->siglock, notice SIGNAL_CLD_MASK, and
860 * notify its parent. See get_signal_to_deliver().
861 */
862 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
863 signal->group_stop_count = 0;
864 signal->group_exit_code = 0;
865 }
866 }
867
868 return !sig_ignored(p, sig, force);
869 }
870
871 /*
872 * Test if P wants to take SIG. After we've checked all threads with this,
873 * it's equivalent to finding no threads not blocking SIG. Any threads not
874 * blocking SIG were ruled out because they are not running and already
875 * have pending signals. Such threads will dequeue from the shared queue
876 * as soon as they're available, so putting the signal on the shared queue
877 * will be equivalent to sending it to one such thread.
878 */
879 static inline int wants_signal(int sig, struct task_struct *p)
880 {
881 if (sigismember(&p->blocked, sig))
882 return 0;
883 if (p->flags & PF_EXITING)
884 return 0;
885 if (sig == SIGKILL)
886 return 1;
887 if (task_is_stopped_or_traced(p))
888 return 0;
889 return task_curr(p) || !signal_pending(p);
890 }
891
892 static void complete_signal(int sig, struct task_struct *p, int group)
893 {
894 struct signal_struct *signal = p->signal;
895 struct task_struct *t;
896
897 /*
898 * Now find a thread we can wake up to take the signal off the queue.
899 *
900 * If the main thread wants the signal, it gets first crack.
901 * Probably the least surprising to the average bear.
902 */
903 if (wants_signal(sig, p))
904 t = p;
905 else if (!group || thread_group_empty(p))
906 /*
907 * There is just one thread and it does not need to be woken.
908 * It will dequeue unblocked signals before it runs again.
909 */
910 return;
911 else {
912 /*
913 * Otherwise try to find a suitable thread.
914 */
915 t = signal->curr_target;
916 while (!wants_signal(sig, t)) {
917 t = next_thread(t);
918 if (t == signal->curr_target)
919 /*
920 * No thread needs to be woken.
921 * Any eligible threads will see
922 * the signal in the queue soon.
923 */
924 return;
925 }
926 signal->curr_target = t;
927 }
928
929 /*
930 * Found a killable thread. If the signal will be fatal,
931 * then start taking the whole group down immediately.
932 */
933 if (sig_fatal(p, sig) &&
934 !(signal->flags & SIGNAL_GROUP_EXIT) &&
935 !sigismember(&t->real_blocked, sig) &&
936 (sig == SIGKILL || !p->ptrace)) {
937 /*
938 * This signal will be fatal to the whole group.
939 */
940 if (!sig_kernel_coredump(sig)) {
941 /*
942 * Start a group exit and wake everybody up.
943 * This way we don't have other threads
944 * running and doing things after a slower
945 * thread has the fatal signal pending.
946 */
947 signal->flags = SIGNAL_GROUP_EXIT;
948 signal->group_exit_code = sig;
949 signal->group_stop_count = 0;
950 t = p;
951 do {
952 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
953 sigaddset(&t->pending.signal, SIGKILL);
954 signal_wake_up(t, 1);
955 } while_each_thread(p, t);
956 return;
957 }
958 }
959
960 /*
961 * The signal is already in the shared-pending queue.
962 * Tell the chosen thread to wake up and dequeue it.
963 */
964 signal_wake_up(t, sig == SIGKILL);
965 return;
966 }
967
968 static inline int legacy_queue(struct sigpending *signals, int sig)
969 {
970 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
971 }
972
973 #ifdef CONFIG_USER_NS
974 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
975 {
976 if (current_user_ns() == task_cred_xxx(t, user_ns))
977 return;
978
979 if (SI_FROMKERNEL(info))
980 return;
981
982 rcu_read_lock();
983 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
984 make_kuid(current_user_ns(), info->si_uid));
985 rcu_read_unlock();
986 }
987 #else
988 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
989 {
990 return;
991 }
992 #endif
993
994 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
995 int group, int from_ancestor_ns)
996 {
997 struct sigpending *pending;
998 struct sigqueue *q;
999 int override_rlimit;
1000 int ret = 0, result;
1001
1002 assert_spin_locked(&t->sighand->siglock);
1003
1004 result = TRACE_SIGNAL_IGNORED;
1005 if (!prepare_signal(sig, t,
1006 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1007 goto ret;
1008
1009 pending = group ? &t->signal->shared_pending : &t->pending;
1010 /*
1011 * Short-circuit ignored signals and support queuing
1012 * exactly one non-rt signal, so that we can get more
1013 * detailed information about the cause of the signal.
1014 */
1015 result = TRACE_SIGNAL_ALREADY_PENDING;
1016 if (legacy_queue(pending, sig))
1017 goto ret;
1018
1019 result = TRACE_SIGNAL_DELIVERED;
1020 /*
1021 * fast-pathed signals for kernel-internal things like SIGSTOP
1022 * or SIGKILL.
1023 */
1024 if (info == SEND_SIG_FORCED)
1025 goto out_set;
1026
1027 /*
1028 * Real-time signals must be queued if sent by sigqueue, or
1029 * some other real-time mechanism. It is implementation
1030 * defined whether kill() does so. We attempt to do so, on
1031 * the principle of least surprise, but since kill is not
1032 * allowed to fail with EAGAIN when low on memory we just
1033 * make sure at least one signal gets delivered and don't
1034 * pass on the info struct.
1035 */
1036 if (sig < SIGRTMIN)
1037 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1038 else
1039 override_rlimit = 0;
1040
1041 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1042 if (q) {
1043 list_add_tail(&q->list, &pending->list);
1044 switch ((unsigned long) info) {
1045 case (unsigned long) SEND_SIG_NOINFO:
1046 q->info.si_signo = sig;
1047 q->info.si_errno = 0;
1048 q->info.si_code = SI_USER;
1049 q->info.si_pid = task_tgid_nr_ns(current,
1050 task_active_pid_ns(t));
1051 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1052 break;
1053 case (unsigned long) SEND_SIG_PRIV:
1054 q->info.si_signo = sig;
1055 q->info.si_errno = 0;
1056 q->info.si_code = SI_KERNEL;
1057 q->info.si_pid = 0;
1058 q->info.si_uid = 0;
1059 break;
1060 default:
1061 copy_siginfo(&q->info, info);
1062 if (from_ancestor_ns)
1063 q->info.si_pid = 0;
1064 break;
1065 }
1066
1067 userns_fixup_signal_uid(&q->info, t);
1068
1069 } else if (!is_si_special(info)) {
1070 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1071 /*
1072 * Queue overflow, abort. We may abort if the
1073 * signal was rt and sent by user using something
1074 * other than kill().
1075 */
1076 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1077 ret = -EAGAIN;
1078 goto ret;
1079 } else {
1080 /*
1081 * This is a silent loss of information. We still
1082 * send the signal, but the *info bits are lost.
1083 */
1084 result = TRACE_SIGNAL_LOSE_INFO;
1085 }
1086 }
1087
1088 out_set:
1089 signalfd_notify(t, sig);
1090 sigaddset(&pending->signal, sig);
1091 complete_signal(sig, t, group);
1092 ret:
1093 trace_signal_generate(sig, info, t, group, result);
1094 return ret;
1095 }
1096
1097 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1098 int group)
1099 {
1100 int from_ancestor_ns = 0;
1101
1102 #ifdef CONFIG_PID_NS
1103 from_ancestor_ns = si_fromuser(info) &&
1104 !task_pid_nr_ns(current, task_active_pid_ns(t));
1105 #endif
1106
1107 return __send_signal(sig, info, t, group, from_ancestor_ns);
1108 }
1109
1110 static void print_fatal_signal(int signr)
1111 {
1112 struct pt_regs *regs = signal_pt_regs();
1113 pr_info("potentially unexpected fatal signal %d.\n", signr);
1114
1115 #if defined(__i386__) && !defined(__arch_um__)
1116 pr_info("code at %08lx: ", regs->ip);
1117 {
1118 int i;
1119 for (i = 0; i < 16; i++) {
1120 unsigned char insn;
1121
1122 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1123 break;
1124 pr_cont("%02x ", insn);
1125 }
1126 }
1127 pr_cont("\n");
1128 #endif
1129 preempt_disable();
1130 show_regs(regs);
1131 preempt_enable();
1132 }
1133
1134 static int __init setup_print_fatal_signals(char *str)
1135 {
1136 get_option (&str, &print_fatal_signals);
1137
1138 return 1;
1139 }
1140
1141 __setup("print-fatal-signals=", setup_print_fatal_signals);
1142
1143 int
1144 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1145 {
1146 return send_signal(sig, info, p, 1);
1147 }
1148
1149 static int
1150 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1151 {
1152 return send_signal(sig, info, t, 0);
1153 }
1154
1155 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1156 bool group)
1157 {
1158 unsigned long flags;
1159 int ret = -ESRCH;
1160
1161 if (lock_task_sighand(p, &flags)) {
1162 ret = send_signal(sig, info, p, group);
1163 unlock_task_sighand(p, &flags);
1164 }
1165
1166 return ret;
1167 }
1168
1169 /*
1170 * Force a signal that the process can't ignore: if necessary
1171 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1172 *
1173 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1174 * since we do not want to have a signal handler that was blocked
1175 * be invoked when user space had explicitly blocked it.
1176 *
1177 * We don't want to have recursive SIGSEGV's etc, for example,
1178 * that is why we also clear SIGNAL_UNKILLABLE.
1179 */
1180 int
1181 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1182 {
1183 unsigned long int flags;
1184 int ret, blocked, ignored;
1185 struct k_sigaction *action;
1186
1187 spin_lock_irqsave(&t->sighand->siglock, flags);
1188 action = &t->sighand->action[sig-1];
1189 ignored = action->sa.sa_handler == SIG_IGN;
1190 blocked = sigismember(&t->blocked, sig);
1191 if (blocked || ignored) {
1192 action->sa.sa_handler = SIG_DFL;
1193 if (blocked) {
1194 sigdelset(&t->blocked, sig);
1195 recalc_sigpending_and_wake(t);
1196 }
1197 }
1198 /*
1199 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1200 * debugging to leave init killable.
1201 */
1202 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1203 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1204 ret = specific_send_sig_info(sig, info, t);
1205 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1206
1207 return ret;
1208 }
1209
1210 /*
1211 * Nuke all other threads in the group.
1212 */
1213 int zap_other_threads(struct task_struct *p)
1214 {
1215 struct task_struct *t = p;
1216 int count = 0;
1217
1218 p->signal->group_stop_count = 0;
1219
1220 while_each_thread(p, t) {
1221 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1222 count++;
1223
1224 /* Don't bother with already dead threads */
1225 if (t->exit_state)
1226 continue;
1227 sigaddset(&t->pending.signal, SIGKILL);
1228 signal_wake_up(t, 1);
1229 }
1230
1231 return count;
1232 }
1233
1234 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1235 unsigned long *flags)
1236 {
1237 struct sighand_struct *sighand;
1238
1239 for (;;) {
1240 /*
1241 * Disable interrupts early to avoid deadlocks.
