]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/stop_machine.c
x86/speculation/mds: Conditionally clear CPU buffers on idle entry
[mirror_ubuntu-bionic-kernel.git] / kernel / stop_machine.c
1 /*
2 * kernel/stop_machine.c
3 *
4 * Copyright (C) 2008, 2005 IBM Corporation.
5 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au
6 * Copyright (C) 2010 SUSE Linux Products GmbH
7 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
8 *
9 * This file is released under the GPLv2 and any later version.
10 */
11 #include <linux/completion.h>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kthread.h>
15 #include <linux/export.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/stop_machine.h>
19 #include <linux/interrupt.h>
20 #include <linux/kallsyms.h>
21 #include <linux/smpboot.h>
22 #include <linux/atomic.h>
23 #include <linux/nmi.h>
24 #include <linux/sched/wake_q.h>
25
26 /*
27 * Structure to determine completion condition and record errors. May
28 * be shared by works on different cpus.
29 */
30 struct cpu_stop_done {
31 atomic_t nr_todo; /* nr left to execute */
32 int ret; /* collected return value */
33 struct completion completion; /* fired if nr_todo reaches 0 */
34 };
35
36 /* the actual stopper, one per every possible cpu, enabled on online cpus */
37 struct cpu_stopper {
38 struct task_struct *thread;
39
40 raw_spinlock_t lock;
41 bool enabled; /* is this stopper enabled? */
42 struct list_head works; /* list of pending works */
43
44 struct cpu_stop_work stop_work; /* for stop_cpus */
45 };
46
47 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
48 static bool stop_machine_initialized = false;
49
50 /* static data for stop_cpus */
51 static DEFINE_MUTEX(stop_cpus_mutex);
52 static bool stop_cpus_in_progress;
53
54 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
55 {
56 memset(done, 0, sizeof(*done));
57 atomic_set(&done->nr_todo, nr_todo);
58 init_completion(&done->completion);
59 }
60
61 /* signal completion unless @done is NULL */
62 static void cpu_stop_signal_done(struct cpu_stop_done *done)
63 {
64 if (atomic_dec_and_test(&done->nr_todo))
65 complete(&done->completion);
66 }
67
68 static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
69 struct cpu_stop_work *work,
70 struct wake_q_head *wakeq)
71 {
72 list_add_tail(&work->list, &stopper->works);
73 wake_q_add(wakeq, stopper->thread);
74 }
75
76 /* queue @work to @stopper. if offline, @work is completed immediately */
77 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
78 {
79 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
80 DEFINE_WAKE_Q(wakeq);
81 unsigned long flags;
82 bool enabled;
83
84 preempt_disable();
85 raw_spin_lock_irqsave(&stopper->lock, flags);
86 enabled = stopper->enabled;
87 if (enabled)
88 __cpu_stop_queue_work(stopper, work, &wakeq);
89 else if (work->done)
90 cpu_stop_signal_done(work->done);
91 raw_spin_unlock_irqrestore(&stopper->lock, flags);
92
93 wake_up_q(&wakeq);
94 preempt_enable();
95
96 return enabled;
97 }
98
99 /**
100 * stop_one_cpu - stop a cpu
101 * @cpu: cpu to stop
102 * @fn: function to execute
103 * @arg: argument to @fn
104 *
105 * Execute @fn(@arg) on @cpu. @fn is run in a process context with
106 * the highest priority preempting any task on the cpu and
107 * monopolizing it. This function returns after the execution is
108 * complete.
109 *
110 * This function doesn't guarantee @cpu stays online till @fn
111 * completes. If @cpu goes down in the middle, execution may happen
112 * partially or fully on different cpus. @fn should either be ready
113 * for that or the caller should ensure that @cpu stays online until
114 * this function completes.
115 *
116 * CONTEXT:
117 * Might sleep.
118 *
119 * RETURNS:
120 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
121 * otherwise, the return value of @fn.