1242 * See rcu_read_unlock() comment header for details.
1243 */
1244 local_irq_save(*flags);
1245 rcu_read_lock();
1246 sighand = rcu_dereference(tsk->sighand);
1247 if (unlikely(sighand == NULL)) {
1248 rcu_read_unlock();
1249 local_irq_restore(*flags);
1250 break;
1251 }
1252 /*
1253 * This sighand can be already freed and even reused, but
1254 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1255 * initializes ->siglock: this slab can't go away, it has
1256 * the same object type, ->siglock can't be reinitialized.
1257 *
1258 * We need to ensure that tsk->sighand is still the same
1259 * after we take the lock, we can race with de_thread() or
1260 * __exit_signal(). In the latter case the next iteration
1261 * must see ->sighand == NULL.
1262 */
1263 spin_lock(&sighand->siglock);
1264 if (likely(sighand == tsk->sighand)) {
1265 rcu_read_unlock();
1266 break;
1267 }
1268 spin_unlock(&sighand->siglock);
1269 rcu_read_unlock();
1270 local_irq_restore(*flags);
1271 }
1272
1273 return sighand;
1274 }
1275
1276 /*
1277 * send signal info to all the members of a group
1278 */
1279 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1280 {
1281 int ret;
1282
1283 rcu_read_lock();
1284 ret = check_kill_permission(sig, info, p);
1285 rcu_read_unlock();
1286
1287 if (!ret && sig)
1288 ret = do_send_sig_info(sig, info, p, true);
1289
1290 return ret;
1291 }
1292
1293 /*
1294 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1295 * control characters do (^C, ^Z etc)
1296 * - the caller must hold at least a readlock on tasklist_lock
1297 */
1298 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1299 {
1300 struct task_struct *p = NULL;
1301 int retval, success;
1302
1303 success = 0;
1304 retval = -ESRCH;
1305 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1306 int err = group_send_sig_info(sig, info, p);
1307 success |= !err;
1308 retval = err;
1309 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1310 return success ? 0 : retval;
1311 }
1312
1313 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1314 {
1315 int error = -ESRCH;
1316 struct task_struct *p;
1317
1318 for (;;) {
1319 rcu_read_lock();
1320 p = pid_task(pid, PIDTYPE_PID);
1321 if (p)
1322 error = group_send_sig_info(sig, info, p);
1323 rcu_read_unlock();
1324 if (likely(!p || error != -ESRCH))
1325 return error;
1326
1327 /*
1328 * The task was unhashed in between, try again. If it
1329 * is dead, pid_task() will return NULL, if we race with
1330 * de_thread() it will find the new leader.
1331 */
1332 }
1333 }
1334
1335 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1336 {
1337 int error;
1338 rcu_read_lock();
1339 error = kill_pid_info(sig, info, find_vpid(pid));
1340 rcu_read_unlock();
1341 return error;
1342 }
1343
1344 static int kill_as_cred_perm(const struct cred *cred,
1345 struct task_struct *target)
1346 {
1347 const struct cred *pcred = __task_cred(target);
1348 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1349 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1350 return 0;
1351 return 1;
1352 }
1353
1354 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1355 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1356 const struct cred *cred, u32 secid)
1357 {
1358 int ret = -EINVAL;
1359 struct task_struct *p;
1360 unsigned long flags;
1361
1362 if (!valid_signal(sig))
1363 return ret;
1364
1365 rcu_read_lock();
1366 p = pid_task(pid, PIDTYPE_PID);
1367 if (!p) {
1368 ret = -ESRCH;
1369 goto out_unlock;
1370 }
1371 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1372 ret = -EPERM;
1373 goto out_unlock;
1374 }
1375 ret = security_task_kill(p, info, sig, secid);
1376 if (ret)
1377 goto out_unlock;
1378
1379 if (sig) {
1380 if (lock_task_sighand(p, &flags)) {
1381 ret = __send_signal(sig, info, p, 1, 0);
1382 unlock_task_sighand(p, &flags);
1383 } else
1384 ret = -ESRCH;
1385 }
1386 out_unlock:
1387 rcu_read_unlock();
1388 return ret;
1389 }
1390 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1391
1392 /*
1393 * kill_something_info() interprets pid in interesting ways just like kill(2).
1394 *
1395 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1396 * is probably wrong. Should make it like BSD or SYSV.
1397 */
1398
1399 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1400 {
1401 int ret;
1402
1403 if (pid > 0) {
1404 rcu_read_lock();
1405 ret = kill_pid_info(sig, info, find_vpid(pid));
1406 rcu_read_unlock();
1407 return ret;
1408 }
1409
1410 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1411 if (pid == INT_MIN)
1412 return -ESRCH;
1413
1414 read_lock(&tasklist_lock);
1415 if (pid != -1) {
1416 ret = __kill_pgrp_info(sig, info,
1417 pid ? find_vpid(-pid) : task_pgrp(current));
1418 } else {
1419 int retval = 0, count = 0;
1420 struct task_struct * p;
1421
1422 for_each_process(p) {
1423 if (task_pid_vnr(p) > 1 &&
1424 !same_thread_group(p, current)) {
1425 int err = group_send_sig_info(sig, info, p);
1426 ++count;
1427 if (err != -EPERM)
1428 retval = err;
1429 }
1430 }
1431 ret = count ? retval : -ESRCH;
1432 }
1433 read_unlock(&tasklist_lock);
1434
1435 return ret;
1436 }
1437
1438 /*
1439 * These are for backward compatibility with the rest of the kernel source.
1440 */
1441
1442 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1443 {
1444 /*
1445 * Make sure legacy kernel users don't send in bad values
1446 * (normal paths check this in check_kill_permission).
1447 */
1448 if (!valid_signal(sig))
1449 return -EINVAL;
1450
1451 return do_send_sig_info(sig, info, p, false);
1452 }
1453
1454 #define __si_special(priv) \
1455 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1456
1457 int
1458 send_sig(int sig, struct task_struct *p, int priv)
1459 {
1460 return send_sig_info(sig, __si_special(priv), p);
1461 }
1462
1463 void
1464 force_sig(int sig, struct task_struct *p)
1465 {
1466 force_sig_info(sig, SEND_SIG_PRIV, p);
1467 }
1468
1469 /*
1470 * When things go south during signal handling, we
1471 * will force a SIGSEGV. And if the signal that caused
1472 * the problem was already a SIGSEGV, we'll want to
1473 * make sure we don't even try to deliver the signal..
1474 */
1475 int
1476 force_sigsegv(int sig, struct task_struct *p)
1477 {
1478 if (sig == SIGSEGV) {
1479 unsigned long flags;
1480 spin_lock_irqsave(&p->sighand->siglock, flags);
1481 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1482 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1483 }
1484 force_sig(SIGSEGV, p);
1485 return 0;
1486 }
1487
1488 int kill_pgrp(struct pid *pid, int sig, int priv)
1489 {
1490 int ret;
1491
1492 read_lock(&tasklist_lock);
1493 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1494 read_unlock(&tasklist_lock);
1495
1496 return ret;
1497 }
1498 EXPORT_SYMBOL(kill_pgrp);
1499
1500 int kill_pid(struct pid *pid, int sig, int priv)
1501 {
1502 return kill_pid_info(sig, __si_special(priv), pid);
1503 }
1504 EXPORT_SYMBOL(kill_pid);
1505
1506 /*
1507 * These functions support sending signals using preallocated sigqueue
1508 * structures. This is needed "because realtime applications cannot
1509 * afford to lose notifications of asynchronous events, like timer
1510 * expirations or I/O completions". In the case of POSIX Timers
1511 * we allocate the sigqueue structure from the timer_create. If this
1512 * allocation fails we are able to report the failure to the application
1513 * with an EAGAIN error.
1514 */
1515 struct sigqueue *sigqueue_alloc(void)
1516 {
1517 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1518
1519 if (q)
1520 q->flags |= SIGQUEUE_PREALLOC;
1521
1522 return q;
1523 }
1524
1525 void sigqueue_free(struct sigqueue *q)
1526 {
1527 unsigned long flags;
1528 spinlock_t *lock = &current->sighand->siglock;
1529
1530 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1531 /*
1532 * We must hold ->siglock while testing q->list
1533 * to serialize with collect_signal() or with
1534 * __exit_signal()->flush_sigqueue().
1535 */
1536 spin_lock_irqsave(lock, flags);
1537 q->flags &= ~SIGQUEUE_PREALLOC;
1538 /*
1539 * If it is queued it will be freed when dequeued,
1540 * like the "regular" sigqueue.
1541 */
1542 if (!list_empty(&q->list))
1543 q = NULL;
1544 spin_unlock_irqrestore(lock, flags);
1545
1546 if (q)
1547 __sigqueue_free(q);
1548 }
1549
1550 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1551 {
1552 int sig = q->info.si_signo;
1553 struct sigpending *pending;
1554 unsigned long flags;
1555 int ret, result;
1556
1557 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1558
1559 ret = -1;
1560 if (!likely(lock_task_sighand(t, &flags)))
1561 goto ret;
1562
1563 ret = 1; /* the signal is ignored */
1564 result = TRACE_SIGNAL_IGNORED;
1565 if (!prepare_signal(sig, t, false))
1566 goto out;
1567
1568 ret = 0;
1569 if (unlikely(!list_empty(&q->list))) {
1570 /*
1571 * If an SI_TIMER entry is already queue just increment
1572 * the overrun count.
1573 */
1574 BUG_ON(q->info.si_code != SI_TIMER);
1575 q->info.si_overrun++;
1576 result = TRACE_SIGNAL_ALREADY_PENDING;
1577 goto out;
1578 }
1579 q->info.si_overrun = 0;
1580
1581 signalfd_notify(t, sig);
1582 pending = group ? &t->signal->shared_pending : &t->pending;
1583 list_add_tail(&q->list, &pending->list);
1584 sigaddset(&pending->signal, sig);
1585 complete_signal(sig, t, group);
1586 result = TRACE_SIGNAL_DELIVERED;
1587 out:
1588 trace_signal_generate(sig, &q->info, t, group, result);
1589 unlock_task_sighand(t, &flags);
1590 ret:
1591 return ret;
1592 }
1593
1594 /*
1595 * Let a parent know about the death of a child.
1596 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1597 *
1598 * Returns true if our parent ignored us and so we've switched to
1599 * self-reaping.
1600 */
1601 bool do_notify_parent(struct task_struct *tsk, int sig)
1602 {
1603 struct siginfo info;
1604 unsigned long flags;
1605 struct sighand_struct *psig;
1606 bool autoreap = false;
1607 u64 utime, stime;
1608
1609 BUG_ON(sig == -1);
1610
1611 /* do_notify_parent_cldstop should have been called instead. */
1612 BUG_ON(task_is_stopped_or_traced(tsk));
1613
1614 BUG_ON(!tsk->ptrace &&
1615 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1616
1617 if (sig != SIGCHLD) {
1618 /*
1619 * This is only possible if parent == real_parent.
1620 * Check if it has changed security domain.
1621 */
1622 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1623 sig = SIGCHLD;
1624 }
1625
1626 info.si_signo = sig;
1627 info.si_errno = 0;
1628 /*
1629 * We are under tasklist_lock here so our parent is tied to
1630 * us and cannot change.
1631 *
1632 * task_active_pid_ns will always return the same pid namespace
1633 * until a task passes through release_task.
1634 *
1635 * write_lock() currently calls preempt_disable() which is the
1636 * same as rcu_read_lock(), but according to Oleg, this is not
1637 * correct to rely on this
1638 */
1639 rcu_read_lock();
1640 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1641 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1642 task_uid(tsk));
1643 rcu_read_unlock();
1644
1645 task_cputime(tsk, &utime, &stime);
1646 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1647 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1648
1649 info.si_status = tsk->exit_code & 0x7f;
1650 if (tsk->exit_code & 0x80)
1651 info.si_code = CLD_DUMPED;
1652 else if (tsk->exit_code & 0x7f)
1653 info.si_code = CLD_KILLED;
1654 else {
1655 info.si_code = CLD_EXITED;
1656 info.si_status = tsk->exit_code >> 8;
1657 }
1658
1659 psig = tsk->parent->sighand;
1660 spin_lock_irqsave(&psig->siglock, flags);
1661 if (!tsk->ptrace && sig == SIGCHLD &&
1662 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1663 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1664 /*
1665 * We are exiting and our parent doesn't care. POSIX.1
1666 * defines special semantics for setting SIGCHLD to SIG_IGN
1667 * or setting the SA_NOCLDWAIT flag: we should be reaped
1668 * automatically and not left for our parent's wait4 call.
1669 * Rather than having the parent do it as a magic kind of
1670 * signal handler, we just set this to tell do_exit that we
1671 * can be cleaned up without becoming a zombie. Note that
1672 * we still call __wake_up_parent in this case, because a
1673 * blocked sys_wait4 might now return -ECHILD.
1674 *
1675 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1676 * is implementation-defined: we do (if you don't want
1677 * it, just use SIG_IGN instead).
1678 */
1679 autoreap = true;
1680 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1681 sig = 0;
1682 }
1683 if (valid_signal(sig) && sig)
1684 __group_send_sig_info(sig, &info, tsk->parent);
1685 __wake_up_parent(tsk, tsk->parent);
1686 spin_unlock_irqrestore(&psig->siglock, flags);
1687
1688 return autoreap;
1689 }
1690
1691 /**
1692 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1693 * @tsk: task reporting the state change
1694 * @for_ptracer: the notification is for ptracer
1695 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1696 *
1697 * Notify @tsk's parent that the stopped/continued state has changed. If
1698 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1699 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1700 *
1701 * CONTEXT:
1702 * Must be called with tasklist_lock at least read locked.
1703 */
1704 static void do_notify_parent_cldstop(struct task_struct *tsk,
1705 bool for_ptracer, int why)
1706 {
1707 struct siginfo info;
1708 unsigned long flags;
1709 struct task_struct *parent;
1710 struct sighand_struct *sighand;
1711 u64 utime, stime;
1712
1713 if (for_ptracer) {
1714 parent = tsk->parent;
1715 } else {
1716 tsk = tsk->group_leader;
1717 parent = tsk->real_parent;
1718 }
1719
1720 info.si_signo = SIGCHLD;
1721 info.si_errno = 0;
1722 /*
1723 * see comment in do_notify_parent() about the following 4 lines
1724 */
1725 rcu_read_lock();
1726 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1727 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1728 rcu_read_unlock();
1729
1730 task_cputime(tsk, &utime, &stime);
1731 info.si_utime = nsec_to_clock_t(utime);
1732 info.si_stime = nsec_to_clock_t(stime);
1733
1734 info.si_code = why;
1735 switch (why) {
1736 case CLD_CONTINUED:
1737 info.si_status = SIGCONT;
1738 break;
1739 case CLD_STOPPED:
1740 info.si_status = tsk->signal->group_exit_code & 0x7f;
1741 break;
1742 case CLD_TRAPPED:
1743 info.si_status = tsk->exit_code & 0x7f;
1744 break;
1745 default:
1746 BUG();
1747 }
1748
1749 sighand = parent->sighand;
1750 spin_lock_irqsave(&sighand->siglock, flags);
1751 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1752 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1753 __group_send_sig_info(SIGCHLD, &info, parent);
1754 /*
1755 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1756 */
1757 __wake_up_parent(tsk, parent);
1758 spin_unlock_irqrestore(&sighand->siglock, flags);
1759 }
1760
1761 static inline int may_ptrace_stop(void)
1762 {
1763 if (!likely(current->ptrace))
1764 return 0;
1765 /*
1766 * Are we in the middle of do_coredump?
1767 * If so and our tracer is also part of the coredump stopping
1768 * is a deadlock situation, and pointless because our tracer
1769 * is dead so don't allow us to stop.
1770 * If SIGKILL was already sent before the caller unlocked
1771 * ->siglock we must see ->core_state != NULL. Otherwise it
1772 * is safe to enter schedule().
1773 *
1774 * This is almost outdated, a task with the pending SIGKILL can't
1775 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1776 * after SIGKILL was already dequeued.
1777 */
1778 if (unlikely(current->mm->core_state) &&
1779 unlikely(current->mm == current->parent->mm))
1780 return 0;
1781
1782 return 1;
1783 }
1784
1785 /*
1786 * Return non-zero if there is a SIGKILL that should be waking us up.
1787 * Called with the siglock held.
1788 */
1789 static int sigkill_pending(struct task_struct *tsk)
1790 {
1791 return sigismember(&tsk->pending.signal, SIGKILL) ||
1792 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1793 }
1794
1795 /*
1796 * This must be called with current->sighand->siglock held.
1797 *
1798 * This should be the path for all ptrace stops.
1799 * We always set current->last_siginfo while stopped here.
1800 * That makes it a way to test a stopped process for
1801 * being ptrace-stopped vs being job-control-stopped.
1802 *
1803 * If we actually decide not to stop at all because the tracer
1804 * is gone, we keep current->exit_code unless clear_code.
1805 */
1806 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1807 __releases(&current->sighand->siglock)
1808 __acquires(&current->sighand->siglock)
1809 {
1810 bool gstop_done = false;
1811
1812 if (arch_ptrace_stop_needed(exit_code, info)) {
1813 /*
1814 * The arch code has something special to do before a
1815 * ptrace stop. This is allowed to block, e.g. for faults
1816 * on user stack pages. We can't keep the siglock while
1817 * calling arch_ptrace_stop, so we must release it now.
1818 * To preserve proper semantics, we must do this before
1819 * any signal bookkeeping like checking group_stop_count.
1820 * Meanwhile, a SIGKILL could come in before we retake the
1821 * siglock. That must prevent us from sleeping in TASK_TRACED.
1822 * So after regaining the lock, we must check for SIGKILL.
1823 */
1824 spin_unlock_irq(&current->sighand->siglock);
1825 arch_ptrace_stop(exit_code, info);
1826 spin_lock_irq(&current->sighand->siglock);
1827 if (sigkill_pending(current))
1828 return;
1829 }
1830
1831 set_special_state(TASK_TRACED);
1832
1833 /*
1834 * We're committing to trapping. TRACED should be visible before
1835 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1836 * Also, transition to TRACED and updates to ->jobctl should be
1837 * atomic with respect to siglock and should be done after the arch
1838 * hook as siglock is released and regrabbed across it.
1839 *
1840 * TRACER TRACEE
1841 *
1842 * ptrace_attach()
1843 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
1844 * do_wait()
1845 * set_current_state() smp_wmb();
1846 * ptrace_do_wait()
1847 * wait_task_stopped()
1848 * task_stopped_code()
1849 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
1850 */
1851 smp_wmb();
1852
1853 current->last_siginfo = info;
1854 current->exit_code = exit_code;
1855
1856 /*
1857 * If @why is CLD_STOPPED, we're trapping to participate in a group
1858 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1859 * across siglock relocks since INTERRUPT was scheduled, PENDING
1860 * could be clear now. We act as if SIGCONT is received after
1861 * TASK_TRACED is entered - ignore it.
1862 */
1863 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1864 gstop_done = task_participate_group_stop(current);
1865
1866 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1867 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1868 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1869 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1870
1871 /* entering a trap, clear TRAPPING */
1872 task_clear_jobctl_trapping(current);
1873
1874 spin_unlock_irq(&current->sighand->siglock);
1875 read_lock(&tasklist_lock);
1876 if (may_ptrace_stop()) {
1877 /*
1878 * Notify parents of the stop.
1879 *
1880 * While ptraced, there are two parents - the ptracer and
1881 * the real_parent of the group_leader. The ptracer should
1882 * know about every stop while the real parent is only
1883 * interested in the completion of group stop. The states
1884 * for the two don't interact with each other. Notify
1885 * separately unless they're gonna be duplicates.
1886 */
1887 do_notify_parent_cldstop(current, true, why);
1888 if (gstop_done && ptrace_reparented(current))
1889 do_notify_parent_cldstop(current, false, why);
1890
1891 /*
1892 * Don't want to allow preemption here, because
1893 * sys_ptrace() needs this task to be inactive.
1894 *
1895 * XXX: implement read_unlock_no_resched().
1896 */
1897 preempt_disable();
1898 read_unlock(&tasklist_lock);
1899 preempt_enable_no_resched();
1900 freezable_schedule();
1901 } else {
1902 /*
1903 * By the time we got the lock, our tracer went away.
1904 * Don't drop the lock yet, another tracer may come.
1905 *
1906 * If @gstop_done, the ptracer went away between group stop
1907 * completion and here. During detach, it would have set
1908 * JOBCTL_STOP_PENDING on us and we'll re-enter
1909 * TASK_STOPPED in do_signal_stop() on return, so notifying
1910 * the real parent of the group stop completion is enough.
1911 */
1912 if (gstop_done)
1913 do_notify_parent_cldstop(current, false, why);
1914
1915 /* tasklist protects us from ptrace_freeze_traced() */
1916 __set_current_state(TASK_RUNNING);
1917 if (clear_code)
1918 current->exit_code = 0;
1919 read_unlock(&tasklist_lock);
1920 }
1921
1922 /*
1923 * We are back. Now reacquire the siglock before touching
1924 * last_siginfo, so that we are sure to have synchronized with
1925 * any signal-sending on another CPU that wants to examine it.
1926 */
1927 spin_lock_irq(&current->sighand->siglock);
1928 current->last_siginfo = NULL;
1929
1930 /* LISTENING can be set only during STOP traps, clear it */
1931 current->jobctl &= ~JOBCTL_LISTENING;
1932
1933 /*
1934 * Queued signals ignored us while we were stopped for tracing.