122 */
123 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
124 {
125 struct cpu_stop_done done;
126 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
127
128 cpu_stop_init_done(&done, 1);
129 if (!cpu_stop_queue_work(cpu, &work))
130 return -ENOENT;
131 /*
132 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
133 * cycle by doing a preemption:
134 */
135 cond_resched();
136 wait_for_completion(&done.completion);
137 return done.ret;
138 }
139
140 /* This controls the threads on each CPU. */
141 enum multi_stop_state {
142 /* Dummy starting state for thread. */
143 MULTI_STOP_NONE,
144 /* Awaiting everyone to be scheduled. */
145 MULTI_STOP_PREPARE,
146 /* Disable interrupts. */
147 MULTI_STOP_DISABLE_IRQ,
148 /* Run the function */
149 MULTI_STOP_RUN,
150 /* Exit */
151 MULTI_STOP_EXIT,
152 };
153
154 struct multi_stop_data {
155 cpu_stop_fn_t fn;
156 void *data;
157 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
158 unsigned int num_threads;
159 const struct cpumask *active_cpus;
160
161 enum multi_stop_state state;
162 atomic_t thread_ack;
163 };
164
165 static void set_state(struct multi_stop_data *msdata,
166 enum multi_stop_state newstate)
167 {
168 /* Reset ack counter. */
169 atomic_set(&msdata->thread_ack, msdata->num_threads);
170 smp_wmb();
171 msdata->state = newstate;
172 }
173
174 /* Last one to ack a state moves to the next state. */
175 static void ack_state(struct multi_stop_data *msdata)
176 {
177 if (atomic_dec_and_test(&msdata->thread_ack))
178 set_state(msdata, msdata->state + 1);
179 }
180
181 /* This is the cpu_stop function which stops the CPU. */
182 static int multi_cpu_stop(void *data)
183 {
184 struct multi_stop_data *msdata = data;
185 enum multi_stop_state curstate = MULTI_STOP_NONE;
186 int cpu = smp_processor_id(), err = 0;
187 unsigned long flags;
188 bool is_active;
189
190 /*
191 * When called from stop_machine_from_inactive_cpu(), irq might
192 * already be disabled. Save the state and restore it on exit.
193 */
194 local_save_flags(flags);
195
196 if (!msdata->active_cpus)
197 is_active = cpu == cpumask_first(cpu_online_mask);
198 else
199 is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
200
201 /* Simple state machine */
202 do {
203 /* Chill out and ensure we re-read multi_stop_state. */
204 cpu_relax_yield();
205 if (msdata->state != curstate) {
206 curstate = msdata->state;
207 switch (curstate) {
208 case MULTI_STOP_DISABLE_IRQ:
209 local_irq_disable();
210 hard_irq_disable();
211 break;
212 case MULTI_STOP_RUN:
213 if (is_active)
214 err = msdata->fn(msdata->data);
215 break;
216 default:
217 break;
218 }
219 ack_state(msdata);
220 } else if (curstate > MULTI_STOP_PREPARE) {
221 /*
222 * At this stage all other CPUs we depend on must spin
223 * in the same loop. Any reason for hard-lockup should
224 * be detected and reported on their side.
225 */
226 touch_nmi_watchdog();
227 }
228 } while (curstate != MULTI_STOP_EXIT);
229
230 local_irq_restore(flags);
231 return err;
232 }
233
234 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
235 int cpu2, struct cpu_stop_work *work2)
236 {
237 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
238 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
239 DEFINE_WAKE_Q(wakeq);
240 int err;
241 retry:
242 raw_spin_lock_irq(&stopper1->lock);
243 raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
244
245 err = -ENOENT;
246 if (!stopper1->enabled || !stopper2->enabled)
247 goto unlock;
248 /*
249 * Ensure that if we race with __stop_cpus() the stoppers won't get
250 * queued up in reverse order leading to system deadlock.
251 *
252 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
253 * queued a work on cpu1 but not on cpu2, we hold both locks.
254 *
255 * It can be falsely true but it is safe to spin until it is cleared,
256 * queue_stop_cpus_work() does everything under preempt_disable().