1935 * So check for any that we should take before resuming user mode.
1936 * This sets TIF_SIGPENDING, but never clears it.
1937 */
1938 recalc_sigpending_tsk(current);
1939 }
1940
1941 static void ptrace_do_notify(int signr, int exit_code, int why)
1942 {
1943 siginfo_t info;
1944
1945 memset(&info, 0, sizeof info);
1946 info.si_signo = signr;
1947 info.si_code = exit_code;
1948 info.si_pid = task_pid_vnr(current);
1949 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1950
1951 /* Let the debugger run. */
1952 ptrace_stop(exit_code, why, 1, &info);
1953 }
1954
1955 void ptrace_notify(int exit_code)
1956 {
1957 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1958 if (unlikely(current->task_works))
1959 task_work_run();
1960
1961 spin_lock_irq(&current->sighand->siglock);
1962 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1963 spin_unlock_irq(&current->sighand->siglock);
1964 }
1965
1966 /**
1967 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1968 * @signr: signr causing group stop if initiating
1969 *
1970 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1971 * and participate in it. If already set, participate in the existing
1972 * group stop. If participated in a group stop (and thus slept), %true is
1973 * returned with siglock released.
1974 *
1975 * If ptraced, this function doesn't handle stop itself. Instead,
1976 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1977 * untouched. The caller must ensure that INTERRUPT trap handling takes
1978 * places afterwards.
1979 *
1980 * CONTEXT:
1981 * Must be called with @current->sighand->siglock held, which is released
1982 * on %true return.
1983 *
1984 * RETURNS:
1985 * %false if group stop is already cancelled or ptrace trap is scheduled.
1986 * %true if participated in group stop.
1987 */
1988 static bool do_signal_stop(int signr)
1989 __releases(&current->sighand->siglock)
1990 {
1991 struct signal_struct *sig = current->signal;
1992
1993 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1994 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1995 struct task_struct *t;
1996
1997 /* signr will be recorded in task->jobctl for retries */
1998 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1999
2000 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2001 unlikely(signal_group_exit(sig)))
2002 return false;
2003 /*
2004 * There is no group stop already in progress. We must
2005 * initiate one now.
2006 *
2007 * While ptraced, a task may be resumed while group stop is
2008 * still in effect and then receive a stop signal and
2009 * initiate another group stop. This deviates from the
2010 * usual behavior as two consecutive stop signals can't
2011 * cause two group stops when !ptraced. That is why we
2012 * also check !task_is_stopped(t) below.
2013 *
2014 * The condition can be distinguished by testing whether
2015 * SIGNAL_STOP_STOPPED is already set. Don't generate
2016 * group_exit_code in such case.
2017 *
2018 * This is not necessary for SIGNAL_STOP_CONTINUED because
2019 * an intervening stop signal is required to cause two
2020 * continued events regardless of ptrace.
2021 */
2022 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2023 sig->group_exit_code = signr;
2024
2025 sig->group_stop_count = 0;
2026
2027 if (task_set_jobctl_pending(current, signr | gstop))
2028 sig->group_stop_count++;
2029
2030 t = current;
2031 while_each_thread(current, t) {
2032 /*
2033 * Setting state to TASK_STOPPED for a group
2034 * stop is always done with the siglock held,
2035 * so this check has no races.
2036 */
2037 if (!task_is_stopped(t) &&
2038 task_set_jobctl_pending(t, signr | gstop)) {
2039 sig->group_stop_count++;
2040 if (likely(!(t->ptrace & PT_SEIZED)))
2041 signal_wake_up(t, 0);
2042 else
2043 ptrace_trap_notify(t);
2044 }
2045 }
2046 }
2047
2048 if (likely(!current->ptrace)) {
2049 int notify = 0;
2050
2051 /*
2052 * If there are no other threads in the group, or if there
2053 * is a group stop in progress and we are the last to stop,
2054 * report to the parent.
2055 */
2056 if (task_participate_group_stop(current))
2057 notify = CLD_STOPPED;
2058
2059 set_special_state(TASK_STOPPED);
2060 spin_unlock_irq(&current->sighand->siglock);
2061
2062 /*
2063 * Notify the parent of the group stop completion. Because
2064 * we're not holding either the siglock or tasklist_lock
2065 * here, ptracer may attach inbetween; however, this is for
2066 * group stop and should always be delivered to the real
2067 * parent of the group leader. The new ptracer will get
2068 * its notification when this task transitions into
2069 * TASK_TRACED.
2070 */
2071 if (notify) {
2072 read_lock(&tasklist_lock);
2073 do_notify_parent_cldstop(current, false, notify);
2074 read_unlock(&tasklist_lock);
2075 }
2076
2077 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2078 freezable_schedule();
2079 return true;
2080 } else {
2081 /*
2082 * While ptraced, group stop is handled by STOP trap.
2083 * Schedule it and let the caller deal with it.
2084 */
2085 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2086 return false;
2087 }
2088 }
2089
2090 /**
2091 * do_jobctl_trap - take care of ptrace jobctl traps
2092 *
2093 * When PT_SEIZED, it's used for both group stop and explicit
2094 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2095 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2096 * the stop signal; otherwise, %SIGTRAP.
2097 *
2098 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2099 * number as exit_code and no siginfo.
2100 *
2101 * CONTEXT:
2102 * Must be called with @current->sighand->siglock held, which may be
2103 * released and re-acquired before returning with intervening sleep.
2104 */
2105 static void do_jobctl_trap(void)
2106 {
2107 struct signal_struct *signal = current->signal;
2108 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2109
2110 if (current->ptrace & PT_SEIZED) {
2111 if (!signal->group_stop_count &&
2112 !(signal->flags & SIGNAL_STOP_STOPPED))
2113 signr = SIGTRAP;
2114 WARN_ON_ONCE(!signr);
2115 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2116 CLD_STOPPED);
2117 } else {
2118 WARN_ON_ONCE(!signr);
2119 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2120 current->exit_code = 0;
2121 }
2122 }
2123
2124 static int ptrace_signal(int signr, siginfo_t *info)
2125 {
2126 /*
2127 * We do not check sig_kernel_stop(signr) but set this marker
2128 * unconditionally because we do not know whether debugger will
2129 * change signr. This flag has no meaning unless we are going
2130 * to stop after return from ptrace_stop(). In this case it will
2131 * be checked in do_signal_stop(), we should only stop if it was
2132 * not cleared by SIGCONT while we were sleeping. See also the
2133 * comment in dequeue_signal().
2134 */
2135 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2136 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2137
2138 /* We're back. Did the debugger cancel the sig? */
2139 signr = current->exit_code;
2140 if (signr == 0)
2141 return signr;
2142
2143 current->exit_code = 0;
2144
2145 /*
2146 * Update the siginfo structure if the signal has
2147 * changed. If the debugger wanted something
2148 * specific in the siginfo structure then it should
2149 * have updated *info via PTRACE_SETSIGINFO.
2150 */
2151 if (signr != info->si_signo) {
2152 info->si_signo = signr;
2153 info->si_errno = 0;
2154 info->si_code = SI_USER;
2155 rcu_read_lock();
2156 info->si_pid = task_pid_vnr(current->parent);
2157 info->si_uid = from_kuid_munged(current_user_ns(),
2158 task_uid(current->parent));
2159 rcu_read_unlock();
2160 }
2161
2162 /* If the (new) signal is now blocked, requeue it. */
2163 if (sigismember(&current->blocked, signr)) {
2164 specific_send_sig_info(signr, info, current);
2165 signr = 0;
2166 }
2167
2168 return signr;
2169 }
2170
2171 int get_signal(struct ksignal *ksig)
2172 {
2173 struct sighand_struct *sighand = current->sighand;
2174 struct signal_struct *signal = current->signal;
2175 int signr;
2176
2177 if (unlikely(current->task_works))
2178 task_work_run();
2179
2180 if (unlikely(uprobe_deny_signal()))
2181 return 0;
2182
2183 /*
2184 * Do this once, we can't return to user-mode if freezing() == T.
2185 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2186 * thus do not need another check after return.
2187 */
2188 try_to_freeze();
2189
2190 relock:
2191 spin_lock_irq(&sighand->siglock);
2192 /*
2193 * Every stopped thread goes here after wakeup. Check to see if
2194 * we should notify the parent, prepare_signal(SIGCONT) encodes
2195 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2196 */
2197 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2198 int why;
2199
2200 if (signal->flags & SIGNAL_CLD_CONTINUED)
2201 why = CLD_CONTINUED;
2202 else
2203 why = CLD_STOPPED;
2204
2205 signal->flags &= ~SIGNAL_CLD_MASK;
2206
2207 spin_unlock_irq(&sighand->siglock);
2208
2209 /*
2210 * Notify the parent that we're continuing. This event is
2211 * always per-process and doesn't make whole lot of sense
2212 * for ptracers, who shouldn't consume the state via
2213 * wait(2) either, but, for backward compatibility, notify
2214 * the ptracer of the group leader too unless it's gonna be
2215 * a duplicate.
2216 */
2217 read_lock(&tasklist_lock);
2218 do_notify_parent_cldstop(current, false, why);
2219
2220 if (ptrace_reparented(current->group_leader))
2221 do_notify_parent_cldstop(current->group_leader,
2222 true, why);
2223 read_unlock(&tasklist_lock);
2224
2225 goto relock;
2226 }
2227
2228 for (;;) {
2229 struct k_sigaction *ka;
2230
2231 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2232 do_signal_stop(0))
2233 goto relock;
2234
2235 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2236 do_jobctl_trap();
2237 spin_unlock_irq(&sighand->siglock);
2238 goto relock;
2239 }
2240
2241 signr = dequeue_signal(current, &current->blocked, &ksig->info);
2242
2243 if (!signr)
2244 break; /* will return 0 */
2245
2246 if (unlikely(current->ptrace) && signr != SIGKILL) {
2247 signr = ptrace_signal(signr, &ksig->info);
2248 if (!signr)
2249 continue;
2250 }
2251
2252 ka = &sighand->action[signr-1];
2253
2254 /* Trace actually delivered signals. */
2255 trace_signal_deliver(signr, &ksig->info, ka);
2256
2257 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2258 continue;
2259 if (ka->sa.sa_handler != SIG_DFL) {
2260 /* Run the handler. */
2261 ksig->ka = *ka;
2262
2263 if (ka->sa.sa_flags & SA_ONESHOT)
2264 ka->sa.sa_handler = SIG_DFL;
2265
2266 break; /* will return non-zero "signr" value */
2267 }
2268
2269 /*
2270 * Now we are doing the default action for this signal.
2271 */
2272 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2273 continue;
2274
2275 /*
2276 * Global init gets no signals it doesn't want.
2277 * Container-init gets no signals it doesn't want from same
2278 * container.
2279 *
2280 * Note that if global/container-init sees a sig_kernel_only()
2281 * signal here, the signal must have been generated internally
2282 * or must have come from an ancestor namespace. In either
2283 * case, the signal cannot be dropped.
2284 */
2285 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2286 !sig_kernel_only(signr))
2287 continue;
2288
2289 if (sig_kernel_stop(signr)) {
2290 /*
2291 * The default action is to stop all threads in
2292 * the thread group. The job control signals
2293 * do nothing in an orphaned pgrp, but SIGSTOP
2294 * always works. Note that siglock needs to be
2295 * dropped during the call to is_orphaned_pgrp()
2296 * because of lock ordering with tasklist_lock.
2297 * This allows an intervening SIGCONT to be posted.
2298 * We need to check for that and bail out if necessary.
2299 */
2300 if (signr != SIGSTOP) {
2301 spin_unlock_irq(&sighand->siglock);
2302
2303 /* signals can be posted during this window */
2304
2305 if (is_current_pgrp_orphaned())
2306 goto relock;
2307
2308 spin_lock_irq(&sighand->siglock);
2309 }
2310
2311 if (likely(do_signal_stop(ksig->info.si_signo))) {
2312 /* It released the siglock. */
2313 goto relock;
2314 }
2315
2316 /*
2317 * We didn't actually stop, due to a race
2318 * with SIGCONT or something like that.
2319 */
2320 continue;
2321 }
2322
2323 spin_unlock_irq(&sighand->siglock);
2324
2325 /*
2326 * Anything else is fatal, maybe with a core dump.
2327 */
2328 current->flags |= PF_SIGNALED;
2329
2330 if (sig_kernel_coredump(signr)) {
2331 if (print_fatal_signals)
2332 print_fatal_signal(ksig->info.si_signo);
2333 proc_coredump_connector(current);
2334 /*
2335 * If it was able to dump core, this kills all
2336 * other threads in the group and synchronizes with
2337 * their demise. If we lost the race with another
2338 * thread getting here, it set group_exit_code
2339 * first and our do_group_exit call below will use
2340 * that value and ignore the one we pass it.
2341 */
2342 do_coredump(&ksig->info);
2343 }
2344
2345 /*
2346 * Death signals, no core dump.
2347 */
2348 do_group_exit(ksig->info.si_signo);
2349 /* NOTREACHED */
2350 }
2351 spin_unlock_irq(&sighand->siglock);
2352
2353 ksig->sig = signr;
2354 return ksig->sig > 0;
2355 }
2356
2357 /**
2358 * signal_delivered -
2359 * @ksig: kernel signal struct
2360 * @stepping: nonzero if debugger single-step or block-step in use
2361 *
2362 * This function should be called when a signal has successfully been
2363 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2364 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2365 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2366 */
2367 static void signal_delivered(struct ksignal *ksig, int stepping)
2368 {
2369 sigset_t blocked;
2370
2371 /* A signal was successfully delivered, and the
2372 saved sigmask was stored on the signal frame,
2373 and will be restored by sigreturn. So we can
2374 simply clear the restore sigmask flag. */
2375 clear_restore_sigmask();
2376
2377 sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2378 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2379 sigaddset(&blocked, ksig->sig);
2380 set_current_blocked(&blocked);
2381 tracehook_signal_handler(stepping);
2382 }
2383
2384 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2385 {
2386 if (failed)
2387 force_sigsegv(ksig->sig, current);
2388 else
2389 signal_delivered(ksig, stepping);
2390 }
2391
2392 /*
2393 * It could be that complete_signal() picked us to notify about the
2394 * group-wide signal. Other threads should be notified now to take
2395 * the shared signals in @which since we will not.
2396 */
2397 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2398 {
2399 sigset_t retarget;
2400 struct task_struct *t;
2401
2402 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2403 if (sigisemptyset(&retarget))
2404 return;
2405
2406 t = tsk;
2407 while_each_thread(tsk, t) {
2408 if (t->flags & PF_EXITING)
2409 continue;
2410
2411 if (!has_pending_signals(&retarget, &t->blocked))
2412 continue;
2413 /* Remove the signals this thread can handle. */
2414 sigandsets(&retarget, &retarget, &t->blocked);
2415
2416 if (!signal_pending(t))
2417 signal_wake_up(t, 0);
2418
2419 if (sigisemptyset(&retarget))
2420 break;
2421 }
2422 }
2423
2424 void exit_signals(struct task_struct *tsk)
2425 {
2426 int group_stop = 0;
2427 sigset_t unblocked;
2428
2429 /*
2430 * @tsk is about to have PF_EXITING set - lock out users which
2431 * expect stable threadgroup.
2432 */
2433 cgroup_threadgroup_change_begin(tsk);
2434
2435 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2436 tsk->flags |= PF_EXITING;
2437 cgroup_threadgroup_change_end(tsk);
2438 return;
2439 }
2440
2441 spin_lock_irq(&tsk->sighand->siglock);
2442 /*
2443 * From now this task is not visible for group-wide signals,
2444 * see wants_signal(), do_signal_stop().
2445 */
2446 tsk->flags |= PF_EXITING;
2447
2448 cgroup_threadgroup_change_end(tsk);
2449
2450 if (!signal_pending(tsk))
2451 goto out;
2452
2453 unblocked = tsk->blocked;
2454 signotset(&unblocked);
2455 retarget_shared_pending(tsk, &unblocked);
2456
2457 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2458 task_participate_group_stop(tsk))
2459 group_stop = CLD_STOPPED;
2460 out:
2461 spin_unlock_irq(&tsk->sighand->siglock);
2462
2463 /*
2464 * If group stop has completed, deliver the notification. This
2465 * should always go to the real parent of the group leader.
2466 */
2467 if (unlikely(group_stop)) {
2468 read_lock(&tasklist_lock);
2469 do_notify_parent_cldstop(tsk, false, group_stop);
2470 read_unlock(&tasklist_lock);
2471 }
2472 }
2473
2474 EXPORT_SYMBOL(recalc_sigpending);
2475 EXPORT_SYMBOL_GPL(dequeue_signal);
2476 EXPORT_SYMBOL(flush_signals);
2477 EXPORT_SYMBOL(force_sig);
2478 EXPORT_SYMBOL(send_sig);
2479 EXPORT_SYMBOL(send_sig_info);
2480 EXPORT_SYMBOL(sigprocmask);
2481
2482 /*
2483 * System call entry points.
2484 */
2485
2486 /**
2487 * sys_restart_syscall - restart a system call
2488 */
2489 SYSCALL_DEFINE0(restart_syscall)
2490 {
2491 struct restart_block *restart = &current->restart_block;
2492 return restart->fn(restart);
2493 }
2494
2495 long do_no_restart_syscall(struct restart_block *param)
2496 {
2497 return -EINTR;
2498 }
2499
2500 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2501 {
2502 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2503 sigset_t newblocked;
2504 /* A set of now blocked but previously unblocked signals. */
2505 sigandnsets(&newblocked, newset, &current->blocked);
2506 retarget_shared_pending(tsk, &newblocked);
2507 }
2508 tsk->blocked = *newset;
2509 recalc_sigpending();
2510 }
2511
2512 /**
2513 * set_current_blocked - change current->blocked mask
2514 * @newset: new mask
2515 *
2516 * It is wrong to change ->blocked directly, this helper should be used
2517 * to ensure the process can't miss a shared signal we are going to block.
2518 */
2519 void set_current_blocked(sigset_t *newset)
2520 {
2521 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2522 __set_current_blocked(newset);
2523 }
2524
2525 void __set_current_blocked(const sigset_t *newset)
2526 {
2527 struct task_struct *tsk = current;
2528
2529 /*
2530 * In case the signal mask hasn't changed, there is nothing we need
2531 * to do. The current->blocked shouldn't be modified by other task.
2532 */
2533 if (sigequalsets(&tsk->blocked, newset))
2534 return;
2535
2536 spin_lock_irq(&tsk->sighand->siglock);
2537 __set_task_blocked(tsk, newset);
2538 spin_unlock_irq(&tsk->sighand->siglock);
2539 }
2540
2541 /*
2542 * This is also useful for kernel threads that want to temporarily
2543 * (or permanently) block certain signals.
2544 *
2545 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2546 * interface happily blocks "unblockable" signals like SIGKILL
2547 * and friends.