257 */
258 err = -EDEADLK;
259 if (unlikely(stop_cpus_in_progress))
260 goto unlock;
261
262 err = 0;
263 __cpu_stop_queue_work(stopper1, work1, &wakeq);
264 __cpu_stop_queue_work(stopper2, work2, &wakeq);
265 /*
266 * The waking up of stopper threads has to happen
267 * in the same scheduling context as the queueing.
268 * Otherwise, there is a possibility of one of the
269 * above stoppers being woken up by another CPU,
270 * and preempting us. This will cause us to n ot
271 * wake up the other stopper forever.
272 */
273 preempt_disable();
274 unlock:
275 raw_spin_unlock(&stopper2->lock);
276 raw_spin_unlock_irq(&stopper1->lock);
277
278 if (unlikely(err == -EDEADLK)) {
279 while (stop_cpus_in_progress)
280 cpu_relax();
281 goto retry;
282 }
283
284 if (!err) {
285 wake_up_q(&wakeq);
286 preempt_enable();
287 }
288
289 return err;
290 }
291 /**
292 * stop_two_cpus - stops two cpus
293 * @cpu1: the cpu to stop
294 * @cpu2: the other cpu to stop
295 * @fn: function to execute
296 * @arg: argument to @fn
297 *
298 * Stops both the current and specified CPU and runs @fn on one of them.
299 *
300 * returns when both are completed.
301 */
302 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
303 {
304 struct cpu_stop_done done;
305 struct cpu_stop_work work1, work2;
306 struct multi_stop_data msdata;
307
308 msdata = (struct multi_stop_data){
309 .fn = fn,
310 .data = arg,
311 .num_threads = 2,
312 .active_cpus = cpumask_of(cpu1),
313 };
314
315 work1 = work2 = (struct cpu_stop_work){
316 .fn = multi_cpu_stop,
317 .arg = &msdata,
318 .done = &done
319 };
320
321 cpu_stop_init_done(&done, 2);
322 set_state(&msdata, MULTI_STOP_PREPARE);
323
324 if (cpu1 > cpu2)
325 swap(cpu1, cpu2);
326 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
327 return -ENOENT;
328
329 wait_for_completion(&done.completion);
330 return done.ret;
331 }
332
333 /**
334 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
335 * @cpu: cpu to stop
336 * @fn: function to execute
337 * @arg: argument to @fn
338 * @work_buf: pointer to cpu_stop_work structure
339 *
340 * Similar to stop_one_cpu() but doesn't wait for completion. The
341 * caller is responsible for ensuring @work_buf is currently unused
342 * and will remain untouched until stopper starts executing @fn.
343 *
344 * CONTEXT:
345 * Don't care.
346 *
347 * RETURNS:
348 * true if cpu_stop_work was queued successfully and @fn will be called,
349 * false otherwise.
350 */
351 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
352 struct cpu_stop_work *work_buf)
353 {
354 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
355 return cpu_stop_queue_work(cpu, work_buf);
356 }
357
358 static bool queue_stop_cpus_work(const struct cpumask *cpumask,
359 cpu_stop_fn_t fn, void *arg,
360 struct cpu_stop_done *done)
361 {
362 struct cpu_stop_work *work;
363 unsigned int cpu;
364 bool queued = false;
365
366 /*
367 * Disable preemption while queueing to avoid getting
368 * preempted by a stopper which might wait for other stoppers
369 * to enter @fn which can lead to deadlock.
370 */
371 preempt_disable();
372 stop_cpus_in_progress = true;
373 for_each_cpu(cpu, cpumask) {
374 work = &per_cpu(cpu_stopper.stop_work, cpu);
375 work->fn = fn;
376 work->arg = arg;
377 work->done = done;
378 if (cpu_stop_queue_work(cpu, work))
379 queued = true;
380 }
381 stop_cpus_in_progress = false;
382 preempt_enable();
383
384 return queued;
385 }
386
387 static int __stop_cpus(const struct cpumask *cpumask,
388 cpu_stop_fn_t fn, void *arg)
389 {
390 struct cpu_stop_done done;
391
392 cpu_stop_init_done(&done, cpumask_weight(cpumask));
393 if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
394 return -ENOENT;
395 wait_for_completion(&done.completion);
396 return done.ret;
397 }
398
399 /**
400 * stop_cpus - stop multiple cpus
401 * @cpumask: cpus to stop
402 * @fn: function to execute
403 * @arg: argument to @fn
404 *
405 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu,
406 * @fn is run in a process context with the highest priority
407 * preempting any task on the cpu and monopolizing it. This function
408 * returns after all executions are complete.