2548 */
2549 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2550 {
2551 struct task_struct *tsk = current;
2552 sigset_t newset;
2553
2554 /* Lockless, only current can change ->blocked, never from irq */
2555 if (oldset)
2556 *oldset = tsk->blocked;
2557
2558 switch (how) {
2559 case SIG_BLOCK:
2560 sigorsets(&newset, &tsk->blocked, set);
2561 break;
2562 case SIG_UNBLOCK:
2563 sigandnsets(&newset, &tsk->blocked, set);
2564 break;
2565 case SIG_SETMASK:
2566 newset = *set;
2567 break;
2568 default:
2569 return -EINVAL;
2570 }
2571
2572 __set_current_blocked(&newset);
2573 return 0;
2574 }
2575
2576 /**
2577 * sys_rt_sigprocmask - change the list of currently blocked signals
2578 * @how: whether to add, remove, or set signals
2579 * @nset: stores pending signals
2580 * @oset: previous value of signal mask if non-null
2581 * @sigsetsize: size of sigset_t type
2582 */
2583 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2584 sigset_t __user *, oset, size_t, sigsetsize)
2585 {
2586 sigset_t old_set, new_set;
2587 int error;
2588
2589 /* XXX: Don't preclude handling different sized sigset_t's. */
2590 if (sigsetsize != sizeof(sigset_t))
2591 return -EINVAL;
2592
2593 old_set = current->blocked;
2594
2595 if (nset) {
2596 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2597 return -EFAULT;
2598 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2599
2600 error = sigprocmask(how, &new_set, NULL);
2601 if (error)
2602 return error;
2603 }
2604
2605 if (oset) {
2606 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2607 return -EFAULT;
2608 }
2609
2610 return 0;
2611 }
2612
2613 #ifdef CONFIG_COMPAT
2614 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2615 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2616 {
2617 sigset_t old_set = current->blocked;
2618
2619 /* XXX: Don't preclude handling different sized sigset_t's. */
2620 if (sigsetsize != sizeof(sigset_t))
2621 return -EINVAL;
2622
2623 if (nset) {
2624 sigset_t new_set;
2625 int error;
2626 if (get_compat_sigset(&new_set, nset))
2627 return -EFAULT;
2628 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2629
2630 error = sigprocmask(how, &new_set, NULL);
2631 if (error)
2632 return error;
2633 }
2634 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2635 }
2636 #endif
2637
2638 static int do_sigpending(sigset_t *set)
2639 {
2640 spin_lock_irq(&current->sighand->siglock);
2641 sigorsets(set, &current->pending.signal,
2642 &current->signal->shared_pending.signal);
2643 spin_unlock_irq(&current->sighand->siglock);
2644
2645 /* Outside the lock because only this thread touches it. */
2646 sigandsets(set, &current->blocked, set);
2647 return 0;
2648 }
2649
2650 /**
2651 * sys_rt_sigpending - examine a pending signal that has been raised
2652 * while blocked
2653 * @uset: stores pending signals
2654 * @sigsetsize: size of sigset_t type or larger
2655 */
2656 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2657 {
2658 sigset_t set;
2659 int err;
2660
2661 if (sigsetsize > sizeof(*uset))
2662 return -EINVAL;
2663
2664 err = do_sigpending(&set);
2665 if (!err && copy_to_user(uset, &set, sigsetsize))
2666 err = -EFAULT;
2667 return err;
2668 }
2669
2670 #ifdef CONFIG_COMPAT
2671 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2672 compat_size_t, sigsetsize)
2673 {
2674 sigset_t set;
2675 int err;
2676
2677 if (sigsetsize > sizeof(*uset))
2678 return -EINVAL;
2679
2680 err = do_sigpending(&set);
2681 if (!err)
2682 err = put_compat_sigset(uset, &set, sigsetsize);
2683 return err;
2684 }
2685 #endif
2686
2687 enum siginfo_layout siginfo_layout(int sig, int si_code)
2688 {
2689 enum siginfo_layout layout = SIL_KILL;
2690 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
2691 static const struct {
2692 unsigned char limit, layout;
2693 } filter[] = {
2694 [SIGILL] = { NSIGILL, SIL_FAULT },
2695 [SIGFPE] = { NSIGFPE, SIL_FAULT },
2696 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2697 [SIGBUS] = { NSIGBUS, SIL_FAULT },
2698 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2699 #if defined(SIGEMT) && defined(NSIGEMT)
2700 [SIGEMT] = { NSIGEMT, SIL_FAULT },
2701 #endif
2702 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2703 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
2704 #ifdef __ARCH_SIGSYS
2705 [SIGSYS] = { NSIGSYS, SIL_SYS },
2706 #endif
2707 };
2708 if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit))
2709 layout = filter[sig].layout;
2710 else if (si_code <= NSIGPOLL)
2711 layout = SIL_POLL;
2712 } else {
2713 if (si_code == SI_TIMER)
2714 layout = SIL_TIMER;
2715 else if (si_code == SI_SIGIO)
2716 layout = SIL_POLL;
2717 else if (si_code < 0)
2718 layout = SIL_RT;
2719 /* Tests to support buggy kernel ABIs */
2720 #ifdef TRAP_FIXME
2721 if ((sig == SIGTRAP) && (si_code == TRAP_FIXME))
2722 layout = SIL_FAULT;
2723 #endif
2724 #ifdef FPE_FIXME
2725 if ((sig == SIGFPE) && (si_code == FPE_FIXME))
2726 layout = SIL_FAULT;
2727 #endif
2728 }
2729 return layout;
2730 }
2731
2732 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2733
2734 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2735 {
2736 int err;
2737
2738 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2739 return -EFAULT;
2740 if (from->si_code < 0)
2741 return __copy_to_user(to, from, sizeof(siginfo_t))
2742 ? -EFAULT : 0;
2743 /*
2744 * If you change siginfo_t structure, please be sure
2745 * this code is fixed accordingly.
2746 * Please remember to update the signalfd_copyinfo() function
2747 * inside fs/signalfd.c too, in case siginfo_t changes.
2748 * It should never copy any pad contained in the structure
2749 * to avoid security leaks, but must copy the generic
2750 * 3 ints plus the relevant union member.
2751 */
2752 err = __put_user(from->si_signo, &to->si_signo);
2753 err |= __put_user(from->si_errno, &to->si_errno);
2754 err |= __put_user(from->si_code, &to->si_code);
2755 switch (siginfo_layout(from->si_signo, from->si_code)) {
2756 case SIL_KILL:
2757 err |= __put_user(from->si_pid, &to->si_pid);
2758 err |= __put_user(from->si_uid, &to->si_uid);
2759 break;
2760 case SIL_TIMER:
2761 /* Unreached SI_TIMER is negative */
2762 break;
2763 case SIL_POLL:
2764 err |= __put_user(from->si_band, &to->si_band);
2765 err |= __put_user(from->si_fd, &to->si_fd);
2766 break;
2767 case SIL_FAULT:
2768 err |= __put_user(from->si_addr, &to->si_addr);
2769 #ifdef __ARCH_SI_TRAPNO
2770 err |= __put_user(from->si_trapno, &to->si_trapno);
2771 #endif
2772 #ifdef BUS_MCEERR_AO
2773 /*
2774 * Other callers might not initialize the si_lsb field,
2775 * so check explicitly for the right codes here.
2776 */
2777 if (from->si_signo == SIGBUS &&
2778 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2779 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2780 #endif
2781 #ifdef SEGV_BNDERR
2782 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2783 err |= __put_user(from->si_lower, &to->si_lower);
2784 err |= __put_user(from->si_upper, &to->si_upper);
2785 }
2786 #endif
2787 #ifdef SEGV_PKUERR
2788 if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2789 err |= __put_user(from->si_pkey, &to->si_pkey);
2790 #endif
2791 break;
2792 case SIL_CHLD:
2793 err |= __put_user(from->si_pid, &to->si_pid);
2794 err |= __put_user(from->si_uid, &to->si_uid);
2795 err |= __put_user(from->si_status, &to->si_status);
2796 err |= __put_user(from->si_utime, &to->si_utime);
2797 err |= __put_user(from->si_stime, &to->si_stime);
2798 break;
2799 case SIL_RT:
2800 err |= __put_user(from->si_pid, &to->si_pid);
2801 err |= __put_user(from->si_uid, &to->si_uid);
2802 err |= __put_user(from->si_ptr, &to->si_ptr);
2803 break;
2804 #ifdef __ARCH_SIGSYS
2805 case SIL_SYS:
2806 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2807 err |= __put_user(from->si_syscall, &to->si_syscall);
2808 err |= __put_user(from->si_arch, &to->si_arch);
2809 break;
2810 #endif
2811 }
2812 return err;
2813 }
2814
2815 #endif
2816
2817 /**
2818 * do_sigtimedwait - wait for queued signals specified in @which
2819 * @which: queued signals to wait for
2820 * @info: if non-null, the signal's siginfo is returned here
2821 * @ts: upper bound on process time suspension
2822 */
2823 static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2824 const struct timespec *ts)
2825 {
2826 ktime_t *to = NULL, timeout = KTIME_MAX;
2827 struct task_struct *tsk = current;
2828 sigset_t mask = *which;
2829 int sig, ret = 0;
2830
2831 if (ts) {
2832 if (!timespec_valid(ts))
2833 return -EINVAL;
2834 timeout = timespec_to_ktime(*ts);
2835 to = &timeout;
2836 }
2837
2838 /*
2839 * Invert the set of allowed signals to get those we want to block.
2840 */
2841 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2842 signotset(&mask);
2843
2844 spin_lock_irq(&tsk->sighand->siglock);
2845 sig = dequeue_signal(tsk, &mask, info);
2846 if (!sig && timeout) {
2847 /*
2848 * None ready, temporarily unblock those we're interested
2849 * while we are sleeping in so that we'll be awakened when
2850 * they arrive. Unblocking is always fine, we can avoid
2851 * set_current_blocked().
2852 */
2853 tsk->real_blocked = tsk->blocked;
2854 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2855 recalc_sigpending();
2856 spin_unlock_irq(&tsk->sighand->siglock);
2857
2858 __set_current_state(TASK_INTERRUPTIBLE);
2859 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2860 HRTIMER_MODE_REL);
2861 spin_lock_irq(&tsk->sighand->siglock);
2862 __set_task_blocked(tsk, &tsk->real_blocked);
2863 sigemptyset(&tsk->real_blocked);
2864 sig = dequeue_signal(tsk, &mask, info);
2865 }
2866 spin_unlock_irq(&tsk->sighand->siglock);
2867
2868 if (sig)
2869 return sig;
2870 return ret ? -EINTR : -EAGAIN;
2871 }
2872
2873 /**
2874 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2875 * in @uthese
2876 * @uthese: queued signals to wait for
2877 * @uinfo: if non-null, the signal's siginfo is returned here
2878 * @uts: upper bound on process time suspension
2879 * @sigsetsize: size of sigset_t type
2880 */
2881 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2882 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2883 size_t, sigsetsize)
2884 {
2885 sigset_t these;
2886 struct timespec ts;
2887 siginfo_t info;
2888 int ret;
2889
2890 /* XXX: Don't preclude handling different sized sigset_t's. */
2891 if (sigsetsize != sizeof(sigset_t))
2892 return -EINVAL;
2893
2894 if (copy_from_user(&these, uthese, sizeof(these)))
2895 return -EFAULT;
2896
2897 if (uts) {
2898 if (copy_from_user(&ts, uts, sizeof(ts)))
2899 return -EFAULT;
2900 }
2901
2902 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2903
2904 if (ret > 0 && uinfo) {
2905 if (copy_siginfo_to_user(uinfo, &info))
2906 ret = -EFAULT;
2907 }
2908
2909 return ret;
2910 }
2911
2912 #ifdef CONFIG_COMPAT
2913 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
2914 struct compat_siginfo __user *, uinfo,
2915 struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
2916 {
2917 sigset_t s;
2918 struct timespec t;
2919 siginfo_t info;
2920 long ret;
2921
2922 if (sigsetsize != sizeof(sigset_t))
2923 return -EINVAL;
2924
2925 if (get_compat_sigset(&s, uthese))
2926 return -EFAULT;
2927
2928 if (uts) {
2929 if (compat_get_timespec(&t, uts))
2930 return -EFAULT;
2931 }
2932
2933 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
2934
2935 if (ret > 0 && uinfo) {
2936 if (copy_siginfo_to_user32(uinfo, &info))
2937 ret = -EFAULT;
2938 }
2939
2940 return ret;
2941 }
2942 #endif
2943
2944 /**
2945 * sys_kill - send a signal to a process
2946 * @pid: the PID of the process
2947 * @sig: signal to be sent
2948 */
2949 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2950 {
2951 struct siginfo info;
2952
2953 info.si_signo = sig;
2954 info.si_errno = 0;
2955 info.si_code = SI_USER;
2956 info.si_pid = task_tgid_vnr(current);
2957 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2958
2959 return kill_something_info(sig, &info, pid);
2960 }
2961
2962 static int
2963 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2964 {
2965 struct task_struct *p;
2966 int error = -ESRCH;
2967
2968 rcu_read_lock();
2969 p = find_task_by_vpid(pid);
2970 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2971 error = check_kill_permission(sig, info, p);
2972 /*
2973 * The null signal is a permissions and process existence
2974 * probe. No signal is actually delivered.
2975 */
2976 if (!error && sig) {
2977 error = do_send_sig_info(sig, info, p, false);
2978 /*
2979 * If lock_task_sighand() failed we pretend the task
2980 * dies after receiving the signal. The window is tiny,
2981 * and the signal is private anyway.
2982 */
2983 if (unlikely(error == -ESRCH))
2984 error = 0;
2985 }
2986 }
2987 rcu_read_unlock();
2988
2989 return error;
2990 }
2991
2992 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2993 {
2994 struct siginfo info = {};
2995
2996 info.si_signo = sig;
2997 info.si_errno = 0;
2998 info.si_code = SI_TKILL;
2999 info.si_pid = task_tgid_vnr(current);
3000 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3001
3002 return do_send_specific(tgid, pid, sig, &info);
3003 }
3004
3005 /**
3006 * sys_tgkill - send signal to one specific thread
3007 * @tgid: the thread group ID of the thread
3008 * @pid: the PID of the thread
3009 * @sig: signal to be sent
3010 *
3011 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3012 * exists but it's not belonging to the target process anymore. This
3013 * method solves the problem of threads exiting and PIDs getting reused.
3014 */
3015 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3016 {
3017 /* This is only valid for single tasks */
3018 if (pid <= 0 || tgid <= 0)
3019 return -EINVAL;
3020
3021 return do_tkill(tgid, pid, sig);
3022 }
3023
3024 /**
3025 * sys_tkill - send signal to one specific task
3026 * @pid: the PID of the task
3027 * @sig: signal to be sent
3028 *
3029 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3030 */
3031 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3032 {
3033 /* This is only valid for single tasks */
3034 if (pid <= 0)
3035 return -EINVAL;
3036
3037 return do_tkill(0, pid, sig);
3038 }
3039
3040 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3041 {
3042 /* Not even root can pretend to send signals from the kernel.
3043 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3044 */
3045 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3046 (task_pid_vnr(current) != pid))
3047 return -EPERM;
3048
3049 info->si_signo = sig;
3050
3051 /* POSIX.1b doesn't mention process groups. */
3052 return kill_proc_info(sig, info, pid);
3053 }
3054
3055 /**
3056 * sys_rt_sigqueueinfo - send signal information to a signal
3057 * @pid: the PID of the thread
3058 * @sig: signal to be sent
3059 * @uinfo: signal info to be sent
3060 */
3061 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3062 siginfo_t __user *, uinfo)
3063 {
3064 siginfo_t info;
3065 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3066 return -EFAULT;
3067 return do_rt_sigqueueinfo(pid, sig, &info);
3068 }
3069
3070 #ifdef CONFIG_COMPAT
3071 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3072 compat_pid_t, pid,
3073 int, sig,
3074 struct compat_siginfo __user *, uinfo)
3075 {
3076 siginfo_t info = {};
3077 int ret = copy_siginfo_from_user32(&info, uinfo);
3078 if (unlikely(ret))
3079 return ret;
3080 return do_rt_sigqueueinfo(pid, sig, &info);
3081 }
3082 #endif
3083
3084 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3085 {
3086 /* This is only valid for single tasks */
3087 if (pid <= 0 || tgid <= 0)
3088 return -EINVAL;
3089
3090 /* Not even root can pretend to send signals from the kernel.
3091 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3092 */
3093 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3094 (task_pid_vnr(current) != pid))
3095 return -EPERM;
3096
3097 info->si_signo = sig;
3098
3099 return do_send_specific(tgid, pid, sig, info);
3100 }
3101
3102 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3103 siginfo_t __user *, uinfo)
3104 {
3105 siginfo_t info;
3106
3107 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3108 return -EFAULT;
3109
3110 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3111 }
3112
3113 #ifdef CONFIG_COMPAT
3114 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3115 compat_pid_t, tgid,
3116 compat_pid_t, pid,
3117 int, sig,
3118 struct compat_siginfo __user *, uinfo)
3119 {
3120 siginfo_t info = {};
3121
3122 if (copy_siginfo_from_user32(&info, uinfo))
3123 return -EFAULT;
3124 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3125 }
3126 #endif
3127
3128 /*
3129 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3130 */
3131 void kernel_sigaction(int sig, __sighandler_t action)
3132 {
3133 spin_lock_irq(&current->sighand->siglock);
3134 current->sighand->action[sig - 1].sa.sa_handler = action;
3135 if (action == SIG_IGN) {
3136 sigset_t mask;
3137
3138 sigemptyset(&mask);
3139 sigaddset(&mask, sig);
3140
3141 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3142 flush_sigqueue_mask(&mask, &current->pending);
3143 recalc_sigpending();
3144 }
3145 spin_unlock_irq(&current->sighand->siglock);
3146 }
3147 EXPORT_SYMBOL(kernel_sigaction);
3148
3149 void __weak sigaction_compat_abi(struct k_sigaction *act,
3150 struct k_sigaction *oact)
3151 {
3152 }
3153
3154 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3155 {
3156 struct task_struct *p = current, *t;
3157 struct k_sigaction *k;
3158 sigset_t mask;
3159
3160 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3161 return -EINVAL;
3162
3163 k = &p->sighand->action[sig-1];
3164
3165 spin_lock_irq(&p->sighand->siglock);
3166 if (oact)
3167 *oact = *k;
3168
3169 sigaction_compat_abi(act, oact);
3170
3171 if (act) {
3172 sigdelsetmask(&act->sa.sa_mask,
3173 sigmask(SIGKILL) | sigmask(SIGSTOP));
3174 *k = *act;
3175 /*
3176 * POSIX 3.3.1.3:
3177 * "Setting a signal action to SIG_IGN for a signal that is
3178 * pending shall cause the pending signal to be discarded,
3179 * whether or not it is blocked."
3180 *
3181 * "Setting a signal action to SIG_DFL for a signal that is
3182 * pending and whose default action is to ignore the signal
3183 * (for example, SIGCHLD), shall cause the pending signal to
3184 * be discarded, whether or not it is blocked"
3185 */
3186 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3187 sigemptyset(&mask);
3188 sigaddset(&mask, sig);
3189 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3190 for_each_thread(p, t)
3191 flush_sigqueue_mask(&mask, &t->pending);
3192 }
3193 }
3194
3195 spin_unlock_irq(&p->sighand->siglock);
3196 return 0;
3197 }
3198
3199 static int
3200 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp)
3201 {
3202 struct task_struct *t = current;
3203
3204 if (oss) {
3205 memset(oss, 0, sizeof(stack_t));
3206 oss->ss_sp = (void __user *) t->sas_ss_sp;
3207 oss->ss_size = t->sas_ss_size;
3208 oss->ss_flags = sas_ss_flags(sp) |
3209 (current->sas_ss_flags & SS_FLAG_BITS);
3210 }
3211
3212 if (ss) {
3213 void __user *ss_sp = ss->ss_sp;
3214 size_t ss_size = ss->ss_size;
3215 unsigned ss_flags = ss->ss_flags;
3216 int ss_mode;
3217
3218 if (unlikely(on_sig_stack(sp)))
3219 return -EPERM;
3220
3221 ss_mode = ss_flags & ~SS_FLAG_BITS;
3222 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3223 ss_mode != 0))
3224 return -EINVAL;
3225
3226 if (ss_mode == SS_DISABLE) {
3227 ss_size = 0;
3228 ss_sp = NULL;
3229 } else {
3230 if (unlikely(ss_size < MINSIGSTKSZ))
3231 return -ENOMEM;
3232 }
3233
3234 t->sas_ss_sp = (unsigned long) ss_sp;
3235 t->sas_ss_size = ss_size;
3236 t->sas_ss_flags = ss_flags;
3237 }
3238 return 0;
3239 }
3240
3241 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3242 {
3243 stack_t new, old;
3244 int err;
3245 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3246 return -EFAULT;
3247 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3248 current_user_stack_pointer());
3249 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3250 err = -EFAULT;
3251 return err;
3252 }
3253
3254 int restore_altstack(const stack_t __user *uss)
3255 {
3256 stack_t new;
3257 if (copy_from_user(&new, uss, sizeof(stack_t)))
3258 return -EFAULT;
3259 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer());
3260 /* squash all but EFAULT for now */
3261 return 0;
3262 }
3263
3264 int __save_altstack(stack_t __user *uss, unsigned long sp)
3265 {
3266 struct task_struct *t = current;
3267 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3268 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3269 __put_user(t->sas_ss_size, &uss->ss_size);
3270 if (err)
3271 return err;
3272 if (t->sas_ss_flags & SS_AUTODISARM)
3273 sas_ss_reset(t);
3274 return 0;
3275 }
3276
3277 #ifdef CONFIG_COMPAT
3278 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3279 const compat_stack_t __user *, uss_ptr,
3280 compat_stack_t __user *, uoss_ptr)
3281 {
3282 stack_t uss, uoss;
3283 int ret;
3284
3285 if (uss_ptr) {
3286 compat_stack_t uss32;
3287 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3288 return -EFAULT;
3289 uss.ss_sp = compat_ptr(uss32.ss_sp);
3290 uss.ss_flags = uss32.ss_flags;
3291 uss.ss_size = uss32.ss_size;
3292 }
3293 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3294 compat_user_stack_pointer());
3295 if (ret >= 0 && uoss_ptr) {
3296 compat_stack_t old;
3297 memset(&old, 0, sizeof(old));
3298 old.ss_sp = ptr_to_compat(uoss.ss_sp);
3299 old.ss_flags = uoss.ss_flags;
3300 old.ss_size = uoss.ss_size;
3301 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3302 ret = -EFAULT;
3303 }
3304 return ret;
3305 }
3306
3307 int compat_restore_altstack(const compat_stack_t __user *uss)
3308 {
3309 int err = compat_sys_sigaltstack(uss, NULL);
3310 /* squash all but -EFAULT for now */
3311 return err == -EFAULT ? err : 0;
3312 }
3313
3314 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3315 {
3316 int err;
3317 struct task_struct *t = current;
3318 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3319 &uss->ss_sp) |
3320 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3321 __put_user(t->sas_ss_size, &uss->ss_size);
3322 if (err)
3323 return err;
3324 if (t->sas_ss_flags & SS_AUTODISARM)
3325 sas_ss_reset(t);
3326 return 0;
3327 }
3328 #endif
3329
3330 #ifdef __ARCH_WANT_SYS_SIGPENDING
3331
3332 /**
3333 * sys_sigpending - examine pending signals
3334 * @set: where mask of pending signal is returned
3335 */
3336 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3337 {
3338 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3339 }
3340
3341 #ifdef CONFIG_COMPAT
3342 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3343 {
3344 sigset_t set;
3345 int err = do_sigpending(&set);
3346 if (!err)
3347 err = put_user(set.sig[0], set32);
3348 return err;
3349 }
3350 #endif
3351
3352 #endif
3353
3354 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3355 /**
3356 * sys_sigprocmask - examine and change blocked signals
3357 * @how: whether to add, remove, or set signals
3358 * @nset: signals to add or remove (if non-null)
3359 * @oset: previous value of signal mask if non-null
3360 *
3361 * Some platforms have their own version with special arguments;
3362 * others support only sys_rt_sigprocmask.