409 *
410 * This function doesn't guarantee the cpus in @cpumask stay online
411 * till @fn completes. If some cpus go down in the middle, execution
412 * on the cpu may happen partially or fully on different cpus. @fn
413 * should either be ready for that or the caller should ensure that
414 * the cpus stay online until this function completes.
415 *
416 * All stop_cpus() calls are serialized making it safe for @fn to wait
417 * for all cpus to start executing it.
418 *
419 * CONTEXT:
420 * Might sleep.
421 *
422 * RETURNS:
423 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
424 * @cpumask were offline; otherwise, 0 if all executions of @fn
425 * returned 0, any non zero return value if any returned non zero.
426 */
427 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
428 {
429 int ret;
430
431 /* static works are used, process one request at a time */
432 mutex_lock(&stop_cpus_mutex);
433 ret = __stop_cpus(cpumask, fn, arg);
434 mutex_unlock(&stop_cpus_mutex);
435 return ret;
436 }
437
438 /**
439 * try_stop_cpus - try to stop multiple cpus
440 * @cpumask: cpus to stop
441 * @fn: function to execute
442 * @arg: argument to @fn
443 *
444 * Identical to stop_cpus() except that it fails with -EAGAIN if
445 * someone else is already using the facility.
446 *
447 * CONTEXT:
448 * Might sleep.
449 *
450 * RETURNS:
451 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
452 * @fn(@arg) was not executed at all because all cpus in @cpumask were
453 * offline; otherwise, 0 if all executions of @fn returned 0, any non
454 * zero return value if any returned non zero.
455 */
456 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
457 {
458 int ret;
459
460 /* static works are used, process one request at a time */
461 if (!mutex_trylock(&stop_cpus_mutex))
462 return -EAGAIN;
463 ret = __stop_cpus(cpumask, fn, arg);
464 mutex_unlock(&stop_cpus_mutex);
465 return ret;
466 }
467
468 static int cpu_stop_should_run(unsigned int cpu)
469 {
470 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
471 unsigned long flags;
472 int run;
473
474 raw_spin_lock_irqsave(&stopper->lock, flags);
475 run = !list_empty(&stopper->works);
476 raw_spin_unlock_irqrestore(&stopper->lock, flags);
477 return run;
478 }
479
480 static void cpu_stopper_thread(unsigned int cpu)
481 {
482 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
483 struct cpu_stop_work *work;
484
485 repeat:
486 work = NULL;
487 raw_spin_lock_irq(&stopper->lock);
488 if (!list_empty(&stopper->works)) {
489 work = list_first_entry(&stopper->works,
490 struct cpu_stop_work, list);
491 list_del_init(&work->list);
492 }
493 raw_spin_unlock_irq(&stopper->lock);
494
495 if (work) {
496 cpu_stop_fn_t fn = work->fn;
497 void *arg = work->arg;
498 struct cpu_stop_done *done = work->done;
499 int ret;
500
501 /* cpu stop callbacks must not sleep, make in_atomic() == T */
502 preempt_count_inc();
503 ret = fn(arg);
504 if (done) {
505 if (ret)
506 done->ret = ret;
507 cpu_stop_signal_done(done);
508 }
509 preempt_count_dec();
510 WARN_ONCE(preempt_count(),
511 "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg);
512 goto repeat;
513 }
514 }
515
516 void stop_machine_park(int cpu)
517 {
518 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
519 /*
520 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
521 * the pending works before it parks, until then it is fine to queue
522 * the new works.