3363 */
3364
3365 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3366 old_sigset_t __user *, oset)
3367 {
3368 old_sigset_t old_set, new_set;
3369 sigset_t new_blocked;
3370
3371 old_set = current->blocked.sig[0];
3372
3373 if (nset) {
3374 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3375 return -EFAULT;
3376
3377 new_blocked = current->blocked;
3378
3379 switch (how) {
3380 case SIG_BLOCK:
3381 sigaddsetmask(&new_blocked, new_set);
3382 break;
3383 case SIG_UNBLOCK:
3384 sigdelsetmask(&new_blocked, new_set);
3385 break;
3386 case SIG_SETMASK:
3387 new_blocked.sig[0] = new_set;
3388 break;
3389 default:
3390 return -EINVAL;
3391 }
3392
3393 set_current_blocked(&new_blocked);
3394 }
3395
3396 if (oset) {
3397 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3398 return -EFAULT;
3399 }
3400
3401 return 0;
3402 }
3403 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3404
3405 #ifndef CONFIG_ODD_RT_SIGACTION
3406 /**
3407 * sys_rt_sigaction - alter an action taken by a process
3408 * @sig: signal to be sent
3409 * @act: new sigaction
3410 * @oact: used to save the previous sigaction
3411 * @sigsetsize: size of sigset_t type
3412 */
3413 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3414 const struct sigaction __user *, act,
3415 struct sigaction __user *, oact,
3416 size_t, sigsetsize)
3417 {
3418 struct k_sigaction new_sa, old_sa;
3419 int ret = -EINVAL;
3420
3421 /* XXX: Don't preclude handling different sized sigset_t's. */
3422 if (sigsetsize != sizeof(sigset_t))
3423 goto out;
3424
3425 if (act) {
3426 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3427 return -EFAULT;
3428 }
3429
3430 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3431
3432 if (!ret && oact) {
3433 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3434 return -EFAULT;
3435 }
3436 out:
3437 return ret;
3438 }
3439 #ifdef CONFIG_COMPAT
3440 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3441 const struct compat_sigaction __user *, act,
3442 struct compat_sigaction __user *, oact,
3443 compat_size_t, sigsetsize)
3444 {
3445 struct k_sigaction new_ka, old_ka;
3446 #ifdef __ARCH_HAS_SA_RESTORER
3447 compat_uptr_t restorer;
3448 #endif
3449 int ret;
3450
3451 /* XXX: Don't preclude handling different sized sigset_t's. */
3452 if (sigsetsize != sizeof(compat_sigset_t))
3453 return -EINVAL;
3454
3455 if (act) {
3456 compat_uptr_t handler;
3457 ret = get_user(handler, &act->sa_handler);
3458 new_ka.sa.sa_handler = compat_ptr(handler);
3459 #ifdef __ARCH_HAS_SA_RESTORER
3460 ret |= get_user(restorer, &act->sa_restorer);
3461 new_ka.sa.sa_restorer = compat_ptr(restorer);
3462 #endif
3463 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
3464 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3465 if (ret)
3466 return -EFAULT;
3467 }
3468
3469 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3470 if (!ret && oact) {
3471 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3472 &oact->sa_handler);
3473 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
3474 sizeof(oact->sa_mask));
3475 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3476 #ifdef __ARCH_HAS_SA_RESTORER
3477 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3478 &oact->sa_restorer);
3479 #endif
3480 }
3481 return ret;
3482 }
3483 #endif
3484 #endif /* !CONFIG_ODD_RT_SIGACTION */
3485
3486 #ifdef CONFIG_OLD_SIGACTION
3487 SYSCALL_DEFINE3(sigaction, int, sig,
3488 const struct old_sigaction __user *, act,
3489 struct old_sigaction __user *, oact)
3490 {
3491 struct k_sigaction new_ka, old_ka;
3492 int ret;
3493
3494 if (act) {
3495 old_sigset_t mask;
3496 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3497 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3498 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3499 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3500 __get_user(mask, &act->sa_mask))
3501 return -EFAULT;
3502 #ifdef __ARCH_HAS_KA_RESTORER
3503 new_ka.ka_restorer = NULL;
3504 #endif
3505 siginitset(&new_ka.sa.sa_mask, mask);
3506 }
3507
3508 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3509
3510 if (!ret && oact) {
3511 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3512 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3513 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3514 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3515 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3516 return -EFAULT;
3517 }
3518
3519 return ret;
3520 }
3521 #endif
3522 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3523 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3524 const struct compat_old_sigaction __user *, act,
3525 struct compat_old_sigaction __user *, oact)
3526 {
3527 struct k_sigaction new_ka, old_ka;
3528 int ret;
3529 compat_old_sigset_t mask;
3530 compat_uptr_t handler, restorer;
3531
3532 if (act) {
3533 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3534 __get_user(handler, &act->sa_handler) ||
3535 __get_user(restorer, &act->sa_restorer) ||
3536 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3537 __get_user(mask, &act->sa_mask))
3538 return -EFAULT;
3539
3540 #ifdef __ARCH_HAS_KA_RESTORER
3541 new_ka.ka_restorer = NULL;
3542 #endif
3543 new_ka.sa.sa_handler = compat_ptr(handler);
3544 new_ka.sa.sa_restorer = compat_ptr(restorer);
3545 siginitset(&new_ka.sa.sa_mask, mask);
3546 }
3547
3548 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3549
3550 if (!ret && oact) {
3551 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3552 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3553 &oact->sa_handler) ||
3554 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3555 &oact->sa_restorer) ||
3556 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3557 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3558 return -EFAULT;
3559 }
3560 return ret;
3561 }
3562 #endif
3563
3564 #ifdef CONFIG_SGETMASK_SYSCALL
3565
3566 /*
3567 * For backwards compatibility. Functionality superseded by sigprocmask.
3568 */
3569 SYSCALL_DEFINE0(sgetmask)
3570 {
3571 /* SMP safe */
3572 return current->blocked.sig[0];
3573 }
3574
3575 SYSCALL_DEFINE1(ssetmask, int, newmask)
3576 {
3577 int old = current->blocked.sig[0];
3578 sigset_t newset;
3579
3580 siginitset(&newset, newmask);
3581 set_current_blocked(&newset);
3582
3583 return old;
3584 }
3585 #endif /* CONFIG_SGETMASK_SYSCALL */
3586
3587 #ifdef __ARCH_WANT_SYS_SIGNAL
3588 /*
3589 * For backwards compatibility. Functionality superseded by sigaction.
3590 */
3591 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3592 {
3593 struct k_sigaction new_sa, old_sa;
3594 int ret;
3595
3596 new_sa.sa.sa_handler = handler;
3597 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3598 sigemptyset(&new_sa.sa.sa_mask);
3599
3600 ret = do_sigaction(sig, &new_sa, &old_sa);
3601
3602 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3603 }
3604 #endif /* __ARCH_WANT_SYS_SIGNAL */
3605
3606 #ifdef __ARCH_WANT_SYS_PAUSE
3607
3608 SYSCALL_DEFINE0(pause)
3609 {
3610 while (!signal_pending(current)) {
3611 __set_current_state(TASK_INTERRUPTIBLE);
3612 schedule();
3613 }
3614 return -ERESTARTNOHAND;
3615 }
3616
3617 #endif
3618
3619 static int sigsuspend(sigset_t *set)
3620 {
3621 current->saved_sigmask = current->blocked;
3622 set_current_blocked(set);
3623
3624 while (!signal_pending(current)) {
3625 __set_current_state(TASK_INTERRUPTIBLE);
3626 schedule();
3627 }
3628 set_restore_sigmask();
3629 return -ERESTARTNOHAND;
3630 }
3631
3632 /**
3633 * sys_rt_sigsuspend - replace the signal mask for a value with the
3634 * @unewset value until a signal is received
3635 * @unewset: new signal mask value
3636 * @sigsetsize: size of sigset_t type
3637 */
3638 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3639 {
3640 sigset_t newset;
3641
3642 /* XXX: Don't preclude handling different sized sigset_t's. */
3643 if (sigsetsize != sizeof(sigset_t))
3644 return -EINVAL;
3645
3646 if (copy_from_user(&newset, unewset, sizeof(newset)))
3647 return -EFAULT;
3648 return sigsuspend(&newset);
3649 }
3650
3651 #ifdef CONFIG_COMPAT
3652 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3653 {
3654 sigset_t newset;
3655
3656 /* XXX: Don't preclude handling different sized sigset_t's. */
3657 if (sigsetsize != sizeof(sigset_t))
3658 return -EINVAL;
3659
3660 if (get_compat_sigset(&newset, unewset))
3661 return -EFAULT;
3662 return sigsuspend(&newset);
3663 }
3664 #endif
3665
3666 #ifdef CONFIG_OLD_SIGSUSPEND
3667 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3668 {
3669 sigset_t blocked;
3670 siginitset(&blocked, mask);
3671 return sigsuspend(&blocked);
3672 }
3673 #endif
3674 #ifdef CONFIG_OLD_SIGSUSPEND3
3675 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3676 {
3677 sigset_t blocked;
3678 siginitset(&blocked, mask);
3679 return sigsuspend(&blocked);
3680 }
3681 #endif
3682
3683 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3684 {
3685 return NULL;
3686 }
3687
3688 void __init signals_init(void)
3689 {
3690 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3691 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3692 != offsetof(struct siginfo, _sifields._pad));
3693
3694 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3695 }
3696
3697 #ifdef CONFIG_KGDB_KDB
3698 #include <linux/kdb.h>
3699 /*
3700 * kdb_send_sig_info - Allows kdb to send signals without exposing
3701 * signal internals. This function checks if the required locks are
3702 * available before calling the main signal code, to avoid kdb
3703 * deadlocks.
3704 */
3705 void
3706 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3707 {
3708 static struct task_struct *kdb_prev_t;
3709 int sig, new_t;
3710 if (!spin_trylock(&t->sighand->siglock)) {
3711 kdb_printf("Can't do kill command now.\n"
3712 "The sigmask lock is held somewhere else in "
3713 "kernel, try again later\n");
3714 return;
3715 }
3716 spin_unlock(&t->sighand->siglock);
3717 new_t = kdb_prev_t != t;
3718 kdb_prev_t = t;
3719 if (t->state != TASK_RUNNING && new_t) {
3720 kdb_printf("Process is not RUNNING, sending a signal from "
3721 "kdb risks deadlock\n"
3722 "on the run queue locks. "
3723 "The signal has _not_ been sent.\n"
3724 "Reissue the kill command if you want to risk "
3725 "the deadlock.\n");
3726 return;
3727 }
3728 sig = info->si_signo;
3729 if (send_sig_info(sig, info, t))
3730 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3731 sig, t->pid);
3732 else
3733 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3734 }
3735 #endif /* CONFIG_KGDB_KDB */