523 */
524 stopper->enabled = false;
525 kthread_park(stopper->thread);
526 }
527
528 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
529
530 static void cpu_stop_create(unsigned int cpu)
531 {
532 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
533 }
534
535 static void cpu_stop_park(unsigned int cpu)
536 {
537 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
538
539 WARN_ON(!list_empty(&stopper->works));
540 }
541
542 void stop_machine_unpark(int cpu)
543 {
544 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
545
546 stopper->enabled = true;
547 kthread_unpark(stopper->thread);
548 }
549
550 static struct smp_hotplug_thread cpu_stop_threads = {
551 .store = &cpu_stopper.thread,
552 .thread_should_run = cpu_stop_should_run,
553 .thread_fn = cpu_stopper_thread,
554 .thread_comm = "migration/%u",
555 .create = cpu_stop_create,
556 .park = cpu_stop_park,
557 .selfparking = true,
558 };
559
560 static int __init cpu_stop_init(void)
561 {
562 unsigned int cpu;
563
564 for_each_possible_cpu(cpu) {
565 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
566
567 raw_spin_lock_init(&stopper->lock);
568 INIT_LIST_HEAD(&stopper->works);
569 }
570
571 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
572 stop_machine_unpark(raw_smp_processor_id());
573 stop_machine_initialized = true;
574 return 0;
575 }
576 early_initcall(cpu_stop_init);
577
578 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
579 const struct cpumask *cpus)
580 {
581 struct multi_stop_data msdata = {
582 .fn = fn,
583 .data = data,
584 .num_threads = num_online_cpus(),
585 .active_cpus = cpus,
586 };
587
588 lockdep_assert_cpus_held();
589
590 if (!stop_machine_initialized) {
591 /*
592 * Handle the case where stop_machine() is called
593 * early in boot before stop_machine() has been
594 * initialized.
595 */
596 unsigned long flags;
597 int ret;
598
599 WARN_ON_ONCE(msdata.num_threads != 1);
600
601 local_irq_save(flags);
602 hard_irq_disable();
603 ret = (*fn)(data);
604 local_irq_restore(flags);
605
606 return ret;
607 }
608
609 /* Set the initial state and stop all online cpus. */
610 set_state(&msdata, MULTI_STOP_PREPARE);
611 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
612 }
613
614 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
615 {
616 int ret;
617
618 /* No CPUs can come up or down during this. */
619 cpus_read_lock();
620 ret = stop_machine_cpuslocked(fn, data, cpus);
621 cpus_read_unlock();
622 return ret;
623 }
624 EXPORT_SYMBOL_GPL(stop_machine);
625
626 /**
627 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
628 * @fn: the function to run
629 * @data: the data ptr for the @fn()
630 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
631 *
632 * This is identical to stop_machine() but can be called from a CPU which
633 * is not active. The local CPU is in the process of hotplug (so no other
634 * CPU hotplug can start) and not marked active and doesn't have enough
635 * context to sleep.
636 *
637 * This function provides stop_machine() functionality for such state by
638 * using busy-wait for synchronization and executing @fn directly for local
639 * CPU.
640 *
641 * CONTEXT:
642 * Local CPU is inactive. Temporarily stops all active CPUs.
643 *
644 * RETURNS:
645 * 0 if all executions of @fn returned 0, any non zero return value if any
646 * returned non zero.
647 */
648 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
649 const struct cpumask *cpus)
650 {
651 struct multi_stop_data msdata = { .fn = fn, .data = data,
652 .active_cpus = cpus };
653 struct cpu_stop_done done;
654 int ret;
655
656 /* Local CPU must be inactive and CPU hotplug in progress. */
657 BUG_ON(cpu_active(raw_smp_processor_id()));
658 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */
659
660 /* No proper task established and can't sleep - busy wait for lock. */
661 while (!mutex_trylock(&stop_cpus_mutex))
662 cpu_relax();
663
664 /* Schedule work on other CPUs and execute directly for local CPU */
665 set_state(&msdata, MULTI_STOP_PREPARE);
666 cpu_stop_init_done(&done, num_active_cpus());
667 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
668 &done);
669 ret = multi_cpu_stop(&msdata);
670
671 /* Busy wait for completion. */
672 while (!completion_done(&done.completion))
673 cpu_relax();
674
675 mutex_unlock(&stop_cpus_mutex);
676 return ret ?: done.ret;
677 }